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Abstract
Convolutional encoder-decoder (CED) has emerged as a powerful architecture, particularly in speech enhancement (SE),
which aims to improve the intelligibility and quality and intelligibility of noise-contaminated speech. This architecture
leverages the strength of the convolutional neural networks (CNNs) in capturing high-level features. Usually, the CED
architectures use the gated recurrent unit (GRU) or long-short-term memory (LSTM) as a bottleneck to capture temporal
dependencies, enabling a SE model to effectively learn the dynamics and long-term temporal dependencies in the speech
signal. However, Transformers neural networks with self-attention effectively capture long-term temporal dependencies. This
study proposes a multi-attention bottleneck (MAB) comprised of a self-attention Transformer powered by a time-frequency
attention (TFA) module followed by a channel attention module (CAM) to focus on the important features. The proposed
bottleneck (MAB) is integrated into a CED architecture and named MAB-CED. The MAB-CED uses an encoder-decoder
structure including a shared encoder and two decoders, where one decoder is dedicated to spectral masking and the other
is used for spectral mapping. Convolutional Gated Linear Units (ConvGLU) and Deconvolutional Gated Linear Units
(DeconvGLU) are used to construct the encoder-decoder framework. The outputs of two decoders are coupled by applying
coherent averaging to synthesize the enhanced speech signal. The proposed speech enhancement is examined using two
databases, VoiceBank+DEMAND and LibriSpeech. The results show that the proposed speech enhancement outperforms
the benchmarks in terms of intelligibility and quality at various input SNRs. This indicates the performance of the proposed
MAB-CED at improving the average PESQ by 0.55 (22.85%) with VoiceBank+DEMAND and by 0.58 (23.79%) with
LibriSpeech. The average STOI is improved by 9.63% (VoiceBank+DEMAND) and 9.78% (LibriSpeech) over the noisy
mixtures. © 2013 IEEE.
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