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Abstract 

Using double Parabola approximation, in this paper, after finding the wave function for the 

ground state, we found an analytical relation for wetting phase transition and Antonov line 

of two-component Bose-Einstein condensates. The Robin boundary condition was applied for 

our system. Based on these results, we reobtained results for our system with constraint by 

Dirichlet boundary condition. 
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Tóm tắt 

Sử dụng gần đúng Parabol kép, trong bài báo này, sau khi tìm được hàm sóng cho trạng thái 

cơ bản, chúng tôi tìm được biểu thức giải tích cho đường chuyển pha ướt Antonov của hệ 

ngưng tụ Bose-Einstein hai thành phần. Điều kiện biên được sử dụng cho hệ là điều kiện biên 

Robin, trên cơ sở đó chúng tôi cũng thu lại được kết quả tương ứng cho hệ với điều kiện biên 

Dirichlet. 

Từ khóa: Chuyển pha ướt; Điều kiện biên Robin; Đường chuyển pha Antonov; Gần đúng 

parabol kép; Ngưng tụ Bose-Einstein; Trạng thái cơ bản. 
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1. INTRODUCTION 

Wetting phase transition is the most important phenomenon in the field of study 

on Bose-Einstein condensates (BECs), especially its applications in technology. This fact 

was investigated for the first time by Indekeu and Schaeybroeck (2004). Then it has 

opened up a new avenue for physicists in this scope. Based on this work, the wetting 

phenomena have been widely studied. In Indekeu and Schaeybroeck (2015), wetting 

phase transition is considered for an optical wall and second component wets this wall. 

The authors also predicted relation for wetting line. After double parabola approximation 

(DPA) was proposed by Indekeu, Lin, Nguyen, Schaeybroeck, and Tran (2015). Nguyen 

(2016) proved thoroughly the relation for Antonov line. However, these studies only 

concentrate on Dirichlet boundary condition (BC). However, in electronic technology, 

several BCs are required in some given cases. For example, Robin BC is applied when 

one uses capillary wave at the interface. 

The main aim of this paper is considering effects from Robin BC to Antonov line 

phase transition of BECs in semi-infinite space. To do this, we started from the GP 

Hamiltonian in the bulk of a BECs without the external trapping potential (Pethick & 

Smith, 2008). 
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where j , mj, and j are the wave function, the atomic mass and the chemical potential 

of each species j, respectively. The interaction constants are defined via s-wave scattering 

length 'jja  between components j and j’ by 2

' ' '2 (1/ 1/ ) 0.jj j j jjg m m a  h  In order to 

make sure that the wetting phenomena occur, we only consider the case two components 

are immiscible, i. e. 2

12 11 22.g g g   

2. THE ANTONOV WETTING LINE PHASE TRANSITION 

2.1. Ground state 

We first find the wave function for the ground state. The system under 

consideration is translational symmetry in the x - y direction and restricted by a wall at 

0.z   To sake the simplicity, one introduces the dimensionless coordinate 1/z   with 

0/ 2j j jj jm g n  h  being healing length and 0 jn is bulk density of component j. The 
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chemical potential, in grand canonical ensemble, has the form 0 .j jj jg n   The 

Hamiltonian (1) and GP potential (2) are reduced to 
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where 12 11 22 0/ , /j j jK g g g n    and 2

0 0 / 2jj jP g n  is pressure, which takes one and 

the same value in both condensates at two-phase coexistence. The equilibrium values of 

the order parameters j  minimize the total Hamiltonian given in equation (3) and (4). 

That allows us to derive immediately the time-independent GP equations 
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In order to get the analytical solution for these equations, we employ the DPA. One 

assumes that component 1 (2) occupies the region ( ).  l l  Here L denotes position 

of the interface. Expanding the order parameters about bulk condensate 1, 1 2( , ) (1,0)  

for half-space   l  and bulk condensate 2 1 2( , ) (0,1)    for the remaining half-space, 

the GP potential (4) becomes DPA potential 
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convention, which we will henceforth maintain throughout this paper: ( , ') (1,2)j j   if 

  l  and vice versa. Within DPA, equation (5) reduces to 
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Here we denote 2 1/ .    In our previous work (Nguyen, Tran, & Pham, 2016), 

we proved that the boundary condition (BC) is either Dirichlet or Robin. In this paper, 

the first component is requested by Dirichlet BC and Robin BC for the second one 
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in which   is dimensionless constant. Solving (7), (8) and keeping in mind the continuity 

of the wave functions and its first derivative at the interface one obtains 

/
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2.2. Wetting phase transition and Antonov line 

 The fundamental of physics for the wetting is Young’s law (de Genns, 1985), in 

which the familiar energy is in balance 

1 2 12 cos ,W W       (10) 

where Wj  is the surface energy of a phase of pure component j, 12  is the interfacial 

tension at the interface and   is contact angle. At phase of complete wetting 0   thus 

equation (10) reduced to 

 1 2 12.W W     (11) 

We now calculate the interfacial tension. The grand potential of our system can 

be written in dimensionless form as follows: 

2 2 2
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with A being the interface area. Replacing V in (12) by DPA potential (6) and combining 

with the constant of motion, one leads to the excess grand potential per unit area, which 

is called interfacial tension 
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Plugging equation (9) into (13) one easily derives an analytical relation for 

interfacial tension; it is quite large and without insight. In complete wetting phase, it does 

not depend on l  and has the form 
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Now we define the surface tension (or wall tension) of pure phase j as the excess 

energy per unit area (Indekeu & Schaeybroeck, 2015), 
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 Assuming 1   one can check 
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For the first component, as mentioned in Indekeu and Schaeybroeck (2015), we 

can define wall tension, which is obtained by subtracting from the total grand potential Ω 

the grand potential of a half space 0   filled with pure phase 1, both divided by A, 
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Combining (15) and (17) we get 
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At complete wetting phase, the last term on the right-hand side of equation (18) 

tends to zero so in coexistence phase one gets 
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Inserting (14), (16) and (19) into (11) one has an equation for Antonov line 
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It is easy to see that if we set =0, equation (20) will be reduced to Antonov line 

corresponding to Dirichlet BC in Nguyen (2016). 

 

Figure 1. Antonov lines for Robin BC with /    (red line)  

and Dirichlet BC (blue line) 

Figure 1 shows the Antonov lines, in which the red and blue lines correspond to 

Robin BC and Dirichlet BC, respectively. In this figure, we set /    associating with 

Robin BC. It is obvious that there is a significant effect from BC on the Antonov line, 

especially in middle separation.  

3. CONCLUSION 

In the foregoing section, we presented the main results of our work. In scope of 

DPA we study the two-component BEC in semi-infinity system with a wall. Our results 

are in order:  

 We found analytical solutions for the ground state with Robin boundary 

conditions in all kinds of segregation; 

 The interfacial tension was considered. In addition, the wall tension for each 

component was also investigated; 
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 The relation for Antonov line of wetting phase transition was obtained. 

The constant   corresponding to Robin BC is an interesting quantity, which plays 

the role of extra-interpolation length and its value depends on the specific system. 
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