ON f-LACUNARY STATISTICAL CONVERGENCE OF ORDER β OF DOUBLE SEQUENCES FOR DIFFERENCE SEQUENCES OF FRACTIONAL ORDER

Nazlım Deniz Aral ${ }^{1}$ and Hacer Şengül Kandemir ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences Bitlis Eren University, Bitlis, 13000, Turkey
${ }^{2}$ Faculty of Education, Harran University Osmanbey Campus 63190, Şanlıurfa, Turkey

Abstract

In this study, by using definition of lacunary statistical convergence we introduce the concepts of f - lacunary statistical convergence of order β and strongly f lacunary summability of order β of double sequences for different sequences of fractional order spaces. Also, we establish some inclusion relations between these concepts. Keywords: Difference sequences, Lacunary statistical convergence, Modulus function.

1. Introduction

In 1951, Steinhaus [55] and Fast [27] introduced the concept of statistical convergence and later in 1959, Schoenberg [53] reintroduced independently. Bhardwaj and Dhawan [11], Caserta et al. [12], Connor [13], Çakallı [17, 18], Çınar et al. [19], Çolak [20], Et et al. [22, 24], Fridy [29], Issık [35], Salat [51], Di Maio and Kočinac [21], Mursaleen et al. [41, 42, 43], Belen and Mohiuddine [10], Şengül Kandemir [58], Aral [7] and many authors investigated some arguments related to this notion.

Difference sequence spaces were defined by Kızmaz [39] and the concept was generalized by Et et al. [22, 25] as follows:

$$
\Delta^{m}(X)=\left\{x=\left(x_{k}\right):\left(\Delta^{m} x_{k}\right) \in X\right\}
$$

[^0]where X is any sequence space, $m \in \mathbb{N}, \Delta^{0} x=\left(x_{k}\right), \Delta x=\left(x_{k}-x_{k+1}\right), \Delta^{m} x=$ $\left(\Delta^{m} x_{k}\right)=\left(\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}\right)$ and so $\Delta^{m} x_{k}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{k+v}$.

If $x \in \Delta^{m}(X)$ then there exists one and only one sequence $y=\left(y_{k}\right) \in X$ such that $y_{k}=\Delta^{m} x_{k}$ and

$$
\begin{gathered}
(1.1) x_{k}=\sum_{v=1}^{k-m}(-1)^{m}\binom{k-v-1}{m-1} y_{v}=\sum_{v=1}^{k}(-1)^{m}\binom{k+m-v-1}{m-1} y_{v-m} \\
y_{1-m}=y_{2-m}=\ldots=y_{0}=0
\end{gathered}
$$

for sufficiently large k, for instance $k>2 m$. After then some properties of difference sequence spaces have been studied in $[3,4,5,23,25,38,52,59,60,61,62]$.

By $\Gamma(r)$, we denote the Gamma function of a real number r and $r>0$. By the definition, it can be expressed as an improper integral as:

$$
\Gamma(r)=\int_{0}^{\infty} e^{-t} t^{r-1} d t
$$

From the definition, it is observed that:
(i) For any natural number $n, \Gamma(n+1)=n$!,
(ii) For any real number n and $n \notin\{0,-1,-2,-3, \ldots\}, \Gamma(n+1)=n \Gamma(n)$,
(iii) For particular cases, we have $\Gamma(1)=\Gamma(2)=1, \Gamma(3)=2$!,$\Gamma(4)=3$!, \ldots

For a proper fraction α, we define a fractional difference operator $\Delta^{\alpha}: w \rightarrow w$ defined by

$$
\begin{equation*}
\Delta^{\alpha}\left(x_{k}\right)=\sum_{i=0}^{\infty}(-1)^{i} \frac{\Gamma(\alpha+1)}{i!\Gamma(\alpha-i+1)} x_{k+i} \tag{1.2}
\end{equation*}
$$

In particular, we have $\Delta^{\frac{1}{2}} x_{k}=x_{k}-\frac{1}{2} x_{k+1}-\frac{1}{8} x_{k+2}-\frac{1}{16} x_{k+3}-\frac{5}{128} x_{k+4}-\frac{7}{256} x_{k+5}-$ $\frac{21}{1024} x_{k+6} \cdots$

$$
\begin{aligned}
& \Delta^{-\frac{1}{2}} x_{k}=x_{k}+\frac{1}{2} x_{k+1}+\frac{3}{8} x_{k+2}+\frac{5}{16} x_{k+3}+\frac{35}{128} x_{k+4}+\frac{63}{256} x_{k+5}+\frac{231}{1024} x_{k+6} \ldots \\
& \Delta^{\frac{1}{3}} x_{k}=x_{k}-\frac{1}{3} x_{k+1}-\frac{1}{9} x_{k+2}-\frac{5}{81} x_{k+3}-\frac{10}{243} x_{k+4}-\frac{22}{729} x_{k+5}-\frac{154}{6561} x_{k+6} \cdots \\
& \Delta^{\frac{2}{3}} x_{k}=x_{k}-\frac{2}{3} x_{k+1}-\frac{1}{9} x_{k+2}-\frac{4}{81} x_{k+3}-\frac{7}{243} x_{k+4}-\frac{14}{729} x_{k+5}-\frac{91}{6561} x_{k+6} \cdots
\end{aligned}
$$

Without loss of generality, we assume throughout that the series defined in (1.2) is convergent. Moreover, if α is a positive integer, then the infinite sum defined in (1.2) reduces to a finite sum i.e.,

$$
\sum_{i=0}^{\alpha}(-1)^{i} \frac{\Gamma(\alpha+1)}{i!\Gamma(\alpha-i+1)} x_{k+i}
$$

In fact, this operator generalized the difference operator introduced by Et and Çolak [22].

Recently, using fractional operator Δ^{α} (fractional order of $\alpha, \alpha \in \mathbb{R}$) Baliarsingh et al. $[8,9,45]$ defined the sequence space $\Delta^{\alpha}(X)$ such as:
$\Delta^{\alpha}(X)=\left\{x=\left(x_{k}\right):\left(\Delta^{\alpha} x_{k}\right) \in X\right\}$, where X is any sequence space.

A modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
i) $f(x)=0$ if and only if $x=0$,
ii) $f(x+y) \leq f(x)+f(y)$ for $x, y \geq 0$,
iii) f is increasing,
iv) f is continuous from the right at 0 .

It follows that f must be continuous in everywhere on $[0, \infty)$. A modulus may be unbounded or bounded.

Aizpuru et al. [1] defined f-density of a subset $E \subset \mathbb{N}$ for any unbounded modulus f by

$$
d^{f}(E)=\lim _{n \rightarrow \infty} \frac{f(|\{k \leq n: k \in E\}|)}{f(n)} \text {, if the limit exists }
$$

and defined f-statistical convergence for any unbounded modulus f by

$$
d^{f}\left(\left\{k \in \mathbb{N}:\left|x_{k}-\ell\right| \geq \varepsilon\right\}\right)=0
$$

i.e.

$$
\lim _{n \rightarrow \infty} \frac{1}{f(n)} f\left(\left|\left\{k \leq n:\left|x_{k}-\ell\right| \geq \varepsilon\right\}\right|\right)=0
$$

and we write it as $S^{f}-\lim x_{k}=\ell$ or $x_{k} \rightarrow \ell\left(S^{f}\right)$. Every f-statistically convergent sequence is statistically convergent, but a statistically convergent sequence does not need to be f-statistically convergent for every unbounded modulus f.

By a lacunary sequence we mean an increasing integer sequence $\theta=\left(k_{r}\right)$ of non-negative integers such that $k_{0}=0$ and $h_{r}=\left(k_{r}-k_{r-1}\right) \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and the ratio $\frac{k_{r}}{k_{r-1}}$ will be abbreviated by q_{r}, and $q_{1}=k_{1}$ for convenience.

In [30], Fridy and Orhan introduced the concept of lacunary statistically convergence in the sense that a sequence $\left(x_{k}\right)$ of real numbers is called lacunary statistically convergent to a real number ℓ, if

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}}\left|\left\{k \in I_{r}:\left|x_{k}-\ell\right| \geq \varepsilon\right\}\right|=0
$$

for every positive real number ε.
Lacunary sequence spaces were studied in $[6,14,15,16,26,28,30,31,33,34$, $36,37,48,54,57,59]$.

A double sequence $x=\left(x_{j, k}\right)_{j, k=0}^{\infty}$ has Pringsheim limit ℓ provided that given for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{j, k}-\ell\right|<\varepsilon$ whenever $j, k>N$. In this case, we write $P-\lim x=\ell$ (see Pringsheim [50]).

Let $K \subseteq \mathbb{N} \times \mathbb{N}$ and $K(m, n)=\{(j, k): j \leq m, k \leq n\}$. The double natural density of K is defined by

$$
\delta_{2}(K)=P-\lim _{m, n} \frac{1}{m n}|K(m, n)| \text {, if the limit exists. }
$$

A double sequence $x=\left(x_{j k}\right)_{j, k \in \mathbb{N}}$ is said to be statistically convergent to a number ℓ if for every $\varepsilon>0$ the set $\left\{(j, k): j \leq m, k \leq n:\left|x_{j k}-\ell\right| \geq \varepsilon\right\}$ has double natural density zero (see Mursaleen and Edely [42]).

In [47], Patterson and Savaş introduced the concept of double lacunary sequence in the sense that double sequence $\theta^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ is called double lacunary sequence, if there exist two increasing sequences of integers such that

$$
k_{0}=0, h_{r}=k_{r}-k_{r-1} \rightarrow \infty \text { as } r \rightarrow \infty
$$

and

$$
l_{0}=0, \bar{h}_{s}=l_{s}-l_{s-1} \rightarrow \infty \text { as } s \rightarrow \infty
$$

where $k_{r, s}=k_{r} l_{s}, h_{r, s}=h_{r} \bar{h}_{s}$ and the following intervals are determined by $\theta^{\prime \prime}$, $I_{r}=\left\{(k): k_{r-1}<k \leq k_{r}\right\}, I_{s}=\left\{(l): l_{s-1}<l \leq l_{s}\right\}$,
$I_{r, s}=\left\{(k, l): k_{r-1}<k \leq k_{r}\right.$ and $\left.l_{s-1}<l \leq l_{s}\right\}, q_{r}=\frac{k_{r}}{k_{r-1}}, \bar{q}_{s}=\frac{l_{s}}{l_{s-1}}$ and $q_{r, s}=$ $q_{r} \overline{\bar{q}}_{s}$.

The double number sequence x is $S_{\theta^{\prime \prime}}$-convergent to ℓ provided that for every $\varepsilon>0$,

$$
\left.P-\lim _{r, s} \frac{1}{h_{r, s}}\left|\left\{(k, l) \in I_{r, s}:\left|x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right)=0
$$

In this case write $S_{\theta^{\prime \prime}}-\lim x_{k, l}=\ell$ or $x_{k, l} \rightarrow \ell\left(S_{\theta^{\prime \prime}}\right)$ (see [47]).
The notion of a modulus was given by Nakano [44]. Maddox [40] used a modulus function to construct some sequence spaces. Afterwards different sequence spaces defined by modulus have been studied by Altın and Et [2], Et et al. [23], Işık [35], Gaur and Mursaleen [32], Nuray and Savaş [46], Pehlivan and Fisher [49], Şengül [56] and everybody else.

2. Main Results

In this section we will introduce the concepts of f-lacunary statistical convergence of order β and strong f-lacunary summability of order β of double sequences for difference sequences of fractional order, where f is an unbounded modulus and give some results related to these concepts.

Definition 2.1. Let f be an unbounded modulus, $\theta^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ be a double lacunary sequence and β be a real number such that $0<\beta \leq 1$ and α be a proper fraction. We say that the double sequence $x=\left(x_{k, l}\right)$ is Δ_{f}^{α}-lacunary statistically convergent of order β, if there is a real number ℓ such that

$$
\lim _{r, s \rightarrow \infty} \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right)=0 .
$$

This space will be denoted by $\Delta^{\alpha}\left(S_{\theta^{\prime \prime}}^{f, \beta}\right)$. In this case, we write $\Delta^{\alpha}\left(S_{\theta^{\prime \prime}}^{f, \beta}\right)-\lim x_{k, l}=\ell$ or $x_{k, l} \rightarrow \ell\left(\Delta^{\alpha}\left(S_{\theta^{\prime \prime}}^{f, \beta}\right)\right)$. In the special case $\theta^{\prime \prime}=\left\{\left(2^{r}, 2^{s}\right)\right\}$, we shall write $\Delta^{\alpha}\left(S^{\prime \prime f, \beta}\right)$ instead of $\Delta^{\alpha}\left(S_{\theta^{\prime \prime}}^{f, \beta}\right)$.
Definition 2.2. Let f be a modulus function, $\theta^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ be a double lacunary sequence, $p=\left(p_{k}\right)$ be a sequence of strictly positive real numbers and β be a positive real number and α be a proper fraction. We say that the double sequence $x=\left(x_{k, l}\right)$ is strongly $\Delta^{\alpha}\left(w^{\beta}\left[\theta^{\prime \prime}, f, p\right]\right)$-summable to ℓ (a real number), if there is a real number ℓ such that

$$
\lim _{r, s \rightarrow \infty} \frac{1}{\left[h_{r, s}\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}}=0
$$

In this case we write $\Delta^{\alpha}\left(w^{\beta}\left[\theta^{\prime \prime}, f, p\right]\right)-\lim x_{k, l}=\ell$. The set of all strongly $\Delta^{\alpha}\left(w^{\beta}\left[\theta^{\prime \prime}, f, p\right]\right)$ - summable sequences will be denoted by $\Delta^{\alpha}\left(w^{\beta}\left[\theta^{\prime \prime}, f, p\right]\right)$. If we take $p_{k}=1$ for all $k \in \mathbb{N}$, we write $\Delta^{\alpha}\left(w^{\beta}\left[\theta^{\prime \prime}, f\right]\right)$ instead of $\Delta^{\alpha}\left(w^{\beta}\left[\theta^{\prime \prime}, f, p\right]\right)$.

Definition 2.3. Let f be an unbounded modulus, $\theta^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ be a double lacunary sequence, $p=\left(p_{k}\right)$ be a sequence of strictly positive real numbers and β be a positive real number and α be a proper fraction. We say that the double sequence $x=\left(x_{k, l}\right)$ is strongly $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}(p)\right)$-summable to ℓ (a real number), if there is a real number ℓ such that

$$
\lim _{r, s \rightarrow \infty} \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}}=0
$$

In the present case, we write $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}(p)\right)-\lim x_{k, l}=\ell$. The set of all strongly $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}(p)\right)$ - summable sequences will be denoted by $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}(p)\right)$. In case of $p_{k}=p$ for all $k \in \mathbb{N}$ we write $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}[p]\right)$ instead of $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}(p)\right)$.

Definition 2.4. Let f be an unbounded modulus, $\theta^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ be a double lacunary sequence, $p=\left(p_{k}\right)$ be a sequence of strictly positive real numbers and β be a positive real number and α be a proper fraction. We say that the double sequence $x=\left(x_{k, l}\right)$ is strongly $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}(p)\right)$-summable to ℓ (a real number), if there is a real number ℓ such that

$$
\frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left|\Delta^{\alpha} x_{k, l}-\ell\right|^{p_{k}}=0 .
$$

In the present case, we write $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}(p)\right)-\lim x_{k, l}=\ell$. The set of all strongly $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}(p)\right)$ - summable sequences will be denoted by $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}(p)\right)$. In case of $p_{k}=p$ for all $k \in \mathbb{N}$ we write $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}[p]\right)$ instead of $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}(p)\right)$.

The proof of each of the following results is fairly straightforward, so we choose to state these results without proof, where we shall assume that the sequence $p=\left(p_{k}\right)$ is bounded and $0<h=\inf _{k} p_{k} \leq p_{k} \leq \sup _{k} p_{k}=H<\infty$.

Theorem 2.1. The space $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}(p)\right)$ is paranormed by

$$
g(x)=\sup _{r, s}\left\{\frac{1}{\left[f\left(h_{r, s}\right)\right]^{\alpha}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}\right|\right)\right]^{p_{k}}\right\}^{\frac{1}{M}}
$$

where $M=\max (1, H)$.
Proposition 2.1. [49] Let f be a modulus and $0<\delta<1$. Then for each $\|u\| \geq \delta$, we have $f(\|u\|) \leq 2 f(1) \delta^{-1}\|u\|$.

Theorem 2.2. Let f be an unbounded modulus, β be a real number such that $0<\beta \leq 1$, α be a proper fraction and $p>1$. If $\lim _{u \rightarrow \infty} \inf \frac{f(u)}{u}>0$, then $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}[p]\right)=\Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}[p]\right)$.

Proof. Let $p>1$ be a positive real number and $x \in \Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}[p]\right)$. If
$\lim _{u \rightarrow \infty} \inf \frac{f(u)}{u}>0$ then there exists a number $c>0$ such that $f(u)>c u$ for $u>0$. Clearly

$$
\begin{aligned}
\frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p} & \geq \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[c\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right]^{p} \\
& =\frac{c^{p}}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left|\Delta^{\alpha} x_{k, l}-\ell\right|^{p}
\end{aligned}
$$

and therefore $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}[p]\right) \subset \Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}[p]\right)$.
Now let $x \in \Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}[p]\right)$. Then we have

$$
\frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left|\Delta^{\alpha} x_{k, l}-\ell\right|^{p} \rightarrow 0 \text { as } r, s \rightarrow \infty .
$$

Let $0<\delta<1$. We can write

$$
\frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left|\Delta^{\alpha} x_{k, l}-\ell\right|^{p} \geq \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{\substack{(k, l) \in I_{r, s} \\\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \delta}}\left|\Delta^{\alpha} x_{k, l}-\ell\right|^{p}
$$

$$
\begin{aligned}
& \geq \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[\frac{f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)}{2 f(1) \delta^{-1}}\right]^{p} \\
& \geq \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \frac{\delta^{p}}{2^{p} f(1)^{p}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p}
\end{aligned}
$$

by Proposition 2.1. Therefore $x \in \Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}[p]\right)$.
If $\lim _{u \rightarrow \infty} \inf \frac{f(u)}{u}=0$, the equality $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}[p]\right)=\Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}[p]\right)$ can not be hold as shown the following example:

Example 2.1. Let $f(x)=2 \sqrt{x}$ and define a double sequence $x=\left(x_{k, l}\right)$ by

$$
\Delta^{\alpha} x_{k, l}=\left\{\begin{array}{cc}
\sqrt[3]{h_{r, s}}, & \text { if } k=k_{r} \text { and } l=l_{s} \\
0, & \text { otherwise }
\end{array} \quad r, s=1,2, \ldots\right.
$$

For $\ell=0, \beta=\frac{3}{4}$ and $p=\frac{6}{5}$, we have

$$
\frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}\right|\right)\right]^{p}=\frac{\left(2\left[h_{r, s}\right]^{\frac{1}{6}}\right)^{\frac{6}{5}}}{\left(2 \sqrt{h_{r, s}}\right)^{\frac{3}{4}}}=\frac{\left(2\left(h_{r} \overline{h_{s}}\right)^{\frac{1}{6}}\right)^{\frac{6}{5}}}{\left(2 \sqrt{h_{r} \overline{h_{s}}}\right)^{\frac{3}{4}}} \rightarrow 0 \text { as } r, s \rightarrow \infty
$$

hence $x \in \Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \alpha}[p]\right)$, but

$$
\frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left|\Delta^{\alpha} x_{k, l}\right|^{p}=\frac{\left(\sqrt[3]{h_{r, s}}\right)^{\frac{6}{5}}}{\left(2 \sqrt{h_{r, s}}\right)^{\frac{3}{4}}} \rightarrow \infty \text { as } r, s \rightarrow \infty
$$

and so $x \notin \Delta^{\alpha}\left(w_{\theta^{\prime \prime}, f}^{\beta}[p]\right)$.
Maddox [40] showed that the existence of an unbounded modulus f for which there is a positive constant c such that $f(x y) \geq c f(x) f(y)$, for all $x \geq 0, y \geq 0$.

Theorem 2.3. Let f be an unbounded modulus and β be a positive real number and α be a proper fraction. If $\lim _{u \rightarrow \infty} \frac{[f(u)]^{\beta}}{u^{\beta}}>0$, then $\Delta^{\alpha}\left(w^{\beta}\left[\theta^{\prime \prime}, f\right]\right) \subset \Delta^{\alpha}\left(S_{\theta^{\prime \prime}}^{f, \beta}\right)$.

Proof. Let $x \in \Delta^{\alpha}\left(w^{\beta}\left[\theta^{\prime \prime}, f\right]\right)$ and $\lim _{u \rightarrow \infty} \frac{f(u)^{\beta}}{u^{\beta}}>0$. For $\varepsilon>0$, we have

$$
\frac{1}{\left[h_{r, s}\right]^{\beta}} \sum_{(k, l) \in I_{r, s}} f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)
$$

$$
\begin{aligned}
& \geq \frac{1}{\left[h_{r, s}\right]^{\beta}} f\left(\sum_{(k, l) \in I_{r, s}}\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right) \\
& \geq \frac{1}{\left[h_{r, s}\right]^{\beta}} f\left(\sum_{(k, l) \in I_{r, s}}\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right) \\
& \geq \frac{1}{\left[h_{r, s}\right]^{\beta}} f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right| \varepsilon\right) \\
& \geq \frac{c}{\left[h_{r, s}\right]^{\beta}} f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right) f(\varepsilon) \\
& =\frac{c}{\left[h_{r, s}\right]^{\beta}} \frac{f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right)}{\left[f\left(h_{r, s}\right)\right]^{\beta}}\left[f\left(h_{r, s}\right)\right]^{\beta} f(\varepsilon) .
\end{aligned}
$$

Therefore, $\Delta^{\alpha}\left(w^{\beta}\left[\theta^{\prime \prime}, f\right]\right)-\lim x_{k, l}=\ell \operatorname{implies} \Delta^{\alpha}\left(S_{\theta^{\prime \prime}}^{f, \beta}\right)-\lim x_{k, l}=\ell$.
Theorem 2.4. Let β_{1}, β_{2} be two real numbers such that $0<\beta_{1} \leq \beta_{2} \leq 1, f$ be an unbounded modulus function and let $\theta^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ be a double lacunary sequence, then we have $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta_{1}}(p)\right) \subset \Delta^{\alpha}\left(S_{\theta^{\prime \prime}}^{f, \beta_{2}}\right)$.

Proof. Let $x \in \Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta_{1}}(p)\right)$ and $\varepsilon>0$ be given and \sum_{1}, \sum_{2} denote the sums over $(k, l) \in I_{r, s},\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon$ and $(k, l) \in I_{r, s},\left|\Delta^{\alpha} x_{k, l}-\ell\right|<\varepsilon$ respectively. Since $f\left(h_{r, s}\right)^{\beta_{1}} \leq f\left(h_{r, s}\right)^{\beta_{2}}$ for each r and s, we may write

$$
\begin{aligned}
& \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta_{1}}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}} \\
= & \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta_{1}}}\left[\sum_{1}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}}+\sum_{2}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}}\right] \\
\geq & \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta_{2}}}\left[\sum_{1}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}}+\sum_{2}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}}\right] \\
\geq & \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta_{2}}}\left[\sum_{1}[f(\varepsilon)]^{p_{k}}\right] \\
\geq & \frac{1}{H \cdot\left[f\left(h_{r, s}\right)\right]^{\beta_{2}}}\left[f\left(\sum_{1}[\varepsilon]^{p_{k}}\right)\right] \\
\geq & \frac{1}{H \cdot\left[f\left(h_{r, s}\right)\right]^{\beta_{2}}}\left[f\left(\sum_{1} \min \left([\varepsilon]^{h},[\varepsilon]^{H}\right)\right)\right] \\
\geq & \frac{1}{H \cdot\left[f\left(h_{r, s}\right)\right]^{\beta_{2}}} f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\left[\min \left([\varepsilon]^{h},[\varepsilon]^{H}\right)\right]\right) \\
\geq & \frac{c}{H \cdot\left[f\left(h_{r, s}\right)\right]^{\beta_{2}}} f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right) f\left(\left[\min \left([\varepsilon]^{h},[\varepsilon]^{H}\right)\right]\right) .
\end{aligned}
$$

Hence $x \in \Delta^{\alpha}\left(S_{\theta^{\prime \prime}}^{f, \beta_{2}}\right)$.
Theorem 2.5. Let $\theta^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ be a double lacunary sequence and β be a fixed real number such that $0<\beta \leq 1$ and α be a proper fraction. If $\liminf \operatorname{in}_{r}>1$, $\liminf _{s} q_{s}>1$ and $\lim _{u \rightarrow \infty} \frac{[f(u)]^{\beta}}{u^{\beta}}>0$, then $\Delta^{\alpha}\left(S^{\prime \prime} f, \beta\right) \subset \Delta^{\alpha}\left(S_{\theta^{\prime \prime}}^{f, \beta}\right)$.

Proof. Suppose first that $\liminf _{r} q_{r}>1$ and $\liminf _{s} q_{s}>1$; then there exists $a, b>$ 0 such that $q_{r} \geq 1+a$ and $q_{s} \geq 1+b$ for sufficiently large r and s, which implies that

$$
\frac{h_{r}}{k_{r}} \geq \frac{a}{1+a} \Longrightarrow\left(\frac{h_{r}}{k_{r}}\right)^{\beta} \geq\left(\frac{a}{1+a}\right)^{\beta}
$$

and

$$
\frac{\bar{h}_{s}}{l_{s}} \geq \frac{b}{1+b} \Longrightarrow\left(\frac{\bar{h}_{s}}{l_{s}}\right)^{\beta} \geq\left(\frac{b}{1+b}\right)^{\beta}
$$

If $\Delta^{\alpha}\left(S^{\prime \prime f, \beta}\right)-\lim x_{k, l}=\ell$, then for every $\varepsilon>0$ and for sufficiently large r and s, we have

$$
\begin{aligned}
& \frac{1}{\left[f\left(k_{r} l_{s}\right)\right]^{\beta}} f\left(\left|\left\{k \leq k_{r}, l \leq l_{s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right) \\
\geq & \frac{1}{\left[f\left(k_{r} l_{s}\right)\right]^{\beta}} f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right) \\
= & \frac{\left[f\left(h_{r, s}\right)\right]^{\beta}}{\left[f\left(k_{r} l_{s}\right)\right]^{\beta}} \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right) \\
= & \frac{\left[f\left(h_{r, s}\right)\right]^{\beta}}{\left[h_{r, s}\right]^{\beta}} \frac{k_{r}^{\beta}}{\left[f\left(k_{r} l_{s}\right)\right]^{\beta}} \frac{\left[h_{r, s}\right]^{\beta}}{k_{r}^{\beta}} \frac{f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right)}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \\
= & \frac{\left[f\left(h_{r, s}\right)\right]^{\beta}}{\left[h_{r, s}\right]^{\beta}} \frac{k_{r}^{\beta} l_{s}^{\beta}}{\left[f\left(k_{r} l_{s}\right)\right]^{\beta}} \frac{h_{r}^{\beta} \bar{h}_{s}^{\beta}}{k_{r}^{\beta} l_{s}^{\beta}} \frac{f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right)}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \\
\geq & \frac{\left[f\left(h_{r, s}\right)\right]^{\beta}}{\left[h_{r, s}\right]^{\beta}} \frac{\left(k_{r} l_{s}\right)^{\beta}}{\left[f\left(k_{r} l_{s}\right)\right]^{\beta}}\left(\frac{a}{1+a}\right)^{\beta}\left(\frac{b}{1+b}\right)^{\beta} \frac{f\left(\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right|\right)}{\left[f\left(h_{r, s}\right)\right]^{\beta}} .
\end{aligned}
$$

This proves the sufficiency.
Theorem 2.6. Let f be an unbounded modulus, $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(l_{s}\right)$ be two lacunary sequences, $\theta^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ be a double lacunary sequence, $0<\beta \leq 1$ and α be a proper fraction. If $\Delta^{\alpha}\left(S_{f, \theta}^{\beta}\right)-\lim x_{k}=\ell$ and $\Delta^{\alpha}\left(S_{f, \theta^{\prime}}^{\beta}\right)-\lim x_{l}=\ell$, then $\Delta^{\alpha}\left(S_{f, \theta^{\prime \prime}}^{\beta}\right)-\lim x_{k, l}=\ell$.

Proof. Suppose $\Delta^{\alpha}\left(S_{f, \theta}^{\beta}\right)-\lim x_{k}=\ell$ and $\Delta^{\alpha}\left(S_{f, \theta^{\prime}}^{\beta}\right)-\lim x_{l}=\ell$. Then for $\varepsilon>0$ we can write

$$
\lim _{r} \frac{1}{\left[f\left(h_{r}\right)\right]^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{\alpha} x_{k}-\ell\right| \geq \varepsilon\right\}\right|=0
$$

and

$$
\lim _{s} \frac{1}{\left[f\left(\bar{h}_{s}\right)\right]^{\beta}}\left|\left\{l \in I_{s}:\left|\Delta^{\alpha} x_{l}-\ell\right| \geq \varepsilon\right\}\right|=0 .
$$

So we have

$$
\begin{aligned}
& \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}}\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right| \\
\leq & \frac{1}{\left[c f\left(h_{r}\right) f\left(\bar{h}_{s}\right)\right]^{\beta}}\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right| \\
\leq & \frac{1}{c^{\beta}\left[f\left(h_{r}\right)\right]^{\beta}\left[f\left(\bar{h}_{s}\right)\right]^{\beta}}\left|\left\{(k, l) \in I_{r, s}:\left|\Delta^{\alpha} x_{k, l}-\ell\right| \geq \varepsilon\right\}\right| \\
\leq & {\left[\frac{1}{\left[f\left(h_{r}\right)\right]^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{\alpha} x_{k}-\ell\right| \geq \varepsilon\right\}\right|\right]\left[\frac{1}{\left[f\left(\bar{h}_{s}\right)\right]^{\beta}}\left|\left\{l \in I_{s}:\left|\Delta^{\alpha} x_{l}-\ell\right| \geq \varepsilon\right\}\right|\right] . }
\end{aligned}
$$

Hence $\Delta^{\alpha}\left(S_{f, \theta^{\prime \prime}}^{\beta}\right)-\lim x_{k, l}=\ell$.
Theorem 2.7. Let f be an unbounded modulus. If $\lim p_{k}>0$, then $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}(p)\right)-$ $\lim x_{k, l}=\ell$ uniquely.

Proof. Let $\lim p_{k}=s>0$. Assume that $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}(p)\right)-\lim x_{k, l}=\ell_{1}$ and $\Delta^{\alpha}\left(w_{\theta^{\prime \prime}}^{f, \beta}(p)\right)-$ $\lim x_{k, l}=\ell_{2}$. Then

$$
\lim _{r, s} \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell_{1}\right|\right)\right]^{p_{k}}=0
$$

and

$$
\lim _{r, s} \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell_{2}\right|\right)\right]^{p_{k}}=0 .
$$

By definition of f, we have

$$
\frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\ell_{1}-\ell_{2}\right|\right)\right]^{p_{k}}
$$

$$
\begin{aligned}
\leq & \frac{D}{\left[f\left(h_{r, s}\right)\right]^{\beta}}\left(\sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell_{1}\right|\right)\right]^{p_{k}}+\sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell_{2}\right|\right)\right]^{p_{k}}\right) \\
= & \frac{D}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell_{1}\right|\right)\right]^{p_{k}} \\
& +\frac{D}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell_{2}\right|\right)\right]^{p_{k}}
\end{aligned}
$$

where $\sup _{k} p_{k}=H$ and $D=\max \left(1,2^{H-1}\right)$. Hence

$$
\lim _{r, s} \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\ell_{1}-\ell_{2}\right|\right)\right]^{p_{k}}=0 .
$$

Since $\lim _{k \rightarrow \infty} p_{k}=s$ we have $\ell_{1}-\ell_{2}=0$. Thus the limit is unique.
Theorem 2.8. Let $\theta_{1}^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ and $\theta_{2}^{\prime \prime}=\left\{\left(s_{r}, t_{s}\right)\right\}$ be two double lacunary sequences such that $I_{r, s} \subset J_{r, s}$ for all $r, s \in \mathbb{N}, \beta_{1}, \beta_{2}$ two real numbers such that $0<\beta_{1} \leq \beta_{2} \leq 1$ and α be a proper fraction. If

$$
\begin{equation*}
\lim _{r, s \rightarrow \infty} \inf \frac{\left[f\left(h_{r, s}\right)\right]^{\beta_{1}}}{\left[f\left(\ell_{r, s}\right)\right]^{\beta_{2}}}>0 \tag{2.1}
\end{equation*}
$$

then $\Delta^{\alpha}\left(w_{\theta_{2}^{\prime \prime}}^{f, \beta_{2}}(p)\right) \subset \Delta^{\alpha}\left(w_{\theta_{1}^{\prime \prime}}^{f, \beta_{1}}(p)\right)$, where
$I_{r, s}=\left\{(k, l): k_{r-1}<k \leq k_{r}\right.$ and $\left.l_{s-1}<l \leq l_{s}\right\}, k_{r, s}=k_{r} l_{s}, h_{r, s}=h_{r} \bar{h}_{s}$ and $J_{r, s}=\left\{(s, t): s_{r-1}<s \leq s_{r}\right.$ and $\left.t_{s-1}<l \leq t_{s}\right\}, s_{r, s}=s_{r} t_{s}, \ell_{r, s}=\ell_{r} \bar{\ell}_{s}$.

Proof. Let $x \in \Delta^{\alpha}\left(w_{\theta_{2}^{\prime \prime}}^{f, \beta_{2}}(p)\right)$. We can write

$$
\begin{aligned}
& \frac{1}{\left[f\left(\ell_{r, s}\right)\right]^{\beta_{2}}} \sum_{(k, l) \in J_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}} \\
= & \frac{1}{\left[f\left(\ell_{r, s}\right)\right]^{\beta_{2}}} \sum_{(k, l) \in J_{r, s}-I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}} \\
& +\frac{1}{\left[f\left(\ell_{r, s}\right)\right]^{\beta_{2}}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}} \\
\geq & \frac{1}{\left[f\left(\ell_{r, s}\right)\right]^{\beta_{2}}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}} \\
\geq & \frac{\left[f\left(h_{r, s}\right)\right]^{\beta_{1}}}{\left[f\left(\ell_{r, s}\right)\right]^{\beta_{2}}} \frac{1}{\left[f\left(h_{r, s}\right)\right]^{\beta_{1}}} \sum_{(k, l) \in I_{r, s}}\left[f\left(\left|\Delta^{\alpha} x_{k, l}-\ell\right|\right)\right]^{p_{k}} .
\end{aligned}
$$

Thus if $x \in \Delta^{\alpha}\left(w_{\theta_{2}^{\prime \prime}}^{f, \beta_{2}}(p)\right)$, then $x \in \Delta^{\alpha}\left(w_{\theta_{1}^{\prime \prime}}^{f, \beta_{1}}(p)\right)$.

From Theorem 2.8. we have the following results.
Corollary 2.1. Let $\theta_{1}^{\prime \prime}=\left\{\left(k_{r}, l_{s}\right)\right\}$ and $\theta_{2}^{\prime \prime}=\left\{\left(s_{r}, t_{s}\right)\right\}$ be two double lacunary sequences such that $I_{r, s} \subset J_{r, s}$ for all $r, s \in \mathbb{N}, \beta_{1}, \beta_{2}$ two real numbers such that $0<\beta_{1} \leq \beta_{2} \leq 1$ and α be a proper fraction. If (2.1) holds then
(i) $\Delta^{\alpha}\left(w_{\theta_{2}^{\prime \prime}}^{f, \beta}(p)\right) \subset \Delta^{\alpha}\left(w_{\theta_{1}^{\prime \prime}}^{f, \beta}(p)\right)$, if $\beta_{1}=\beta_{2}=\beta$,
(ii) $\Delta^{\alpha}\left(w_{\theta_{2}^{\prime \prime}}^{f}(p)\right) \subset \Delta^{\alpha}\left(w_{\theta_{1}^{\prime \prime}}^{f, \beta_{1}}(p)\right)$, if $\beta_{2}=1$,
(iii) $\Delta^{\alpha}\left(w_{\theta_{2}^{\prime \prime}}^{f}(p)\right) \subset \Delta^{\alpha}\left(w_{\theta_{1}^{\prime \prime}}^{f}(p)\right)$, if $\beta_{1}=\beta_{2}=1$.

Acknowledgement

This study was presented at the 8th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2021), 24-27 September 2021, Bodrum, Turkey.

REFERENCES

1. A. Aizpuru, M. C. Listán-García and F. Rambla-Barreno: Density by moduli and statistical convergence. Quaest. Math., 37(4) (2014), 525-530.
2. Y. Altin and M. Et: Generalized difference sequence spaces defined by a modulus function in a locally convex space. Soochow J. Math. 31(2) (2005), 233-243.
3. H. Altinok, M. Et and R. Çolak: Some remarks on generalized sequence space of bounded variation of sequences of fuzzy numbers. Iran. J. Fuzzy Syst. 11(5) (2014), 39-46, 109.
4. N. D. Aral and M. Et: On lacunary statistical convergence of order β of difference sequences of fractional order. International Conference of Mathematical Sciences, (ICMS 2019), Maltepe University, Istanbul, Turkey.
5. N. D. Aral and M. Et: Generalized difference sequence spaces of fractional order defined by Orlicz functions. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 69(1) (2020), 941-951.
6. N. D. Aral and H. ŞEngüL: I-Lacunary Statistical Convergence of Order β of Difference Sequences of Fractional Order. Facta Universitatis, Series: Mathematics and Informatics, $\mathbf{3 6 (1)}$ (2021), 43-55.
7. N. D. Aral: $\quad \rho$-Statistical Convergence Defined by a Modulus Function of order (α, β). Maltepe Journal of Mathematics, 4(1) (2022), 15-23.
8. P. Baliarsingh: Some new difference sequence spaces of fractional order and their dual spaces. Appl. Math. Comput. 219(18) (2013), 9737-9742.
9. P. Baliarsingh, U. Kadak and M. Mursaleen: On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems. Quaest. Math. 41(8) (2018), 1117-1133.
10. C. Belen and S. A. Mohiuddine: Generalized weighted statistical convergence and application. Applied Mathematics and Computation 219 (2013), 9821-9826.
11. V. K. Bhardwaj and S. Dhawan: Density by moduli and lacunary statistical convergence. Abstr. Appl. Anal. 2016 (2016), Art. ID 9365037, 11 pp.
12. A. Caserta, G. Di Maio and L. D. R. Kočinac: Statistical convergence in function spaces. Abstr. Appl. Anal. 2011 (2011), Art. ID 420419, 11 pp.
13. J. S. Connor: The statistical and strong $p-C e s a r o ~ c o n v e r g e n c e ~ o f ~ s e q u e n c e s . ~ A n a l y s i s ~$ 8 (1988), 47-63.
14. H. ÇaKALLI: Lacunary statistical convergence in topological groups. Indian J. Pure Appl. Math. 26(2) (1995) 113-119.
15. H. Çakalli and H. Kaplan: A variation on lacunary statistical quasi Cauchy sequences. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66(2) (2017), 71-79.
16. H. Çakalli and H. Kaplan: A study on N_{θ}-quasi-Cauchy sequences. Abstr. Appl. Anal. 2013 (2013), Article ID 836970, 4 pages.
17. H. Çakalli: A study on statistical convergence. Funct. Anal. Approx. Comput. 1(2) (2009), 19-24.
18. H. Çakalli: A New Approach to Statistically Quasi Cauchy Sequences. Maltepe Journal of Mathematics, $\mathbf{1 (1)}$ (2019), 1-8.
19. M. Çinar, M. Karakaş and M. Et: On pointwise and uniform statistical convergence of order α for sequences of functions. Fixed Point Theory And Applications, 2013(33) (2013), 11 pages.
20. R. Çolak: Statistical convergence of order α. Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub. 2010 (2010), 121-129.
21. G. Di Maio and L. D. R. Kočinac: Statistical convergence in topology. Topology Appl. 156 (2008), 28-45.
22. M. Et and R. Çolak: On some generalized difference sequence spaces. Soochow J. Math. 21 (4) (1995), 377-386 .
23. M. Et, Y. Altin and H. Altinok: On some generalized difference sequence spaces defined by a modulus function. Filomat 17 (2003), 23-33.
24. M. Et, B. C. Tripathy and A. J. Dutta: On pointwise statistical convergence of order α of sequences of fuzzy mappings. Kuwait J. Sci. 41(3) (2014), 17-30.
25. M. Et, M. Mursaleen and M. Işik: On a class of fuzzy sets defined by Orlicz functions. Filomat 27(5) (2013), 789-796.
26. M. Et and H. ŞENGÜL: Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α. Filomat 28(8) (2014), 1593-1602.
27. H. FAST: Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
28. A. R. Freedman, J. J. Sember and M. Raphael: Some Cesàro-type summability spaces. Proc. London Math. Soc. (3) 37(3) (1978), 508-520.
29. J. Fridy: On statistical convergence. Analysis 5 (1985), 301-313.
30. J. A. Fridy and C. Orhan: Lacunary statistical convergence. Pacific J. Math. 160 (1993), 43-51.
31. J. A. Fridy and C. Orhan: Lacunary statistical summability. J. Math. Anal. Appl. 173(2) (1993), 497-504.
32. A. K. Gaur and M. Mursaleen: Difference sequence spaces defined by a sequence of moduli. Demonstratio Math. 31(2) (1998), 275-278.
33. M. IŞIK and K. E. ET: On lacunary statistical convergence of order α in probability. AIP Conference Proceedings 1676020045 (2015), doi: http://dx.doi.org/10.1063/1.4930471.
34. M. Isik and K. E. Akbaş: On λ-statistical convergence of order α in probability. J. Inequal. Spec. Funct. 8(4) (2017), 57-64.
35. M. IşIK: Generalized vector-valued sequence spaces defined by modulus functions. J. Inequal. Appl. 2010 Art. ID 457892 (2010), 7 pp.
36. U. KADAK: Generalized lacunary statistical difference sequence spaces of fractional order. Int. J. Math. Math. Sci. 2015, Art. ID 984283, 6 pp.
37. H. KAPLAN and H. Çakalli: Variations on strong lacunary quasi-Cauchy sequences. J. Nonlinear Sci. Appl. 9(6) (2016), 4371-4380.
38. M. Karakaş, M. Et and V. Karakaya: Some geometric properties of a new difference sequence space involving lacunary sequences. Acta Math. Sci. Ser. B (Engl. Ed.) 33(6) (2013), 1711-1720.
39. H. Kizmaz: On certain sequence spaces. Canad. Math. Bull. 24(2) (1981), 169-176.
40. I. J. Maddox: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166.
41. S. A. Mohiuddine, A. Alotaibi and M. Mursaleen: Statistical convergence of double sequences in locally solid Riesz spaces. Abstr. Appl. Anal. 2012 Article ID 719729 (2012), 9 pages.
42. M. Mursaleen and O. H. H. Edely: Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications 288(1) (2003), 223-231.
43. M. Mursaleen and S. A. Mohiuddine: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 233(2) (2009), 142-149.
44. H. Nakano: Modulared sequence spaces. Proc. Japan Acad. 27 (1951), 508-512.
45. L. Nayak, M. Et and P. Baliarsingh: On certain generalized weighted mean fractional difference sequence spaces. Proc. Nat. Acad. Sci. India Sect. A 89(1) (2019), 163-170.
46. F. Nuray, E. Savaş: Some new sequence spaces defined by a modulus function. Indian J. Pure Appl. Math. 24(11) (1993), 657-663.
47. R. F. Patterson and E. Savaş: Lacunary statistical convergence of double sequences. Math. Commun. 10(1) (2005), 55-61.
48. S. Pehlivan and B. Fisher: Lacunary strong convergence with respect to a sequence of modulus functions. Comment. Math. Univ. Carolin. $\mathbf{3 6 (1)}$ (1995), 69-76.
49. S. Pehlivan and B. Fisher: Some sequence spaces defined by a modulus. Math. Slovaca 45(3) (1995), 275-280.
50. A. Pringsheim: Zur Theorie der zweifach unendlichen Zahlenfolgen. Mathematische Annalen 53(3) (1900), 289-321.
51. T. Salat: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150.
52. E. SAVAŞ and M. Et: On $\left(\Delta_{\lambda}^{m}, I\right)$-statistical convergence of order α. Period. Math. Hungar. 71(2) (2015), 135-145.
53. I. J. SChOENBERG: The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361-375.
54. H. M. Srivastava and M. Et: Lacunary statistical convergence and strongly lacunary summable functions of order α. Filomat 31(6) (2017), 1573-1582.
55. H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73-74.
56. H. ŞENGÜL: Some Cesàro-type summability spaces defined by a modulus function of order (α, β). Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66(2) (2017), 80-90.
57. H. ŞEngÜL and M. Et: On lacunary statistical convergence of order α. Acta Math. Sci. Ser. B Engl. Ed. 34(2) (2014), 473-482.
58. H. Şengül Kandemir: On $\rho-$ Statistical Convergence in Topological Groups. Maltepe Journal of Mathematics, 4(1) (2022), 9-14.
59. B. C. Tripathy and M. Et: On generalized difference lacunary statistical convergence. Studia Univ. Babeş-Bolyai Math., 50(1) (2005), 119-130.
60. B. C. Tripathy, A. Esi and B. K. Tripathy: On a new type of generalized difference Cesaro Sequence spaces. Soochow J. Math. 31(3) (2005), 333-340.
61. T. Yaying, A. Das, B. Hazarika and P. Baliarsingh: Compactness of binomial difference operator of fractional order and sequence spaces. Rend. Circ. Mat. Palermo (2) 68(3) (2019), 459-476.
62. T. Yaying and B. Hazarika: On sequence spaces generated by binomial difference operator of fractional order. Math. Slovaca 69(4) (2019), 901-918.

[^0]: Received October 07, 2021, accepted: February 25, 2023
 Communicated by Aleksandar Nastić
 Corresponding Author: Nazlım Deniz Aral, Department of Mathematics, Faculty of Arts and Sciences, Bitlis Eren University, Bitlis, 13000, Turkey | E-mail: ndaral@beu.edu.tr
 2010 Mathematics Subject Classification. Primary 40A05; Secondary 40C05, 46A45

