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Abstract 

Let 𝐺 be an undirected simple graph on 𝑛 vertices with the degree sum of any two non-

adjacent vertices equal to 𝑛 − 2 and let 𝛼(𝐺) be the cardinality of a maximum independent 

set of 𝐺 . We show, for 𝑛 ≥ 3 is an odd number then 𝛼(𝐺) = 2 and 𝐺  is a disconnected 

graph; for 𝑛 ≥ 4 is an even number then 2 ≤ 𝛼(𝐺) ≤ (𝑛 + 2)/2, where if 𝛼(𝐺) = 2 then 𝐺 

is a disconnected graph, otherwise 𝐺 is a connected graph. 
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1.  INTRODUCTION 

The concepts and symbols in this article are referenced from the Handbook of 

Combinatorics (Graham et al., 1995). Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺))  be a simple undirected 

graph on 𝑛 vertices, where 𝑉(𝐺) is the vertex set and 𝐸(𝐺) is the edge set of graph 𝐺. 

We use |𝑉(𝐺)| and |𝐸(𝐺)| to denote the number of vertices and edges of 𝐺. In 𝐺, the 

edge of two vertices 𝑢 and 𝑣 is denoted by (𝑢, 𝑣), the degree of vertex 𝑣 is denoted by 

𝑑𝑒𝑔( 𝑣), and the minimum degree of the vertices is denoted by 𝛿 or 𝛿(𝐺). A graph on 𝑛 

vertices is called complete and denoted by 𝐾𝑛 if its vertices have degree 𝑛 − 1. A graph 

is called a 𝑘 -regular graph if all its vertices have degree 𝑘. A subset of the vertices in a 

graph is called independent set if no two vertices in this set are adjacent. A maximum 

independent set is an independent set that is not a subset of any other independent set. 

The cardinality of a maximum independent set in 𝐺 is denoted by 𝛼(𝐺). A subset of the 

vertices in a graph is called a clique if any two of its vertices are adjacent. 

The graph 𝐻 = (𝑊, 𝐹) is called a subgraph of 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) if 𝑊 ⊆ 𝑉(𝐺) 

and 𝐹 ⊆ 𝐸(𝐺). Let 𝑣 be a vertex of 𝐺; we use 𝐺 − 𝑣 to denote the subgraph which is 

obtained by deleting vertex 𝑣 and edges attached to 𝑣 from 𝐺. Likewise, if 𝐵 ⊆ 𝑉(𝐺), 

then 𝐺 − 𝐵 is a subgraph of 𝐺 obtained by deleting 𝐵 from 𝐺. A graph is connected if 

any two of its vertices are connected by a path. A component of 𝐺 is a maximal connected 

subgraph of 𝐺. The number of components of 𝐺 is denoted by 𝜔(𝐺). 

Now, we use the notation 𝜎2(𝐺) = 𝑛 − 2  to indicate that the graph 𝐺  on 𝑛 

vertices with the degree sum of any two nonadjacent vertices in 𝐺 is equal to 𝑛 − 2 and 

𝐺(𝑛): = {𝐺: |𝑉(𝐺)| = 𝑛, 𝜎2(𝐺) = 𝑛 − 2}. 

An (2008, 2019) has defined the structure of graphs in 𝐺(𝑛) = {𝐺: |𝑉(𝐺)| = 𝑛,  
𝜎2(𝐺) = 𝑛 − 1} and proved that recognizing the Hamiltonian graph in 𝐺(𝑛) is an easy 

problem. In this article, we will define the structure of graphs in 𝐺(𝑛) = {𝐺: |𝑉(𝐺)| = 𝑛, 
𝜎2(𝐺) = 𝑛 − 2}  and show for 𝑛 ≥ 3  is an odd number and for every 𝐺 ∈ 𝐺(𝑛)  that 

𝛼(𝐺) = 2 and 𝐺 is a disconnected graph. We also show for 𝑛 ≥ 4 is an even number that 

2 ≤ 𝛼(𝐺) ≤ (𝑛 + 2)/2 and that 𝐺 is a disconnected graph if 𝛼(𝐺) = 2. Otherwise, 𝐺 is 

a connected graph. 

2.  RESULTS 

Let 𝑛 ≥ 3 and 𝐺 ∈ 𝐺(𝑛) = {𝐺: |𝑉(𝐺)| = 𝑛, 𝜎2(𝐺) = 𝑛 − 2}. In 𝐺 , a vertex of 

degree 𝑛 − 1 is called a total vertex, and the set of total vertices in 𝐺 is denoted by 𝑇(𝐺). 

For every 𝐺 ∈ 𝐺(𝑛), we first note by 𝜎2(𝐺) = 𝑛 − 2 that 𝐺 ≠ 𝐾𝑛. 

Suppose that 𝑢 and 𝑣 are any two nonadjacent vertices in 𝐺. We denote the set of 

vertices that are not adjacent to 𝑢 by 𝑁𝑢 and the set of vertices that are not adjacent to 𝑣 

by 𝑁𝑣. Then 𝑍: = 𝑉(𝐺)\𝑁𝑢 ∪ 𝑁𝑣 is a set of vertices that are adjacent to both 𝑣 and 𝑢, and 

𝐴: = 𝑁𝑢 ∩ 𝑁𝑣 is a set of vertices that are not adjacent to 𝑣 and 𝑢. Obviously, 𝑉(𝐺) = 𝑍 ∪
𝑁𝑢 ∪ 𝑁𝑣 and 𝑇(𝐺) ⊆ 𝑍. 
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Remark 1. Let 𝑛 ≥ 3 and 𝐺 ∈ 𝐺(𝑛). Then |𝑍| = |𝐴|. 

Proof.  

For every 𝑢, 𝑣 ∈ 𝑉(𝐺) and (𝑢, 𝑣) ∉ 𝐸(𝐺), we have |𝑁(𝑢)| = 𝑛 − 1 − 𝑑𝑒𝑔( 𝑢), 

|𝑁(𝑣)| = 𝑛 − 1 − 𝑑𝑒𝑔( 𝑣), and 𝑑𝑒𝑔( 𝑢) + deg(𝑣) = 𝜎2(𝐺) = 𝑛 − 2. By the inclusion-

exclusion principle, |𝑍| = |𝑉(𝐺)| − |𝑁𝑢 ∪ 𝑁𝑣| = |𝑉(𝐺)| − (|𝑁𝑢| + |𝑁𝑣| − |𝐴|) = 
𝑛 − [𝑛 − 1 − 𝑑𝑒𝑔( 𝑢) +𝑛 − 1 − 𝑑𝑒𝑔( 𝑣) − |𝐴|] = |𝐴| and therefore |𝑍| = |𝐴|. 

We are interested in two cases of the number of vertices of 𝐺. 

2.1. The case where 𝒏 is an odd number 

Theorem 1. Let 𝑛 ≥ 3  be an odd number and 𝐺 ∈ 𝐺(𝑛) . Then 𝐺  is a 

disconnected graph. 

Proof.  

First, we prove that in 𝐺 any two nonadjacent vertices have different degrees.   (1) 

Indeed, let 𝑢, 𝑣 be two nonadjacent vertices in 𝐺 and 𝑑𝑒𝑔( 𝑢) = 𝑑𝑒𝑔( 𝑣). Then, 

by 𝜎2(𝐺) = 𝑛 − 2 and 𝑑𝑒𝑔( 𝑢) + 𝑑𝑒𝑔( 𝑣) = 𝑛 − 2, it follows that 𝑑𝑒𝑔( 𝑢) = 𝑑𝑒𝑔( 𝑣) 
= (𝑛 − 2)/2, which is a contradiction with 𝑛 is an odd number. Therefore, 𝑑𝑒𝑔( 𝑢) ≠
𝑑𝑒𝑔( 𝑣). 

Next, we will prove that 𝑉(𝐺) = 𝑁𝑢 ∪ 𝑁𝑣 and 𝑁𝑢 ∩ 𝑁𝑣 = ∅.       (2) 

Without loss of generality, we may assume that 𝛿 = 𝑑𝑒𝑔( 𝑢) < 𝑑𝑒𝑔( 𝑣) = 
𝑛 − 2 − 𝛿, where 0 ≤ 𝛿 ≤ [(𝑛 − 2)/2]. Since 𝐴 = 𝑁𝑢 ∩ 𝑁𝑣 is a set of vertices that are 

both nonadjacent to  and , it follows that 𝐴 = ∅. (If not, let 𝑎 ∈ 𝐴 and by 𝜎2(𝐺) =
𝑛 − 2 , 𝑑𝑒𝑔( 𝑢) + 𝑑𝑒𝑔( 𝑣) = 𝑑𝑒𝑔( 𝑢) + 𝑑𝑒𝑔( 𝑎) = 𝑑𝑒𝑔( 𝑎) + 𝑑𝑒𝑔( 𝑣) = 𝑛 − 2. This 

shows that 𝑑𝑒𝑔( 𝑢) = 𝑑𝑒𝑔( 𝑣) = 𝑑𝑒𝑔( 𝑎) = (𝑛 − 2)/2, a contradiction with 𝑛 being an 

odd number.) By Remark 1 and 𝐴 = ∅, we have 𝑍 = ∅ and therefore 𝑉(𝐺) = 𝑁𝑢 ∪ 𝑁𝑣, 

𝑁𝑢 ∩ 𝑁𝑣 = ∅. 

In addition, by (1) and 𝜎2(𝐺) = 𝑛 − 2, and since vertex 𝑣 ∈ 𝑁𝑢 is not adjacent to 

the vertices of 𝑁𝑣 in 𝐺, it follows that the vertices of 𝑁𝑣 have degree 𝛿 (similar to the 

degree of vertex 𝑢) and that these vertices are adjacent in 𝐺. In other words, the vertices 

of 𝑁𝑣 form a clique 𝐾𝛿+1 in 𝐺. Also, the vertices of 𝑁𝑢 have degree 𝑛 − 2 − 𝛿 (similar to 

the degree of vertex ) and the vertices of 𝑁𝑢 form a clique 𝐾𝑛−1−𝛿 in 𝐺. And by (2), it 

follows that 𝐺 is a disconnected graph and is denoted by 𝐺 =  𝐾𝛿+1 𝐾𝑛−1−𝛿, where 

0 ≤ 𝛿 ≤ [(𝑛 − 2)/2]. 

Theorem 1 is proved. 

Figure 1 illustrates disconnected graphs corresponding to 𝛿 = 0, 1, 2 in 𝐺(7). 

u v

v
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Figure 1. Disconnected graphs in 𝑮(𝟕) 

2.2.  The case where 𝒏 is an even number 

Theorem 2. Let 𝑛 ≥ 4 be an even number, 𝐺 ∈ 𝐺(𝑛), and 𝑆 is an independent 

set in 𝐺. Then 

a) if |𝑆| ≥ 3, the vertices of 𝑆 have degree (𝑛 − 2)/2 in 𝐺. 

b) if 𝐺 is a disconnected graph, 𝐺 has exactly two components. 

Proof. 

a) Indeed, let 𝑥, 𝑦, 𝑧 be any three nonadjacent vertices of 𝑆. Then, by 𝜎2(𝐺) = 𝑛 − 2 

and 𝑑𝑒𝑔( 𝑥) + 𝑑𝑒𝑔( 𝑦) = 𝑑𝑒𝑔( 𝑥) + 𝑑𝑒𝑔( 𝑧) =  𝑑𝑒𝑔( 𝑦) + 𝑑𝑒𝑔( 𝑧) = 𝑛 − 2, it follows 

that 𝑑𝑒𝑔( 𝑥) = 𝑑𝑒𝑔( 𝑦) = 𝑑𝑒𝑔( 𝑧) = (𝑛 − 2)/2. Moreover, because the vertices 𝑥, 𝑦, 𝑧 

are chosen arbitrarily, we can say that the vertices of 𝑆 have degree (𝑛 − 2)/2 in 𝐺. 

b) Suppose that 𝐺 has more than two components, and 𝑥, 𝑦, 𝑧 are three arbitrary 

vertices such that each vertex belongs to a component of 𝐺 . Then, by Theorem 2a, 

𝑑𝑒𝑔( 𝑥) = 𝑑𝑒𝑔( 𝑦) = 𝑑𝑒𝑔( 𝑧) = (𝑛 − 2)/2. This shows that each component in 𝐺 has 

at least 1 + (𝑛 − 2)/2 vertices and that the number of vertices in 𝐺  is 𝑛 = |𝑉(𝐺)| ≥
3(1 + (𝑛 − 2)/2) = 3𝑛/2 > 𝑛, a contradiction. Therefore, 𝐺 has only two components. 

Theorem 3. Let 𝑛 ≥ 4 be an even number and 𝐺 ∈ 𝐺(𝑛). Then 

(a) 0 ≤ |𝑇(𝐺)| ≤ 𝛿 ≤ (𝑛 − 2)/2. 

(b) 2 ≤ 𝛼(𝐺) ≤ (𝑛 + 2)/2. 

(c) 𝛼(𝐺) = (𝑛 + 2)/2 ⇔ |𝑇(𝐺)| = (𝑛 − 2)/2. 

(d) 𝛼(𝐺) = 𝑛/2 ⇒ |𝑇(𝐺)| = 0. 

Proof. 

a) Clearly, 𝛿 ≤ (𝑛 − 2)/2 . Indeed, because if 𝛿 > (𝑛 − 2)/2 , then 𝑛 − 2 =
𝜎2(𝐺) ≥ 2𝛿 > 2(𝑛 − 2)/2 = 𝑛 − 2 , which is a contradiction. Moreover, each total 



Do Nhu An 

59 

vertex must be adjacent to other vertices in 𝐺, so that the degree of each vertex is not less 

than |𝑇(𝐺)|, i.e., 𝛿 ≥ |𝑇(𝐺)|. Thus, 0 ≤ |𝑇(𝐺)| ≤ 𝛿 ≤ (𝑛 − 2)/2. 

Recall that for 𝑛 is an even number and 𝑛 mod 4 ≠ 0, then 𝛿 = (𝑛 − 2)/2 is an 

even number and the total vertex has degree 𝑛 − 1, an odd number. Therefore, 𝑘 = |𝑇(𝐺)| 
must be an even number. 

b) Let 𝑆 be a maximum independent set in 𝐺, 𝛼(𝐺) = |𝑆|. 

First, it is clear that by 𝜎2(𝐺) = 𝑛 − 2, 𝐺 ≠ 𝐾𝑛, and therefore 𝛼(𝐺) ≥ 2. Next, 

we prove that 𝛼(𝐺) ≤ (𝑛 + 2)/2. Suppose otherwise, 𝛼(𝐺) > (𝑛 + 2)/2. By 𝑛 ≥ 4, 

|𝑆| = 𝛼(𝐺) > (𝑛 + 2)/2 ≥ (4 + 2)/2 = 3 . By Theorem 2a, the vertices in 𝑆  have 

degree (𝑛 − 2)/2. Moreover, each vertex of 𝑆 must be adjacent to (𝑛 − 2)/2 vertices of 

𝑉(𝐺)\𝑆 in 𝐺. But this cannot happen because the number of vertices of set 𝑉(𝐺)\𝑆 is 

|𝑉(𝐺)\𝑆| = 𝑛 − |𝑆| < 𝑛 − (𝑛 + 2)/2 = (𝑛 − 2)/2 . This contradiction shows that 

𝛼(𝐺) ≤ (𝑛 + 2)/2. 

c) Suppose that 𝛼(𝐺) = (𝑛 + 2)/2 and 𝑆 is a maximum independent set in 𝐺. By 

𝑛 ≥ 4,|𝑆| = 𝛼(𝐺) = (𝑛 + 2)/2 ≥ (4 + 2)/2 = 3, so |𝑆| ≥ 3, and by Proposition 3a, 

the vertices of 𝑆 have degree (𝑛 − 2)/2 in 𝐺. Moreover, |𝑉(𝐺)\𝑆| = 𝑛 − (𝑛 + 2)/2 =
(𝑛 − 2)/2 and each vertex of 𝑆 must be adjacent to (𝑛 − 2)/2 vertices of 𝑉(𝐺)\𝑆 in 𝐺 

and by 𝜎2(𝐺) = 𝑛 − 2, all the vertices of 𝑉(𝐺)\𝑆 are total vertices; thus, we get 𝑇(𝐺) =
𝑉(𝐺)\𝑆 and |𝑇(𝐺)| = (𝑛 − 2)/2. 

Conversely, suppose that |𝑇(𝐺)| = (𝑛 − 2)/2. We will show that 𝑆: = 𝑉(𝐺)\𝑇(𝐺) 

is a maximum independent set in 𝐺. Obviously, each vertex of 𝑆 must be adjacent to 

(𝑛 − 2)/2 = |𝑇(𝐺)| total vertices in 𝐺, and by 𝜎2(𝐺) = 𝑛 − 2, the vertices in 𝑆 have 

degree 𝛿 = (𝑛 − 2)/2 and are nonadjacent in 𝐺. Therefore, 𝑆 is an independent set in 𝐺. 

But |𝑆| = |𝑉(𝐺)| − |𝑇(𝐺)| = 𝑛 − (𝑛 − 2)/2 = (𝑛 + 2)/2, and by Theorem 3b, 𝑆 is a 

maximum independent set in 𝐺, 𝛼(𝐺) = |𝑉(𝐺)\𝑇(𝐺)| = (𝑛 + 2)/2. 

d) Suppose that 𝑆 is a maximum independent set of 𝐺 and |𝑆| = 𝛼(𝐺) = 𝑛/2. We 

prove that 𝑇(𝐺) = ∅ and so 𝐺 is a (𝑛 − 2)/2-regular graph. 

First, for 𝑛 = 4 it is easy to show by 𝛼(𝐺) = 2 that 𝐺 = 𝐾2 𝐾2 is a 1-regular 

disconnected graph. Now, we consider the case 𝑛 ≥ 6. Let 𝑋: = 𝑉(𝐺)\𝑆. By 𝑛 ≥ 6, 

|𝑆| = |𝑋| = 𝑛/2 ≥ 3. By Theorem 2a, the vertices of 𝑆 have degree 𝛿 = (𝑛 − 2)/2, and 

therefore the vertices of 𝑆 must be adjacent to (𝑛 − 2)/2 vertices of 𝑋 in 𝐺. Thus, for 

each vertex 𝑠 ∈ 𝑆, there exists only one vertex 𝑥 ∈ 𝑋 such that 𝑥 and 𝑠 are nonadjacent, 

and 𝑥 must be adjacent to some other vertices of 𝑆 in 𝐺. (If not, 𝑆 ∪ {𝑥} is an independent 

set in 𝐺 , a contradiction for 𝑆  is a maximum independent set of 𝐺 .) Moreover, by 

𝑑𝑒𝑔( 𝑥) = (𝑛 − 2)/2, there exists a vertex 𝑦 ∈ 𝑋 that is not adjacent to vertex 𝑥 in 𝐺. 

This shows that 𝑋 does not contain the total vertex and that 𝐺 is a (𝑛 − 2)/2-regular 

graph. 

Theorem 3 is proved.              ⁯ 
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Theorem 4. Let 𝑛 ≥ 6 be an even number and 𝐺 ∈ 𝐺(𝑛). Then 

a) 𝛼(𝐺) = 2 if and only if 𝐺 is a disconnected graph. 

b) if 3 ≤ 𝛼(𝐺) ≤ (𝑛 + 2)/2 , 𝐺  is a connected graph, and 𝐺  contains 𝑘  total 

vertices and 𝑛 − 𝑘 vertices of degree 𝛿 = (𝑛 − 2)/2, where 0 ≤ 𝑘 = |𝑇(𝐺)| ≤ (𝑛 − 2)/2. 

Proof. 

Suppose that 𝛼(𝐺) = 2, we will prove that 𝐺 is a disconnected graph. 

Without loss of generality, we can suppose that 𝑆 = {𝑢, 𝑣}  is a maximum 

independent set of 𝐺 , 𝑑𝑒𝑔( 𝑢) = 𝛿 , and 𝑑𝑒𝑔( 𝑣) = 𝑛 − 2 − 𝛿 . First, we have 𝐴 = ∅ 

(because if 𝐴 ≠ ∅ and let 𝑎 ∈ 𝐴, then {𝑢, 𝑣, 𝑎} is an independent set in 𝐺 , which is a 

contradiction with 𝛼(𝐺) = 2). Since 𝐴 = ∅ and by Remark 1, 𝑍 = ∅ and 𝑇 = ∅, and so 

we get 𝑉(𝐺) = 𝑁𝑢 ∪ 𝑁𝑣, 𝑁𝑢 ∩ 𝑁𝑣 = ∅. Next, by 𝛼(𝐺) = 2, each pair of vertices of 𝑁𝑢 

must be adjacent in 𝐺 . (If not, let 𝑥, 𝑦 ∈ 𝑁𝑢  and (𝑥, 𝑦) ∉ 𝐸(𝐺) , then {𝑥, 𝑦, 𝑢}  is an 

independent set in 𝐺, which is a contradiction with 𝛼(𝐺) = 2.) Therefore, the vertices of 

𝑁𝑢 form a clique 𝐾𝑑𝑒𝑔(𝑣)+1 = 𝐾𝑛−1−𝛿 in 𝐺. Similarly, each pair of vertices of 𝑁𝑣 must be 

adjacent in 𝐺, and these vertices form a clique 𝐾𝑑𝑒𝑔(𝑢)+1 = 𝐾𝛿+1 in 𝐺. In addition, by 

𝜎2(𝐺) = 𝑛 − 2, the vertices of 𝑁𝑣 are not adjacent to the vertices of 𝑁𝑢. These results 

show that 𝐺 is a disconnected graph and =G 𝐾𝛿+1  𝐾𝑛−1−𝛿, 0 ≤ 𝛿 ≤ (𝑛 − 2)/2. 

Conversely, let 𝐺 be a disconnected graph. We will show that 𝛼(𝐺) = 2. 

By Theorem 2b, graph 𝐺 has two components. Let 𝐺 = 𝐺1  𝐺2, where 𝐺1 and 𝐺2 

are connected subgraphs of 𝐺. We will prove that 𝐺1 and 𝐺2 are complete graphs and so 

𝛼(𝐺) = 2. Therefore, Theorem 4a is true. 

Indeed, without loss of generality we may assume that 𝑥 ∈ 𝑉(𝐺1), 𝑦 ∈ 𝑉(𝐺2), and 

𝑑𝑒𝑔( 𝑥) ≤ 𝑑𝑒𝑔( 𝑦). Since the vertices in 𝐺1 are not adjacent to the vertices in 𝐺2, and by 

𝜎2(𝐺) = 𝑛 − 2, the vertices in 𝐺1 must have the same degree as vertex 𝑥 and the vertices 

in 𝐺2 must have the same degree as vertex 𝑦. Now we consider the following two cases: 

𝑑𝑒𝑔( 𝑥) = 𝑑𝑒𝑔( 𝑦) and 𝑑𝑒𝑔( 𝑥) < 𝑑𝑒𝑔( 𝑦). 

For 𝑑𝑒𝑔( 𝑥) = 𝑑𝑒𝑔( 𝑦) and by 𝑑𝑒𝑔( 𝑥) + 𝑑𝑒𝑔( 𝑦) = 𝑛 − 2, we have 𝑑𝑒𝑔( 𝑥) =
𝑑𝑒𝑔( 𝑦) = (𝑛 − 2)/2. Then |𝑉(𝐺1)| = (𝑛 − 2)/2 + 1 = 𝑛/2 = |𝑉(𝐺2)|. It follows that 

𝐺1  and 𝐺2  are complete graphs 𝐾𝑛/2  and so 𝐺 = 𝐾𝑛/2 𝐾𝑛/2 . For 𝑑𝑒𝑔( 𝑥) < 𝑑𝑒𝑔( 𝑦) 

and since 𝜎2(𝐺) = 𝑛 − 2, each pair of vertices in 𝐺1 must be adjacent. In other words, 𝐺1 

is a complete graph 𝐾𝑑𝑒𝑔(𝑥)+1. Analogously, each pair of vertices in 𝐺2 must be adjacent 

and 𝐺2  is a complete graph 𝐾𝑑𝑒𝑔(𝑦)+1 , therefore 𝐺 = 𝐾𝑑𝑒𝑔(𝑥)+1 𝐾𝑑𝑒𝑔(𝑦)+1 . In both 

cases above we get the result that 𝐺1 and 𝐺2 are complete graphs. 

Note that Theorem 4a is also true for 𝑛 = 4. 
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b) Let 𝑆 be a maximum independent set of 𝐺. First, since |𝑆| = 𝛼(𝐺) ≥ 3 and by 

Theorem 2a, all vertices of 𝑆 have degree (𝑛 − 2)/2 in 𝐺. Moreover, by 𝜎2(𝐺) = 𝑛 − 2, 

it follows that each vertex of 𝑉(𝐺)\𝑆 has degree either (𝑛 − 1) or (𝑛 − 2)/2 in 𝐺. In 

other words, 𝐺 contains 𝑘 total vertices and (𝑛 − 𝑘) vertices of degree 𝛿 = (𝑛 − 2)/2, 

where 0 ≤ 𝑘 = |𝑇(𝐺)| ≤ (𝑛 − 2)/2 (by Theorem 3a). 

Next, in order to show that 𝐺 is a connected graph, we consider the following two 

cases: 𝑇(𝐺) ≠ ∅ and 𝑇(𝐺) = ∅. 

• For 𝑇(𝐺) ≠ ∅. Clearly, 𝐺 is a connected graph because 𝐺 contains the total 

vertex. 

• For 𝑇(𝐺) = ∅. Then, 𝐺 is an 𝛿 −regular graph for 𝛿 = (𝑛 − 2)/2. 

Now, suppose otherwise – that 𝐺 is a disconnected graph. Then, by Theorem 2b, 

𝐺 = 𝐺1  𝐺2, where 𝐺1 and 𝐺2 are components of 𝐺. Without loss of generality, we may 

assume that |𝑉(𝐺1)| ≤ 𝑛/2 ≤ |𝑉(𝐺2)|. However, the vertices in 𝐺1  have degree 𝛿 =
(𝑛 − 2)/2 , so |𝑉(𝐺1)| ≥ 𝛿 + 1 = (𝑛 − 2)/2 + 1 = 𝑛/2 . It follows that |𝑉(𝐺1)| =
|𝑉(𝐺2)| = 𝑛/2 . Moreover, by 𝜎2(𝐺) = 𝑛 − 2 , 𝐺1  and 𝐺2  must be a complete graph 

𝐾𝛿+1, and so 𝐺 = 𝐾𝛿+1  𝐾𝛿+1. It follows that 𝛼(𝐺) = 2, which is a contradiction with 

the supposition 𝛼(𝐺) ≥ 3. Therefore, 𝐺 is a connected graph. Theorem 4b is proved. 

 

Figure 2. Connected graphs for |𝑻(𝑮)| = 𝟏, 𝟐, 𝟑 in 𝑮(𝟖) 

Figure 3. 3-regular graphs in 𝑮(𝟖)
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Figure 2 illustrates connected graphs for 𝛿 = 3  and |𝑇(𝐺)| = 1,2,3  in 𝐺(8) , 

respectively. Figure 3 illustrates 3-regular graphs with 𝛼(𝐺) = 3 and 𝛼(𝐺) = 4 in 𝐺(8). 

Theorem 4 is proved. 

3. CONCLUSION 

For 𝐺(𝑛) = {𝐺: |𝑉(𝐺)| = 𝑛, 𝜎2(𝐺) = 𝑛 − 2} and 𝐺 ∈ 𝐺(𝑛), we have shown that 

if 𝑛 ≥ 3 is an odd number, then 𝐺 is a family of disconnected graphs 𝐾𝛿+1 𝐾𝑛−1−𝛿 , 

𝛿 = 0, 1, 2, . . . , [(𝑛 − 2)/2] . For 𝑛 ≥ 4  is an even number, there are two cases: If 

𝛼(𝐺) = 2, then 𝐺 is a family of disconnected graphs 𝐾𝛿+1  𝐾𝑛−1−𝛿, 𝛿 = 0,1,2, . . . , (𝑛 −
2)/2. If 3 ≤ 𝛼(𝐺) ≤ (𝑛 + 2)/2, then 𝐺 is a family of connected graphs that contains 𝑘 

total vertices and 𝑛 − 𝑘 vertices of degree 𝛿 = (𝑛 − 2)/2, where 0 ≤ 𝑘 ≤ (𝑛 − 2)/2. 

When 𝑘 = 0, 𝐺 is a 𝛿 −regular graph. 
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