THE STRUCTURE OF GRAPHS ON n VERTICES WITH THE DEGREE SUM OF ANY TWO NONADJACENT VERTICES EQUAL TO n - 2

Do Nhu An^{a*}

^aThe Faculty of Information Technology, Nha Trang University, Khanh Hoa, Vietnam ^{*}Corresponding author: Email: andn@ntu.edu.vn

Article history

Received: January 10th, 2021 Received in revised form (1st): May 19th, 2021 | Received in revised form (2nd): July 13th, 2021 Accepted: July 16th, 2021 Available online: October 4th, 2021

Abstract

Let G be an undirected simple graph on n vertices with the degree sum of any two nonadjacent vertices equal to n - 2 and let $\alpha(G)$ be the cardinality of a maximum independent set of G. We show, for $n \ge 3$ is an odd number then $\alpha(G) = 2$ and G is a disconnected graph; for $n \ge 4$ is an even number then $2 \le \alpha(G) \le (n + 2)/2$, where if $\alpha(G) = 2$ then G is a disconnected graph, otherwise G is a connected graph.

Keywords: Connected graph; Disconnected graph; Maximum independent set; Regular graph.

DOI: http://dx.doi.org/10.37569/DalatUniversity.11.4.830(2021)

Article type: (peer-reviewed) Full-length research article

Copyright © 2021 The author(s).

Licensing: This article is licensed under a CC BY-NC 4.0

1. INTRODUCTION

The concepts and symbols in this article are referenced from the Handbook of Combinatorics (Graham et al., 1995). Let G = (V(G), E(G)) be a simple undirected graph on n vertices, where V(G) is the vertex set and E(G) is the edge set of graph G. We use |V(G)| and |E(G)| to denote the number of vertices and edges of G. In G, the edge of two vertices u and v is denoted by (u, v), the degree of vertex v is denoted by deg(v), and the minimum degree of the vertices is denoted by δ or $\delta(G)$. A graph on n vertices is called *complete* and denoted by K_n if its vertices have degree n - 1. A graph is called a k-regular graph if all its vertices have degree k. A subset of the vertices in a graph is called *independent set* if no two vertices in this set are adjacent. A maximum independent set is an independent set in G is denoted by $\alpha(G)$. A subset of the vertices in a graph is called a *clique* if any two of its vertices are adjacent.

The graph H = (W, F) is called a *subgraph* of G = (V(G), E(G)) if $W \subseteq V(G)$ and $F \subseteq E(G)$. Let v be a vertex of G; we use G - v to denote the subgraph which is obtained by deleting vertex v and edges attached to v from G. Likewise, if $B \subseteq V(G)$, then G - B is a subgraph of G obtained by deleting B from G. A graph is *connected* if any two of its vertices are connected by a path. A *component* of G is a maximal connected subgraph of G. The number of components of G is denoted by $\omega(G)$.

Now, we use the notation $\sigma_2(G) = n - 2$ to indicate that the graph *G* on *n* vertices with the degree sum of any two nonadjacent vertices in *G* is equal to n - 2 and $G(n) := \{G: |V(G)| = n, \sigma_2(G) = n - 2\}.$

An (2008, 2019) has defined the structure of graphs in $G(n) = \{G: |V(G)| = n, \sigma_2(G) = n - 1\}$ and proved that recognizing the Hamiltonian graph in G(n) is an easy problem. In this article, we will define the structure of graphs in $G(n) = \{G: |V(G)| = n, \sigma_2(G) = n - 2\}$ and show for $n \ge 3$ is an odd number and for every $G \in G(n)$ that $\alpha(G) = 2$ and *G* is a disconnected graph. We also show for $n \ge 4$ is an even number that $2 \le \alpha(G) \le (n+2)/2$ and that *G* is a disconnected graph if $\alpha(G) = 2$. Otherwise, *G* is a connected graph.

2. **RESULTS**

Let $n \ge 3$ and $G \in G(n) = \{G: |V(G)| = n, \sigma_2(G) = n - 2\}$. In *G*, a vertex of degree n - 1 is called a *total vertex*, and the set of total vertices in *G* is denoted by T(G).

For every $G \in G(n)$, we first note by $\sigma_2(G) = n - 2$ that $G \neq K_n$.

Suppose that *u* and *v* are any two nonadjacent vertices in *G*. We denote the set of vertices that are not adjacent to *u* by N_u and the set of vertices that are not adjacent to *v* by N_v . Then $Z := V(G) \setminus N_u \cup N_v$ is a set of vertices that are adjacent to both *v* and *u*, and $A := N_u \cap N_v$ is a set of vertices that are not adjacent to *v* and *u*. Obviously, $V(G) = Z \cup N_u \cup N_v$ and $T(G) \subseteq Z$.

Remark 1. Let $n \ge 3$ and $G \in G(n)$. Then |Z| = |A|.

Proof.

For every $u, v \in V(G)$ and $(u, v) \notin E(G)$, we have |N(u)| = n - 1 - deg(u), |N(v)| = n - 1 - deg(v), and $deg(u) + deg(v) = \sigma_2(G) = n - 2$. By the inclusion-exclusion principle, $|Z| = |V(G)| - |N_u \cup N_v| = |V(G)| - (|N_u| + |N_v| - |A|) = n - [n - 1 - deg(u) + n - 1 - deg(v) - |A|] = |A|$ and therefore |Z| = |A|.

We are interested in two cases of the number of vertices of G.

2.1. The case where *n* is an odd number

Theorem 1. Let $n \ge 3$ be an odd number and $G \in G(n)$. Then G is a disconnected graph.

Proof.

First, we prove that in G any two nonadjacent vertices have different degrees. (1)

Indeed, let u, v be two nonadjacent vertices in G and deg(u) = deg(v). Then, by $\sigma_2(G) = n - 2$ and deg(u) + deg(v) = n - 2, it follows that deg(u) = deg(v)= (n - 2)/2, which is a contradiction with n is an odd number. Therefore, $deg(u) \neq deg(v)$.

Next, we will prove that
$$V(G) = N_u \cup N_v$$
 and $N_u \cap N_v = \emptyset$. (2)

Without loss of generality, we may assume that $\delta = deg(u) < deg(v) = n - 2 - \delta$, where $0 \le \delta \le [(n - 2)/2]$. Since $A = N_u \cap N_v$ is a set of vertices that are both nonadjacent to u and v, it follows that $A = \emptyset$. (If not, let $a \in A$ and by $\sigma_2(G) = n - 2$, deg(u) + deg(v) = deg(u) + deg(a) = deg(a) + deg(v) = n - 2. This shows that deg(u) = deg(v) = deg(a) = (n - 2)/2, a contradiction with n being an odd number.) By Remark 1 and $A = \emptyset$, we have $Z = \emptyset$ and therefore $V(G) = N_u \cup N_v$, $N_u \cap N_v = \emptyset$.

In addition, by (1) and $\sigma_2(G) = n - 2$, and since vertex $v \in N_u$ is not adjacent to the vertices of N_v in G, it follows that the vertices of N_v have degree δ (similar to the degree of vertex u) and that these vertices are adjacent in G. In other words, the vertices of N_v form a clique $K_{\delta+1}$ in G. Also, the vertices of N_u have degree $n - 2 - \delta$ (similar to the degree of vertex v) and the vertices of N_u form a clique $K_{n-1-\delta}$ in G. And by (2), it follows that G is a disconnected graph and is denoted by $G = K_{\delta+1} \oplus K_{n-1-\delta}$, where $0 \le \delta \le [(n-2)/2]$.

Theorem 1 is proved.

Figure 1 illustrates disconnected graphs corresponding to $\delta = 0, 1, 2$ in G(7).

Figure 1. Disconnected graphs in G(7)

2.2. The case where *n* is an even number

Theorem 2. Let $n \ge 4$ be an even number, $G \in G(n)$, and S is an independent set in G. Then

a) if $|S| \ge 3$, the vertices of S have degree (n-2)/2 in G.

b) if G is a disconnected graph, G has exactly two components.

Proof.

a) Indeed, let x, y, z be any three nonadjacent vertices of S. Then, by $\sigma_2(G) = n - 2$ and deg(x) + deg(y) = deg(x) + deg(z) = deg(y) + deg(z) = n - 2, it follows that deg(x) = deg(y) = deg(z) = (n - 2)/2. Moreover, because the vertices x, y, z are chosen arbitrarily, we can say that the vertices of S have degree (n - 2)/2 in G.

b) Suppose that *G* has more than two components, and *x*, *y*, *z* are three arbitrary vertices such that each vertex belongs to a component of *G*. Then, by Theorem 2a, deg(x) = deg(y) = deg(z) = (n-2)/2. This shows that each component in *G* has at least 1 + (n-2)/2 vertices and that the number of vertices in *G* is $n = |V(G)| \ge 3(1 + (n-2)/2) = 3n/2 > n$, a contradiction. Therefore, *G* has only two components.

Theorem 3. Let $n \ge 4$ be an even number and $G \in G(n)$. Then

(a) $0 \le |T(G)| \le \delta \le (n-2)/2$. (b) $2 \le \alpha(G) \le (n+2)/2$. (c) $\alpha(G) = (n+2)/2 \Leftrightarrow |T(G)| = (n-2)/2$. (d) $\alpha(G) = n/2 \Rightarrow |T(G)| = 0$.

Proof.

a) Clearly, $\delta \le (n-2)/2$. Indeed, because if $\delta > (n-2)/2$, then $n-2 = \sigma_2(G) \ge 2\delta > 2(n-2)/2 = n-2$, which is a contradiction. Moreover, each total

Do Nhu An

vertex must be adjacent to other vertices in *G*, so that the degree of each vertex is not less than |T(G)|, i.e., $\delta \ge |T(G)|$. Thus, $0 \le |T(G)| \le \delta \le (n-2)/2$.

Recall that for *n* is an even number and $n \mod 4 \neq 0$, then $\delta = (n-2)/2$ is an even number and the total vertex has degree n-1, an odd number. Therefore, k = |T(G)| must be an even number.

b) Let *S* be a maximum independent set in *G*, $\alpha(G) = |S|$.

First, it is clear that by $\sigma_2(G) = n - 2$, $G \neq K_n$, and therefore $\alpha(G) \ge 2$. Next, we prove that $\alpha(G) \le (n+2)/2$. Suppose otherwise, $\alpha(G) > (n+2)/2$. By $n \ge 4$, $|S| = \alpha(G) > (n+2)/2 \ge (4+2)/2 = 3$. By Theorem 2a, the vertices in *S* have degree (n-2)/2. Moreover, each vertex of *S* must be adjacent to (n-2)/2 vertices of $V(G)\setminus S$ in *G*. But this cannot happen because the number of vertices of set $V(G)\setminus S$ is $|V(G)\setminus S| = n - |S| < n - (n+2)/2 = (n-2)/2$. This contradiction shows that $\alpha(G) \le (n+2)/2$.

c) Suppose that $\alpha(G) = (n+2)/2$ and *S* is a maximum independent set in *G*. By $n \ge 4$, $|S| = \alpha(G) = (n+2)/2 \ge (4+2)/2 = 3$, so $|S| \ge 3$, and by Proposition 3a, the vertices of *S* have degree (n-2)/2 in *G*. Moreover, $|V(G)\setminus S| = n - (n+2)/2 = (n-2)/2$ and each vertex of *S* must be adjacent to (n-2)/2 vertices of $V(G)\setminus S$ in *G* and by $\sigma_2(G) = n - 2$, all the vertices of $V(G)\setminus S$ are total vertices; thus, we get $T(G) = V(G)\setminus S$ and |T(G)| = (n-2)/2.

Conversely, suppose that |T(G)| = (n-2)/2. We will show that $S := V(G) \setminus T(G)$ is a maximum independent set in *G*. Obviously, each vertex of *S* must be adjacent to (n-2)/2 = |T(G)| total vertices in *G*, and by $\sigma_2(G) = n-2$, the vertices in *S* have degree $\delta = (n-2)/2$ and are nonadjacent in *G*. Therefore, *S* is an independent set in *G*. But |S| = |V(G)| - |T(G)| = n - (n-2)/2 = (n+2)/2, and by Theorem 3b, *S* is a maximum independent set in *G*, $\alpha(G) = |V(G) \setminus T(G)| = (n+2)/2$.

d) Suppose that *S* is a maximum independent set of *G* and $|S| = \alpha(G) = n/2$. We prove that $T(G) = \emptyset$ and so *G* is a (n - 2)/2-regular graph.

First, for n = 4 it is easy to show by $\alpha(G) = 2$ that $G = K_2 \oplus K_2$ is a 1-regular disconnected graph. Now, we consider the case $n \ge 6$. Let $X := V(G) \setminus S$. By $n \ge 6$, $|S| = |X| = n/2 \ge 3$. By Theorem 2a, the vertices of *S* have degree $\delta = (n - 2)/2$, and therefore the vertices of *S* must be adjacent to (n - 2)/2 vertices of *X* in *G*. Thus, for each vertex $s \in S$, there exists only one vertex $x \in X$ such that *x* and *s* are nonadjacent, and *x* must be adjacent to some other vertices of *S* in *G*. (If not, $S \cup \{x\}$ is an independent set in *G*, a contradiction for *S* is a maximum independent set of *G*.) Moreover, by deg(x) = (n - 2)/2, there exists a vertex $y \in X$ that is not adjacent to vertex x in *G*. This shows that *X* does not contain the total vertex and that *G* is a (n - 2)/2-regular graph.

Theorem 3 is proved.

Theorem 4. Let $n \ge 6$ be an even number and $G \in G(n)$. Then

a) $\alpha(G) = 2$ if and only if G is a disconnected graph.

b) if $3 \le \alpha(G) \le (n+2)/2$, *G* is a connected graph, and *G* contains *k* total vertices and n - k vertices of degree $\delta = (n-2)/2$, where $0 \le k = |T(G)| \le (n-2)/2$.

Proof.

Suppose that $\alpha(G) = 2$, we will prove that G is a disconnected graph.

Without loss of generality, we can suppose that $S = \{u, v\}$ is a maximum independent set of G, $deg(u) = \delta$, and $deg(v) = n - 2 - \delta$. First, we have $A = \emptyset$ (because if $A \neq \emptyset$ and let $a \in A$, then $\{u, v, a\}$ is an independent set in G, which is a contradiction with $\alpha(G) = 2$). Since $A = \emptyset$ and by Remark 1, $Z = \emptyset$ and $T = \emptyset$, and so we get $V(G) = N_u \cup N_v$, $N_u \cap N_v = \emptyset$. Next, by $\alpha(G) = 2$, each pair of vertices of N_u must be adjacent in G. (If not, let $x, y \in N_u$ and $(x, y) \notin E(G)$, then $\{x, y, u\}$ is an independent set in G, which is a contradiction with $\alpha(G) = 2$.) Therefore, the vertices of N_u form a clique $K_{deg(v)+1} = K_{n-1-\delta}$ in G. Similarly, each pair of vertices of N_v must be adjacent in G, and these vertices form a clique $K_{deg(u)+1} = K_{\delta+1}$ in G. In addition, by $\sigma_2(G) = n - 2$, the vertices of N_v are not adjacent to the vertices of N_u . These results show that G is a disconnected graph and $G = K_{\delta+1} \oplus K_{n-1-\delta}$, $0 \le \delta \le (n-2)/2$.

Conversely, let *G* be a disconnected graph. We will show that $\alpha(G) = 2$.

By Theorem 2b, graph *G* has two components. Let $G = G_1 \oplus G_2$, where G_1 and G_2 are connected subgraphs of *G*. We will prove that G_1 and G_2 are complete graphs and so $\alpha(G) = 2$. Therefore, Theorem 4a is true.

Indeed, without loss of generality we may assume that $x \in V(G_1)$, $y \in V(G_2)$, and $deg(x) \leq deg(y)$. Since the vertices in G_1 are not adjacent to the vertices in G_2 , and by $\sigma_2(G) = n - 2$, the vertices in G_1 must have the same degree as vertex x and the vertices in G_2 must have the same degree as vertex y. Now we consider the following two cases: deg(x) = deg(y) and deg(x) < deg(y).

For deg(x) = deg(y) and by deg(x) + deg(y) = n - 2, we have deg(x) = deg(y) = (n-2)/2. Then $|V(G_1)| = (n-2)/2 + 1 = n/2 = |V(G_2)|$. It follows that G_1 and G_2 are complete graphs $K_{n/2}$ and so $G = K_{n/2} \oplus K_{n/2}$. For deg(x) < deg(y) and since $\sigma_2(G) = n - 2$, each pair of vertices in G_1 must be adjacent. In other words, G_1 is a complete graph $K_{deg(x)+1}$. Analogously, each pair of vertices in G_2 must be adjacent and G_2 is a complete graph $K_{deg(y)+1}$, therefore $G = K_{deg(x)+1} \oplus K_{deg(y)+1}$. In both cases above we get the result that G_1 and G_2 are complete graphs.

Note that Theorem 4a is also true for n = 4.

b) Let *S* be a maximum independent set of *G*. First, since $|S| = \alpha(G) \ge 3$ and by Theorem 2a, all vertices of *S* have degree (n-2)/2 in *G*. Moreover, by $\sigma_2(G) = n-2$, it follows that each vertex of $V(G) \setminus S$ has degree either (n-1) or (n-2)/2 in *G*. In other words, *G* contains *k* total vertices and (n-k) vertices of degree $\delta = (n-2)/2$, where $0 \le k = |T(G)| \le (n-2)/2$ (by Theorem 3a).

Next, in order to show that *G* is a connected graph, we consider the following two cases: $T(G) \neq \emptyset$ and $T(G) = \emptyset$.

- For $T(G) \neq \emptyset$. Clearly, G is a connected graph because G contains the total vertex.
- For $T(G) = \emptyset$. Then, G is an δ –regular graph for $\delta = (n 2)/2$.

Now, suppose otherwise – that *G* is a disconnected graph. Then, by Theorem 2b, $G = G_1 \oplus G_2$, where G_1 and G_2 are components of *G*. Without loss of generality, we may assume that $|V(G_1)| \le n/2 \le |V(G_2)|$. However, the vertices in G_1 have degree $\delta = (n-2)/2$, so $|V(G_1)| \ge \delta + 1 = (n-2)/2 + 1 = n/2$. It follows that $|V(G_1)| = |V(G_2)| = n/2$. Moreover, by $\sigma_2(G) = n - 2$, G_1 and G_2 must be a complete graph $K_{\delta+1}$, and so $G = K_{\delta+1} \oplus K_{\delta+1}$. It follows that $\alpha(G) = 2$, which is a contradiction with the supposition $\alpha(G) \ge 3$. Therefore, *G* is a connected graph. Theorem 4b is proved.

Figure 2. Connected graphs for |T(G)| = 1, 2, 3 in G(8)

Figure 3. 3-regular graphs in G(8)

Figure 2 illustrates connected graphs for $\delta = 3$ and |T(G)| = 1,2,3 in G(8), respectively. Figure 3 illustrates 3-regular graphs with $\alpha(G) = 3$ and $\alpha(G) = 4$ in G(8).

Theorem 4 is proved.

3. CONCLUSION

For $G(n) = \{G: |V(G)| = n, \sigma_2(G) = n - 2\}$ and $G \in G(n)$, we have shown that if $n \ge 3$ is an odd number, then *G* is a family of disconnected graphs $K_{\delta+1} \oplus K_{n-1-\delta}$, $\delta = 0, 1, 2, \dots, [(n-2)/2]$. For $n \ge 4$ is an even number, there are two cases: If $\alpha(G) = 2$, then *G* is a family of disconnected graphs $K_{\delta+1} \oplus K_{n-1-\delta}$, $\delta = 0, 1, 2, \dots, (n - 2)/2$. If $3 \le \alpha(G) \le (n + 2)/2$, then *G* is a family of connected graphs that contains *k* total vertices and n - k vertices of degree $\delta = (n - 2)/2$, where $0 \le k \le (n - 2)/2$. When k = 0, *G* is a δ -regular graph.

REFERENCES

- An, D. N. (2008). Some problems about Hamiltonian cycle in special graphs. The 2nd International Conference on Theories and Applications of Computer Science (ICTACS'09) - Journal of Science and Technology, Vietnam Academy of Science and Technology, 6(5A-Special issue), 57-66.
- An, D. N. (2019). Recognizing the Hamiltonian graph on n vertices with $\sigma_2(G) = n 1$ is an easy problem. *International Journal of Advanced Research in Computer Science*, 10(2), 42-45.
- Graham, R. L., Grötschel, M., & Lovász, L. (1995). *Handbook of combinatorics* (1st Ed.). North Holland.