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Abstract. In this paper, we apply Daftardar-Jafari method (DJM) to obtain approx-
imate solutions of the nonlinear Burgers (NBE) and coupled nonlinear Burger’s equa-
tions (CNBEs) with Caputo-Fabrizio fractional operator (CFFO). The efficiency of the
considered method is illustrated by some examples. Graphical results are utilized and
discussed quantitatively to illustrate the solution. The results reveal that the suggested
algorithm is very effective and simple and can be applied for other problems in sciences
and engineering.
Keywords: nonlinear equations, fractional operator, approximate solutions.

1. Introduction

The fractional-order derivatives and integrals have numerous applications in
physics and mathematics; for example, modeling nonlinear oscillations of earth-
quakes, electrodynamics, signal processing phenomena, the fractional-order fluid
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Corresponding Author: Hijaz Ahmad, Near East University, Operational Research Center
in Healthcare, Near East Boulevard, PC: 99138 Nicosia/Mersin 10, Turkey | E-mail: hi-
jaz555@gmail.com
2010 Mathematics Subject Classification. Primary 39A14; Secondary 35C07
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dynamic traffic model, fractional model of cancer chemotherapy, fractional diabetes
model, and other areas [1–17].

Several analytical and numerical methods were successfully applied to FPDEs,
such us the HPM [18], SEM [19], ADM [20], VIM [21], RDTM [22, 23], HPTM
[24, 25], and other approaches [26–35]. In this paper, we use the DJM to solve
nonlinear FPDEs involving CFFO. The paper has been organized as follows: The
basic definitions of FC are given in Section 2, analysis of the method used is given in
Section 3, several test problems that show the effectiveness of the proposed method
are given in Section 5, and finally the conclusion is given in Section 6.

2. Preliminaries of fractional calculus

Definition 2.1. [25, 36,37] The CFFO is defined for n− 1 < α ≤ n as:

(2.1) CFDα
t u(t) =

(2− α)M(α)

2(1− α)

∫ t

0

exp

[
−α(t− s)

1− α

]
u(n)(s)ds, t ≥ 0,

where M(α) is a normalization function such that M(0) = M(1) = 1.

The properties of the operator CFDα
t :

1. CFDα
t u(t) = u(t), where α = 0.

2. CFDα
t [u(t) + v(t)] =CF Dα

t u(t) +
CF Dα

t v(t).

3. CFDα
t (c) = 0 , where c is constant.

Definition 2.2. [23,28,29] The CFFIO of order 0 < α ≤ 1 and t > 0 is given by:

(2.2) CF Iαt u(t) =
2(1− α)

(2− α)M(α)
u(t) +

2α

(2− α)M(α)

∫ t

0

u(s)ds.

The properties of the operator CF Iαt :

1. CF Iαt u(t) = u(t), where α = 0.

2. CF Iαt [u(t) + v(t)] =CF Iαt u(t) +
CF Iαt v(t).

3. CF Iαt
[
CFDα

t u(t)
]
= u(t)− u(0).

3. Analysis of DJM

Let us consider the nonlinear PDE in the CF sense:

(3.1) CFDn+α
t u(x, t) +R [u(x, t)] +N [u(x, t)] = g(x, t).
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with

(3.2)
∂ku(x, 0)

∂tk
= ϕk(x), k = 0, 1, ...,m− 1,

where CF
0 Dn+α

t u(x, t) is CFFO of u(x, t), m− 1 < n+ α ≤ m,m ∈ N.

Taking CFFIO of (3.1):

CF In+α
t

CF
[
Dn+α

t u(x, t)
]
+CF In+α

t R [u(x, t)] +CF In+α
t N [u(x, t)]

= CF In+α
t [g(x, t)] .(3.3)

Then, we obtain

u(x, t) =

m−1∑
k=0

u(k)(x, 0)
xk

k!
+CF In+α

t [g(x, t)]

−CF In+α
t R [u(x, t)]−CF In+α

t N [u(x, t)] .(3.4)

Let

(3.5) u(x, t) =

∞∑
n=0

un(x, t),

and

(3.6) N

[ ∞∑
n=0

un(x, t)

]
= N [u0] +

∞∑
n=1

(
N

[
n∑

i=0

ui

]
−N

[
n−1∑
i=0

ui

])
.

In view of (3.5) and (3.9), Eq. (3.4) is equivalent to

∞∑
n=0

un(x, t)

=

m−1∑
k=0

u(k)(x, 0)
xk

k!
+CF In+α

t [g(x, t)]−CF In+α
t R

[ ∞∑
n=0

un

]

−CF In+α
t N [uo(x, t)]−CF In+α

t

( ∞∑
n=1

N

[
n∑

i=0

ui

]
−N

[
n−1∑
i=0

ui

])
.(3.7)

Moreover, we have

u0(x, t) =

m−1∑
k=0

u(k)(x, 0)
xk

k!
+CF In+α

t [g(x, t)] ,

u1(x, t) = −CF In+α
t R [u0]−CF In+α

t N [uo(x, t)] ,

un+1(x, t) = −CF In+α
t R [un]−CF In+α

t

(
N

[
n∑

i=0

ui

]
−N

[
n−1∑
i=0

ui

])
,(3.8)

n = 1, 2, . . .
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Then approximate solution of Eq. (3.1) is:

(3.9) u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · ·

4. Illustrative examples

Example 4.1. Let us consider the NBE with CFFO:

(4.1) CFDα
t u(x, t) + u

∂u

∂x
=

∂2u

∂x2
, 0 < α ≤ 1,

with

(4.2) u(x, 0) = x.

Taking CFFIO of (4.1), we obtain

(4.3) u(x, t) = u(, 0)x+CF Iαt

[
∂2u

∂x2

]
−CF Iαt

[
u
∂u

∂x

]
.

Thus according to Eq. (3.8):

u0(x, t) = u(x, 0),

u1(x, t) = CF Iαt

[
∂2u0(x, t)

∂x2

]
−CF Iαt

[
u0(x, t)

∂u0(x, t)

∂x

]
,

u2(x, t) = CF Iαt

[
∂2u1(x, t)

∂x2

]
−CF Iαt

[
(u0 + u1)

∂(u0 + u1)

∂x
− u0

∂u0

∂x

]
.(4.4)

...

Then, we obtain:

u0(x, t) = x,

u1(x, t) = −x(1− α+ αt),

u2(x, t) = x
(
2α2 − 4α+ α2t2 − 4α2t+ 4αt+ 2

)
,(4.5)

...

and so on.

Therefore, the u(x, t) of (4.1) is

(4.6) u(x, t) = x− x(1− α+ αt) + x
(
2α2 − 4α+ α2t2 − 4α2t+ 4αt+ 2

)
− · · ·

If we put α −→ 1 in (4.6) , we get

u(x, t) = x− xt+ xt2 − · · ·

= x

∞∑
k=0

(−t)k,

=
x

1 + t
.(4.7)
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Remark 4.1. Fig. 5.1 show the graphs of the approximate and exact solutions among
different values of x and t when α = 0.8, 0.9, 1 for NBE in the CFFO. In Figure 5.2, we
plotted the graphs of the approximate and exact solutions among different values of t and
α when x is fixed for the NBE (4.1).

Example 4.2. Consider the CNBEs with CFFO:

CFDα
t u(x, t)− uxx − 2uux + (uv)x = 0,

CFDβ
t v(x, t)− vxx − 2vvx + (uv)x = 0,(4.8)

where 0 < α, β ≤ 1 and

u(x, 0) = sin(x),

v(x, 0) = sin(x).(4.9)

Taking CF Iαt and CF Iβt of (4.8) respectively, we get

u(x, t) = u(x, 0) +CF Iαt

[
∂2u

∂x2
+ 2u

∂u

∂x
− ∂

∂x
(uv)

]
,

v(x, t) = v(x, 0) +CF Iβt

[
∂2v

∂x2
+ 2v

∂v

∂x
− ∂

∂x
(uv)

]
.(4.10)

From (3.8), we obtain:

u0(x, t) = u(x, 0),

v0(x, t) = v(x, 0),(4.11)

u1(x, t) = CF Iαt

[
∂2u0

∂x2
+ 2u0

∂u0

∂x
− ∂

∂x
(u0v0)

]
,

v1(x, t) = CF Iβt

[
∂2v0
∂x2

+ 2v0
∂v0
∂x

− ∂

∂x
(u0v0)

]
,(4.12)

u2(x, t) = CF Iαt

[
∂2u1

∂x2
+ 2(u0 + u1)

∂(u0 + u1)

∂x
− ∂

∂x
((u0 + u1)(v0 + v1))

]
−CF Iαt

[
2u0

∂u0

∂x
− ∂

∂x
(u0v0)

]
,

v2(x, t) = CF Iβt

[
∂2v1
∂x2

+ 2(v0 + v1)
∂(v0 + v1)

∂x
− ∂

∂x
((u0 + u1)(v0 + v1))

]
,

−CF Iαt

[
2v0

∂v0
∂x

− ∂

∂x
(u0v0)

]
.(4.13)

...

By the above algorithms, we have:

u0(x, t) = sin(x),

v0(x, t) = sin(x).(4.14)
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u1(x, t) = CF Iαt [−sin(x) + 2 sinx cosx− 2 sinx cosx] ,

= −sinx(1− α+ αt),

v1(x, t) = CF Iβt [−sin(x) + 2 sinx cosx− 2 sinx cosx] ,

= −sinx(1− β + βt),(4.15)

u2(x, t) = CF Iαt [sin(x)(1− α+ αt)]

+CF Iαt
[
2α2sin(x) cos(x) (1− t)2 − 2α2sin(x) cos(x) (1− t)2

]
−CF Iαt [2 sin(x) cos(x)− 2 sin(x) cos(x)] ,

= sin(x)

[
(1− α)(1− α+ αt) + α(t− αt+

1

2
α2t2)

]
,

= sin(x)

[
(1− α)2 + (2α− 2α2)t+

1

2
α2t2

]
,

v2(x, t) = CF Iβt [sin(x)(1− β + βt)]

+CF Iβt
[
2β2sin(x) cos(x) (1− t)2 − 2β2sin(x) cos(x) (1− t)2

]
−CF Iβt [2 sin(x) cos(x)− 2 sin(x) cos(x)] ,

= sin(x)

[
(1− β)(1− β + βt) + β(t− βt+

1

2
β2t2)

]
,

= sin(x)

[
(1− β)2 + (2β − 2β2)t+

1

2
β2t2

]
.(4.16)

...

Then the approximate solution of (4.8) is

u(x, t) = sin(x)

[
(1− α+ α2) + (α− 2α2)t+

1

2
α2t2 + · · ·

]
,

v(x, t) = sin(x)

[
(1− β + β2) + (β − 2β2)t+

1

2
β2t2 + · · ·

]
.(4.17)

If we put α −→ 1 and β −→ 1 in (4.17), we have

u(x, y, t) = sin(x)

(
1− t+

t2

2!
− · · ·

)
,

v(x, y, t) = sin(x)

(
1 + t+

t2

2!
+ · · ·

)
,

= sin(x)et,

= sin(x)e−t.(4.18)

Remark 4.2. Figure 5.3 and Figure 5.4 show the graphs of the approximate and the
exact solutions u(x, t) and v(x, t) among different values of x and t when α = 0.8, 0.9, 1
respectively for CNBEs. In Figure 5.5 and Figure 5.6, we plotted the graphs of the
approximate and exact solutions u(x, t) and v(x, t) among different values of t and α when
x is fixed for the same problem (4.8).
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Fig. 5.1: The graph of the approximate and exact solutions among different values
of x and t for NBE.

5. Conclusions

In this article, we presented two applications with their graphs of the fractional
DJM and we discussed solutions at multiple values for α and β. The results showed
that the solutions approach the exact solution whenever α and β approach the
correct one.
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Fig. 5.2: The graph of the approximate and exact solutions among different values
of t and α when x is fixed for nonlinear Burger equation.

Fig. 5.3: The graph of the approximate and exact solutions u(x, t) among different
values of x and t for the system (42).
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Fig. 5.4: The graph of the approximate and exact solutions v(x, t) among different
values of x and t for the system (42).

Fig. 5.5: The graph of the approximate and exact solutions u(x, t) among different
values of t and α when x is fixed for the system (42).
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Fig. 5.6: The graph of the approximate and exact solutions v(x, t) among different
values of t and α when x is fixed for the system (42).
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