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Abstract. In this study, by using definition of lacunary statistical convergence we
introduce the concepts of f− lacunary statistical convergence of order β and strongly f−
lacunary summability of order β of double sequences for different sequences of fractional
order spaces. Also, we establish some inclusion relations between these concepts.
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1. Introduction

In 1951, Steinhaus [55] and Fast [27] introduced the concept of statistical con-
vergence and later in 1959, Schoenberg [53] reintroduced independently. Bhardwaj
and Dhawan [11], Caserta et al. [12], Connor [13], Çakallı [17, 18], Çınar et al. [19],
Çolak [20], Et et al. [22, 24], Fridy [29], Işık [35], Salat [51], Di Maio and Kočinac
[21], Mursaleen et al. [41, 42, 43], Belen and Mohiuddine [10], Şengül Kandemir
[58], Aral [7] and many authors investigated some arguments related to this notion.

Difference sequence spaces were defined by Kızmaz [39] and the concept was
generalized by Et et al. [22, 25] as follows:

∆m (X) = {x = (xk) : (∆
mxk) ∈ X} ,
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where X is any sequence space, m ∈ N, ∆0x = (xk) , ∆x = (xk − xk+1) , ∆
mx =

(∆mxk) =
(
∆m−1xk −∆m−1xk+1

)
and so ∆mxk =

∑m
v=0 (−1)

v (m
v

)
xk+v.

If x ∈ ∆m (X) then there exists one and only one sequence y = (yk) ∈ X such
that yk = ∆mxk and

xk =

k−m∑
v=1

(−1)
m

(
k − v − 1
m− 1

)
yv =

k∑
v=1

(−1)
m

(
k +m− v − 1

m− 1

)
yv−m,(1.1)

y1−m = y2−m = . . . = y0 = 0

for sufficiently large k, for instance k > 2m. After then some properties of difference
sequence spaces have been studied in [3, 4, 5, 23, 25, 38, 52, 59, 60, 61, 62].

By Γ(r), we denote the Gamma function of a real number r and r > 0. By the
definition, it can be expressed as an improper integral as:

Γ(r) =

∫ ∞

0

e−ttr−1dt.

From the definition, it is observed that:

(i) For any natural number n, Γ(n+ 1) = n!,

(ii) For any real number n and n /∈ {0,−1,−2,−3, ...},Γ(n+ 1) = nΓ(n),

(iii) For particular cases, we have Γ(1) = Γ(2) = 1,Γ(3) = 2!,Γ(4) = 3!, ....

For a proper fraction α, we define a fractional difference operator ∆α : w → w
defined by

∆α(xk) =

∞∑
i=0

(−1)i
Γ(α+ 1)

i!Γ(α− i+ 1)
xk+i.(1.2)

In particular, we have ∆
1
2xk = xk− 1

2xk+1− 1
8xk+2− 1

16xk+3− 5
128xk+4− 7

256xk+5−
21

1024xk+6 · · ·
∆− 1

2xk = xk + 1
2xk+1 +

3
8xk+2 +

5
16xk+3 +

35
128xk+4 +

63
256xk+5 +

231
1024xk+6 · · ·

∆
1
3xk = xk − 1

3xk+1 − 1
9xk+2 − 5

81xk+3 − 10
243xk+4 − 22

729xk+5 − 154
6561xk+6 · · ·

∆
2
3xk = xk − 2

3xk+1 − 1
9xk+2 − 4

81xk+3 − 7
243xk+4 − 14

729xk+5 − 91
6561xk+6 · · ·.

Without loss of generality, we assume throughout that the series defined in (1.2)
is convergent. Moreover, if α is a positive integer, then the infinite sum defined in
(1.2) reduces to a finite sum i.e.,

α∑
i=0

(−1)i
Γ(α+ 1)

i!Γ(α− i+ 1)
xk+i.

In fact, this operator generalized the difference operator introduced by Et and
Çolak [22].

Recently, using fractional operator ∆α (fractional order of α, α ∈ R ) Baliarsingh
et al. [8, 9, 45] defined the sequence space ∆α (X) such as:
∆α (X) = {x = (xk) : (∆

αxk) ∈ X} , where X is any sequence space.
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A modulus f is a function from [0,∞) to [0,∞) such that

i) f(x) = 0 if and only if x = 0,

ii) f(x+ y) ≤ f(x) + f(y) for x, y ≥ 0,

iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous in everywhere on [0,∞). A modulus may
be unbounded or bounded.

Aizpuru et al. [1] defined f−density of a subset E ⊂ N for any unbounded
modulus f by

df (E) = lim
n→∞

f (|{k ≤ n : k ∈ E}|)
f (n)

, if the limit exists

and defined f−statistical convergence for any unbounded modulus f by

df ({k ∈ N : |xk − ℓ| ≥ ε}) = 0

i.e.

lim
n→∞

1

f (n)
f (|{k ≤ n : |xk − ℓ| ≥ ε}|) = 0,

and we write it as Sf − limxk = ℓ or xk → ℓ
(
Sf

)
. Every f−statistically convergent

sequence is statistically convergent, but a statistically convergent sequence does not
need to be f−statistically convergent for every unbounded modulus f .

By a lacunary sequence we mean an increasing integer sequence θ = (kr) of
non-negative integers such that k0 = 0 and hr = (kr − kr−1) → ∞ as r → ∞. The
intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio kr

kr−1
will

be abbreviated by qr, and q1 = k1 for convenience.

In [30], Fridy and Orhan introduced the concept of lacunary statistically conver-
gence in the sense that a sequence (xk) of real numbers is called lacunary statistically
convergent to a real number ℓ, if

lim
r→∞

1

hr
|{k ∈ Ir : |xk − ℓ| ≥ ε}| = 0

for every positive real number ε.

Lacunary sequence spaces were studied in [6, 14, 15, 16, 26, 28, 30, 31, 33, 34,
36, 37, 48, 54, 57, 59].

A double sequence x = (xj,k)
∞
j,k=0 has Pringsheim limit ℓ provided that given

for every ε > 0 there exists N ∈ N such that |xj,k − ℓ| < ε whenever j, k > N . In
this case, we write P − limx = ℓ (see Pringsheim [50]).

Let K ⊆ N × N and K (m,n) = {(j, k) : j ≤ m, k ≤ n}. The double natural
density of K is defined by
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δ2 (K) = P − lim
m,n

1

mn
|K (m,n)| , if the limit exists.

A double sequence x = (xjk)j,k∈N is said to be statistically convergent to a

number ℓ if for every ε > 0 the set {(j, k) : j ≤ m, k ≤ n : |xjk − ℓ| ≥ ε} has double
natural density zero (see Mursaleen and Edely [42]).

In [47], Patterson and Savaş introduced the concept of double lacunary sequence
in the sense that double sequence θ′′ = {(kr, ls)} is called double lacunary sequence,
if there exist two increasing sequences of integers such that

k0 = 0, hr = kr − kr−1 → ∞ as r → ∞

and

l0 = 0, hs = ls − ls−1 → ∞ as s → ∞.

where kr,s = krls, hr,s = hrhs and the following intervals are determined by θ′′,
Ir = {(k) : kr−1 < k ≤ kr} , Is = {(l) : ls−1 < l ≤ ls},
Ir,s = {(k, l) : kr−1 < k ≤ kr and ls−1 < l ≤ ls}, qr = kr

kr−1
, qs = ls

ls−1
and qr,s =

qrqs.

The double number sequence x is Sθ′′−convergent to ℓ provided that for every
ε > 0,

P − lim
r,s

1

hr,s
|{(k, l) ∈ Ir,s : |xk,l − ℓ| ≥ ε}|) = 0.

In this case write Sθ′′ − limxk,l = ℓ or xk,l → ℓ (Sθ′′ ) (see [47]).

The notion of a modulus was given by Nakano [44]. Maddox [40] used a modulus
function to construct some sequence spaces. Afterwards different sequence spaces
defined by modulus have been studied by Altın and Et [2], Et et al. [23], Işık [35],
Gaur and Mursaleen [32], Nuray and Savaş [46], Pehlivan and Fisher [49], Şengül
[56] and everybody else.

2. Main Results

In this section we will introduce the concepts of f−lacunary statistical conver-
gence of order β and strong f−lacunary summability of order β of double sequences
for difference sequences of fractional order, where f is an unbounded modulus and
give some results related to these concepts.

Definition 2.1. Let f be an unbounded modulus, θ′′ = {(kr, ls)} be a double
lacunary sequence and β be a real number such that 0 < β ≤ 1 and α be a proper
fraction. We say that the double sequence x = (xk,l) is ∆α

f−lacunary statistically
convergent of order β, if there is a real number ℓ such that

lim
r,s→∞

1

[f (hr,s)]
β
f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|) = 0.
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This space will be denoted by ∆α(Sf,β

θ′′ ). In this case, we write ∆α(Sf,β

θ′′ )−limxk,l = ℓ

or xk,l → ℓ
(
∆α(Sf,β

θ′′ )
)
. In the special case θ′′ = {(2r, 2s)}, we shall write ∆α(S′′f,β)

instead of ∆α(Sf,β

θ′′ ) .

Definition 2.2. Let f be a modulus function, θ′′ = {(kr, ls)} be a double lacunary
sequence, p = (pk) be a sequence of strictly positive real numbers and β be a positive
real number and α be a proper fraction. We say that the double sequence x = (xk,l)

is strongly ∆α
(
wβ

[
θ
′′
, f, p

])
−summable to ℓ (a real number), if there is a real

number ℓ such that

lim
r,s→∞

1

[hr,s]
β

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ|)]pk = 0.

In this case we write ∆α
(
wβ

[
θ
′′
, f, p

])
− limxk,l = ℓ. The set of all strongly

∆α
(
wβ

[
θ
′′
, f, p

])
− summable sequences will be denoted by ∆α

(
wβ

[
θ
′′
, f, p

])
. If

we take pk = 1 for all k ∈ N, we write ∆α
(
wβ

[
θ
′′
, f

])
instead of ∆α

(
wβ

[
θ
′′
, f, p

])
.

Definition 2.3. Let f be an unbounded modulus, θ′′ = {(kr, ls)} be a double
lacunary sequence, p = (pk) be a sequence of strictly positive real numbers and
β be a positive real number and α be a proper fraction. We say that the double

sequence x = (xk,l) is strongly ∆α
(
wf,β

θ′′ (p)
)
−summable to ℓ (a real number), if

there is a real number ℓ such that

lim
r,s→∞

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ|)]pk = 0.

In the present case, we write ∆α
(
wf,β

θ′′ (p)
)
− limxk,l = ℓ. The set of all strongly

∆α
(
wf,β

θ′′ (p)
)
− summable sequences will be denoted by ∆α

(
wf,β

θ′′ (p)
)
. In case of

pk = p for all k ∈ N we write ∆α
(
wf,β

θ′′ [p]
)
instead of ∆α

(
wf,β

θ′′ (p)
)
.

Definition 2.4. Let f be an unbounded modulus, θ′′ = {(kr, ls)} be a double
lacunary sequence, p = (pk) be a sequence of strictly positive real numbers and
β be a positive real number and α be a proper fraction. We say that the double

sequence x = (xk,l) is strongly ∆α
(
wβ

θ′′ ,f
(p)

)
−summable to ℓ (a real number), if

there is a real number ℓ such that

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

|∆αxk,l − ℓ|pk = 0.

In the present case, we write ∆α
(
wβ

θ′′ ,f
(p)

)
− limxk,l = ℓ. The set of all strongly

∆α
(
wβ

θ′′ ,f
(p)

)
− summable sequences will be denoted by ∆α

(
wβ

θ′′ ,f
(p)

)
. In case

of pk = p for all k ∈ N we write ∆α
(
wβ

θ′′ ,f
[p]

)
instead of ∆α

(
wβ

θ′′ ,f
(p)

)
.
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The proof of each of the following results is fairly straightforward, so we choose to
state these results without proof, where we shall assume that the sequence p = (pk)
is bounded and 0 < h = infk pk ≤ pk ≤ supk pk = H < ∞.

Theorem 2.1. The space ∆α
(
wf,β

θ′′ (p)
)
is paranormed by

g (x) = sup
r,s

 1

[f (hr,s)]
α

∑
(k,l)∈Ir,s

[f (|∆αxk,l|)]pk


1
M

where M = max (1, H) .

Proposition 2.1. [49] Let f be a modulus and 0 < δ < 1. Then for each ∥u∥ ≥ δ,
we have f (∥u∥) ≤ 2f (1) δ−1 ∥u∥ .

Theorem 2.2. Let f be an unbounded modulus, β be a real number such that

0 < β ≤ 1, α be a proper fraction and p > 1. If limu→∞ inf f(u)
u > 0, then

∆α
(
wf,β

θ′′ [p]
)
= ∆α

(
wβ

θ′′ ,f
[p]

)
.

Proof. Let p > 1 be a positive real number and x ∈ ∆α
(
wf,β

θ′′ [p]
)
. If

limu→∞ inf f(u)
u > 0 then there exists a number c > 0 such that f (u) > cu for

u > 0. Clearly

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ|)]p ≥ 1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[c |∆αxk,l − ℓ|]p

=
cp

[f (hr,s)]
β

∑
(k,l)∈Ir,s

|∆αxk,l − ℓ|p

and therefore ∆α
(
wf,β

θ′′ [p]
)
⊂ ∆α

(
wβ

θ′′ ,f
[p]

)
.

Now let x ∈ ∆α
(
wβ

θ′′ ,f
[p]

)
. Then we have

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

|∆αxk,l − ℓ|p → 0 as r, s → ∞.

Let 0 < δ < 1. We can write

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

|∆αxk,l − ℓ|p ≥ 1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

|∆αxk,l−ℓ|≥δ

|∆αxk,l − ℓ|p
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≥ 1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

|∆αxk,l−ℓ|≥δ

[
f (|∆αxk,l − ℓ|)

2f (1) δ−1

]p

≥ 1

[f (hr,s)]
β

δp

2pf (1)
p

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ|)]p

by Proposition 2.1. Therefore x ∈ ∆α
(
wf,β

θ′′ [p]
)
.

If limu→∞ inf f(u)
u = 0, the equality ∆α

(
wf,β

θ′′ [p]
)
= ∆α

(
wβ

θ′′,f [p]
)
can not be

hold as shown the following example:

Example 2.1. Let f (x) = 2
√
x and define a double sequence x = (xk,l) by

∆αxk,l =

{
3
√

hr,s, if k = kr and l = ls
0, otherwise

r, s = 1, 2, ....

For ℓ = 0, β = 3
4
and p = 6

5
, we have

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[f (|∆αxk,l|)]p =

(
2 [hr,s]

1
6

) 6
5

(
2
√

hr,s

) 3
4

=

(
2
(
hrhs

) 1
6

) 6
5

(
2
√

hrhs

) 3
4

→ 0 as r, s → ∞

hence x ∈ ∆α
(
wf,α

θ
′′ [p]

)
, but

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

|∆αxk,l|p =

(
3
√

hr,s

) 6
5

(
2
√

hr,s

) 3
4

→ ∞ as r, s → ∞

and so x /∈ ∆α
(
wβ

θ
′′
,f
[p]

)
.

Maddox [40] showed that the existence of an unbounded modulus f for which
there is a positive constant c such that f (xy) ≥ cf (x) f (y) , for all x ≥ 0, y ≥ 0.

Theorem 2.3. Let f be an unbounded modulus and β be a positive real number and

α be a proper fraction. If limu→∞
[f(u)]β

uβ > 0, then ∆α
(
wβ

[
θ
′′
, f

])
⊂ ∆α

(
Sf,β

θ′′

)
.

Proof. Let x ∈ ∆α
(
wβ [θ′′, f ]

)
and limu→∞

f(u)β

uβ > 0. For ε > 0, we have

1

[hr,s]
β

∑
(k,l)∈Ir,s

f (|∆αxk,l − ℓ|)
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≥ 1

[hr,s]
β
f

 ∑
(k,l)∈Ir,s

|∆αxk,l − ℓ|



≥ 1

[hr,s]
β
f

 ∑
(k,l)∈Ir,s

|∆αxk,l−ℓ|≥ε

|∆αxk,l − ℓ|


≥ 1

[hr,s]
β
f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}| ε)

≥ c

[hr,s]
β
f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|) f (ε)

=
c

[hr,s]
β

f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|)
[f (hr,s)]

β
[f (hr,s)]

β
f (ε) .

Therefore, ∆α
(
wβ

[
θ
′′
, f

])
− limxk,l = ℓ implies ∆α

(
Sf,β

θ′′

)
− limxk,l = ℓ.

Theorem 2.4. Let β1, β2 be two real numbers such that 0 < β1 ≤ β2 ≤ 1, f be an
unbounded modulus function and let θ′′ = {(kr, ls)} be a double lacunary sequence,

then we have ∆α
(
wf,β1

θ′′ (p)
)
⊂ ∆α

(
Sf,β2

θ′′

)
.

Proof. Let x ∈ ∆α
(
wf,β1

θ′′ (p)
)
and ε > 0 be given and

∑
1 ,

∑
2 denote the sums

over (k, l) ∈ Ir,s, |∆αxk,l − ℓ| ≥ ε and (k, l) ∈ Ir,s, |∆αxk,l − ℓ| < ε respectively.

Since f (hr,s)
β1 ≤ f (hr,s)

β2 for each r and s, we may write

1

[f (hr,s)]
β1

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ|)]pk

=
1

[f (hr,s)]
β1

[∑
1
[f (|∆αxk,l − ℓ|)]pk +

∑
2
[f (|∆αxk,l − ℓ|)]pk

]
≥ 1

[f (hr,s)]
β2

[∑
1
[f (|∆αxk,l − ℓ|)]pk +

∑
2
[f (|∆αxk,l − ℓ|)]pk

]
≥ 1

[f (hr,s)]
β2

[∑
1
[f (ε)]

pk

]
≥ 1

H. [f (hr,s)]
β2

[
f
(∑

1
[ε]

pk

)]
≥ 1

H. [f (hr,s)]
β2

[
f
(∑

1
min([ε]

h
, [ε]

H
)
)]

≥ 1

H. [f (hr,s)]
β2

f
(
|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|

[
min([ε]

h
, [ε]

H
)
])

≥ c

H. [f (hr,s)]
β2

f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|) f
([

min([ε]
h
, [ε]

H
)
])

.
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Hence x ∈ ∆α
(
Sf,β2

θ′′

)
.

Theorem 2.5. Let θ′′ = {(kr, ls)} be a double lacunary sequence and β be a fixed
real number such that 0 < β ≤ 1 and α be a proper fraction. If lim infr qr > 1,

lim infs qs > 1 and limu→∞
[f(u)]β

uβ > 0, then ∆α
(
S

′′f,β
)
⊂ ∆α

(
Sf,β
θ′′

)
.

Proof. Suppose first that lim infr qr > 1 and lim infs qs > 1; then there exists a, b >
0 such that qr ≥ 1 + a and qs ≥ 1 + b for sufficiently large r and s, which implies
that

hr

kr
≥ a

1 + a
=⇒

(
hr

kr

)β

≥
(

a

1 + a

)β

and

hs

ls
≥ b

1 + b
=⇒

(
hs

ls

)β

≥
(

b

1 + b

)β

.

If ∆α
(
S

′′f,β
)
− limxk,l = ℓ, then for every ε > 0 and for sufficiently large r and s,

we have

1

[f (krls)]
β
f (|{k ≤ kr, l ≤ ls : |∆αxk,l − ℓ| ≥ ε}|)

≥ 1

[f (krls)]
β
f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|)

=
[f (hr,s)]

β

[f (krls)]
β

1

[f (hr,s)]
β
f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|)

=
[f (hr,s)]

β

[hr,s]
β

kβr

[f (krls)]
β

[hr,s]
β

kβr

f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|)
[f (hr,s)]

β

=
[f (hr,s)]

β

[hr,s]
β

kβr l
β
s

[f (krls)]
β

hβ
rh

β

s

kβr l
β
s

f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|)
[f (hr,s)]

β

≥ [f (hr,s)]
β

[hr,s]
β

(krls)
β

[f (krls)]
β

(
a

1 + a

)β (
b

1 + b

)β
f (|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|)

[f (hr,s)]
β

.

This proves the sufficiency.

Theorem 2.6. Let f be an unbounded modulus, θ = (kr) and θ′ = (ls) be two
lacunary sequences, θ′′ = {(kr, ls)} be a double lacunary sequence, 0 < β ≤ 1 and

α be a proper fraction. If ∆α
(
Sβ
f,θ

)
− limxk = ℓ and ∆α

(
Sβ
f,θ′

)
− limxl = ℓ, then

∆α
(
Sβ
f,θ′′

)
− limxk,l = ℓ.
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Proof. Suppose ∆α
(
Sβ
f,θ

)
− limxk = ℓ and ∆α

(
Sβ
f,θ′

)
− limxl = ℓ. Then for ε > 0

we can write

lim
r

1

[f (hr)]
β
|{k ∈ Ir : |∆αxk − ℓ| ≥ ε}| = 0

and

lim
s

1[
f
(
hs

)]β |{l ∈ Is : |∆αxl − ℓ| ≥ ε}| = 0.

So we have

1

[f (hr,s)]
β
|{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|

≤ 1[
cf (hr) f

(
hs

)]β |{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|

≤ 1

cβ [f (hr)]
β [

f
(
hs

)]β |{(k, l) ∈ Ir,s : |∆αxk,l − ℓ| ≥ ε}|

≤

[
1

[f (hr)]
β
|{k ∈ Ir : |∆αxk − ℓ| ≥ ε}|

][
1[

f
(
hs

)]β |{l ∈ Is : |∆αxl − ℓ| ≥ ε}|

]
.

Hence ∆α
(
Sβ
f,θ′′

)
− limxk,l = ℓ.

Theorem 2.7. Let f be an unbounded modulus. If lim pk > 0, then ∆α
(
wf,β

θ′′ (p)
)
−

limxk,l = ℓ uniquely.

Proof. Let lim pk = s > 0.Assume that ∆α
(
wf,β

θ′′ (p)
)
−limxk,l = ℓ1 and ∆α

(
wf,β

θ′′ (p)
)
−

limxk,l = ℓ2. Then

lim
r,s

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ1|)]pk = 0,

and

lim
r,s

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ2|)]pk = 0.

By definition of f, we have

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[f (|ℓ1 − ℓ2|)]pk
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≤ D

[f (hr,s)]
β

 ∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ1|)]pk +
∑

(k,l)∈Ir,s

[f (|∆αxk,l − ℓ2|)]pk


=

D

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ1|)]pk

+
D

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ2|)]pk

where supk pk = H and D = max
(
1, 2H−1

)
. Hence

lim
r,s

1

[f (hr,s)]
β

∑
(k,l)∈Ir,s

[f (|ℓ1 − ℓ2|)]pk = 0.

Since limk→∞ pk = s we have ℓ1 − ℓ2 = 0. Thus the limit is unique.

Theorem 2.8. Let θ′′1 = {(kr, ls)} and θ′′2 = {(sr, ts)} be two double lacunary
sequences such that Ir,s ⊂ Jr,s for all r, s ∈ N, β1, β2 two real numbers such that
0 < β1 ≤ β2 ≤ 1 and α be a proper fraction. If

lim
r,s→∞

inf
[f (hr,s)]

β1

[f (ℓr,s)]
β2

> 0(2.1)

then ∆α
(
wf,β2

θ
′′
2

(p)
)
⊂ ∆α

(
wf,β1

θ
′′
1

(p)
)
, where

Ir,s = {(k, l) : kr−1 < k ≤ kr and ls−1 < l ≤ ls} , kr,s = krls, hr,s = hrhs and
Jr,s = {(s, t) : sr−1 < s ≤ sr and ts−1 < l ≤ ts} , sr,s = srts, ℓr,s = ℓrℓs.

Proof. Let x ∈ ∆α
(
wf,β2

θ
′′
2

(p)
)
. We can write

1

[f (ℓr,s)]
β2

∑
(k,l)∈Jr,s

[f (|∆αxk,l − ℓ|)]pk

=
1

[f (ℓr,s)]
β2

∑
(k,l)∈Jr,s−Ir,s

[f (|∆αxk,l − ℓ|)]pk

+
1

[f (ℓr,s)]
β2

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ|)]pk

≥ 1

[f (ℓr,s)]
β2

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ|)]pk

≥ [f (hr,s)]
β1

[f (ℓr,s)]
β2

1

[f (hr,s)]
β1

∑
(k,l)∈Ir,s

[f (|∆αxk,l − ℓ|)]pk .

Thus if x ∈ ∆α
(
wf,β2

θ
′′
2

(p)
)
, then x ∈ ∆α

(
wf,β1

θ
′′
1

(p)
)
.
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From Theorem 2.8. we have the following results.

Corollary 2.1. Let θ′′1 = {(kr, ls)} and θ′′2 = {(sr, ts)} be two double lacunary
sequences such that Ir,s ⊂ Jr,s for all r, s ∈ N, β1, β2 two real numbers such that
0 < β1 ≤ β2 ≤ 1 and α be a proper fraction. If (2.1) holds then

(i) ∆α
(
wf,β

θ
′′
2

(p)
)
⊂ ∆α

(
wf,β

θ
′′
1

(p)
)
, if β1 = β2 = β,

(ii) ∆α
(
wf

θ
′′
2

(p)
)
⊂ ∆α

(
wf,β1

θ
′′
1

(p)
)
, if β2 = 1,

(iii) ∆α
(
wf

θ
′′
2

(p)
)
⊂ ∆α

(
wf

θ
′′
1

(p)
)
, if β1 = β2 = 1.
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1. A. Aizpuru, M. C. Listán-Garćıa and F. Rambla-Barreno: Density by moduli
and statistical convergence. Quaest. Math., 37(4) (2014), 525–530.

2. Y. Altın and M. Et: Generalized difference sequence spaces defined by a modulus
function in a locally convex space. Soochow J. Math. 31(2) (2005), 233–243.
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12. A. Caserta, G. Di Maio and L. D. R. Kočinac: Statistical convergence in function
spaces. Abstr. Appl. Anal. 2011 (2011), Art. ID 420419, 11 pp.

13. J. S. Connor: The statistical and strong p−Cesaro convergence of sequences. Analysis
8 (1988), 47–63.
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19. M. Çınar, M. Karakaş and M. Et: On pointwise and uniform statistical convergence
of order α for sequences of functions. Fixed Point Theory And Applications, 2013(33)
(2013), 11 pages.
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58. H. Şengül Kandemir: On ρ− Statistical Convergence in Topological Groups. Maltepe
Journal of Mathematics, 4(1) (2022), 9–14.

59. B. C. Tripathy and M. Et: On generalized difference lacunary statistical conver-
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