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Abstract

Let G be an undirected simple graph on n vertices with the degree sum of any two non-
adjacent vertices equal to n — 2 and let a(G) be the cardinality of a maximum independent
set of G. We show, for n > 3 is an odd number then a(G) = 2 and G is a disconnected
graph; for n > 4 is an even number then 2 < a(G) < (n + 2)/2, whereif a(G) = 2 then G
is a disconnected graph, otherwise G is a connected graph.
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1. INTRODUCTION

The concepts and symbols in this article are referenced from the Handbook of
Combinatorics (Graham et al., 1995). Let G = (V(G), E(G)) be a simple undirected
graph on n vertices, where V(G) is the vertex set and E(G) is the edge set of graph G.
We use |V (G)| and |E(G)] to denote the number of vertices and edges of G. In G, the
edge of two vertices u and v is denoted by (u, v), the degree of vertex v is denoted by
deg(v), and the minimum degree of the vertices is denoted by & or §(G). A graph onn
vertices is called complete and denoted by K, if its vertices have degree n — 1. A graph
is called a k -regular graph if all its vertices have degree k. A subset of the vertices in a
graph is called independent set if no two vertices in this set are adjacent. A maximum
independent set is an independent set that is not a subset of any other independent set.
The cardinality of a maximum independent set in G is denoted by a(G). A subset of the
vertices in a graph is called a cligue if any two of its vertices are adjacent.

The graph H = (W, F) is called a subgraph of ¢ = (V(G),E(G)) if W c V(G)
and F € E(G). Let v be a vertex of G; we use G — v to denote the subgraph which is
obtained by deleting vertex v and edges attached to v from G. Likewise, if B € V(G),
then G — B is a subgraph of G obtained by deleting B from G. A graph is connected if
any two of its vertices are connected by a path. A component of G is a maximal connected
subgraph of G. The number of components of G is denoted by w(G).

Now, we use the notation 0,(G) = n — 2 to indicate that the graph G on n
vertices with the degree sum of any two nonadjacent vertices in G is equal ton — 2 and
G):={G:|V(G)| =n,0,(G) =n—2}.

An (2008, 2019) has defined the structure of graphs in G(n) = {G: |V (G)| = n,
0,(G) = n — 1} and proved that recognizing the Hamiltonian graph in G(n) is an easy
problem. In this article, we will define the structure of graphs in G(n) = {G: |V (G)| = n,
0,(G) =n— 2} and show for n > 3 is an odd number and for every G € G(n) that
a(G) = 2 and G is a disconnected graph. We also show for n > 4 is an even number that
2<a(G) < (n+2)/2andthat G is a disconnected graph if a(G) = 2. Otherwise, G is
a connected graph.

2. RESULTS

Letn>3and G € G(n) = {G:|V(G)| =n,0,(G) =n—2}. In G, a vertex of
degree n — 1 is called a total vertex, and the set of total vertices in G is denoted by T'(G).

For every G € G(n), we first note by 0,(G) =n — 2 that G # K,,.

Suppose that u and v are any two nonadjacent vertices in G. We denote the set of
vertices that are not adjacent to u by N,, and the set of vertices that are not adjacent to v
by N,,. Then Z: = V(G)\N, U N, is a set of vertices that are adjacent to both v and u, and
A:= N, n N, is a set of vertices that are not adjacent to v and u. Obviously, V(G) = Z U
N,UN,and T(G) < Z.
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Remark 1. Letn >3 and G € G(n). Then |Z]| = |A].
Proof.

For every u,v € V(G) and (u,v) € E(G), we have [IN(w)| =n—1—deg(u),
IN(v)| =n—1-deg(v), and deg(u) + deg(v) = 0,(G) = n — 2. By the inclusion-
exclusion  principle, |Z| = |V(G)| —|N, U N,| = |V(G)| — (|IN,| + IN,| — |A]) =
n—[n—-1—-deg(u) +n—1—deg(v) — |A|] = |A| and therefore |Z]| = |A].

We are interested in two cases of the number of vertices of G.
2.1. The case where n is an odd number

Theorem 1. Let n>3 be an odd number and G € G(n) . Then G is a
disconnected graph.

Proof.
First, we prove that in G any two nonadjacent vertices have different degrees. (1)

Indeed, let u, v be two nonadjacent vertices in G and deg(u) = deg(v). Then,
by 0,(G) =n—2and deg(u) + deg(v) = n — 2, it follows that deg(u) = deg(v)
= (n — 2)/2, which is a contradiction with n is an odd number. Therefore, deg(u) #
deg(v).

Next, we will prove that V(G) = N, U N, and N, N N,, = Q. @)

Without loss of generality, we may assume that § = deg(u) < deg(v) =
n—2—46,where0 <6 <[(n—2)/2].Since A = N, N N, is a set of vertices that are
both nonadjacent to u and v, it follows that A = @. (If not, leta € A and by 0,(G) =
n—2, deg(u) +deg(v) =deg(u)+deg(a) =deg(a)+deg(v) =n—2. This
shows that deg(u) = deg(v) = deg(a) = (n — 2)/2, a contradiction with n being an
odd number.) By Remark 1 and A = @, we have Z = @ and therefore V(G) = N, UN,,
N, NN, = @.

In addition, by (1) and 0, (G) = n — 2, and since vertex v € N,, is not adjacent to
the vertices of N, in G, it follows that the vertices of N,, have degree § (similar to the
degree of vertex u) and that these vertices are adjacent in G. In other words, the vertices
of N, formaclique K5, in G. Also, the vertices of N,, have degree n — 2 — § (similar to
the degree of vertex V) and the vertices of N,, form a clique K,,_;_s in G. And by (2), it
follows that G is a disconnected graph and is denoted by G = Ks,.1 ® K,,_,_s, Where
0<8<[(n—2)/2].

Theorem 1 is proved.

Figure 1 illustrates disconnected graphs correspondingto § = 0,1,2 in G(7).
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Figure 1. Disconnected graphs in G(7)
2.2.  The case where n is an even number

Theorem 2. Let n > 4 be an even number, G € G(n), and S is an independent
setin G. Then

a) iIf |S| = 3, the vertices of S have degree (n —2)/2inG.

b) if G is a disconnected graph, G has exactly two components.

Proof.

a) Indeed, let x, y, z be any three nonadjacent vertices of S. Then, by 0,(G) = n — 2
and deg(x) + deg(y) = deg(x) + deg(z) = deg(y) +deg(z) =n — 2, itfollows
that deg(x) = deg(y) = deg(z) = (n — 2)/2. Moreover, because the vertices x, y, z

are chosen arbitrarily, we can say that the vertices of S have degree (n —2)/2inG.

b) Suppose that G has more than two components, and x, y, z are three arbitrary
vertices such that each vertex belongs to a component of G. Then, by Theorem 2a,
deg(x) = deg(y) = deg(z) = (n— 2)/2. This shows that each component in G has
at least 1 + (n — 2)/2 vertices and that the number of vertices in G isn = |[V(G)| =
3(1+ (n—2)/2) = 3n/2 > n, acontradiction. Therefore, G has only two components.

Theorem 3. Let n > 4 be an even number and G € G(n). Then
@0<|TG)| <6< (n—2)/2.

(b)2<a(G) < (n+2)/2.

(€ a(6)=n+2)/2 = |TG)|=m-2)/2.

(d) a(G) = n/2 = |T(G)| = 0.

Proof.

a) Clearly, 6§ < (n—2)/2. Indeed, because if 6 > (n—2)/2, thenn—-2=
0,(G) =226 >2(n—2)/2=n—2, which is a contradiction. Moreover, each total
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vertex must be adjacent to other vertices in G, so that the degree of each vertex is not less
than |T(G)|,i.e., 6§ = |T(G)|. Thus, 0 < |T(G)| <6 < (n—2)/2.

Recall that for n is an even number and n mod 4 # 0, then § = (n — 2)/2 is an
even number and the total vertex has degree n — 1, an odd number. Therefore, k = |T(G)|
must be an even number.

b) Let S be a maximum independent set in G, a(G) = |S].

First, it is clear that by 0,(G) = n — 2, G # K,,, and therefore a(G) = 2. Next,
we prove that a(G) < (n + 2)/2. Suppose otherwise, a(G) > (n+ 2)/2. By n > 4,
IS|=a(G) >(n+2)/2=>(4+2)/2=3. By Theorem 2a, the vertices in S have
degree (n — 2)/2. Moreover, each vertex of S must be adjacent to (n — 2)/2 vertices of
V(G)\S in G. But this cannot happen because the number of vertices of set V(G)\S is
[V(O\S|=n—|S|<n—(m+2)/2=(n—-2)/2. This contradiction shows that
a(G) < (n+2)/2.

c) Suppose that a(G) = (n + 2)/2 and S is a maximum independent set in G. By
n=>4,|S|=a(G)=n+2)/2=>4+2)/2=3,s0|S| =3, and by Proposition 3a,
the vertices of S have degree (n — 2)/2 in G. Moreover, |[V(G)\S|=n—(n+2)/2 =
(n — 2)/2 and each vertex of S must be adjacent to (n — 2)/2 vertices of V(G)\S in G
and by 0, (G) = n — 2, all the vertices of V(G)\S are total vertices; thus, we get T(G) =
V(G\S and |T(G)| = (n—2)/2.

Conversely, suppose that |T(G)| = (n — 2)/2. We will show that S: = V(G)\T(G)
is a maximum independent set in G. Obviously, each vertex of S must be adjacent to
(n—2)/2 = |T(G)] total vertices in G, and by 0,(G) = n — 2, the vertices in S have
degree § = (n — 2)/2 and are nonadjacent in G. Therefore, S is an independent set in G.
But |S| =|V(G)| - |T(G)|=n—(n—-2)/2=(n+2)/2, and by Theorem 3b, S is a
maximum independent setin G, a(G) = |[V(G)\T(G)| = (n + 2)/2.

d) Suppose that S is a maximum independent set of G and |S| = a(G) = n/2. We
prove that T(G) = @ and so G is a (n — 2)/2-regular graph.

First, forn = 4 it is easy to show by a(G) = 2 that G = K, ® K, is a 1-regular
disconnected graph. Now, we consider the case n > 6. Let X:=V(G)\S. Byn > 6,
|S| = |X| = n/2 = 3. By Theorem 2a, the vertices of S have degree § = (n — 2)/2, and
therefore the vertices of S must be adjacent to (n — 2)/2 vertices of X in G. Thus, for
each vertex s € S, there exists only one vertex x € X such that x and s are nonadjacent,
and x must be adjacent to some other vertices of S in G. (If not, S U {x} is an independent
set in G, a contradiction for S is a maximum independent set of G.) Moreover, by
deg(x) = (n—2)/2, there exists a vertex y € X that is not adjacent to vertex x in G.
This shows that X does not contain the total vertex and that G is a (n — 2)/2-regular
graph.

Theorem 3 is proved. O
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Theorem 4. Let n > 6 be an even number and G € G(n). Then
a) a(G) = 2 ifand only if G is a disconnected graph.

b) if 3<a(G) < (n+2)/2, G is a connected graph, and G contains k total
verticesand n — k vertices of degree § = (n — 2)/2,where 0 < k = |T(G)| < (n — 2)/2.

Proof.
Suppose that a(G) = 2, we will prove that G is a disconnected graph.

Without loss of generality, we can suppose that S = {u,v} is a maximum
independent set of G, deg(u) = 6, and deg(v) =n—2— 4. First, we have A = @
(because if A # @ and let a € A, then {u,v,a} is an independent set in G, which is a
contradiction with a(G) = 2). Since A = @ and by Remark 1, Z = @ and T = @, and so
we get V(G) = N, UN,, N, N N, = @. Next, by a(G) = 2, each pair of vertices of N,
must be adjacent in G. (If not, let x,y € N, and (x,y) € E(G), then {x,y,u} is an
independent set in G, which is a contradiction with a(G) = 2.) Therefore, the vertices of
N, formaclique Kgegvy+1 = Kn-1-5 in G. Similarly, each pair of vertices of N,, must be
adjacent in G, and these vertices form a clique Kjeg)+1 = Ks4+1 In G. In addition, by
0,(G) = n — 2, the vertices of N,, are not adjacent to the vertices of N,,. These results
show that G is a disconnected graphand G =K5,; ® K,,_1_5,0< 6 < (n — 2)/2.

Conversely, let G be a disconnected graph. We will show that a(G) = 2.

By Theorem 2b, graph G has two components. Let G = G, © G,, where G, and G,
are connected subgraphs of G. We will prove that G, and G, are complete graphs and so
a(G) = 2. Therefore, Theorem 4a is true.

Indeed, without loss of generality we may assume that x € V(G,), y € V(G,), and
deg(x) < deg(y). Since the vertices in G, are not adjacent to the vertices in G,, and by
0,(G) = n — 2, the vertices in G; must have the same degree as vertex x and the vertices
in G, must have the same degree as vertex y. Now we consider the following two cases:

deg(x) = deg(y) and deg(x) < deg(y).

For deg(x) = deg(y) and by deg(x) + deg(y) = n — 2, we have deg(x) =
deg(y) =(n—2)/2.Then |[V(G))|=(n—-2)/2+1=n/2 =|V(G,)|. It follows that
G, and G, are complete graphs K, ,, and so G = K, ,, ® K, /,. For deg(x) < deg(y)
and since 0, (G) = n — 2, each pair of vertices in G; must be adjacent. In other words, G;
is a complete graph Kge4(x)+1- Analogously, each pair of vertices in G, must be adjacent

and G, is a complete graph Kgeg(y)+1, therefore G = Kgeg(x)+1® Kaeg(yy+1- In both
cases above we get the result that G; and G, are complete graphs.

Note that Theorem 4a is also true for n = 4.
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b) Let S be a maximum independent set of G. First, since |S| = a(G) = 3 and by
Theorem 2a, all vertices of S have degree (n — 2)/2 in G. Moreover, by 0,(G) = n — 2,
it follows that each vertex of V(G)\S has degree either (n — 1) or (n —2)/2inG. In
other words, G contains k total vertices and (n — k) vertices of degree § = (n — 2)/2,
where 0 < k = |T(G)| £ (n — 2)/2 (by Theorem 3a).

Next, in order to show that G is a connected graph, we consider the following two
cases: T(G) = @ and T(G) = Q.

e ForT(G) # @. Clearly, G is a connected graph because G contains the total
vertex.

e ForT(G) = @.Then, G isan § —regular graph for § = (n — 2)/2.

Now, suppose otherwise — that G is a disconnected graph. Then, by Theorem 2b,
G = G, ® G,, where G; and G, are components of G. Without loss of generality, we may
assume that |V (G,)| < n/2 < |V(G,)|. However, the vertices in G, have degree § =
n=2)/2, so |V(G)|=28d+1=Mn—-2)/2+1=n/2. It follows that |V(G,)| =
|V (G,)| =n/2. Moreover, by 0,(G) =n—2, G; and G, must be a complete graph
Ks.q,and so G = K51 ® Ks,4. It follows that a(G) = 2, which is a contradiction with
the supposition a(G) = 3. Therefore, G is a connected graph. Theorem 4b is proved.

i f
4
n
n
I3

I T(G)|=1 |T(G)|=2 | T(G)|=3

Figure 2. Connected graphs for |T(G)| = 1,2,3 in G(8)

a(G) =3 a(G)=4

Figure 3. 3-regular graphs in G(8)
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Figure 2 illustrates connected graphs for § =3 and |T'(G)| = 1,2,3 in G(8),
respectively. Figure 3 illustrates 3-regular graphs with «(G) = 3 and a(G) = 4 in G(8).

Theorem 4 is proved.
3. CONCLUSION

For G(n) = {G:|V(G)| = n,0,(G) =n—2}and G € G(n), we have shown that
if n > 3 is an odd number, then G is a family of disconnected graphs K5, ® K,,_1_s,
6§=0,1,2,...,[(n—2)/2]. For n = 4 is an even number, there are two cases: If
a(G) = 2,then G is afamily of disconnected graphs Ks,1 ® K,,_1_s, 6 = 0,1,2,..., (n —
2)/2. 1f3 < a(G) < (n+ 2)/2, then G is a family of connected graphs that contains k
total vertices and n — k vertices of degree 6 = (n —2)/2, where 0 < k < (n—2)/2.
When k = 0, G is a § —regular graph.
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