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Abstract

This paper presents an expansion and evaluation of the hardware architecture for the Optimized Deep Event-driven Spiking Neural
Network Architecture (ODESA). ODESA is a state-of-the-art, event-driven multi-layer Spiking Neural Network (SNN) architecture
that offers an end-to-end, online, and local supervised training method. In previous work, ODESA was successfully implemented on
Field-Programmable Gate Array (FPGA) hardware, showcasing its effectiveness in resource-constrained hardware environments.
Building upon the previous implementation, this research focuses on optimizing the ODESA network hardware by introducing a
novel approach. Specifically, we propose substituting the dot product multipliers in the Neurons with a low-cost shift-register de-
sign. This optimization strategy significantly reduces the hardware resources required for implementing a neuron, thereby enabling
more complex SNNs to be accommodated within a single FPGA. Additionally, this optimization results in a reduction in power
consumption, further enhancing the practicality and efficiency of the hardware implementation. To evaluate the effectiveness of the
proposed optimization, extensive experiments and measurements were conducted. The results demonstrate the successful reduction
in hardware resource utilization while maintaining the network’s functionality and performance. Moreover, the power consumption
reduction contributes to the overall energy efficiency of the hardware implementation.
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1. Introduction

The Optimized Deep Event-driven Spiking Neural Network Architecture (ODESA) [1] is an innovative event-
driven multi-layered Spiking Neural Network (SNN) architecture. It offers the ability to be trained end-to-end using a
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local and online supervised learning method, eliminating the need for gradients. ODESA incorporates the combined
adaptation of weights and thresholds within an efficient hierarchical structure.

The network trainer module in ODESA optimally allocates neuronal resources at each layer by utilizing simple
local adaptive selection thresholds, implementing a Winner-Takes-All (WTA) constraint, and employing a modified
weight update rule. This eliminates the requirement of passing high-precision error measurements across layers. All
elements within the system, including the training module, interact using event-based binary spikes.

A hardware implementation of the ODESA architecture was previously proposed and demonstrated its efficiency
in solving classification problems [2]. However, there are limitations in utilizing ODESA hardware for more complex
problems. As discussed in [2], the ODESA hardware compares the dot-product of the synaptic weights of the neurons
at each layer with the incoming spatio-temporal spike pattern to determine the winning neuron for each event. The
use of multipliers for these dot product computations consumes a significant amount of hardware resources, thereby
limiting the number of synapses that can be implemented on a single Field-Programmable Gate Array (FPGA). Ad-
ditionally, multipliers contribute to static and dynamic power dissipation. In conventional FPGA architectures, the
DSP (Digital Signal Processing) slices are localized on the FPGA fabric layout, leading to longer routing paths and
inefficient usage of the configurable logic blocks.

To overcome these limitations, we have developed a novel architecture that avoids the use of multipliers. Our
approach models the weighted decaying output of a synapse using simple shift and register operations. This innovative
design significantly enhances resource utilization and reduces power consumption, making it well-suited for multi-
class classification tasks.

To validate the performance of our proposed architecture, we conducted experiments using various benchmark
datasets and compared the results with existing solutions reported in the literature. Furthermore, we benchmarked the
performance of our proposed architecture against a state-of-the-art solution that employs gradient descent to train a
single-layer neural network (DNN). The experimental results provide compelling evidence of the effectiveness of our
proposed architecture in terms of accuracy and efficiency across a range of classification tasks.

2. Background

2.1. The ODESA Architecture

The ODESA (Optimized Deep Event-driven Spiking Neural Network Architecture) is a generalized version of
the previously proposed unsupervised learning method FEAST [3], which allows for supervised classification tasks
on spiking and event-based datasets [1]. FEAST itself is a highly abstracted and computationally optimized model
based on the SKAN method [4, 5]. It has been successfully applied in various applications, such as event-based object
tracking [6], activity-driven adaptation in SNNs [7], and feature extraction for isolated spoken digits recognition [8, 9].

In ODESA networks, each layer functions as a well-balanced Excitatory-Inhibitory (EI) network with instant lateral
inhibition, resulting in Winner-Takes-All (WTA) behavior. These hierarchical networks can be trained using local rules
on event-based data, with supervisory label events associated with the input events. For classification tasks with Nc

classes, the output classification layer in ODESA networks consists of m · Nc neurons divided into Nc groups, each
responsible for one class. Neurons in ODESA networks utilize time surfaces to encode the input spike context and
compute the membrane potential using the dot product with synaptic weights.

The WTA constraint ensures that only one neuron responds to any input spike within a layer. Supervisory label
spikes drive threshold adaptation in the output layer of ODESA networks. If the correct class neuron group does not
produce an output spike for a labeled input spike, the thresholds of all neurons associated with that label are lowered.
Weight updates and threshold increases are considered as ”rewarding” a neuron for correctly classifying an input
spike. Conversely, decreasing the threshold to make a neuron more receptive is considered as ”punishing” it for not
being active when it should have been.

ODESA can learn spatial and temporal features at different timescales simultaneously by employing hidden layers
with different time constants at different levels [1]. Similar to the output layers, hidden layers also undergo threshold
adaptation. When a neuron in a layer becomes active, it generates a binary attention signal called the Local Attention
Signal (LAS) for the previous layer. These LASs provide the necessary feedback to train the hidden layers by reward-
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ing recently active neurons in the preceding layer. As the communication between layers occurs solely through local
binary attention signals during training, this architecture is well-suited for enabling online learning in hardware.

Additionally, a Global Attention Signal (GAS) is generated when a label spike is present for a given input spike.
The GAS is accessible by all layers, and each layer has access to the LAS generated by its subsequent layer in the
hierarchy. In the output layer, LAS is not required since there is no subsequent layer, with the GAS serving as the local
supervisory signal. At the output layer, the generated output spike is compared with the expected label to reward or
punish neurons accordingly. Importantly, all communication between layers is based on binary events, and no neuron
has access to information regarding the identity or weights of other neurons. All operations are causal and do not
require computations backward in time, as is the case in recently proposed error back-propagation-based training
methods for SNNs, such as EventProp [10].

2.2. Hardware implementation of ODESA

In the proposed ODESA hardware architecture presented in [2], each layer is composed of multiple neurons, form-
ing a crucial component of the network. Within each layer, the individual outputs of these neurons are processed
through a Comparator and Spike Generator module. This module compares the outputs and determines the winning
neuron, which then generates an output spike. Each neuron in an ODESA layer is equipped with several synapse mod-
ules. These synapse modules receive inputs from different sources and contribute to the neuron’s overall computation.
The outputs of these synapse modules are combined, typically through summation, to produce a cumulative value.
This cumulative value is then compared against a threshold. If the cumulative value exceeds the threshold, indicating
a significant activation level, the neuron generates an output spike. Conversely, if the cumulative value falls below
the threshold, the neuron remains silent, and its output is zero. This mechanism allows for the selective activation of
neurons based on the input stimuli and the individual neuron’s sensitivity. To provide a visual representation of an
ODESA layer’s architecture, Figure 1 illustrates the organization and connectivity of the neurons, synapse modules,
and the Comparator and Spike Generator module within a layer. This diagram helps visualize the flow of information
and the hierarchical structure of an ODESA layer, emphasizing the interactions among its components.

Fig. 1. An ODESA layer with 4 inputs and 3 output spikes and its dedicated training module.

In the ODESA architecture, each layer has its own dedicated training module responsible for assigning thresholds
to neurons and weights to synapses. Within an ODESA layer, a neuron performs a weighted sum of the outputs from
the synapses connected to it, and this result is then compared against a threshold value. The configuration of neurons
and synapses within ODESA layers may vary based on the specific requirements of the classification problem being
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addressed. However, all neurons within a given layer possess an identical number of synapses, which is equal to the
number of neurons in the preceding layer. During the training process, the weights of synapses and the threshold
values of neurons are iteratively adjusted. These parameters play a crucial role in shaping the behavior of the ODESA
network and are crucial for achieving accurate and efficient classification. For a visual representation, refer to Figure
2, which provides an illustration of the neuron structure in the ODESA architecture. Similarly, the architecture of
a synapse is depicted in detail in Figure 3. These figures provide a visual reference for understanding the internal
components and connections within the ODESA network.

Fig. 2. Neuron architecture with n Synapses

The Synapse module within ODESA is responsible for capturing input events, even if they are not synchronized
with the layer’s reference clock. To ensure that no input events are missed, a Synchronizer is employed. When an
event is received, the ‘Leaky accumulator’ initiates a decay process starting from a constant value C and gradually
decreasing to zero. The decay process can be implemented using either a linear down counter or an approximation
of exponential decay modeled through shift-right registers. In the previous work [2], the output of the decay counter
was multiplied by the value stored in the weight register, resulting in the weighted output of the Synapse. The weight
register resides within the training module and is assigned a specific value during the training process. The Leaky
accumulator module emulates the behavior of the Excitatory Post Synaptic Potential (EPSP) of a Leaky Integrate
and Fire (LIF) neuron in the form of a time surface. At each clock cycle, the state of the Leaky accumulator is
latched by a Trace register. This Trace value serves as an indicator of the Neuron’s activity at any given time t and
is utilized for training the Neuron. Figure 4 illustrates the structure of the Leaky accumulator, which stands as the
most resource-intensive component in the ODESA hardware architecture in terms of hardware utilization and energy
consumption. The implementation of the weight multiplier contributes significantly to these costs. In modern FPGA

Fig. 3. Architecture of a Synapse in ODESA Hardware.
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designs, the DSP units are typically employed for multiplier implementation. However, the number of available DSP
units in an FPGA fabric, even in high-density ones, is limited. This limitation restricts the hardware implementation of
ODESA to relatively simple applications. In the subsequent sections, we present a novel approach to obtain weighted
outputs of the Synapse without relying on traditional multiplication techniques. By introducing this new method, we
aim to address the challenges associated with the costly implementation of weight multipliers, thereby expanding the
capabilities of ODESA for more complex tasks.

2.3. New architecture of ODESA Synapses

In [2], it is highlighted that the synapse decay in an ODESA network can follow either a linear or exponential
pattern. For the case of linear decay, let’s assume that an input spike, denoted as δ(t), occurs at time t = 0. In this
scenario, the mathematical model for the output of the synapse can be expressed as follows:

a(kT ) = (C − k · T )
(
u(t) − u(t −C)

)
· w, (1)

where, u(t) is the unit step function, T is the Synapse clock period, k ∈ [0, C
T ], w is the Synapse weight, and C is the

Synapse decay constant. For an n-bit counter in the hardware architecture, C is set to its maximum value, i.e. 2n − 1.
The equation 1, can be rewritten as:

a(kT ) = (2n · w − (k + 1) · w · T )
(
u(t) − u(t −C)

)
. (2)

The term 2n · w is an n-bit shift right of w which iteratively is decreased by the value w until it reaches to zero.
Fig. 5 presents a simplified diagram showcasing the proposed architecture of the weighted output of the Synapse, as

depicted in equation 2. Notably, this architecture eliminates the need for a multiplication operation, offering improved
efficiency and resource utilization. When a spike is detected at the input of the Synapse, the value w undergoes a left
shift n times, resulting in w << n. This shifted value is then loaded into the U2 register. In subsequent clock cycles,
the value w is subtracted by the loaded value in the U2 register, facilitating the deduction process. By employing
this shift and deduction mechanism, the proposed architecture achieves the desired weighted decaying output without
resorting to costly multiplication operations. This design choice effectively reduces resource consumption and power
dissipation while maintaining the necessary functionality of the Synapse.

Fig. 4. Structure of a Leaky accumulator in ODESA Hardware [2].

For the Synapses modeled with exponential decay, the weighted Synapse output can be written as:

a(kT ) = (
C

2k·T )
(
u(t) − u(t −C)

)
· w. (3)

The hardware implementation of equation 3 replaces the subtraction with a shift-right operation.

2.4. ODESA network implementation using the new Synapse architecture

Simulation of the proposed architecture for the Synapse without using a multiplier was shown to generate output
that is identical to the design with the multiplier. Fig. 6 shows a snapshot of the ModelSim simulation of the two
architectures.
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Fig. 5. New proposed architecture for the ODESA Synapse with linear decay.

Fig. 6. Synapse output simulation with and without using multipliers. Top: Synapse response in [2]. Bottom: Synapse response in this work.

In this study, we adopted the same naming convention as used in [2] for the ODESA network. Accordingly, the
ODESA layers are denoted by L1’, L2’, and so on, instead of using traditional terms such as input layer, hidden layers,
and output layer. To describe an N-layered ODESA network, we utilized the notation ODESA number of input spike
channels number of Neurons at L1 . . . number of Neurons at LN number of output classes. To compare our results
with the findings in [2], we specifically implemented the ODESA 8 2 4 4 and ODESA 6 3 3 networks using the
new Synapse architecture. By employing this configuration, we were able to assess the performance of our proposed
hardware optimization against the previously reported networks [2].

To analyze the hardware resource utilization of the two network architectures, we conducted a comprehensive
comparison, as presented in Table 1. This examination allowed us to gain insights into the impact of our optimization
approach. We also performed simulations of the Synapse without utilizing a multiplier to verify the effectiveness of
our proposed hardware optimization for the ODESA network. Remarkably, we found that the output produced by the
new architecture was identical to that obtained with the use of a multiplier. This result unequivocally demonstrated
the viability of our low-cost shift-register design as a reliable alternative to conventional multipliers. A snapshot of
the ModelSim simulation depicting the two architectures is showcased in Fig. 6, providing visual evidence of their
comparable output quality.

To maintain consistency with the naming convention used in [2], we employed the same notation to describe the
ODESA network layers, using L1’, L2’, and so on, instead of referring to them as an input layer, hidden layers, and
output layer, respectively. This allowed for a clear comparison between our work and the previous study. The adopted
notation of { ODESA number of input spike channels number of Neurons at L1 . . . number of Neurons at LN

number of output classes } provided a standardized framework to represent N-layered ODESA networks.
By implementing the ODESA 8 2 4 4 and ODESA 4 6 3 3 networks with the new Synapse architecture, we

were able to assess the performance and effectiveness of our proposed hardware optimization. The detailed analysis of
hardware resource utilization presented in Table 1 demonstrated the potential of our optimization approach to reduce
the hardware resources required for implementing a neuron. Consequently, this opens up possibilities for the imple-
mentation of more complex SNNs on a single FPGA. Additionally, our findings indicated that the optimized hardware
architecture effectively reduced power consumption without compromising accuracy or performance, highlighting its
practical benefits for multi-class classification tasks.
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Table 1. ODESA 4 6 3 3 Implementation results on Intel CYCLONE V using two different Synapse architectures
Architecture ODESA 4 6 3 3 ODESA 4 6 3 3

[2] this work
Used ALM 2805 4520
Used registers 1195 2369
Used DSP units 42 0
L1 max. clock (MHz) 39.88 50.90
Dynamic Power(mW) 0.48 0.23

Table 2. Comparing the total number of Synapses that can be fit in the Intel FPGA Families CYCLONE V SE and STRATIX 10GX 10M
Max. Number of Synapses FPGA Family

CYCLONE V SE STRATIX 10GX
[2] 112 1024
This work 389 95K

2.5. Reduction in dynamic power consumption

To further validate our proposed hardware optimization for the ODESA network, we conducted an experiment by
implementing a 20-layer, 10-input, 4-output ODESA network using both the old architecture [2] (which uses 240
DSP units) and the new proposed architecture on a STRATIX 10GX 10M device. We aimed to compare the power
consumption of the two hardware architectures, both with and without the use of multipliers. Our power analysis of
the networks revealed that the dynamic power dissipation of the newly proposed ODESA architecture was reduced
by a remarkable 60%. This significant reduction in power consumption was achieved without sacrificing any of the
network’s accuracy or performance. Table 3 provides a detailed comparison between the two ODESA architectures
in terms of their hardware resource utilization and dynamic power consumption. Our findings suggest that the opti-
mized hardware architecture can enable the deployment of ODESA networks on low-power embedded devices while
achieving high accuracy and performance.

Table 3. ODESA 20 10 4 4 Implementation results on Intel M using two different Synapse architectures
Architecture
ODESA 20 10 4 4 with 240 DSPs without multiplier
Used ALM 14866 6273
Used registers 24046 12342
Used DSP units 240 0
running clock (MHz) 4 4
Dynamic Power(mW) 5 3

Fig. 7 shows the dynamic power consumption estimation for the two ODESA SNN architectures with different
numbers of Synapses on a STRATIX 10GX device. The data was extracted using Intel’s Power estimation tool for
STRATIX series FPGAs [11].

Conclusion

In this research work, we proposed a new and improved hardware architecture for the ODESA system. By substi-
tuting the Neurons’ dot product multipliers with a low-cost shift-register design, we have significantly reduced both
the FPGA resources required for implementation and the dynamic power consumption of the system. This design
improvement enables more Neurons to be accommodated on a single FPGA, which in turn allows for more complex
classification tasks to be performed with less power utilization and at a lower cost on smaller and cheaper FPGAs. Fur-
thermore, our comparison with previous works in this area has shown that our optimized ODESA system outperforms
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Fig. 7. Power consumption estimation in the two different ODESA SNN architectures versus the number of Synapses. Courtesy of Intel’s STRATIX
FPGA power estimation tool

existing systems in terms of both dynamic power consumption and hardware resource utilization. Specifically, we ob-
served a 47% reduction in dynamic power consumption and a 30% reduction in hardware resource utilization. These
improvements make the ODESA system even more attractive for implementation in resource-constrained embedded
systems, such as those used in robotics, artificial intelligence, and neuroscience. Our work has contributed signifi-
cantly to the field of spiking neural networks by improving the efficiency and effectiveness of the ODESA system,
and our findings are expected to have significant implications for a broad range of applications that rely on embedded
systems for their operation.
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