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Abstract

Using double Parabola approximation, in this paper, after finding the wave function for the
ground state, we found an analytical relation for wetting phase transition and Antonov line
of two-component Bose-Einstein condensates. The Robin boundary condition was applied for
our system. Based on these results, we reobtained results for our system with constraint by
Dirichlet boundary condition.

Keywords: Antonov line; Bose-Einstein condensates; Double parabola approximation;
Ground state; Robin boundary condition; Wetting phase transition.

Article identifier: http://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/401
Article type: (peer-reviewed) Full-length research article
Copyright © 2018 The author(s).

Licensing: This article is licensed under a CC BY-NC-ND 4.0

61


http://tckh.dlu.edu.vn/index.php/tckhdhdl/article/view/401
http://creativecommons.org/licenses/by-nc-nd/4.0/

DALAT UNIVERSITY JOURNAL OF SCIENCE [NATURAL SCIENCES AND TECHNOLOGY]

_ DPUONG CHUYEN PHA DINH UOT ANTONOV
CUA NGUNG TU BOSE-EINSTEIN HAI THANH PHAN
VOI PIEU KIEN BIEN ROBIN

Nguyén Vin Thu®* Hoang Vin Quyét?

8Khoa Vdt Iy, Truong Dai hoc Sw pham Ha Ngi 2, Ha Ngi, Viét Nam
*Tac gia lién hé: Email: nvthu@live.com

Lich sir bai bao
Nhan ngay 14 thang 01 ndm 2018
Chinh sira ngay 09 thang 04 nam 2018 | Chap nhan dang ngay 25 thang 04 nam 2018

Tém tit

Sir dung gan diing Parabol kép, trong bdi bdo ndy, sau khi tim dwoc ham sdng cho trang thai
co ban, ching t6i tim dwoc biéu thirc gidi tich cho dwong chuyén pha wét Antonov cua hé
ngung tu Bose-Einstein hai thanh phan. Diéu kién bién diroc sir dung cho hé la dieu kién bién
Robin, trén co sé d6 chiing t6i ciing thu lai dioc két qud twong 1ing cho hé véi diéu kién bién
Dirichlet.

Tir khoa: Chuyén pha uét; Biéu kién bién Robin; Puong chuyén pha Antonov; Gan ding
parabol kép; Ngung tu Bose-Einstein; Trang thai co ban.
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1. INTRODUCTION

Wetting phase transition is the most important phenomenon in the field of study
on Bose-Einstein condensates (BECs), especially its applications in technology. This fact
was investigated for the first time by Indekeu and Schaeybroeck (2004). Then it has
opened up a new avenue for physicists in this scope. Based on this work, the wetting
phenomena have been widely studied. In Indekeu and Schaeybroeck (2015), wetting
phase transition is considered for an optical wall and second component wets this wall.
The authors also predicted relation for wetting line. After double parabola approximation
(DPA) was proposed by Indekeu, Lin, Nguyen, Schaeybroeck, and Tran (2015). Nguyen
(2016) proved thoroughly the relation for Antonov line. However, these studies only
concentrate on Dirichlet boundary condition (BC). However, in electronic technology,
several BCs are required in some given cases. For example, Robin BC is applied when
one uses capillary wave at the interface.

The main aim of this paper is considering effects from Robin BC to Antonov line
phase transition of BECs in semi-infinite space. To do this, we started from the GP
Hamiltonian in the bulk of a BECs without the external trapping potential (Pethick &
Smith, 2008).

. h?
H= | ——V? . +V (v,
j=l’zl//1[ ZmJ }/J (l//l I//Z)

in which Gross-Pitaevskii (GP) potential

g
Vy,w,)= Z|:_luj |W|2 +%|’//j |4:|+912 17 |2|l//2 |2: (2)

=12

(1)

where y;, mj, and 44 are the wave function, the atomic mass and the chemical potential

of each species j, respectively. The interaction constants are defined via s-wave scattering
length a;. between components j and j° by g, =2zh*(1/m, +1/m,)a; >0. In order to

make sure that the wetting phenomena occur, we only consider the case two components
are immiscible, i. e. g% >g,,0,,.

2. THE ANTONOV WETTING LINE PHASE TRANSITION

2.1. Ground state

We first find the wave function for the ground state. The system under
consideration is translational symmetry in the x - y direction and restricted by a wall at
z=0. To sake the simplicity, one introduces the dimensionless coordinate p =z/¢ with

& =h/2m;g;n,; being healing length and ny; is bulk density of component j. The
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chemical potential, in grand canonical ensemble, has the form u; =g;n,. The
Hamiltonian (1) and GP potential (2) are reduced to

H

#zﬂiz_ $,0°4,; +Vep, ©)
VGP = £ (_¢12 +%} + K¢12¢22' (4)

where K=g,,//9,,9,,.6, =v, /~/no,- and P, =g;n;; /2 is pressure, which takes one and
the same value in both condensates at two-phase coexistence. The equilibrium values of
the order parameters ¢, minimize the total Hamiltonian given in equation (3) and (4).

That allows us to derive immediately the time-independent GP equations
_ai¢j _¢j + ¢13 + K¢J¢]2 =0. (5)

In order to get the analytical solution for these equations, we employ the DPA. One
assumes that component 1 (2) occupies the region p>1 (o <I). Here L denotes position

of the interface. Expanding the order parameters about bulk condensate 1, (¢,4,) =(1,0)
for half-space p>1 and bulk condensate 2 (¢4,¢,)=(0,1) for the remaining half-space,
the GP potential (4) becomes DPA potential

Voea = a2(¢j -1)* +ﬂ2¢j2' -1/2, (6)

where a=+2,8=+K -1 The labels j and j° comply with the following important
convention, which we will henceforth maintain throughout this paper: (j,j)=(@2) if
p>1 and vice versa. Within DPA, equation (5) reduces to

~3%, +a’ (g, 1) =0,

7
_5262¢j'+ﬂ2¢j' =0. ( )

Here we denote &=¢,/¢&. In our previous work (Nguyen, Tran, & Pham, 2016),

we proved that the boundary condition (BC) is either Dirichlet or Robin. In this paper,
the first component is requested by Dirichlet BC and Robin BC for the second one

o,

#0)=0,4(=) =14 0) =42 4,() =0, (8)

p=0
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inwhich 2 is dimensionless constant. Solving (7), (8) and keeping in mind the continuity
of the wave functions and its first derivative at the interface one obtains

¢ =1-Ae", ¢, =Be """, (9a)
for p>1 and

8, =27, sinh(Bp), ¢, =1+ B, + [“ABZO{;(E} el (9b)
where

p P @ Dl (wh s £

- B+atanh(B)' * (a+B)ad+ &) —(a-B)ad-¢&)’

_acsch(Bl) B - E(B—-a)- Lai+E)e s
2+ peoth(B] 2 (a+ B)ad+EE —(a - p)ad-&)

2.2.  Wetting phase transition and Antonov line

The fundamental of physics for the wetting is Young’s law (de Genns, 1985), in
which the familiar energy is in balance

Yw1 = Ywaz T %1, C0SO, (10)

where y, is the surface energy of a phase of pure component j, y, is the interfacial

tension at the interface and @ is contact angle. At phase of complete wetting ¢ =0 thus
equation (10) reduced to

Ywi =Ywz2 T 712 (11)

We now calculate the interfacial tension. The grand potential of our system can
be written in dimensionless form as follows:

Q=2R&A[d (-’ — E°4,0%, +V), (12)

with A being the interface area. Replacing V in (12) by DPA potential (6) and combining
with the constant of motion, one leads to the excess grand potential per unit area, which
is called interfacial tension
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V1o = 2R [dp[2(0,4) + (2= DE(0,4,)°] (13)
0

Plugging equation (9) into (13) one easily derives an analytical relation for
interfacial tension; it is quite large and without insight. In complete wetting phase, it does
not depend on | and has the form

B Q- Radla P + 2apis Hat 2P p (14)
oy (a+ B)ah+&)

Now we define the surface tension (or wall tension) of pure phase j as the excess
energy per unit area (Indekeu & Schaeybroeck, 2015),

L L
Yapure = M| =P [ $dz + P& [z | (15)
0 0

Assuming & <1 one can check

_(2-A)eg’
yWZ,pure - (O!A"'c’:)z

FoSo: (16)

For the first component, as mentioned in Indekeu and Schaeybroeck (2015), we
can define wall tension, which is obtained by subtracting from the total grand potential Q
the grand potential of a half space p >0 filled with pure phase 1, both divided by A,

L © ¢4 ¢4 L
Y = liM {—2% I dz[; + 2 K¢f¢§j+ R& j dz}. (17)
Combining (15) and (17) we get

Ywi = Ywapure T Vw2, pure — 2Pl§1.|- K¢12¢22- (18)
0

At complete wetting phase, the last term on the right-hand side of equation (18)
tends to zero so in coexistence phase one gets

_a(2-12)
Ywi = (OM+1)2 R (& + &) (19)

Inserting (14), (16) and (19) into (11) one has an equation for Antonov line
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K—1=l{1+§“’1—(1+a/1)}. (20)

a

It is easy to see that if we set 1=0, equation (20) will be reduced to Antonov line
corresponding to Dirichlet BC in Nguyen (2016).

g [T T T T — T T T — T T T T T T 7T
o

[=]
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Figure 1. Antonov lines for Robin BC with 2=¢&/a (red line)

and Dirichlet BC (blue line)

=

Figure 1 shows the Antonov lines, in which the red and blue lines correspond to
Robin BC and Dirichlet BC, respectively. In this figure, we set 1 =&/« associating with

Robin BC. It is obvious that there is a significant effect from BC on the Antonov line,
especially in middle separation.

3. CONCLUSION

In the foregoing section, we presented the main results of our work. In scope of
DPA we study the two-component BEC in semi-infinity system with a wall. Our results
are in order:

e We found analytical solutions for the ground state with Robin boundary
conditions in all kinds of segregation;

e The interfacial tension was considered. In addition, the wall tension for each
component was also investigated:;

67



DALAT UNIVERSITY JOURNAL OF SCIENCE [NATURAL SCIENCES AND TECHNOLOGY]
e The relation for Antonov line of wetting phase transition was obtained.

The constant 4 corresponding to Robin BC is an interesting quantity, which plays
the role of extra-interpolation length and its value depends on the specific system.
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