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Abstract

The embodied-embedded-enactive-extended (4E) approach to study cognition suggests that
interaction with the world is a crucial component of our cognitive processes. Most of our
time, we interact with other people. Therefore, studying cognition without interaction is
incomplete. Until recently, social neuroscience has only focused on studying isolated human
and animal brains, leaving interaction unexplored. To fill this gap, we studied interacting
participants, focusing on both intra- and inter-brain (hyperscanning) neural activity. In the
first study, we invited dyads to perform a visual task in both a cooperative and a competitive
context while we measured EEG. We found that mid-frontal activity around 200-300 ms after
receiving monetary rewards was sensitive to social context and differed between cooperative
and competitive situations. In the second study, we asked participants to coordinate their
movements with each other and with a robotic partner. We found significantly stronger
EEG amplitudes at frontocentral electrodes when people interacted with a robotic partner.
Lastly, we performed a comprehensive literature review and the first meta-analysis in the
emerging field of hyperscanning that validated it as a method to study social interaction.
Taken together, our results showed that adding a second participant (human or AI/robotic)
fostered our understanding of human cognition. We learned that the activity at frontocentral
electrodes is sensitive to social context and type of partner (human or robotic). In both studies,
the participants’ interaction was required to show these novel neural processes involved in
action monitoring. Similarly, studying inter-brain neural activity allows for the exploration of
new aspects of cognition. Many cognitive functions involved in successful social interactions
are accompanied by neural synchrony between brains, suggesting the extended form of our
cognition.
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Chapter 1

Introduction

1.1 General Introduction

Humans excel in social interactions. Interactions are abundant from the beginning of human
life until the end. Newborns need their parents to survive many years after birth, and elderly
people need support in their final years. It is part of the human aptitude to form social
connections that help one go through life’s struggles (Walton et al., 2012). Many different
types of relationships between humans are created during life. McCarthy (1946) says that
parent-child interactions are essential for a child’s language development when they are
young. At a later stage, during the school years, social interactions with teachers and peers
are predictors of academic success (Wentzel et al., 2010), while during adulthood, a rich
social life predicts well-being (Corey Lee M. Keyes, 1998). These are only a few examples
of meaningful social interactions, and many more could be listed. The important point is that
understanding humans requires studying social interactions that they are entangled in.

Cooperation is one of the most common ways how people get along with each other, and it
can be used to describe many different kinds of interactions. To " cooperate " generally means
working together towards a common end. Everyday life is full of examples of cooperative
behavior. On a global scale, humans cooperate by creating international laws and rules to
achieve peace and well-being for all people living on the planet. On an individual scale, each
human being cooperates in educational, family, and work environments to improve her and
her closest people’s lives. Clutton-Brock (2009) says that humans are not the only animals
that work together. Many other species do so as well. But human cooperative behavior is
unique, and it is thought that the ability to cooperate and the desire to do so helped people
create new ways to organize themselves in groups (Tomasello, 2009). This uniqueness of
human cooperative behaviors is one of the reasons why it is important to study them. Another
important reason to research cooperation is that humans often have common goals and aim
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to achieve them, but they fail. We can observe wars between nations and arguments between
spouses. Understanding why and when cooperative behavior fails may help avoid such
failures. Studying cooperative social interaction is essential for a better understanding of
humans.

Studying interactions means studying behavior and its underlying cognitive and biological
basis. Investigation of human social behavior happens on many levels. Combining knowledge
from different fields is the only way to fully understand all the complexities of how people
interact with each other. The field of sociology focuses on the whole society and how the
behavior of groups is affected by social causes, social life, and social changes (Giddens and
Griffiths, 2006). Social psychology studies how the presence and actions of other people
affect how people act and think (Fiske and Taylor, 2013). Social neuroscience tries to
understand the biological foundations of any social aspect of human lives, both on a group
scale, as in sociology, and on an individual scale, as in psychology. For example, Singer and
Lamm (2009) found that studying how empathy, which is the ability to share the emotional
experiences of others, is represented in the brain systems sheds new light on both group and
individual aspects of social life. Ochsner and Lieberman (2001) say that behavioral fields
give us a better understanding of human nature as we learn more about the brain systems
involved in using and responding to socially relevant stimuli. This is why social neuroscience
is a good way to study how people get along with each other and work together.

Social neuroscience studies various cognitive processes. The classic review separates
four core processes: understanding others, understanding oneself, controlling oneself, and
the processes that happen at the intersection of oneself and others (Lieberman, 2007). Each
of these processes is involved in successful cooperative social interaction. People must
understand their goals and their co-actors’ goals to establish cooperation. Furthermore, to
successfully achieve shared goals, people need to control their actions toward co-actors. To
control actions, people need to monitor them. Resaerchers have done a lot of research on
how animals and people monitor their actions (Botvinick et al., 2004; Schall et al., 2002).
It involves systems in the brain that monitor what people do and looks for mistakes so
that changes can be made (Luu et al., 2000). Using such systems, people could learn and
adjust new behaviors (Niv, 2009). Therefore, action monitoring is a crucial part of the
neurobiological foundations of human behavior. Also, people use action monitoring to
control their actions with other people. By looking at the social side of action monitoring,
we can extend the knowledge about involved processes. It is clear that human activities
do not happen in a vacuum and, in most cases, relate to other people. So, adding a social
aspect to action monitoring research helps the field move forward. For cooperative and
collaborative social interactions to work, watching what others do and changing your actions
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are vital. Therefore, understanding the neural foundations of action monitoring during social
interactions is essential.

By looking at how people keep track of their actions when with other people, we can learn
about the low-level cognitive processes needed for social interactions. However, one can also
focus research on higher-level cognitive processes (Frith and Dolan, 1996). These processes
involve, for example, planning, problem-solving, and decision-making. As with low-level
processes, it is better to understand how people plan, make decisions, or solve problems
with others. Others influence human choices, assist in situation solving and collaborate in
making plans. In recent years, both low- and high-level cognitive processes involved in
social interactions have been studied with a new method called hyperscanning (Dumas et al.,
2011; Montague, 2002). Hyperscanning means that researchers focus on neural relations
between brains instead of studying one brain. The neural associations between brains are
quantified as "inter-brain synchrony." For the last two decades, evidence has suggested that
inter-brain synchrony may facilitate different types and aspects of social interactions (Dikker
et al., 2017; Dumas et al., 2010; Koike et al., 2016; Tognoli et al., 2007). It should not be
surprising that cooperative social interactions were one of the first to be studied with the
new method of hyperscanning (Babiloni et al., 2006b). Hyperscanning is a new method of
studying human cognition, and inter-brain synchrony is a new way of quantifying the neural
basis of human cognition. However, as with every new idea, supporting evidence must be
evaluated.

Hyperscanning offers a shift in the way we can study the brain. In the classic approach,
neuroscience measures what is happening in the brain in relation to what is displayed on a
screen. Instead, hyperscanning replaces passive stimulation with another person and studies
the interaction between brains. This approach aligns with the philosophical framework of 4E
cognition (Newen et al., 2018). 4E stands for "four Es," defining cognition. In particular,
Wilson (2002) says that cognition is "embodied," which means that it is not only tied to
the brain but also needs the body. Dawson (2014) states that cognition is embedded, which
means it comes about when the body and the environment interact. Cognition is extended,
which means it is not limited to the brain and body. It exists in physical space and the
environment, and the things we interact with become a part of it (Rupert, 2004). Cognition
is enacted; cognitive processes are entangled in action (Kiverstein and Clark, 2009). These
four ideas about cognition are especially interesting for studying social cognition because
cognition comes from how people interact with each other (the environment), is not limited
to one brain and body (inter-brain synchrony), and is tied to what people do together. Also,
in line with these philosophical claims, the 2nd-person neuroscience approach (Redcay and
Schilbach, 2019; Schilbach et al., 2013) was made to study actions and interactions between



4 | Introduction

people as they happen in real life. Adding a second person to an experiment and having
them talk to each other takes a lot of work. But new developments in mobile brain-body
imaging (MOBI) now make it possible for multiple people to study the social brain together
(Jungnickel and Gramann, 2016; Parada and Rossi, 2020).

This general introduction briefly mentions all topics discussed in this thesis. The rest
of the introduction goes into more depth on these topics and asks questions we will try to
answer in each chapter. First, we talk about the 4E (embodied-embedded-extended-enacted)
framework for cognition and how it can be used to study how people interact. Second,
we discuss the benefits of cooperative behavior and joint action research. Third, we show
research from cognitive neuroscience and action monitoring in individual and group actions.
Fourth, we look at hyperscanning as a new way to study how people get along with each
other, with a focus on cooperation. Fifth, we discuss the scientific tools and techniques used
in this thesis. The last part of the thesis summarizes the research questions answered in the
other chapters. The thesis ends with a discussion and a broader view of the findings.

1.2 4E: Embodied-Embedded-Extended-Enacted cognition

What is cognition and how to define it is a problematic question humans have always tried
to answer. From ancient times till now, science, philosophy, and religion have attempted
to understand how people think and the nature of thoughts. The difficulty in measuring
physical substrate of mind processes created many dichotomous theories (Fodor, 1981).
These theories propose different types of separation between the mental (mind) and physical
(body) aspects of cognition. This dichotomy is called the mind-body problem. The mind-
body problem has been part of the scientific debate for thousands of years, and providing one
straightforward answer is difficult. However, avoiding this problem entirely is inappropriate.
The development of scientific thinking led to avoiding explanations that include supernatural
or unmeasurable entities. Such an approach gave rise to behaviorism: a psychological school
that rejects any internal states as a topic of scientific investigation and uses only objective
evidence of behavior to understand human nature (Watson and Kimble, 2017). Behaviorism
successfully explains human reflexes and reactions but does not explain internal processes
that are part of the human experience. To address this issue new approach arose: Cognitivism
(Mandler, 2002).

Progress in mathematics and engineering produced the first machines capable of operating
and storing information (Rosenblueth et al., 1943). It revolutionized both the technical fields
and the humanities (Greenwood, 1999). The idea that information is sequentially processed
allowed for a new metaphor for the human mind. Namely, the mind is an information-
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processing machine (Miller, 1956). This view contrasts with behaviorism and focuses on
explaining human behavior due to cognitive processes (Neisser, 2014). Simultaneous progress
in understanding biological principles of neural processing supported the view of the mind as
an information-processing machine (Hodgkin et al., 1952). The cognitive revolution changed
the understanding of the human mind and brain, which sparked progress in many fields.
Cognitive explanations are mainstream in psychology, linguistics, education, economics,
anthropology, philosophy, artificial intelligence, and neuroscience. Interdisciplinary efforts
between these fields are termed cognitive science (Miller, 2003). One of the long-term
goals of the marriage between computer sciences and humanities focused on developing
the artificial mind (Simon, 1980). This futuristic goal has yet to be achieved, even though
many scientists have promised it (Fjelland, 2020). On the one hand, it is not surprising that
researchers in different fields are striving to create a machine that can replicate the functions
of the human mind because the mainstream metaphor of the human mind is the one of the
computer (Gigerenzer and Goldstein, 1996). Progress in neuroscience proved helpful for
computer science algorithms and vice versa; new developments in computer science helped
form new theories about the brain’s workings (Kell et al., 2018; Yamins et al., 2014). On the
other hand, it is unsurprising that the scientific world has failed to create an artificial mind
because cognitive approaches ignore essential parts of human cognition and its relation to
the body and the environment.

The cognitive sciences have had a great deal of success in explaining the processes that
underpin human cognition. It tried to explain how low-level functions, like seeing things
differently, and high-level functions, like language and memory, work (Gazzaniga, 2009).
However, for many years, the cognitive sciences have considered the brain an information-
processing machine that is separate from the rest of the body and the environment. It assumes
that the brain sends information to the body, which the body processes, and then sends
commands to make the behavior happen. This model assumes three stages of information
processing: perception, cognition, and action. It is called the common coding theory (Prinz,
1984) and postulates that action and perception do not interact directly. Cognition converts
perceptual representations into actions instead (Massaro, 1990). Therefore, it separates
cognition from perception and action and puts it between them. That is why this model is
called a "sandwich model," as it consists of separate layers. Such a sequential and modular
approach is easy to imagine in theory, but finding biological foundations for such a system is
challenging. There is evidence for each module and stage of processing (Dijksterhuis and
Bargh, 2001; Proctor and Vu, 2006; Sommerville and Decety, 2006), but there needs to be
evidence that these modules and stages work together as a whole. Instead, more and more
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evidence suggests that the brain does not tell the difference between actions, perceptions, and
thoughts (Edelman, 2004; Kevin O’Regan and Noë, 2001; Varela et al., 2017).

Fig. 1.1 Schematic view of the 4E framework. Cognition is enacted, embedded, extended,
and embodied.

The theory of embodied cognition came about after a lot of philosophical discussion
about how people think and a lot of experimentation. It put the sandwich model to the test
and suggested that sensory (perception) and motor (action) systems are fundamentally linked
to cognitive processing (Wilson, 2002). This means that thinking is based on the body’s
experiences and its abilities and that these sensorimotor abilities are part of a biological,
psychological, and cultural context (Varela et al., 2017) . The seminal handbook (Newen
et al., 2018) summarizes the theoretical and experimental work on embodied cognition
that has been done over the last 20 years. The ideas of embeddedness, extendedness, and
enactment of cognition give the theory of embodied cognition a broader scope. We present
here all four Es that represent the 4E framework of cognition (Figure 1.1).

First, cognition is embodied. It means that the body has an active and significant role in
creating cognition. The embodied cognition theory goes against dualistic theories, which
say that mental phenomena are not physical and are not affected by the body (Shapiro,
2007). However, what does it mean that the body is active in creating cognition? Embodied
cognition suggests that the physical characteristics of the body shape cognitive processes.
For example, perception, reasoning, and memory can be influenced by bodily states. Witt
showed that people who move less because of chronic pain perceive distances as greater than
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healthy controls (Witt et al., 2009). Another study shows that inhibition of movement drops
performance in mental rotation tasks, suggesting that reasoning is heavily influenced by
bodily capabilities (Moreau, 2012), and multiple studies showed that the body manipulates
memory performance and, the other way around, memory manipulations change the body
(Dijkstra and Zwaan, 2014). Furthermore, embodied cognition suggests that sensory and
motor systems are dynamically coupled, allowing sensory information to be used during
actions (Kevin O’Regan and Noë, 2001). The embodied cognition theory is supported by
behavioral and neurophysiological evidence. Human cognition is based on the physical body.

Second, cognition is embedded. The theory that cognition is embedded is closely related
to situated cognition theory. Former states that cognition results from the interaction between
the brain, body, and world, and latter states that knowing is inseparable from doing, which
means that cognition is situated or embedded in activity bound to social-cultural and physical
contexts (Beer, 2014; Brown et al., 1989). These theories are not different from embodied
cognition; they extend body-mind relations through body-mind-world interaction. The key
concept to understanding the embeddedness and situatedness of cognition is affordance.
Affordances are features of the external environment that allow (provide opportunities for)
actions (Gibson, 1977). In this view, perception is active. The viewer picks up the available
environmental information and acts upon it. For example, we can consider one of the
cognitive functions, memory. Situated cognition says that instead of comparing what you
know now to what you know, you adjust your perceptions and actions based on what you can
do to make a memory. Therefore, the focus is on the agent’s interaction with the environment
(Greeno, 1994). The theory of embedded or situated cognition (Young et al., 1997) says
that memory is how people interact with the world. This view extends to other cognitive
functions and suggests that they emerge from the interaction of the mind and brain with the
body and environment instead of passively representing the outside world.

Third, cognition is extended. Andy Clark and David Chalmers, two well-known philoso-
phers of mind, came up with the idea of the extended mind (Clark and Chalmers, 1998).
It states that the mind extends into the physical world. That is, the brain or the body does
not bind the mind. The extended cognition view goes beyond the situated and embodied
cognition views because it emphasizes that objects in the external environment are part of
cognitive processes. Therefore, it is not only an interaction between body, mind, and world;
the physical world can also be part of cognition. It seems controversial to say that cognition
is "literally" in the external world. However, this claim should sound reasonable for any
smartphone and internet user. Nijssen et al. (2018) and Smart (2017) say that people use many
digital and physical tools daily to improve their cognitive abilities. For instance, calendars
extend memory, social media extend social interactions, and glasses extend perception. The
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extended mind thesis states that these mediums become part of cognition. It’s intriguing
to consider whether other people, as part of the environment with which people interact,
become part of cognition. So far, philosophers haven’t ventured that other people are part of
cognition. However, based on experimental data that we will present in other parts of this
thesis (Chapters 5 and 6), it is worth asking this question.

Fourth, cognition is enacted. The last of the 4Es focuses on the action as the main
constituent of cognition. Enactivism posits that cognitive processes arise due to the dynamic
interaction between an agent and its environment (Di Paolo and Thompson, 2014). It is
similar to embedded cognition postulates; however, the critical focus in enactivism is enacting
the world (Di Paolo et al., 2010). In other words, humans actively create meaning with
their cognitive systems by interacting with the outside world in ways that change them.
So, according to the enactive view, an agent’s cognition and knowledge come from his
interactions with his environment and with other agents (Rohde, 2010). Also, perception is
not tied to how the brain works; it happens when the body and the world interact directly
(McGann and Torrance, 2005). Enactivism closes the cluster of related theories referred to as
the 4Es.

Taken together, the 4E framework posits that cognition is Embodied, Embedded, Ex-
tended, and Enacted. These terms are closely related and represent different aspects of the
same view. However, the philosophical debate about each of Es and their similarities and
differences did not end. The 4Es framework, as a whole, is a philosophical theory different
from cognitivism and computationalism. We chose to explain and justify our experimental
work in terms of 4E cognition because it is the most convincing theory that tries to explain
all parts of cognition at the moment. We are not trying to show that it is better than other
explanations and evidence that back up other theories of mind. Instead, we believe that
accumulating knowledge and evidence will bring synergies between different approaches
and help us understand one of the biggest mysteries of human life: the conscious mind.

In the remaining part of this section, we focus on two topics. First, we discuss our
experimental work to answer questions about the relationship between embodiment, approach-
avoidance, and viewing behavior. To explore this relationship, we collected and analyzed
behavioral and eye-tracking data. Chapter 8 presents and discusses the results of these studies.
Next, we show how the 4E framework is related to the main topic of this thesis, which is
studying cooperative social interactions.

People tend to approach what is positive for them and avoid what is negative. Such
behaviors can be easily measured with approach-avoidance tasks (Krieglmeyer et al., 2010).
In these tasks, participants respond to stimuli that are positive or negative. Participants must
press a button for positive (congruent condition) or negative (incongruent condition) stimuli.
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Phaf et al. (2014) found that their responses were faster when the positive stimuli were the
same. This suggests that it is easier to process positive stimuli that are the same. One can
interpret this as a preference for positive stimuli, represented by more rapid responses. From
the point of view of 4E cognition, it would be interesting to see if the way people move
their bodies to approach or avoid stimuli follows the same pattern. Therefore, button boxes
were replaced by a joystick to study approach-avoidance behavior (McNaughton et al., 2016).
The results replicated and showed quicker responses to congruent positive stimuli. However,
what remains unknown is whether the embodied approach-avoidance (joystick) effect is
more robust than the non-embodied (button box). Therefore, we decided to test it. The
details of the experiment and results are presented in chapter 8. Our research advances the
understanding of approach-avoidance behavior by determining whether it is purely cognitive
(cognitivism) or involves the body (embodiment).

Furthermore, one can ask whether the movement to approach positivity and avoid nega-
tivity can influence cognitive functions. Kaspar et al. (2015) found that watching positive or
negative stimuli in the background changes their overt attention when people are free-viewing.
Therefore, congruent movements toward emotionally valenced (positive or negative) stimuli
could also influence viewing behavior. We tested precisely this in the second study, which we
present in chapter 8. Specifically, we collected eye tracking during the free-viewing task after
the bodily congruent and incongruent approach-avoid movements to test whether embodied
movement influences overt attention. In summary, both studies in chapter 8 talk about how
moving your body affect how you think.

Lastly, after providing a brief introduction to the 4E framework and our experimental
work on embodiment, we want to focus on the relation between the 4E framework and the
core topic of this thesis: cooperative social interaction.

The link between the 4E framework and studying social interaction is clear. Social
interactions involve minds and bodies, which are embedded in the environment. Studying
social interactions as they happen in human lives is difficult. Classic lab experiments often
involve only one participant confronted with social stimuli. Such experiments helped us
understand the basics of social interaction and underlying neural processes. But they cannot
give a complete picture because of the missing interactive part (Redcay and Schilbach, 2019;
Schilbach et al., 2013). Instead, in line with the 4E framework, the interaction between two
minds and two bodies should be the core of the investigation. Therefore, bringing a second
person to the lab experiments was one of the research goals we present in this thesis. Another
goal was to extend the type of analysis. Namely, to shift from intra-brain to inter-brain
analysis. These are small but significant changes. By shifting the focus from studying one
isolated brain to studying interactive brains, embodiment, extendendess, embeddedness,
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and enactment of cognition during social interactions can be accounted for (Reddy, 2018).
Multi-participant designs are especially relevant for studying cooperative behavior. To fully
understand how two people can behave cooperatively (for example, by carrying a table
together), it is important to examine how their bodies and minds interact with each other to
achieve common goals.

1.3 Social Interactions

Greek philosophy emphasized how crucial social interaction is for keeping and growing as a
person. Scholars have been interested in it since ancient times, and it is still an important
subject today. From a cognitive neuroscience point of view, this thesis gives new ways of
looking at how people interact with each other. In humans, social interactions are defined as
any interactions involving at least two people. These interactions can span different periods.
Sometimes people interact with others for a couple of seconds or minutes, for example,
when exchanging money for products during everyday shopping activities. In contrast, some
interactions can last much longer (days, months, or even lifetimes). Social interaction also
differs in the number of people that are involved. Humans are engaged in interactions ranging
from dyadic (two individuals) to large groups (millions). When they, for example, have a
conversation with a friend (dyadic) or vote during national elections (millions). These two
simple examples of how to classify different types of social interaction show the variety in the
scope of what the term "social interaction" can mean. Because of this broad scope, one should
focus on the most important or common type of interaction to understand the foundation of
human social interaction. Commonly, humans engage in interaction with others to achieve the
goals that they share. Such behavior is called cooperation. Cooperative behavior is considered
a foundation of human evolutionary success (Tomasello, 2009). Because cooperation is one
of the most common and evolutionary necessary behaviors, we decided to focus our research
on the neural foundations of cooperative social interactions.

In this section, we dwell on cooperation from evolutionary, psychological, and neurosci-
entific perspectives. Further, we look into the benefits of collective behavior. Lastly, this
section discusses joint actions that are the foundations of cooperative behavior. This part of
the introduction overviews the background information that led to the research in rest of the
chapters.
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1.3.1 Cooperation

Cooperation is the process by which different system components act together to accomplish
a common goal. That means that separate parts work together to make a higher and more
complicated system (Lindenfors, 2017). In other words, separable elements create a system
greater than the sum of its parts. Cell components cooperate to keep it alive, and neurons
work together to create thoughts and consciousness. This self-organizing phenomenon
is known as "emergence" (Mobus, 2022). Cooperative behaviors are present throughout
the animal kingdom (Cheney, 2011; Robinson and Barker, 2017). Animals cooperate for
various reasons. It gives them both direct and indirect, immediate and distant, benefits.
Moreover, cooperation is based on genetic relatedness and reciprocity. Additionally, in
humans, cooperation facilitates cultural evolution. Cooperation between people happens on
small scales, like between friends or families, and on larger scales, like between nation-states
(Handley and Mathew, 2020; Jaeggi and Gurven, 2013). It was the evolution of language that
helped to allow for small and large-scale cooperation between people (Müller and Carpendale,
2000; Smith, 2010). Therefore, the survival and well-being of the human race were related to
cooperative behaviors.

The evolutionary perspective suggests that cooperation is required for evolution to create
new levels of organization (Axelrod and Hamilton, 1981; Nowak, 2006; Sachs et al., 2004).
Natural selection is crucial in understanding evolution (Edwards, 1994; Saccheri and Hanski,
2006). However, natural selection signifies competition, which is the opposite of cooperation.
The competition rewards only selfish behavior. Therefore, it is essential to understand how
different cooperative behaviors, which are unselfish, can facilitate the survival of organisms.
There are five different fundamental cooperative evolutionary mechanisms that we discuss in
this section: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and
group selection. Kin selection means that cooperation happens between two agents, which are
genetic relatives. In such a situation, agents behave cooperatively over competing for survival,
as one of them will extend the same line of genes (Eberhard, 1975; Kappeler and Van Schaik,
2006). However, cooperation also happens between not related to each other individuals. That
is why Trivers (1971) proposes direct reciprocity, which assumes that repeated encounters
between the same individuals happen, and they can cooperate or compete each time. They
choose to cooperate, believing it will reciprocate the next time they meet. Furthermore,
individuals choose to cooperate even in an asymmetric situation when repeated encounters
are impossible. Thanks to their cooperative acts, they establish a reputation, and thanks to
the reputation, cooperative deeds will be reciprocated. This mechanism is called indirect
reciprocity (Nowak and Sigmund, 1998). The network reciprocity mechanism can explain
another way of explaining why not related individuals decide to cooperate. Cooperators
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decide to form groups/clusters and help each other (Nowak and May, 1992). Finally, natural
selection acts on groups as well as on individual levels. Therefore, a group of cooperators
can become more successful and increase their chances of survival (Wilson, 1975) Taken
together, we present that different cooperative mechanisms can increase evolutionary success
(Henrich and Muthukrishna, 2021; Stevens et al., 2005).

Fig. 1.2 Example of a payoff matrix in the prisoner’s dilemma game.

Cooperative social interactions are heavily discussed in social psychology. One can
simplify all social interactions and say that while individuals or groups interact, they choose
to cooperate or compete (De Dreu, 2010). On the one hand, using a car for everyday
shopping saves time and energy that can be used for self-related gains. On the other hand,
using a vehicle for everyday shopping has a terrible environmental impact and negatively
influences society. So, people choose between cooperative and competitive situations based
on whether their goals are about themselves (in a competitive situation) or about the group
(in a cooperative situation). Social dilemmas are caused by the fact that people always
have to make choices (Dawes, 1980; Dawes and Messick, 2000; Kollock, 1998; Van Lange
et al., 2013). The prisoner’s dilemma game is a well-known and popular way to study social
dilemmas in a lab (Axelrod, 1980; Kraines and Kraines, 1989; Rapoport et al., 1965)). In
the prisoner’s dilemma game, two people must decide whether they should confess to a
crime. Based on the decisions of both participants, different punishments are possible. If
both confess the crime, they are sentenced to five years in prison. In the case of one player
confessing and the other not, the guilty person goes to jail for many years while the other
player goes free. Lastly, if they don’t admit a crime, they are sentenced to a few years in
prison (Figure 1.2). This simple but flexible pay-off matrix allows for studying various
aspects of social dilemmas. The prisoner’s dilemma game lets you study cooperation because
there are both cooperative (don’t confess) and competitive (do confess) ways to play. Books
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have been written about contributions to understanding human cooperative decision-making
(Poundstone, 1993). Still, we’d like to point out that different versions of the experimental
paradigm (Balliet, 2010; Kerr and Kaufman-Gilliland, 1994; Sheldon, 1999) have helped us
learn much about trust, prosociality, communication, and behavioral strategies (negotiation,
mediation, and arbitration). Therefore, contributing to the understanding of the psychology
of cooperative social interactions.

Paradigms like the prisoner’s dilemma, in which participants must make decisions that
influence others, are also used with neuroimaging methods to understand the neural basis of
cooperative behavior (Tabibnia and Lieberman, 2007). An old fMRI study shows that the
prefrontal regions of people who cooperate are more active than those who don’t cooperate
during an experiment requiring trust and reciprocity. Trust and reciprocity require integrating
theories of mind and cooperative actions. Therefore, it was suggested that integrating these
processes happens in the prefrontal cortex (McCabe et al., 2001). Also, a study comparing
cooperative and competitive behaviors showed that different brain parts are involved in each.
Namely, results showed higher activation in the orbitofrontal cortex for cooperative decisions
(Decety et al., 2004). It shows that cooperation is a socially rewarding process that uniquely
activates the left medial orbitofrontal cortex. Furthermore, another study using neuroimaging
research found that compared to unfair offers of identical monetary value, fair offers resulted
in higher satisfaction ratings and increased activity in brain reward regions (King-Casas,
2005; Rilling et al., 2004). When you look at all of these studies together, it seems that the
brain’s prefrontal cortex and reward areas are essential for cooperative behavior.

This short section discussed evolutionary, psychological, and neuroscientific perspectives
on cooperation. Kin selection, direct reciprocity, indirect reciprocity, network reciprocity,
and group selection are different mechanisms that explain why people cooperate. Studies on
how people make decisions show that trust, communication, and behavioral strategies are the
main things that make people work together. Lastly, studies that use neuroimaging to look
at the brain show that the prefrontal cortex and brain reward regions work together to make
cooperation possible. In the next section, we look more closely at the collective benefits of
cooperative social interactions.

1.3.2 Collective benefits

People who work together to complete tasks may perform better than the best group member.
When it happens, we call it collective benefit (Bahrami et al., 2010; Kerr and Tindale, 2004).
For example, when someone has to find a friend in a crowd, it can be accomplished faster
when the task is split among multiple searchers. It is essential to highlight that such behaviors
can comprise individual actions (walking and searching for a friend), and only the goal is
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common to a group of people (finding the friend). Different types of joint tasks were used to
investigate collective benefits. It was shown that groups achieve collective benefits in joint
visuomotor tasks that require coordination between eyes and hands (Ganesh et al., 2014;
Knoblich and Jordan, 2003; Newman-Norlund et al., 2008; Reed et al., 2006; Takagi et al.,
2017). Other research (Brennan and Enns, 2015b; Neider et al., 2010; Wahn et al., 2017a;
Wahn and König, 2016) has shown that there are benefits to working together on tasks that
involve finding or following objects in different places. Also, Rajaram and Pereira-Pasarin
(2010) and Bietti and Sutton (2015) showed that there are benefits for the group when people
work together to remember things. Lastly, studying joint perceptual decision-making tasks
gives evidence in support of the collective benefits phenomenon (Bang et al., 2017; Bang
and Frith, 2017; Mahmoodi et al., 2015; Pescetelli et al., 2016; Sorkin et al., 2001). When all
of these studies are put together, they show that humans benefit from working together on
tasks that require many different kinds of thinking.

The collective benefit is achieved in dyadic scenarios. However, it remains to be seen
whether there is any additional value in extending the group and dividing the work between
more than two people. We focused our research goals on filling this gap. Namely, we
designed a visual search task that can be performed by one, two, or three people. During the
experiment, participants had to search for odd objects on the screen and report when they
spotted one. They performed the task individually and in dyadic and triadic situations. This
design lets us determine if adding one more person to the group adds any value (collective
benefit) or if the collective benefit effect saturates and adding more people does not add any
value. The results and discussion of two experimental studies are found in chapter 2 of this
thesis.

1.3.3 Joint actions

Cooperative behaviors require joint actions. Sebanz et al. (2006b) defined joint action as
"any kind of social interaction in which two or more people coordinate their actions in space
and time to change the environment." Studying joint actions allows us to understand the
foundations of cooperative social behavior better. Coordinating how co-actors act is one
of the most important parts of making joint actions work. Knoblich et al. (2011) say that
coordinated behavior needs action-perception couplings, which make several people act
the same way. One of the best examples of action-perception coupling is musical training.
After a lot of musical training, movements and intended sounds become closely linked
(Novembre and Keller, 2014). These action-perception couplings must be well-timed and
planned (Sebanz and Knoblich, 2009). A key part of working well together is guessing what
might happen when you and others act. Vesper et al. (2010) say that co-actors have to do
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action monitoring to predict what will happen when they work together. That means agents
must always compare what they expect to happen with what they want to happen, so they can
find mistakes and change their behavior. Our brains need a system that is capable of doing it.

1.4 Cognitive neuroscience, action monitoring, and hyper-
scanning

Cognitive neuroscience studies the biological processes involved in making cognition. It fo-
cuses on the connections between neurons in the brain that are important for mental processes.
Many different cognitive functions are studied within the field of cognitive neuroscience.
The most important are attention, consciousness, decision-making, emotions, intelligence,
language, learning, memory, perception, and social cognition (Churchland and Sejnowski,
1988). There are also different methods used in the field of cognitive neuroscience. The most
common are functional magnetic resonance imaging (fMRI), electroencephalography (EEG),
and eye-tracking (Posner and DiGirolamo, 2000). Even though it is not yet possible to map
all cognitive functions onto brain areas and explain how these brain areas work, cognitive
neuroscience has impacted our understanding of cognition. The mixture of psychology and
neuroscience in one field helped improve both.

One part of cognitive neuroscience is studying how the brain controls action monitoring.
Adaptive behavior depends on the human ability to assess activities and recognize mistakes. It
is part of everyday life that people commit errors and improve upon them. That is why many
cognitive functions rely on action monitoring. Even though there has been a lot of research in
cognitive and social neuroscience, the anatomical basis of these essential executive functions
still needs to be discovered. We know from human and animal studies that the prefrontal
cortex is involved in action monitoring processes and that it takes milliseconds to process
feedback about our actions (Dehaene et al., 1994; Falkenstein et al., 2001; Miltner et al.,
1997; Van Veen and Carter, 2002). The most commonly reported part of the prefrontal cortex
that is associated with action monitoring is the anterior circulate cortex (ACC) (Botvinick
et al., 1999, 2004). When it comes to monitoring our actions, there is an important distinction
between errors that humans can recognize themselves and errors that require feedback. For
example, on the one hand, when people trip over a branch on the path in the forest, their
brain realizes the mistake and adjusts body and leg trajectories. When students write their
answers to a history quiz, they need feedback from their teacher to recognize their errors.
Research on action monitoring separates these two situations and looks at how errors are
handled and how feedback is used. Electrophysiological studies found a component peaking
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around 70–100 ms after the error is committed and called it error-related negativity (ERN)
(Hajcak et al., 2005; Holroyd and Coles, 2002). Also, a similar part of the brain is seen when
feedback is needed to determine the mistake. It is called feedback-related negativity (FRN)
(Hajcak et al., 2006). Studying these two brain components is the leading research topic in
action monitoring.

Joint actions require action monitoring (Vesper et al., 2010). When two people combine
their actions to achieve a common goal, they monitor the combined outcome of their actions,
and they monitor each other’s actions and their results. For example, when carrying a table
together, people observe their actions on each side of the table and their common goal of
moving it in the desired direction. That is why the neural components (ERN and FRN)
involved in action monitoring are also crucial for joint actions. These components are also
observed when people witness other people’s mistakes (Falkenstein et al., 2000; Schuch and
Tipper, 2007; van Schie et al., 2004). That means the same monitoring processes might be
involved in individual and joint action monitoring. To support this claim, researchers looked
at the same brain component (FRN) while monitoring action in piano duets. They found
that, when performing together, musicians keep track of their individual and partner’s actions
and the results of their combined actions while distinguishing between their own and others’
actions and between individual and collective outcomes (Loehr et al., 2013). These results
show that the same brain processes are involved in monitoring actions, whether they are
done alone or with others. But it’s still unclear how different types of social interactions can
change these processes.

We did two experiments focused on monitoring people’s actions to fill in this gap and
learn more about how the brain works during social interactions. Depending on the social
setting, the results of actions can mean different things to different people. For example, when
a ball lands in the net of a football goal, it can mean something positive or negative (a won or
lost goal). Therefore, the same action (putting the ball in the net) could elicit different brain
responses (correct or incorrect or positive or negative) depending on who performed it (a
teammate or an opponent) and who observed it. We decided to test that in a laboratory setting.
We made a simple task in which participants performed a task cooperatively and competitively.
This study aimed to understand differences in brain processes (FRN) involved in action
monitoring during social interactions in different contexts (cooperative and competitive).
The details and results of this study can be found in chapter 3. In the second experiment,
we also looked at the types of people with whom people interact socially. While AI and
robots are increasingly present in our everyday lives, we know little about how our brains
respond to different types of partners during social interactions. We designed a simple game
requiring coordination between partners to achieve better performance collaboratively, and
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we introduced various partners: humans and robots. Similarly to the study described above,
we aimed to improve our understanding of the neural processes involved in action monitoring
while performing a collaborative task with different partners. The results and details of this
study are presented in chapter 4. As part of this thesis, we present two experimental studies
focused on the brain processes involved in action monitoring in different social contexts
(cooperative and competitive) and with varying types of partners (robots and humans).

Looking at the neural basis of action monitoring during cooperative social interactions
allows for studying low-level features of our cognitive functions. Naturally, it is crucial to
understand these building blocks of cognition. However, one can also look at neural activity
during social interaction in a more global way. Another approach to studying the neural
foundations of social interactions focuses on brain-to-brain interactions. This relatively new
field of cognitive neuroscience is called hyperscanning. It required measuring brain activity
in two brains simultaneously and focusing the analysis on how brain activity in at least two
brains affects each other. The first study that proved the concept used fMRI and showed
the feasibility of such measurements (Montague, 2002). This allowed other researchers to
explore the idea that synchronization between two brains plays a role in cognition (Bilek et al.,
2015; Dumas et al., 2010; Sänger et al., 2012). As with every new idea in research, the results
were exploratory and heavily discussed in many different opinion articles (Burgess, 2013;
Dumas et al., 2011; Schilbach et al., 2013). Hyperscanning studies showed that inter-brain
synchronization occurs during different types of social interactions (Babiloni et al., 2007a;
Nguyen et al., 2020; Pan et al., 2017).

While more evidence has accumulated to support the hypothesis that inter-brain synchrony
might be a valid method to study social interaction, how different studies and pieces of
evidence relate to each other is still being determined. That is why we summarized all
available studies as of 2019. The field needs this kind of summary before it can move on
to more hypothesis-driven research. We list all of the neuroimaging methods that used
hyperscanning, the statistical methods used to estimate inter-brain synchrony, and all of the
cognitive functions that have been studied in the field of hyperscanning. The details and
results of our narrative review are presented in Chapter 5. Further, we performed a meta-
analysis of all hyperscanning studies focused on cooperative behavior to summarize existing
findings and evaluate the field. We chose studies that used fNIRS as it is the most common
hyperscanning method. The details and results of our meta-analysis can be found in chapter 6.
This review and meta-analysis aimed to determine the efficacy of the hyperscanning method
for understanding the neural processes underpinning cooperative social interactions.

In this section, we talked about the basics of cognitive neuroscience research, which
are required to know to better understand the rest of the thesis. First, we look at action
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monitoring as a low-level cognitive function and how it affects social interactions where
people work together. Second, we talked about hyperscanning and pointed out how important
it is to evaluate this new area of research. These topics are at the core of this thesis.

1.5 Introduction to methods

Lastly, we share some thoughts that show how we worked on the projects described in this
thesis. There are three main topics to be presented shortly in this section. First, we use
mobile brain-body imaging (MoBI) as a more embodied way of studying neural processes.
Second, we appreciate all efforts to make science more transparent and open. Third, we
believe technological advances help answer new research questions and improve answers to
old ones. All three of these ideas are present throughout this thesis.

The integrative multimethod technique called mobile brain/body imaging (MoBI) (Jung-
nickel et al., 2019; Jungnickel and Gramann, 2016) is used to study human brain activity,
motor behavior, and other physiological information related to cognitive processes that
involve dynamic behavior. In the research presented in this thesis (chapters 3 and 4), we
collected data from interacting participants. By adding a second participant to the experiment
(Chapter 3), we made the data from the experiment more relevant to the real world. We
created a setup that allowed us to answer a new research question. In Chapter 4, we talk about
our work with people who play dynamic game with other people or robots. We collected
EEG data in both of these experiments. That required adjusting the existing EEG system
and analyzing data. Furthermore, all hyperscanning research desribed in chapters 5 and 6
focused on interactions between participants. These extra steps help us learn more about how
the brain works during cooperative social interactions.

On the other hand, we used open-science principles throughout our research. Open
science can mean many things (Fecher and Friesike, 2014). We focused on different pillars
of open science. All of the data and analysis scripts that were collected and shown in the
projects in this thesis were openly shared. All the work was published in open-access journals.
That will allow anyone to access our work. Also, we engaged in what is (so far) the largest
project to test whether research in the field of cognitive neuroscience is reproducible. The
efforts of this project are presented in Chapter 9.

Further, we collaborated with other scientists, pushing the boundaries of the technology
used to study cognition. Namely, we contributed to a project focused on building a virtual
reality (VR) environment to investigate trust in self-explaining autonomous cars. This study
collected data from more than 26 000 participants, making it one of the most extensive studies
using virtual reality so far. The study and its results are presented in Chapter 10. There is
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no apparent link to the main topic of this thesis (cooperative social interactions). However,
it is essential to highlight that many of the solutions generated for such a big project will
serve as the building blocks of future research on cognition. That includes research on social
interactions.

Taken together, in the last section of the introduction, we briefly presented ideas and
introduced work that is not clearly linked with the core topic of this thesis (cooperative social
interactions). Still, these projects were critical in making tools and helping us understand
research on how people interact with each other.

1.6 Summary of introduction

On this final page of the introduction, we want to summarize what we have said so far. The
main goal of this thesis is to give new insights and build foundations for understanding
neural processes behind cooperative social interactions. We position our work within the
embodiment framework, which claims that our cognition is embodied, embedded, extended,
and enacted. The results presented in chapters 2-6 are not evidence for or against any frame-
work or theory of cognition. Instead, the presented evidence arose thanks to understanding
cognition as embodied.

We focused our work on neural foundations of cooperative social interactions because
we believe that research so far did not explore it fully. Namely, in the past, a lot of valuable
research happened inside the lab in single-subject studies. We are convinced that to grasp
and understand social cognition fully, we need to extend paradigms by studying dyadic and
groups while they interact. This approach will expand our understanding of neural processes
during cooperative social interactions. In line with the outlined approach, this thesis used
paradigms that involve more than one person at once and focused analysis on interacting
brains.

We investigated the benefits of adding more participants to a collaborative task in chapter
2. We conducted two studies using collaborative visual search tasks in individuals, dyads,
and triads. Both studies aimed to understand collaborative benefits in different conditions
(amount of participants). Chapters 3-6 are the core chapters of the thesis. They show our
experimental work (Chapters 3 and 4), review (chapter 5), and meta-analysis (chapter 6)
focused on neural foundations of cooperative social interactions. Chapters 3 and 4 present
the results of two different EEG experiments that involve more than one participant at once
and analyze event-related-potentials (ERPs) during tasks that require action monitoring. In
chapter 5, we review the field of hyperscanning, which focuses on inter-brain relations, and
in chapter 6, we present the first meta-analysis within the field of hyperscanning. These four
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chapters shed new light onto the neural underpinnings of cooperative social interactions. In
the remaining 8-10 chapters, we present our work on embodiment, the first-ever attempt
to estimate reproducibility within the EEG cognitive neuroscience field and one of the
biggest virtual reality studies. These last chapters highlight topics of our work that strongly
contributed to our understanding of methods required to study cooperative social interactions.

In sum, we present here the work conducted during my Ph.D. I hope you will enjoy the
diversity of approaches, methods, and ways to answer research questions.



Chapter 2

Collective and Collaborative Benefits

This chapter consists of two peer-reviewed publications:

Wahn, B., Czeszumski, A., & König, P. (2018). Performance similarities predict collec-
tive benefits in dyadic and triadic joint visual search. PloS one, 13(1), e0191179.

Wahn, B., Czeszumski, A., Labusch, M., Kingstone, A., & König, P. (2020). Dyadic and
triadic search: Benefits, costs, and predictors of group performance. Attention, Perception, &
Psychophysics, 82(5), 2415-2433.
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2.1 Performance similarities predict collective benefits in
dyadic and triadic joint visual search

2.1.1 Abstract

When humans perform tasks together, they may reach a higher performance in comparison
to the best member of a group (i.e., a collective benefit). Earlier research showed that
interindividual performance similarities predict collective benefits for several joint tasks. Yet,
researchers did not test whether this is the case for joint visuospatial tasks. Also, researchers
did not investigate whether dyads and triads reach a collective benefit when they are forbidden
to exchange any information while performing a visuospatial task. In this study, participants
performed a joint visual search task either alone, in dyads, or in triads, and were not allowed
to exchange any information while doing the task. We found that dyads reached a collective
benefit. Triads did outperform their best individual member and dyads – yet, they did not
outperform the best dyad pairing within the triad. In addition, similarities in performance
significantly predicted the collective benefit for dyads and triads. Furthermore, we find
that the dyads’ and triads’ search performances closely match a simulated performance
based on the individual search performances, which assumed that members of a group act
independently. Overall, the present study supports the view that performance similarities
predict collective benefits in joint tasks. Moreover, it provides a basis for future studies to
investigate the benefits of exchanging information between co-actors in joint visual search
tasks.

2.1.2 Introduction

In daily life, humans often perform tasks together to achieve a shared goal (Frith and Frith,
2012; Sebanz et al., 2006a; Vesper et al., 2017a). Examples are humans carrying a table
together (Sebanz et al., 2006a), searching for a friend in a crowd (Brennan et al., 2008), or
playing team sports such as soccer or basketball. Depending on how groups perform these
tasks, they may reach a higher performance compared to the best group member’s individual
performance (i.e., a “collective benefit” (Bahrami et al., 2010; Kerr and Tindale, 2004)).

Collective benefits have been investigated in a wide variety of tasks such as joint visuo-
motor tasks (Ganesh et al., 2014; Knoblich and Jordan, 2003; Masumoto and Inui, 2015;
Newman-Norlund et al., 2008; Reed et al., 2006; Rigoli et al., 2015; Takagi et al., 2017;
Wahn et al., 2016b), joint visuospatial tasks (Brennan and Enns, 2015b; Brennan et al.,
2008; Neider et al., 2010; Szymanski et al., 2017b; Wahn et al., 2017b; Wahn and König,
2016), joint memory (Bietti and Sutton, 2015; Rajaram and Pereira-Pasarin, 2010), or joint
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perceptual decision-making tasks (Bahrami et al., 2010; Bang et al., 2017; Bang and Frith,
2017; Fusaroli et al., 2012; Mahmoodi et al., 2015; Pescetelli et al., 2016; Sorkin et al., 2001).
Researchers found several factors that affect whether groups can outperform individuals and
to what extent. In particular, they found that the more similarly well group members perform
a task alone, the higher the collective benefit. This finding was reported for joint perceptual
decision-making tasks (Bahrami et al., 2010; Kurvers et al., 2016) and a joint visuomotor
task (Wahn et al., 2016b). In these earlier studies, the calculation of the similarities of
the individual performances is based on typical performance measures in the investigated
tasks. For instance, in a study investigating a joint visuomotor task (Wahn et al., 2016b),
the individual averaged trial completion time by each member of a group was used for
calculating a similarity score. In particular, the slower trial completion time was divided
by the faster trial completion time, yielding a value between zero and one with a value
close to one indicating a high similarity of the individual performances. To date, however,
researchers did not test whether similarities between the individual performances predict
collective benefits in joint visuospatial tasks. Given earlier findings on joint perceptual
decision-making (Bahrami et al., 2010) and joint visuomotor tasks (Wahn et al., 2016b), such
a finding could provide converging evidence that similarities in the individual performances
are a general predictor for collective benefits in joint tasks. Hence, one goal of the present
study is to test whether similarities in the individual performances predict collective benefits
also for joint visuospatial tasks.

With regard to joint visuospatial tasks, researchers often investigated joint performance
in a joint visual search task (Brennan and Enns, 2015b; Brennan et al., 2008; Neider et al.,
2010; Wahn et al., 2016b). In a joint visual search task, dyads jointly search for a target
among distractors on a computer screen. Typically, in half of the trials a target is present
and participants’ task is to indicate whether a target is present or absent. In a previous study
(Brennan et al., 2008), researchers compared joint visual search task performance, i.e., how
accurate and fast dyads searched, between conditions that varied the information that co-
actors received. That is, co-actors were allowed to verbally communicate and/or saw a cursor
on the screen, indicating where their search partner was looking, or received no information
about their co-actor. In addition, a separate set of participants performed the search task alone.
They found that dyads searched faster than individuals in all conditions. Importantly, when
dyads received no information about their co-actor, they also outperformed individuals. That
is, co-actors without any means to exchange information (neither verbal information nor gaze
information) still outperformed individuals. Due to the between-subject design, however,
researchers (Brennan et al., 2008) could not test whether dyads attained a collective benefit
as a comparison between the best member’s performance and the joint performance was not
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possible. Yet, given the large effect sizes in the previous study, it is likely that dyads would
have reached a collective benefit. Another goal of the present study is to replicate this finding
by Brennan and colleagues (Brennan et al., 2008) and extent it by testing whether dyads also
outperform the best member in the group (i.e., reach a collective benefit). Moreover, to date,
researchers did not investigate how triads perform in comparison to individuals and dyads.
In the present study, we therefore also test whether triads outperform their best individual
member, outperform dyads, and importantly, whether triads also outperform their best dyad
pairing in the triad. Note, for the latter comparison, we extent the definition of a collective
benefit as used in earlier studies (Bahrami et al., 2010; Wahn et al., 2017b) to larger group
sizes. That is, in line with the definition of collective benefits for dyads (Bahrami et al.,
2010), we compare the triad’s performance with the best dyad pairing within the triad to test
whether triads also attain a collective benefit.

As in the previous study by Brennan and colleagues (Brennan et al., 2008), dyads and
triads do not exchange any information while performing the joint visual search task in the
present study. That is, they have no means to communicate any search strategy with their
co-actor to ease the joint search (e.g., a division of labour strategy (Brennan et al., 2008)).
Given there is no exchange of information possible between co-actors, we predict that dyads
and triads do act independently while performing the joint search (i.e., do not collaborate).
To test whether the co-actors of dyads and triads actually perform the search independently,
we aim to compare the actual joint performance to a simulated joint performance, which
assumes that co-actors in a group act independently (Brennan and Enns, 2015b; Wahn et al.,
2017b). Such a simulated joint performance has been used in earlier studies to test whether
members of a dyad do collaborate Brennan and Enns (2015b); Wahn et al. (2017b). That
is, if dyads surpassed the simulated joint performance, researchers inferred that members of
a dyad did collaborate (e.g., used a division of labour strategy). Importantly, in one these
earlier studies Wahn et al. (2017b), findings showed that dyads can already reach a collective
benefit in a joint visuospatial task even without a division of labour strategy. That is, due to
the mere fact that two people perform a task and are not collaborating, dyads can already
attain a collective benefit. Given these findings Wahn et al. (2017b) and if dyads and triads do
act independently as expected, we still predict to find collective benefits in the present study.

In sum, we aim to replicate the finding by Brennan and colleagues Brennan et al. (2008)
that dyads do outperform individuals in a joint visual search task and extend this finding
by testing whether they also do reach a collective benefit. Furthermore, we test whether
triads also reach a collective benefit, outperform dyads, and whether they outperform the
best dyad pairing within the triad. In addition, given that co-actors cannot exchange any
information during a trial, we test whether the joint search performance matches a simulated
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joint performance, which assumes that co-actors act independently. Finally, we test whether
similarities in the individual performance are a predictor of the collective benefit both for
dyads or triads. To investigate these goals, participants performed a joint visual search task,
in which they searched for a target among distractors either alone, in dyads, or in triads (Fig
2.1).

Fig. 2.1 Trial overview. Prior to the experiment, each participant was assigned to one avatar
(either a blue square, a red circle, or a violet triangle). Here, a trial overview from the
perspective of a participant with the blue square avatar is shown. Before a trial started,
participants saw whether they would perform the task alone (top row), in dyads (middle row),
or in triads (bottom row). The black underscore indicated the identity of the participant (i.e.,
in this case the blue square). Hence, members of a triad were always aware whether they
searched alone, in a dyad, or in a triad. In the search task, 36 objects are always displayed.
In half of the trials, one of these objects was the target object (i.e., a circle) among distractor
objects (i.e., circles with an antenna attached to it). Participants were required to indicate
whether a target was present or absent. They were instructed to perform the search quickly
but still accurately. In all conditions, only the first response counted to performance and the
search was terminated once a response was given. Then, participants received performance
feedback and were informed which co-actor responded.
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2.1.3 Materials and methods

Participants

60 students (39 female, M = 22.5 years, SD = 3.4 years) of the University of Osnabrück
participated in this study, which were recruited in 20 sets of triads. All participants had either
normal or corrected to normal vision. The study was approved by the ethics committee of
the University of Osnabrück. We informed participants about their rights and all participants
signed a written consent form. Participants either received a monetary reward or course
credits for participation.

Experimental setup

The experimental setup consisted of three computer screens (DELL U2713Hb, 2560 x 1440,
60Hz) placed next to each other, which were separated by wooden dividers. Participants sat
at a distance of 100 cm in front of the computer screens and a response box was placed in
front of them (The Black Box ToolKit). In order to minimize external noise, each participant
wore noise-canceling headphones. The experiment was programmed using Python (2.7.3).

Experimental procedure

In the experiment, participants performed a visual search task individually, in dyads or in
triads in a within-subject design. Prior to the experiment, each co-actor was assigned an
avatar (blue square, purple triangle, or red circle) and preceding each trial the number of
co-actors was indicated (i.e., whether participants were required search alone, in dyads, or
in triads). That is, members of a triad were always aware whether they searched alone,
in a dyad or in a triad. In a trial, participants were required to search for a circular target
object among 36 circular objects (radius: 36 pixels / 0.48 visual degrees) within a rectangle
subset of the screen (1680 x 1260 pixels, 22.51 x 16.88 visual degrees). The objects were
randomly distributed across the screen (minimum distance between objects 150 pixels / 2.01
visual degrees). The target and distractor objects differed in one feature: To each distractor
a small antenna (length: 4 pixels / 0.05 visual degrees) was attached, either orientated in
the 0, 90, 180, or 270 degrees direction, while no antenna was attached to the target object.
Participants’ task was to indicate whether the target was present or absent using the response
boxes. They pushed a green button if a target was present or a red button if the target was
absent. Once participants responded, they received performance feedback (i.e., whether their
response was correct or not) and which co-actor responded. In half of the trials, the target was
present. We instructed the participants to perform the search quickly and accurately. Note,
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when participants performed the search in dyads or triads, the first response within a group
terminated the search and only counted to performance. Each participant performed 144 trials
– 36 for each combination of co-actors and 36 individual trials. Conditions (i.e., whether
the task was performed alone, in dyads, or in triads) were pseudorandomly interleaved (i.e.,
repetitions of conditions in consecutive trials were avoided). The experiment took about 40
minutes. Note, participants were not allowed to communicate throughout the experiment and
could not see the other participants’ computer screens (i.e., wooden occluders were placed
between computer screens).

2.1.4 Results

In Fig 2.2a & b, a descriptive overview of the mean performance (i.e., search time & accuracy)
is shown as a function of the individual, dyad, and triad performance, separately for target
present and absent conditions. Note, for this overview, we first computed the average of
the individual and dyad performances within a triad and then averaged across triads. In
this overview, on a descriptive level, we observe that dyads search faster than individuals
and that triads search faster than dyads. Moreover, for the target present condition, search
accuracy tends to increase with group size while the opposite appears to be the case for
the target absent condition. Note, however, for the target absent condition the accuracy
approaches ceiling performance for all group sizes. We tested whether these observations are
statistically reliable by applying a two factorial repeated measures ANOVA with the factors
Group (Individual, Dyad, Triad) and Target (Absent, Present) for the dependent variables
search time and accuracy. For both ANOVAs, we tested the assumption of sphericity using
a Mauchly’s test for sphericity. If the assumption of sphericity was violated, we applied a
Greenhouse-Geisser correction. For the search times, we find a significant main effect of
Group (F(1.39,26.32) = 213.30, p < .001) and Target (F(1,19) = 627.88, p < .001) but no
significant interaction effect (F(2,38) = 0.19, p = .825). We followed up the ANOVA by
pairwise post-hoc comparisons. For this purpose, we averaged across the levels of the factor
Target and compared search times between the levels of the factor Group to test whether
dyads outperform individuals and whether triads outperform dyads. We find that dyads
perform the search significantly faster than individuals (t(19) = 14.32, p < .001), and that
triads perform the search significantly faster than dyads (t(19) = 8.70, p < .001). We repeated
this analysis for the dependent variable accuracy. We found a significant main effect for the
factor Group (F(2,38) = 26.84, p < .001) as well as for the factor Target (F(1,19) = 142.80,
p < .001) and a significant interaction effect (F(2,38) = 39.83, p < .001). As post-hoc tests
to test for group differences, we performed pairwise comparisons between the levels of the
factor Group, separately for the two factor levels of the factor Target. For the target present
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condition, we found that dyads perform a more accurate search than individuals (t(19) =
4.89, p < .001), and that triads perform a more accurate search than dyads (t(19) = 4.14, p <

.001). For the target absent condition, we found no significant differences between groups (ps
> .09). In sum, our findings suggest that dyads do perform a faster search than individuals
while triads do perform a faster search than dyads. For the target present condition and search
accuracy, we find the same pattern of results: Dyads perform a more accurate search than
individuals and triads perform a more accurate search than dyads.

Fig. 2.2 Descriptive overview. (a) Mean search time as a function of condition (i.e., searching
individually, in a dyad, or in a triad) separately for target present and absent conditions. (b)
Mean accuracy as a function of condition (i.e., searching individually, in a dyad, or in a triad)
separately for target present and absent conditions. Error bars in all panels are standard error
of the mean.

To test whether dyads actually reached a collective benefit (i.e., outperformed the best
member within a group) and whether interindividual similarities in performance are a pre-
dictor of the collective benefit, we calculated two measures. As a measure of the collective
benefit, we divided the better individual’s search time by the dyad’s search time for correctly
classified trials (i.e., participants correctly indicated whether a target was present or absent).
For this measure, a value above one would indicate a collective benefit (i.e., that dyads
outperform the better of the two individuals in a dyad). To test whether interindividual
similarities in performance predict the collective benefit, we also computed a measure of
the similarity of the individual search times for correctly classified trials. For this measure,
similar to earlier studies (Bahrami et al., 2010; Wahn et al., 2016b), we divided the best
member’s performance by the worst member’s performance. For this measure, the closer the
number is to one, the more similar the individual’s performances are. Note, however, that this
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measure does not take into account any search preferences of the individuals (e.g., whether
co-actors tend to search in a similar search pattern). We calculated both these measures
for each dyad, separately for target present and absent conditions and then averaged across
dyads within a triad (for a descriptive overview, see Fig 2.3a & b). Note, we averaged across
dyads within a triad to fulfill the statistical assumption of independent observations (i.e.,
performances of dyad pairings within a triad are dependent as each individual is involved
in two dyad pairings). On a descriptive level, both for target present and absent conditions,
dyads tend to outperform the better performance of the individuals. Moreover, the collective
benefit tends to slightly increase as a function of the similarity score. We tested whether
these observations are statistically reliable using t-tests and correlations. Using one sample
t-tests and testing against one, we found that dyads reached a collective benefit both for target
present (M = 1.24, SD = 0.14, t(19) = 7.61, p < .001) and target absent conditions (M =

1.06, SD = 0.06, t(19)= 4.45, p < .001). In addition, we found that the similarity of the
individual performances does significantly predict the collective benefit for the target present
condition (r = .44, t(18) = 2.11, p = .049) but not for the target absent condition (r= .33,
t(18) = 1.46, p = .161).

To address the possibility that dyads achieved a collective benefit at the expense of
performing a less accurate search (i.e., did not correctly indicate whether the target was
present or not present), we tested whether dyads outperformed the better of the two individual
performances also for the search accuracy, separately for target present and absent conditions.
For the target present condition, we found that dyads performed a more accurate search on a
descriptive level – however, their performance did not reach significance when performing
a one sample t-test and testing against one (M = 1.03, SD=0.11, t(19) = 1.33, p = .198).
For the target absent condition, however, we found that dyads performed a significantly less
accurate search (M= 0.98, SD = 0.03, t(19) = -4.11, p < .001).

In sum, these result suggest that the search time advantage for dyads for the target present
trials was not achieved at the expense of performing a less accurate search than individuals.
For the target absent condition, dyads searched faster only at the expense of performing a
less accurate search. Yet, we want to note that dyads still perform a highly accurate search,
which is close to ceiling performance. Moreover, similarities in the individual performance
are a predictor of the collective benefit for the target present condition.

To test whether triads can outperform the best dyad pairing in a group (i.e., attain
a collective benefit) and whether similarities in performance between dyads predict the
collective benefit of triads, we again computed two measures to quantify the collective
benefit and the similarities in performances between the dyads, respectively. To quantify the
collective benefit, for each triad, we divided the search time of the best dyad in a triad by the
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Fig. 2.3 Collective benefit overview. The collective benefit is plotted as a function of
similarity, separately for dyads ((a) Target present; (b) Target absent) and triads ((c) Target
present; (d) Target absent). For the ordinate, a value above one indicates a collective benefit.
For the abscissa, the closer the value is to one, the higher the similarity. Note, for panels (c)
and (d), the light gray points indicate comparisons between the triad performance and the
best individual performance in a triad.

search time of the triad. Again, a measure above one would indicate that triads outperform
dyads. Second, to quantify the similarities between dyads within a triad, we computed ratios
between each dyad pairing (i.e., divided the faster dyad’s performance by the slower dyad’s
performance) and averaged across these ratios for each triad. Again, the closer this ratio is to
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one, the more similar the performances of the dyads were. We calculated these measures for
each triad for correctly classified trials, separately for target present and absent conditions
(for a descriptive overview, see Fig 2.3c & d). On a descriptive level, both for target present
and absent conditions, only about a third of the triads outperform dyads and these triads tend
to have dyads which perform more similarly. These observations suggest that triads generally
did not reach a collective benefit but that similarities in the dyad’s performances still tend to
predict the collective benefit. We tested whether these observations are statistically reliable.
In line with these observations, using one sample t-tests and testing against one, we neither
found a collective benefit for the target present (M = 1.01, SD = 0.15, t(19) = 0.32, p =

.752) nor target absent (M = 1.00, SD = 0.05, t(19) = -0.07, p = .943) condition. Note,
however, when comparing the triads’ performances to the best members’ in the group (see
light gray points in Fig 2.3c & d), we found that triads still outperform the best individual
member of a group, both for target present (M = 1.29, SD = 0.27, t(19) = 4.88, p < .001)
and target absent (M = 1.09, SD = 0.07, t(19) = 6.12, p < .001) conditions. With regard to
the measure of the performance similarities, we found that the similarities in performance
between dyads still significantly predict the collective benefit for the target present condition
(r = .55, t(18) = 2.83, p = .011). However, this is not the case for the target absent condition
(r = .33, t(18) = 1.49, p = .154). We also tested whether triads performed a more accurate
search than dyads. In line with the results on the dyads’ collective benefit above, using one
sample t-tests and testing against one, we found that triads did not significantly perform a
more accurate search when a target was present (M = 1.02, SD = 0.13, t(19) = 0.76, p =

.456). As above, for the target absent condition, we found that triads actually performed a
significantly less accurate search (M = 0.97, SD = 0.04, t(19) = -3.96, p < .001). Again,
however, we want to note that the triads’ accuracy is close to ceiling performance. In sum,
these results suggest that triads did not reach a collective benefit (i.e., did not outperform the
best dyad pairing within the triad) but that similarities in performance are still a predictor
of the triads’ performances. Moreover, triads still do outperform their best member in the
group.

Given that members of a group do not have any means to communicate information within
a trial to coordinate their joint search (i.e., devise a division of labour strategy Brennan et al.
(2008); Wahn et al. (2017b)), we also predicted that members of a group act independently
of each other. Given this prediction, we tested whether the search performance by dyads and
triads would match a simulated independent performance (Brennan et al., 2008; Wahn et al.,
2017b). For this purpose, we simulated a hypothetical dyad and triad performance under the
assumption that the members of a dyad or triad acted independently (i.e., participants did
not change how they performed the search task depending on whether they were alone, in a
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Fig. 2.4 Comparison of simulated and actual performances. Simulated vs. actual search time
(in seconds) for target present and absent conditions, separately for dyads (a) and triads (d).
Predicted vs. actual search accuracy as a function of target present and absent conditions
separately for dyads (b) and triads (c). Error bars in all panels are standard error of the mean.
Lines in lighter colors show the non-aggregated data.

dyad, or in a triad). For this simulated independent performance, for dyads, we randomly
sampled the performance (i.e., search time and accuracy) of a trial from each dyad member’s
individual trials. We then compared these performances and selected the faster of the two
search times and the corresponding accuracy of the faster search time (i.e., whether the trial
was correctly or incorrectly classified as target absent or present). The rationale behind this
sampling is that if members of a dyad would independently perform the search task, the
faster of the two members would press a key first to indicate whether a target is present or
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absent, thereby ending the trial. We performed this random sampling for a 1000 iterations for
each dyad, separately for target present and absent trials. We averaged across the sampled
search times and accuracies for each dyad, separately for the target present and absent
conditions. We repeated this procedure also for triads. In order to estimate the triads’
independent performances, we sampled search times and accuracies from all three individual
performances and selected the fastest search time and the corresponding accuracy. We then
assessed whether the simulated independent performance matches the actual dyads’ and
triads’ performances. On a descriptive level, we found that the stimulated search times match
the actual search times of dyads and triads closely (see Fig 2.4a & b), both for target absent
and present trials. With regard to the search accuracies, the simulated averaged performance
does match the actual performance both for dyads and triads (see Fig 2.4c & d). With
regard to the dyads, we tested whether the actual performance significantly differs from
the simulated performance using a 2x2 repeated measures ANOVA with the factors Target
(Absent, Present) and Performance (Actual, Simulated). For the search times, we found
no significant main effect of Performance (F(1,19) = 1.30, p = .268) or interaction effect
(F(1,19) = 1.03, p = .322). We only found a significant main effect of Target (F(1,19)
= 447.82, p < .001). We found the same pattern of results also for the search accuracy.
That is, we found no significant main effect of Performance (F(1,19) = 1.74, p = .203)
or interaction effect (F(1,19) = 0.58, p = .457). We only found a significant main effect
of Target (F(1,19) = 120.00, p < .001). For the triads, we performed the same analyses,
again using a 2x2 repeated measures ANOVAs with the factors Target (Absent, Present)
and Performance (Actual, Simulated) and found the same pattern of results. That is, with
regard to the search times, we found no significant main effect of Performance (F(1,19) =
1.94, p = .179) and interaction effect (F(1,19) = 0.42, p = .523), and a significant effect of
Target (F(1,19) = 360.14, p < .001). For the search accuracy, we found no significant main
effect of Performance (F(1,19) = 2.89, p = .106), Target (F(1,19) = 3.65, p = .071), and
no significant interaction effect (F(1,19) = 0.56, p = .450). In sum, these results indicate
that for dyads as well as for triads the simulated independent performances closely match the
actual joint performances.

2.1.5 Discussion

In the present study, we investigated how well groups of different sizes (individuals, dyads,
or triads) perform in a joint visual search task, in which participants had no means to
exchange any information. We tested whether dyads outperform individuals and whether
triads outperform dyads. Examining the averaged performances, we found that dyads indeed
perform a faster search than individuals and triads perform a faster search than dyads. While
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the performance benefit for dyads does replicate earlier findings by Brennan and colleagues
(Brennan et al., 2008), the performance benefit for triads is a novel finding, which suggests
that increasing the group size does lead to additional benefits. Moreover, we tested whether
dyads achieved a collective benefit. That is, we investigated whether dyads searched faster
than the best group member’s individual search performance. We found that dyads did reach
a collective benefit when a target was present and when it was absent. In the latter case,
dyads reached this speed advantage at the expense of performing a slightly less accurate
search than individuals. Search accuracies for the target absent condition, however, were
close to a ceiling performance across group sizes. That is, dyads still performed a highly
accurate search in the target absent condition. These findings extend earlier findings for
joint visual search tasks (Brennan et al., 2008) by showing that dyads can not only achieve a
group benefit but also can achieve a collective benefit in a joint visuospatial task, in which
they were not allowed to exchange any information. In particular, we have shown that dyads
outperform the best member of the two members of a dyad. Due to the between-subject
design in an earlier study (Brennan et al., 2008), this aspect could not be addressed before.
The fact that dyads performed a slightly less accurate search than individuals when a target
was absent could be explained by the lack of information exchange. That is, members of
a dyad had no means to agree on stopping the search (i.e., that a target was not present),
possibly leading to searches that were stopped prematurely. Interestingly, in a recent study
(Brennan and Enns, 2015b) in which dyads were allowed to verbally communicate, dyads
did reach a collective benefit regardless of whether a target was present or not, highlighting
the importance of an information exchange during a joint visual search.

In addition, we also investigated collective benefits for larger group sizes (i.e., triads).
That is, we investigated whether triads reach a higher search performance than the best dyad
pairing within a triad. In contrast to the results above, we found that triads did not reach a
collective benefit, indicating that the collective benefit found for dyads does not necessarily
scale up to larger group sizes. As noted above, based on the averaged performances, triads
still outperform dyads and we also found that triads outperform the best member of the group.
Yet, triads do not outperform the best dyad combination within the triad. Future studies are
needed to verify whether this result cannot alternatively be explained by a ceiling effect.
That is, a future study could investigate whether the collective benefit for triads relative to
dyads might be present for larger stimuli set sizes compared to smaller ones. In addition,
when a target was absent, triads actually performed a less accurate search than dyads. Again,
it should be noted that triads still performed a highly accurate search close to a ceiling
performance. Given that dyads already performed a less accurate search than individuals,
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these findings suggest that the severity of the lack of information exchange increases with
group size.

Apart from investigating whether dyads and triads achieve a collective benefit, we also
investigated whether the collective benefit can be predicted by the similarity of the individuals’
and dyads’ performances, respectively. With regard to the dyads’ collective benefit, we found
that the similarity of the individual performances significantly predicted the dyads’ collective
benefit when a target was present. Similarly, for the triads’ collective benefit and when a
target was present, we found that the similarity of the dyads’ performances significantly
predicted the collective benefit for triads as well. These results extend earlier findings that
showed that similarities of the individual performances predict the collective benefit for a
joint visuomotor task Wahn and König (2016) and a joint perceptual decision-making task
(Bahrami et al., 2010), suggesting that similarities between the individual performances could
be a general predictor for collective benefits across several joint tasks. In addition, finding
this effect also for triads suggests that similarities in performance could also be a predictor
for collective benefits for larger groups performing joint visuospatial tasks. Future studies
could aim to quantity similarities of the individual performances on a more detailed level.
That is, a future study could relate similarities in how participants search individually to each
other. That is, co-actors might have similar search patterns when performing the search task
alone (e.g., both co-actors start searching on the left half of the screen and then move to the
right half of the screen). Quantifying similarities on such a more detailed level might lead to
different results as for instance more complementary search patterns could lead to a higher
joint performance than similar search patterns. Moreover, future studies could investigate
whether similarities in performance are also a predictor of the collective benefit in other joint
cognitive tasks such as memory tasks (Bietti and Sutton, 2015; Rajaram and Pereira-Pasarin,
2010) or problem-solving tasks (Laughlin et al., 2002, 2006).

When a target was absent, however, the similarities in performance did not significantly
predict the collective benefit neither for dyads nor triads. Given the reduction in search
accuracy for dyads and triads for target absent trials, respectively, it could be that the search
times for this condition do not fully reflect how long participants would have taken to
accurately complete the search. Therefore, we suspect that the correlations could be over-
or underestimated in the current study. A future study could address this point by allowing
groups to exchange information (e.g., verbally communicate) while performing the joint
visual search task and test whether similarities in performance predict the collective benefit
when a target is absent. Moreover, finding no significant correlation for target absent trials
could be informative to understand under which circumstances similarities in performance
are a predictor of the collective benefit and when this is not the case. In earlier studies that
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did find that similarities in performance predict collective benefits, co-actors were allowed to
exchange information (i.e., either verbally (Bahrami et al., 2010) or they saw the effect of
their co-actors’ actions on the computer screen Wahn et al. (2016b)). Here, we only found
that similarities in performance are a predictor for target present but not for target absent
trials. Moreover, we argued above that the severity of the lack of information exchange was
at least more pronounced in target absent trials as co-actor’s had no means to agree on when
to stop the search. Taken together, we suggest that similarities in performance are a predictor
of collective benefits in joint tasks in which either information is exchanged or in which there
is no need to exchange information. Future studies could further investigate how the relation
between individual performance similarities and collective benefits depend on an information
exchange between co-actors in a joint task.

Finally, as dyads and triads were not allowed to exchange any information in the present
study, we predicted that group members would act independently (i.e., they are not col-
laborating). To test this prediction, we simulated dyad and triad performances based on
the individual performances, which assumed no interaction between members of a group
(Brennan and Enns, 2015b; Wahn et al., 2017b). We found that the simulated performances
closely match the dyads’ and triads’ actual performances, suggesting that members of a
group indeed act independently for the present search task. Given that in the present search
task members of a group did not have any means to exchange information during a trial to
coordinate their joint search, this result validates our simulated independent performance.
Moreover, the present study provides a basis for future studies which allow an exchange
of information between co-actors. That is, future research could further investigate how an
exchange of task-relevant information during a trial increases joint performance relative to a
simulated independent performance (Brennan and Enns, 2015b; Wahn et al., 2017b). With
such a comparison, it can be differentiated how much of a collective benefit can be attributed
to an actual collaboration between members of a group and how much of the benefit can be
attributed to the mere performance benefit due to jointly performing a task. Moreover, we
want to emphasize that in the case of dyads, participants still reached a collective benefit
even though members of a group did act independently. In line with earlier findings (Wahn
et al., 2017b), findings of the present study suggest that groups can already reach a collective
benefit in a joint visuospatial task, in which members of a group act independently (i.e., do
not collaborate).

As a point of note for future studies, the present study did not investigate how the social
presence of co-actors affects joint performance. In the study by Brennan and colleagues
(Brennan et al., 2008), participants sat in separate rooms while in the present study partici-
pants sat next to each other. Work on social facilitation effects has investigated whether the
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mere presence of another person which does not perform any task can affect performance
(e.g., Tsai et al., 2006). A future study could address whether the simulated independent
performance also matches the actual joint performance in a setting in which co-actors sit in
separate rooms.

In sum, the present study extends earlier findings on joint visual search by showing
that dyads can achieve a collective benefit in the absence of any information exchange.
However, these findings do not necessarily generalize to larger group sizes (i.e., triads) as
no collective benefits were found for triads. That is, triads did not outperform the best dyad
combination within the triad. Yet, triads still reached a higher performance than dyads and
the best individual member in a triad, suggesting that increasing the group size still leads to
group benefits. Moreover, the similarities in performance are a predictor of the collective
benefit regardless of whether dyads or triads perform a joint visual search task. The latter
finding combined with earlier studies (Bahrami et al., 2010; Wahn et al., 2016b) suggests
that similarities in performance could be a general predictor of collective benefits across
joint tasks. Moreover, findings suggest that the joint performance of dyads and triads in
visuospatial tasks in which no information is exchanged can be well simulated based on the
individual performances. The present study therefore provides a basis on which future studies,
in which information between co-actors is exchanged, can built on. That is, future studies
can test to what extent allowing an exchange of information can improve joint performance
beyond a simulated independent performance.
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2.2 Dyadic and triadic search: Benefits, costs, and predic-
tors of group performance

2.2.1 Abstract

In daily life, humans often perform visual tasks, such as solving puzzles or searching for a
friend in a crowd. Performing these visual searches jointly with a partner can be beneficial:
The two task partners can devise effective division of labour strategies and thereby outperform
individuals who search alone. To date, it is unknown whether these group benefits scale
up to triads or whether the cost of coordinating with others offsets any potential benefit for
group sizes above two. To address this question, we compare participants’ performance in a
visual search task that they perform either alone, in dyads, or in triads. When the search task
is performed jointly, co-actors receive information about each other’s gaze location. After
controlling for speed-accuracy trade-offs, we found that triads searched faster than dyads,
suggesting that group benefits do scale up to triads. Moreover, we found that the triads’
divided the search space in accordance with the co-actors’ individual search performances but
searched less efficiently than dyads. We also present a linear model to predict group benefits,
which accounts for 70% of the variance. The model includes our experimental factors and a
set of non-redundant predictors, quantifying the similarities in the individual performances,
the collaboration between co-actors, and the estimated benefits that co-actors would attain
without collaborating. Overall, the present study demonstrates that group benefits scale up to
larger group sizes, but the additional gains are attenuated by the increased costs associated
with devising effective division of labour strategies.

Keywords: social cognition; joint action; collaboration; group benefits; visual search

2.2.2 Introduction

Humans frequently perform tasks collaboratively (Frith and Frith, 2012; Sebanz et al., 2006a;
Vesper et al., 2017a). These tasks are often visual in nature and are performed while people
reside in the same physical location – for instance, when jointly looking at maps, looking
for a friend in a crowd, or jointly solving puzzles. Alternatively, humans may also reside in
remote locations while performing visual tasks together – for instance, when jointly playing
computer games online or working on research reports in shared online documents. In such
situations, co-actors may distribute task demands to reach a higher performance compared to
when performing the same task alone (i.e., there is a “group benefit”). For instance, when
searching for a friend in a crowd, one person may search the left half of the crowd while the
other searches the right half (Brennan et al., 2008).
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Research on group benefits in joint visual tasks has investigated a number of factors
that influence if, and to what extent, groups can outperform individuals (Bahrami et al.,
2010; Brennan and Enns, 2015a,b; Brennan et al., 2008; Szymanski et al., 2017b; Wahn
et al., 2018a, 2017b, 2018c). A prominent factor is the availability of information about the
co-actors’ actions (Brennan et al., 2008; Neider et al., 2010; Wahn et al., 2017b, 2016c).
For instance, in a joint visual search task (Brennan et al., 2008), pairs of participants were
instructed to search for a target among distractor stimuli on a computer screen, and one of
the manipulated factors was the availability of gaze information. Specifically, each co-actor
received information as to where their partner was looking via a cursor that was displayed on
the computer screen. Brennan et al. (2008) found that pairs who received gaze information
outperformed participants searching alone by using the information about the co-actor’s
actions to effectively distribute the labour in the visual search task. For instance, one co-actor
may search the left part of the screen while the other co-actor may search the right part of the
screen. In sum, these findings suggest that the availability of information about each other’s
actions (henceforth, referred to as “receiving action information”) is an important factor that
enables pairs to attain a group benefit.

As a point of note, in the experimental design by Brennan et al. (2008) participants were
in different rooms and they could not see each other. Gaze information of the co-actor was
delivered via a cursor displayed on one’s computer screen. Thus, it might be argued that this
situation does not resemble any real-world scenarios where people search together. While
such a point might have been valid in 2008, in present times people frequently perform tasks
collaboratively online in remote locations and receive abstracted online information about
a co-actors’ actions (e.g., a moving mouse cursor). Thus, experimental designs as used by
Brennan et al. (2008) are becoming increasingly more relevant to present day collaborative
tasks.

While group benefits have been demonstrated for dyads (Brennan et al., 2008), it is un-
known whether comparable results apply to group sizes larger than two. Does the availability
of information about each other’s actions lead to benefits in performance for triads over and
above the benefits for dyads? As stated above, in the earlier study by Brennan et al. (2008),
co-actors used the gaze information to effectively distribute the labour. Co-actors in triads
may similarly use such information about each other’s actions to devise effective division of
labour strategies to outperform dyads and attain a group benefit. Alternatively, they could be
overwhelmed by the demands to effectively coordinate with two co-actors and fail to attain
a group benefit. That is, each member of a triad would need to keep track of the search
locations of two co-actors compared to tracking the search location of only one co-actor
as in Brennan et al. (2008). Relatedly, research on an object tracking task – a task where
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participants track the movements of multiple objects among distractors – has quantified how
increases in the number of tracked targets lead to a higher attentional load (Alnæs et al., 2014;
Sternshein et al., 2011; Wahn et al., 2016a). Hence, while adding an additional co-actor
would potentially boost joint performance, such an addition would also increase attentional
demands placed on co-actors.

Another reason why increasing group size beyond two in a visual search task may not
lead to additional benefits is the following. Consider the idealized case of two co-actors
who search equally fast when searching alone (e.g., both take 15 seconds) and who perfectly
distribute the search space in two equal halves when searching jointly. In this case, the best
possible dyad search performance is a performance that is half of the individual search time
(7.5 seconds) as each co-actor will finish searching half of the search display within that
period. For three co-actors, again assuming the same individual search times and a perfect
division of labour in three parts, the best possible triad search performance can only result in
one third of the individual search time performance (5 seconds) as each co-actor will take
that time to search one third of the search display. In other words, the possible benefit for
performing a search in a dyad relative to individuals will maximally reduce the search times
by half. The possible incremental benefit for performing a search in triads relative to dyads
may reduce the search times by maximally one third.

In sum, when considering these two points (i.e., the rising attentional demands and the
lower expected group benefit for triads compared to dyads), it is unclear whether providing
co-actors in a triad with gaze information about each other’s actions would still lead to
additional benefits.

What we know so far about joint visual search in triads comes from our own earlier study
(Wahn et al., 2018b). In this study, participants performed a visual search either alone, in
dyads, or triads in a within-subject design. Importantly, while performing the search task
co-actors did not receive any information about each other’s actions. The only information
that was provided was performance feedback at the end of a trial. We found that dyads
outperformed individuals but triads did not significantly outperform dyads. These findings
suggest that group benefits do not scale up from dyads to triads when triad members are not
provided with information about each other’s actions. However, it is still unclear whether
adding gaze information is sufficient for triads to outperform dyads.

In line with other studies (Bahrami et al., 2010; Wahn et al., 2017b), we assessed
group benefits in our earlier study on triadic visual search by testing (a) whether the dyad’s
performance exceeds the performance of the best individual member of the dyad and (b)
whether the triad’s performance exceeds the best dyad pairing within each triad. Defined
this way, the group benefit is also referred to as a “collective benefit” (Bahrami et al., 2010;
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Wahn et al., 2018a, 2017b). One may propose that the averaged responses (across individuals
or dyad pairings) instead of the best individual’s performance or the best dyad pairing,
respectively, should serve as a comparison to assess group benefits. Yet, we argued in our
earlier study that these comparisons may lead to incorrect conclusions about whether a group
benefit is actually attained or not. To illustrate this important point, consider the case of a
dyad where the better member of the pair frequently finds the target first. In this case, the
joint search performance will be highly similar to the better member’s individual search
performance. If one then computes the average of the individual search times, it will be
higher than the better member’s individual search time and higher than the actual search
time of the dyad. Taken at face value this seems to suggest a group benefit that exceeds the
expected value based on the average of the individual performances. But to conclude that
there is a real group benefit would be misleading as the better member of the group is not
benefiting from performing the search with another (for an in-depth consideration of this
type of issue, see Wahn et al. (2018c)). The same logic can also be extended to triads as one
dyad pairing within a triad could be driving the effect.

At this point, it is important to consider in some detail how a group benefit may generally
arise in this type of task. There are essentially two alternatives. (1) A group benefit can arise
when co-actors actively collaborate by dividing the labour. (2) A group benefit can arise
when co-actors search independently in parallel. In our previous study where participants
did not receive any information about each other’s actions, there was no real possibility for
co-actors to collaborate. And by briefing participants after the experiment, we confirmed that
they did not use any collaborative strategy such as division of labour. We simulated this non-
collaborative/independent joint performance by repeatedly sampling co-actors’ responses
from the trial distributions of the individual condition where participants searched alone and
then extracting the faster of the two (dyad) or three (triad) responses (Wahn et al., 2018a).
The simulated joint performance closely matched the actual joint performance for dyads
and triads, thereby confirming that co-actors searched independently and did not collaborate
by dividing the labour. Thus, our previous study suggests that two co-actors can achieve a
collective benefit simply by acting independently in parallel, yet three co-actors in a triad
cannot achieve this benefit when they act independently. We further reasoned that if co-actors
attained a joint performance that exceeded the results of our simulation, this would suggest
that co-actors did not merely act independently but actively collaborated by distributing the
labour. To differentiate this type of group benefit criterion from a collective benefit (that
can be attained through independent action), we will refer to this as a “collaborative benefit”
(Wahn et al., 2018a). These two criteria allow to address two different but related questions:
The criterion for a collective benefit answers whether a group benefit is attained at all and
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the criterion for a collaborative benefits answers (2) how this benefit is achieved (through
independent action or collaboration).

In sum, our earlier study (Wahn et al., 2018a) addressed group benefits in a dyadic and
triadic joint search task using different criteria to address group benefits but it did not examine
how the availability of information about each other’s actions affects co-actors’ performance.
Given that the availability of action information has been shown to be highly beneficial
for dyads in visuospatial tasks (Brennan et al., 2008; Wahn et al., 2017b), receiving such
information may also enable co-actors in a triad to attain a collective benefit. Alternatively,
the higher attentional demands and the lower expected group benefit for triads compared to
dyads may offset any potential collective benefits. It is the aim of the present study to test
these alternatives. Additionally, we aim to determine whether receiving action information
enables co-actors in a triad to actively collaborate and thus attain a collaborative benefit.
We also compare the efficiency of potential collaborative strategies and how collaborative
strategies may differ between dyads and triads.

While the primary goal of the present study is to investigate whether receiving action
information enables triads to attain collective benefits or not, a secondary goal is to also
go one step further in our analysis and use a statistical model to assess the contributions of
several factors in joint visual search that could predict if, and to what extent, groups attain
collective benefits. To date, researchers have investigated several factors that are related to
group benefits in visuospatial tasks (for a recent review, see Wahn et al. (2018c)). Yet, an
overall statistical model that combines several factors is lacking. Such a model could inform
researchers about the relative importance of different factors and to what extent they explain
separate or redundant variance when predicting group benefits in visual tasks. More generally,
such a model has the potential to serve as a spring board for making predictions in other joint
tasks and explaining the observed effects. As a first step towards devising such a statistical
model, we use predictors that have been shown to affect or predict group benefits as well as
those that are likely to make additional contributions towards predicting group benefits. The
variables used in the model encompass categorical variables manipulated in the experiment
(i.e., target presence or absence; dyads or triads) as well as continuous variables that vary
across dyads and triads (i.e., similarities in individual performances, overlap in search space,
& the simulated joint performance that dyads and triads would achieve if co-actors acted
independently) (Brennan et al., 2008; Wahn et al., 2018a, 2017b).
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2.2.3 Materials and methods

Participants

63 students (48 female, M = 21.9 years) of the University of Osnabrück participated in
this study to closely match the sample size and statistical power from our earlier study
(Wahn et al., 2018a). The study was approved by the ethics committee of the University of
Osnabrück. All participants were informed about their rights, were fully informed on the
procedures, had the opportunity to ask open questions and signed a written consent form.
Participants either received a monetary reward or course credits for participation.

Experimental setup

The experimental setup consisted of three computer screens (DELL U2713Hb, resolution
2560 x 1440, 60Hz) placed next to each other. Participants sat at a distance of 100 cm in front
of the computer screens. Each participant was in control of one computer mouse (DELL
XN966). Seating positions were separated by wooden dividers and participants were asked
to wear noise cancelling headphones throughout the experiment.

Experimental procedure

Before starting the actual experiment, each participant was randomly assigned to one of
three avatars (blue square, purple triangle, or red circle). These avatars were used to index
whether participants perform the search alone, in dyads, or in triads and with which co-actors
they would perform the search. That is, the computer screen would either display one, two,
or three avatars, indicating that the search will be performed alone, in dyads, or in triads,
respectively. Moreover, participants were familiarized with the task with 4-8 training trials,
in which they randomly either performed the search task alone, in dyads, or in triads.

In the experiment, participants were instructed to search for a target object among
distractor objects either alone, in dyads, or in triads in a within-subject design. In the search
task, the target object was a circle (radius 36 pixels, 0.48 visual degrees) and distractor
objects were circles of the same radius with antennas (4 pixels, 0.05 visual degrees) oriented
at 0, 90, 180, and 270 degrees. 36 objects were randomly placed within a square frame
(1240 x 1170 pixels, 16.62 x 15.68 visual degrees) centred in the middle of the screen.
Stimuli were at least 150 pixels (2 visual degrees) apart from each other and in half of
the trials the target object was present. The search space was occluded and only a small
circular portion, henceforth, referred to as “spotlight”, of the screen was visible for each of
the participants. Each participant could move their individual spotlight using the computer
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mouse to temporarily uncover parts of the screen. All computer mice were set to the same
speed and the spotlight was always placed at the position of the computer mouse throughout
the experiment. Importantly, when the search was performed in dyads or in triads, each
co-actor could see circular outlines of the spotlights of the other co-actors on the computer
screen. The outlines of the spotlights of co-actors were colored in the colors of their avatars.
That is, each co-actor could see where the other members of the group were looking at the
screen when they performed the search task in dyads or triads. However, for each co-actor,
the viewed locations by the other co-actors were still occluded and only the space at the
position of their own spotlight temporarily uncovered the occluded parts of the screen. To
end the search, the participants’ task was to respond using buttons of the computer mouse to
indicate whether the target was present (right mouse button) or absent (left mouse button).
Importantly, the first response in each condition (i.e., searching alone, in dyads, or triads)
ended the search. Participants then received performance feedback, i.e., whether the response
was correct or not. Additionally, they were informed which co-actor responded. For an
overview of an example trial sequence, see Figure 2.5. As a point of note, participants were
instructed to respond as fast and as accurately as possible and to collaborate when performing
the search in dyads or in triads. Moreover, participants were instructed to not communicate
by any means with each other throughout the experiment. That is, the only information
participants received from their co-actors was received via the information provided in the
experiment. Each participant performed 144 trials comprising 36 trials for each possible
combination of co-actors. The order of trials was randomized, yet repetitions of the same
conditions in consecutive trials were avoided. The experiment took about 40 minutes to
complete.

The experiment was programmed using the Python library pygame (Shinners, 2011) and
the experimental procedure and data collection were controlled by Python 2.7.3. The experi-
ment was run on four Dell precision T1700 computers: One server computer coordinating
the sequence of events for three client computers, which were connected to the server via
network cables.

After measurements were completed, participants filled out a questionnaire, in which
they were asked to describe their collaborative strategies (if they had any) when performing
the task in dyads or in triads.
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Fig. 2.5 Trial logic overview. Displayed is the trial logic from the perspective of a participant
assigned with the blue avatar, separately for searching alone (top row), in a dyad (second
row), or in a triad (bottom row). At the beginning of a trial, the computer screen would
either display one, two, or three avatars, indicating that the search will be performed alone,
in dyads, or in triads, respectively. Followed by that, each participant searches for a target
among distractors by moving her/his spotlight using the computer mouse. When the search
is performed in dyads or triads, participants see the outline of their co-actors’ spotlights (see
second and bottom rows, respectively). Participants ended a trial by either indicating that a
target is present (right mouse button) or absent (left mouse button).

2.2.4 Results

Collective benefits for dyads

We first assessed whether dyads attain a collective benefit for the search times. We separated
our analysis into target present and absent trials as earlier research on joint visual search
found considerable performance differences between these two types of trials (Brennan et al.,
2008; Wahn et al., 2018a). To address whether dyads attained a collective benefit and in
line with earlier studies (Bahrami et al., 2010; Wahn et al., 2018a, 2017b), we calculated
collective benefit ratios for each dyad. In particular, we divided the better member’s mean
search time from the individual search condition by the dyad’s mean search time of the dyadic
search condition. As smaller numbers, i.e. faster search times, represent better performance,
a ratio above one would indicate that a collective benefit was reached. As a general point
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of note for all other ratios calculated later in this results section, all ratios are calculated in
such a way that a value above one would indicate that a benefit is reached. To accommodate
the independence of observations assumption required for performing inferential statistical
tests, i.e., circumvent the issue that the performance of dyads pairings within a triad are
correlated, we averaged across all dyad pairings within a triad. As a result, as the averaged
dyad pairings of a triad are independent from the averaged dyad pairings of another triad we
can be assured that the independence of observation assumption is fulfilled. Moreover, by
averaging across the dyad pairings for each triad, we match our degrees of freedom of the
analyses performed on dyads to the analyses performed later on to assess group benefits for
triads. Before applying one sample t-tests to test whether groups attain a collective benefit,
we checked the assumption of normality with a Shapiro-Wilk Test. In case of violations of
normality, we apply non-parametric comparisons (i.e., Wilcoxon signed-rank test) instead
of one sample t-tests. We follow the same procedure also for testing collaborative benefits
later on. We find a ratio significantly above one both for target present (M = 1.57, SD =

0.18, t(20) = 13.70, p < .001) and target absent (M = 1.55, SD = 0.18, t(20) = 18.82, p <

.001) conditions (see Figure 2.6A, for a descriptive overview). Thus, we observe a significant
collective benefit for dyads.

As for the search times, we also calculated collective benefit ratios for the search accuracy
(i.e., whether a trial was correctly classified as a target present or target absent trial). That is,
we divided the search accuracy of the dyad by the search accuracy of the better member in
the dyad. Again, for this ratio, a value above one would indicate that a collective benefit for
the search accuracy was attained. For the search accuracy, we observe both for target present
(M = 0.90, SD = 0.06, t(20) = -8.23, p < .001) and target absent trials (M = 0.95, SD =

0.06, z = -3.37, p < .001) a ratio below one – see Figure 2.6B, for a descriptive overview.
Yet, we also observe that the reduction in accuracy is relatively small (10% for target present
and 5% for target absent trials) and that the search accuracy performance is generally high
for dyads (target present: M = 0.82, SD = 0.07; target absent: M = 0.94, SD = 0.06). Thus,
contrary to the search times, dyads performed a significantly less accurate search compared
to the better member in a group.

Taken together, for testing whether dyads attain a collective benefit, we find that dyads
perform a faster search than individuals. Yet, this search time advantage comes with a cost:
Dyads perform a slightly less accurate search than individuals.

To further address this speed-accuracy trade-off, we combined the search times and
accuracies into a single measure. In particular, we calculated inverse efficiency scores
(Townsend and Ashby, 1978, 1983) for each dyad by dividing the mean search times of
correct trials by the search accuracies for each dyad. To test whether dyads also attain a
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Fig. 2.6 Collective benefits overview. Mean collective benefit as a function of target presence
(absent or present), separately for the search times (dyads in panel A; triads in panel C) and
search accuracy (dyads in panel B; triads in panel D). Individual data points are displayed in
grey. Error bars in all panels are standard error of the mean.

collective benefit for the inverse efficiency scores, we calculated for each dyad a ratio by
dividing the inverse efficiency score of the better individual member by the inverse efficiency
score of the dyad. Again, a score above one indicates that dyads attained a collective benefit
when taking into account the speed-accuracy trade-off. Testing these scores against one, we
find significant differences for target present (M = 1.51, SD = 0.18, t(20) = 12.51, p < .001)
and target absent conditions (M = 1.52, SD = 0.17, t(20) = 13.70, p < .001). In sum, after
controlling for speed-accuracy trade-offs, we find that dyads still significantly outperform
individuals.
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Collaborative benefits for dyads

Attaining a collective benefit, however, does not provide an indication whether dyads also
attained a collaborative benefit. For assessing the collaborative benefit, we first simulated a
joint performance for each dyad under the assumption that members of a dyad act indepen-
dently (Wahn et al., 2018a). That is, we aimed to simulate a joint performance that dyads
would achieve if they act independently in the search task. For this simulation, for each dyad
pairing, we repeatedly drew a trial from each of the two members’ trial distributions when
they were searching alone, separately for target present and absent trials. For these two trials,
we selected the faster search time of the two and also the corresponding search accuracy. We
repeated this procedure a 1000 times and then averaged across the selected trials. As noted
in the introduction section, we found in our earlier study (Wahn et al., 2018a) that such a
simulation closely matched the actual joint performance of independently acting co-actors in
a dyadic visual search task, validating this simulation approach.

To assess whether dyads attained a collaborative benefit, we again calculated ratios by
dividing the simulated search performance by the dyad’s actual search times. A ratio above
one would indicate that dyads attained a collaborative benefit. To again account for the
potential dependence of observations between dyads within a triad, we averaged ratios across
the dyad pairings for each triad. We find significant differences from one for target present
(M = 1.18, SD = 0.14, t(20) = 5.92, p < .001) and target absent (M = 1.49, SD = 0.12,
t(20) = 19.65, p < .001) conditions – see Figure 2.7 A, for a descriptive overview. These
results indicate that dyads collaborated in the present joint search task, enabling them to
attain a higher joint performance than the simulated joint performance.

We repeated this analysis also for the search accuracies. That is, we again calculated ratios
by dividing the dyad’s actual accuracy performance by the simulated accuracy performance.
Again, a ratio above one would indicate that dyads attain a collaborative benefit with regard
to the search accuracies. Accounting for the potential dependence of observations between
dyads within a triad, we averaged across the ratios of the dyad pairings for each triad. We
find that dyads performed the search significantly less accurately than individuals when the
target was present (M = 0.90, SD = 0.06, t(20) = -7.49, p < .001). However, we found no
significant differences when the target was absent (M = 0.99, SD = 0.06, t(20) = -0.63, p =

.534).
As for the collective benefit, to address this speed-accuracy trade-off, we also investigated

inverse efficiency scores for the collaborative benefit. For this purpose, we calculated inverse
efficiency scores also for the simulated dyad performances. To assess whether dyads attain a
collaborative benefit, we divide the inverse efficiency scores based on the simulation by the
actual inverse efficiency scores of the dyads. Again, to account for the potential dependence
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Fig. 2.7 Comparison between simulated independent performance and actual data to assess
collaborative benefits. Search times are shown as a function of the actual and simulated
data (in A for dyads, in C for triads). Search accuracies are also shown as a function of the
actual and simulated data (in B for dyads, in D for triads). The factor target presence is
colour-coded (and also differentiated by the line type (dashed, for target present; dotted for
target absent) in all panels. The lines display individual dyads or triads, respectively. Error
bars in all panels are standard error of the mean.

of observations between dyads within a triad, we averaged across the ratios of the dyad
pairings for each triad. Testing these ratios against one, separately for the target present
and absent conditions using one sample t-tests, we find that dyads attain a collaborative
benefit for the target absent condition (M = 1.41, SD = 0.16, t(20) = 11.29, p < .001)
but not for the target present condition (M = 1.03, SD = 0.13, t(20) = 1.08, p = .293).
These findings suggest that the search time benefits of collaborating do not outweigh the
accuracy costs for the target present condition. Yet, as noted above for the collective benefit,
dyads still attain a collective benefit after taking into account speed-accuracy trade-offs.
For the target absent condition, as noted above, there were no significant accuracy costs
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when comparing the dyads’ performance to the simulated joint performance and also after
accounting speed-accuracy trade-offs, dyads still attain a collaborative benefit.

Collective benefits for triads

For triads, we repeated the same analysis as above for dyads. That is, we tested whether
triads attained a collective benefit and a collaborative benefit for the dependent variables
search time and search accuracy. As in our earlier study (Wahn et al., 2018a), we extended
the definition of a collective benefit for triads by comparing the triads’ performance to the
best dyad pairing within the triad. That is, to calculate collective benefit ratios, we divided
the search time of the best dyad pairing from our dyadic search condition within a triad
by the search time of the triad from our triadic search condition. As above, a value above
one would indicate that triads attained a collective benefit. We observe a ratio significantly
different from one both for target present (M = 1.20, SD = 0.21, t(20) = 4.53, p < .001)
and target absent (M = 1.12, SD = 0.10, z = 3.98, p < .001) conditions (see Figure 2.6C,
for a descriptive overview). Thus, triads are able to attain a collective benefit in the present
experimental conditions.

For the search accuracies, analogously as for the calculations for the dyads above, we
divided the search accuracy of the triad by the best dyad’s search accuracy. Again, a value
above one would indicate that dyads attained a collective benefit. As for the dyads above, we
find that triads perform a significantly less accurate search compared to the best dyad pairing
in a group, both for target present (M = 0.93, SD = 0.12, t(20) = -2.42, p = .025) and target
absent trials (M = 0.96, SD = 0.06, z = -2.21, p = .026) – see Figure 2.6D, for a descriptive
overview. As above for the dyads, we also observe that these accuracy reductions are again
relatively small (7% for target present trials; 4% for target absent trials) and the accuracy
performance of triads is generally quite high (target present: M = 0.85, SD = 0.10; target
absent: M = 0.94, SD = 0.05).

To address this speed-accuracy tradeoff, we again combined the search times and accura-
cies into one measure by calculating inverse efficiency scores (Townsend and Ashby, 1978,
1983). In particular, we divided the mean search time of correct trials by the search accuracies
for each triad. We also calculated inverse efficiency scores for each dyad pairing. To test
whether triads attain a collective benefit, we calculated for each triad a ratio by dividing
the inverse efficiency scores of the best dyad pairing by the triads’ inverse efficiency scores.
Testing these ratios against one, we find that triads significantly attain a collective benefit
both for target present (M = 1.18, SD = 0.24, t(20) = 22.73, p < .001) as well as target
absent conditions (M = 1.10, SD = 0.11, t(20) = 45.46, p < .001). That is, taking into
account the speed-accuracy trade-off, we find that triads still attain a collective benefit.
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Collaborative benefits for triads

As above for the dyads, we also investigated whether triads attain a collaborative benefit. For
this purpose, we again simulated a joint performance under the assumption that members of
a group act independently. We repeatedly drew one trial from each of the triad’s members
individual performance trials (i.e., when each member performs the search task alone). Out
of these three trials, we select the trial with the fastest performance and the corresponding
accuracy (i.e., correct or incorrect response). Again, we repeat this procedure a 1000 times
and average across the selected trials, separately for each triad. The reasoning is that if
members of a triad would perform the search task independently, the participant who responds
first will end a trial. Hence, selecting the fastest out of three randomly selected trials from
the individual distributions will approximate a joint performance that a triad would reach
if they perform the task independently. As noted in the introduction section, we found in
our earlier study (Wahn et al., 2018a) that such a simulation closely matched the actual joint
performance of independently acting co-actors in a triadic visual search task, validating this
simulation approach.

To assess whether triads attained a collaborative benefit, we again calculated ratios by
dividing the simulated search performance by the triad’s actual search performance. A ratio
above one would indicate that triads attain a collaborative benefit. We find a ratio significantly
larger than one both for target present (M = 1.27, SD = 0.26, t(20) = 4.66, p < .001) as
well as target absent (M = 1.65, SD = 0.22, t(20) = 13.69, p < .001) trials. Thus, triads also
attain a collaborative benefit.

We repeated this analysis also for the search accuracies. That is, we again calculated ratios
by dividing the triad’s actual performance by the triad’s simulated accuracy performance.
Again, a ratio above one would indicate that triads attain a collaborative benefit with regard
to the search accuracies. In line with the findings above on the collective benefit, we find
that triads perform significantly less accurately compared to the simulated triad’s accuracies
for the target present (M = 0.90, SD = 0.10, t(20) = -4.60, p < .001) but not for the target
absent condition (M = 1.01, SD = 0.10, z = -0.12, p = .911).

As for the collective benefit, to address this speed-accuracy trade-off, we calculated
inverse efficiency scores for the simulated triad performances and actual triad performances.
To assess whether triads attain a collaborative benefit, we divide the inverse efficiency scores
for the simulation by the actual inverse efficiency scores of the triads. We again tested these
ratios against one, separately for the target present and absent conditions. We find that triads
attain a collaborative benefit both for the target absent (M = 1.58, SD = 0.25, t(20) = 10.68,
p < .001) and the target present condition (M = 1.17, SD = 0.27, t(20) = 2.93, p = .008).
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In sum, we find a similar pattern of results for the triads as for the analysis of the dyads’
collaborative benefit above. For the search times, triads do attain a collaborative benefit. With
regard to the search accuracy, triads are significantly worse than the simulated independent
performance for target present condition while they attain comparable accuracy levels for
the target absent condition. Yet, when taking into account this speed-accuracy tradeoff, we
find that triads still attain a collaborative benefit, both for the target present and target absent
condition.

Comparisons between group sizes

In addition to the analyses above on the collective and collaborative benefit, we also compared
whether the collective benefit ratios with regard to the search times and search accuracy
would differ between dyads and triads and whether the target presence would influence such
differences. That is, instead of testing whether a collective benefit is attained or not, we here
compare the magnitude of the collective benefits between group sizes. We perform these
comparisons to assess whether the group benefits gained by searching in dyads (compared to
searching alone) are comparable to the group benefits gained by searching in triads (compared
to searching in dyads).

For this purpose, we performed a 2x2 repeated measures ANOVA with the factors Target
Presence (absent, present) and Group Size (dyads, triads) with the collective benefit ratios
for the search times as the dependent variable. We find a main effect of Group Size (F(1,20)
= 113.11, p < .001) but neither a main effect of Target Presence (F(1,20) = 2.02, p = .170)
nor an interaction between the factors (F(1,20) = 0.94, p < .342). These results suggest that
with increasing group size, collective benefits for the search times become smaller (for a
descriptive overview, see Figure 2.8). To have an estimate by how much the collective benefit
decreases, we computed the mean collective benefit across the levels of the factor target
presence and calculated a ratio between the mean collective benefits of dyads and triads. We
find the collective benefit is reduced by 25% (dyads: 1.56 vs. triads: 1.16). In sum, these
findings suggest that with increasing group size, the gain in performance becomes smaller.

We repeated this analysis also for the collective benefit ratios of the search accuracies as
the dependent variable using again a repeated measures ANOVA with the factors Group Size
and Target Presence. We find a main effect of Target presence (F(1,20) = 7.51, p = .013) but
we neither find a significant effect of Group Size (F(1,20) = 1.34, p = .261) nor a significant
interaction effect (F(1,20) = 0.45, p = .509). Taken together, we find that dyads attain a
higher collective benefit than triads with regard to the search times and find no significant
differences for the search accuracies.
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A B

Fig. 2.8 Comparison of group benefits. Displayed is the collective benefit for the search times
(A) and search accuracies (B) as a function of target presence (absent, present). The factor
group size is colour-coded. Error bars are standard error of the mean.

As a point of note, one could argue that a comparison of collective benefits based on
the search times between group sizes may not be a fair comparison as the group benefit is a
priori expected to be lower for triads than for dyads. As noted in the introduction, assuming
a perfect division of labour and equal individual search times, co-actors in a dyad have the
possibility to halve their joint search times compared to individual performing. Triads on the
other hand, again assuming equal individual search times and a perfect division of labour,
can only reduce the search time by one third relative to dyads. To use a performance measure
that would circumvent this issue, we also calculated the dyads’ and triads’ search speeds.
Contrary to the search times, we reasoned that for this measure the maximum expected
gain in speed of searching visual space for each increase in group size should be equal. For
instance, consider the example that all members in a group search equally fast (e.g., 10
deg2/s), then again given a perfect division of labour, dyads would attain a performance of 20
deg2/s and triads of 30 deg2/s. Hence, the joint search speed would scale linearly with group
size. To compare the dyads’ and triads’ search speeds, we calculated the search speeds for
all conditions (individuals, dyads, triads) by dividing the searched area by the search time for
each trial. For comparing the gains in group benefit, we calculated collective benefit ratios
using the search speeds. That is, for dyads, we divided the search speed of each dyad by
the fastest individual search speed within the dyad. For triads, we divided the triad search
speeds by the fastest dyad pairing within a triad. Again, ratios above one indicate a collective
benefit.
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On a descriptive level (see Figure 2.9), we find a similar pattern of results as for the
collective benefit based on the search times. That is, dyads attain a higher collective benefit
than triads, again suggesting smaller gains with increasing group size. We tested whether
these observations are statistically reliable again with a 2x2 ANOVA with the factors Group
size and Target presence and the dependent variable collective benefit. We find a main effect
of Group size (F(1,20) = 223.13, p < .001) and a main effect of Target presence (F(1,20) =
91.42, p < .001). In addition, we find a significant interaction effect (F(1,20) = 10.65, p =

.004). These findings again suggest that dyads attain a higher collective benefit compared
to triads. In addition, given the significant interaction effect, the higher benefit for dyads
(relative to triads) is larger for target present trials compared to target absent trials.

Fig. 2.9 Comparison of group benefits based on search speeds. The factor group size is
colour-coded. Error bars are standard error of the mean.
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Collaborative strategies

As a next step we investigated whether co-actors used collaborative strategies and when this
was the case also compared the efficiency of the strategies between dyads and triads.

To address whether groups used collaborative strategies, we assessed participants’ an-
swers in the questionnaire and found that 90.5% of the participants indicated that they used
a strategy when collaborating with one partner. In all these cases, participants wrote that
they divided the labour. The same is true for triads. Yet, the percentage of participants
that indicated using a strategy is slightly lower 86%. Out of these, 14% of the participants
indicated that they experienced difficulties forming strategies in triads. A typical example is
starting out with a chaotic search that developed into a division of labour strategy.

To quantify the efficiency with which such division of labour strategies were used, we
calculated the fraction of overlap in the searched spaces. That is, we overlaid the searched
spaces by all co-actors and calculated the area of overlap. Dividing this overlap by the total
search area of all co-actors results in the fraction of overlap. The interpretation for this
measure is that co-actors who did distribute the labour efficiently should have a low fraction
of overlap close to zero whereas co-actors who did not distribute the labour efficiently should
have a high fraction of overlap approaching unity. We compared the fraction of overlap for
all combinations of the factor Group size (dyads vs. triads) and Target presence (absent
vs. present) – for a descriptive overview, see Figure 2.10A. Visually inspecting the data, it
appears that co-actors are generally less efficient in dividing the labour when searching in a
triad compared to a dyad. Generally, co-actors also tend to search less efficiently in target
absence trials compared to target presence trials. Moreover, the difference between dyads
and triads appears to be larger for target absent trials compared to target present trials. We
tested whether these observations are statistically reliable using a 2x2 repeated measures
ANOVA with the factors Target presence and Group size. In line with our observations, we
find significant main effects of Target Presence (F(1,20) = 131.12, p < .001) and Group Size
(F(1,20) = 145.97, p < .001), and a significant interaction effect (F(1,20) = 78.48, p < .001).

In sum, our results suggest that dyads and triads used division of labour strategies and
that the efficiency with which they used these strategies depended on the group size and
whether a target was present or absent.

As a point of note, one could argue that a lower efficiency of the search strategies for
triads compared to dyads should be expected as there is (given the limited search space)
simply a higher chance for triad members to overlap with their spotlights compared to dyad
members. To address this potential critique, we calculated another measure to compare the
efficiency of strategies between dyads and triads based on the search speed performance
measure introduced in the section above. In particular, using the individual search speeds,
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Fig. 2.10 Comparison of search space overlap. Fraction of overlap (A) and search space
covered ratios (B) as a function of target presence (absent, present). The factor group size is
colour-coded. Error bars are standard error of the mean.

we can calculate an estimate of the area maximally covered per unit time for dyads and triads
under the assumption of a perfect division of labour strategy. To calculate this estimate,
we added the individual search speeds of co-actors for dyads and triads, respectively. For
comparing the real performance to this estimate, we divided the actual search space covered
by the estimated maximum search space covered per unit time. For these ratios, a value of
one would indicate that groups attained the estimated maximum search space covered based
on the individual performance. We reasoned that if co-actors in a triad are not affected by the
additional attentional load to distribute the search with two co-actors, then triads should be
as close as dyads to the estimated maximum.

For these ratios, however, we observe a similar pattern as for the overlap measure above
(see Figure 2.10B, for a descriptive overview). That is, compared to triads, dyads are
generally closer to attaining the estimated maximum search space covered or even surpass it.
Moreover, again, there appears to be a main effect of Target Presence and an interaction effect
between the factors Group Size and Target Presence. We tested whether these observations
are statistically reliable using a 2x2 repeated measures ANOVA with the factors Target
Presence and Group Size. In line with our observations, we find significant main effects
of Target Presence (F(1,20) = 120.32, p < .001) and Group Size (F(1,20) = 155.77, p <

.001), and a significant interaction effect (F(1,20) = 33.91, p < .001). In sum, these findings
confirm our results above for the overlap measure.

Besides comparing dyads and triads for these ratios, we also observe that dyads and triads
attain the estimated maximum area covered per unit time and to a degree even surpass it in
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case of dyads while this is not the case for the target absent trials. Using one sample t-tests
testing against one, we tested whether these observations are statistically reliable. For dyads
and triads, we find that the ratios were significantly below one for the target absent condition
(dyads: t(20) = -9.93, p < .001; triads: t(20) = -19.80, p < .001) and did not significantly
differ from one for the target present condition (dyads: t(20) = 1.60, p = .125; triads: t(20) =
-1.99, p = .061). Given we found that dyads and triads did not perfectly divide the labour
(when analyzing the fraction of overlap above), these results suggest that dyad and triad
members individually searched faster in a dyad and triad than when performing the search
task alone.

To follow up this suggestion, we specifically assessed whether the individual search
speeds increase when participants perform the search jointly. For this purpose, we calculated
ratios by dividing the search speed of each co-actor in a dyad (and triad) by the search speed
obtained when performing the search task alone. On a descriptive level (see Figure 2.11),
we find that participants individually search about 10% faster in a dyad and triad than when
searching alone. We tested whether these observations are statistically reliable using a one
sample t-test and testing against one. We found that the search speed increase is significant
for all conditions (dyads target absent: t(20) = 4.27, p < .001; dyads target present: t(20) =
5.91, p < .001; triads target absent: t(20) = 3.71, p = .001; dyads target absent: t(20) = 5.12,
p < .001). These findings suggest that participants increase their individual search speed
once they perform the search task jointly. Given that we above found small reductions in
search accuracy for dyads and triads, these findings suggest that the accuracy reductions are
due to a speed-accuracy tradeoff.

We further investigated this speed-accuracy tradeoff by testing whether or not accuracy
reductions can be attributed to specific group members (e.g., the slower of the two members)
or not. For this purpose, we analyzed the search accuracies of each group member when
visual search was performed jointly. The group members’ were differentiated based on their
individual performances. That is, for dyads, we differentiated between the slower and faster
member. For triads, we differentiated between the slowest, middle, and fastest member.
We compared the search accuracies using a two factorial ANOVA with the factors Target
Presence and Member Performance (for dyads: slower, faster; for triads: slowest, middle,
fastest). For dyads, we found a significant main effect of Target Presence (F(1,20) = 21.75, p
< .001) but, critically, no significant effect of Member Performance (F(1,20) = 0.90, p =

.353) or interaction effect (F(1,20) = 0.02, p = .885). For triads, we found no significant
effects (main effect of Member Performance: F(2,30) = 1.51, p = .238; main effect of
Target Presence: F(1,15) = 1.60, p = .226; interaction effect: F(2,30) = 3.02, p = .064). We
calculated Bayes factors for the non-significant main effects of Member Performance. For
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dyads, we found that the null hypothesis is about three times more likely than the alternative
hypothesis (Bayes Factor: 2.94). For triads, we found that the null hypothesis is about two
times more likely than the alternative hypothesis (averaged Bayes Factor for all pairwise
comparisons: 2.25). These results suggest that the reductions in accuracy (when search is
performed jointly) cannot be attributed to specific group members.

Fig. 2.11 Search speed ratios as a function of group size. The speed ratios indicate the search
speed increase relative to the individual condition when co-actors search in a dyad or triad.
Error bars are standard error of the mean.

Next, we investigated how co-actors distributed the labour. Essentially, there are two
alternatives: 1) Co-actors distribute the labour in line with the individual search capabilities
of the co-actors. For example, for dyads, the faster member based on the individual search
time performances searches a larger space than the slower member, so that both members
of the dyad would finish their individual search space at the same time. 2) Co-actors may
divide the search space equally, irrespective of differences in speed of search. To assess
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which type of division of labour strategy was used by dyads and triads, we plotted the
fraction of the total searched space as a function of group members sorted by the individual
search times – see Figure 2.12. In other words, we assessed how much of the searched
space was searched by each individual in the group. On a descriptive level, we find that
co-actors tend to distribute the search space equally for dyads whereas for triads the search
space is distributed in accordance with the individuals’ search time performances. That
is, the fastest member (based on the individual performance) searched the largest space
in the triad condition followed by the second fastest member and slowest member. We
tested whether these observations are statistically reliable by running two repeated measures
two-way ANOVA with the factors Target Presence and Member Performance – one for
dyads and one for the triads. For dyads, the factor Member Performance had two levels
(faster, slower) while for triads the factor Member had three levels (fastest, middle, slowest).
For dyads, we only found a main effect of Target presence (F(1,20) = 110.64, p < .001)
but no significant main effect of Member Performance (F(1,20) = 0.16, p = .695) and no
significant interaction effect (F(1,20) = 1.52, p = .232). With regard to the main effect of
Member Performance, we additionally computed a Bayes Factor to assess how more likely
the null hypothesis (i.e., the searched areas are equal for the faster and slower member) is
compared to the alternative hypothesis (i.e., the searched areas differ in size). We find a
Bayes Factor of 0.24, meaning that the null hypothesis is 4.09 more likely than the alternative
hypothesis. These findings suggest that dyad members distribute the search space equally
and independent of the individual performances.

For triads, we found a significant main effect of Target Presence (F(1,20) = 110.64, p <

.001) and of Member Performance (F(2,40) = 9.27, p < .001) but no significant interaction
effect (F(2,40) = 2.12, p < .133). To follow-up the significant main effect of Member
Performance, we first averaged the data across the levels of the factor Target Presence and
then computed a correlation for each triad with the variables fraction of searched area and
the factor Member Performance as an ordinal variable. We then tested these correlations
against zero using a one sample t-test and found they significantly differ from zero (t(20) =
2.94, p < .008, mean r = .42). These findings suggest that triad members tend to distribute
the searched space in accordance with their individual search time performances whereas
dyads distributed the searched space equally.

Linear model to predict group benefits

As a next step, we investigated to what extent several predictors contribute towards explaining
variance in the extent of group benefits. For this purpose, we first fitted a linear mixed model
using the predictors Target presence (absent, present) and Group size (dyads, triads) to predict
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Fig. 2.12 Comparison of searched area. Fraction of total searched areas as a function of
target presence (absent, present) and member performance for dyads (A) and triads (B). The
factor group size is colour-coded. Error bars are standard error of the mean.

the collective benefit for the search times. We also included in this model random intercepts
(for groups) and slopes (for the factors Target presence and Group size and their interaction
term). In particular, the random intercepts accounted for the fact that participants are nested
within groups and the random slopes modelled the effects of our experimental factors (and
their interaction) for each group. This model we consider as our “baseline” model as it
incorporates only the experimental conditions in the present study.

We then assessed the contributions towards explaining additional variance by the predic-
tors fraction of overlap, individual performance similarities, and the simulated independent
performance. We selected these continuous variables as predictors as they focus on different
aspects of joint visual search performance and hence complement each other. In particular,
the overlap in search space we view as an indicator of how well co-actors distribute the labour
in the joint visual search task. Hence, we consider it as a predictor of how well co-actors
collaborate in the joint search task. The simulated independent performance, in contrast, is
a predictor of the group benefit dyads and triads would achieve if they act independently.
Hence, we view it as a predictor of the group benefit in the absence of collaboration. Finally,
the predictor individual performance similarities may yet explain another complementary set
of variance in predicting group benefits. That is, as the data for the performance similarities
is collected in the individual conditions, the variance explained by this predictor may also
be complementary to the predictor quantifying the collaboration between co-actors or the
simulated independent performance. Given this reasoning, we predict that all these predictors
make non-redundant contributions towards explaining variance in group benefits.
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The independent performance was simulated following the same procedure as outlined
above in the analyses on the collaborative benefit for dyads and triads. The overlap in
search space was calculated as noted above in the section on collaborative strategies. The
performance similarities were calculated by taking the standard deviation across the mean
individual search time performances of the members of a group.

We added the predictors fraction of overlap, performance similarities, and the simulated
independent performance as well as their respective interaction terms with the other pre-
dictors in all possible combinations to the model and evaluated each addition using model
comparisons using likelihood ratio tests. The rationale for performing these stepwise addi-
tions to the model was to assess the extent that the added predictors could explain additional
variance in the data. In particular, this allowed us to compare the increases in explained
variance between different added predictors. For these model comparisons, we used the
Bayesian Information Criterion as it is a measure of how well a model fits the data, which is
corrected for the number of included predictors. To provide a measure of the model fit on
a normalized scale, i.e., to assess the variance explained, we calculated R2 for all models
(Bartoń, 2018; Johnson, 2014; Nakagawa and Schielzeth, 2013). As we fitted linear mixed
models, there are two R2 calculations available (Johnson, 2014; Nakagawa and Schielzeth,
2013), one only taking into account the fixed effects (“marginal R2”) and one also taking
into account the random effects (“conditional R2”). We here report the marginal R2 in an
overview Figure below.

The baseline model explains already a sizeable fraction of the variance (R2 = .36). For
the model comparisons, in a first step, each of the continuous predictors together with the
interaction terms with the other predictors is separately added to the baseline model. We find
that adding the performance similarities predictor (c2(4)= 36.79, p < .001, BIC = 31.73),
the independent performance predictor (c2(4)= 26.22, p < .001, BIC = 42.30), and fraction
of overlap predictor (c2(4)= 49.01, p < .001, BIC = 19.51) are all significant additions
to the model. When comparing the R2 in this modeling step, we observe that the greatest
improvement of the explained variance relative to the baseline model is found for the fraction
of overlap variable (R2 = .51) followed by the performance similarities (R2 = .48) and the
simulated independent performance (R2 = .45).

In a second step, we tested all combinations of adding these predictors relative to models
when only one of the continuous predictors is included and find that all these additions were
significant as well. In particular, for a model that includes both the performance similarities
and independent performance predictor, we find that it is a significant improvement relative
to a model only containing the performance similarities predictor (c2(8) = 29.93, p < .001,
BIC = 42.79) or independent performance predictor (c2(8) = 40.50, p < .001, BIC =
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42.79). Likewise, for a model that includes the independent performance predictor and
overlap predictor, we find that this model is a significant improvement relative to a model
only containing the independent performance predictor (c2(8) = 58.70, p < .001, BIC =

1.80) or overlap predictor (c2(8)= 81.49, p < .001, BIC = 1.80). And finally, for a model that
includes the performance similarities predictor and overlap predictor, we find that this model
is a significant improvement relative to a model only containing the performance similarities
predictor (c2(8)= 54.55, p < .001, BIC = 5.95) or overlap predictor (c2(8)= 77.34, p < .001,
BIC = 5.95). Comparing the explained variance between models at this stage, we find that
models containing the overlap predictor attained the highest variance (overlap & independent
performance: R2 = 0.62; overlap & performance similarities: R2 = 0.63) while the model
containing the performance similarities predictor and independent performance predictor
attained a slightly lower explained variance (R2 = 0.55).

In a final step, we assessed the improvement in the model fit by comparing a model with
all continuous predictors included compared to models including only two of them. Also for
this final step, all model comparisons were significant. That is, the full model represented
a significant increase in the variance relative to a model only incorporating the individual
performance similarities and independent performance as predictors c2(16)= 93.66, p < .001,
BIC = 31.12), the individual performance similarities and overlap predictors (c2(16)= 56.82,
p < .001, BIC = 31.12), and independent performance and overlap predictors (c2(16)= 52.67,
p < .001, BIC = 31.12). Collectively, these results suggest that all continuous predictors
make non-redundant contributions towards explaining additional variance for collective
benefits (for an overview, see Figure 2.13). The final model also explains more variance
than all other models (R2 = 0.70). Yet, we also want to note that from the perspective of the
BIC, i.e., a model fit criteria penalizing the number of predictors in a model, a model only
with the continuous predictors overlap and the independent performance (in addition to the
categorical predictors) attains the best model fit (BIC = 1.80).

To further evaluate the model fit of the final model including all continuous predictors,
we computed the root-mean-square error (henceforth abbreviated as “RMSE”) between the
actual collective benefit and the predicted collective benefit of the model (see Figure 2.14B).
That is, for each data point we computed the difference between the actual collective benefit
and the predicted collective benefit and squared these differences. We then sum up these
squared differences, divided the sum by the number of data points, and took the square root
of the result. We observe that the model closely predicts the actual values (for comparison,
we also plotted the predictions of the baseline model in Figure 2.14A). In addition, we also
computed the RMSE for the model with the best BIC (i.e., the model only including the
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Fig. 2.13 Explained variance overview. Displayed are R2 for each model. The “full model”
(all continuous predictors and all interactions added) explains an additional 35% of variance
relative to the “baseline model” (only including the categorical predictors target presence
and group size). Note, all model comparisons are significant.

continuous predictors overlap and independent performance) and found that it is only slightly
worse compared to the full model (0.12 vs. 0.11).

2.2.5 Discussion

In the present study, we investigated whether collective benefits obtained for dyads that
receive action information of co-actors also scale up to triads. We found that with regard to
the search times dyads and triads outperform the best member in the group and outperform
the best dyad pairing, respectively, i.e. they do attain a collective benefit. Yet, these benefits
come with a cost: Dyads and triads perform a slightly less accurate search than individuals
and dyads, respectively. Critically, when speed-accuracy tradeoffs are controlled for, we find
that dyads and triads continue to demonstrate a collective benefit. We also discovered that
dyads and triads achieve their collective benefits with regard to the search times through
collaboration. With regard to collaborative strategies, we find that both dyads and triads
devise division of labour strategies but the efficiency of these strategies was better for dyads
than for triads. Yet, we also found that co-actors distributed task demands more in line
with their individual search performances when searching in triads compared to searching in



64 | Collective and Collaborative Benefits
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Fig. 2.14 Predicted vs. actual collective benefit. The actual collective benefit is plotted on the
ordinate whereas the predicted collective benefit is plotted on the abscissa, separately for (A)
the baseline model and (B) the full model. For both plots, we noted the RMSE. Adding the
continuous predictors (and all possible interactions) leads to a prediction error decrease of
47%.

dyads. Further, we compared the extent of the group benefit between dyads and triads and
found that dyads attained a higher benefit than triads. Finally, we investigated the separate
contributions of several predictors of the collective benefit in an overall model to assess the
extent that the predictors are efficient or redundant. The predictors included the categorical
variables manipulated in the present experiment, i.e., target presence and group size, and
continuous predictors, i.e. individual performance similarities, the simulated independent
performance, and the fraction of overlap. We find that all predictors make non-redundant
contributions towards predicting group benefits, accounting for a total of 70% of the variance.
In the following, we discuss each of our findings in turn.

Our finding that after taking into account speed-accuracy tradeoffs triads attain a collective
benefit with regard to the search times extends earlier findings on joint visual search by
showing that this effect is not limited to groups of two individuals (Brennan et al., 2008).
Moreover, our findings also demonstrate that these benefits are dependent on the sharing of
action information between co-actors as without such information co-actors in a triad were
not able to attain a collective benefit in our earlier study (Wahn et al., 2018a). In addition, our
results suggest that the benefits of receiving action information outweigh the coordination
costs and the reduced possible extent of group benefits for triads. More generally, these
findings further corroborate the previous suggestion that receiving action information of
co-actors is an important factor to enable groups to attain group benefits in joint search tasks
(Brennan et al., 2008). Relatedly, the availability of action information of co-actors has also
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been identified as an important factor contributing to group benefits in a different dyadic joint
visuospatial task (Wahn et al., 2017b) and also in a joint motor task (Knoblich and Jordan,
2003).

With regard to our finding that dyads and triads perform a slightly less accurate search
than individuals and dyads, respectively, we suggest that this loss in accuracy is likely due
to an increase of individual search speeds in the joint condition relative to the individual
condition. That is, we found that co-actors had higher individual search speed in the
dyad and triad condition compared to performing the search task alone. As a result of
this increase in individual search speeds, co-actors sacrificed performance accuracy in the
joint conditions. Potentially, performing the visual search jointly led co-actors to be more
motivated (or pressured) and as a result individual search speeds increased. Alternatively,
the mere social presence of other co-actors (indicated by the other spotlights displayed on
the computer screen) may have resulted in higher individual search speeds rather than joint
task performance. Relatedly, research on social facilitation and impairments effects has
investigated how the mere presence of another person can improve or worsen performance
compared to performing the same task alone (for a recent review, see Belletier et al. (2019)).
Future studies may test whether the increase in the individual search speeds and drop in
search accuracy in the present visual search task is due to the mere presence of others or
due to performing a task jointly. In particular, it could be the case that an increase in the
individual speeds is already attained if the presence of other humans are indicated on the
computer screen, which do not participate in the joint search task.

Apart from finding that co-actors in dyads and triads attain collective benefits, both our
findings that dyads and triads attain a collaborative benefit and that they self-report using
division of labour strategies, provide converging evidence that co-actors are collaborating
in the present joint search task (Wahn et al., 2018a). To quantify the efficiency with which
co-actors in dyads and triads divided the labour, we analyzed the extent that search spaces
of co-actors overlap. As noted above, dyads were more efficient than triads in distributing
their labour. These findings suggest that co-actors in dyads may find it easier to keep track
of where their co-actor already searched, whereas for co-actors in triads it may be more
difficult to track the movements of their co-actors. Moreover, these findings may provide an
explanation for why increasing the group size in joint visual search led to lower gains in group
benefits. That is, while adding group members to the group does increase the perceptual
capacity to search for a target, it also increases attentional demands as co-actors need to track
where two co-actors are currently searching. Consistent with this line of reasoning, a small
fraction of the participants reported having more difficulty distributing their labour when in
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triads. Alternatively, co-actors may have found it less intuitive to distribute the labour in a
triad compared to a dyad.

Future studies could seek to discover the point at which adding more co-actors no
longer leads to additional group benefits; as the boosts in group performance may no longer
compensate for the increasing coordination costs and the diminishing possible extent of a
group benefit. To attenuate the rising coordination costs, larger groups may start to subdivide
themselves into smaller subgroups. For instance, a group of four co-actors may subdivide
themselves into two dyads and one of the dyads may use a left-right division of labour
strategy for the top part of the screen, while the other dyad may use a left-right division
of labour strategy for the bottom part of the screen. Relatedly, groups of different sizes
may find it easier to distribute the labour if the search display offers an intuitive division of
labour. For instance, triads may find it easier to distribute the labour if the search display
is shaped in a triangle as each co-actor could search in one corner whereas quadruples may
prefer a quadratically shaped search display. Apart from the screen shape, the size of the
screen is of course another factor that may affect coordination costs. For example, it seems
reasonable that a relatively larger screen than the one used in the present work may require
less coordination between group members to efficiently distribute their labour. Regardless of
screen shape or size, coordinations costs could also be attenuated by explicitly indicating
the division of labour strategy for the group members. For instance, the search space could
already contain dividing lines indicating the assigned search space for each group member.
Yet another way to attenuate coordination costs may be to allow group members to verbally
communicate before they are performing a search trial together. That is, group members
could negotiate in advance a division of labour strategy that does not require any monitoring
of co-actors while performing the search.

While the increased attentional demands for triads resulted in less efficient search strate-
gies and a lower extent of the collective benefit, we also find that the division of labour for
triads were more in line with the individual search time performance of the triad members
compared to the distribution of labour for dyads. That is, in triads the fastest co-actor based
on the individual search time performances searched a larger space than the second fastest
member and slowest member. In comparison, for dyads the search space was divided ap-
proximately equally. As noted above, given that participants indicated having more difficulty
distributing their labour when in triads, we suggest that co-actors in a triad may have followed
a less structured division of labour strategy, e.g., by generally trying to avoid each other’s
spotlights. In contrast, co-actors in a dyad may have followed a more structured division of
labour search strategy, e.g. each co-actor searches one half of the display. However, co-actors
in a dyad apparently assumed similar individual search abilities and as a result distribute the
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search space equally. In the more “chaotic” search in a triad, a strategy as simply avoiding
each other probably led to a more redundant search but also a distribution of the searched
space that is more in line with the triad members’ individual search abilities. Our finding
that dyads distribute the search space roughly equally dovetails with recent findings in a
collective perceptual decision-making task (Mahmoodi et al., 2015), in which researchers
found that co-actors tend to assume that they have similar perceptual capabilities. Future
studies could test whether such an “equality bias” (Mahmoodi et al., 2015) also extends to
capabilities other than perceptual capabilities such as, for instance, motor capabilities in
joint motor control tasks (Wahn et al., 2018c) or memory capabilities in joint memory tasks
(Rajaram and Pereira-Pasarin, 2010). Moreover, as division of labour strategies that more
optimally make use of the individual capabilities of participants likely would result in a better
group performance, future research could test how co-actors may circumvent such a bias and
instead accurately assess individual performance capabilities in the group.

As a point of note, one may question whether the division of labour strategies by triads
constitute a form of collaborative behaviour, as it may only involve that co-actors avoid each
other’s searched space. We suggest that co-actors still collaborate in these cases as they still
coordinate their actions in time and space and share a common goal (i.e., facilitating the
search performance) (Sebanz et al., 2006a; Vesper et al., 2017a). On this note, it would be
interesting to conduct a future study that examines how quickly division of labour strategies
are devised over time, and whether there are differences in learning rates between dyads
and triads. In the present study, the trials for all the conditions were randomly interleaved,
compromising our ability to separate the learning rates for each condition. Placing the
different conditions (search alone, in a dyad, or in a triad) in separate experimental blocks
could address this issue in the future.

Apart from addressing the question whether triads attain a collective and collaborative
benefit, we also investigated a number of predictors of the collective benefits in a linear model.
These predictors include the overlap in the searched space by the co-actors, similarities in
the individual performances, and simulated independent search performance. We chose these
predictors as we hypothesized that each of them would provide a non-redundant contribution
towards predicting the collective benefit. Investigating the contributions of each predictor
separately, we found that the search-space overlap makes the highest contribution towards
predicting the collective benefit. This is followed by performance similarities, and finally,
the simulated independent search performance. These findings suggest that the predictor
search-space overlap quantifying the collaboration between co-actors explains more variance
in group benefits than the predictors individual performance similarities and simulated
independent performance, which are unrelated to the benefits received through collaboration.
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In other words, differences in the extent of attained group benefits depend more on the
collaboration between co-actors than how well they perform the task individually and to what
extent they achieve “independent” benefits by merely performing a task jointly. In addition,
we found that all subsequently added predictors make non-redundant contributions towards
predicting a collective benefit. These findings suggest that all the predictors are relevant to
an enhanced understanding of how group benefits in joint visual search tasks come about.
The final model including all predictors also explains more than two thirds of the variance in
the data, suggesting that the present set of predictors captures much of the relevant variables
group benefits in the present joint visual search task.

Future studies may seek to refine our current model by adding additional non-redundant
predictors to account for some of the residual variance in the data. For instance, a future study
could assess the role of verbal communication as opposed to receiving action information in
predicting group benefits. Other non-redundant predictors might include personality traits of
the group members, e.g., those relevant to social cognition such as empathy (Czeszumski et al.,
2019; Davis, 1983). Moreover, future studies could test to what extent the predictors used in
the present model are applicable to other joint tasks. For instance, in perceptual decision-
making tasks (Bahrami et al., 2010) and joint motor control tasks (Wahn et al., 2016b),
performance similarities have been found to contribute to the prediction of group benefits.
The simulated independent performance and measures of how well co-actors collaborate
may also provide a complementary set of predictors for group benefits in perceptual decision-
making and motor tasks.

More generally, it is worth noting that the present findings may also be applicable to
a number of real-life scenarios or professions that are conceptually similar to the visual
search task used in the present study. For instance, one scenario could involve people
jointly searching web content while the eye movements of co-actors (tracked via webcams
(Papoutsaki et al., 2016)) are displayed on the computer screen. More generally, people
frequently perform tasks collaboratively online in remote locations that involve information
about a co-actors’ actions (e.g., working collaboratively on a manuscript in real-time involves
seeing another person’s additions and deletions of text). In such scenarios, small or large
groups of people, may also start to distribute their labour to effectively perform tasks jointly.
With regard to professions that perform search tasks on a daily basis, airport security personnel
are required to scan luggage for dangerous items and radiologists base their diagnoses in part
on what they may or may not detect in medical images. In such situations, the speed with
which such tasks are completed may be increased by having several co-actors perform these
tasks jointly. In particular, joint performance may be facilitated by displaying the viewed
location by each co-actor. However, the present findings also indicate that potential benefits
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in time may be accompanied by costs in accuracy, and depending on the application, a higher
importance may be placed on performance accuracy than performance speed (e.g., when
reading a medical image).

2.2.6 Open Practices Statement

All data of the present experiment are available in the following repository: https://osf.io/
e9xpb/?view_only$=$f07de98b22d74a7baa29905e5c0f2fff. The study was not preregistered.
A preprint of this manuscript is available in the following preprint repository: https://doi.org/
10.31234/osf.io/894zt
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3.1 Abstract

Humans achieve their goals in joint action tasks either by cooperation or competition. In the
present study, we investigated the neural processes underpinning error and monetary rewards
processing in such cooperative and competitive situations. We used electroencephalography
(EEG) and analyzed event-related potentials (ERPs) triggered by feedback in both social
situations. 26 dyads performed a joint four-alternative forced choice (4AFC) visual task either
cooperatively or competitively. At the end of each trial, participants received performance
feedback about their individual and joint errors and accompanying monetary rewards. Fur-
thermore, the outcome, i.e. resulting positive, negative or neutral rewards, was dependent on
the pay-off matrix, defining the social situation either as cooperative or competitive. We used
linear mixed effects models to analyze the feedback-related-negativity (FRN) and used the
Threshold-free cluster enhancement (TFCE) method to explore activations of all electrodes
and times. We found main effects of the outcome and social situation, but no interaction at
mid-line frontal electrodes. The FRN was more negative for losses than wins in both social
situations. However, the FRN amplitudes differed between social situations. Moreover, we
compared monetary with neutral outcomes in both social situations. Our exploratory TFCE
analysis revealed that processing of feedback differs between cooperative and competitive
situations at right temporo-parietal electrodes where the cooperative situation elicited more
positive amplitudes. Further, the differences induced by the social situations were stronger
in participants with higher scores on a perspective taking test. In sum, our results replicate
previous studies about the FRN and extend them by comparing neurophysiological responses
to positive and negative outcomes in a task that simultaneously engages two participants in
competitive and cooperative situations.

Keywords: Social Cognition, Joint Action, EEG, Feedback related negativity, Coopera-
tion, Competition

3.2 Introduction

In every day life, humans frequently commit errors. For example, they are prone to press
incorrect buttons, trip over household objects or make typing mistakes. These errors often
influence not only the person committing the mistake but also other people. Such erroneous
actions may have a negative impact on others if people are cooperating in a task (e.g., moving
furniture together). Conversely, they may have a positive impact on others if people are
competing in a task (e.g., in a game of table tennis). These mistakes that involve others
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frequently require external feedback to find out about the impact of one’s own and others’
performed actions. Thus, it is likely that the human brain has mechanisms that distinguish
between positive and negative outcomes of one’s own and others’ actions.

Earlier research on error processing in tasks performed individually shows that humans
have a fast and efficient error detection mechanism (Coles et al., 2001). In particular, studies
using electroencephalography (EEG) identified event-related-potential (ERP) components in-
stantly following one’s own errors awareness, or feedback regarding the outcome of one’s own
actions (Falkenstein et al., 1991). These components are known as error-related-negativity
(ERN) and feedback-related-negativity (FRN). The ERN is evoked 50-70 milliseconds after
an erroneous action is carried out (e.g., an incorrect button press) and it originates from
the anterior cingulate cortex and the pre-supplementary motor area in the posterior medial
frontal cortex (de Bruijn et al., 2009; Holroyd et al., 2004; Ridderinkhof et al., 2004). The
FRN is elicited approximately 200-350 milliseconds after performance feedback is received
and is considered to have a similar origin as the ERN (Miltner et al., 1997). Holroyd and
Coles (2002) proposed that the ERN/FRN component is elicited as soon as the outcome of an
action can be detected by proprioceptive, motor or external feedback. They also proposed a
direct relationship between a negative outcome detection and reward processing. In essence,
whenever the result of an action is worse than expected, which results in a loss of reward, the
ERN/FRN is elicited.

While these components have been widely studied in individuals, little research has
investigated how humans process feedback about actions that involve others. A first step
in this direction was made by van Schie, Mars, Coles & Bekkering (2004). They found
that the FRN component occurs after observing an error committed by others. Given the
sensitivity of the FRN to mistakes of others, researchers suggest that it might reflect the
processing of socially relevant stimuli. Further studies explored this idea by manipulating
the social situation (i.e., either cooperative or competitive) while participants performed or
observed actions and received feedback about monetary rewards (Itagaki and Katayama,
2008; Marco-Pallarés et al., 2010). Results showed that the FRN was elicited by losses of
others in a cooperative situation. In a competitive situation, conversely, others’ gains elicited
the FRN. These results indicate that the FRN reflects the valence of an outcome, which in
turn depends on the current social situation.

In contrast to studies of the FRN discussed above, the ERN, which is elicited for self-
generated errors, appears to be not influenced by the social situation (de Bruijn and von
Rhein, 2012). In another study self-generated errors elicited ERN in both cooperative and
competitive situations, however, observed errors of others elicited the observed ERN (oERN)
only in a cooperative situation (Koban et al., 2010). These studies focused on outcome
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processing in cooperative and competitive situations. However, the tasks used in these studies
involved actions that are performed in turns and there was always either a division between
a performer and observer participant (de Bruijn and von Rhein, 2012; Koban et al., 2010;
Marco-Pallarés et al., 2010) or the partner was virtual (Itagaki and Katayama, 2008). Hence,
it is not clear whether these findings would also generalize to designs in which co-actors
perform a task that requires simultaneous responses to identical stimuli from both participants
in contrast to turn-taking tasks such as, for instance, joint Simon tasks (Dolk et al., 2014;
Sebanz et al., 2003, 2005), in which co-actors respond to different stimuli at different time
points.

To close this gap in the literature, a set of recent studies also investigated the FRN in
situations in which humans perform tasks together. Humans in real life often perform actions
together with others, instead of observing another human performing an action alone. Thus,
studying the social aspect of outcome processing requires paradigms, in which co-actors
perform tasks jointly (Hari and Kujala, 2009; Schilbach et al., 2013). In line with this idea
Picton, Saunders and Jentzsch (2012) tested dyads of participants in a cooperative joint
choice reaction time task. In their study, participants were able to realize their own mistakes
without feedback, which elicited the ERN, while mistakes of a partner had to be inferred from
visual feedback, which elicited the FRN (Picton et al., 2012). In an even more naturalistic
set-up, Loehr and colleagues tested piano duets (Loehr et al., 2015, 2013). Such a music
paradigm allowed for a clear division between one’s own, other’s and joint errors. Results of
both Picton et al’s and Loehr et al’s experiments confirmed that the FRN monitors both one’s
own and other’s errors in joint situations. Interestingly, the FRN is stronger for one’s own
than joint mistakes, and stronger for joint mistakes than others’ mistakes (Loehr et al., 2015).
These studies focused on the monitoring of actions in cooperative joint set-ups. However,
according to our knowledge there are no studies that involve two participants performing
actions and receiving feedback about their individual and joint actions in both cooperative
and competitive situations.

To fill this gap in the literature, in the present study we focused on two aspects: First,
in our experiment both participants were actively performing a task. That is, in contrast
to previous research there was no distinction between an active co-actor and a passively
observing co-actor (Itagaki and Katayama, 2008; Marco-Pallarés et al., 2010). Instead, each
of the participants performed their individually assigned task in parallel and observed their
own and the co-actor’s errors. Second, rewards (positive, negative and neutral) associated
with errors depended on whether the assigned task was performed in a cooperative or
competitive situation. With this design, the main question we addressed was whether the
FRN is influenced by different social situations when both co-actors actively perform a
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task. Additionally, by including neutral conditions (i.e., condition without any monetary
rewards) in the design, we were able to investigate whether FRN amplitudes differed between
errors that are associated with monetary outcomes (positive and negative) and errors that
are not associated with any monetary rewards (neutral). Such comparisons were only
rarely addressed in previous research (Holroyd et al., 2006). We also aimed to relate FRN
amplitudes to personality traits measured with a questionnaire. Namely, we focused on the
Perspective taking subscale of the Interpersonal reactivity index (IRI, (Davis, 1983)) that
measures the tendency to spontaneously adopt the psychological point of view of others. We
chose this subscale because it was already shown that FRN amplitudes correlate with the
Perspective taking scores (Koban et al., 2012). Finally, we performed exploratory analysis to
explore the time course of processing feedback about self-produced actions and co-actors’
actions depending on the social situation.

3.3 Methods

3.3.1 Participants:

52 students (37 females, mean age = 24.1, standard deviation = 4 years) randomly grouped
into 26 dyads (15 female-male and 11 female-female dyads) participated in the experiment.
26 participants were measured with EEG (16 females, mean age = 24.5, standard deviation =
3.3 years). Prior to the experiment we asked all participants whether they knew each other
and paired only strangers in a dyad. The ethics committee of the University of Osnabrück
approved the experiment. We informed participants about their rights and all participants
signed a written consent form. The study was conducted in Osnabrück and all participants
were students in an international study program. Therefore all instructions and questionnaires
were provided in English. Participants could chose either a monetary reward or course credits
in exchange for their participation. All participants that were measured EEG opted for the
monetary reward.

3.3.2 General Apparatus:

We tested participants in dyads. They sat next to each other on the same side of a table in the
same room. To avoid interference and communication during the experiment, we separated
them with a cardboard screen (Figure 3.1, B). We presented stimuli on two identical computer
monitors (BenQ 24 inches, 1920x1080 pixels, refresh rate 120 Hz). We used two separate
keyboards (Cherry RS 6000) to collect behavioral responses, one for each participant. The
experiment was programmed using the Python library PsychoPy (Peirce, 2007b) and the
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Fig. 3.1 A) Single-trial. We presented a gray mask for 200 ms, followed by (I) a target
Gabor patch for 400 ms. Then again, a gray mask was displayed for 100 ms, followed by (II)
four Gabor patches until both participants responded (maximum 3000 ms). Subsequently,
we displayed a gray mask for 700-800 ms, followed by (III) the feedback for 1000 ms. B)
Schematic depiction of the experimental set-up. C) Pay-off matrix. Participants received
rewards differently in cooperative and competitive situations.

experimental procedure and data collection were implemented in Python 2.7.3 (code available
(https://osf.io/c4wkx/)). The experiment was run on an Intel Xeon CPU.

3.3.3 Experimental design:

Each member of a dyad performed a four-alternative forced-choice (4-AFC) visual task
(Figure 3.1, A) and later received feedback about their performance and associated monetary
rewards (Figure 3.1, C). In each dyad, one participant performed an orientation discrimination
task and the other participant a spatial frequency discrimination task. The assignment of
the participants to both tasks was randomized and counterbalanced. First, we presented
a target object in the middle of the screen for 400 milliseconds. The target object was a
single Gabor Patch of size 9.95�x9.95� visual angle, oriented at a randomly chosen angle
(between 20�-80� and 100�-160�) and with a randomly chosen spatial frequency (between
10 and 20 cycles/stimulus size). Subsequently, we displayed a gray mask with a fixation
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cross in the middle (linewidth of 0.13� visual angle) for 100 milliseconds followed by four
Gabor patches arranged in a 2x2 grid, each patch separated from neighboring patches by
0.41� visual angle on each side. Each of the four Gabor patches was of the same size as
the target object. One Gabor Patch always had the same orientation as the target object
while the other three patches were manipulated according to a QUEST staircase procedure
(Watson and Pelli, 1983). A different Gabor patch had the same spatial frequency as the
target object and the other three patches again had different spatial frequencies according
to a second QUEST staircase procedure (for more details about the QUEST procedure, see
Experimental procedure). Therefore, both participants simultaneously had to respond to
identical visual stimuli, however, their tasks were independent. This means, participants
could not influence each other’s performance while performing the task. Participants were
informed that their partners had different tasks and they were familiar with the partner’s
instructions. The location of the correct answer for each of the participants was randomized
between four possible locations. Participants responded with key presses (‘Q’,’W’,’A’,’S’
or ‘7’,’8’,’4’,5’ on the num-pad, for the participants seated on the left or right respectively).
The key corresponded spatially with the displayed Gabor patches. We displayed the Gabor
patches until both of the participants gave their responses or 3000 milliseconds passed. In
the case of no response, the answer was considered as incorrect. We instructed participants
to give their answers as accurately and as quickly as possible. Subsequently, a gray mask
with a fixation cross was displayed for 700-800 milliseconds and then feedback appeared on
the screen. We used a colored circle (radius: 3.94� visual angle) vertically divided in halves
to inform participants about the performance of both participants. The color of the feedback
was dependent on the participants’ answers. The green color indicated correct answers and
red incorrect answers. The left semicircle and right semicircle gave feedback to the left
and right participants, respectively. Additionally, we presented individually a letter (0.8�

visual angle, ‘W’ for wins, ‘L’ for losses and ‘T’ for ties; for more details, see subsection
“Social manipulation and monetary rewards” below) in the middle of a circle. Feedback
was displayed for 1000 milliseconds and was followed by a gray mask for 200 milliseconds
before moving on to the next trial (Figure 3.1, A).

3.3.4 Social manipulation and monetary rewards:

The feedback included information about individual and joint errors as well as the resulting
positive, negative or neutral monetary rewards. Note, the schema of monetary rewards, as
given in the pay-off matrix, defined the social situation as cooperative or competitive. The
gain or loss of 5 cents was dependent on the particular social situation as follows (Figure 3.1,
C):
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In the cooperative situation the trial was considered as a win, and consequently positively
rewarded, only in the case in which both of the participants responded correctly (one green
semi-circle for each of the two participants). In the case that both participants were wrong, it
was considered a loss and as a negative reward five cents were subtracted from their budgets
(one red semi-circle for each of the two participants). In the case that one participant was
correct and the other was incorrect, no money was added to or subtracted from either budget
(half green and half red circle).

In the competitive situation both participants answering correctly or incorrectly resulted
in a tie (full green or red circle). Thus, no money was added to or subtracted from either
budget. A reward was achieved when one participant was correct and the other was incorrect
(half green and half red circle). In this case the reward was added to the correct participant’s
budget and subtracted from the incorrect participant’s budget. At the end of each block the
participants’ respective budgets were calculated and displayed on the screen.

Social situations alternated between blocks (16 blocks in total, 8 cooperation and 8
competition). The order of blocks was counterbalanced across participants and randomly
chosen for each dyad, with never more than three repetitions. To ensure that participants
know and understand both social situations, we provided information regarding the block
number, the social situation, and rewards associated with each feedback at the beginning
of each block. In addition, “win” or “lose” was shown as text inside the feedback stimulus
(Figure 3.1, C). Each participant had an initial budget of 10 Euro that could increase or
decrease by 5 cents based on their performances in each trial.

3.3.5 Experimental procedure:

One participant of each dyad was invited one hour earlier than the other and was prepared for
the EEG recordings outside of the recording chamber. Thus, the participant assignment for
EEG recordings was done prior to the experiment. After around 45 minutes, when preparation
was finished and the second participants arrived, both participants were seated side-by-side
in a room at a 60 cm distance to their screen. For technical reasons, the participant measured
with the EEG sat on the left side. The experimental session lasted approximately 90 minutes
and was structured as follows: After detailed written and oral instructions, a QUEST staircase
procedure (Watson and Pelli, 1983) was performed for each participant separately (one after
another) for the assigned task with the goal to home in on 50% performance, i.e. well above
the chance level of 25%. To achieve this, we used the PsychoPy QuestHandler function
with the threshold set to .63 and a gamma .01. Both participants performed 100 training
trials. For the participant performing the orientation discrimination task we varied the degree
of orientation between 1� and 45� with a starting value of 15� and a standard deviation
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10�. For the other participant, who performed the spatial frequency discrimination task, we
varied the spatial frequency between 1 and 25 cycles/stimulus size with starting value of 3
cycles/stimulus with a standard deviation of 3 cycles/stimulus. Subsequently, participants
proceeded to the actual experiment, which consisted of a total of 640 trials grouped in 16
blocks of 40 trials each. After 20 trials in each block, participants were asked to answer in
which social situation they were currently in. Namely, they were asked to indicate whether
the current block was a cooperative or competitive situation, in order to check whether the
participants remembered the social situation manipulation correctly. Blocks were separated
by short rests and the overall experiment was divided into three parts with short breaks. In
these breaks experimenters made sure that participants were not exchanging any information
about the experiment. When the tasks were completed, participants filled out the Interpersonal
reactivity index (IRI, 28 questions) questionnaire (Davis, 1983).

3.3.6 Methods of EEG data acquisition and preprocessing

Electrophysiological data were recorded using a 64-Ag/ AgCl electrode system (ANT Neuro,
Enschede, Netherlands), using a REFA-2 amplifier (TMSi, Enschede, Netherlands) with
electrodes placed on a Waveguard cap according to the 5% electrode system (Oostenveld and
Praamstra (2001)). The data was recorded using average reference electrode at a sampling
rate of 1024 Hz. Impedances of all electrodes were manually checked to be below 10 kW
before each experiment. We used R and MATLAB to preprocess and analyze the data. All
analysis scripts and data are available online (https://osf.io/c4wkx/). We used the eegvis
toolbox (Ehinger, 2018) to visualize the exploratory analyses. Data were preprocessed
using the EEGLAB toolbox (Delorme and Makeig, 2004) in the following order: First, the
data were downsampled to 512 Hz and subsequently filtered using a 0.1 Hz high-pass filter
and a 120 Hz low pass filter ( 6 dB cutoff at 0.5Hz, 1 Hz transition bandwidth, FIRFILT,
EEGLAB plugin). Channels exhibiting either excessive noise or strong drifts were manually
detected and removed (2.1 +/- 2.5, mean and standard deviation respectively). After this, the
continuous data were manually cleaned, rejecting data sequences including jumps, muscle
artifacts, and other sources of noise. To remove eye and muscle movement-related artifacts,
an independent component analysis based on the AMICA algorithm (Palmer et al., 2008)
was computed on the cleaned data. The independent components (ICs) corresponding to
eye, heart, or muscle activity were manually selected based on their timecourse, spectra and
topography, and removed before transforming the data back into the original sensor space
(number of removed ICs 8.3 +/- 5.2, mean and standard deviation, respectively). The initially
removed channels were interpolated based on the activity of their neighboring channels
(spherical interpolation). Subsequently, the continuous data were divided into epochs for
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each trial by including data from 200 millisecond pre-stimulus to 1000 millisecond post
stimulus, using the time window between -200 millisecond and stimulus onset for baseline
correction. For the exploratory analysis we used 62 electrodes (Fp1, FPz, Fp2, F7, F3, Fz,
F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8,
POz, O1, Oz, O2, AF7, AF3, AF4, AF8, F5, F1, F2, F6, FC3, FCz, FC4, C5, C1, C2, C6,
CP3, CPz, CP4, P5, P1, P2, P6, PO5, PO3, PO4, PO6, FT7, FT8, TP7, TP8, O7, PO8).

3.4 Results

3.4.1 Behavioral analysis

Social situation awareness
To assure that participants payed attention to the different social situations in the experi-

ment we asked them in the middle of each block whether the current block was a cooperative
or competitive situation. Answering this question participants achieved a high accuracy (mean
correct answers = 97%, standard deviation = 7%), suggesting that participants consistently
understood and memorized the instructions about differences between social situations.

Accuracy
Prior to running the actual experiment, we used a QUEST staircase procedure to adjust a

difficulty in each task for participants such that participants were expected to attain a 50%
accuracy. Confirming this expectation, the mean accuracy in the task was 53% (standard
deviation = 9%) and the mean difference between paired participants was 8% (standard
deviation = 6%). It was important that both paired participants performed with comparable
accuracy to avoid that the analyzed ERPs are influenced by differences at the behavioral level.
Further, it results in an even distribution of performance data in correct-correct, correct-false,
false-correct and false-false.

Response time
We analyzed response times to test whether our experimental manipulations influenced

behavioral responses. Prior to analysis, we excluded all trials with response times faster than
50 milliseconds (2 trials) because such fast responses are likely due to premature responses.
Then, we used a linear mixed model (LMM) to analyze response times. The LMM was
calculated with the lme4 package (Bates et al., 2014) and p-values were based on Walds-T
test using the lmerTest package. Degrees of freedoms were calculated using the Satterthwaite
approximation. We modeled responses times by task, social situation and correctness as fixed
effects and interactions between them. As random effects, we used random intercepts for
grouping variables participants and dyads. In addition, we used random slopes for all fixed
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effects, including interactions, in the participant grouping variable. For all predictors, we
used an effect coding scheme with binary factors coded as -0.5 and 0.5. Thus the resulting
estimates can be directly interpreted as the main effects. The advantage of this coding scheme
is that the fixed effect intercept is estimated as the grand average across all conditions and
not the average of the baseline condition. We found a main effect of correctness (t(50.18)=
-8.1, p <.0001). Correct answers were on average 80 milliseconds faster than incorrect
answers. The main effects for the two other predictors (tasks and social situations) and all
possible interactions were not significant (p >.17). These results suggest that different tasks
(orientation and spatial frequency) and social situations (cooperative and competitive) are of
comparable level of difficulty and engage two participants to similar degrees.

Estimate Std. Error df t value Pr(>|t|)

(Intercept) .43 .32 25.89 1.35 .19
social situation -1.54 .26 26.02 -5.85 < .001

outcome 1.03 .23 26.01 4.4 < .001
social situation:outcome -.26 .28 27.15 -.93 .36

Table 3.1 LMM Effects of outcome and social situation on the FRN (mean amplitude (200-
300 milliseconds)) (effect coding: -0.5,0.5, maximal LMM).

3.4.2 Electrophysiological data

To analyze EEG data in form of ERPs, we applied a preselected single-trial based LMM
analysis (Frömer et al., 2018). We defined the FRN as the mean amplitude over six electrodes
(Fz, F1, F2, FCz, FC1, FC2) between 200 and 300 milliseconds after the feedback of each
trial. Our choice of electrodes and time window was based on previous research and were
pre-specified before any analysis (Ullsperger et al., 2014). We modeled the FRN using
outcomes (win and lose) and social situations (cooperative and competitive) as fixed effects
and an interaction between them. As random effects, we modeled random intercepts for
participants and random slopes for both predictors (outcomes and social situations) and
interaction between them. For the same reason as above, predictors were effect coded, i.e.,
binary factors are coded as -0.5 and 0.5. The result of this analysis are presented in the
Table 3.1 and ERPs in Figure 3.2. We found main effects for the outcome (t(26.02) = -5.85,
p <.001) and the social situation (t(26.01) = 4.4, p <.001). The FRN amplitudes were on
average 1.03 (standard deviation = .23) µV higher in lose than win trials and 1.54 (standard
deviation = .26) µV higher in competitive than cooperative trials. The interaction between
these factors was not significant (t(27.15) = -.93, p = .36). These results suggest that the FRN
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Fig. 3.2 Feedback locked ERP waveforms at pooled electrode sites (F1, Fz, F2, FC1, FCz,
FC2). Data are averaged referenced. Green and red colors represent the outcome, i.e., win
and lose trials respectively. Solid and dashed lines represent cooperative and competitive
situations. The gray box shows the preselected time window used for the confirmatory
statistical analysis (200-300 ms).

differs between positive and negative outcomes and between cooperative and competitive
social situations and that these two effects are independent of each other.

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 12.86 .6 25.99 21.55 0
social situation 1.3 .36 26 3.55 .001

outcome -.71 .23 26.09 -3.04 .005
social situation:outcome -.41 .42 25.98 -.98 .34

Table 3.2 Effects of outcome and social situation on the FRN (peak to peak amplitude (140-
270 milliseconds)) (effect coding: -0.5,0.5, maximal LMM).



3.4 Results | 83

Fig. 3.3 Feedback locked difference waveforms at pooled electrode sites (F1, Fz, F2, FC1,
FCz, FC2). Data are average referenced. Pink and green colors represent the monetary
outcome, i.e., lose-win (monetary) and incorrect-correct (neutral) trials respectively. Solid
and dashed lines represent cooperative and competitive situations. The gray box shows the
preselected time window used for the confirmatory statistical analysis (200-300 ms). All
ERP waveforms that were used to make difference waves are presented in Supplementary
Materials.

Additionally, we used individual estimates of the difference between the FRN in the two
social situations to correlate them with the Perspective Taking Score. We calculated the
Spearman’s Rho to quantify the association of the Perspective taking score and individual
participant’s mixed model best linear unbiased prediction of the factor social situation from
the mean amplitude analysis. We chose Spearman’s correlation because our questionnaire
data was rank data. We found a significant negative correlation (r = -.54, p = .005, Figure
3.3). This result suggests that on average the effect of the social situation is stronger on the
characteristic ERPs in participants with personality traits related to high perspective taking
abilities.

Furthermore, after visual inspection of the grand average ERPs (Figure 3.2), we decided
to also apply a peak to peak amplitude analysis because the FRN peaked earlier than expected
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(Ferdinand et al., 2012). For the peak to peak analysis we used the same electrodes as for
the mean amplitude analysis (Fz, F1, F2, FCz, FC1, FC2). We used the grand average to
identify the maximum positive peak between 140 and 200 milliseconds and the maximum
negative peak between 200 and 270 milliseconds after feedback presentation. We subtracted
the average maximum negative peak amplitude from the average maximum positive peak
over these time windows. This is equivalent to applying directly a peak-to-peak analysis
on data low-pass filtered by a boxcar kernel. Compared to the plain peak-to-peak analysis
it is, however, less susceptible to high frequency noise and therefore more robust. Then,
we applied exactly the same LMM analysis as with the mean amplitude (details above).
The result of this analysis are presented in the Table 3.2. We found main effects for the
outcome (t(26) = 3.55, p = .001) and the social situation (t(26.09) = -3.04, p = .005). The
peak amplitudes were on average .71 (standard deviation = .23) µV higher in win than lose
trials and 1.3 (standard deviation = .36) µV higher in cooperative than competitive trials.
The interaction between these factors was not significant (t(25.98) = -.98, p = .34). These
results are in line with results of mean amplitude analysis, further corroborating that FRN
amplitudes differ between positive and negative outcomes and between cooperative and
competitive situations.

For the exploratory analysis, we used the Threshold-Free-Cluster-Enhancement method
(TFCE) and permutation analysis (Ehinger et al., 2015; Mensen and Khatami, 2013; Smith
and Nichols, 2009). This method allows for comparisons between experimental conditions
over all electrodes and time points of ERPs while at the same time controlling for the multiple
comparison. We analyzed the EEG data with a two-way repeated measures ANOVA with
outcome (win vs. lose) and the social situation (cooperative vs. competitive) as within
participants factors and taking into account 62 electrodes, and all time points between 0 and
600 milliseconds. We enhanced the signal with the TFCE method and used permutation tests
to account for multiple comparisons. We used 5000 permutations and for each permutation
we randomized the assignment to different experimental conditions of each data point within
each participant. For each of these TFCE permutations, a repeated measures ANOVA was
calculated. The maximum F-value across chosen samples in time and space were used to
construct a max F-value distribution, against which the actual F-values were compared. We
considered F-values above the 95th percentile to be significant. The results of this analysis
are presented in Figure 3.5. We found two separate clusters of significant activity for the
main effect of outcome. One cluster spans from 88 to 152 milliseconds (median p value:
p = .01, min p value: p = .001) with a peak at C1 electrode 121 milliseconds after the
feedback and was more negative for lose than win outcomes. The other cluster ranges
between 172 and 340 milliseconds with a peak at Fz electrode 240 milliseconds following the
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Fig. 3.4 Correlation between the Perspective taking subscale of the Interpersonal Reactivity
Index (Davis, 1983) (x-axis) and the single-subject linear mix model estimates of the social
situation effect (y-axis). Spearman’s r = -.54, p = .005. Linear fit with 95% confidence
interval.

feedback (median p value: p = .01, min p value = .0006). This cluster resembles spatially and
temporally the FRN and it was more negative for lose than win outcomes. Please note that
in contrast to the conventional analysis above that makes assumptions on the timing of the
relevant signals, the TFCE approach gives the intervals with significant differences as a result.
Thus, the present analysis validates and makes the assumptions of the analysis above more
precise. Moreover, we found that there is a main effect of the social situation. This cluster
stretched from 68 till 600 milliseconds (median p value: p = .0004, min p value: p = .0002)
and encompassed all electrodes at different time points, suggesting a robust difference in
processing of feedback between cooperative and competitive situations. The peak significant
value was at FC5 electrode 143 milliseconds after the feedback. Overall, these results
support the observations above of large differences between processing of feedback between
cooperative and competitive situations and suggest that the difference in processing positive
and negative feedback starts earlier than classically considered time window for the FRN.



86 | The Social Situation Affects How We Process Feedback About Our Actions

Fig. 3.5 Time-series plots of the EEG amplitudes of the main factors and interaction for
each electrode aligned to the feedback stimulus. First row (butterfly plot) shows time
against activity of all electrodes. In addition, the Fz electrode is marked in red. Black marked
clusters are significant under a TFCE permutation p-value of 0.05. TFCE corrects for multiple
comparisons over time and electrodes. Second row shows topographical plots representing
the mean amplitudes averaged over 50 ms bins. Black marked electrodes represent significant
channels.
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Next, to fully explore our design we analyzed differences in the FRN amplitudes between
monetary versus neutral outcomes crossed with social situations. For this, we utilized a
difference wave approach (Li et al., 2018). In each of the social situations, we subtracted
ERPs of negative from positive monetary outcomes. In addition we subtracted incorrect
responses from correct ones in the neutral monetary outcomes. Then, we quantified the
FRN, likewise as in the LMM analysis above, as the mean amplitude between 200 and 300
milliseconds after the feedback presentation for each condition. We used a two-way repeated
measures ANOVA with social situation (cooperative vs. competitive) and type of outcome
(monetary vs. neutral) as within participant factors. We applied a different statistical method
than in above mean amplitude analysis to analyze difference waves as it is unclear how
one would pair trials for subtraction on a single trial level. Thus, we used grand averages
for each condition to calculate difference waves. Moreover, we used a difference wave
approach to simplify the necessary statistical model and answer a different question. Namely,
whether types of outcomes (monetary vs. neutral), without considering whether it’s positive
or negative, are different. In the time window from 200-300ms we found a main effect
of social situation (F(1,25) = 6.17, p = .02, h2 = .022, Figure 3.4), a main effect of type
of outcome (F(1,25) = 4.55, p = .04, h2 = .026) and no interaction between these factors
(F(1,25) = .34, p = .56, h2 = .003). The amplitudes were more negative for monetary than
neutral outcomes and more negative in competitive than cooperative situations. These results
suggest that the effect of the social situation on the FRN reported above extends to neutral
outcomes. Furthermore, the significant difference between monetary and neutral outcomes
suggest that is sensitive to both monetary rewards and task performance. Furthermore, after
we observed significant cluster resembling the FRN in our exploratory analysis (172 to 340
ms after the feedback presentation, see above) we analyzed this later time window as well. In
particular, we calculated the mean amplitude between 300 to 340 ms for each difference wave
and analyzed it with a two-way repeated measures ANOVA with social situation (cooperative
vs. competitive) and type of outcome (monetary vs. neutral) as within participant factors.
The main effect of social situation (F(1,25) = .05, p = .83, h2 = .0002, Figure 3.4) was not
significant. However, we found a main effect of type of outcome (F(1,25) = 8.32, p = .007,
h2 = .02) and an interaction effect between the factors (F(1,25) = 4.91, p = .036, h2 = .06).
Thus, in contrast to the time window predefined based on earlier literature, we do not observe
a main effect of the social situation in the late window, but an interaction arises between the
factors of social situation and outcome. Thus, the complete time window reaching up to 340
ms contains dynamics and is not a completely homogeneous block. Specifically, these results
further corroborate that feedback processing is sensitive to both monetary rewards and task
performance. Moreover, the social situation modulates amplitudes for both of them.
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Fig. 3.6 Feedback locked averaged difference waves between experimental and control data
for 5 participants pooled at electrode sites (F1, Fz, F2, FC1, FCz, FC2) are shown. In experi-
mental data green and red colors represent the outcome, i.e., win and lose trials respectively,
while solid and dashed lines represent cooperative and competitive situations. Difference
between social situations and outcomes is visible after subtraction of electrophysiological re-
sponse to identical visual stimuli without any content. This suggests that our results represent
differences in experimental manipulations but not visual properties of stimuli.
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Lastly, we address a potential visual confound in our design. As we used four different
visual stimuli to inform our participants about their performance and associated rewards,
results potentially reflect differences of the visual feedback. To address this potential
perceptual confound, we invited five participants again, who previously completed the
experiment, for a control experiment. In this version of the experiment, the Gabor patches
were not displayed and random feedback was provided. Thus, this experiment controls for
the pure visual effect of the feedback. To assess this potential confound, we calculated
grand average ERPs for experimental and control data. We visually inspected the ERPs
and found no difference between the different visual feedback displays, including the early
visual components. Then, we subtracted these control data from the experimental data.
Again, visual inspection suggests that differences in the visual appearance of the feedback
information did not influence the FRN (Figure 3.6). This is in line with previous research that
shows only early components e.g. C1, P1, N1, in the first 150 milliseconds are modulated
by such low-level visual stimuli properties (Hillyard and Anllo-Vento, 1998; Wijers et al.,
1989). Hence,we are reassured that our results represent differences between outcomes and
social situations and not due to differences in the visual stimuli.

3.5 Discussion

The goal of the present study was to compare reward processing between different social
situations as well as to test whether earlier results (Picton et al., 2012) generalize to a setting
which actively involves two participants. For this purpose, we designed a joint 4-AFC visual
task, in which two co-actors both concurrently perform a task and receive rewards depending
on the social situation. We were able to replicate the difference in FRN amplitudes between
positive and negative outcomes in the cooperative situation (Picton et al., 2012). Moreover,
we extended these earlier results by observing a significant difference between win and lose
outcomes in the competitive situation. We also found that the FRN significantly differs
between social situations, suggesting that reward processing is modulated by the social
situation. However, we did not observe an interaction between these two factors. Further,
the difference induced by the social situations were stronger in participants with higher
perspective taking scores, which were obtained using a perspective taking questionnaire.
Finally, we compared feedbacks with and without monetary outcomes (win/lose vs. neutral)
in both social situations. We found that our reported effect, that the social situation affects the
FRN, also extends to the processing of neutral outcomes. Moreover, we found a significant
difference between feedbacks with and without monetary outcomes, suggesting that the FRN
is sensitive to both monetary rewards and task performance.
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Earlier behavioral findings support the idea that humans co-represent co-actors actions
even if they are irrelevant to one’s own goals (Atmaca et al., 2011), for a recent general
review, see: (Vesper et al., 2010). Such representations may also influence how humans
process feedback about actions and associated monetary rewards while performing joint
actions with another person. Therefore, our experiment involved two participants performing
their tasks simultaneously and hence differs from previous studies that utilized a virtual
partner to investigate differences between social situations (Itagaki and Katayama, 2008).
Moreover, the design allows for concurrent actions from both participants – an aspect that
it is not present in designs that employ turn-taking tasks which create a division between a
performer and observer (de Bruijn and von Rhein, 2012; Koban et al., 2010; Marco-Pallarés
et al., 2010). Thus, with the results of the present study, we extended earlier findings by
demonstrating that they also generalize to a setting involving co-actors that both actively and
simultaneously perform a task.

Our result that the outcome (positive vs. negative reward) affects the FRN in both social
situations is in line with a great body of earlier research (Ullsperger et al., 2014). We
quantified the FRN in two different ways (mean and peak to peak amplitude) and applied
additional exploratory analyses. Results of all three analyses provide strong evidence that
negative outcomes elicit more negative amplitudes at mid-line electrodes around 200 to 300
milliseconds after the feedback presentation. Such an outcome of our study suggests that the
FRN component is robust and it generalizes from individual to joint set-ups and different
social situations. In contrast, our results are not compatible with the theory that the FRN
represents differences in expectancies and probabilities (Alexander and Brown, 2010, 2011).
In our task the probabilities for each outcome were nearly equal, therefore, there are no
differences in probabilities or expectancies. Future studies could investigate whether reward
processing is also affected by the outcome in tasks, in which both co-actors actively perform
a task collaboratively as, for instance, in joint perceptual tasks (e.g., Brennan et al. (2008);
Brennan and Enns (2015b); Wahn et al. (2016b); Wahn et al. (2017b); Wahn et al. (2018a);
Wahn et al. (2017a); for a recent review, see Wahn et al. (2018c)) or in joint motor tasks
(e.g., Knoblich and Jordan (2003); Wahn et al. (2016b), for a recent review, see Wahn et al.
(2018b)).

The main question, namely, whether reward processing differs between social situations
was addressed in three ways. First, we analyzed the FRN as mean as well as peak to peak
amplitude and found a main effect of social situation. Second, we also found a main effect of
social situation when analyzing the difference waves. Third, using an exploratory analysis,
we again found a main effect of social situation. Taken together, these results suggest that
the FRN amplitudes are affected by the social situation, although the lack of interaction in
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a pre-specified time window (200 to 300 ms) implies that positive and negative outcomes
are equally affected. Additionally, analysis of a later time window (300 to 340 ms) in
difference waves revealed a main effect of different types of outcome and an interaction
effect. This raises the question which aspect of the change in social situation affects the
FRN. Potentially, the social situations might differ with respect to arousal state and the
amount of attentional resources utilized. Previous research points in the direction of such
an interpretation (Cui et al., 2015). However, we did not observe differences in the level of
performance as a function of the social situation. This makes an influence on the FRN by
variations of arousal or attentional resources unlikely. Therefore, our study provides evidence
that reward processing is affected by social situations, however, further research is needed to
unravel details of involved processes. Given, that we find that the social situation (cooperative
or competitive) modulates processing of feedback about our actions, an interesting research
direction would be to test how different social situations may also affect how co-actors
monitor actions joint actions (Keller, 2008; Vesper et al., 2010), representations of co-actors
in a dyad (Sebanz et al., 2005) , and the prediction of co-actors actions of co-actors (Keller
et al., 2007). Moreover, our results are in line with EEG hyperscanning studies suggesting
that different cognitive processes are involved in cooperative and competitive situations
(Astolfi et al., 2010; Sinha et al., 2016).

A previous study suggested that that the FRN is only sensitive to the outcome, but not
task performance as such (Itagaki and Katayama, 2008). As studying the FRN in response
to neutral outcomes is mostly neglected in literature (but see Holroyd et al. (2006)), this
is difficult to disentangle. Due to our design that included neutral outcomes, we were in a
better position. Specifically, the comparison of FRN amplitudes between feedbacks with and
without monetary outcomes in combination with correct or incorrect individual performance,
results in a significant difference between feedbacks with and without monetary outcomes.
This result suggests that different neural processes are involved in processing outcomes and
task performance. Given that we find that the FRN is present for neutral outcomes, this result
suggests that the FRN is sensitive to outcome as well as task performance.However, we have
to be cautious with interpretation of these results because both performance and monetary
feedback was delivered at once and it is not clear how to disentangle them in our design. In
future research, one could manipulate chance of winning (25%, 50% and 75%) for individual
participants to extend current results.

In this study, we used state of the art EEG analysis methods, namely Linear Mixed
Models for hierarchical analysis of single trial activity (Frömer et al., 2018) and TFCE to
control for multiple comparisons (Mensen and Khatami, 2013; Smith and Nichols, 2009). In
the following, we first provide a discussion of the benefits using these analysis techniques and
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then further discuss the obtained results of our exploratory analysis. We quantified the FRN
on a single trial basis and used the LMM to model the FRN. This approach helps to account
for a multitude of problems. For instance it handles unequal number of observations per
cell, allows for between participant variability in effect sizes and combines single participant
variability and group level variability (Baayen et al., 2008; Barr et al., 2013; Matuschek
et al., 2017; Pinheiro and Bates, 2000). In our experiment, we tried to reduce the first
problem of unequal cell size by using the QUEST procedure to obtain almost equal number
of trials. Nevertheless, EEG data has to be cleaned and depending on the noise level the
number of rejected trials varies between participants. However, the issue of high variability
between participants in cognitive neuroscience field is prevalent and has to be accounted
for (Seghier and Price, 2018). The LMM approach is suitable to address this problem. Our
additional motivation to use this method was related to its capability of estimating effect
sizes for individual participants. We used those to correlate them with information about
personality traits of participants to test a possible association between neurophysiological
and questionnaire data. We also made use of the TFCE permutation analysis to perform
the exploratory analysis (Mensen and Khatami, 2013) without specifying electrode sites or
time window. This approach circumvents the need to preselect time points and electrodes
(Bishop, 2007), which is an additional benefit as making these decisions may not always be
straightforward, especially in the absence of clear guidelines.

Using this exploratory analysis, we found the same pattern of results as above in our
confirmatory analysis. Namely, we found a main effect of the outcome and social situation in
both the LMM and the permutation analysis, further corroborating earlier results that the FRN
is sensitive to positive and negative outcomes and the social situation (Ullsperger et al., 2014).
In addition, our exploratory analysis showed that these differences for the FRN preceded the
time window typically defined for the FRN, suggesting that the human brain differentiates the
valence of the outcome and the social situation earlier than previously suggested (de Bruijn
and von Rhein, 2012; Koban et al., 2010; Loehr et al., 2015, 2013; Marco-Pallarés et al.,
2010; Picton et al., 2012; Rigoni et al., 2010). Our results (Figure 5, second row), suggest
that there are stronger positive activation in cooperative than competitive situation in two
stages of processing of the feedback. Namely, around 160 and 280 milliseconds after the
feedback presentation. The social situation main effect might arise from a source close
to CP6 and P6 electrode. Because Superior temporal sulcus (STS) and Temporoparietal
junction (TPJ) are close to these electrodes and earlier fMRI research suggests these areas are
involved in differentiating the self from others, this might be the origin (Saxe and Kanwisher,
2003). Thus, it might be interpreted that while people receive feedback and process them
simultaneously in a cooperative situation they merge their own and their co-actor positive
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outcomes and process them as simultaneously while the competitive situation requires distinct
processing of rewards. However, this interpretation have to be taken cautiously due to the
inverse problem.

Moreover, we investigated the relation between the Perspective taking score and mixed
model best linear unbiased prediction of the factor social situation. We found that the higher
the Perspective taking score, the stronger is the difference in FRN amplitudes between social
situations. This result suggests that personality traits related to perceiving and understanding
others might be related to the strength of the neurophysiological response to rewards. Thus,
brain mechanisms involved in reward processing in people showing more consideration
for others, might be more sensitive for different social situations. However, this result and
interpretation should be treated with caution, as using mixed model best linear unbiased
prediction in combination with a correlation analysis is a new approach and still has to be
fully validated (Houslay and Wilson, 2017).

Taken together, we investigated neural underpinnings of feedback processing in coop-
erative and competitive situations. We find that the FRN component is sensitive not only
to positive and negative outcomes but also to the social situation in a design, in which both
co-actors in dyad actively perform a task.
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4.1 Abstract

Robots start to play a role in our social landscape, and they are progressively becoming
responsive, both physically and socially. It begs the question of how humans react to
and interact with robots in a coordinated manner and what the neural underpinnings of
such behavior are. This exploratory study aims to understand the differences in human-
human and human-robot interactions at a behavioral level and from a neurophysiological
perspective. For this purpose, we adapted a collaborative dynamical paradigm from the
literature. We asked twelve participants to hold two corners of a tablet while collaboratively
guiding a ball around a circular track either with another participant or a robot. In irregular
intervals, the ball was perturbed outward creating an artificial error in the behavior, which
required corrective measures to return to the circular track again. Concurrently, we recorded
electroencephalography (EEG). In the behavioral data, we found an increased velocity and
positional error of the ball from the track in the human-human condition vs. human-robot
condition. For the EEG data, we computed event-related potentials. We found a significant
difference between human and robot partners driven by significant clusters at fronto-central
electrodes. The amplitudes were stronger with a robot partner, suggesting a different neural
processing. All in all, our exploratory study suggests that coordinating with robots affects
action monitoring related processing. In the investigated paradigm, human participants treat
errors during human-robot interaction differently from those made during interactions with
other humans. These results can improve communication between humans and robot with
the use of neural activity in real-time.

Keywords: Action monitoring, Embodied Cognition, EEG, ERP, Joint Action, Social
Neuroscience, Human-Robot interaction

4.2 Introduction

We constantly interact with other humans, animals, and machines in our daily lives. Many
everyday activities involve more than one actor at once, and groups of interacting co-
actors have different size. Especially, interactions between two humans (so-called dyadic
interactions) are the most prevalent in social settings (Peperkoorn et al., 2020). During such
situations, we spend most of our time trying to coordinate our behavior and actions with
other humans. Until recently, human cognition was mostly studied in non-interactive and
single participant conditions. However, due to novel conceptual and empirical developments,
we are now able to bring dyads instead of single participants to our labs (Schilbach et al.,
2013). This approach is called Second-person neuroscience (Redcay and Schilbach, 2019;
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Schilbach et al., 2013). It suggests that we need to study the social aspect of our cognition
with paradigms that include real-time interactions between participants instead of the passive
observation of socially relevant stimuli (Redcay and Schilbach, 2019). Such an approach can
reveal a new perspective on human social cognition.

Coordination between members of a dyad is achieved by joint actions (Sebanz and
Knoblich, 2021). There are different aspects of coordination that facilitate achieving common
goals between co-actors. Firstly, Loehr et al. (2013) showed in pairs of pianists performing
solo and duets that monitoring of our actions, our partner’s actions, and our joint actions is
required to coordinate successfully. Second, being familiar with each co-actors individual
contributions in the dyad helps to form predictions about the partner’s actions, which further
improves coordination (Wolf et al., 2018). Third, recently proposed action-based communi-
cation serves as a fundamental block of coordination (Pezzulo et al., 2013). In comparison
to verbal communication, this low-level sensorimotor communication is implicit and faster.
Experiments by Vesper et al. (2017b) serve as examples of sensorimotor communication in
the temporal dimension. Their results have shown that participants adjusted their actions
to communicate task-relevant information. Fourth, while both co-actors are engaged in a
constant flow of perceptual information, they create coupled predictions about each other’s
actions that are necessary to achieve fruitful coordination (Sebanz and Knoblich, 2021). Curi-
oni et al. (2019b) investigated coordination tasks with incongruent demands between partners,
and their results suggested the benefits of reciprocal information flow between participants.
In sum, there are different aspects of human cognition that allow for the maintenance of
dyadic coordination: Action monitoring, predictions based on familiarity of partner’s actions,
action-based communication, and reciprocal information flow.

So far, most dyadic interaction studies investigated the coordination between human
co-actors (Sebanz et al., 2006a; Vesper et al., 2010). However, in recent years we are more
and more surrounded by robotic co-actors (Ben-Ari and Mondada, 2018). Furthermore, there
are many different predictions for the future of robotics, but all point into the same direction:
there will be more robots among us (Diamond Jr, 2020; Stone et al., 2016; Wiederhold, 2021).
In line with this, humanoid robots are getting progressively better at socially relevant tasks
(Campa, 2016). It is thought that these social robots will be used in many different fields
of our everyday life in the upcoming years (Enz et al., 2011). One of the main challenges
in robotics is creating robots that can dynamically interact with humans and read human
emotions (Yang et al., 2018). Concerning these changes in our environment, a new research
line has emerged and already substantially contributed to our understanding of human-robot
interactions (Sheridan, 2016). As many different scientists are slowly approaching this topic,
the field of human-robot interaction until now focused on human thoughts, feelings, and
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behavior towards the robots (Broadbent, 2017). Studying these specific aspects is essential
and further, we believe that the scientific community has to investigate real-life interactions
between humans and robots in order to fully understand the dynamics that underlie this field.
Therefore, we propose to use both human and robot partners in experimental paradigms as
this will help to close the gap in understanding dyadic interactions.

There are different tools and methods to study the social brain and behavior (Krakauer
et al., 2017): EEG (Luck and Hillyard, 1994), fMRI (Eisenberger, 2003), MEG (Baillet,
2017), and fNIRS (Ferrari and Quaresima, 2012). From this list, Electroencephalography
(EEG) stands out as particularly useful for studying dynamical interactions, as it not only
aligns with the temporal resolution of social interactions, but also allows for free movement
and thereby allows for dynamic interactions. This temporal resolution allows studying brain
processes with milliseconds precision. One of the methods that are classically used within
EEG research are event-related potentials (ERPs) (Luck and Hillyard, 1994). ERPs are
suitable to study different components of brain processes while they evolve over time. The
classic study by Miltner et al. (1997) showed different brain signatures for correctly and
incorrectly performed trials at around 200-300 milliseconds after the feedback about an
action was perceived. This brain component was named Feedback related negativity (FRN).
In similar studies, van Schie et al. (2004) showed that the FRN is sensitive not only to our
own actions but also those of others. Czeszumski et al. (2019) further extended this finding
to different social contexts (cooperation and competition). Thus, EEG and specifically ERPs
have been proven valuable tools to investigate the physiological basis of social interactions.

Therefore, we have a good understanding of EEG-based markers of action monitoring.
Nonetheless, it is only in recent years that human behavior and its neural basis are studied
together with robotic partners (Cheng et al., 2020; Wykowska et al., 2016). Based on more
than 20 years of research on action monitoring in humans, similar ERP components (E/FRN)
were expected to be elicited in human-robot paradigms. Namely, the difference between brain
responses to correct and incorrect actions of a robotic arm was found (Iturrate et al., 2015;
Kim et al., 2017). Furthermore, these differences in midfrontal ERP components were used
to improve co-adaptation between human and robot behavior in turn-taking tasks (Ehrlich
and Cheng, 2018, 2019a,b; Iwane et al., 2019; Salazar-Gomez et al., 2017), and real-world
driving (Chavarriaga et al., 2018; Zhang et al., 2015). Such EEG based interfaces highlight
the importance of studying the neural basis of human-robot interactions. The results confirm
that similar brain mechanisms are involved when we observe actions of the robot. Yet, little
is known about action monitoring in dynamic situations with non-human, robotic partners.
The goal of this study was to test whether the same neural mechanisms are present when we



4.3 Methods | 99

interact with robots in a dynamic paradigm and if there are differences between human and
robotic partners.

To answer these questions, we adapted a dynamic dyadic interaction paradigm for human-
robot interactions. We chose the paradigm from Hwang et al. (2018) and Trendafilov et al.
(2020), in which two human participants had to manipulate a virtual ball on a circular
elliptic target displayed on a tablet and received audio feedback of the ball’s movement.
Participants used their fingers to move the tablet and manipulate the position of the ball.
We changed the paradigm, by adapting the tablet to enable coordination with the robot and
to fit the requirements for EEG measurements. On the one hand, this paradigm allows for
coordination similar to a real-life situation; on the other hand, it allows for the analysis of
neural underpinnings of cognitive functions required for coordination. In this study, we
specifically focused on the aspect of action monitoring with human and robot partners. Thus,
to extend our knowledge the present study investigates action monitoring in a dynamic
interaction task between humans and robots. Additionally, based on the results from Hwang
et al. (2018) we decided to test whether auditory feedback about actions (sonification)
influences coordinated behavior and cognitive processes. Taken together, this study tries to
approach a novel problem with interdisciplinary methods and sheds new light on the neural
processes involved in dynamic human-robot interactions.

4.3 Methods

4.3.1 Participants

We recruited 16 participants (7 female, mean age = 25.31 ± 1.92 years) from KTH Stockholm
Royal Institute of Technology. We had to exclude two dyads from further analysis, one
due to measurement errors in the robot control and one due to excessive movements from
participants which led to large artefacts in the EEG data, leaving data from 12 participants
in 6 recording sessions. Participants had normal or corrected-to-normal vision and no
history of neurological or psychological impairments. They received course credits for their
participation in the study. Before each experimental session, subjects gave their informed
consent in writing. Once we obtained their informed consent, we briefed them on the
experimental setup and task. All instructions and questionnaires were administered to the
participants in English. The Swedish Ethical Review Authority (Etikprövningsnämnden)
approved the study.
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4.3.2 Task and Apparatus

During each recording session, participants performed the task in four blocks of 10 minutes
each, twice with a human partner and twice with the robot. Further, each dyad (partner human
or robot) performed the task with or without auditory feedback (sonification on or sonification
off). The task was based on a tablet game where the dyads cooperated with each other to
balance a ball on a circular track as they simultaneously moved it in counter-clockwise
direction Hwang et al. (2018) (Figure 4.1). At random intervals, we added perturbations
that radially dispersed the position of the ball away from the current position. In order to
reduce the subjects’ expectations of the occurrence of the perturbations, we sampled its rate
of occurrence from a Poisson distribution with l=4s.

The experimental task was implemented on an Apple IPad Air tablet (v2, 2048 x 1536
pixel resolution, refresh rate 60Hz) using Objective-C for iOS. During the task, subjects saw
a red ball of 76.8 pixel radius on a circular track with a radius of 256 pixels and a thickness
of 42.67 pixels. The ball position was represented as the horizontal and vertical coordinates
with respect to the center of the circular track (0,0). The tablet was mounted on a metal frame
of size 540mm x 900mm. We further added a square of size 100 pixels x 100 pixels that was
used as a signal source for, and covered by, a luminance sensor.The luminance sensor is a
light-sensitive diode that converts light into electrical current. We changed the color of a
small patch on the tablet for the different events in the experiment (start of the experiment,
start of a perturbation, end of the experiment) over which the luminance sensor was placed.
Figure 4.1 shows all the visual components displayed to the participants (the text box on the
left side was used by the experimenter to monitor the experiment status).

During the periods with another human partner, we asked the participants to not verbally
interact with each other. During the task, they sat face-to-face at 1m distance as they held
handles connected to the short end of the frame. Similarly, while performing the task with
the robot, subjects held the short end of frame while the other end of the frame was clamped
to the grip effectors of the robot. Figure 4.2 shows the physical setup of the subjects and the
robot during the experiment.

For the periods involving sonification, the position and angular velocity of the ball
were sonified. The auditory feedback was created by a Gaussian noise generator with a
band-pass filter (cut-off frequency: ±25Hz). The horizontal and vertical coordinates of the
ball modulated the pitch of the auditory feedback, while its angular velocity modulated the
loudness. The sonification procedure was implemented using the specifications provided in
Hwang et al. (2018).

Lastly, we used a self-manufactured luminance sensor that synchronized the experimental
events (experiment start and end, and perturbation) between the tablet and the EEG amplifier.
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Fig. 4.1 Schematic of game design on the tablet. (1) Circular track, (2) ball, (3) flashing
rectangle indicating experimental events (covered by luminance sensor), (4) text box for
experiment monitoring (only used by experimenter).

We changed the luminance source color from black to white to mark the start of the trials,
white to black to mark the end of the trials. During a session the patch was white, except at the
frame where the perturbation happened, which was marked with grey (RGB=134,134,134).

4.3.3 Robot Control

We used the YuMi robot (ABB, Västerås, Sweden) shown in Figure 4.2 for our experiments.
We implemented a Cartesian space controller based on the original joint-level velocity
controllers provided by the manufacturer. The robot had direct access to the tablet data
and no active sensing was necessary. Starting the robot at the joint position depicted in the
Figure 4.2, we send Cartesian space velocity commands to both arms at 10 Hz. The Cartesian
controller was designed such that the X, Y positions of both end-effectors are kept constant
during an execution, and only the Z position of the end-effectors are adjusted to move the
ball. We denote the left and right end-effector velocity commands in the z axis by vz

l and vz
r

and the current X, Y position of the ball on the game by (bx,by), respectively. We first obtain
the angle q corresponding to the current position of the ball in the polar coordinate system
by q = arctan(by,bx). Then, we obtain the next target angle q̂ = q +p/12 to let the ball
move in the counterclockwise direction. The next target X ,Y positions of the ball are found
as b̂x = Gp(R⇥ cos(q̂)�bx), b̂y = Gp(R⇥ sin(q̂)�by), where R is the radius of the circle
on the IPad game and Gp = 0.1 is a constant gain. The velocity commands in the z axis
are then found as vz

l =�Gv(b̂x �ax)�Gv(b̂y �ay),vz
r = Gv(b̂x �ax)�Gv(b̂y �ay), where,

ax,ay are gravity acceleration in the X, Y directions measured by the IPad, and Gv = 0.5 is a
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Fig. 4.2 Experimental Setup. Participants performed the experiment with another participant
(A) or a robot partner (B). In each condition they played a tablet game by balancing a virtual
ball on a circular track while moving it in the counter-clockwise direction.

constant gain. The command velocities are then clipped to have an absolute value less than
0.02 m/s, and the clipped values are sent to the Cartesian velocity controller.

4.3.4 Experimental Protocol

We prepared both participants for the EEG recording together, which took around 45 minutes
to complete. Once the subjects were ready to start the experiment, we led them to a room
that housed the robot. Depending on the dyad combination, we provided oral instructions
about the task and clarified any remaining questions. For human-human dyads, we started
the task on the tablet with either of the sonification conditions depending on the experiment
session. To counterbalance the sonification and partner sequence for the combinations of
dyads (human-human or human-robot), we permuted the combinations. Each experimental
session was sequenced based on this permutation. We also counter-balanced the sonification
during the task, so that every even numbered experiment session started with the sonification
condition for all the dyad combinations. For the human-robot dyads, we first reset the
limbs of the robot to its initial conditions and then started the task on the tablet. After each
block, the participants were given a short break and then repeated the task with the alternate
sonification condition. The whole experimental session lasted for about 4 hours.

4.3.5 EEG data acquisition

We recorded the EEG using two 64-Ag/AgCl electrode systems (ANT Neuro, Enschede,
Netherlands), and two REFA8 amplifiers (TMSi, Enschede, Netherlands) at a sampling
rate of 1024 Hz. The EEG cap consists of 64 electrodes placed according to the extended
international 10/20 system (Waveguard, eemagine, Berlin, Germany). We placed the ground
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electrode on the collar-bone. We manually adjusted the impedance of each electrode to be
below 10kW before each session. The recording reference was the average reference, which,
only in the single-brain recordings, was later programatically re-referenced to Cz. During
human-human interactions, two brains were recorded simultaneously with the separate am-
plifiers, synchronized through the ANT-link (Synfi, TMSi, Enschede, Netherlands). VEOGs
were recorded with two additional electrodes, one placed below and one above the eye.

4.3.6 Pre-processing

The analysis of the EEG data was performed in MATLAB 2016b and the behavioral analyses
in Python 3.7.

We preprocessed the data using the EEGLAB toolbox (v2019.0) (Delorme and Makeig,
2004). As a first step before preprocessing, we programmatically extracted the trigger events
from the luminance sensor and added them to the recorded data. Then, the data from each
condition was downsampled to 512Hz, followed by referencing all datasets to Cz electrode.
We then high-pass filtered the dataset at 0.1Hz and then low-pass filtered it at 120Hz in order
to not unnecessarily discard gamma frequency activity (6 dB cutoff at 0.5Hz, 1 Hz transition
bandwidth, FIRFILT, EEGLAB plugin, (Widmann et al., 2015)). Following this, we manually
removed channels that showed strong drift behavior or excessive noise (mean: 7, SD: 2.7,
range: 1-13). We manually inspected the continuous data stream and rejected the portions
which exhibited strong muscle artifacts or jumps. To remove further noise from eye and
muscle movements, we used independent component analysis (ICA) based on the AMICA
algorithm (Palmer et al., 2008). Before performing ICA, we applied a high-pass filter to
the data at 2Hz cut-off to improve the ICA decomposition (Dimigen, 2020). We visually
inspected the resulting components in combination with using ICLabel (Pion-Tonachini
et al., 2019) classifier. IClabel was run on epoched data, 200 ms before and 500 ms after
the perturbation. Based on the categorization provided by ICLabel, and a visual inspection
of the time course, spectra, and topography, we marked ICs corresponding to eye, heart
and muscle movements for rejection (mean: 26.5, SD: 5.2, range: 18-44). We copied the
ICA decomposition weights to the cleaned, continuous data and rejected the artifactual
components. Finally, using spherical interpolation, we interpolated the missing channels
based on activity recorded from the neighboring channels.

4.3.7 Behavioral Analysis

To understand the behavioral differences for the factors partner and sonification, we used
measures of mean angular velocity and mean error produced. These behavioral differences
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indicate how well the partners coordinated with each other. Furthermore, as the velocity and
position of the ball were sonified, these measures are indicative of the effect of sonification
on the dyadic performance. We first calculated the instantaneous angular position q (in
degrees) of the ball using the horizontal and vertical (X, Y) positions of the ball on the tablet
as follows:

qt =
180
p

⇤ arctan
yt

xt
(4.1)

We used the atan2 function to take into account the (X, Y) position in the negative coordinate
axes. qt values were transformed from [�p,p] to range [0,2p] . Next, we computed the
instantaneous angular velocity w of the ball using the following formula where t is the sample
time-point:

w =
Dq
Dt

(4.2)

We, subsequently, calculated the mean w for each participant for the four different
conditions. Next, We calculated the error as the difference of the instantaneous radial
distance between the radius of the track and the ball’s current position measured as the
distance from the track’s center as follows:

errort =
q

x2
t + y2

t �Radiustrack (4.3)

4.3.8 Deconvolution and EEG Analysis

Even though the perturbations were sampled from a Poisson distribution with l = 4, the
corresponding neural responses might overlap in time and bias the evoked potentials (Dimigen
and Ehinger, 2021; Ehinger and Dimigen, 2019). Further, experimental block onset and
offset typically elicit very strong ERPs overlapping with the perturbations. Finally, we see
clear, systematic differences in the behavior depending on the condition (e.g. higher velocity
with a human partner), which could lead to spurious effects in the ERPs. We further added
eccentricity (distance from the circles midpoint), in order to control for the ball’s trajectory. In
order to control both temporal overlap and covariate confounds, we used linear deconvolution
based on time-regression as implemented in the unfold toolbox v1.0 (Ehinger and Dimigen,
2019). Consequently, we modeled the effects of the partner (human or robot), the sonification
(off = 0, on = 1) and their interaction as binary, categorical variables, the eccentricity and the
velocity were coded using B-spline basis functions and the angular position using a set of
circular B-splines. The block on- and offsets were modeled as intercept only models. The
complete model can be described by the Wilkinson notation below (Wilkinson and Rogers,
1973).
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perturbation ERP ⇠ 1+ partner+ soni f ication+ partner : soni f ication

+ circularspline(angular position,8)+ spline(eccentricity,5)

+ spline(velocity,5)

block onset ERP ⇠ 1

block o f f set ERP ⇠ 1

This model was applied on the average referenced continuous EEG data, and each event
was modeled in the time range of -500ms to 700ms with respect to the event onset. We
collected a mean value of 640 trials per subject.

Similar to the two-stage mass univariate approach, we calculated the t-value over subjects
for each of the resulting regression coefficients (similar to difference waves between two
conditions) for all electrodes and time points (time-range of -500ms to 700ms).That is, for
the purpose of comparison of two conditions, they are preferable as they avoid confounds by
other factors. The multiple comparison problem was corrected using a permutation based test
with threshold-free cluster enhancement (TFCE) (Ehinger et al., 2015; Mensen and Khatami,
2013) with 10,000 permutations(default parameters E = 0.5 and H = 2). We used the eegvis
toolbox (Ehinger, 2018) to visualize all evoked response potentials.

4.4 Results

4.4.1 Behavioral

In this study, humans played a collaborative game either with other humans or with robots.
We further added sonification of the ball’s movement as a supplementary auditory feedback
to the participants. Figure 4.3 shows the raw positions of the ball overlaid for all subjects and
the partner and sonification conditions. The behavior we analyse here, is the mean velocity
of the ball during each session and the mean deviation of the ball from the circular track.
These measures indicate how fast the participants performed the task and how much error
they produced, both a proxy of the success of the collaboration.

We calculated the mean angular velocity (w) for each participant for the four different
conditions (Figure 4.4 (A)). To test the statistical significance of these findings, we computed
a 2x2 factorial repeated measures ANOVA with the factors partner and sonification. The
ANOVA showed a significant main effect of partner, F(1,11) = 87.09, p < .0001 where
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Fig. 4.3 Distribution of ball positions. (A) Ball positions on the tablet with a human (red)
and robot (blue) partner. (B) Ball positions on the tablet for sonified (green) and not sonified
movements (orange). The black circle represents optimal trajectory. It can be seen that
participants deviated more with a human partner. No such difference is visible for a change
in the sonification.

subjects exhibited a mean angular velocity of 265.20 degrees/second and SD ±0.28.29 with
a human partner, conversely, with a robot partner subjects showed a mean angular velocity
of 159.23 degrees/second ±29.40. The ANOVA did not reveal a significant main effect of
sonification, F(1,11) = 1.00, p = 0.33, with mean angular velocity 210.06 degrees/second
±65.51 with sonification off and the mean angular velocity was 214.36 degrees/second
±62.53 with sonification on. There was no significant interaction of factors partner and
sonification, F(1,11) = 0.04, p = 0.83. Hence, we can conclude that participants were faster
at moving the ball on the circular track while performing the task with a human partner.

Next, we analysed the mean error produced by participants during a session. Figure 4.4
(B) shows the mean error across participants for the four different conditions. To statistically
assess these differences, we performed a 2x2 factorial repeated measures ANOVA with
factors partner and sonification. The ANOVA revealed significant main effect for partner
F(1,11) = 42.61, p < .0001 where subjects had a mean error of 0.04±SD = 0.012 while
performing with a human partner, conversely, they had a mean error of 0.01±0.012 while
cooperating with the robot. We did not find a significant main effect of sonification F(1,11) =
1.75, p = 0.21 where subjects had a mean error of 0.032±0.017 with the sonification off
and mean error of 0.033±0.018 with sonification on. There was no significant interaction of
factors partner and sonification, F(1,11) = 0.51, p = 0.48. We can conclude that subjects
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Fig. 4.4 Behavioral differences between conditions partner and sonification. (A) Differences
in mean angular velocity across different participants. The error bars indicate standard error
of mean. (B) Differences in mean error across different participants. The error bars indicate
standard error of mean. (C) shows the correlation of mean error and mean velocity for partner
and sonification conditions.

made larger errors while performing the task with a human partner compared to the robot
partner.

Lastly, we were interested in the correlation between the behavioral measures we analysed.
Figure 4.4 (C) shows the correlation of mean error and mean velocity for the partner and
sonification conditions. For human partner with sonification off the Pearson correlation
showed a correlation coefficient r = 0.98, p < 0.001 and for sonification on r = 0.89, p <

0.001. For robot partner with sonification off r = 0.97, p < 0.001 and with sonification
on r = 0.97, p < 0.001. These results show that the mean error and mean velocity were
positively correlated during the task.

4.4.2 EEG

Next, we look at the overlap- and behavior-corrected brain activity during the task. Using a
overlap-corrected time regression approach, we investigate the main effect and interaction
ERPs from the 2x2 design, while adjusting for eccentricity, velocity and position of the
ball (see Methods for details). For the effect of the behavioral data on the ERP, please
see the supplementary material. We only report ERPs time-locked to perturbation events.
Descriptively, in electrode Cz (Figure 4.5 (A)), we see the typical pattern of a positive
deflection, followed by a negative and a second positive deflection after the perturbation
onset. We did not have a specific hypothesis to a predefined component and analyzed all
electrodes and time points simultaneously. The TFCE analysis reveals two clusters for the
main effect of the factor of partner (Figure 4.5 (B)). The first cluster is likely to represent the
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activity between 230ms and 270ms with its maximum amplitude being -2.8µV at electrode
FC1 (median p: 0.025, minimal p: 0.018). The second cluster most likely represents the time
range of 515ms to 605ms with a peak at -1.2µV at electrode FC2 (median p: 0.026, minimal
p: 0.002). Both clusters are found in the central region. No significant clusters were found
for neither the factor sonification nor the interaction term.

These results show that we find differences in the participants’ ERPs with respect to
their current partner independently of their differences in behavior: When interacting with a
robot partner the ERP will have a stronger amplitude indicating a systematically different
processing.

4.5 Discussion

Our experiment investigated neural correlates of action monitoring in a dynamic collaboration
task that involves two co-actors. Participants performed the task with another human and
robot partner while we measured EEG signals. Co-actors tried to keep a virtual ball on the
circle displayed on a tablet; they used their hands (human arm or robotic arm) to manipulate
independent orientation axes of the tablet. We perturbed the ball to investigate neural action
monitoring processes of the participants. We found fronto-central ERP components at around
200-300ms after the ball was perturbed. The components were stronger for human and robot
partner compared to interactions with another human. These results suggest that the dynamic
processing of our actions is influenced by whether we collaborate with a robot or a human.

The behavioral measures of our participants’ actions were different between human and
robot partners. We focused our analysis on two aspects of collaboration: The speed which
is represented by the ball’s velocity and the accuracy as indicated by the mean error. Our
results suggest that participants perform slower when paired with the robot and achieve
higher accuracy (ball closer to the circular track). There is a trade-off relation between these
factors; this is why we discuss them together (Figure 4.4 (C)). One simple explanation could
be that the robot’s control were themselves slow and prone to error. The human participants
might have restrained themselves and thereby executed artificially slow movements. Another
interpretation of why our participants slow down (and increased accuracy) while performing
with the robot is that they had less trust in the robot than a human partner. This is in line with
past research that suggests that level of trust changes during real-time interactions with robots
(Desai et al., 2013) and that, in general, trust levels are different for human and robot partners
(Lewis et al., 2018). Another interpretation for slower movements is that it is challenging to
create a model of a partner’s actions during a joint collaborative task with a robot. Based
on work suggesting that we represent others’ actions as our own (Sebanz et al., 2003), it
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is possible that in the case of interacting with a robot we need more time to create such
representations. There is much space for interpretations why having a robot partner triggered
slower movements; however, we would like to point that the main goal of our study was to
investigate neural correlates of different partners, and behavioral responses were collected to
exclude their influence on neural responses (see Deconvolution and Analysis for details).

After adjusting for behavioral differences in the EEG analysis, we see that robot partners
affect neural correlates of action monitoring differently in comparison to a human partner.
We found that between 200-300 ms after the perturbation event disturbing the collaboration,
the EEG amplitudes differ at the fronto-central sites. The literature on single participants
at these electrodes and time window suggests that it is when and where monitoring our
errors or feedback about our actions unravels (Cavanagh et al., 2009; Miltner et al., 1997).
Similarly, when it comes to neural activity involved in action monitoring in dyadic situations,
the same activations play a role (Czeszumski et al., 2019; van Schie et al., 2004). If the error
is committed by the participant and can be inferred from his action (e.g. making a typo), the
brain component involved is called Error-related negativity, with more negative activation
for erroneous actions than correct ones (Yeung et al., 2004). In case of behavior that needs
feedback to understand the consequences of the action (for example, gambling task), it is
called Feedback related negativity (Hajcak et al., 2006). In comparison to these classic, static,
and passive experiments, we had real-time collaboration between two participants, and we
observed similar component peaking around 200-300 ms after the perturbation happened.
Our participants were not informed about the perturbations, so they could have been treated
as participants’ own or the partner’s error. Therefore, we suggest that the neural activation
we observe in our study resembles classic components. Our finding that robotic partners
modulate action monitoring corroborates recent study(Hinz et al., 2021). However, there is a
crucial difference between both studies: Participants in Hinz et al. (2021) study performed a
task sequentially (turn-taking), while in our study, participants interacted with each other in
real-life. Both studies point in the same direction. Robot partners modulate neural activity.
We speculate that differences in the amplitudes of the ERP for robotic and human partners
may arise from differences in how we represent actions of artificial and human-like agents.
Such differences might involve partly non-overlapping neuronal substrates with different
visibility to EEG recordings. Furthermore, the perceived options to optimize performance in
the joint interaction by adjusting to the behavior of the partner might differ. Such differences
can elicit different neural patterns that we are able to measure with EEG.

Our results suggest that robot partners can modulate neural activity in a dyadic experiment.
Concerning that there is not many studies that focused on neural underpinnings of human-
robot interactions, the results we present here have a value for research topics in the field
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of join-action. They are a first exploratory step towards a theoretical and methodological
foundation. We showed the feasibility of conducting a human-robot interaction study while
measuring EEG from the human participant in a dynamical paradigm. With full experimental
control, we explored neural correlations of human-robot interactions in an ecologically
valid setup (Czeszumski et al., 2020; Matusz et al., 2019; Nastase et al., 2020). There is
vast literature on the topic of joint actions between humans and robot partners (Curioni
et al., 2019a; Schellen et al., 2021; Wahn and Kingstone, 2021). Neural markers of action
monitoring during human-robot interactions were studied in turn-taking tasks and utilized for
brain-computer interfaces to improve communication between robots and humans (Ehrlich
and Cheng, 2018, 2019a,b). Our study shows that it is possible to conduct studies with
non-human agents collaborating with humans in real-time and measure brain activity and
that the neural basis of action monitoring is affected by the robot partner.

Lastly, we observed small differences between human and robot partners at later time
points (between 500-600 ms after the perturbation) around the midline electrodes. These
differences are difficult to interpret. The topography suggest similar source as the component
discussed above. However, based on time we speculate it could be P3b component. Huberth
et al. (2019) reported similar component in study that investigated self and other (human
versus computer) generated actions in pianists. They found that P3b component was present
only for self generated actions, suggesting greater monitoring of self generated actions. It
is important to highlight that in our study, participant had to dynamically perform the task,
while in the Huberth et al. (2019) study participants took turns to perform joint actions. What
is similar is that they had to generate actions to achieve a common joint goal (Vesper et al.,
2010). It is possible that the late effect we found in our experiment has the same function
(greater monitoring of self generated actions). However, in comparison to the earlier effect
(200-300 ms after the perturbation), the size of the effect in our study is small. Therefore, we
have to be careful with interpretations. Future researcher with bigger sample size can help to
understand the function of late ERP components in joint actions with robots.

4.5.1 Limitations

The exploratory aspect of investigating neural underpinnings of human-robot interactions
pose many challenges and questions. In the present study, we tried our best to reconcile all
of them. However, there are limitations that have to be addressed. First, our sample size
was small in terms of number of dyads. However, it was not small in terms of recordings
and total amount of gathered data. Thus, the effects reported are significant. Second we
did not perform statistical analyses with a predefined hypothesis. Instead, we performed
an exploratory analysis that encompasses all electrodes and time points. It is important
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to understand that it is the first study of its kind. Therefore, it has to be replicated and
evaluated by future research (Pavlov et al., 2021). Third our results could be dependent on
the robot used in the study. We suggest that different types of robots (less/more humanoid)
could modulate action monitoring differently. The robot used in the present study was
clearly not-humanoid. Participants could clearly recognize it as a robot and devoid of typical
human traits that are often used in communication/collaboration. Nonetheless, using this
robot helped us to maximize the difference between conditions. Additionally, our claim is
supported by research on a different level of trust depending on the appearance of humanoid
robots (Haring et al., 2013; van Pinxteren et al., 2019). Therefore, it would interesting to
perform a similar experiment and compare the results with a more human-like robot. Fourth,
as discussed below, our robot did not have a model of the human actor. By this, the robot’s
behavior helped to boost the characteristic differences between the player’s partners. Fifth,
our statistical analysis does not take the dyadic dependency into account, possibly biasing
the estimated model parameters of the human-human condition downward. In the future,
study with a bigger sample size, could answer the question whether dyadic dependencies
play a role in the effects reported in our study. Sixth, even though participants were asked
to keep their eyes on the center of the circular track, we did not control for eye-movements
in this study, which could result in biased viewing-behavior on the tablet. However, we
adjusted for ball position while modeling the ERPs, which is likely to be a proxy for current
eye position and also remove eye movement and blink related ICs. Furthermore, the game
required constant attention and engagement, so it was assured that participants did not look
away from the tablet and the ball. Additionally, we are interested in the EEG signal related
to the behavior, rather than the visual stimulus. All in all, we addressed the limitations, and
are convinced that they do not impede the interpretations of our results as presented in next
paragraphs.

4.5.2 Conclusions

Taken together, this study explored and described event-related potentials related to action
monitoring in humans collaborating with other humans or robots. We used a dynamic real-
time collaborative task and found that around 200-300 ms after our actions are disturbed, our
brain activity is modulated by the type of partner. Our results corroborate previous research
on the neural basis of human-robot interactions. Furthermore, we show the feasibility of
conducting research on collaboration between human and non-human partners with EEG.
The results of our study suggest that non-human partners modulate how we perceive and
evaluate joint actions. It is crucial that we found the differences between human and robotic
partners during a dynamical coordination task, as it can have implications on the future of
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human-robot interactions and brain-computer interfaces. We speculate that our findings could
improve already existing interfaces that use recognition of errors in real-time. It could be
especially useful in situations when robots and humans have multiple interactions and it is
important to distinguish between different partners. Further research into the origin of the
observed differences might elucidate the neuronal substrate of understanding the behavior of a
partner during joint action. Such research and application could further facilitate interactions
between humans and robots in many environments.
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Fig. 4.5 EEG results. (A) ERP at electrode Cz. The red lines show the activation when
interacting with a human partner, while blue lines indicate a robot partner. The solid line
are the ERP when the sonification was off, while the dashed line represent sonification on.
Below, are the topographies for the grand average (mean over all conditions). (B) Clustering
results for the different factors (red line and dot represents electrode Cz). Top: Effect of
partner. The analysis finds two clusters in the central area (black dots and segments). One is
likely due to a difference at around 230ms to 270ms, while the second one is present later
(around 510ms to 600ms). These results indicate that the ERP will have a smaller amplitude
when interacting with a human partner. Middle: Effect of sonification. No cluster was found
here. Bottom: Interaction. No cluster was found here.
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5.1 Abstract

Social interactions are a crucial part of human life. Understanding the neural underpinnings
of social interactions is a challenging task that the hyperscanning method is trying to tackle
in the last two decades. Here, we review the existing literature and evaluate the current state
of the hyperscanning method. We review the type of methods (fMRI, M/EEG, fNIRS) that
are used to measure brain activity from more than one participant simultaneously and their
pros and cons for hyperscanning. Further, we discuss different types of analyses that are
used to estimate between brain networks and synchronization. Lastly, we present results of
hypercanning studies in the context of different cognitive functions and their relations to
social interactions. All in all, we aim to comprehensively present methods, analyses, and
results of the last twenty years of hyperscanning research.

Keywords: hyperscanning, social cognition, joint action, EEG, MEG, fMRI, fNIRS,
social interactions

5.2 Introduction

The importance of social interactions for the development and maintenance of the human self
was already highlighted in Greek philosophy and has been discussed ever since. Nevertheless,
the field of cognitive neuroscience has only started to investigate brain activities during social
interactions in the last decades. Typically, only the brain of one of the involved participants
and, therefore, only one part of dyadic or group interaction was recorded at a time. Thus, the
insights such experiments may provide are limited. To examine social interactions as a whole,
the idea of hyperscanning, i.e., measuring the activity of multiple brains simultaneously,
has originated. The significant advantage of this technique is that it allows the investigation
of real-time dynamics between two or more interacting brains (Hari et al., 2013; Hari and
Kujala, 2009). In contrast to classic experimental paradigms that measure the brain activity
of single participants during social interaction, simultaneously measuring the brain activity
of several interacting participants allows for the investigation of intra- and inter-brain neural
relations (Schilbach et al., 2013). Hyperscanning techniques thus offer a new approach to
account for the complexity of joint action, i.e., its spontaneity, reciprocity, and multimodality,
which constitutes a big challenge for its neuroscientific examination.

In the current paper, we review existing literature and evaluate the current state of the
hyperscanning method. We perform extensive literature research to identify the most critical
peer-reviewed studies that used hyperscanning as a method to investigate human social
cognition. In our review, we have two primary goals. First, we review the methods and types
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of analysis that are used in the hyperscanning field. Second, we review cognitive functions
and their neural underpinnings that are investigated with the hyperscanning method.

5.3 Type of methods

In the last century, a large variety of methods to measure brain activity have been developed.
The most popular ways to measure brain activity used in the cognitive neuroscience field
are Electroencephalography (EEG) (Luck and Hillyard, 1994) , Magnetoencephalography
(MEG) (Baillet, 2017), Functional magnetic resonance imaging (fMRI) (Eisenberger, 2003),
and functional near-infrared spectroscopy (fNIRS) (Ferrari and Quaresima, 2012). Each
of them has its advantages and disadvantages that help us to understand different brain
functions. Primarily when focused on Hyperscanning, their specific assets, like temporal
and spatial resolution, or mobility, are of value. We review here all of these in the context of
Hyperscanning research.

5.3.1 fMRI

Functional magnetic resonance imaging (fMRI) is a method that indirectly measures neural
brain activity. Namely, it measures it by detecting changes associated with blood flow,
which is the blood-oxygen-level-dependent (BOLD) contrast (Glover, 2011). Since the last
decade of the 20th century, fMRI became one of the most popular methods used in cognitive
neuroscience. Its most important advantage is the spatial resolution. Standard fMRI scanners
estimate brain activity with a spatial resolution of 3 mm, specialized instruments push the
limits towards the sub-millimeter range.

In comparison to other methods discussed below, it is the best method to answer questions
where in the brain, something happened. Additionally, it is the non-invasive method of choice
for measuring deep brain structures. However, because it uses blood flow to estimate neural
activity, its temporal resolution does not compare to M/EEG (Glover, 2011). Moreover, to
measure the BOLD signal, participants are required to stay stable in laying position within a
scanner (Figure 5.1 (A)). This low mobility of experimental tools makes it not suitable for
investigating social interactions in naturalistic and ecologically valid setups. Despite low
mobility, the first-ever hyperscanning study was an fMRI study. Montague (2002) performed
a successful feasibility study to link participants in two scanners. To tackle the problem
that two scanners are required to complete a study: King-Casas (2005) conducted a study
using scanners in Texas and California linked via Internet. Afterward, other studies were
performed in facilities that posses two scanners; however, until now, only a few studies tried
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to investigate social interaction with the fMRI hyperscanning method (Abe et al., 2019; Koike
et al., 2019, 2016; Saito et al., 2010; Schippers et al., 2010; Spiegelhalder et al., 2014; Tanabe
et al., 2012; Tomlin, 2006; Tomlin et al., 2013). One reason for that might be difficulty
in creating experimental paradigms that involve interaction between participants without
movement and communication. Another reason might be that the complexity of fMRI data
requires the development of new types of analysis that are suitable to answer questions about
between brain relations. It is sensible to say that the value of each of these studies is excellent,
and more studies are required because fMRI has a good spatial resolution. Furthermore, this
method could be of great value if combined with EEG to surmount poor temporal resolution
(Koike et al., 2015).

5.3.2 EEG/MEG

One of the oldest methods to measure activity in the brain is electroencephalography (EEG).
In comparison to fMRI and fNIRS, it measures neural activity directly by recording electrical
activity with the use of electrodes placed on the scalp (Figure 5.1 (B)). Therefore, it is not
dependent on blood oxygenation, and its temporal resolution is higher than other methods
(Michel and Brunet, 2019). However, because electrodes are placed on the scalp, it is best
suited for investigating the cerebral cortex and not deep brain structures. Classically, EEG
was considered a low mobility tool because it required strict control of movements and
surroundings of participants, which limits it to the lab environment. However, in the last
years, the development of new technologies allowed for improvement in mobility by creating
mobile EEG systems (Melnik et al., 2017b). Such systems are a great tool to study social
interactions. Even though fMRI was the first method used to perform a hyperscanning
study, presently, it is EEG that is the most common method used to conduct hyperscanning
experiments. Its popularity comes from its most important advantage, temporal resolution.
Studies of social interaction that unfold on a fast scale require a method that is sensitive
to it. Until now, only EEG can account for changes in neural processing on a millisecond
scale while two or more humans perform an interactive task together. The high temporal
resolution allows for a more precise and different type of between brain analysis. Another
advantage of EEG for hyperscanning studies is that it is easier to measure more than just
two heads at the same time, as demonstrated by Dikker (Dikker et al., 2017). The relatively
low price of EEG systems and the availability of mobile systems are key advantages. Early
EEG hyperscanning research was conducted in the lab with full control of the environment
and traditional paradigms (Babiloni et al., 2007a,b). However, with further developments,
more interactive and naturalistic paradigms, like playing guitars (Lindenberger et al., 2009)
or romantic kissing (Müller and Lindenberger, 2014), were proven to be feasible. In recent
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years, another technology, that can be combined with EEG, was developed and implemented
to use in research. Namely, virtual reality (VR) (Cipresso et al., 2018; Ehinger et al., 2014;
Oliveira et al., 2016) is becoming more and more present in the scientific community. It
allows for creating naturalistic paradigms that are fully controlled by the experimenter. This,
in combination with the EEG, might be a great tool to study social interactions.

It is worth it to mention that, magnetoencephalography (MEG), a method with similar
characteristic to EEG but lower mobility was also proven to be feasible for hyperscanning
measurements (Baess et al., 2012; Zhdanov et al., 2015) and so far used in a study that
combined it with EEG to study verbal interactions (Ahn et al., 2018). Moreover, this method
was also utilized to study the interaction between mothers and children (Hirata et al., 2014;
Levy et al., 2017), speaker-listener roles during natural conversation (Mandel et al., 2016)
and, hand kinematics in leaders and followers (Zhou et al., 2016). Recently, Boto et al. (2018)
developed a mobile MEG system. Therefore, we can expect more MEG hyperscanning
studies in upcoming years.

5.3.3 fNIRS

The last neuroimaging method that we discuss is functional near-infrared spectroscopy
(fNIRS). Similarly to fMRI, it measures brain activity indirectly and uses the contrast
between oxygenated and de-oxygenated hemoglobin, and similarly to EEG, it can best
measure superficial brain areas with a low spatial resolution (1 cm) (Scholkmann et al.,
2013)(Figure 5.1 (C)). Moreover, its temporal resolution is lower than that of EEG and
varies between 0.1 to 1 second (Quaresima and Ferrari, 2019). Despite these limitations,
fNIRS is widely used in cognitive neuroscience for its mobility and resistance to motion
artifacts. In comparison to other methods discussed here, the signal measured with fNIRS is
not strongly influenced by the movement of participants. This feature allows for creating
experimental paradigms that resemble real-life situations more closely than classic studies.
In the case of studying social interaction that involves actions from participants, it is a critical
feature that is required. The first hyperscanning fNIRS study was conducted by Funane et al.
(2011) and used a simple tapping synchronization task to investigate the coherence of neural
activity between two brains. Since then, many researchers adopted hyperscanning fNIRS
in various types of paradigms to study social interactions (Scholkmann et al., 2013). One
particularly interesting study was conducted by Nozawa et al. (2016). It involved groups of
participants (four) tested in a naturalistic setting (cooperative communication). Furthermore,
a recently developed fNIRS system for babies allows for investigating brain functions related
to parent-child interaction (Reindl et al., 2018). Such experiments are proof of the concept



120 | Hyperscanning: a valid method to study neural inter brain underpinnings of social
interaction

Fig. 5.1 Neuroimaging methods used in Hyperscanning. (A) From Koike et al. (2019). View
of the dual fMRI facility used to study mutual gaze. (B) From Acquadro et al. (2016). EEG
measurement of two guitar players. (C) From Osaka et al. (2015). fNIRS set up used to study
cooperative singing. All parts reproduced/adapted under CC licenses.

that studying neural between brain underpinnings is feasible, and it brings new insides into
understanding human cognition.

5.4 Type of analysis

Analysis and interpretation of hyperscanning data is a challenging task. First, an intra-
brain type of analysis has to be adjusted to inter-brain data, or even new types of analysis
have to be developed. Second, it is challenging to separate inter-brain relations related to
identical stimuli presented to both participants from relations that represent between brain
networks(Burgess, 2013). For the case of correlation, this involves the calculation of partial-
or semi-partial correlation coefficients. Similar adjustments might be done to other measures.
An alternative approach compares real participant pairs with randomly selected pairs and
permutation analysis (e.g., Bilek et al. (2015)). The randomly selected pairs show only
the coupling due to the direct joint stimulation. Deducting this effect from the coupling
observed in the actually paired subjects uncovers the coupling of brain activity due to the
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genuine interaction of the partners. Overall, this is a demanding topic and requires precise
specification of the scientific question addressed.

Furthermore, while discussing between brain coupling measures, it is essential to mention
the framework proposed by Hasson et al. (2012). It suggests that inter-brain couplings are
crucial for building a shared social world. This framework builds upon research that focused
on between brain couplings without the hyperscanning method. Namely, Hasson et al. (2004)
presented videos to individual participants in the fMRI scanner and further analyzed between
brain couplings (between all participants) related to different sections of the movie. Further,
Stephens et al. (2010) used the same method to study speakers and listeners (scanning one
speaker and many individual listeners to investigate the relation between the speaker and
the listener). These studies were crucial for the development of the hyperscanning field
and contributed to the understanding of between brain couplings. As he investigated single
subjects, i.e., there are only randomly selected pairs, yet, the similarities are super interesting
and give insight into brain functioning. Thus, the assumed control of randomly selected pairs
can demonstrate interesting and insightful similarities (coupling) between participants.

The types of analyses applied to hyperscanning data can be separated into different
categories. There are various coupling measures, correlation and dependence analyses, graph
theory measures, and analysis of information flow. In this section, we discuss all these types
of analyses in sequence.

5.4.1 Coupling/connectivity measures

The most common methods to estimate the strength of coupling/connectivity between brains
have been previously used to study single brains. They are based on second-order measures
calculated in the Fourier domain. They differ in the technical details of combining different
frequencies and the kind of normalization. That is, like phase-locking value (PLV), phase
lag index (PLI), or phase coherence have been adopted to estimate between brain couplings.
PLV measures how two signals (in case of hyperscanning coming from two different brains)
are phase-locked in the observed time window. PLV is equal to 1 when phases are perfectly
synchronized in a specific frequency and to 0 when they are unsynchronized. This measure
was used in multiple EEG hyperscanning studies. They investigated cortical synchronization
while two participants tried to imitate their hand (Dumas et al., 2011, 2010) or finger
movements (Yun et al., 2012)(Figure 5.2 (A)) during a coordinated time estimation task (Mu
et al., 2016), during speaking and listening (Pérez et al., 2017), and cooperative decision-
making task (Hu et al., 2018). Another similar measure, also related to phase synchronization,
PLI, was used in studies investigating coordinated behavior in guitar players (Lindenberger
et al., 2009; Sänger et al., 2012) and also in verbal interaction task with the use of both EEG
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and MEG (Ahn et al., 2018).PLV and PLI are similar measures; however, it was pointed
out that PLV suffers the common source problem, and PLI does not (Aydore et al., 2013).
However, for hyperscanning research where sources are separated between brains, these
measures should give the same results. Phase coherence is another method of estimating
cortical synchronization within or between brains that are related to the phase of neural
oscillations. It is a measure of similarity between two signals, and there is more than one
way of quantifying it. Different variations of phase coherence were used in hyperscanning
experiments (for detailed differences between different phase measures we recommend
Thatcher (2012)). Notably, in studies mentioned above, that investigated guitar players
(Lindenberger et al., 2009; Müller et al., 2013; Sänger et al., 2012, 2013), and also romantic
partners while kissing (Müller and Lindenberger, 2014). Moreover, the latter study estimated
also cross-frequency couplings between brains.

Wavelet transform coherence (WTC) is a related method to measure the coherence of
two signals. It was developed to analyze the geophysical time series (Grinsted et al., 2004).
However, it finds its application as well in neuroscience, especially in analyzing fNIRS
hyperscanning studies. Since one of the first fNIRS studies (Cui et al., 2012), it was used
in the following experiments. As it is the most common method that is used to analyze
inter-brain synchrony with fNIRS, it is as well the most common analysis method within
all hyperscanning studies. WTC was used to estimate inter-brain synchrony in paradigms
studying action monitoring (Dommer et al., 2012), cooperative and competitive behaviors
(Cheng et al., 2015; Cui et al., 2012; Liu et al., 2016b; Osaka et al., 2014; Wang et al., 2019),
imitation (Holper et al., 2012), verbal communication (Jiang et al., 2015, 2012; Nozawa et al.,
2016), nonverbal communication (Hirsch et al., 2017; Osaka et al., 2015), decision making
(Tang et al., 2016; Zhang et al., 2017), coordination (Hu et al., 2017; Ikeda et al., 2017; Pan
et al., 2017) , mother-child problem solving (Nguyen et al., 2019) and, teaching/learning
behaviors (Pan et al., 2018).

All coupling/connectivity measures mentioned in this section are measures of similarity
between two neural signals coming from different brains. This similarity is interpreted
as synchrony between brains in these studies. Moreover, the similarity is estimated with
different methods and always referred to as inter-brain synchrony. Such simplification of
many analysis methods to address synchronization may lead to wrong interpretations of
results and creates a wrong view of coherence between studies. The hyperscanning field
should develop terms to distinguish between different measures of inter-brain synchrony and
methods used to estimate it.
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5.4.2 Correlation and dependence analysis

Another way of measuring synchrony between brains is by estimating the correlation between
signals coming from two brains. Within the hyperscanning literature, we found different types
of correlation measures applied to EEG, fNIRS, and fMRI data. Due to the low temporal
resolution of fMRI, coupling measures discussed in the previous chapter could be used
only in the very-low-frequency range, typically not associated with information processing
in the brain. Therefore, the relation between two measured brains is often estimated with
the use of linear dependence. It is not the BOLD signal itself that is used for correlation
analysis, but regression model coefficients are representing activations in different tasks.
These types of analyses were applied in research investigating mutual gaze, shared attention,
and cooperation in the joint force production task (Abe et al., 2019; Koike et al., 2019, 2016;
Saito et al., 2010)(Figure 5.2 (B)). Correlations found in these studies were interpreted as
neural synchronization between brains.

Further, two studies focused on verbal communication between participants and used
correlation of BOLD activity to predict the flow of information between the sender and
perceiver (Anders et al., 2011) and synchronization of brain activity between interlocutors
(Spiegelhalder et al., 2014). To further extend dependence analysis, cross-correlation in
combination with ICA decomposition of the BOLD signal was used in studies focused on
joint attention in participants with borderline personality disorder and healthy participants
(Bilek et al., 2015, 2017). There, the cross-correlation between two brain signals was
interpreted as information flow.

Correlation measures are also applied to EEG hyperscanning data. Namely, we iden-
tify studies using correlation as a measure of between brain synchronization in different
paradigms. Moreover, different aspects of EEG signals were used for correlation analy-
sis. Correlation between different frequencies (theta and alpha) was used to investigate
the coordination of speech rhythm (Kawasaki et al., 2013) as well as differences between
interactions between strangers and couples in alpha, beta, and gamma (Kinreich et al., 2017).
Furthermore, the total independence analysis (Wen et al., 2012) was used in a study that
investigated between brain synchronization in a class environment on a group of students
(Bevilacqua et al., 2019; Dikker et al., 2017). This analysis was used to predict classroom
dynamics and engagement.

Lastly, two fNIRS experiments applied correlation analysis to estimate synchrony be-
tween brains in tasks that require cooperation or competition between participants (Funane
et al., 2011; Liu et al., 2015).
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Similarly to coupling measures, correlation and dependency analysis leave ambiguity
about how to relate results from different studies due to a variety of methods applied to
estimate the phenomenon of synchronization.

5.4.3 Graph Theory measures

Between brain networks can also be quantified with graph theory measures. Up to today,
there are only studies that used graph theory measures on EEG hyperscanning data. Graph
theory measures focus on different aspects of between brain networks. Within existing hyper-
scanning literature, we found studies that focused on links between brains and modularity
of networks while participants performed the decision making task (De Vico Fallani et al.,
2010). Moreover, different graph theory measures were used to investigate between brain
networks in guitar players. Small-worldness of between brain networks was enhanced during
musical coordination (Sänger et al., 2012), the topology of between brain networks was
dependent on frequency and was more regular at higher frequencies (Müller et al., 2013)
(Figure 5.2 (C)). Additionally, the directionality of between brain networks was used to
predict leaders and followers in guitar players (Sänger et al., 2013). In another study, the
dimensionality of between brain networks was investigated in combat cooperation tasks
(Dodel et al., 2011). All mentioned measures suggest that neural synchrony can be estimated
with graph theory measures and that these measures extend our understanding of between
brain networks. Few studies mentioned here give great insights into understanding neural
dynamics between brains. We believe that graph theory measures are a great tool to account
for the complexity of inter-brain relations. Measures like: Modularity, small-worldness, and
directionality are bringing a new perspective into understanding neural underpinnings of
dynamic social interactions. More studies should explore these measures. Additionally, more
data-driven methods to define network properties are becoming more popular and can find its
application in hyperscanning as well (Sporns, 2018).

5.4.4 Information flow

Apart from synchrony, similarity, or network properties, one can focus hyperscanning analysis
on the flow of information from one brain to another. Such studies require estimating causal
links between brains. Methods that are used to determine such causal links are Granger
Causality and its equivalent in a frequency domain Partial Directed Coherence (PDC). In
the EEG hyperscanning literature, these methods were applied to estimate links between
brains of cooperating pilots (Astolfi et al., 2012, 2011), and results suggested that causal
links are stronger during increased cooperative behavior. Similarly, increased causal links
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between the brains of participants were found in cooperative and altruistic behaviors in
decision-making tasks (Ciaramidaro et al., 2018; De Vico Fallani et al., 2010). Furthermore,
one fMRI and one fNIRS study focused on causal links between brains. Schippers et al.
(2010) studied such links in gesture communication with the use of fMRI, and Pan et al.
(2017) used fNIRS to explore causal relationships between brains of cooperating lovers. The
casual links between brains can be estimated with methods that we discussed here; however,
important question what are the neural substrates that allow for information flow between
brains has to be answered. It is critical to understand the difference between information flow
and synchronized neural activity between brains due to identical sensory input. This problem
is often not addressed and left for readers to wonder how to disentangle both. Future research
should focus on this aspect.

Taken together, in this section, we reviewed different methods and types of analysis
that are used in the hyperscanning field. A variety of techniques and analysis suggests that
hyperscanning is a new and valuable part of the cognitive neuroscience field. However, in
many cases, the advantages and disadvantages of a specific method are not that obvious.
Further, at least in part, we consider the growing variety of techniques used as exploratory,
and it has to be investigated whether they relate to the same set of physiological processes.

5.5 Cognitive functions

5.5.1 Coordination and Synchronization

The investigation of interpersonal coordination of actions that includes mutual entrainment
or synchronization is one of the fields most predestined for hyperscanning. Simultaneously
measuring the brain activity of interacting subjects allows real-time access to the reciprocal
coupling of neural processes that enable interpersonal movement synchronization within
a millisecond time scale. Experimental paradigms are addressing the connection between
interpersonal neural dynamics and behavioral synchronization span from minimalistic button-
pressing tasks to complex naturalistic settings like joint music playing. In minimalistic tasks,
different parameters such as visual contact, feedback, and mode of synchronization (in-phase
vs. antiphase) can be manipulated easily. Additionally, several studies compare the degree
of behavioral synchronization between human-human and human-computer (metronome)
couples (Hu et al., 2017; Konvalinka et al., 2014; Mu et al., 2016), in order to extract the
social aspect of the interaction. Such setups enable the examination of various aspects of
action coordination and synchronization while controlling the effects of a shared sensory
environment.
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Fig. 5.2 Analysis methods used in hyperscanning to investigate between brain relationships.
(A) From Yun et al. (2012). Phase synchrony was used as a coupling measure to investigate
between brain connections in implicit coordination task. Topography of the phase synchrony
(PLV) between different regions of interest of two participants are presented for theta (4-
7.5 Hz) and beta (12-30 Hz) oscillations. (B) From Koike et al. (2016). Between brain
synchronization estimated with correlation. (C) From Müller et al. (2013). Brain topography
maps illustrating significant connection within and between the brains. Example of graph
theory measures applied to analyze synchronization during musical improvisation on the
guitar.All parts reproduced/adapted under CC licenses.
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One conventional paradigm used to study coordinated behavior, and it is neural underpin-
nings, requires participants to perform only one temporally synchronized button press after a
self- or predefined time interval has passed. As a result of this, better performance was related
to higher inter-brain coherence in frontal areas as well as to stronger social connectedness in
the dyad (Funane et al., 2011; Hu et al., 2017; Mu et al., 2016; Pan et al., 2017).

Another paradigm used continuous tapping or finger/hand movement, allowing additional
insights into the time course and the dynamics of synchronization. Tognoli et al. (2007) found
that the spontaneous transition from uncoordinated to coordinated rhythmic movements under
vision went along with specific EEG rhythms in the alpha mu range at right centro-parietal
sides. Dumas et al. (2010) took a between-brain-approach, using the Phase Locking Value
(PLV) across a variety of different frequency bands. He found that right parietal alpha mu
oscillations were significantly more coupled in periods of spontaneous synchronization. Both
results point towards the relevance of these patterns for the mirror neuron system. A similar
paradigm - also investigating alpha-band activity - was used by Naeem et al. (2012a,b).
However, they did not replicate Tognoli’s approach but focused on broader frequency bands
in the mu range in different coordination contexts (intrinsic, in-phase, antiphase), suggesting
functional discrimination of lower (8-10 Hz) and upper (10-12 Hz) mu band (Naeem et al.,
2012a). While the former seems to reflect general attentional processes, the latter is modulated
by task and hemisphere: in the left hemisphere, the top mu band is present during imitation,
while in the right hemisphere, it is involved in perceptual-motor discrimination. Based on
this, the authors suggest a right hemispheric circuit that modulates the way the actions of
others are processed concerning the desired coordination mode (Naeem et al., 2012b). In
another study that focused on the directionality of interaction, the subject associated as the
leader showed a characteristic suppression of frontal alpha activity, possibly representing
enhanced cognitive control and planning (Konvalinka et al., 2014). Manipulating the neural
synchronization between the participants with tACS, two studies directly explored the impact
of phase-coupled neural oscillations on behavioral performance. Results indicate that in-
phase beta but not alpha or theta stimulation across the respective motor cortices facilitated
tapping entrainment (Novembre et al., 2017; Szymanski et al., 2017a). However, it was not
yet shown whether this effect could be replicated in EEG studies.

In contrast to such minimalistic experimental set-ups, several studies applied hyper-
scanning in cognitively more demanding and also more naturalistic settings. Recording
two subjects interacting in a finger tapping imitation task, Holper et al. (2012) observed
increased functional connectivity between two interacting brains. Social aspects modulated
even unconscious fingertip movement synchronization: Yun et al. (2012) found that after
having cooperated in an induced imitation task, the patterns of unconscious finger movement
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across two subjects became more synchronized. On a neural level, this change went along
with increased theta and beta band phase locking across different regions, including the
inferior frontal gyrus (IFG), anterior cingulate cortex (ACC), and ventromedial prefrontal
cortex (vmPFC). In this context, the researchers associated the observed activity patterns
with implicit social processing.

In a cognitively more demanding task, Lindenberger et al. (2009) investigated pairs of
guitarists playing a melody together. Similarly, they reported that coordinated actions between
the subjects involved oscillatory couplings between the two brains. During coordinated play
onset, they found significantly increased phase synchronization between the two brains,
primarily over frontal-central connections. The synchronization was exceptionally robust in
low-frequency ranges, between 0.5 and 7.5 Hz, with a maximum in the theta frequency at
3.3 Hz. This result contradicts previously mentioned studies that primarily report dominant
alpha synchronization during interpersonal action coordination. The authors, however, note
that the observed couplings might merely reflect similarities in the temporal structure of
the individual’s perception and action. Accordingly, it is still not clear whether the neural
coupling causes the effective movement coordination between the pairs. Rather than reporting
specific brain areas and frequency bands, the studies mentioned above suggest that inter-
brain connectivity through interpersonally coupled brain oscillations facilitates complex
interpersonal action coordination.

Social aspects of action coordination, i.e., the influence of social connectedness and
social character traits on synchronization performance, is another topic where multiple brain
recordings provide new valuable insights. On a hormonal level, Mu et al. (2016) could show
that oxytocin, intranasally administered, significantly facilitates neural synchronization in the
alpha band and thus effectively supports movement coordination. Addressing the influence
of the social connectedness between pairs, Pan et al. (2017) compared the performance of
lovers to strangers and friends in a simple coordination task. Between the lover’s brains,
they indeed found a significantly increased synchronization. More specifically, they report
that the right frontoparietal network is involved in romantic processing and social cognition.
At the same time, lovers also showed a significant increase in coordination performance.
Since oxytocin is strongly associated with social bondings, especially in romantic relations,
this result supports Mu et al. (2016), indicating the human hormone’s facilitating effect on
interpersonal action coordination. Applying the same simple interaction task, Hu et al. (2017)
found a correlation between the prosocial inclination of the subjects and their respective
inter-brain synchronization. All in all, these studies support the evidence that social traits
and the ability to synchronize in interpersonal coordination are strongly connected.
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The current hyperscanning research on synchronization and coordination reports neural
(synchronization) effects in various areas and frequency bands, although exploring very
similar tasks. There are two groups of findings: The first group reports inter-subject neural
couplings in frontal and parietal regions that are associated with better action synchronization
(theta, alpha, and beta frequency). The second group of findings focuses on mechanisms
that are not coupled across individuals but correspond to how a single brain processes
incoming stimuli in a coordination context (Konvalinka et al., 2014; Naeem et al., 2012a,b;
Tognoli et al., 2007). Interestingly, these within-brain effects were also reported at frontal
and centro-parietal sides in the alpha range. They all indicate that interpersonal action
synchronization is accompanied by neuronal coupling of primarily frontal and centro-parietal
areas in lower frequencies. However, concerning prominent frequency bands related with
movement synchronization, the reported results do not seem to be conclusive: while some
effects were mainly within the alpha (10 - 12 Hz) and beta ( 20 Hz) range, others specifically
exclude the alpha range and instead emphasize a synchronization in the theta frequency
(Lindenberger et al., 2009; Novembre et al., 2017; Yun et al., 2012).Such differences in
reported effects of activity in different frequencies have to be addressed in future research.

Apart from this, prosocial character traits such as the social connectedness of the dyads
influence the effectiveness of synchronization. However, since many of the mentioned studies
had less than ten pairs of subjects, more work is needed to ensure and replicate the results.

5.5.2 Music

Musical performances offer attractive experimental conditions since such performances
combine intrapersonal action coordination and interpersonal action synchronization as well
as continuous interaction. The advantages of musical settings for hyperscanning experiments
are reviewed by Acquadro et al. (2016). A variety of experimental paradigms allow the
investigation of different aspects of the interaction.

To investigate that inter-brain synchronization during an interaction is not only present due
to the perception of the same ecological situation, researchers assign roles to the participants
to investigate if complementary roles induce asymmetric patterns of brain synchronization.
Sänger et al. (2012) investigate interpersonal action coordination using EEG hyperscanning
of musical leader-follower duets playing a two-voiced piece of music repeatedly. They report
within brain phase-locking modulated by the assigned role as well as extended within- and
between-brain phase coherence during phases of high musical coordination. Because of
the complementary voices of the piece, the phase coherence occurs in a situation where
action and perception of the partners are not equal. Further, graph theory analyses show
the presence of hyperbrain network structures. Later analysis of the same data by Sänger
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et al. (2013) allows investigation of the directionality of functional connectivity between
the two brains. Results show directionality as a function of the musical roles. Pan et al.
(2018) record brain activity of learner-instructor dyads during the acquisition of two songs
using one of two learning methods (part learning vs. whole learning). The study records
fNIRS data of bilateral fronto-temporoparietal regions. Across the part learning group,
they report interpersonal brain synchronization during the learning periods, which was even
able to predict the learning performance. Furthermore, Granger causality analyses show
coupling directionality from instructor to learner during a particular learning phase (teaching
phase). The absence of interpersonal brain synchronization correlations in the whole learning
group speaks against it as a mechanism of pure shared perception since both learning groups
received equal sensory input and performed comparable actions. Synchronous oscillations
are a present mechanism in leader-follower musical joint action tasks, the asynchronous
nature of these signals gives rise to inter-brain synchrony partly as a mechanism of interactive
task performance.

Other experimental designs investigate music without assigned roles, as this is the case
in many musical contexts. While some experiments use existing music pieces, others
engage in freer musical interactions like non-notated parts of songs or even improvisation.
Novembre et al. (2016) use the structured properties of sheet music to manipulate familiarity
and behavioral interpersonal synchronization during joint piano playing. With dyads of
amateur piano players performing passages of two voiced joint playing with congruent and
incongruent instructions for a later tempo change as well as alternating knowledge about the
complementary voice, they report significant correlations between alpha suppression and
congruent vs incongruent tempo instructions, in the case of the pianist being familiar with
both voices of the passage. The authors conclude with the idea of alpha oscillations as neural
processes regulating the balance between self-other integration and segregation, modulated
by the compatibility of internal knowledge and external environmental information during
joint action. After verifying EEG as a suitable method for hyperscanning in a musical context,
Babiloni et al. (2011) used a hyperscanning paradigm to investigate empathy inside ensembles
of musicians, playing a piece together (Babiloni et al., 2012). Alpha desynchronization in
the right Brodmann area 44/45 during a video observation of their performance is positively
correlated to the results of the Empathy Quotient Test score. Müller et al. (2013) investigate
musical improvisation in dyads of guitarists. They analyze intra- and inter-brain synchrony
during either a phase of joint improvisation or phases where one guitarist improvises while
the other listens. They report high-frequency intra-brain connections as well as lower
frequency inter-brain connections. Guitarists playing alone show stronger out-strength
than the listening guitarist in the beta range; this difference was not present during joint
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improvisation. Osaka et al. (2014) compare fNIRS inter-brain coherence of participants
during cooperative humming of a song with or without eye contact and single humming.
Results indicate enhanced wavelet transform coherence inside the right inferior frontal cortex
(IFC) during the non-face-to-face condition. A further study, Osaka et al. (2015), compares
the inter-brain synchrony between dyads humming or singing a song, both again with or
without visual contact, solo and joint. The left IFC shows increased synchronization for
joint singing or humming, irrespective of the visual condition, while the right IFC shows
increased synchronization specific to joint humming. The absence of synchrony in solo
performances and aligned pseudo-pairs suggests the involvement of bilateral IFC in (musical)
cooperation tasks. Inter-brain synchrony is a present mechanism even in more unstructured
musical interactions, acting as a marker of interpersonal action coordination. Furthermore,
experimental musical setups can be used for methodological analyses, as in the case of Zamm
et al. (2018).

Altogether, the present results confirm musical paradigms as highly coordinative situa-
tions generating the ability to observe inter-brain synchrony as a mechanism of interpersonal
action coordination, with a high potential for future research.

5.5.3 Emotion and Affect

Emotional regulation and affect play a crucial role in various forms of social interactions,
for instance, the willingness to undertake joint actions with peers (Lopes et al., 2005) or in
different types of prosocial behavior (Twenge et al., 2007). Neuroscientific studies measuring
emotion and affect-based only on one participant’s data lack the inter-brain connections
among areas that might be involved in social behavior. In order to fill this gap, hyperscanning
allows for recording inter-brain activity on emotions’ onset and the simultaneous responses
of interacting people.

To address the emotional component in social exchanges, several hyperscanning paradigms
have been applied. Among these, setups have involved facial communication of affect (An-
ders et al., 2011), mother-child interactions (Hirata et al., 2014; Levy et al., 2017), and
goal-seeking tasks involving cooperation and competition conditions (Pan et al., 2017).
Nonetheless, due to the complexity of the setups (i.e., Hirata et al. (2014)), hyperscanning
studies have scarcely focused on the role of emotional regulation during joint actions (Cia-
ramidaro et al., 2018), leading in most of the cases to merely exploratory designs and vague
hypotheses (Balconi and Vanutelli, 2017).

As an example of emotion processing during goal-oriented tasks, Hu et al. (2017) studied
the prosocial behavior of dyads while performing a task in which participants performed
coordinated and independent tasks across several trials. The authors found synchronized inter-
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brain activity only under the coordination task in the left middle frontal cortex (LMFC). This
area has been commonly associated with memory, response inhibition, and people recognition
during social interactions. Besides, Ciaramidaro et al. (2018) performed a study in which
participants had the opportunity to distribute a quantity with a partner. A third participant
(the observer) would judge the fairness of the distribution and decide whether to punish or
not the participant who acted out the distribution. The dyads of participants involved in the
exchange were composed of either human-human or computer-human. EEG data revealed
higher inter-brain coherence of theta, alpha, and beta bands in the human-human condition
between the observer and the receiver when the latter’s action was rated as “hyper-unfair.”
Additionally, synchronous activity was also robust for PC-human fair interactions where
the human participant received a fair reward. As the authors stated, situations with high
emotional impact showed higher inter-brain synchronization.

In another experiment, Anders et al. (2011) investigated the emotional communication in
romantic partners by observing the flow of information in male participants for emotional
states perform by their female counterparts. They suggested that the neural activity of the
perceiving partner can be successfully predicted from the neural activity of the sender’s brain.
This shared activation could only be found in dyads comprised of romantic partners but not in
dyads of the sender and another participant different from her romantic couple. This finding
suggests the development of reinforced neural paths present among sexual partners with
highly emotional bindings.

Finally, some studies on emotions in social interaction have addressed the simultaneous
measurement of inter-brain activity between mother and child. Levy et al. (2017), for instance,
used a hyperscanning MEG set-up to measure the brain-to-brain activity of mother-child
dyads by exposing them to video recordings of themselves performing positive and conflictual
interactions. They found gamma activity in the superior temporal sulcus (STS) in interactions
with behavioral synchrony (i.e., positive interactions). STS has been amply linked with social
cognition, the theory of mind, and mirroring behavior. In the same line, Hirata et al. (2014)
developed a hyperscanning MEG device that enables the mother and child to see each other’s
facial expressions during brain activity measurement. Although mainly of an explorative
kind, these studies comprise a relevant background as pioneers on experimental designs to
account for emotional interaction in hyperscanning setups.

Although not extensive, these studies highlight the moderator effect that the emotional
component has in inter-brain activity in two scenarios. First, the closer the relationships
between participants, the higher the inter-brain synchrony as observed in romantic couples
and mother-child interactions. However, there are many more possible relations between
participants that have never been tested, for instance, siblings, employer-employee and seller-
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buyer dyads. In the future, the hyperscanning should explore other relationships between
humans and emotions related to them. Second, inter-brain synchrony is higher for scenarios
involving empathetic behavior, especially when these include an active emotional component.
To sum up, the intensity of the emotional component modulates the synchronous neuronal
activity during social interactions. Still, further research needs to be driven on this topic. For
instance, the effect of well-studied emotions as stress or disgust has to be investigated. This
can shed light on whether the impact of negative emotional interactions carries out more
synchronize behavior than in the presence of emotions of a positive valence or if, instead, the
modulatory effect of these might slightly depend on the sort of task.

5.5.4 Cooperation and Competition

Hyperscanning studies have addressed cooperative and competitive contexts under several
methodological paradigms. These allow the study of both conditions within the same set-up.
Therefore, participants can either cooperate or compete to achieve their goal meanwhile intra-
and inter-brain activity is recorded. These include, for instance, the Prisoner’s dilemma task
(Babiloni et al., 2007a; De Vico Fallani et al., 2010), chicken’s game (Astolfi et al., 2010),
time estimation (Cui et al., 2012), turn-based interaction disk games (Liu et al., 2015, 2016b),
Jenga (Liu et al., 2016a) or pong-game (Sinha et al., 2016).

Concerning intra-brain activity, hyperscanning studies reveal some commonalities of
activation around the prefrontal cortex (PFC). For instance, during a Prisoner’s Dilemma task,
Babiloni et al. (2007a) found that mPFC is active during all the conditions (i.e., cooperation,
defect, and tit-for-tat). In contrast, ACC is only activated when participants defect. In
general, the global integration of brain areas was higher under the competitive condition
than in cooperation and tit-for-tat. This is in line with findings by Astolfi et al. (2010),
in which defect and tit-for-tat conditions obtained higher activity than for the cooperative
condition in beta-band EEG recordings. mPFC has been generally related to social interaction
supporting the constant activation observed during all conditions. On the other side, ACC
has been linked to the theory of mind, indicating that an extra effort is needed to predict the
opponent’s behavior under competitive interactions. In another scenario, Liu et al. (2015,
2016b) performed a turn-based interaction in a computerized 2-people game. Participants
took turns to be either a builder or a helper/obstructer partner, while brain activity was
recorded using fNIRS. They found significant activation in rIFG in builders during the
cooperation condition but not when their partners were competing. A similar set-up was used
by Liu et al. (2016a) in which a significantly higher activity was found in the obstructors’
rIFG area. However, in both studies, no effect was found for helpers; that is, no “cooperated
effect” was revealed. rIFG has been linked to empathy and intention understanding during
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interpersonal interactions. In this sense, results show a need for higher empathy when
guidance is necessary to achieve a common goal. On the other side, when it comes to hinder
other’s performance, the understanding of an opponent’s intentions plays a crucial role.

On an inter-brain level, the activation in PFC seems to be modulated by the condition
and nature of the task. For instance, in the before-mentioned set-up, Liu et al. (2015, 2016b)
found a significant inter-brain synchrony only in builder-obstructor pairs. Additionally, Liu
et al. (2016a) observed active inter-brain synchrony in the posterior region of the right middle
and superior frontal gyrus, particularly Brodmann area 8 (BA8), during cooperative and
obstructive interaction (but not in the parallel game and talking condition). Inter-brain syn-
chrony was also observed only during cooperative interaction in the dorsomedial prefrontal
cortex (dmPFC), in particular, Brodmann area 9 (BA9). Since participants are performing a
joint activity, motor execution has to be synchronized. This is in line with previous findings
linking PFC with functions as planning and motor execution. On the contrary, other studies
reported stronger synchronized inter-brain activity in cooperative contexts. As shown by
De Vico Fallani et al. (2010) and Babiloni et al. (2007a) performing Prisoner’s dilemma
set-ups, hyper brain networks in competitive brains have fewer links and have overall higher
modularity than in tit-for-tat and cooperative couples. Furthermore, Cui et al. (2012) found in-
creased coherence between signals measured over the right superior frontal cortices between
two brains in cooperative and not during competitive behavior. Supporting these findings,
Sinha et al. (2016) reported significantly higher inter-brain synchrony between the subjects
when they cooperated as compared to the competitive scenario. Additionally, they found
that inter-brain synchrony was enhanced considerably when the subjects were physically
separated, i.e., they cooperated via an intranet network. This is in contrast with Liu’s (Liu
et al., 2016a, 2015, 2016b) findings of synchronized activity in dmPFC in competitive con-
texts. This might be because different set-ups require synchronized activation under different
conditions. For instance, a task like the prisoner dilemma needs a higher understanding of
other’s intentions when participants decide to cooperate.

All in all, hyperscanning studies confirm previous findings on the crucial role of dmPFC
in collective behavior. However, the strength of this synchronized activation in dmPFC
depends not only on the condition (i.e., cooperation and competition) but also on the specific
kind of task as well. For instance, tasks like turn-taking games (e.g., Jenga) that require the
prediction of the opponent’s actions, demand a higher level of the theory of mind processing.
On the other hand, tasks like the prisoner’s dilemma imply empathy/theory of mind during the
cooperative scenarios, and these differences are also reflected in between brain analysis. With
further development of mobile neuroimaging methods, studying cooperative and competitive
situations might be possible in more real-life situations. For example, we can imagine using
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sports games like football or basketball, where players cooperate and compete at the same
time with other players. It would be interesting to see whether results from experimental
hyperscanning scale to real-life cooperative and competitive situations.

5.5.5 Games and decision making

Overall studies in the field of games and decision making have shown that their neural
underpinnings involve a network of regions. They are ranging from the medial frontal cortex
(MFC), superior temporal sulcus (STS), to the temporoparietal junction (TPJ). Throughout
the last years of research in the field of interactive decision making in games, a specialization
of focus took place, as the first studies focused on areas being active in simple games, like
the game theory. However, the first investigations to test the neural basis of social interaction
used the game theory, as it allows us to define a social situation in which one may lose or
profit. Babiloni et al. (2007a) demonstrate that a cooperative social interaction activates the
reward circuitry. Noncooperative behavior, in contrast, does not. Their findings suggest a
strong activation of the ACC and the cingulate motor area (CMA). The results point out the
importance of the ACC, especially for leaders. In their case, the person who plays the first
card on the deck.

Besides, Babiloni et al. (2006b) presented EEG hyperscanning as a new and valid
methodology to address brain activity of a group during real-life social interaction, the ‘spirit
of the group’. Building upon the findings from Babiloni et al. (2006b). addressed social
interaction during a game. The aim this time was to measure the neural activity of different
brains simultaneously — particularly neural processes generated by social cooperation or
competition. The results are similar, also providing evidence for the ACC and the CMA
to be maximally active (Babiloni et al., 2007b). One other early experiment in the field of
decision making was performed by Tomlin (2006). They investigated the impact of personal
and impersonal situations by using fMRI hyperscanning. Their findings are in line with the
results by Babiloni et al. (2007a), as the dorsal anterior cingulate cortex responded strongly
to their set up. Furthermore, cingulate and paracingulate cortices appear to contribute to
social cognition and decision-making.

Further, Tomlin (2006) add the possibility that other variables in the social domain
may impact outcomes in this area, like the belief in ‘me’ or ‘not me’. Also, Yun et al.
(2008) studied social decision making by using the Ultimatum Game, as the experimental
model offers the estimation of, e.g., fairness or mind-reading, which has been used before
as well (Sanfey, 2003) — also mentioning, as other authors do as well, the umbrella term
‘theory of mind’, showing how wide the topic can be interpreted. Their results suggest high-
frequency oscillations in frontocentral regions, indicating that social interaction is closely
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related to this area. Investigating the effect of gender in cooperative and noncooperative
situations, Cheng et al. (2015) used fNIRS and revealed that task-related coherence in brain
activity. This was evident in regions of the frontal cortex, especially when opposite-sex
partners are cooperating. The last study to mention here is the one by Zhang et al. (2017),
as they provide an overview of research from the last years and taking another variable in
their focus - deception. In their study, they used fNIRS hyperscanning to measure pairs of
participants in a two-person gambling card-game simultaneously. Their findings provide
higher TPJ activation in deceptive acts, compared to honest ones. Further, they assume
that STS may play a critical role in spontaneous deception. Decision making in games
offers a well-controlled environment to investigate decision making. Future research has to
uncover the precise influence of known and not know partner, and the differentiation between
cooperation and competition. Furthermore, influences like facial expression or gestures, are
worth considering.

5.5.6 Action representation and Joint attention

Whenever we socially interact with others, we have to coordinate our actions with those of our
partners precisely. For successful joint action, we need to understand our partner’s intentions
and combine it with our action plan - always anticipating, attending, and adapting. In this
context, joint attention provides the basis for shared awareness of common objects and goals,
that is required to join our actions with others effectively. When studying neural mechanisms
underlying these cognitive abilities, hyperscanning research provides new opportunities to
investigate the intra- and inter-brain effects that accompany joint action. Setups reach from
pure natural eye-to-eye contact and mutual visual search to more demanding joint musical
performance.

Considering mutual gaze as the communicative context in which joint attention is initiated,
Hirsch et al. (2017) investigated the neural effects of natural eye-to-eye contact via fNIRS.
Comparing ‘online’ interactive eye-to-eye-contact with an ‘offline’ non-interactive eye-to-
picture condition, they report a broad neural network reacting sensitive to interactive mutual
gaze: During online eye-to-eye contact the hemodynamic signals of left frontal (pre- and
supplementary Motor Cortex), and temporal-parietal regions displayed a higher functional
connectivity within brains as well as increased synchronization between brains. This network
vastly overlaps with regions associated with language perception and interpretation (i.e.,
Broca’s and Wernicke’s regions). Due the this, Hirsch and his team suppose that natural eye-
to-eye-contact actively incorporates face-to-language processing. The cross-brain coherence
observed in these areas supports this claim, indicating that the rapid online exchange of
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information between the brains enabling language processing is also communicatively active
during mutual gaze.

Further research investigating mutual gaze, use similar experimental paradigms: They
observed the brain activity of two subjects, interacting in a non-verbal joint attention task
(Koike et al., 2016; Lachat et al., 2012; Saito et al., 2010). Here, subjects had to mutually
attend target objects either by following the partner’s gaze, by self-initiating the common
gaze direction or by following an external cue. In the hyperscanning fMRI study of Saito
et al. (2010), during moments of shared attention, paired subjects showed significantly higher
inter-brain correlations in the IFG. They, therefore, concluded that observed inter-brain
synchronization in the right IFG facilitates the formation of shared representations, enabling
the incorporation of shared intentions by internalizing the other’s intentions.

These findings closely relate to the reports of an extended fMRI study by Koike et al.
(2016). In this experiment, the researches additionally examined the eye-blink synchro-
nization between the subjects, considering them as an index of joint attention. Alternating
between mutual gaze and joint attention tasks, dyads displayed increased synchronization of
eye-blinks and right IFG activity when they have been previously engaged in a joint attention
task. The researchers take this as an indication that the inter-personal neural synchronization
through joint attention can be learned and, therefore, be maintained in the social memory.
Similar to Saito et al. (2010), the study also reported significant inter-brain synchronization
in the right IFG in the context of initiating as well as responding to joint attention. This
synchronized activity also correlated positively with enhanced eye-blink synchronization.
Importantly, in a video control condition, where participants did not see their partners as a
live-recording, the right IFG showed no activity. From these results, the study infers that the
right IFG acts as an interface between the self and the other: It is thus thought to coordinate
constant shifts between central-executive and default-mode networks, moving attention be-
tween oneself and the partner. This fits well with Saito et al. (2010), which associates the
synchronized activity of the right IFG with the formation of shared representations between
subjects.

Applying dual EEG to compare the neural activity of socially driven versus color driven
gaze direction, Lachat et al. (2012) based their research on different brain oscillations. They
focused on frequency bands around 10 Hz over parieto-occipital and centro-parietal since
this activity is generally associated with social coordination abilities. As previously expected,
they found an attenuation of left-hemispheric alpha and mu rhythms by joint attention.
This modulatory effect, however, was characteristic for mutually directed gaze in general,
independent of the type of instruction, i.e., whether it was socially or color driven. The
researchers interpret this suppression of the alpha mu rhythm as an indication for an ‘attention
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mirroring system,’ that allows subjects to orient their attention jointly. The left lateralization
of this alpha mu attenuation contradicts previous research, where neural effects of social
interaction are predominantly reported in the right hemisphere (Dumas et al., 2012; Koike
et al., 2016; Novembre et al., 2016; Saito et al., 2010).

In contrast to these mutual gaze experiments, Szymanski et al. (2017b) compared individ-
ual performance with a joint performance during a visual search task. Here, the interaction
between subjects was much more natural since verbal, gestural, and tactile communication
could be used freely. The researchers tried to relate within and between brain neural dynamics
to their respective team performance. Indeed, their results indicated that the overall team
performance increased with intra- and inter-brain phase synchronization, especially in lower
frequencies at frontal sites. Thus, local as well as between-brain phase synchronization is
considered as a supportive factor for joint attention performance.

Beyond joint attention, the question of how two persons coordinate their actions with one
another is subject of hyperscanning paradigms. Following the notion of co-representation
(Sebanz et al., 2003), humans form an internal representation of another person’s actions
through common coding and mirror neuron mechanisms. This representation helps to adjust
their actions in favor of a (joint) goal. However, the nature of human interactions is divers;
relationships can be symmetric or complementary and emerge spontaneously or be predefined
by the type of social situation. The question of how the representation of the self’s and
other’s actions are modulated in these different contexts is the main subject of the studies
discussed in the following.

Ménoret et al. (2014) investigated changes in electrophysiological patterns when we do
not only observe an action but also co-act with our partner by performing a complementary
task. They found that co-acting led to stronger movement-related beta suppression and
more negative movement-related potentials at frontal sides in observers. This implies that
co-acting goes along with a more intense representation of the other’s action compared to
mere observation. Sebanz et al. (2006b) led two people to perform a go/nogo task alone
or as a pair, sitting side by side. Each subject reacted to a different color cue, while a
task-irrelevant stimulus pointed to a side either compatible or not compatible with the side
on which the participant who was in turn to press the button was seated. Longer reaction
times in the incompatible condition and a stronger Nogo P3 component at frontal and central
electrodes in the group condition can be interpreted as a consequence of co-representing
the partner’s actions and the need to suppress own action-tendencies. Both Ménoret’s and
Sebanz’s findings are in line with the concept of co-representation, indicating that observed
as well as expected actions activate the according movement-related mechanisms within
partners.
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The relation between the anticipation of a partner’s actions and dynamical entrainment
was subject of Novembre et al. (2016). In his paradigm, subjects either familiar or unfamiliar
with the partner’s notes played a short melody together while tempo instructions were
manipulated. Results showed that subjects unfamiliar with their partner’s part acted more
adaptive. On a neural level, modulations of alpha power at right centro-posterior sides were
found: When subjects knew their partner’s part, an incongruent tempo between the pianists
led to a power increase, while good entrainment (based on congruent tempo instructions)
led to an alpha power decrease. This allows the interpretation that alpha power modulates
processes of self-other-integration and segregation. While the former is present when the
tempo instructions match, the latter is observed when the tempo of the partner must be
ignored in order to follow the instructions.

Dumas et al. (2012) aimed at distinguishing correlates of self-other-agency in a hand
gesture imitation paradigm. Contrasting analyses across a broad frequency range (0-48 Hz)
were used to extract differences between the conditions ‘not moving and not observing’,
‘observing gestures passively, performing gestures alone, ‘induced imitation,’ and ‘sponta-
neous imitation.’ In induced imitation, the roles of model and follower were predefined by
the experimenter, whereas they were established by the subjects in the spontaneous imita-
tion condition. In the conditions where subjects performed and observed and performed
gestures, a decrease of alpha mu power was observed over sensorimotor areas, including the
temporal-parietal junction (TPJ). Hence alpha mu desynchronization might be a marker of
action-perception-couplings. When subjects were primarily observing the action, passively,
or as imitators, theta power increased. In the spontaneous condition, gamma was boosted
across parietal regions, possibly representing the shared agency. The activation in parietal ar-
eas can be seen as a hint endorsing the relevance of TPJ for the agency and social interaction.
Dumas et al. (2010) found an increased between brain phase locking in the alpha mu range
during spontaneous synchronization.

While Dumas investigated random gestures, Schippers et al. (2010) addressed meaningful
gestures used in a charade game. Gesturers, guessers, and control subjects that observed
the gestures without guessing took turns in an fMRI scanner. Intending to find correlates of
the mirror neuron system and mentalizing system, the researchers calculated the Granger
causality between brains. The results support the relevance of the mirror neuron system
for action representation, as the activity in the parietal region (associated with the mirror
neuron system) of the gesturer predicted activity in the mirror neuron system and vmPFC
(mentalizing system) of the observer. However, the involvement of the vmPFC was both
statistically and theoretically less well funded than the mirror neuron system.
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Based on these hyperscanning findings on joint attention and action representation,
the relevance of the mirror neuron system and between brain connectivity in joint action
representation gained further interest. This was shown directly by inter-brain-coherence
(Dumas et al., 2010; Schippers et al., 2010) as well as indirectly utilizing observation-related-
potentials and oscillatory patterns elicited during joint action contexts (Ménoret et al., 2014;
Sebanz et al., 2006b). There were also power modulations related to different modes of
(joint) action found across a vast range of frequencies and regions, with alpha mu being
the most prominent one, perhaps representing action-perception couplings (Dumas et al.,
2012; Lachat et al., 2012; Novembre et al., 2016). When it comes to fluently segregating and
integrating self- and other-related information during interpersonal coordination of actions,
inter-brain synchronization seems to play a pivotal role.

To further validate the proposed hypotheses ascribed to these effects, repeating experi-
ments in combination with different neuroimaging techniques might be useful to overcome
the limitations each method has. This would also increase comparability across setups and
thus allow for a complete picture and a better interpretation of the findings.

5.5.7 Over two heads

Naturalistic settings are attractive conditions for studying human interaction because, in such
settings, interaction occurs without the intervention of the researcher, increasing the ecolog-
ical validity of the findings. In the last years, researchers began to extend hyperscanning
research towards multi-subject setups to increase the natural component of social interactions.
Early group studies were EEG hyperscanning of four participants playing the Italian card
game “Tressette” (Astolfi et al., 2010; Babiloni et al., 2007b, 2006b).

There are a variety of reasons for conducting experiments with a multi-subject design with
different ideas of making the studied interaction more natural. Social behavior only evolves
in the presence of other people, often groups. The presence of other people might enhance
individual task performances (Wahn et al., 2018a, 2019). In a dyadic setup, interactions
might quickly become predictable. Extending the dyadic setup to larger groups may increase
the complexity of the interaction due to the actions influencing more individuals generating
more possible outcomes. Competition becomes more competitive, and cooperation tasks
might become more complex, requiring better interaction of all members of the group. In the
context of musical group performances, the structure of a leader and a follower often does no
longer exist, playing in an ensemble requires continuous interaction of all members (Babiloni
et al., 2012, 2011). In general, the roles of the participants in the interaction become less
discrete. This is similar to many social interactions in daily life. Researchers use these
properties for two kinds of experimental design. Some apply findings, conducted from earlier
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experiments using dyadic design, to a group design to investigate whether these findings
still hold under the more natural conditions. Other publications claim that the effects they
want to observe can only be present inside a group interaction. Hyperscanning, hence, allows
investigation of effects that are only present inside large groups like, for example, classrooms,
allowing different and new research questions. Such experiments, therefore, observe social
behavior inside a social setting. There thus exist two main categories of current multi-subject
hyperscanning research.

Multi-subject hyperscanning experiments can be used to confirm results derived from
less complex social situations in a more natural setting. Gevins et al. (2012) generate a
measure to distinguish subjects under the influence of alcohol from others by their EEG data.
The measure was derived from EEG data, recorded from non-interactive task performance.
This measure is then applied to EEG data, simultaneously recorded from each participant
of a cocktail party, and still correctly discriminates subjects under the influence of alcohol
or placebos. Multi-subject Hyperscanning experiments hence offer a potential method for
investigations regarding social behavior.

For other researchers, hyperscanning offers a new opportunity to precisely record human
group interaction to investigate social dynamics. Dikker et al. (2017) investigate brain
synchrony from a class of twelve high school students over one semester during regular
classroom activities. The results suggest that the individuals that are less engaged with the
classroom setting show lower brain to brain synchrony with the rest of the group. Nozawa
et al. (2016) investigate brain synchrony inside twelve groups of four members playing a
spoken word chain game under a cooperative condition, reporting frontopolar interpersonal
neural synchronization by natural and unstructured verbal communication. Results like these
suggest that multi-subject hyperscanning experiments can also be conducted to observe the
effects of social interactions directly.

5.5.8 Speech and communication

Speech is one of the most crucial aspects of social interactions in humans. The majority of
human-human interactions involve verbal communication. Henceforth, it is vital to study it
with the hyperscanning method to understand the neural underpinnings of verbal communica-
tion. The first study that focused on verbal communication compared inter-brain synchrony
between face-to-face and back-to-back in dialogues and monologues situations (Jiang et al.,
2012). They found increased inter-brain synchrony between partners in face-to-face dialog
but not in the other type of communications. This result suggests that interactive paradigms
are required to observe inter-brain synchrony and that hyperscanning is a valid method to
measure it. Similarly, greater inter-brain coherence between partners was found in interactive
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than non-interactive object-naming and description task (Hirsch et al., 2018) as well as for
match than mismatch sentences (İşbilir et al., 2016). In another study, Kawasaki et al. (2013)
compared the coordination of speech rhythm between human-human and human-machine
dyads. Their results, higher between brain synchronization in theta and alpha bands in
temporal and lateral-parietal regions, further corroborate that interaction between commu-
nicating humans is related to higher inter-brain synchrony. Moreover, when bigger groups
(four participants at once) were studied during cooperative communication, frontopolar
inter-brain synchronization was found (Nozawa et al., 2016). Inter-brain synchrony and
coherence effects could be merely an epiphenomenon of auditory processing. This question
was addressed by Pérez et al. (2017). He pointed out that speech-to-brain synchronization is
mediated by low-level auditory mechanisms. However and importantly, it is the interactive
process that plays a crucial role in the inter-brain synchronization. This evidence gives strong
support to claim that interaction between participants of a dialog is related to inter-brain
synchrony.

Conveying information between interlocutors is a fundamental facet of human communi-
cation. Especially between teachers and students. Such a scenario was studied by Holper
et al. (2013). Correlation analysis between students and teachers showed that in successful
educational dialogues, students’ and teachers’ brain activity synchronizes. As it is first and
the only one study focused on the teacher/student inter-brain synchrony, more research is
required to understand this phenomenon.

In general, we believe that studying speech and communication requires interaction
between participants, and therefore hyperscaning is the best method to understand the neural
basis of speech and communication. However, artifacts generated by speech are difficult to
remove, and this limitation has to be addressed appropriately.

5.5.9 Intervention methods

Intervention methods are especially appealing because properties of the object of investigation
are directly manipulated: The activity of specific neural populations in the brain is up or
downregulated by physiological or pharmacological means. This facilitates to relate changes
in behavior to distinct neural processes of social interaction. Mu et al. (2016) applied
EEG hyperscanning and studied the effects of oxytocin in males on the performance in a
reciprocal synchronization task. The task was to synchronize a button press (varying delay
in the second range) with the interaction partner or a computer. In contrast, Novembre
et al. (2017) applied transcranial alternating current stimulation targeting at motor cortices of
participants of each dyad. The authors compared behavioral measures for differences between
in-phase and out-of-phase stimulation across subjects in a joint tapping paradigm. Similarly,
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Szymanski et al. (2017a) targeted the effects of same-phase-same-frequency hyper-tACS
on the performance of participants in a joint drumming experiment. All three studies used
synchronicity of behavior as a behavioral measure. Significant effects of Oxytocin on the
mean alpha-band inter-brain PLV of posterior and central electrodes of males were found
only for the social condition. However, most electrodes showed significant differences in
this condition. In contrast, if participants synchronized their behavior to a computer, the
difference between the treatment group and control was absent (Mu et al., 2016). Results
from named tACS-studies show deviating results. Novembre et al. (2017) found higher
inter-personal tapping synchrony for in-phase stimulation only for stimulation at 20 Hz. In
contrast, Szymanski et al. (2017a) did not find meaningful effects of in-phase stimulation
on behavior. Future research may profit from the increase of understanding of intervention
methods and theoretical grounding of expected and observed effects. It is challenging to draw
a conclusion with only three studies. Therefore, the understanding of inter-brain relations
might be fostered by an increased amount of studies applying different intervention methods
in combination with hyperscanning.

5.6 Conclusions

Taken together, in this review, we first presented methods that are used to measure the brain
activity of two or more participants simultaneously. We discussed their advantages and
disadvantages for studying different aspects of social interaction. Further, we reviewed the
analysis methods that are used to study between brain networks. We listed different types
of analyses that can contribute to various aspects of our understanding of the social brain.
In the final section, we presented results of hyperscanning studies performed in the last two
decades that focused on diverse cognitive functions and their neural underpinnings.

All these methods, analysis, and experimental results are in line with the call for a more
ecologically valid way of studying the social brain (Hari et al., 2013; Hari and Kujala, 2009;
Hasson et al., 2012; Redcay and Schilbach, 2019; Schilbach et al., 2013). This call is present
since the last decade and suggests that we need more interactive paradigms and neuroimaging
data coming from more than one brain to understand the human brain and its social nature
fully. Social interactions are a fundamental part of every human being’s life, and studying
them is indispensable for neuroscience. The previously challenging idea of hyperscanning
research was addressed in last years in multiple ways. With our review, we present an
overview and results of this effort. Taken together, the results of different hyperscanning
studies presented support claim that hyperscanning is a useful and promising method to study
social interaction. Inter-brain synchrony appears to be related to the interaction between
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participants. Without simultaneous measurements of more than one brain, it would not
be possible to explore neural underpinnings of social interaction. However, as the field of
hyperscanning is young, and in most cases, only exploratory, more research is required to
understand all principles and neural basis of human social behavior. Furthermore, presented
here results may give rise to a more extended view on studying the human brain. Namely,
the fact that brains of participants synchronized with each other may raise a question of
whether studying higher cognitive functions should include more participants to understand
the human brain fully.

In sum, with the evidence presented in this review, we tried to give an informed overview
of the field and point out future avenues of research to foster insights into the interacting
mind/brain.
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Single-brain neuroimaging studies have shown that human cooperation is associated with
neural activity in frontal and temporoparietal regions. However, it remains unclear whether
single-brain studies are informative about cooperation in real life, where people interact
dynamically. Such dynamic interactions have become the focus of inter-brain studies. An
advantageous technique in this regard is functional near-infrared spectroscopy (fNIRS) be-
cause it is less susceptible to movement artifacts than more conventional techniques like
EEG or fMRI. We conducted a systematic review and the first quantitative meta-analysis
of fNIRS hyperscanning of cooperation, based on thirteen studies with 890 human partic-
ipants. Overall, the meta-analysis revealed evidence of statistically significant inter-brain
synchrony while people were cooperating, with large overall effect sizes in both frontal and
temporoparietal areas. All thirteen studies observed significant inter-brain synchrony in the
prefrontal cortex (PFC), suggesting that this region is particularly relevant for cooperative
behavior. The consistency in these findings is unlikely to be due to task-related activations,
given that the relevant studies used diverse cooperation tasks. Together, the present findings
support the importance of inter-brain synchronization of frontal and temporoparietal regions
in interpersonal cooperation. Moreover, the present article highlights the usefulness of
meta-analyses as a tool for discerning patterns in inter-brain dynamics.

Keywords: Inter-brain synchrony, interpersonal neural alignment, hyperscanning, cooper-
ation, fNIRS

6.2 Introduction

Human beings cooperate on small scales, like friends or families, and on larger scales, like
nation states (Handley and Mathew, 2020; Jaeggi and Gurven, 2013). Nevertheless, there are
many cases where cooperation fails, from marital arguments to political conflicts, leading
to suboptimal outcomes for individuals and society. To understand the complexities of
cooperation and help people realize more of their cooperative potential, it is helpful to obtain
a better scientific understanding of cooperation.

One key scientific question is how cooperation is implemented in the brain. Over the
last three decades, a large literature has emerged on social neuroscience (Cacioppo et al.,
2000; Schurz et al., 2021; Todorov et al., 2011). Much of this research to date has relied on a
single-brain approach as the dominant paradigm in contemporary neuroscience. In a typical
social neuroscience study, a participant views social stimuli on a computer screen while her
or his neural activations are being recorded with EEG or fMRI. A number of neural systems
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have been implicated in social cognition more generally, including the mirror neuron system
and the mentalizing system. The former purportedly consists of the inferior frontal gyrus
(IFG), inferior frontal lobule (IFL), and superior temporal gyrus (STG). The latter involves
the temporoparietal junction (TPJ), precuneus, and prefrontal cortex (PFC; Rizzolatti and
Fabbri-Destro, 2008; Van Overwalle and Baetens, 2009).

One limitation of traditional social neuroscience research is that participants are not
directly engaged in social interaction. To overcome this problem, researchers have moved
toward a truly social, second-person neuroscience approach Redcay and Schilbach (2019);
Schilbach et al. (2013). In second-person neuroscience, neural processes are examined within
the context of a real-time reciprocal social interaction. Preliminary evidence has confirmed
the added value of the second-person neuroscience approach by showing that specific neural
signatures are only observable during ‘true’ social interaction (Tognoli et al., 2007).

Recent developments in neuroimaging have enabled so-called ‘hyperscanning’, whereby
the activity of two or more brains can be assessed simultaneously while people are interacting
(Czeszumski et al., 2020; Dumas et al., 2010). The resulting inter-brain activity is usually
characterized in terms of the synchronization of the functional activity of the interacting
brains. Hyperscanning has used a variety of neural imaging procedures, including electroen-
cephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance
imaging (fMRI), and functional near-infrared spectroscopy (fNIRS) (respectively: Goldstein
et al., 2018; Hirata et al., 2014; Koike et al., 2016; Scholkmann et al., 2013). Each apparatus
and method has different advantages and disadvantages for hyperscanning (Ayrolles et al.,
2021; Czeszumski et al., 2020). Hyperscanning research paradigms vary from studying coor-
dinated finger movements (Tognoli et al., 2007) (Tognoli et al., 2007), to real-life situations
like playing guitar in a duet (Sänger et al., 2012) or studying multiple brains of high-school
students inside the classroom (Dikker et al., 2017).

So far, hyperscanning studies have revealed that inter-brain synchrony plays a crucial role
in joint attention, interpersonal communication and coordination, cooperation, and decision-
making (review: Czeszumski et al., 2020). Many hyperscanning studies have used spoken
language during interactions between participants (Kelsen et al., 2020; Li et al., 2021; Pérez
et al., 2017), ranging from knowledge sharing, cooperation, turn-taking, and naturalistic
situations. Of the latter studies, many reported the emergence of inter-brain synchrony during
interpersonal communication based on cooperative interaction in frontal and temporoparietal
regions.

While the field is still young (Czeszumski et al., 2020), we conducted a meta-analysis
(Zlowodzki et al., 2007) of fNIRS hyperscanning studies focusing on cooperative behavior.
The present review focused explicitly on fNIRS studies for a number of reasons. The method
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of fNIRS is one of the most commonly used neuroimaging techniques in hyperscanning
studies of cooperation (Kelsen et al., 2020), which is relatively insensitive to motion artifacts
and capable of capturing inter-brain synchrony over longer periods (from seconds to minutes).

For example, social communication enhanced inter-brain synchrony during a turn-taking
game (Nozawa et al., 2016). These and related findings suggest that inter-brain synchrony in
frontal regions is associated with successful knowledge sharing and cooperative behavior
using spoken language. Studies have additionally reported higher inter-brain synchrony in
temporoparietal regions during teacher-student interactions (Liu et al., 2019; Zheng et al.,
2018), cooperation (Lu et al., 2019a; Xue et al., 2018), and naturalistic discussion (Jiang
et al., 2015).

In sum, many hyperscanning studies have examined the inter-brain dynamics associated
with cooperative behavior. The findings appear to show some convergence, with inter-brain
synchrony seemingly emerging in frontal regions. However, without quantitative integration
through meta-analysis, it is not possible to determine the degree to which hyperscanning
studies of cooperation have converging results. This question is of substantive theoretical
interest, given the diverse paradigms used in hyperscanning studies in this area. More specifi-
cally, the cooperation tasks used varied considerably across studies, ranging from singing
together to jointly solving a puzzle. This means that these tasks, aside from their coopera-
tive nature, are unlikely to evoke shared neural activations based on low-level operational
features. Thus, finding a common neuroanatomical site for inter-brain synchrony in these
studies would provide relatively strong evidence for a general-purpose neural substrate for
cooperative behavior. Our work had two aims: (1) to review the relevant literature and (2) to
assess consistency in findings of inter-brain synchrony in different brain regions related to
cooperative behavior.

6.3 Methods

6.3.1 Search strategy and inclusion criteria

We searched MEDLINE and SCOPUS databases for fNIRS hyperscanning studies of cooper-
ation in accordance with preferred reporting items for systematic reviews and meta-analysis
guidelines (PRISMA, Moher et al., 2010). Following consultation with a librarian, two
authors independently conducted searches in September 2021 using keywords: ((hyperscan-
ning OR “social neuroscience” OR fnirs) AND (interbrain OR inter-brain OR interpersonal
OR interneural OR inter-neural OR synchron* OR coupling OR alignment OR “functional
connectivity”) AND (cooperat* OR collaborat*)). Inclusion criteria included: fNIRS hy-
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Fig. 6.1 Flowchart of selection process.

perscanning; cooperation/collaboration (where participants interacted to achieve a specific
outcome such as solve a problem or puzzle or accomplish a particular result, thereby exclud-
ing turn-taking activities such as sequential counting, ultimatum game, prisoner dilemma
and word games). Additionally, we excluded studies that focused on comparisons between
genders, different levels of cooperation and did not report comparisons between cooperation
and other conditions (cooperation or independent) or baseline. Discrepancies relating to
inclusion were resolved through mutual discussion.

6.3.2 Statistical analysis

Because functional equivalence was not expected to hold across the included studies, and
a common effect size could not be assumed, we performed a random-effects meta-analysis
(Borenstein et al., 2009). We set the threshold for type I errors (alpha) at 0.05 and used
effect sizes provided in the selected articles (if reported). We used the Psychometrica website
(Lenhard and Lenhard, 2016) to estimate Cohen’s d from h2

p (if available in the article), or we
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estimated Cohen’s d based on information provided in the article (statistical results)(Lipsey
and Wilson, 2001). Further, we transformed effect sizes to Hedges’g; although similar to
the classical Cohen’s d, it controls potential biases in studies with small sample sizes. If
more than one comparison between cooperation and other conditions was present in the
article, we chose the most orthogonal comparison. Furthermore, if more than one channel
per region was reported, we selected the most central channel to the reported brain region.
The heterogeneity across studies was gauged by Cochrane’s Q, I2, t p2 statistics, and forest
plots. We used Cochrane’s Q as a statistical test of the null-hypothesis of no heterogeneity,
I2 to quantitatively estimate the variance between studies, and forest plots to visualize
all effect sizes. In addition, we used funnel plots to assess publication bias. Publication
bias concerns the elevated probability of studies reporting positive results being published.
The tendency of journals to give preference to research showing positive findings means
negative results may remain unpublished, leading to bias and an increased likelihood of
false-positive outcomes (Zlowodzki et al., 2007). Using Egger’s tests, we tested the funnel
plot for symmetry and adjusted effect sizes with trim and fill analysis (Egger et al., 1997).
Furthermore, we performed meta-regression analysis to test the influence of the variables
Age, Gender and Language, Type of communication on overall effect sizes. All statistics
were computed using the open-source JASP statistical computing environment (Jasp, 2020).

6.4 Results

We first present the results of the literature review and afterward the results of the meta-
analysis of thirteen selected papers.

6.4.1 Selected studies

The search resulted in selecting thirteen studies over the period 2016 to 2021, with an initial
total of 888 participants and 847 once unusable data was removed (see Table 1). Nine studies
were conducted in China, one in Japan and three were performed in the USA. Seven studies
used verbal communication between acting participants during the investigation, while six
studies did not. HbO measures were used due to increased sensitivity to blood flow, with
pre-processing including low-pass filtering and global detrending. Eleven of the studies
employed wavelet transform coherence (WTC; Grinsted et al., 2004) to convert the signal for
inter-brain synchrony analysis, and two studies used correlation-based measures to estimate
inter-brain synchrony.
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Table 6.1 Selected studies

Study Country
Language

Sample size
Relationship

Age
M SD

Liu et al. (2016) • USA
• English

• 18
F-F=2, F-M=5, M-M=2
• strangers

21.1 1.7

Fishburn et al.
(2018)

• USA
• English

• 60 (57), F=37
• strangers 19.73 1.02

Xue et al. (2018) • China
• Chinese

• 90 (60), F=43
• strangers 20 2.13

Lu and Hao
(2019a)

• China
• Chinese

• 44 (42), F=40
• strangers 20.66 2.29

Lu et al. (2019b) • China
• Chinese

• 118, F=102
• strangers 20.72 2.47

Lu et al. (2019c) • China
• Chinese

• 104(102), F=64
• strangers 21 1.52

Duan et al.
(2020)

• China
• Chinese

• 84
F-M dyads
• lovers=20
strangers=22

20.3 0.84

Sun et al. (2020) • China
• Chinese

• 68
• 16 novice teachers (M=3)
• 18 expert teachers (M=4)
• 34 students (M=7)
• same sex dyads
• strangers

NT (25.81)
ET (38.00)
S (20.15)

NT (4.69)
ET (4.30)
S (1.67)

Li et al. (2021) • China
• Chinese

• 90 (86)
M-M=13, M-F=15, F-F=15
• strangers

21.14 2.01

Dai et al. (2018) • China
• Chinese

• 84
• same sex dyads
• strangers

22.77 2.19

Osaka et al.
(2015)

• Japan
• Japanese

• singing 30
M-M = 8 F-F = 7
• humming 28
M-M = 9 F-F = 5
• stranger

S (22)

H (21)
Missing

Li et al. (2020) • China
• Chinese

• 48
• familiar 19.8 1.65

Cui et al. (2012) • USA
• English

• 22
M-M=1, M-F=8, F-F=2 26 6
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Study Activity
Oral
Commun
-ication

Channels
Phase analysis
IBS regions

IBS comparison

Liu et al. (2016) Jenga game Yes • 19 • WTC
• IFG/MFG

Cooperation
> Dialogue

Fishburn et al.
(2018)

Tangram
Puzzle Yes

• 18 spread over triad
•Autoregressive model
and robust correlation
• IFG/MFG

Together active
> Apart

Xue et al.
(2018)

Realistic
Presented
Problem

Yes • 46 • WTC
• DLPFC and TPJ

Cooperative
dyads >
No cooperative
dyads

Lu and Hao (2019a)
Realistic
Presented
Problem

Yes • 22 • WTC
• DLPFC

Real participants
> Confederate

Lu et al. (2019b)
Realistic
Presented
Problem

Yes • 22 • WTC
• FPC and DLPFC

Positive and
negative feedback
> Control

Lu et al.
(2019c)

Creativity
task Yes • 46 • WTC

• DLPFC and TPJ
Cooperation
> Competition

Duan et al.
(2020)

Realistic
Presented
Problem

Yes • 19 • WTC
• FPC and TPJ

Lovers
(Cooperative)
> Strangers
(no cooperative)

Sun et al. (2020) Math task No • 22 • WTC
• DLPFC

Cooperative
> Independent

Li et al. (2021) Jenga
Game No • 22 • WTC

• IFG/MFG
Cooperation
> Competition

Dai et al. (2018)
Joint
Tapping
Task

No
• 22
• Correlation
• IFG/MFG

Biderection
> Unidirectional

Osaka et al.
(2015) Singing No

• 22 • WTC
• IFG/MFG
Parietal cortex
MTG, IT

Cooperative
> Alone

Li et al. (2020)
Joint
Drawing
Task

No • 22 • WTC
• DLPFC

Cooperative
> Alone

Cui et al. (2012) Joint Tap No • 22 • WTC
• SFG

Cooperation
> Competition
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6.4.2 Experimental designs

The conditions under which inter-brain synchrony occurred depended upon the experimental
setup. Cooperative behavior is often studied with the use of games. Our search found three
studies that used Jenga or Tangram puzzles to investigate inter-brain synchrony (Fishburn
et al., 2018; Li et al., 2021; Liu et al., 2016b). In the case of the Jenga game, these studies
compared cooperative and competitive modes of building a tower, while solving a tangram
puzzle was compared between together and apart conditions. On the one hand, multiple
studies used different types of problem-solving tasks to study inter-brain synchrony. A
set of studies (Duan et al., 2020; Lu and Hao, 2019; Lu et al., 2019a; Xue et al., 2018)
used realistically presented problem, where cooperation was facilitated by feedback and
compared with situations where no feedback was provided. These studies utilized the
presence of a third person (confederate) to create cooperative (feedback) and non-cooperative
situations (no-feedback). This task closely resembles many everyday situations in which we
solve problems together with the people surrounding us. They require communication and
creativity; therefore, they are suitable for studying neural underpinnings of social interactions
(inter-brain synchrony).

Lu et al. (2019b) used a creativity task in cooperative and competitive contexts. Partici-
pants in this study had to solve problems that required divergent thinking. Another aspect
of cooperation was studied with a math problem task by Sun et al. (2020) by comparing
cooperative with independent situations between a teacher and student (both adults). On the
other hand, tasks that cooperatively require synchronization of behavior were selected. Two
studies investigated synchronized taps between participants. In one of them, participants
tried to synchronize their taps (cooperation) or be faster than the co-actor (competition) (Cui
et al., 2012), while in the other study, bidirectional and unidirectional tapping was compared
(Dai et al., 2018) (Dai et al., 2018). Lastly, one study compared inter-brain synchrony in joint
(synchronized) versus independent drawing (Li et al., 2020). In sum, various types of tasks
were found to study cooperation and inter-brain synchrony with fNIRS. This suggests that
many different cognitive functions were studied, and different brain regions were involved.

6.4.3 Brain regions

The results of the studies we reviewed showed inter-brain synchrony in different parts
of the brain. Studies reported parts of frontal and temporoparietal regions as sources of
synchronization.
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Prefrontal Cortex (PFC)

All studies report different subregions of PFC to elicit more robust inter-brain synchrony in
cooperative situations than the other conditions. Interestingly, different subparts of PFC were
reported to be synchronized in different tasks. One set of studies (six: Li et al., 2020; Lu
and Hao, 2019; Lu et al., 2019a,b; Sun et al., 2020; Xue et al., 2018) that required flexibility
in solving a problem (realistic, creativity, and math problems) or drawing together show
inter-brain synchrony in DLPFC. One of the primary functions of DLPFC reported in intra
brain studies is cognitive flexibility related to attention switch (Monsell 2003).

Collaborative problem-solving tasks require focus switches between co-actors and the
problem to solve, and inter-brain synchrony in DLPFC (dorso-lateral prefrontal cortext)
may underpin these flexible attentional switches. Different subregions of PFC- IFG/MFG-
show inter-brain synchrony during gamified tasks, like cooperative Jenga, tangram puzzle,
and cooperative singing (four studies: Fishburn et al., 2018; Li et al., 2021; Liu et al.,
2016b; Osaka et al., 2015). These regions are involved in language processing, and inter-
brain synchronization may facilitate cooperative behavior in tasks requiring a lot of verbal
communication to solve (Fishburn et al., 2018; Liu et al., 2016b). However, inter-brain
synchronization in IFG/MFG (inferior frontal gyrus, middle frontal gyrus) was also reported
in cooperative Jenga play without verbal communication (Li et al., 2021). Further research is
needed to resolve the role of verbal communication in the Jenga task.One could compare
cooperative Jenga play with and without verbal communication to gain more insight into the
function of inter-brain synchrony in IFG/MFG.

Another subpart of PFC that shows inter-brain synchrony is SFG (superior frontal gyrus).
We identified one experiment that showed higher inter-brain synchrony for cooperative
joint tap when compared with competitive (Cui et al., 2012). Lastly, we found that FPC
(frontopolar cortex) also shows inter-brain synchrony during cooperative realistic problem
solving, suggesting that it is not only PFC that shows inter-brain synchrony. Taken together,
we found that most of the studies show inter-brain synchrony in PFC, and that tasks requiring
different cognitive functions elicit inter-brain synchrony in different subparts of PFC.

Temporoparietal regions

Four of the included studies show inter-brain synchrony in temporoparietal regions. It is
important to note that these four studies are not different studies from the studies discussed
above, but they show inter-brain synchrony in temporoparietal regions in addition to PFC.
Three out of four show inter-brain synchrony in the TPJ (temporoparietal junction) while
participants solve realistic or creativity problems (Duan et al., 2020; Lu et al., 2019b; Xue
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Fig. 6.2 Inter-brain synchrony in different parts of the preforntal and temporoparietal cortex
in various tasks used to study cooperation

et al., 2018). TPJ is involved in many different tasks that require the theory of mind (Schurz
et al., 2014), which is essential for successful interpersonal interactions as cooperative
problem solving (Rilling et al., 2004). Therefore, the results of selected studies extend past
research by showing inter-brain synchrony in TPJ. Furthermore, these studies show inter-
brain synchrony in both frontal and temporoparietal regions, suggesting the existence of a
PFC-TPJ inter-brain network that facilitates cooperative behaviors. However, more evidence
(studies) is required to test that interpretation. In addition to the PFC-TPJ connection, we
identified one study that links PFC (IFG/MFG) with the temporal lobe (IT and MTG; inferior
temporal cortex, middle temporal gyrus) during cooperative singing (Osaka et al., 2015).

Taken together, the selected studies pointed in the direction that inter-brain synchrony in
prefrontal and temporoparietal regions plays a crucial role in cooperation. To test that further,
we performed a meta-analysis of the selected studies.
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A random-effects model for all twenty one experimental conditions across the thirteen studies
reported a significantly large overall effect size (g=1.98, 95% CI [1.47, 2.49], n=21, z=7.68,
p<0.001). Cochran’s Q-statistic (Q=469.72, p<0.001) showed significant variation around the
weighted average effect for the studies included. The proportion of observed variance was
significantly high at I²=98.6 (> 75 representing large heterogeneity), and a scaled measure of
dispersion between true effect sizes of the studies was t p2=1.29 (Higgins and Thompson,
2002). These results suggest that the selected studies had an overall large effect size for
comparison between cooperative and non-cooperative conditions. Furthermore, the variance
between studies was high, suggesting that nearly all variance between studies was not due to
chance. Visual inspection of the funnel plot and Egger’s test (z=7.22, p<0.001) indicated
significant asymmetry. However, a follow-up trim and fill analysis resulted in the same effect
size and confidence intervals (g=1.98, 95%CI [1.47, 2.49]).

We performed meta-regression examinations to test whether any independent variables
(Age, Gender, Language, Type of Communication) affected our analysis. Wald tests demon-
strated no significant association between observed inter-brain synchrony and independent
variables overall. Chinese was used as the reference language. We found that, Age (Beta=0.12,
S.E.=0.27, z=.43, p=0.66), Gender (Beta=-0.78,S.E.=2.45, z=-0.32, p=0.75) Communication
(Beta=0.78, S.E.=1.4, z=.56, p=0.58) and Language (English) (Beta=0.12, S.E.=0.95, z=0.12,
p=0.9), and (Japanese) (Beta=0.29, S.E.=0.92, z=0.3, p=0.77) all displayed insignificant
results. The results of meta-regression analysis suggest that Age, Gender, Type of commu-
nication, and Language differences did not modulate overall effect sizes for the included
studies.

6.5 Discussion

When people cooperate, their neural activity will tend to become mutually synchronized. This
inter-brain synchrony during cooperation tasks has become the focus of a growing number of
hyperscanning studies. In the present article, we conducted a systematic review and meta-
analysis of fNIRS hyperscanning studies of cooperation. We located thirteen relevant studies
with a total of 890 participants. The results of our meta-analysis revealed significant overall
effect sizes for inter-brain synchrony in both frontal and temporoparietal regions. All studies
observed significant inter-brain synchrony in the prefrontal cortex (PFC). This consistency
is remarkable, considering that the included studies used various cooperation tasks, such as
realistic problem solving, joint drawing, and the Jenga puzzle. It thus appears that PFC has
general relevance for cooperative behavior that cannot be reduced to task-specific elements.
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Fig. 6.3 Forest plot of all included studies. Boxes represent effect sizes and whiskers
confidence intervals.
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The findings of the present meta-analysis are broadly consistent with the findings of pre-
vious single-brain studies implicating prefrontal regions in tasks requiring social interaction,
coordination, and cooperation (Stallen and Sanfey, 2013). The present findings not only
confirm these earlier findings from single-brain recordings but show that they are part of
a broader pattern indicating that prefrontal regions are not just activated within individual
brains operating separately from another. Instead, prefrontal regions are mutually activated in
a synchronized fashion in the brains of interaction partners, becoming coupled in their func-
tioning. Hyperscanning studies thus complement and extend traditional social neuroscience
studies that were conducted within the single-brain paradigm.

The present work has limitations. First, the present meta-analysis included a relatively
low number of studies. The studies had a relatively high number of participants, which
affords better statistical power. Still, the limited number of studies makes it hard to estimate
the effects of between-study characteristics. Second, the present meta-analysis was restricted
to a single neuroimaging method, fNIRS, which has limited spatial resolution. In the same
line, the placement of recording channels is not standardized; therefore, it is difficult to
compare different studies. It hence remains essential to compare the present findings to
other neuroimaging methods, like fMRI. Third, the meta-analysis revealed a high variance
between studies that cannot be explained by chance. More work is needed to understand the
sources of this variance, which is likely due to the large variety of conditions used in different
studies. Fourth and last, the present meta-analysis may be contaminated by reporting bias,
given that published studies tend to report only statistically significant comparisons of neural
recordings. It is important to note that the last limitation is not a limitation per se of our work
but a more general limitation of many neuroimaging studies that the field should address.
We propose that no significant channels/comparisons should be reported in supplementary
materials with all statistics values. It will allow for collecting more evidence and improve
future meta-analyses. Additionally, this problem may be overcome in future work by creating
better infrastructures for data sharing and open science practices (Pavlov et al., 2021).

6.6 Conclusion

Human beings are a cooperative species. The present research uncovered some of the neural
foundations of this human ability to cooperate by conducting the first systematic review
and quantitative meta-analysis of fNIRS hyperscanning of cooperative behavior. The results
showed that cooperation is consistently associated with inter-brain synchrony in frontal and
temporoparietal areas, suggesting that inter-brain neural alignment in these regions underlies
cooperative behavior in humans. These findings underscore the importance of meta-analyses
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in detecting patterns across studies and elucidating the neural basis of semi-naturalistic
cooperative behavior.





Chapter 7

General Summary

At the end of this thesis, we will discuss the results presented in this thesis. As each chapter
includes a discussion section, here we focus on more general points. The discussion focuses
on the core chapters (3-6) that provide new evidence to better understand social interactions.

On the one hand, recent advances have produced exciting new experimental results under
the Mobile Brain/Body Imaging (MoBI) framework. Novel hypotheses, measures, and
experimental paradigms are needed to tackle MoBI’s ultimate goal: to model and understand
cognition, behavior, and experience as it emerges and unfolds into and from the world
(Parada and Rossi, 2020). On the other hand, in recent years, efforts have been made to
develop a genuinely social or 2nd person neuroscientific approach. These developments have
helped to elucidate social interaction’s behavioral and neural mechanisms. Taking social
interaction seriously may also be particularly important for advancing the neuroscientific
study of different psychiatric conditions (Redcay and Schilbach, 2019; Schilbach et al.,
2013). In our work, we tried to combine these two approaches to study cooperative social
interactions. Namely, all core chapters (3-6) focused on social interactions and involved two
people interacting with each other while their brain activity was measured. Our findings
demonstrate that combining novel theoretical approaches (2nd person neuroscience) with
novel technological advances (mobile brain/body imaging) is possible. Furthermore, it is not
only possible, but it also provides new insights into cognition.

In chapters 3 and 4 we learned that the Feedback-Related Negativity (FRN) component
(measured with EEG) is affected by different social contexts (cooperative and competitive)
and different types of partners (robots and humans) during social interactions. We designed
experiments that involved two participants. In the study presented in chapter 3, the interaction
between participants was created by a pay-off matrix that created different social situations
(cooperation vs. competition). In the study presented in chapter 4, we designed a dynamic
game that required coordination between participants. In both experiments, we measure
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the FRN component to find out how the brain processes feedback about actions. The FRN
component was extensively studied without social context, and its function is related to
action monitoring (Hajcak et al., 2006; Hauser et al., 2014). That means it is a crucial brain
system that is required to observe and adjust actions or learn. So, our results show that FRN
is affected by social situations or different types of partners, which helps us know more about
how the brain works. Both of our studies show that FRN is sensitive not only to the outcome
of actions but also to other factors (social context or different partners). That means that how
people process their actions is not purely related to their actions and outcomes but also to
the surrounding environment. In this case, the environment was manipulated by creating
different contexts with different partners. These results show that expanding experimental
paradigms to study how people interact with each other gives us new insights that help us get
closer to fully understanding how people think.

Further, the fact that social aspects influence the basic functionality of the action monitor-
ing system could help to understand mental disorders. Many mental disorders are disorders
of social behavior (Lehmann et al., 2019). Understanding them requires studying humans
during social interactions (Schilbach, 2016). Our experiments presented in chapters 3 and
4 focused on healthy individuals. But these studies’ results can be understood in terms of
mental disorders. In particular, the social modulation of FRN that represents the action
monitoring system suggests that mechanisms involved in processing information about social
interactions interfere with processes involved in processing the outcomes of our actions. This
is important for understanding how people with mental disabilities and disorders change
their actions and brains. For example, depression influences how people evaluate actions
and events (Hammen, 2005). These changes in action monitoring in patients diagnosed with
depression are also reflected in their brain activity (Moran et al., 2017; Schrijvers et al., 2008).
This means that depressed brain activity affects outcome processing similarly to different
social interactions, and there could be a link between both. This hypothesis could be explored
in the future. In sum, our results build the foundation for a better understanding of the neural
processes involved in social interactions. These foundations improve our knowledge of the
brain processes involved in mental disorders.

In chapters 5 and 6, we presented our work on hyperscanning. Hyperscanning is a new
cognitive neuroscience method that simultaneously measures at least two brains to estimate
inter-brain synchrony (Montague et al. 2002). Naturally, when two people are involved and
the activity of two brains is measured, the research topics include studying social interactions
(Bilek et al., 2015; Dumas et al., 2010; Sänger et al., 2012). Initially, researchers concentrated
on showing the feasibility of the hyperscanning methods with different scanning devices
(Babiloni et al., 2006a; Funane et al., 2011; Montague, 2002). This led to the first research
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question, which focused on how inter-brain synchrony can be involved in social interactions
(Babiloni et al., 2007b; Sänger et al., 2013). With the growing amount of hyperscanning
research in the last 20 years, there seem to be many different ways to estimate inter-brain
synchrony, and inter-brain synchrony can play a role in various cognitive functions. However,
the field lacked a summary of existing research and methods to estimate inter-brain synchrony.
We filled this gap with the review that we presented in Chapter 5. We reviewed all ways to
simultaneously measure at least two brains, all statistical methods used to quantify inter-brain
synchrony, and most importantly, we summarized all cognitive functions studied within
the field of hyperscanning. Our review will allow present and future researchers to better
understand how hyperscanning methods can facilitate our understanding of social interactions.
Within the context of all methods used in the field of cognitive neuroscience, our review
identifies hyperscannig as a novel and valid method for studying cognition.

In chapter 5, we learned that cooperative social interactions are one of the most common
topics studied within the field of hyperscanning and that fNIRS is the most commonly
used method. These two reasons were crucial in choosing a research topic and method for
the first meta-analysis in the field of hyperscanning. We presented the meta-analysis of
cooperative social interaction in chapter 6. All of the studies we looked at showed significant
synchrony between brains in the prefrontal cortex (PFC). It is important to note that many
different cooperative tasks were included, Joint singing, drawing, tapping, problem-solving,
creativity tasks, and cooperative games. These results extend previous literature on PFC and
its role in social cognition (Rizzolatti and Fabbri-Destro, 2008; Stallen and Sanfey, 2013;
Van Overwalle and Baetens, 2009). Hyperscanning studies have shown that prefrontal regions
are not just activated within individual brains but also in the brains of interacting partners.
This suggests that these brain regions are mutually activated in a synchronized fashion
rather than operating separately. Our findings complement and extend traditional social
neuroscience studies within the single-brain paradigm. When there are more hyperscanning
studies, a similar meta-analysis could be done on different social interactions and parts of
the brain. We predict that, similarly to the PFC, other brain regions involved in processing
socially relevant stimuli would show inter-brain synchrony.

Every new field has to be evaluated. However, it is unclear how the new ideas should
be evaluated. Does the number of peer-reviewed papers matter? Or the impact factor of the
journals where the research was published? Naturally, the amount of evidence must grow to
accept a new method or idea as valid. Even more importantly, the quality of the evidence is
crucial. The guideline for assessing the quality of evidence exists in clinical science (Atkins
et al., 2004; Guyatt et al., 2008). This guideline is easily transferable to other branches
and can also be applied in cognitive neuroscience. The GRADE guideline suggests that
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meta-analysis is the best way to assess the quality of evidence, and the second best way is to
perform reviews of the topic. We used this approach to corroborate the field of hyperscanning.
In our review and meta-analysis, we evaluated the young field of hyperscanning and came to
the conclusion that it is a valid method for studying social interactions. Our work laid the
groundwork for further research (Hamilton, 2021).

After discussing hyperscanning as a valid method to study social interactions, we would
like to shift to what hyperscanning measures - inter-brain synchrony. In chapters 5 and 6
we extensively discussed the contribution of inter-brain synchrony to understanding cooper-
ative social interactions. Here, we want to focus on another point that will show possible
influence of the inter-brain synchrony research on understanding cognition. First we talk
about inter-brain synchrony in the context of neuropsychiatry and psychotherapy. In recent
years, it was suggested that interpersonal synchrony may provide patient and therapist with
access to each other’s internal states, improving emotion-regulatory capacities and thera-
peutic outcomes (Koole and Tschacher, 2016). In line with this proposal experimental data
shows that behavioural and physiological synchrony facilitates outcomes of psychotherapy
(Nyman-Salonen et al., 2021; Ramseyer and Tschacher, 2008; Yap et al., 2022). Similarly,
measuring inter-brain synchrony could help understanding neural processes that entangle
during psychotherapy. Namely, the synchrony between patients and therapists could serve as
a marker that predicts the outcome of the therapeutic sessions (Bolis et al., 2023; Schilbach,
2016). One of the first studies testing this hypothesis was recently published. Ellingsen et
al. (Ellingsen et al., 2022) showed that insula of clinicians and patients synchronised during
pain-related directional facial communication. This is the first results of such, and we expect
many more to come in the future.

In sum, in this thesis we showed our work on neural foundations of cooperative social
interactions. We performed multiple experiments focused on cooperative and collabora-
tive behaviors and its neural underpinnings. We reviewed the field of hyperscanning and
performed the first meta-analysis. Furthermore, we engaged in the biggest open-science repli-
cation project, and helped in developing one the biggest virtual reality experiment. All this
work was conducted to extend foundations of understanding cooperative social interactions.



Chapter 8

Appendix 1 - Embodiment and
Approach-Avoidance Behavior

This chapter consists of two peer-reviewed publications:

Czeszumski, A., Albers, F., Walter, S., & König, P. (2021). Let Me Make You Happy, and
I’ll Tell You How You Look Around: Using an Approach-Avoidance Task as an Embodied
Emotion Prime in a Free-Viewing Task. Frontiers in Psychology, 12, 703.

Solzbacher, J., Czeszumski, A., Walter, S., & König, P. (2021). Evidence for the
Embodiment of the automatic approach bias. - under review in Frontiers in Psychology
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8.1 Let Me Make You Happy, and I’ll Tell You How You
Look Around: Using an Approach-Avoidance Task as
an Embodied Emotion Prime in a Free-Viewing Task

8.1.1 Abstract

The embodied approach of human cognition suggests that concepts are deeply dependent
upon and constrained by an agent’s physical body’s characteristics, such as performed body
movements. In this study, we attempted to broaden previous research on emotional priming,
investigating the interaction of emotions and visual exploration. We used the joystick-based
approach-avoidance task to influence the emotional states of participants, and subsequently,
we presented pictures of news web pages on a computer screen and measured participant’s
eye movements. As a result, the number of fixations on images increased, the total dwell
time increased, and the average saccade length from outside of the images towards the
images decreased after the bodily congruent priming phase. The combination of these effects
suggests increased attention to web pages’ image content after the participants performed
bodily congruent actions in the priming phase. Thus, congruent bodily interaction with
images in the priming phase fosters visual interaction in the subsequent exploration phase.

Keywords: Approach Avoidance Task, Embodiment, Automatic Approach Bias, Cogni-
tive Bias Modification, Emotions, Eye-tracking, Mood, Overt Attention

8.1.2 Introduction

Gaze-dependent shifts play a pivotal role in visual processing. Using modern eye-tracking
techniques, it is possible to measure overt shifts of attention reliably and unobtrusively,
helping us understand eye movement behavior. What one observes is influenced by at least
three factors. First, attention is influenced by the external stimuli’ properties, processed in
a bottom-up hierarchy (Itti and Koch, 2000; Treisman and Gelade, 1980). This includes
low-level features of the visual stimulus, for instance, contrast, contours, color, texture, and
motion. However, it may also include more complex features like complex shapes of objects
or the emotional valence of images (Einhäuser et al., 2008a; Thomas and Hasher, 2006).
Second, attention is influenced by internal variables like task-demands (Einhäuser et al.,
2008b; Hayhoe et al., 2003; Rothkopf et al., 2016), as well as the observer’s emotional state
(Kaspar et al., 2013). Third, the spatial factors like the central bias (Tatler, 2007) and saccadic
momentum (Wilming et al., 2013) influence the selection of fixation targets. These three
factors’ relative contribution is a matter of debate (Kollmorgen et al., 2010), and presumably
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depends on the precise circumstances (Einhäuser et al., 2008b). Additionally, to all different
mentioned levels that attention can be influenced, it is crucial to operationalize attention itself
(Hommel et al., 2019). Our study used direction and allocation of eye movements to refer to
attention (Rayner, 2009).

When it comes to the role of emotional states affecting attention, it is useful to distinguish
between an internal affective influence, e.g., the emotional state of the observer, and an
external affective influence, e.g., the stimulus valence (Colombetti, 2014; Damasio, 1999;
Kaspar et al., 2015, 2013; Kaspar and König, 2012). A situation in which attention is
subject to both external and internal affective influences is when one explores web pages of
online news portals. On the one hand, such web pages commonly contain positive alongside
negative information, whereas, on the other hand, one is in a specific emotional state: Positive,
negative, or neutral. Kaspar et al. (2015) used such an environment to investigate the internal
and external affective influences in a free-viewing task performed by young adults. The
participants’ emotional state was primed by a series of either positively or negatively valenced
visual stimuli. Subsequently, they had to explore web pages containing both positively and
negatively valenced content. An analysis of the eye-tracking data revealed that a negative
emotional state marginally elicited a more spatially extensive exploration and that attention
for negative news increased in participants who were in a positive emotional state. Thus, the
state of the observer and the external affective influence impacted the visual exploration.

The valence of the stimulus influences responses beyond visual exploration. Specifically,
approach-behavior is naturally associated with an appraisal of something as ‘good.’ In
contrast, avoidance behavior is naturally associated with an appraisal of something as ‘bad.’
As a consequence, we are faster (Chen and Bargh, 1999) and more accurate (Casasanto and
Dijkstra, 2010) when making movements that correspond to their embodied meaning, i.e.,
approach for good, and avoid for bad. In particular, there is a general bodily tendency to
approach positive and avoid negative cues and do so faster than vice versa (Phaf et al., 2014).
Moreover, it was shown that positive concepts and percepts are placed close-to-the-body
locations, while negative concepts and percepts are placed away-from-the-body locations
(Marmolejo-Ramos et al., 2019, 2018). This gives evidence for a general bodily reaction to
positive or negative stimuli (Phaf et al., 2014; Sharbanee et al., 2014). For example, spider
phobics avoid pictures of spiders more strongly than neutral cues (Rinck and Becker, 2007);
socially anxious people avoid smiling and angry faces faster than controls (Heuer et al.,
2007); schizophrenic patients with higher levels of oxytocin avoid angry faces faster than
controls (Brown et al., 2014); individuals with anorexia-nervosa exhibit a decreased approach
bias for food cues (Veenstra and de Jong, 2011); and healthy adults pull positive words faster



170 | Appendix 1 - Embodiment and Approach-Avoidance Behavior

towards them while pushing negative words faster away (Chen and Bargh, 1999). Thus, the
valence of stimuli has a widespread impact on bodily states and actions.

The cognitive mechanisms of the automatic approach bias are still debated. One approach,
the concept of embodied cognition, rejects the idea that an agent’s cognitive life can be
understood without considering the particular morphological, biological, and physiological
characteristics of its body (Engel et al., 2013; Shapiro, 2011; Walter, 2014). For instance,
language processing (Glenberg and Kaschak, 2002), memory (Casasanto and Dijkstra, 2010),
visual-motor recalibration (Bhalla and Proffitt, 1999), or distance estimation (Witt and Proffitt,
2008) all rely on specific body characteristics. Moreover, even our abstract concepts are
bodily ‘grounded’ and arise from the body (Barsalou, 2008). That is to say that according
to the embodied approach of cognition and affectivity, cognitive and affective phenomena
can be fully understood only by taking into account the specific morphological, biological,
and physiological details of the agent’s body (Engel et al., 2013; Shapiro, 2011; Walter,
2014). In particular, bodily movements are specific to the kind of body we have, and to the
environment, we interact with, and are thus naturally meaningful. Similarly, the embodied
approach to cognition tries to explain the approach-avoidance behavior (Fridland and Wiers,
2018). Importantly for our study, affective states are also considered within the embodied
cognition framework. Stephan et al. (2014) discuss emotions in relation to the body and
beyond the body and the brain. Furthermore, Slaby et al. (2016) propose an action-oriented
understanding of emotions.

However, although emotional priming has been an important topic in research on top-
down influences in overt attention, in particular when it comes to disentangling external and
internal affective influences, there is little research using embodied primes (Stoykov et al.,
2017). As creatures with specific bodily morphology, our onto- and phylogeny make it natural
that positive valence is pulling something towards us while pushing it away is negatively
valenced (Fridland and Wiers, 2018). Since the human abdominal region is exceptionally
vulnerable, we have to protect it by allowing only trustworthy objects to come close. Since
survival requires energy, we have to pull nourishing objects towards us while avoiding rotten,
poisonous, unsanitary, or noxious objects. While strangers must typically be kept at bay,
procreation, nurturing infants, and giving them love and comfort require social approaching.
The idea that approach- and avoidance-behavior is naturally associated with appraisals of
something as ‘good’ or ‘bad’ is also in line with embodied accounts of emotions (Niedenthal
et al., 2005; Stephan et al., 2014), in particular with Damasio’s (Damasio, 2001) ‘somatic
marker’ theory, according to which emotions function to direct animals towards what is good
and direct them away from what is bad. Hence, these considerations suggest that approaching
something or pulling it towards us is naturally meaningful, indicating something is positive.
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If the automatic approach bias is indeed a general bodily reaction to positive or negative
stimuli (Phaf et al., 2014), we should observe it in healthy adults performing an approach-
avoidance task. This type of explanation raises new questions. Namely, if the bodily relation
is crucial, we would expect an influence of the stimulus valence and a congruency effect.
Body movements that are in line with our preferences (pull towards positive, “good”/push
away negative, “bad”) should influence our eye movements differently than priming by
incongruent actions preferences (pull towards negative, “bad”/push away positive, “good”).
Therefore, we aim to answer that question with our design. The congruency effect would
give support to the claim that embodied priming modulates our viewing behavior. That is,
here, we are primarily interested in modulating the natural (embodied) action in response to
a stimulus e.g., congruent vs. incongruent, as well as investigating the effects on subsequent
visual exploratory behavior.

The present study builds on an embodied approach to the automatic approach bias in
order to investigate (1) whether healthy adults exhibit a comparable automatic approach bias
concerning positively and negatively valenced stimuli and (2) how a positive vs. negative
emotional state, induced by a congruent vs. incongruent approach-avoidance task affects
their overt attention in a free-viewing task.

8.1.3 Methods

Participants

Twenty participants (6 male, 18 right-handed, mean age of 22.6 years, standard deviation of
2 years) took part in the experiment. They gave written informed consent before the start
of the experiment. Participants received either 9C or course credits in exchange for their
participation. All participants had normal or corrected to normal vision and were not aware
of the study’s scientific purpose. They were either native German speakers or fluent in the
German language. This was important since the presented stimuli included headlines written
in German. The ethics committee of Osnabrück University approved the study.

General Apparatus

We presented all stimuli on a 24” LCD monitor (BenQ XL2420T; BenQ, Taipeh, Taiwan)
with a refresh rate of 114 Hz. Participants sat 80 cm away from the screen. The experiment
was controlled by a PC (Dell) connected to an eye tracker computer via an Ethernet cable. We
used a head-mounted eye tracker (Eye Link II system) from SR-Research Ltd. (SR-Research
Ltd, Ontario, Canada) to track the participants’ eye movements. In turn, the eye tracker was
connected to a DOS-based computer (Pentium 4; Dell, Round Rock, TX, USA) running
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the application software. In total, the eye tracker comprised three infrared cameras. The
head camera recorded infrared sensors attached to the monitor’s corners to calculate the
head position in relation to the screen continuously. This allowed a stable gaze recording
irrespective of involuntary small head movements. The other two infrared cameras recorded
the participants’ pupil positions. The sampling rate of binocular recordings was 500 Hz. The
room was darkened during the entire experiment.

A 13-point calibration task preceded each recording. It consisted of fixation points
appearing consecutively in random order at various screen locations, and participants were
instructed to focus their gaze at these points. Each point had a visual angle size of 0.5�. We
validated the calibration by calculating the drift error for each point. Thereby it was assured
that the mean validation error stayed below a 0.3� visual angle and the maximum validation
error below a 1� visual angle. The calibration was repeated until the mentioned accuracy was
reached.

We used the eye tracker’s default settings to calculate saccades and fixations. Saccade
detection was based on a velocity of at least 30� visual angle/s and acceleration of at least
8000� visual angles/s2. To trigger a saccade, the saccade signal had to be sustained for at
least 4 ms. By the time the eyes moved significantly from the fixation point (i.e., exceeding a
motion threshold), the saccade’s temporal and spatial onset had been defined. By default,
we set this motion threshold to a 0.1� visual degree. After the saccade onset, the minimal
saccade velocity was 25� visual degree/s. Following this, a period without a saccade was
marked as fixation. Each trial was followed by a fixation cross appearing in the screen center
to control drifts in measurements. The first fixation following each stimulus’s onset was
excluded from our analysis because this was an artifact from the drift correction before the
respective trial’s onset.

The joystick used for the approach-avoidance task (Logitech Attack TM 3; Logitech,
Apples, Switzerland) was connected to the computer screen. Matlab’s Psychtoolbox V3
(r2017a; MathWorks Company) enabled us to record response times (pushing/pulling move-
ments). The joystick was placed on the table in front of the participants. We used MATLAB
to preprocess eye-tracking data and R to analyze all data. Analysis scripts and data are
available online (https://osf.io/cyz9b/).

Stimuli

The experiment included two separate phases (see below for details). First, participants
performed an approach-avoidance task, viewing isolated images. Afterward, participants
visually explored web pages, each containing two embedded images with additional text
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columns in a typical newspaper layout. As we investigated the influence of the approach-
avoidance task on later visual exploration, we labeled the isolated images as “primes”.

In this study, we used 88 full-colored images from the International Affective Picture
Set (IAPS) (Lang et al., 1997). Kaspar et al. (2015) used the identical stimulus set. Half of
the images had a valence rated below 3 (IAPS scale) and served as negative primes. The
other 44 images had valence ratings above 7 and served as positive primes. To prevent the
images from blurring, we presented all of them in their native resolution of 1024 x 768 pixels
on a gray background (RGB values: 182/182/182), centered in the middle of the screen
(resolution of 1920 x 1080 pixels, Figure 8.2).

In the present study, twenty-four prototypes of news web pages were used, previously
designed by Kaspar et al. (2015) (Figure 8.1). The web page images’ resolution fits the
screens’ resolution (1920 x 1080). Two target areas, embedded by several textual and pictorial
components, were constructed in one web page design (Figure 8.1). Each main news article
included either a negative or positive IAPS image (615 x 411 pixels), a matching heading, as
well as a link to the entire news report. It is important to note that there was no other textual
content regarding the main news. This was done to avoid attraction biases because of how
appealing news may have been for individuals who participated. Since participants did not
interact with the web pages, the link served no function, except for creating a realistic version
of a news web page that can be found on the world wide web. The structure and content
of the web pages remained the same throughout the whole study. However, the side of the
negative and positive content was counterbalanced (Figure 8.1). The 48 images, embedded
in the 24 web pages, differed from those used in the priming sessions.

The additional elements on each web page were four short news reports about ongoing
current affairs. These elements were placed below the main news articles. The frame around
the main news articles was completed by flanking advertisements on the left and right sides
(Figure 8.1). Please note that the statistical properties of forward directed saccades and
backward directed saccades (regressions) while reading the text do not enter the analysis
presented here in any form. As a standard feature on regular web pages, the upper left
corner was secured for a tabs region which is necessary for general navigation. Previous
work by Kaspar et al. (2015), using the same set of web pages, tested for the possibility
that differences in eye movement parameters, within positive and negative images, could
evolve from systematic differences in visual saliency. Therefore, a standard algorithm by Itti
et al. (1998) that extracts the physical features of images and, based on this, predicts fixation
patterns was applied. In addition to this, a graph-based visual saliency (GBVS) developed by
Harel et al. (2007) was applied, as it predicts the fixations with a higher probability. After
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Fig. 8.1 Web pages used in the study. (A) Prototype web page with different sections:
headlines, adds, tabs, news, and images. (B) Example of a web page with a negative image
on the left side. (C) Example of a web page with a negative image on the right side (reverse
of (B)).

application, no difference regarding the visual saliency was found between the positive and
negative images in the stimulus set (both t(35)  0.941, p � 0.356).

Procedure and Design

We divided the participants randomly into two groups. One group started with the congruent
block of the approach-avoidance task. The other group started with the incongruent block.
In each condition, participants faced a random sequence of 44 images of different valence
(22 positive and 22 negative images). As soon as an image was presented, the participants
had to respond with the joystick. The task paradigm required participants to push or pull
the joystick in response to the image’s valence. Participants used their dominant hand to
manipulate the joystick in front of them. Participants in the congruent task condition had to
pull (approach) the joystick towards themselves whenever a positive image was shown, and
push (avoid) the joystick whenever a negative image was shown. In the incongruent condition,
participants had to act reversely. They had to pull the negative images towards themselves
and push away the positive ones (Figure 8.2). They were instructed to respond as quickly
and as accurately as possible. It was not possible to rectify and correct response mistakes.
Additionally, while moving the joystick towards or away, the image changed in size. The
zoom feature of the approach-avoidance task was programmed in MATLAB’s Psychtoolbox
V3 (r2017a; MathWorks Company); as such, a shown image smoothly decreased in size as
soon as the joystick was pushed (Figure 8.2). Conversely, the image size increased once the
joystick was pulled (Figure 8.2). It is important to note that participants were instructed to
push or pull the joystick to its limit. Overall, participants took about 5 minutes to complete
this first part of the experiment.

In the subsequent eye-tracking session, we recorded the viewing behavior on prototypes
of 12 news web pages. Following earlier research of Kaspar et al. (2015) and ensuring the
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Fig. 8.2 Embodied primes used in the study. (A) Example of one priming stimulus: IAPS
image with surrounding gray frame. This photograph depicts positive content with children
laughing and playing on a sandy playground. Hint: Due to restrictions of showing IAPS
images in public, it is masked with a diffusing filter. (B) Incongruent condition: joystick
pushed forward - positive prime zooms out. (C) Congruent condition: joystick pulled
backward - positive prime zooms in.

same experimental design, each web page was displayed for 15 seconds. We instructed
participants to explore the web pages freely (free-viewing task).

After the eye-tracking session, participants had a short break. The second part of
the experiment, directly after the break, required the participants to complete the joystick
approach-avoidance task in the other condition. Participants who performed in the congruent
approach-avoidance task had to complete the incongruent condition. The opposite applied to
participants in the other group. After the second priming session, an additional 12 web pages
were displayed following the same procedure described above (free-viewing task).

8.1.4 Results

Performance in the embodied approach-avoidance task

For the priming part of the experiment, we first calculated the accuracy of performance to
check whether participants followed instructions. In the congruent condition, they had to pull
positive and push negative primes. In the incongruent condition, the assigned actions were
reversed. We found that participants made a low amount of errors (3.6%). This suggests that
instructions were clear, and participants followed them. Therefore, we excluded error trials
from any further analysis.

Second, we focused on response times in the experiment’s priming part to check whether
positive and negative images in congruent and incongruent conditions involve different
cognitive processes and, therefore, longer/shorter response times. As the data showed a
skewed distribution, we log-transformed it before further analysis (we used natural loga-
rithm)(Marmolejo-Ramos et al., 2015). We used a linear mixed model (LMM) to analyze
response times. The LMM was calculated with the lme4 package (Bates et al., 2014), and
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Fig. 8.3 Response time results. (A) The main effect of the congruency of the priming. (B)
The main effect of image valence (negative vs. positive). (C) Averaged residuals of all
condition combinations from response time linear mixed model. In all plots, bars represent
mean values and whiskers standard error of the mean.

p-values were based on Wald’s T-test using the lmerTest package (Kuznetsova et al., 2017).
Degrees of freedoms were calculated using the Satterthwaite approximation. We modeled
response times by image valence (positive and negative), and experimental condition (congru-
ent and incongruent movements) as fixed effects and interactions between them. As random
effects, we used random intercepts for grouping variable participants. For all predictors, we
used effect coding scheme with binary factors coded as –0.5 and 0.5. Thus, the resulting
estimates can be directly interpreted as the main effects. This coding scheme’s advantage
is that the fixed effect intercept is estimated as the grand average across all conditions and
not a baseline condition average. We found the main effect of the image valence (t(1673.02)
= -3.726, p < .001) on response times (Figure 8.3). The natural logarithm of the response
time to negative stimuli was about 0.049 times smaller than to the positive stimuli. This
corresponds to a speedup (reduction of response time) by a factor of 5.03%. Furthermore, we
found the main effect of the congruency of the task (t(1673.04) = -4.71, p < .001) (Figure
8.3). The response in the incongruent condition was slower by about 6.39%. The interac-
tion between these effects was not significant (t(1673.02) = -0.87, p > .38). These results
demonstrate independent additive effects of faster movements under congruent conditions
and faster movements in response to negative pictures.
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Eye movements in the free-viewing task (web pages)

As a next step, we investigated the effect of priming (condition: congruent and incongruent)
on the viewing of news pages containing emotional stimuli (valence: negative and positive)
on either side (side: left and right). The participants freely viewed different web pages
containing one positive image and one negative image and additional filler texts, while
we collected eye movement data. We characterized the exploration of these web pages
with the two images as regions of interest (ROIs) with a various eye movement measures.
Specifically, we used four different measures to quantify eye movements within ROIs: the
average fixation duration within each image, the number of fixations within each image, the
total dwell time on each image, and the length of saccades within each image. Additionally,
we analyzed the number of saccades and their length from the outside to the inside of the
images. For all six measures, we used the same statistical procedures. Similarly to the
response time analysis, we employed linear mixed models. We modeled each of the variables
by experimental condition (congruent and incongruent movements before the free-viewing
task), image valence (positive and negative), and side of the image (left and right) as fixed
effects and the interactions between them as random effects. We used random intercepts for
grouping variable participants. For all predictors, we used effect coding scheme with binary
factors coded as –0.5 and 0.5. We visually inspected the normality of the data. All variables,
aside from dwell time, were log-transformed to achieve normally distributed data. Jointly,
these measures and analyses allow the characterization of viewing behavior on the web pages
after priming.

Fixation duration within ROIs
As the first measure, we used the average fixation duration within each ROI to measure the

depth of processing (Ehinger et al., 2018). We did not find the effect of condition (t(8291.27)
= -0.615, p = .54) on fixation duration. However, we found the main effect of the valence
(t(8286.74) = -3.513, p < .001)(Figure 8.4). The average fixation duration on negative images
was longer by about 2.8%. Furthermore, we observed the main effect of the side (t(8284.26)
= -3.093, p < .01)(Figure 4B). Fixations on the image displayed on the left side were longer
by about 2.45%. Further, we found the significant interaction between valence and side
(t(8283.33) = -3.318 , p < .001)(Figure 4C). The difference in fixation duration on positive
and negative images was larger on the right side. The size of this interaction was of the same
order of magnitude as the main effect of the side of the image. That is, the longest average
fixation duration was observed for the combination of negative images on the right side of the
displayed web page. All other two-way and three-way interactions were not significant (p >

.18). These results show that the displayed web page parameters, i.e., valence and side, had a
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significant influence on the depth of processing at individual fixation locations. However,
this did not apply to the priming condition.

Number of fixations within ROIs
Next, we considered the number of fixations within each image to measure attention

devoted to the respective stimulus. We found the main effect of condition (t(915.2) = -2.271,
p = .0234)(Figure 8.5). The number of fixations within the ROIs after congruent priming
was larger by 11.47%. Furthermore, we observed the main effect of the valence (t(915.19)
= -5.112, p < .001)(Figure 8.5). Negative images captured 27.68% more fixations than
positive images. Finally, we found the main effect of the side (t(915.17) = -2.816, p <

.01)(Figure 8.5). Images displayed on the left side captured 14.41% more fixations. All
two-way and three-way interactions were not significant (p >.1). These results demonstrate
additive effects, in terms of the logarithm of the number of fixations. Converted back to the
number of fixations within the ROIs, this results in multiplicative effects on the condition,
valence, and side on the attention devoted to the images.

Dwell time within ROIs
The dwell time combines the aspects of fixation duration and the number of fixations

within the ROIs. We found the main effect of condition (t(915.2) = -2.274, p = .0232)(Figure
8.6). The dwell time within the ROIs after congruent priming was on average 190 ms larger.
Furthermore, we observed the main effect of the valence (t(915.2) = -6.146, p < .001)(Figure
8.6). Dwell time on negative images was on average 513 ms larger than on positive images.
Finally, we observed the main effect of the side (t(915.17) = -3.381, p < .01)(Figure 8.6).
On average, the dwell time within images was on average 282 ms larger on the left side. All
two-way and three-way interactions were not significant (p > .33). These results resemble
the results in the analysis of the number of fixations within ROIs. They provide evidence for
independent effects of the priming condition, the valence of the viewed image, and the side
of image location on the dwell time.

Saccade’s length within ROIs
As a measure of exploration within the images, we used the saccadic length. We did not

find the main effect of condition on the saccadic length (t(8296.9) = 1.321, p = .187). However,
we did find the main effect of the image valence (t(8291.31) = 4.253, p <.001)(Figure 8.7).
Within negative images, saccades were shorter by 9.55%. Further, we observed a small but
significant main effect of the side (t(8287.02) = 2.618, p < .01)(Figure 8.7) on the saccade’s
length. Saccades were shorter by 5.76% on the left side. Furthermore, we found significant
two-way interactions between the image valence and the side of the image (t(8285.35) =
-2.038, p = .0415)(Figure 8.7), with a slightly larger difference in the saccadic length for
positive and negative images on the left side. Additionally, we observed the interaction of
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Fig. 8.4 Fixation duration results. (A) The main effect of image valence (negative vs. positive).
(B) The main effect of the side (left vs. right). (C) The interaction between valence and side.
(D) Averaged residuals of all condition combinations from the fixation duration linear mixed
model. In all plots, bars represent mean values and whiskers standard error of the mean.
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Fig. 8.5 The number of fixations results. (A) The main effect of the congruency of the
priming. (B) The main effect of valence (negative vs. positive). (C) The main effect of the
side (left vs. right). (D) Averaged residuals of all condition combinations from the number of
fixations linear mixed model. In all plots, bars represent mean values and whiskers standard
error of the mean.
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Fig. 8.6 Dwell time results. (A) The main effect of the congruency of the priming. (B) The
main effect of image valence (negative vs. positive). (C) The main effect of the side (left
vs. right). (D) Averaged residuals of all condition combinations from the dwell time linear
mixed model. In all plots, bars represent mean values and whiskers standard error of the
mean.
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condition and side (t(8289.3) = 2.907, p < .01)(Figure 8.7). Whereas images displayed on
the left condition were trivial, images on the right side were explored by longer saccades
after incongruent priming. We did not find the interaction between condition and valance (p
> .96), as well as no three-way interaction between all factors (p > .27). These results give
evidence for a more focused exploration of images with negative valence, specifically when
displayed on the left side. The priming condition modulated the influence of the side with a
larger differential effect on the exploration of images displayed on the right side.

Number and length of saccades from outside ROIs towards ROIs
As a measure of how well the images can attract attention, we utilized the number of

saccades from outside the image towards the inside. We found a trend towards significance for
the main effect of the congruency of the priming (t(850.76) = -1.894 ,p = .0586). Participants,
on average, made 6.96% more saccades from outside into an image after congruent condition.
The main effect of the valence of the image (t(851.31) = -1.936, p = .0532) on the number of
saccades from outside images towards them missed the significance threshold. Nominally,
participants made 7.13% more saccades on negative images. The effect of the side of
the image and all two-way and three-way interactions were not significant (all p > .12).
Furthermore, we analyzed the length of saccades from outside images towards them. We
found the main effect of congruency of the priming (t(2011.69) = 2.189, p = .0287). After
priming with congruent actions, the average saccade length from outside into the images
was shorter by 9.71%. Furthermore, the main effect of the side of the image (t(2009.88) =
2.269, p = .0234) on the saccade’s length from outside images towards them was significant.
Saccades targeting the left image were, on average, shorter by 10.07%. The effect of the
image valence and all two-way and three-way interactions were not significant (all p > .06).
These results suggest that participants, on average, make shorter and more saccades after
congruent priming from outside images towards them. Furthermore, on average, participants
make longer saccades from outside images towards the images on the right side.

8.1.5 Discussion

In the present study, we used an active bodily interaction with affective stimuli in an approach-
avoidance task to investigate the influence on the later free visual exploration of news web
pages containing emotional images. First, positively or negatively valenced images were
zoomed in or out by pulling or pushing the joystick. Here we found multiplicative effects
of valence and condition. That is, we could replicate the results of previous studies and
report a faster response in the congruent condition. Furthermore, negative stimuli were
reacted to faster. The lack of interaction and the additive effects on the log-response time
suggest independent multiplicative effects on the base response time. Second, concerning the
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Fig. 8.7 Saccade’s length results. (A) The main effect of image valence (negative vs. positive).
(B) The main effect of the side (left vs. right). (C) The interaction between image valence
and side of the image. (D) The interaction between congruency of the priming and side of
the image. (E) Averaged residuals of all condition combinations from the saccade’s length
linear mixed model. In all plots, bars represent mean values and whiskers standard error of
the mean.
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Fig. 8.8 Saccade’s length from outside ROIs towards ROIs results. (A) The main effect of
the congruency of the priming. (B) The main effect of the side of the image (left vs. right).
(C) Averaged residuals of all condition combinations from the saccade’s length from outside
ROIs towards ROIs linear mixed model. In all plots, bars represent mean values and whiskers
standard error of the mean.

influence of embodied priming on eye movements in the subsequent free-viewing task, we
observed the main effects of valence, side of the presentation, condition, as well as specific
interactions. This demonstrates the influence of stimulus properties (valence), internal
variables (priming by condition), and spatial properties (side) on visual exploration.

The following discussion will address the two main parts of our analyses. We will first
discuss the viewing behavior (fixations and saccades) made only in the emotion-laden main
news. The subsequent part deals with the approach and avoidance behavior while performing
the approach-avoidance task while taking the response times into account.

First, we observed an influence of the priming condition, i.e., performing congruent or
incongruent actions in the approach-avoidance task on later visual exploration. Specifically,
after priming in the congruent condition, the number of fixations on images increased, the
total dwell time increased, and the average saccade length from outside of the images towards
the images decreased. The combination of these effects suggests increased attention to web
pages’ image content after the subjects performed congruent actions on images in the priming
phase. Thus, congruent bodily interaction with images in the priming phase fosters visual
interaction in the subsequent exploration phase.

Second, we found systematic effects of the valence of images in the exploration phase.
Specifically, on images with negative valence, the average fixation duration was prolonged,
more fixations were completed, and the total dwell time increased. Particularly, the average
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length of saccades within the images of negative valence decreased. This combination of
effects speaks for increased scrutiny of negative valenced images.

Third, we observed a lateral asymmetry in the visual exploration phase. On average,
participants displayed longer fixations, more fixations, and longer dwell time on the left side.
The change of the length of saccades within the images was significant but quantitatively not
relevant. In contrast, the saccades’ length from the outside of the images towards the inside
was shorter on the left side. The combination of these effects largely resembles the effects
observed with respect to the priming condition and suggests increased visual interaction with
stimuli presented on the left side. These results further corroborate results suggesting spatial
biases in eye movements (Ossandon et al., 2014). This suggests that biases towards the left
side influence not only the number of fixations but the major properties of visual exploration
as well.

Finally, with respect to interactions of condition, valence, and side, it is noteworthy that
there were only a few. For the number of fixations, dwell time, and the average length
of saccades from outside to inside, we did not observe any 2-way or 3-way interactions,
and the residuals after discounting for the main effects were relatively small. Only for the
average saccadic length within the images did we observe an interaction of valence*side and
condition*side and for the average fixation duration an interaction of valence*side. It appears
that with respect to the saccadic length within the images for the left side, the valence is
more important, and the priming condition less important for images on the left side. The
fixation duration is less affected by image valence on the left side. Overall, it is striking that
the effects of the three independent variables are largely independent, and the interactions
are limited to a few aspects.

The results of this study suggest that approach and avoidance reactions in humans have a
direct influence on attention allocation and gaze behavior. We used the embodied cognition
approach and, more specifically, the approach-avoidance task to explore its effect on eye
movements. This study adds to the limited amount of eye-tracking research that has dealt
with the interplay of top-down influences and bottom-up features.

To induce a positive or a negative emotional state, Kaspar et al. (2015) had participants
watch either positive or negative sequences of 44 full-colored images from the International
Affective Picture System (IAPS; (Lang et al., 1997)) with a valence rating below 3 for
negative and a valence rating above 7 for positive primes. In the subsequent eye-tracking
session, they presented 24 similarly structured webpages that included a positive and a
negative IAPS image: one on the left, the other on the right. They found that a negative
emotional state marginally elicited a more spatially extensive exploration. In our study, we
used the same news web pages. However, instead of inducing emotional states by passively
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watching pictures, we used an approach-avoidance task as an embodied prime for positive and
negative emotional states. In contrast, no specific emotional valence was primed, but rather
the congruent or incongruent action, i.e. approach/avoidance of positive/negative valenced
stimuli or the reverse assignment. There is ample evidence that our emotions affect our visual
behavior. Regarding the direct effect of emotions on visual exploration, the broaden-and-
build model of positive emotions (Fredrickson, 1998) claims that positive emotions such as
joy, interest, elation, or love, temporarily expand the focus of attention, therefore, increasing
the thought-action repertoire by fostering interest in the environment and encouraging play
and exploration (Fredrickson, 2000). Accordingly, being in a happy emotional state versus
being in a sad or neutral emotional state has been shown to increase participants’ breadth
of attention (Rowe et al., 2007). Similarly, Wadlinger and Isaacowitz (2006) found that
the distribution of participants’ fixations on an image is broader in individuals induced into
a positive emotional state, with more frequent saccades to neutral or positively valenced
parts and with more fixations on positively valenced peripheral stimuli. Whereas, broadened
attention is often associated with anxiety (Gruzelier and Phelan, 1991), which has led some
to speculate that this might be an adaption to a negative emotional state (Garland et al., 2011),
while a positive emotional state may reduce the motivation to scrutinize the environment
because of an increased feeling of safety (Schwarz, 1990). Part of the explanation for
these diverse findings may be that the emotional state induction procedures are also diverse,
particularly concerning neutral emotional states. For instance, whereas some actively induce
a positive emotional state by offering participants a bag of candies but simply do nothing
in the neutral condition (Wadlinger and Isaacowitz, 2006), others rely on a waiting room
manipulation to actively induce a neutral emotional state (Herz et al., 2004). Others have
also been known to use movies (Grubert et al., 2013) or music (Shapiro and Lim, 1989).
According to Kaspar et al. (2015), this diversity of emotional state induction method questions
the assumption that a neutral emotional state is always an adequate control condition. This
may help explain why being in a negative emotional state had the same effect as being in
a neutral emotional state according to some studies (Rowe et al., 2007). Whereas other
studies found similar effects of being in a positive and neutral emotional state (Chipchase
and Chapman, 2013). In light of this still unresolved issue, the present study followed Kaspar
et al. (2015) and solely contrasted positive with negative emotional states and focused on the
effects of priming in congruent vs. incongruent actions in an approach-avoidance task.

When investigating embodied cognition, a high degree of ecological validity is necessary.
We instructed participants to use a joystick to either approach or avoid positively or negatively
valenced pictures displayed on a screen (Ernst et al., 2013). To increase immersion, we
implemented a visual ‘zooming-effect’ (Rinck and Becker, 2007). When the joystick was
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pushed, the images were zoomed out, and when it was pulled, the images were zoomed
in. This not only ensured a more realistic impression of movement towards or away from
the images, but it also illustrated any ambiguity in the participants’ arm movements. The
appraisal of a movement depends upon what is achieved (Krieglmeyer et al., 2010; Lavender
and Hommel, 2007). Stretching out one’s arm often indicates a negatively valenced avoidance-
behavior, i.e., when a harmful object is pushed away. Yet, it can also be an indispensable part
of a positively valenced approach-behavior, for instance when one reaches for nourishing
food or one’s infant. A joystick-based Approach avoidance task with a zooming-effect
resolves this ambivalence. To further increase the immersion utilizing techniques of virtual
reality offer themselves.

In addition to the effect of participants’ emotional states on their attention, we also
explored the approach and avoidance behavior in the priming conditions. Since the IAPS
pictures have exhibited an impact on the emotions of participants and therefore serve as a
reliable priming method (Kaspar et al., 2015), we made use of them in our study to also
modulate congruent vs. incongruent actions by the participants. Previous study designs
have solely presented participants with a row of pictures within one category. However,
our study design differs from previous work in that we let the participants visually and
physically interact with the depicted pictures. For this reason, we joined pictures of two
valence categories in one task, which had to be treated differently. Since we were working
with IAPS images, it is worthy of mentioning that the highly negative images were also
accompanied by a higher level of arousal, in contrast to highly positive images (Lang et al.,
1997). This applies to the IAPS images within the priming block and the images embedded in
the news web pages. As Kaspar et al. (2015) note, negative emotions, such as anxiety, anger,
and fear, also happen to be more arousing for the participants compared to positive emotions,
such as pride or happiness. This applies as well to negative and positive emotional conditions.
As mentioned in the introduction, along with the increment of arousal in negative emotions
comes an increase in attention. This is caused by the initiation of survival-related actions
related to behavioral and physical fight-or-flight responses (Fredrickson, 2000). In turn, the
specific arousal, which is immediately elicited by the mere presence of the valenced images,
is interwoven with the arousal that is elicited by the interactive treatment of the images in the
priming condition. Since the primes used in this study comprised of both valence categories,
it is challenging to make any explicit distinction. However, the approach-avoidance task
served as an authentic method to strive for and impact the internal approach and avoidance
reactions in humans. Participants in the incongruent priming condition were significantly
slower in treating the primes as instructed. Thus, they were slower to pull negative images
towards themselves and push positive images away from themselves. The difficulty of the
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incongruent priming condition task was reflected in the participants’ response times. In
general, the task instruction (to pull negative images towards oneself) essentially acts against
the avoidance effect, which has been presented as an example of embodied cognition that
emphasizes action-oriented behavior, i.e., actions related to survival. A direct comparison
of both task conditions clearly revealed the avoidance effect. In the congruent condition,
participants were significantly faster to avoid the negative stimuli, compared with avoiding
the positive stimuli in the incongruent condition.

In controlled attentional shifts, older adults show a positivity bias and negativity avoidance
(Isaacowitz et al., 2006). In contrast, no such bias is observable for automatic attentional
shifts (Hahn et al., 2006; Knight et al., 2007; Mather and Knight, 2006). The results are
inconclusive for younger adults. Some studies find a preference for negative stimuli (Thomas
and Hasher, 2006; Tomaszczyk et al., 2008), while others report a tendency to avoid negative
stimuli (Becker and Detweiler-Bedell, 2009). Some studies find emotional state-incongruent
preferences (Parrott and Sabini, 1990; Schwager and Rothermund, 2013), while others
report emotional state-congruent preferences (Becker and Leinenger, 2011; Ferraro et al.,
2003; Isaacowitz et al., 2008; Koster et al., 2010). Presumably, this inconsistency is partly
because studies only focused on external affective influences and disregarded the participants’
emotional state. However, considering the participants’ emotional states is crucial because
one’s emotional state can determine one’s current goals. In fact, when emotional regulation is
the primary goal of younger adults, they focus less on negative images and more on positive
images (Xing and Isaacowitz, 2006). Moreover, students who learn to focus on positive
stimuli subsequently show reduced attention for negative stimuli (Wadlinger and Isaacowitz,
2006), indicating that attention is a powerful tool for emotional states regulation (Wadlinger
and Isaacowitz, 2011). In contrast, Das and Fennis (2008) found that a positive emotional
state can increase attention for negative information. However, the primary goal of young
adults exploring news pages is arguably not emotional state regulation. They are rather in
a ‘browsing mode’ in which they search for personally interesting information. In such a
mode, features of the stimulus, such as its valence, are more likely to catch the observer’s
attention (Hamborg et al., 2012). In contrast to these mixed results, the effects of congruent
vs. incongruent conditions in the present study are relatively straightforward.

Many studies investigated an automatic approach bias in patients with substance abuse
disorders. Individuals with a substance abuse disorder exhibit an automatic bias toward
drug-related words (Cox et al., 2006) or pictures (Field et al., 2013). In stimulus-response
compatibility tasks, in which participants have to use a joystick to move cues either away or
towards themselves, they approach rather than avoid drug-related cues and they approach
them faster than they avoid them. In an implicit approach-avoidance task, in which partici-
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pants push and pull cues according to formal features (like the format of a picture (Wiers
et al., 2011) or its vertical alignment (Cousijn et al., 2011)), heavy drinkers (Wiers et al.,
2009), patients with alcohol abuse disorder (Wiers et al., 2014, 2011), heroin addicts (Zhou
et al., 2012), smokers (Wiers et al., 2013a,b,c), and cannabis users (Cousijn et al., 2011)
approach drug cues faster than healthy controls. In an explicit approach-avoidance task
in which participants either push away drug cues while pulling neutral cues towards them
or vice versa, individuals with alcohol abuse disorder approach drug cues faster than they
avoid them (Ernst et al., 2014). Thus, there is accumulating evidence for a general automatic
approach/avoidance bias related to substance abuse.

Essentially, with our empirical work we cannot address the dispute on causal and consti-
tutive relationships (Kaiser and Krickel, 2017). In the spirit of hypothesis testing we present
data, that are compatible with the framework of embodied cognition. Our results could be
further explained by two different aspects (limitations) that we address here. First, one of
the limitations is that we do not know whether embodied priming with emotionally laden
pictures triggered any emotions. One could test that by measuring different levels of arousal
during the priming phase. However, we did not investigate the exact physiological basis
behind embodied priming but its influence on the viewing behavior. In the future, it would
be worth also studying these physiological underpinnings of embodied priming. Second, we
used binary categories (positive and negative images) in our study based on the validated
data set (Lang et al., 1997). Emotions and perception of emotionally laden images can vary
between participants, and therefore, one could additionally improve understanding how the
effect that we found emerged if participants rated the images themselves. These issues do
not change our interpretation, but it is essential to consider them.

In summary, we present how congruent embodied priming influences eye movements in
a free-viewing task. Results presented in our study suggest that prior congruent movements,
in line with our bodily reactions, can influence how we scrutinize images presented on the
World Wide Web.

We found that movements in line with our bodily reactions (approach positive and avoid
negative) influence how we observe images presented on the World Wide Web.
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8.2 Evidence for the Embodiment of the Automatic Ap-
proach Bias

8.2.1 Abstract

Tendencies of approach and avoidance seem to be a universal characteristic of humans.
Specifically, individuals are faster in avoiding than in approaching negative stimuli and they
are faster in approaching than in avoiding positive stimuli. The existence of this automatic
approach/avoidance bias has been demonstrated in many studies. Furthermore, this bias
is thought to play a key role in psychological disorders like drug addiction and phobias.
However, its mechanisms are far from clear. Theories of embodied cognition postulate,
that the nature of gestures play a key role in this process. To shed light on the role of the
involved gesture we employed a 2x2 factorial design with two types of stimuli. Participants
had either to approach positive and avoid negative stimuli (congruent conditions) or to
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avoid positive stimuli and approach negative stimuli (incongruent conditions). Further, they
responded either with a joystick or a button press on a response pad. Participants reacted
faster in congruent conditions, i.e., avoiding negative stimuli and approaching positive stimuli,
then in incongruent conditions. This replicates the known approach and avoidance bias.
However, directly analyzing the button press condition participants revealed no reaction
time advantage for congruent trials compared to incongruent trials. In contrast, in the
joystick condition participants were significantly faster performing congruent reactions than
incongruent reactions. This interaction, a significant reaction time advantage, when the
response is enacted by moving a joystick towards or away from the body gives evidence that
approach-avoidance tendencies have a crucial bodily component.

8.2.2 Introduction

Behaviors of approach and avoidance are two of the most primal and natural ways to generally
act and react to encounters of any kind in our world. We naturally approach known friends
when we meet them on the street and avoid obscure alleys in the night. In our everyday
life we generally tend to approach certain things rather than avoiding them, mostly if we
associate the encounter with something positive to happen. Likewise, we avoid certain things
rather than approaching them, mostly if we expect something negative from the encounter.
Those general behavioral tendencies can in certain contexts be observed in connection with
psychiatric disorders like drug addiction (Ernst et al., 2014) or phobia (Rinck and Becker,
2007) and their modification is used in therapy and treatment (Hertel and Mathews, 2011;
Wiers et al., 2011). Thus, understanding approach and avoidance behavior might not only be
indispensable for a better understanding of cognition in general but particularly helpful for
psychological and therapy-related reasons. One way to study and measure an individual’s
tendency to approach or avoid certain types of stimuli rather than others is using what
is called an approach-avoidance task. In this reaction time based setup individuals are
instructed to either push away or pull towards them specific cues like words (Chen and
Bargh, 1999) or pictures (Bradley et al., 2008) for example according to their valence (Phaf
et al., 2014) as fast as they can. Here, a general individual’s tendency to approach positive
stimuli rather than avoid them and to avoid negative stimuli rather than approach them
is also reflected in their reaction times. Similar effects have been shown for individuals
suffering from substance use disorder like heavy drinkers (Wiers et al., 2009), alcohol use
disorder (Wiers et al., 2014, 2011), heroin use disorder (Zhou et al., 2012), smokers (Bradley
et al., 2008; Mühlig et al., 2017; Wiers et al., 2013b) and cannabis users (Cousijn et al.,
2011). All these groups approach drug-related cues faster than neutral cues or faster than
healthy controls. But the effect extends even further: Individuals suffering from spider
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phobia are faster in avoiding spider-related stimuli than in avoiding neutral cues (Rinck
and Becker, 2007) and similar effects hold for socially anxious people (Heuer et al., 2007)
and excessive online gamers, who approach gaming-related stimuli faster than neutral cues
(Jeromin et al., 2016; Zhou et al., 2012). Healthy individuals seem to exhibit an approach
bias for chocolate (Dickson et al., 2016)and are faster in approaching appetizing food
compared to neutral, non-food items (Booth et al., 2018; Schroeder et al., 2016). Generally,
approach-avoidance tasks show that we are faster in avoiding what we fear or dislike and in
approaching what we want or like. This reaction-time-based effect is called an automatic
approach/avoidance bias. While approach and avoidance tendencies might be a rather
universal characteristic, understanding their underlying mechanisms is particularly important
for individuals struggling with substance use- or other forms of psychiatric disorders. The
automatic approach bias can be modified by means of implicit approach-avoidance tasks in
which participants are retrained to push certain (e.g. alcohol-related) cues away while pulling
others (mostly neutral cues) towards themselves. Even after only short training periods, this
method called cognitive bias modification has profound effects (Wiers et al., 2011) — for
instance, in heavy drinkers it reduces alcohol craving, arousal ratings of alcohol pictures, and
relapse rates, and even leads to a reduction in cue-evoked activation in the amygdala (Wiers
et al., 2015). Similar effects have been proclaimed for anxiety disorders (MacLeod and
Mathews, 2012; Stevens et al., 2018), depression (Koster and Hoorelbeke, 2015; Tendolkar
et al., 2019), excessive online gaming (Rabinovitz and Nagar, 2015), obesity (Kakoschke
et al., 2018; Mehl et al., 2019), phobias (Fox et al., 2015), and smoking (Mühlig et al.,
2017). However, the therapeutic application of modifying cognitive biases of approach and
avoidance is still a rather recent development and ongoing subject of critique and discussion.
Exploring its mechanisms and developing new ways to potentiate its effect seems to be crucial
in pushing forward this approach to therapy. In cognitive bias modifications the retraining of
the biases relies on a setup similar to the approach-avoidance task and is therefore usually
performed with a joystick. One way to get more insight into the mechanisms of approach-
avoidance biases and their therapeutic modification is to investigate the role of the involved
bodily gesture, i.e., of pushing something away and pulling something towards oneself. In
recent years and decades, an upsurge of embodied theories has been seen in many areas of
cognitive science (Clark and Hillyard, 1996; Engel et al., 2013; Gallagher, 2006; Goldman,
2013). Most of those theories depart from traditional accounts that focus solely on abstract,
amodal, symbolic information processing as the basis for cognitive processes (Fodor, 1975,
1983; Marr, 2010). This development has led to a better understanding of the way in which
cognitive processing is shaped by the structure of our body, our bodily actions and/or our
interaction with the environment, such as pushing or pulling a joystick. While it has long been
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known that appraisals can be modified by performing actions associated with a particular
valence (Strack et al., 1988), the exact relationship between an individual’s perceptual and
motor representations and the associated approach and avoidance tendencies is still far from
clear. One particularly promising embodied account to explain the association between
abstract concepts like approach and avoidance and sensorimotor patterns like pushing and
pulling, and thereby to an explanation of the automatic approach bias, is the ‘biological
meaning model’ presented by Fridland and Wiers (2018). According to the biological
meaning model (Fridland and Wiers, 2018)both the automatic approach bias and cognitive
bias modification can be explained by the fact that our body (morphology, physiology, shape
and functions) is made up in a certain evolutionary meaningful way. In particular, the centers
of our bodies happen to house the most vulnerable organs. Thus, it seems reasonable for
humans to have developed a disposition to only allow trustworthy objects to come close to it.
Since those vulnerable regions are crucial to protect, along the same lines it seems reasonable
for humans to also have developed a disposition to keep dangerous or harmful objects
away from our center. Consequently, according to this model pulling something towards us
naturally indicates that it is positive (i.e. trustworthy, nourishing etc.) and pushing something
away naturally indicates that it is negative (i.e. dangerous, disgusting etc.). Unfortunately,
while such an embodied account seems prima facie plausible and might arguably be not only
of theoretical, but also of clinical importance, the details are still far from clear. Amongst
other problems, there appears to be one fundamental worry that makes it difficult to argue
- despite the current popularity of embodied approaches to cognition in general and to the
automatic approach bias and cognitive bias modification in particular - that they are in
fact embodied at all. A grave problem for any embodied account is that at least one study
reported an automatic approach bias using an approach-avoidance task that just required
subjects to press the ↑- and ↓-keys on a keyboard (Peeters et al., 2012). If an automatic
approach bias can occur in the absence of any (significant) bodily approach or avoidance
movement, no straightforward embodied account can offer an adequate explanation of the
underlying mechanisms. In this paper we try to shed light on this problem and contribute
to the current discussion by providing important evidence that the automatic approach bias
is indeed embodied or at least carries an embodied component, while at the same time
casting doubt on the claim that an automatic approach bias can also be detected by means
of button press approach-avoidance tasks. For this we conducted a systematic comparison
between two kinds of approach-avoidance tasks. One approach-avoidance task involved a
decidedly body-related gesture representing approach/avoidance (pushing vs. pulling using
a joystick), the other involved a response movement that is arguably neutral in terms of
bodily significance at the very least in the context of approach and avoidance (pressing a
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button). We used generally positive and negative pictures as stimuli and healthy subjects as
trial group. In line with previous research, we expected to find an automatic approach bias
for the joystick approach-avoidance task. In light of the results found by Peeters et al. (2012)
we also reckoned with the possibility of finding an automatic approach bias for the button
press approach-avoidance task. However, given the recent upsurge of embodied approaches
to cognition in general and the promising theories regarding the embodiment of the automatic
approach bias in particular (Fridland and Wiers, 2018), we expected that even if an automatic
approach bias were to occur in pure button press approach-avoidance tasks at all, actually
performing the bodily approach or avoidance movements in the joystick approach-avoidance
task should potentiate the effect. If we found automatic approach biases in both conditions,
and if using a joystick instead of pressing buttons would indeed potentiate the effect, we were
ready to argue, that the gesture of approach and avoidance that is present in the joystick but
not in the button press plays a crucial role for the explanation of automatic approach biases.

8.2.3 Methods

Participants

51 participants (17 male, all right-handed, mean age of 24 years, standard deviation of 3.6
years) participated in the experiment. All participants gave written informed consent before
the start of the experiment and received either 10 C or course credits in exchange for their
participation. All participants had normal or corrected to normal vision and were advanced
or native speakers of English. All instructions were shown and explained in English. The
ethics committee of Osnabrück University approved the study.

General Apparatus

We presented all stimuli on a 24” LCD monitor (BenQ XL2420T; BenQ, Taipeh, Taiwan)
with a refresh rate of 114Hz. The joystick used for the joystick approach-avoidance task
(Logitech Gaming Extreme 3D Pro Joystick USB PC, Black, Silver) was directly connected
to the computer screen. The response pad used for the button press approach-avoidance
task (Black Box Toolkit USB response pad, info@blackboxtoolkit.com) was connected to
the computer with an extension cable for USB. Matlab’s Psychtoolbox V3 (Kleiner et al.,
2007) (r2017a; MathWorks Company) enabled us to record reaction times of both the
pushing/pulling movements as well as the button presses on the response pad. Participants
positioned themselves in front of the screen such that they could naturally and effortlessly
hold and use both devices. This was important to avoid a bias by e.g. making it hard to
push the joystick for participants with short arm length because the device would be too far
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away. The subjects were instructed to autonomously change between devices when they
were requested to do so on the screen. We used MATLAB and R to analyze all data.

Stimuli

The experiment consisted of four different approach-avoidance tasks for each subject (see
below for details). There were two different devices (joystick, response pad) and two different
instructions (congruent, incongruent), where participants had to pull positive pictures and
push negative pictures for the congruent condition and pull negative pictures and push
positive pictures for the incongruent condition. Instruction and device yield by combination
the four different blocks. The first two blocks were always performed with the same device
to minimize switches between devices. Both stimuli and block order were randomized
over subjects. As stimuli we used 88 fullcolored images from the International Affective
Picture System (IAPS) (Lang et al., 1997). For reasons of comparability we used a stimulus
set identical to one being used by other studies and being accessible for other researchers
(Czeszumski et al., 2021; Kaspar et al., 2015). Half of the images had a valence rated below
3 (IAPS scale) and served as negative stimuli. The other half had valence ratings above
7.2 and served as positive stimuli. To prevent the images from blurring, we presented all
of them in their native resolution of 1024 x 768 pixels on a grey background (RGB values:
182/182/182), centered in the middle of the screen (resolution of 1920 x 1080 pixels, Figure
8.9).

Procedure and Design

Participants were randomly assigned to one of four groups (A, B, C, D) differing in block
order. For convenience we maintained only one switch of devices for each group, while still
counterbalancing for both device-order and instruction-order. This yields the following four
different sequences (J = Joystick, R = Response pad, I = Incongruent, C = Congruent)
A: JC - JI - RC - RI
B: JI - JC - RI - RC
C: RC - RI - JC - JI
D: RI - RC - JI - JC

In each block, participants faced a sequence of 44 images of different valence (22
positive, 22 negative images). The first four images in each block were test trials and were
excluded from analysis. All images were shown twice: Once in the first two blocks, and
once in the following two blocks. Stimulus order was randomized both between blocks and
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Fig. 8.9 Example-stimulus in its natural resolution in front of a grey background. The
stimulus is blurred with a diffusion filter in this figure to not make IAPS-pictures publicly
accessible. In the experiment the stimuli were not blurred. This Figure is reused from
Czeszumski et al. (2021)
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between subjects. Due to a technical issue the first eight subjects received the same pseudo
random stimulus order. Although individuals seem to exhibit an automatic approach bias
both for explicit instructions, in which they are instructed to directly react to the valence
of the stimuli and for implicit instructions, in which they react to an unrelated feature like
stimulus-orientation, explicit instructions seem to be more reliable in producing the automatic
approach bias (Phaf et al., 2014). Thus, we instructed participants to react directly to the
valence of the pictures, ensuring an affective evaluation of the stimuli. As soon as an image
was presented, the participants had to respond to the valence of the image with either the
joystick or the response pad, using their dominant hand. In line with previous button press
approach-avoidance setups (Peeters et al., 2012) (Peeters et al. 2012) and recent analysis
of the field (Fridland and Wiers, 2018) we assumed that the up button (↑) can naturally
be interpreted as pointing away from the participants. Thus, pressing the up button on the
response pad corresponded to pushing the joystick (expressing avoidance). Conversely, we
assumed that the down button can naturally be interpreted as pointing towards the subject,
thus pressing the down button on the response pad corresponded to pulling the joystick
(expressing approach). Participants in the congruent condition thus had to pull the joystick
towards them or press the down button (approach) whenever a positively valanced image
was shown, and push the joystick away or press the up button (avoidance) whenever a
negatively valanced image was shown. In the incongruent task condition, participants had to
act reversely, meaning they had to approach the negatively valanced images and avoid the
positively valanced ones. All subjects were instructed to respond as quickly and as accurately
as possible. It was not possible to rectify and correct response mistakes. In line with Peeters
et al. (2012), we instructed the participants to press the corresponding button on the response
pad 3 consecutive times. We recorded all button presses and evaluated the data using the
first button press only. For the sake of completeness and in line with Peeters et al. (2012)
we repeated all data analysis also using the third button press without finding significant
differences in the results. In line with the inability to correct errors in the joystick task,
responses in which different buttons were pressed within one trial were treated as errors.

In line with prior research (Czeszumski et al., 2021), we used a ’zooming-effect‘ to
enhance the impression of a movement of approach or avoidance, respectively. While moving
the joystick or when pressing the button on the response pad for the third time, the image
changed in size in a way that was supposed to enhance the impression of approach or
avoidance. In avoidance-conditions (push joystick, press the up button on the response pad)
the image presented smoothly decreased in size. Conversely, in approach conditions (pull
joystick; press the ‘down button on the response pad) the image presented smoothly increased
in size (Figure 8.10). This zoom feature of the approach-avoidance tasks was programmed
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Fig. 8.10 The Upper part shows the Zoom-effect for both directions. The lower parts show
approach and avoidance reaction for both devices (Joystick and Response pad). This Figure
is partly reused from Czeszumski et al. (2021)

in MATLAB’s Psychtoolbox V3 (r2017a; MathWorks Company) and taken directly from
(Czeszumski et al., 2021) with only few adjustments made in the code. Participants were
instructed to push or pull the joystick to its limit. Generally, participants had control over
when the next stimulus would appear by pressing the index finger button on the joystick or
the left button on the response pad. Instructions were repeatedly shown between stimuli
to ensure that participants always were aware of the current instruction. Between blocks
subjects took a break of at least 15 seconds.
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8.2.4 Results

Accuracy and error-trial exclusion

We gathered data from 51 participants * 176 trials, yielding a total of 8976 data points. Each
block started with 4 test trials, which were excluded from analysis (51*4*4 = 816 test trials).
4 Subjects did not notice a change of instructions between blocks and thus had an accuracy of
under 75%. Since those subjects had to be instructed again, they were completely excluded
from analysis to avoid instruction biases in the data (4 * (176-16) = 640 additional trials
excluded). For the remaining data (7520 trials) we calculated an accuracy of 96,3%. Thus,
subjects made a low amount of errors (3.7%). This indicates that instructions were clear, and
all participants remaining in the analysis followed them with high accuracy. Therefore, we
excluded all remaining error trials from any further analysis (7233 trials remaining).

Pre-processing

To make data accessible and to prepare for statistical analysis in general we decided to
perform a pre-analysis observation of the data. First, we divided all data into the four
different conditions (joystick-incongruent, joystick-congruent; button press-congruent; button
press-incongruent). The raw data showed a right-skewed distribution for all conditions and
generally not a lot of variance to the left side of the mean. This is to be expected because the
fastest human reaction times have been known to be around 150 ms. Consequently, for values
lower than that there is not much space for variance. In contrast, sometimes people needed
3, 4 or even more seconds to react to a picture, allowing for large variance to the right side
of the distribution. This distribution of data is characteristic of reaction-time experiments.
However, as Baayen and Milin (2010) have pointed out, the treatment of the ‘tail’ of such a
distribution requires a certain amount of caution. Especially the treatment and identification
of extreme values is not straight forward. In particular, one important question is whether
the effect of interest partly lies in the ‘tail’ of such a distribution or not. We therefore took
several measures before we could proceeded to the main statistical analysis. First, all trials
with reaction times below 150 ms were identified as not intentional responses but signals
unrelated to task and visual stimulation and were discarded as such (24 trials were discarded
this way). Those trials mostly occurred for the joystick condition (all but one trial) and
can be explained by subjects putting their hands and therefore weight on the joystick after
bringing it back to a neutral position. When subjects than made the next picture appear,
the program detected a response immediately because the joystick was in a pulled position
already when the picture appeared. Second, we had to deal with outliers that corresponded to
very long reaction times. After the experiment some subjects reported that they experienced
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a ‘brain freeze’ for negative pictures they did not want to pull towards them, meaning they
came into a state of cognitive dissonance in which they did not want to react at first but then
remembered they had to, which led to a delayed reaction. This might be one explanation,
among others, for the existence of a few very long reaction times. Statistical analysis of the
outliers supported this hypothesis: The further away from the mean, the more extreme values
have been found in the incongruent conditions (between 62% for outliers above 2 standard
deviations from the mean up to 72% for outliers more than 5 standard-deviations away
from the mean). This shows that there might indeed be a connection between the condition
(congruent/incongruent) and very long reaction times. This makes it apparent that part of the
effect lies indeed in the ‘tail’ of the distribution. However, since reaction times are known to
be influenced by a multitude of dimensions like fatigue (Welford, 1980, 1968), age (Welford,
1977) and even breathing cycle (Buchsbaum and Callaway, 1965), their explanation can
never be one-dimensional. If part of the effect does lie in the tail of a distribution, it is
recommended to not cut of more than 5% of the data (Baayen and Milin, 2010; Ratcliff,
1993) Only around 3% (227 trials) of or data lied outside of 2 standard deviations of the
mean. Thus, we decided to use a 2-standard-deviation-winsorizing procedure to adjust the
distribution without losing valuable information (reaction times of 227 trials were shifted that
way, 46 congruent joystick trials, 91 incongruent joystick trials, 39 congruent button-press
trials, 51 incongruent button-press trials). Since the data still showed a skewed distribution
after winsorizing, we log-transformed it before further analysis (using natural logarithm)
approximating a gaussian distribution. Eventually the data showed a normal distribution and
all aspects of the reaction times were treated satisfactory. We, thus continued with the main
analysis.

All post-preprocessing data is depicted as cumulative distribution functions for all con-
ditions in Figure 8.11 The blue and the orange lines (that start on the very left) correspond
to the button press conditions, the purple and the yellow lines (that start more to the right)
correspond to the joystick condition. The figure indicates that button press trials are generally
faster than joystick trials, as both button press conditions begin to grow significantly earlier
and reach their inflection point sooner than the joystick conditions. Additionally, the button
press conditions look very similar in their course. However, the joystick conditions do differ
in slope. Here, the yellow (the brighter) line that corresponds to the congruent joystick
condition shows a steeper slope than the incongruent joystick condition. A steeper slope of a
cumulative distribution function indicates that the variance of reaction times is smaller in the
respective condition. Those observations allow for a first pre-analysis interpretation of the
data, which suggests that participants were less hesitant in reacting to congruent conditions
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Fig. 8.11 Cumulative Distribution Function of all log-transformed condition-pairs between
Joystick/Response pad and congruent/incongruent.

when using a joystick, yielding a smaller variance in contrast to the incongruent joystick
condition, while there seems to be no such difference for button presses.

Main effects and interaction

Since our main hypothesis concerned the embodiedness of the automatic approach bias, we
focused our analysis on the comparison of the reaction time differences between conditions
dependent on the devices used. For all purposes we used linear mixed models (LMM) to
analyze reaction times. The LMMs were calculated with the fitlme function of matlab fit by
restricted maximum likelihood estimation (REML). Degrees of freedom were assumed to be
constant and equal to n – p, where n is the number of observations and p is the number of
fixed effects (residual method). For the calculation of effect sizes, we used Cohens d. For
that we calculated the standard-deviation from the standard-error of the model and we used
the specific betas of the model as difference between means. The calculation procedure was
the same for all effects. In our LMM we modelled reaction times by condition, device and
valence as fixed effects and interactions between them. As random effect, we used random
intercepts for the grouping variable subject. For all predictors, we used an effect coding
scheme with binary factors coded as –0.5 and 0.5. The advantage of this coding scheme is
that the fixed effect intercept is estimated as the grand average across all conditions and not
as a baseline condition average. Thus, the resulting estimates can be directly interpreted as
the main effects. Beside the main effects for ’device‘, ’condition‘ and ’valence‘, for our main
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Fig. 8.12 Main effects for device (joystick vs. response pad), condition (congruent vs.
incongruent) and valence (positive vs. negative)
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hypothesis the interaction between the fixed effects ’device‘ and ’condition‘ were of special
interest. First, we found a significant main effect for the fixed effect ‘condition’ (congruent
vs. incongruent). The effect was significant with (t(7225) = -6.2569, p < 4*10-10) (Figure
8.12). The logtransformed reaction time for the incongruent condition was about 0.038
times higher when compared to the congruent condition (b = -0.0334). This corresponds
to a percentage-increase in reaction times of 3.3%, meaning participants reacted faster in
the congruent condition compared to the incongruent condition by a factor of 3.3%. We
calculated an effect size of d = 0.91 for this effect (SE = 0.0053), which is a large effect-size
according to (Cohen 1988). Averaged over both devices’ participants were 25.7 ms faster
when responding to congruent conditions in comparison to incongruent conditions. Thus, it
can be concluded, that participants were overall faster in responding to congruent than to
incongruent trials. Furthermore, we also found a significant main effect for the fixed effect
‘device’ (joystick vs. button press). Here, the effect size was significant with (t(7225) =
15.584, p < 7*10-54)(Figure 8.12). The log-transformed reaction time for button presses
on the response pad was about 0.083 times smaller than for the joystick condition (b =
0.0833). This corresponds to an increase of 8.7% between devices, meaning participants
were 8.7% faster for button press trials compared to joystick trials. We calculated Cohens
d for the main effect ‘device’ with d = 2.27 (SE = 0.0053), which corresponds to a large
effect size (Cohen 1988). Here, averaged over both conditions’ participants were 64.4 ms
slower when responding with a joystick in comparison to responding with the response pad.
It can be concluded that averaged over both conditions, participants had slower reaction
times for the device ‘joystick’ in comparison to the device ‘response pad’. Lastly, we found
a significant main effect for the fixed effect ‘valence’ (positive vs. negative). The effect was
significant with (t(7225) = -10.082, p < 10-24)(Figure 8.12). The log-transformed response
time for negative pictures was about 0.054 times smaller, than for positive pictures (b = -
0.0539). This corresponds to a reaction time increase of 5.25 % between positive and negative
pictures. Thus, participants were 5.25% faster in responding to negative pictures compared
to responding to positive pictures. Cohens d for the main effect ‘valence’ was calculated
with d = 1.47)(SE = 0.0053), which is a large effect size (Cohen 1988). It can be concluded
that participants were significantly faster in reacting to negative stimuli than in reacting to
positive stimuli. We found a significant interaction between the fixed effects ‘device’ and
‘condition’ (Fig 8.13). This interaction was significant with (t(7225) = -7.3452, p < 2*10-13).
All other interactions were tested, but no other two or three-way interaction was significant
(all p > 0.20). The difference in reaction time between congruent and incongruent condition
was larger for the joystick than for the button press by a factor of 14.8. The difference in
reaction time between joystick and button press was larger for incongruent conditions than
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Fig. 8.13 Interaction between condition and device. Participants were significantly slower for
the incongruent condition when using the joystick but not when using the response pad

for congruent conditions by a factor of 2.8. Consequently, the longest average reaction time
was observed for the incongruent joystick condition. Cohens d for the interaction ‘device :
condition’ was calculated with d = 1.07(SE = 0.011), which still corresponds to a large effect
size (Cohen 1988). As Figure 8.13 displays, the interaction between the parameters device
and condition explains a lot of the main effects. While button presses are generally faster
than joystick trials and congruent trials are generally faster than incongruent trials, it really
is the incongruent joystick condition that makes the difference. The interaction shows that
incongruent trials are significantly slower than congruent trials when using a joystick, but
there is merely a difference between them when using a response pad.

8.2.5 Discussion

In the present study we tried to resolve the problem that despite its theoretical and clinical
potential, an embodied take on the automatic approach bias seems hard to sustain if such a
bias is present in a setup that requires no significant bodily behavior to begin with (Fridland
and Wiers, 2018). Therefore, we conducted a systematic comparison between two different
approach-avoidance tasks, one using button presses and one using a joystick. By this we
aimed to investigate whether the gesture in the sense of an actual bodily movement influences
- or might even be necessary for the effect. In line with previous research we expected to find
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a main effect for the joystick (Phaf et al., 2014) and for the button press condition (Peeters
et al., 2012). Due to recent considerations of the embodied paradigm regarding approach and
avoidance gestures (Fridland and Wiers, 2018) we also hypothesized that the effect would be
more pronounced for the joystick than for the button press, and that this difference could be
explained by the difference in device. We found an automatic approach bias for the joystick,
which was to be expected, since it was shown many times that this ‘most classic’ version
of an approachavoidance task yields an automatic approach bias. We could however not
reproduce the same effect for a button press. The fact that a button press approach-avoidance
task did not yield the same effect can be considered evidence that an automatic approach
bias is in fact not present - or at least not that strong - if the corresponding gesture is missing.
This suggests that the difference in device is crucial for an automatic approach bias to be
present and since the main difference between devices is supposed to be the presence of a
(significant) bodily gesture, the automatic approach bias might therefore in fact be grounded
in the bodily movement of approach and avoidance. The following discussion concerns the
interpretation of the different main effects we found (valence, device, condition) and of the
significant interaction between device and condition. We found strong main effects for all
fixed variables (valence, condition, device). With those findings we reproduced important
known effects. First, we reproduced the finding that negative stimuli are generally faster
responded to than positive stimuli. This can be explained by the evolutionary necessity to
act faster when confronted with something negative (i.e. dangerous) and confirms theories
about different pathways of processing (Lang et al., 1990). Second, we reproduced the
general effect of an approach avoidance bias, meaning subjects being faster in approaching
positive stimuli and avoiding negative stimuli than vice versa (Czeszumski et al., 2021). This
reproduces the main findings of the field and confirms that humans seem in fact faster in
approaching positive stimuli (i.e. things they want or like) and avoiding negative stimuli
(i.e. stimuli that disgust them, seem dangerous or are dislikeable) than vice versa. Third,
we found a main effect for device, that suggests that button presses are generally faster than
joystick trials. And although the action as such might just be quicker, those results have
to be interpreted in the context of the interaction between device and condition. As Figure
8.13 shows, both main effects (device and condition) are mostly explained by the strong
divergence between congruent and incongruent trials for the joystick task. This shows that
participants were slower for incongruent trials only if they used a joystick, but not when they
used the response pad. Since the major difference between those devices is supposed to be
the involved gesture, it can be concluded that the gesture does indeed play a crucial role in
how the bias originates. That the automatic approach bias is more complex than originally
thought, was already pointed out by Phaf et al. (2014), who emphasized the role of different
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types of instruction and context. With the described findings and the resulting importance of
the involved gesture, this study adds another layer to the complexity of automatic tendencies
of approach and avoidance. Although Peeters et al. (2012) did report an automatic approach
bias only using button presses, we could not reproduce those findings. This could have
several reasons. First, it could be the case that an automatic approach bias for button presses
is just weaker than for joystick tasks. In that case, a too small sample size could have
hindered us in finding the effect. If this was the case, our results would still show that a
supportive gesture potentiates the effect. Second, it is conceivable that there simply is no
effect for button press approach-avoidance tasks and that the former findings could not be
reproduced due to the nonexistence of the effect. In this scenario, the gesture would not only
potentiate an existent effect, but would be necessary for its existence. Third, we might have
been unable to reproduce the effect due to other differences in the setup. For example, as
Phaf et al. (2014) already suggested, the role of affect in this context is yet unclear. Peeters
et al. (2012) were working with at risk subjects concerning alcohol abuse and it might be the
case that the general effect is stronger in psychopathological contexts in contrast to working
with healthy subjects. If and how exactly such an effect modifies the automatic approach bias
has yet to be shown in further research. It can be concluded that while it seems undeniable
that the gesture plays a role for an automatic approach bias, it is not clear yet how exactly
it contributes to the bias, i.e., whether it only potentiates an existent effect or is necessary
for the effect’s existence. We demonstrated that the gesture - the movement of the arm away
or towards our body - in a situation of approach and avoidance matters. The following part
will focus on what this means for theories of embodiment. If we push something away, we
do not want it to be close to us, we avoid it; if we move something towards our body, be
it something to eat or a person that we want to hug, this is a movement of approach. The
movement of our arm - the gesture that we use to approach or to avoid certain things in our
environment - supports our action. The observation that certain compatibility effects - like
the automatic approach/avoidance bias - are only present or at least stronger if combined
with a corresponding gesture suggests that there is more to the gesture than it just being a
part of the process of approach and avoidance. It suggests that the gesture is part of what
it means to approach or avoid something as Gallagher (2005) and many other authors have
claimed. In this sense the automatic approach bias is embodied, possibly in one of the ways
that Fridland and Wiers (2018) suggested. Yet, there is more to gestures. While the idea that
pushing something away from us means avoidance and pulling something towards us means
approach, this cannot be the full story. If one gets scarred and withdraws his/her hand from
a spider this is a movement towards the body while at the same time being an avoidance
movement. Another factor to consider is the reference frame. A joystick movement does
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not necessarily correspond to a natural movement. If one pushes the joystick away, that
might as well be interpreted as a movement of their own body into the same direction (as
for example in videogames, when controlling an avatar). For, example, in manikin-tasks or
modified approach avoidance tasks, corresponding biases have been found, if the context was
different for the participants. Thus, it seems that tendencies of approach and avoidance and
their corresponding gestures are context sensitive (Markman and Brendl, 2005; Zhang et al.,
2012). Further research might show how context sensitivity influences the embodiment of the
automatic approach bias. As our data suggests, the automatic approach bias is - most likely -
embodied. Besides theoretical insight into the mechanisms of human approach/avoidance
behavior, this might also come with clinical implications: The automatic approach bias can
be modified by means of implicit approach avoidance tasks performed over a longer period
of time, so-called ‘cognitive bias modifications ‘. This might be especially important for
individuals suffering from substance use disorders. For those, but also for other psychiatric
disorders such as depression, it has been proclaimed that a modification of people’s automatic
approach bias e.g. towards cues that show the desired substance might have an impact on
their success of treatment, craving rates and subconscious action tendencies (Lindenmeyer,
2019; MacLeod and Mathews, 2012; Mehl et al., 2019; Mühlig et al., 2017; Rabinovitz
and Nagar, 2015; Wiers et al., 2015). Those cognitive bias modifications have all been
performed with a joystick only. If we take into account that our results indicate, that the
gesture itself has an influence on the strength of the effect, this allows for further speculations.
If the modification of the automatic approach bias indeed ‘scales up’ with stronger gestures,
then on the one hand, joystick-based cognitive bias modifications should be more efficient
in modulating the automatic approach bias than cognitive bias modifications using less
pronounced bodily movements such as button-presses. Further, this modulation should scale
up with even more intense and ecologically valid gestures. If even a relatively ‘weak’ gesture
like a joystick movement - that indeed is associated with approach and avoidance but far from
really incarnating the concepts - can have a strong effect on changing the reaction-time-bias
of a person, it might be possible to get an even stronger difference by enlarging the immersion
or choosing even stronger gestures, that really are incarnating the concepts of approach and
avoidance. Such gestures could for instance be the smashing of a cue with a bat for avoidance.
The corresponding cognitive bias modifications could be implemented into VR to additionally
increase the immersion. This might ultimately yield even stronger effects on reaction-time
changes. Unfortunately, the question if effects found in mere reaction-time studies can also
translate into long-term behavioral changes for subjects suffering from psychiatric disorders
is not yet resolved and should be treated with caution. Cristea et al. (2015) argued that there
might be only small behavioral effects of such modifications, but that it might also be the
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case, that there are no effects at all: A lot of the studies that proclaim to show such success,
they point out, suffer from small or low-quality-trials and publication bias might play a major
role in this field (Cristea et al., 2015). That said, Cristea et al. (2015) only consider studies
on anxiety and depression and the most prominent studies on cognitive bias modifications
have been proclaimed in other areas such as alcohol use disorders (Wiers et al., 2011) and
more recent meta-analyses (Batschelet et al., 2020; Kakoschke et al., 2018) and randomized
clinical studies (Manning et al., 2021) in these areas are more optimistic than Cristea et al.
(2015). Moreover, even if the effects on behavioral parameters might be small, this might
partly be due to the under-development of the treatment, e.g., as a mere add-on-therapy or
‘homework’ for patients between their sessions. If it should, however, turn out that reaction
time-changes in cognitive bias modifications do actually translate into behavioral changes, or
even just into a disposition of the patients to easier change their behavior, than enlarging the
immersion and choose stronger gestures, might be a way to improve the concept. In the end,
a lot of questions regarding an embodied approach of cognitive bias modifications are still
unanswered. The mental and physical health of patients suffering from serious psychiatric
disorders must always have highest priority. Because of that, every possibility to help those
should be explored, including cognitive bias modification and its improvement. We show one
dimension that might be a way to alter those concepts. Promising trials like Eiler et al. (2019)
demonstrate a first implementation of the concept for smokers and ensure the potential and
the worth of investigating into this direction.
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9.1 Abstract

There is growing awareness across the neuroscience community that the replicability of find-
ings about the relationship between brain activity and cognitive phenomena can be improved
by conducting studies with high statistical power that adhere to well-defined and standardised
analysis pipelines. Inspired by recent efforts from the psychological sciences, and with the
desire to examine some of the foundational findings using electroencephalography (EEG),
we have launched #EEGManyLabs, a large-scale international collaborative replication effort.
Since its discovery in the early 20th century, EEG has had a profound influence on our
understanding of human cognition, but there is limited evidence on the replicability of some
of the most highly cited discoveries. After a systematic search and selection process, we
have identified 27 of the most influential and continually cited studies in the field. We plan to
directly test the replicability of key findings from 20 of these studies in teams of at least three
independent laboratories. The design and protocol of each replication effort will be submitted
as a Registered Report and peer-reviewed prior to data collection.Prediction markets, open
to all EEG researchers, will be used as a forecasting tool to examine which findings the
community expects to replicate. This project will update our confidence in some of the
most influential EEG findings and generate a large open access database that can be used to
inform future research practices. Finally, through this international effort, we hope to create
a cultural shift towards inclusive, high-powered multi-laboratory collaborations.

9.2 Introduction

A cornerstone of science is replicability, a fundamental issue that has been at the heart of an
intense scientific debate in recent years. An influential report from the Collaboration (2015),
which attempted direct replications of 100 studies from Psychological science in three major
journals from the field, indicated that only 36% showed statistically significant findings in
the same direction as the original studies, and an average shrinkage of effect sizes by about
half. These findings are consistent with a high degree of publication bias (Francis, 2012;
Ioannidis, 2005; Kühberger et al., 2014; Sterling, 1959). There are growing concerns that the
closely related field of cognitive neuroscience suffers similar issues (Brederoo et al., 2019;
Button et al., 2013; Poldrack et al., 2017). Indeed, problems may be even more pronounced
in this area, as cognitive neuroscience studies often have small samples and inflated effect
sizes (Schäfer and Schwarz, 2019). Further, they are characterised by the use of rich, but also
noisy, multidimensional data sets, which allows for a multitude of analytical choices (Szucs
and Ioannidis, 2017), and thereby the “garden of forking paths” (Gelman and Loken, 2013).
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Given this context, there is a need to address the replicability of cognitive neuroscience
research.

Early work on human electrophysiology presents an interesting anecdote for the value of
replication. The recording of electrical oscillations on the surface of a nonhuman primate’s
cortex was first reported in 1875 (Caton, 1875) and, to the astonishment of the scientific
community, in 1929 Hans Berger published the first account of human scalp electrical brain
activity (Berger, 1929). From 1929 to 1933, Berger published a series of seminal works
showing electrical activity similar (albeit attenuated in comparison) to measures directly from
the cortical surface, suggesting that the scalprecorded signal reflects a genuine activity of
human brain function (Davidson et al., 1039). However, the novel signals recorded by Berger
showed marked discrepancies with signals recorded from nonhuman animals reported in the
literature. Electrical activity recorded from nonhumans was neither as regular as Berger’s
demonstrations, nor did it show the 10 Hz signal so prominent in Berger’s recording of
human participants. Thus, hesitation in believing Berger’s findings abounded in the scientific
community, and indeed, Berger himself remained somewhat skeptical. Ultimately, a key
breakthrough for the use of EEG to study human brain function came in 1934 from Adrian
and Matthews (1934) (see also Biasiucci et al., 2019) who set out to examine this novel 10
Hz “Berger rhythm”. These authors wrote (p. 356):

We found it difficult to accept the view that such uniform activity could occur throughout
the brain in a conscious subject, and as this seemed to us to be Berger’s conclusion we
decided to repeat his experiments. The result has been to satisfy us, after an initial period of
hesitation, that potential waves which he describes do arise in the cortex, and to show that
they can be explained in a way which does not conflict with the results from animals

This independent replication of results was a key contribution to the acceptance of
Berger’s reports and laid to rest the initial skepticism surrounding the recording of human
EEG.

EEG now stands as one of the oldest and the most widely used investigation techniques
in human cognitive neuroscience, with over 6000 publications per year (Pernet et al., 2020,
2019). Yet, while novel EEG findings continue to be generated, replications of such results
are scant. The recent fall-out from the Open Science Collaboration has reinvigorated interest
in revisiting some landmark studies (e.g., DeLong et al., 2017; Ito et al., 2017; Nieuwland
et al., 2018) and inspired a renewed interest in replicating core findings from the cognitive
neuroscience literature.

Cognitive neuroscience research is resource-intensive because of equipment cost and
complexity, elaborateness of data collection procedures, and computational requirements of
data analysis and curation. This often results in studies with small sample sizes and, conse-
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quently, with low statistical power. Button et al. (2013) extracted data from 48 meta-analyses
across the neurosciences and estimated the average statistical power to be between 8% and
31%. Potential consequences of low statistical power include overestimation of effect sizes,
and a reduction in the likelihood that a statistically significant result represents a true effect
(Button et al., 2013; Gelman and Carlin, 2014; Vasishth et al., 2018). Ultimately, this pro-
duces a situation where results likely have low replicability. A recent examination of 26,841
statistical records reported in 3,801 papers from psychology and cognitive neuroscience
indicates that power in cognitive neuroscience is lower than in psychology broadly, with
median statistical power to detect small (Cohen’s d .20), medium (Cohen’s d .50), and large
effect sizes (Cohen’s d .80) being .12, .44, and .73, respectively. This suggests that the rate
of false positives is likely to be in excess of 50% (Szucs and Ioannidis, 2017). A review of
150 randomly selected ERP studies from 2011 to 2017 indicated that the average sample size
per group was 21 participants and the statistical power was conservatively estimated as .15
for small, .50 for medium, and .80 for large effect sizes (Clayson et al., 2019). Hence, low
statistical power in cognitive neuroscience research casts doubts on the replicability of many
research findings.

Another challenge to replicability is known in the literature as “experimenter degrees of
freedom” (Simmons et al., 2011). Specifically, analyses can be conducted and the statistics
can be computed in many different ways, which allow for “fishing expeditions” to find statis-
tical significance. While these challenges are not specific to cognitive neuroscience nor EEG
research, such expeditions are facilitated by the multidimensional nature of neuroimaging
data and the multitude of analytical steps involved. For example, in preprocessing signals,
a researcher has a high degree of flexibility in decisions about how to deal with artifacts,
which filters to apply, and which exclusion criteria to use. Variations in these decisions
create opportunities, be it explicit or implicit, to select the processing route that produces
the most “preferable” results. A striking demonstration of the impact of analytic flexibility
comes from fMRI research, which has similarly multidimensional data as EEG, together
with investigator freedom in filtering procedures and other preprocessing steps. When 70
different research teams analyzed the same fMRI dataset with the same hypotheses, they
arrived at conclusions that varied dramatically by team (Botvinik-Nezer et al., 2019). For
EEG and ERP experiments, it has also been shown that results are sensitive to seemingly
subtle differences in preprocessing routines (Robbins et al., 2020). Given this fact, it is
surprising that only 63% of data processing pipelines are even reported. The dependence of
the results on subtle details of the data processing routines may hinder replication efforts.
Furthermore, lack of detail in reporting allows for analytical flexibility to remain hidden
(Clayson et al., 2019).
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The consequences of analytical freedom in ERP studies were put in the spotlight by
Luck and Gaspelin (2017). They presented a detailed analysis of how spurious results
can result from choosing specific regions and time windows for analyses based solely on
visual inspection of grand average ERP waveforms. This problematic process is referred
to as SHARKing, or “Selecting Hypothesized Areas after Results are Known” (Poldrack
et al., 2017). Problems are magnified when results from such practices are presented as
hypothesisdriven steps-a process often referred to as HARKing, or “Hypothesizing After the
Results are Known” (Kerr, 1998). Other potential degrees of freedom include a number of
statistical decisions that can influence the results, such as deciding on the p-value threshold
(Amrhein et al., 2019; Benjamin et al., 2018; de Ruiter, 2019; Lakens et al., 2018) or the
plausible effect size (Altoè et al., 2019), and choosing between frequentist and Bayesian
approaches (van de Schoot et al., 2017). In summary, best practices should limit the possibility
to steer results in the desired direction, willfully or not, by post-hoc decisions on data
processing, outcome selection, and statistical procedures.

Two options to limit undisclosed degrees of freedom are pre-registration and registered
reports. Pre-registration specifies a research plan in advance of undertaking the research
and uploading these plans to a publicly available registry. Registered reports are study
proposals that are peer-reviewed before the research is undertaken. New forms of scholarship
and publishing, in which data are shared along with the publication, or directly embedded
in manuscripts to allow analysis and re-analysis on the spot (Maciocci et al., 2019) also
address some of these issues. It seems inevitable that such approaches will see an increase
in popularity in the coming years, but we expect delayed adoption for data-intensive areas
of science such as EEG research, due to logistic constraints on voluminous data storage,
transfer and online computational power.

Pre-registration and registered reports, coupled with direct replication and systematic
documentation of analytical steps, however, remain primary means of assessing the robustness
of a given effect (Clayson et al., 2019; Clayson and Miller, 2017; Obels et al., 2020).
These same steps, when coupled with larger sample sizes, also allow more stable and
precise estimations of effect sizes (Schönbrodt and Perugini, 2013), which are required when
translating basic science findings to clinical practice or technological applications. A recent
study on the replicability of social-behavioural findings by four coordinated laboratories
demonstrated that when original studies and their replications followed methodological
transparency and coupled it with higher statistical power and pre-registration, a high rate of
replication was achieved (86% Protzko et al., 2020).

There are a number of barriers towards undertaking replications. Some of these barriers
are prevalent across the sciences-it is well-documented that publication pressure tends to
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incentivise novel effects over incremental research, direct replications (Bradley, 2017) and
null findings. Similarly, research funding bodies have historically prioritised funding for high
risk and breakthrough programmes. These issues are compounded by the resource-intensive
nature of EEG research. In comparison to most behavioural studies, EEG experiments
typically require more resources, such as hardware, taking longer to conduct and analyze.
Pooling resources across different laboratories is a potential way to reduce these barriers, but
requires establishing shared protocols for equipment preparation and data acquisition, given
the potential effects of these variables on ERP phenomena (Melnik et al., 2017a).

Over the last decade, major collaborative efforts to increase replicatibility have taken
place in the psychological sciences and beyond (Errington et al., 2014; Frank et al., 2017;
Klein et al., 2014; Moshontz et al., 2018). As the name of this project (#EEGManyLabs)
reveals, we have been particularly inspired by the Many Labs model popularised by Klein
et al. (2014), as well as from the examples set by projects such as the Psychological Science
Accelerator (Moshontz et al., 2018). This initiative, a large-scale, international replication
effort, takes on many replication challenges and aims to test the replicability of some of the
most seminal EEG findings. Specifically, we will use a collaborative, multi-site approach and
standardized protocol to achieve this aim. In the following sections, we outline our approach,
including study selection, sample size determination, and definition of the evaluation process,
as well as the expected utility of this project.

9.3 Project coordination

Given that the burden on any single individual or research group can be high (particularly
with the need to collect larger than average samples) while the incentives can be low (e.g.,
publication biases, lack of funding), this #EEGManyLabs project aims to circumvent barriers
to replicating influential EEG studies. Through central coordination and distribution of effort
across a large network, we will reduce the resource demands on individual researchers. As
illustrated in Fig. 9.1, to date we have recruited a number of labs distributed across several
continents that are willing to participate in this collaborative replication effort.

To overcome many of the administrative issues that come with “big science”, we have
established an organisational structure (see Fig. 9.2). The Core Team comprises: (i) Project
Coordinators-responsible for general management of the project, oversight and strategic
support for all Replication Teams, including planning and establishing communication
with and between members of the project; (ii) An Advisory Board of EEG experts - who
support the Project Coordinators and provide input on a variety of areas including analyzing
EEG, reviewing code, programming of experiments, conducting power analysis, reviewing
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Fig. 9.1 #EEGManyLabs Network. Data collection sites include individual researchers or lab
groups who have volunteered to collect data for the #EEGManyLabs project. At the time of
writing, we have >200 potential data collection sites.

registered reports, obtaining institutional review board/local ethics committee approvals,
applying for funding, and other tasks; (iii) Lead Replicating Labs - individuals or research
teams who will take ownership for coordinating a specific target replication. The PI of that
lab will be responsible for preparing the registered report for that particular study. In addition
to the Lead Replicating Lab, a minimum of two additional Replicating Labs will be included
in the Replication Team. The Replicating Labs will be responsible for collecting an agreed
upon number of samples and (if possible) analyzing the collected data.

Many of the important decisions made in the creation of this project are described in
the following sections and a complete list of all project related decisions and resources is
available online (https://osf.io/yb3pq/).

9.4 Selecting studies for replication

The #EEGManyLabs project aims to assess the replicability of a set of highly influential
studies. Given the limited resources and the voluntary nature of the collaboration, we made a
pragmatic decision to prioritise investigating highly cited works instead of randomly sampling
the literature. Selecting highly cited studies for replication comes with increased interest and
motivation from potential replicating labs and followers-key for a community-driven project
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and consistent with other major replication attempts (Ebersole et al., 2016; Errington et al.,
2014; Klein et al., 2018, 2019, 2014).

To identify the most highly cited studies in the EEG literature, we first undertook a
systematic search in the Web of Science database, where we extracted the number of citations
and normalized by the age of publication (see Fig. 9.3 and full systematic search protocol
at https://osf.io/8qkr3/). To maximise inclusivity and minimise data collection demands,
we aimed to include only psychological studies in healthy adult populations using common
instrumentation (e.g., no EEG-fMRI), without any special intervention (e.g., no transcranial
stimulation, pharmacological manipulation), that could be conducted in a single session
(e.g., longitudinal studies were excluded). Furthermore, we advertised the project on social
media (hashtag #EEGManyLabs), inviting the EEG community to nominate studies they
deemed worthy of replication. Through social media advertising, we also aimed to identify
potentially impactful, recent studies that had not yet had time to accumulate a high number
of citations. A more detailed description of the procedure for replication study selection is
available online (https://osf.io/8qkr3/). This process resulted in a sample of 268 initial papers
for the long list.

To reduce the number of studies considered, the members of the project at the time of
study selection (i.e., potential data collection sites-members of the project who expressed
willingness to collect data in the future) were asked to cast their votes for the studies they
thought to be most influential and worthy of replication. The poll was open to all members,
and it was possible for original authors to nominate their own studies. To help researchers
identify the studies within their scope of interest, for each of the initially selected papers, a
group of volunteers led by the first author (Y.G.P.) manually added keywords describing the
main outcome variable (ERP component or EEG measure), studied psychological construct,
and other descriptors, including behavioural paradigm used or extra equipment required (e.g.,
force transducers, eyetracker). This step was deemed necessary because keywords found in
the original published papers lacked consistency across studies.

Seventy-nine out of 158 representatives from laboratories expressing a desire to collect
replication data at the time of study selection cast their votes. In a third step, the 32 studies
that received the highest number of votes (8 or more) were finally selected. The number
of votes needed by a study to be selected was arbitrary. It was established to increase the
chances of reaching the desired target of at least 20 replications: selecting 41 studies (7
votes or more) would spread the labs thin and selecting 25 studies (9 votes or more) would
make the options too scarce. Thus, thirty-two studies entered the feasibility analysis and data
extraction stage.
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Fig. 9.2 Organogram. The Core Team comprises: the Project Coordinators, the Advisory
Board and the Lead Replicating Labs. The Replication Teams are formed for each study by a
minimum of three labs.

9.5 Data extraction and sample size estimation

A subset of our team (led by Y.G.P.) was involved in data extraction (e.g., specific hypothesis
tests, effect size reached) from the 32 studies selected, to confirm that they all satisfied the
minimal criteria for replication. Specifically, we confirmed that (i) each of the key results
could be examined through inference tests; (ii) the study employed an experimental or
correlational design; (iii) the study examined a topic linking EEG activity and behaviour;
and (iv) EEG was used as the primary neuroscience method.

To facilitate replication, the effect of interest needed to be identified and described as pre-
cisely as possible in two key ways. First, given that EEG findings are a combination of spatial,
frequency, and temporal features, the primary effect of interest needed to be recognized in all
relevant dimensions (e.g., “Gamma coherence between visual and somatosensory electrode
sites in the 37e43 Hz band was significantly greater during CS þ trials than during CS- trials
(p .06) for the 250-ms time window just before UCS onset”; Miltner et al. (1999)). Second,
we asked the data extraction team to describe the results in plain-language (e.g., following
with the previous example based on the Miltner et al. (1999) study: “Gammaband coherence
increases between regions of the brain involved in an associative-learning procedure in
humans”).



218 | Appendix 2 - #EEGManyLabs: Investigating the replicability of influential EEG
experiments

To determine the upper bound on the sample size required for each replication (the
maximum sample size), we extracted the effect sizes from the results reported in the original
papers. We assumed the original effect size to be twice as large as it could be in a highly
powered study. This assumption is supported by a recent study showing that the effect size in
pre-registered studies is about half the size of that in studies without pre-registration (Schäfer
and Schwarz, 2019), as well as by the results of large-scale replications (Collaboration,
2015). To counteract overestimation of the true effects due to publication bias and uncertainty
(Brysbaert, 2019), we decided the sample size needed to have 90% power to detect 50%
of the original effect size (100% in case of null findings) at a 2% significance level for a
one-sided test (Camerer et al., 2018; Lewis et al., 2020; Schäfer and Schwarz, 2019).

In adopting this approach, studies reporting small effect sizes would require a very large
sample size, which could prohibit data collection for many laboratories. At the start of this
project, we had asked researchers who were willing to serve as a Replicating Lab how many
participants they could contribute to the project. The median number was 50 participants
(where range was reported, the maximum number was taken) with only a few labs defining
the highest end of the range to be more than 150 participants. Based on this information, we
decided to exclude experimental studies that would have required a sample size of more than
200 participants. This led to the exclusion of one experimental study. One further study was
excluded because no inference test could confirm or reject the descriptive claim made by the
authors. Three studies, focused on alpha asymmetry, were deemed to be more appropriate as
a “spin off” project (see Legacy). Following data extraction, 27 potential replication studies
remained (Fig. 9.4).

From a starting position of 27 replication studies, our goal is to conduct replications of at
least 20-a number we deem to be a reasonable target that will allow us to generate sufficient
data to explore replicability between studies. If we are unable to reach that goal, e.g., due
to infeasibility, insufficient number of replicating labs, or rejection at the review stage, we
will add the next five studies to the pool from the long list (available at https://osf.io/2qne8/).
This procedure will be repeated until the target of 20 replications is met.

9.6 Prediction markets

Having seen the final list of studies in Fig. 9.4, many readers familiar with these studies will
have their own perspective about the likelihood of individual studies replicating. To what
extent they are correct in these beliefs will be the focus of the prediction markets element
of this project. Before we collect any data, we will advertise our plans to EEG researchers
(including and beyond the #EEGManyLabs network; e.g., social media (#AcademicEEG)
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Fig. 9.3 Flow chart of the study selection procedure illustrating how we arrived at the final
list of 27 of the most influential EEG studies to be replicated in this project.
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and cognitive neuroscience mailing lists) and request their perspectives on the replicability
of our target studies in a survey by inviting them to participate in prediction markets. Pre-
diction markets function as a tool to aggregate private information-in this case participating
researchers’ beliefs about which studies replicate-by giving participants monetary incentives
to “bet” on the replication outcomes of the target studies. Previous studies using prediction
markets on replications find that they perform better than chance in predicting outcomes and
can be considered as an imperfect replication indicator (Camerer et al., 2018; Dreber et al.,
2015). We intend to use prediction markets to predict the outcomes of the target replications.
At the end of this project, we will be able to examine how closely internally held beliefs in
the EEG community map on to the replication results.

9.7 Modes of participation

There are a number of ways in which individuals and research laboratories can engage
with this project. The most critical element of this project is the collection of data. In
this section, we detail how we intend to optimise the distribution of data collection across
laboratories. Where replications require relatively “large” sample sizes (i.e., >40 participants
with analyzable data), a Replicating Lab can decide to collect a smaller sample but distribute
the total sample collection among partner labs (“lab buddies”) that use the same equipment
(with the expectation that, at a minimum, the model of the amplifier and type of electrodes
used are identical). Labs with the same amplifier and electrodes will merge their data
and form an independent sample to calculate the effect size for internal meta-analysis (the
hypothetical study#2 in Fig. 9.5). For correlational studies, which typically require larger
samples, we expect that the distribution of data collection across laboratories will be the
default approach. For experimental studies, we require at least three independent samples,
whereas for correlational studies, we require at least two independent samples, with a
minimum sample size per replicating lab to be at least equal to the sample size of the original
study.

If the required sample size is relatively low (n 40), we expect the Replicating Labs to
collect the full sample. However, where the sample size expectations are large, it is possible
for laboratories to implement a Bayes factors (BF) sequential testing approach (Schönbrodt
and Wagenmakers, 2018), where the target Bayes factor size is specified in the registered
reports Stage 1 submission for individual projects, with a maximum sample size and BF
> 6 recommended to balance feasibility constraints and the level of evidence (Schönbrodt
et al., 2017). Once the Bayes Factor indicates sufficient evidence in favor of or against
each relevant hypothesis or, alternatively, once the predefined maximum sample size is
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Fig. 9.4 Summary of the final list of studies, with associated number of citations according
to Google Scholar as of 01 October 2020. Color indicates the domain of the study. It is
important to note that while some studies could have been allocated to multiple domains, we
made an arbitrary decision purely for the purpose of visualisation.

reached, data collection can be stopped. By offering this flexibility, we aim to minimize any
unnecessary use of lab resources and maximize the number of labs willing to contribute.

9.8 Conducting the replications

Below, we briefly describe the steps each study will go through (see Fig. 9.6), leaving specific
details to the publicly available Project Plan (https://osf.io/yz23p/).

The first step in the replication process is to establish the Replication Team for a particular
study. Lead Replicating Laboratories will be self-nominated by filling in a form that will need
to be confirmed by the Project Coordinators. After approval, the Lead Replicating Lab will
issue a call for Replicating labs, listing all necessary details, such as technical requirements,
the expected duration of the experiment, and the planned sample size. After recruiting at
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least two Replicating labs, the study will proceed to the next stage-development of the study
protocol.

The most critical step is to make sure that the replications’ methodology closely follows
the original and allows the Replication Team to conduct a fair and high-powered test of
the main findings from the original study. The Replication Team will prepare the materials
(e.g., presentation and analysis scripts) for the replication studies to mirror the methodology
used in the original paper. This process will be based on the data extracted from the articles
at the stage of selecting experiments for replication and, preferentially, with the original
authors’ help. The Lead Replicating Lab will have primary responsibility for the development
of the new stimulus presentation code in the form of carrying out the task (or identifying
suitable people in the Replication Team or wider network who wish to support this activity)
and verifying the resulting code. The Replicating Labs will translate the code for stimuli
presentation for use in their labs if necessary (e.g., the original is written in E-Prime and
provided by the original author, but a Replicating Lab uses/has access to Psychtoolbox;
Kleiner et al. (2007)). When possible, an attempt will be made to write task code using free
open source tools (Peirce, 2007a). The Replication Team will develop the protocol for data
collection and analysis based on the available materials and pilot data collected in each of the
Replicating Labs. For the sake of transparency and reproducibility, we will give preference
to use open source toolboxes (e.g., Brainstorm Tadel et al. (2011), EEGlab Delorme et al.
(2011), FieldTrip Oostenveld et al. (2011), SPM Litvak et al. (2011)) and free open source
software (MNE Python Gramfort et al., 2013) in combination with custom-made scripts.

Next, the protocol will be supplemented with an introduction section, including descrip-
tion of the key findings and a rationale for the original study selection, with clearly stated
hypotheses to be tested. The introduction will cover the current evidence for the findings
of the original study, paying most attention to any existing studies replicating the original
findings, including conceptual replications. The introduction will also stress the impact of
the original study and the importance of its replication.

A draft of the manuscript will be reviewed internally by selected members of the Advisory
Board for approval. Such a review process is designed to ensure accurate replication of
the methods and procedures. Once the manuscript has been internally reviewed, it will be
submitted to Cortex as a RR Stage 1. Given that a number of notable replications were
followed by refutations and criticism from the original authors (Baumeister and Vohs, 2016;
Moran Yorovich et al., 2020), at this stage in the process, the replicators may wish to have
the original authors explicitly endorse interpretations of potential results and confirm the
suitability of the planned protocol (Nosek and Errington, 2020). The Lead Replicating Lab
can decide to include the original authors as co-authors or to acknowledge their contribution,
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depending on their level of involvement in the preparation of the RR. To mitigate concerns
over the independence of a replication, including biases in the interpretation and discussion
of the results, the original authors are allowed to participate only in Stage 1 of the RR.

After in principle acceptance (IPA) and prior to data collection, all methodology, materials,
and plans for analysis will be posted in the OSF study registry. The call for Replicating Labs
will open up again for research teams who were unable to join the replication team earlier in
the development of protocols but have capacity to collect data. Data collection will proceed
asynchronously in all Replicating Labs. Replicating Labs will be expected to complete data
collection within 1 year of the IPA after obtaining ethics approval from their local ethics
committee. If the minimal criterion of having three samples from three independent labs has
not been reached, data collection will be extended beyond one year.

The data analysis protocol developed earlier will be used by the Replication Team to
analyse the data. All analysis steps will be documented to facilitate re-analysis, and the code
will be made publicly available. The analysis scripts in EEG research frequently involve
manual artifact identification, correction, and rejection which introduces subjectivity to the
process. And while a fully automated preprocessing pipeline has the potential to be more re-
producible than one involving manual processing, today’s automated algorithms also require
some subjective decision making (e.g., defining a numerical threshold for rejection). Given
that there is no clear consensus on which approach is superior, we recommend employing the
method used in the original study. This should avoid potential non-replications due to devia-
tions in the preprocessing procedure. Where this means manual preprocessing, laboratories
will be asked to store trial level data with information on their artefact correction process. In
these instances, we also stress that Replication Teams may run supplementary analyses using
state-of-the-art automated approaches. In all cases, the teams pledge to abide by a prereg-
istered analysis script. Beyond individual replications, a spin-off team (“#EEGManyLabs
Automation”) will implement automated analyses to investigate differences between manual
and automated coding. Each Lead Replicating Lab will consider whether additional blinding
is required during the analysis; e.g., by having manual analyses conducted by researchers
who are blind with respect to the experimental conditions. Such blinded analyses will need
to be reported as such in the replication attempt. The replicators will be expected to execute
the previously agreed analysis script, which will provide an effect size for the meta-analysis.
Preprocessed data will be provided to the Lead Replicating Lab for supplementary analyses
of the aggregated dataset.

The Lead Replicating Lab will conduct the meta-analysis. The Lead Replicating Lab will
report the median and distribution of the weighted and unweighted effect sizes, corresponding
95% confidence intervals, and the number of Replicating Labs successfully replicating the
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original effect. Effect sizes found by individual Replicating Labs within a Replication Team
will be visualized in a forest plot. In addition, the Lead Replicating Lab will delineate the
proportion of studies/samples that rejected the null hypothesis in the expected and unexpected
direction. Any deviation from the protocol approved at RR Stage 1 will be reported and
justified. The contributors of each project will have the opportunity to review and edit the
replication manuscript before it is submitted to Cortex. Participating labs will also comment
on possible explanations for successful/unsuccessful replication.

Replication success is defined operationally as a statistically significant random-effects
meta-analytic estimate (at p < .02) combining the results from the different laboratories, in
the same direction as in the original study. To quantify the variation in effect sizes across
samples and settings, the Lead Replicating Lab will further conduct a random-effects meta
analysis and establish heterogeneity estimates to determine if the amount of variability across
samples exceeded the amount expected as a result of measurement error.

9.9 Data output and management

We intend to share all study materials, complying with FAIR principles, making the material
Findable, Accessible, Interoperable, and Reusable (Wilkinson et al., 2016). The study
materials will be shared on OSF (https://osf.io/yb3pq/). All Replication Teams will share
their analysis pipelines, preferably in the form of reproducible scripts that include artifact
annotations (e.g., visually or automatically identified artifacts, rejected channels, ICA weights,
rejected components).

We will inform research participants of the aims of the project, of the experimental
procedures, and will explain that research data will be shared. The consent of participants,
including to the sharing of their data, is required for their participation. We will use the
Open Brain Consent form (Bannier et al., 2021) as a template, which will be adapted to
each lab’s needs according to their local laws and regulations. Before sharing, raw data
will be curated and organized by the Replication Teams following the Brain Imaging Data
Structure (BIDS) (Gorgolewski et al., 2016; Pernet et al., 2019), ensuring the removal of
any directly identifiable information such as name, address, birth date, etc. By default,
minimal demographic data will be requested from each lab (i.e., age, gender, handedness and
education including total years and highest qualification; Pernet et al. (2020)) but additional
information (e.g., IQ, health or psychological characteristics) might be collected, which will
be determined by the Replicating Labs and contingent upon approval from the respective
local ethics review boards. Datasets will be shared using a suitable repository (e.g., FigShare,
Zenodo, Dataverse) and linked to OSF. We aim to share the data as openly as possible, but
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Fig. 9.5 Modes of participation for the Replicating Labs. In sample study 1, the agreed-upon
number of participants in the study is less than 40, and all labs proceed independently, until
the meta-analysis step in which results are combined. In sample study 2, where more than 40
participants are required for each replication study, labs can collaborate and create a joint
dataset.
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Fig. 9.6 A simplified example timeline of a single replication. M indicates month. We expect
that there will be considerable variation in timelines for individual replications but that they
will follow each of the steps laid out here.

depending on requirements imposed by the Replicating Labs local ethics review boards and
their institutional and national regulations, the access to shared data may require controlled
access, i.e., external interested researchers may have to register and request access. Labs that
do not have permission for sharing data cannot participate in data acquisition, but can still
contribute to the analysis.

9.10 Summary report

Once the individual replications of the different studies are completed and published, we will
collate and summarise the findings into a summary report, to be published in Cortex, that will
mark the closing of the direct replication component of the #EEGManyLabs project. This
publication will aim to highlight specific and general conclusions from the replicated studies,
provide a unified dataset, describe the lessons learned in running this community-driven
initiative and ultimately derive recommendations for future EEG research.

While the nature of each replication and their theoretical implications will be dealt with in
the individual replication reports, the summary report will focus on aspects that are common
across our studies. Our central repository (https://osf.io/yb3pq/) will contain (i) a document
summarizing details of the recording setups and data collection according to COBIDAS
standard (e.g., the amplifiers used; the number, composition, and layout of sensors; acceptable
and observed impedances; recording reference and ground; sampling rates; and acquisition
filter bandwidths; see Pernet et al. (2020); (ii) environmental information such as lighting,
sound attenuation, and electromagnetic shielding; (iii) pre-registered analysis codes and
procedures, accompanied by test data collection videos; and finally (iv) links to all data
repositories of the individual replication attempts. Based on this information, we will evaluate
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how similar the procedures of the replication attempts were to those reported in the original
studies (e.g., with regards to sample size; subject and triallevel artifact rejection rates).

Replication outcomes will be summarized with a hierarchical forest plot to illustrate all
replication studies’ effect sizes. We will also illustrate effect sizes across Replicating Labs
for a single study and heterogeneity of effect sizes across labs (i.e., addressing a common
“hidden moderators” argument; Van Bavel et al. (2016)). These effect sizes will be directly
contrasted with the original papers’ effect sizes, and supplemented by reports on p value
distributions, Bayes factors, and Standardized Measurement Error (SME) measures.

Given the multi-laboratory and multi-experiment nature of this project, we also expect
methodological differences across sites and studies to contribute to a proportion of the
variance in the results. We will accordingly make a concerted effort to identify the extent
to which these factors indeed influence replicability. The impact of these covariates will be
examined with respect to the (i) original effect size; (ii) original study design (e.g., within-
group vs between-group, trial number per condition, sample size, amplifiers used); (iii) data
collection parameters (e.g., number of trials, number of channels); (iv) original analysis
pipeline/parameters (e.g., reference channel, the complexity of the processing pipeline,
how the data were reduced to a univariate inferential test such as averaged quantification
across chosen time window and channels vs massive univariate testing of all time points and
channels with cluster test); and (v) publication characteristics including year of the original
studies and journal impact factor, to see whether advances in EEG research practice have
improved replicability over the years and whether the profile of the original journal has
any relationship with the replicability of a finding. The impact of these factors (and their
interactions) will be crucial in recognizing and recommending best practices.

The summary report will also include the outcomes of our prediction markets. The
prediction markets will indicate how well researchers in the field can predict the outcomes
of the replication studies and whether they under- or overestimate the percentage of studies
that replicate. Prediction markets in psychology generally, and neuroimaging (e.g., fMRI)
specifically, have been leveraged to provide an index of researchers’ ability to judge the
replicability of findings in individual subfields (Dreber et al., 2015), but this has yet to be
applied to EEG research. By comparing the replicability of EEG studies estimated with
prediction markets to actual replicability, we will provide unique commentary on the ability
of EEG experts to accurately judge currently published findings as well as the potential of
using prediction markets as a future tool to assess the face validity of EEG research.

Finally, we expect to close our summary report with recommendations for further research
(both replication and original research), based on the above analyses and the experience
gained across the many labs participating in this large-scale project. We expect to identify
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the minimum number of trials and participants needed to detect some of the most common
EEG phenomena (e.g., N2pc, N2 in go/no-go tasks, ERN, P3b) with the help of a sensitivity
analysis, and more generally, to make suggestions about recommended parameters in data
collection and analysis protocols.

9.11 Project outcomes

EEG/ERP research on human cognitive processes has been built upon a vast body of data
collected over approximately six decades. One of the main strengths of this field is that
key effects have been widely replicated (e.g., the P300 responsiveness to infrequent trials
in the oddball task), enabling researchers to use ERPs as biomarkers of cognitive processes.
However, it is still unclear if many essential findings in this field will withstand the test of
direct independent replications, and how much effect sizes differ across laboratories and with
larger sample sizes. #EEGManyLabs will help to address these questions by providing a
perspective on past work while suggesting tools to improve future research.

This project will provide an initial estimate of the replicability of a set of key findings
from studies that were selected by the EEG research community because of their impact on
the field. By investigating covariates and moderators of replication successes versus failures,
this project can provide knowledge that enhances the replicability of future EEG studies.
Outcomes from the replication studies that are consistent with those of the original studies
will increase confidence in the original studies’ findings and their robustness; conversely,
outcomes inconsistent with those of the original studies will decrease confidence in these
outcomes and the related conclusions (Nosek and Errington, 2020) and launch a search for
explanatory factors contributing to discrepancy between initial and replication studies.

We must also stress the importance of what will not, or cannot, be learned from this
exercise. Given the nature of the studies that are to be replicated, it is clear that the conclusions
from this project will not apply to all EEG/ERP research. We selected influential (i.e., highly-
cited) studies for this project and, as such, this project can only provide an estimate of the
replicability of a subset of EEG/ERP research-not the field at large. Indeed, it is possible
that the most influential studies might be more or less replicable than studies that have been
cited less often. For example, one may make the argument that as highly influential studies
often introduce new or exciting findings (i.e., are not incremental), they may be less likely to
replicate than studies that advance the field more slowly because they are more closely tied
to prior work. Thus, the original Many Labs replications found little difference in replication
as a function of citation rate (Altmejd et al., 2019). Another factor to consider here is
that our selection process involved a nomination and voting process-perhaps some study
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selections were based on skepticism. We expect that our prediction markets will uncover
these subjective beliefs amongst the EEG community for this set of studies, but alternative
approaches will be needed to provide an estimation of the replicability of EEG research more
generally.

9.11.1 Legacy

Beyond the specific outcomes related to the individual studies, we expect this project to have
a long-lasting legacy on EEG research across a broad number of domains. We also hope
that this project can provide a canvas for future replication projects of EEG/ERP studies that
were not included in the current project. We describe some of the expected legacies of this
project next.

As a starting point, we will allow researchers outside the #EEGManyLabs network to
access all our replication data and materials to perform future re-analyses in an open and
transparent way. We hope that future work will be able to better understand the optimal
characteristics of a replicable study. To this end, we will make all the raw and processed
EEG replication data available using Brain Imaging Data Structure (BIDS) guidelines, as
well as analysis scripts, experimental stimuli, stimuli presentation scripts, lab notes, video
recordings, and other research materials.

One longer term benefit of this project will be empirically well-justified recommendations
for sample sizes for EEG studies of particular phenomena. Effect sizes will be computed for
specific components across a wide range of tasks. Researchers will thus have a database to
use when considering how those measures may vary across stimulus characteristics, response
demands, trial numbers, and other task parameters. Such data should help inform sample
size planning for future EEG/ERP studies.

The #EEGManyLabs project will also result in a series of broader recommendations and
practice guidelines on how to conduct multi-site EEG studies in the domain of EEG. The
superficially simple task of merging two EEG signals acquired from different amplifiers is
far from trivial. By providing data on how variability in the collection of data across sites
affect the result, we hope #EEGManyLabs will help future researchers to plan their multi-lab
studies and set the scene for future collaborative science.

At the time of writing this manuscript, #EEGManyLabs has already inspired several
ongoing and planned projects. One subproject (“spin-off”), #EEGManyLabs Asymmetry,
will leverage community engagement to record additional resting-state EEG data, and a
set of personality questionnaires together with the replication attempts. In doing so, it will
shed light on the replicability of asymmetries in EEG alpha power (Reznik and Allen, 2018)
and their relation to personality traits. Another spin-off (#EEGManyLabs Automation) will
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compare the outcomes of analyses conducted by the #EEGManyLabs Replication Teams
with a fully automated analysis pipeline developed by a group of analysts. This project
aims to evaluate the within-study effect of manual versus algorithmic artifact removal in
the replication context to investigate the role of subjective biases associated with manual
coding discussed above. The project will also investigate whether the original studies that
implemented automatic artifact rejection algorithms are more often successfully replicated
than those that used manual coding methods. In this way, we will be able to address the
question of whether automation can help to improve replicability. The datasets generated
from this project will also allow us to study the effects of analytical flexibility on EEG
findings’ robustness in another ongoing project-#EEGManyPipelines. Here, researchers will
be invited to analyse the replicated datasets using their preferred analysis pipelines and will
then analyze variation in analysis pipelines and the resulting diversity of results.

9.11.2 Inclusivity and collaboration

Since the start of the project, we have aimed to establish a wide network of researchers
and data collection sites, with diverse scientific interests and skill sets. The current #EEG-
ManyLabs Network represents 33 countries on 4 continents (with hopes to further expand
membership-particularly in under-represented countries), and approximately 30% of re-
searchers currently involved are women (identified based on given names using genderize.io
database). However, the studies selected for replication all come from Western Europe and
North America and are overwhelmingly authored by men. While the selected studies reflect
a broad issue with lack of diversity in research, we are hopeful that the current project will
bring much needed diversification to EEG by conducting transparent research, producing
open data and materials, and promoting global collaboration.

This brings us to the final goal of this project. Through demonstrating the feasibility of
large-scale multi-site projects involving a large, diverse body of EEG researchers, we hope
to facilitate a cultural shift away from small-scale single laboratory experiments towards
high-powered, community-driven collaborations, creating a stronger foundation for the future
of EEG research.

9.12 Conclusion

In an international effort spanning multiple research institutions and numerous researchers,
the #EEGManyLabs initiative promises to yield high-fidelity replication attempts of influ-
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ential EEG/ERP experiments. Following the Many Labs model (Klein et al., 2014), each
experiment will be replicated in several labs to collect a large sample of data for each study,
allowing the assessment of replicability through internal meta-analyses. To ensure a high
scientific standard is maintained across all replications, this concerted effort is centrally coor-
dinated. Each replication will pass quality control through being reviewed by members of the
advisory board, will use standardised experimental and analysis protocols across labs, and
involve registered reports that will be published irrespective of the outcomes. A final meta
analytical report will synthesize outcomes from across all replications and will mark the end
of this initiative. We expect this project’s legacy will rest in pushing the field towards higher
replicability standards and facilitating an open science culture of high powered, large-scale
multi-site collaborations.
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10.1 Abstract

Autonomous vehicles represent a significant development in our society, and their acceptance
will largely depend on trust. This study investigates strategies to increase trust and acceptance
by making the cars’ decisions. For this purpose, we created a virtual reality experiment with
a self-explaining autonomous car, providing participants with verbal cues about crucial traffic
decisions. First, we investigated attitudes towards self-driving cars among 7850 participants
using a simplified version of the Technology Acceptance Model questionnaire. Results
revealed that female participants are less accepting than male participants, and that there is a
general decline among all genders. Otherwise in general, a self-explaining car has a positive
impact on trust and perceived usefulness. Surprisingly, it adversely affected the intention
to use and perceived ease of use. This entails dissociation of trust from the other items of
the questionnaire. Secondly, we analyzed behavioral of 26750 participants to investigate the
effect of self-explaining systems on head movements during the virtual reality drive. We
observed significant differences in head movements during the critical events and the baseline
periods of the drive between the three driving conditions. Additionally, we demonstrated
positive correlations between head movement parameters and the TAM scores, where trust
showed the lowest correlation. This provides further evidence of the dissociation of trust from
other TAM items. These findings illustrate the benefits of combining subjective questionnaire
data with objective behavioral data. Overall, the outcomes indicate a partial dissociation of
self-reported trust from intention to use and objective behavioral data.

10.2 Introduction

Autonomous vehicles (AVs) are the primary goal of most car manufacturers Hars (2016).
The development appears cumulative since more and more features of the driving task are
automated in new cars Dajsuren and van den Brand (2019). One primary reason why AVs are
of value is the possibility of eliminating human driving errors, which account for 93% of road
accidents Allahyari et al. (2008); Johnson (2013). Furthermore, AVs are safer because they
are faster and more accurate in driving tasks as well as in the detection of objects and events
Carranza-García et al. (2021); Papadoulis et al. (2019); SAE Internation (2014); Schoettle
(2017). Given the rapid and continuous improvement in technical developments in the field,
there is no doubt that autonomous vehicles will have a significant impact on our society
Chehri and Mouftah (2019). This may range from drastic reductions in greenhouse gas
emissions to a decimation of traffic-related injuries. The introduction of AVs could lead
to a possible reshaping of our existing cities’ infrastructure Benleulmi and Blecker (2017);
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Chehri and Mouftah (2019); Othman (2021); Ryan (2020a). Thus, introducing AVs into our
daily lives seems to be a highly desirable objective.

Trust and acceptance of potential customers define the extent to which AVs are used for
individual transportation Howard and Dai (2014); Krueger et al. (2016). Current research
indicates that there is a limited willingness among potential customers to use AVs Lee et al.
(2019, 2017); M. et al. (2015); Ryan (2020a); Ward et al. (2017). A variety of surveys have
shown that most prospective buyers are unwilling to use an AV or to make full use of its
functionalities Othman (2021); Rezaei and Caulfield (2020a). Primary reasons for the lack of
trust and acceptance are the fear of system malfunctions and the hesitation to give full control
to the car Lee et al. (2019); Othman (2021); Szikora and Madarász (2017). Hesitation among
potential customers may result from low technology self-efficacy Czaja et al. (2001), which
means people do not feel confident enough to operate an AV system König and Neumayr
(2017). Since trust and acceptance are shaped by knowledge and experience, the cause of
such reluctance may be rooted in the lack of transparency, i.e. the AV decision-making
foundation is not well defined. Lack of awareness of the cars’ perceptions and the reasons
behind the artificial agents’ decisions has a direct impact on customers safety concerns
Forster et al. (2017); Koo et al. (2016). It is therefore crucial to find measures to increase
trust and acceptance of AVs.

According to the Technology Acceptance Model (TAM), perceived usefulness and ease of
use are cognitive responses to new technologies and predict the intention of using them Davis
and Venkatesh (1996a). Consequently, a low intent to use this technology makes the future
application of AVs questionable Bergmann et al. (2018); Howard and Dai (2014); Rezaei
and Caulfield (2020b). Belanche and colleagues have developed a research model Belanche
et al. (2012) which expands the TAM by adding trust as a component. They found a causal
relationship between trust and all three elements of the original TAM Belanche et al. (2012).
Therefore, trust can be regarded as a critical factor in the acceptance of a new technology
Lee and Coughlin (2015); Lüders and Brandtzæg (2017); Wintersberger and Riener (2016).
Earlier studies investigated trust modulating factors, such as human-machine communication
style, feedback, and anthropomorphic features in automation Hoff and Bashir (2015); Seppelt
and Lee (2019); Wintersberger et al. (2019, 2020). Hoff and Bashir Hoff and Bashir (2015)
suggested that trust in an AV is an accumulation of personal tendencies, environment, and
user’s perception of the autonomous system. Lee and See Lee and See (2004) argue that the
perceived homogeneity of communication style, feedback, and anthropomorphic features
shape trust levels. The common statement in all these findings is that the user need to perceive
the system as reliable and trustworthy. Moreover, previous research showed that excessive
information about a car’s operation is perceived as distracting or unpleasant Howard and
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Dai (2014); Koo et al. (2015a); Krueger et al. (2016); Othman (2021); Rezaei and Caulfield
(2020a); Ryan (2020b). The desired amount of information from an AV may be the key to
understand the development of trust and, therefore, the acceptance of automated vehicles Du
et al. (2019).

Research on trust as a high-level cognitive phenomenon is extensively studied with
self-reported data. A review of Raats and colleagues of 258 trust related experiments in AVs
revealed that 84% used questionnaires as a method of assessment. Among them, only 4.7%
of the studies used observations as a data-gathering tool Raats et al. (2020). Self-assessed
data is often biased by self-perception or socially desired behavior, thus objective data can
provide a better insight into the fields such as trust Choi and Pak (2005). To measure trust
and acceptance objectively, we propose head movement analysis, since humans represent
their cognitive states implicitly based on body language, facial expression, gaze direction,
and movement of the head Newen et al. (2018); Zhao et al. (2013). Even though previous
research has established the link between gaze shift and cognition Yarbus (1967), several
studies showed that head rotation corresponds to the visual gaze Fang et al. (2015); Yarbus
(1967) and both coordinate cognitive processes Land (2004); Proudlock et al. (2003). This
coordination exists in the orientation, which means that the head and eyes move in the
same direction. Thereupon, the head orientation provides information about the visual
attention Fang et al. (2015). Behavioral data such as head movements are unconscious,
fine-grained, and continuous information that can be used to access cognitive processes like
trust Grafsgaard et al. (2012); Lu and Sarter (2019).

To gain a better understanding of AV acceptance modulators and their representation
in users head movements, we used a large-scale virtual reality (VR) Nezami et al. (2020).
We expected to find significant differences in attitudes among participants and significant
differences across different age groups and genders. Additionally, we predicted differences in
head movements between experimental conditions. We expected to find significant variance in
head movement patterns and head angular velocity as an effect of transparent communication
of an AV. We assumed that the self-reported acceptance in conjunction with head movements
provides a more objective insight into the acceptance modulators.

10.3 Materials and Methods

We collected data from visitors in the German Ministry of Education over six months, and in
a traveling exhibition (MS-Wissenschaft) during an entire summer. Participants experienced
a 90-second drive in a virtual environment called Westdrive, which spans 2,5 km² and
includes more than 100 cars and 150 pedestrians. Participants experienced a single trial in
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one of the three driving conditions. In the first condition a fully autonomous car with an
anthropomorphic voice assistant system (AVAS) provided information about critical traffic
events and the corresponding car decisions. The second condition was an AV with a radio
broadcast playing throughout the trial. In the third condition, a female Taxi-Driver drove
the participant through the city. Here, the TaxiDriver responded verbally to the surrounding
traffic. We gathered objective and subjective data in the form of head orientation and head
angular velocity, as well as by an adaptation of the TAM questionnaire Davis and Venkatesh
(1996b).

Over the course of each trial, participants encountered three critical traffic events without
being able to intervene (Figure 10.1). The duration of the events was the time between
the entry and the exit of the event objects from the participants’ view. In the first event, a
jogger crossed the road directly in front of the car. In the second event, a high-speed car
took precedence at an intersection and the third event included a pedestrian who was slowly
crossing the street. The onset and end of the events were the same for all the participants
in all experimental conditions. At neither event, the participants’ cars hit any event objects.
In the AVAS condition, the AV provided brief information on the critical event situation.
The warning happened directly at the appearance of the critical traffic objects. The design
of the events was based on previous research which indicated that feedback should include
the reason an AV decides in a specific way Koo et al. (2015b). Furthermore, additional
information should be provided when interacting with vulnerable road users when their
intentions are not clear but may influence the car’s behavior Wintersberger et al. (2020).
These events were implemented to test the participants reactions as a passive passenger in
critical situations. They were designed to test whether communication within the vehicle can
affect behavioral responses and acceptance.

Before beginning the trial and data recording, participants were asked to make their own
adjustment to the HMD. This adjustment phase was not limited in time nor was it taken into
account in the experiment. Participants were subsequently made aware of the study procedure
and the purpose of the study. Due to potential cybersickness symptoms, the participants were
informed in the introduction that they could remove the HMD at any given time. In such
cases, the data was excluded from the analysis.

The post-trial questionnaire includes three questions from the original TAM on perceived
usefulness, ease of use, the intention of use, and one additional question on perceived trust.
It also included questions on age, gender, aviophobia, driving experience, gaming hours per
week and the number of exposures to virtual reality prior to the experiment. The questionnaire
was answered on a Likert scale, with numbers from 0 (strongly disagree / dislike) to 100
(strongly agree / like) indicated by thumb icons of like and dislike.
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Fig. 10.1 Three scripted critical events occurred during the ride from top to bottom: Pedestri-
ans running on the street from left to right, fast cars cutting in the self-driving car path, and
pedestrians walking in the middle of the road.
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The experimental setup consists of two HTC Vive pro HMDs and lighthouses version 1 to
track head position and rotation while participants were sitting in the car. The VR computers
were equipped with Nvidia Geforce RTX 2080Ti GPUs, 16Gb of RAM, and Intel Xeon
W-2133 CPU @ 3.60Ghz core, resulting in an average frame rate of 25,2 fps. Additionally,
the setup used two raspberry pies and touch monitors for web-based questionnaires. For
analyses, Python 3.6, pandas 0.24.2, NumPy 1.16.4, Scipy 1.7.2, statsmodels 0.10.0, as well
as SPSS 29 were used. All plots were created using Matplotlib 3.1.0 in combination with
seaborn 0.9.0. Data-driven prepossessing on questionnaire data was performed with the
OPTBIN algorithm Knuth (2013) using histogram-based age binning.

10.3.1 Analysis of the data

Head movement data were obtained from 26750 participants and the questionnaire was
answered by a fraction of them. Elimination of incomplete answers resulted in 7850 data
sets.

First, we focused on analyzing the questionnaire data. Out of the full data-set, 4464
participants identified themselves as male and 3386 as female. Using optimal binning method
Knuth (2013), we divided participants into five age groups. The cleaned data-set consisted of
2812, 1513, 1883, 582, and 86 in the age groups <20 years, 21-40 years, 41-60 years, 61y-80
years, and above 80 years, respectively. Under AVAS, TaxiDriver and RadioTalk conditions
we recorded 2691, 2636, and 2509 data-sets, respectively. The large number of participants
in each bin permitted the use of regression-like inferential tests (i. e. MANOVA) due to their
robustness against non-normalities in large data-sets Pek et al. (2018).

To examine the effect of gender, age, and driving condition on the four aspects of the
questionnaire, a one-way multivariate analysis of variance (MANOVA) was conducted.
MANOVA tests the optimal linear combination of dependent variables for significant effects.
We performed a one-way MANOVA for all four TAM aspects modeled based on gender,
age, and driving condition. Pillai’s Trace test statistic uses the estimated F-Values to test
significance, which is robust against non-normalities. Therefore, Pillai’s Trace adds an
extra layer of protection against false positives Finch and French (2013) and is a good
choice to interpret the results. To understand how the different categories within each factor,
e.g., male or female in gender, affect the four TAM aspects, we calculated a separate one-
way analysis of the variance (ANOVA). Following, we calculated the different effect sizes
(Cohen’s D and Hedge’s G) for each factor calculated using the estimated means and standard
deviations reported for the category within this factor. Although both of these effect sizes
are based on Cohen’s suggestions, Hedge’s G considers the sample sizes of the compared
groups. Consequently, both effect sizes were used to interpret the findings. Further, the four
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TAM aspects of each participants were combined into one single value. Together with the
MANOVA, we were able to make statements on how gender, age, and the condition affect
the questionnaire scores.

However, ANOVA can only be calculated on a single independent variable. The best way
to combine the four TAM aspects into one value is by multiplying each aspect’s score for
a given participant by a corresponding weight and adding them all together to get a single
value. This acceptance score was calculated by performing a linear discriminant function for
each factor that will yielded in a different raw coefficient for each TAM aspect concerning
the given factor. The linear discriminant analysis (LDA) intends to find a linear combination
of features that characterizes or separates two or more classes. It expresses the dependent
variable as a linear combination of the independent variables that maximizes the group
differences within the dependent variable McLachlan (1992). The raw discriminant function
coefficients can be used as weights to calculate the four TAM aspects into one independent
number, which we can call acceptance score.

Then we proceed to the analysis of objective behavior. A head-mounted HMD measured
the orientation and position of the participant’s head in the virtual environment. We define
the orientation of the head in a frame of reference attached to the car. Since most interesting
visual detail was placed near the ground level and all the dynamic objects of the virtual
city moved along the horizontal axis, we focused on the orientation along the horizontal
plane. Moreover, we compared the head angular velocity, meaning the change in head
orientation degree over time. To examine the differences in conditions, we used one-way
ANOVA followed by the post-hoc Tukey Honest Significant Difference (HSD) test. The
Tukey HSD compares pairs of means to detect which of the group’s means differs from
the others (Meandiff). With this test, we could define the separate condition that causes
differences in orientation and angular velocity in a given time point Abdi and Williams
(2010). Additionally, we calculated the Pearson correlation between head angular velocity
and TAM scores for each questionnaire item to verify the consistency of subjective and
objective measures.

10.4 Results

10.4.1 Questionnaire Results

The data of the simplified TAM questionnaire from 7850 participants showed a positive
correlation of r>0.4 between the questionnaire items. Hence, these items have to be analyzed
together in form of multivariate dependent variables. In order to validate the assumptions,
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a Levene’s test was performed. If the test was significant we would assume a violation
of variance homogeneity in the groups. Levenes’s test resulted in F-values of 1.369 for
perceived Usefulness (p = 0.089), 2.333 for Ease of use (p < 0.001), 1.459 for Intention
of use (p = 0.053) and 1.443 for Trust (p = 0.058). Considering the large sample size,
known to reduce p-values in Levene’s test, a further check of the covariance matrices for
the dependent variables of the TAM concerning the main factors of gender, age group, and
condition has been done. We found homogeneity of covariances, as assessed by Box’s test (p
> .001). Together, Levene’s test and the covariance matrices provide essential evidence for
the validity of the assumptions of MANOVA. Out of the four different null hypothesis tests
of the multivariate analysis, Pillai’s Trace was chosen due to its known robustness toward
non-normalities in the data Ateş et al. (2019). Therefore, the multivariate analysis of variance
is the prime analysis method Warne (2014); Warne et al. (2012).

To gain deeper insights into how gender, age, and condition affect the TAM factors, a
linear discriminant analysis (LDA) was used to extract each independent variable’s weighted
influence. Linear discriminant analysis tries to find a set of coefficients that will maximize the
separability within the given independent variable. These coefficients were used to interpret
the influence of each independent variable on each of the modulator factors of the TAM.

The effect of gender

First analysis checked for differences between male and female participants regarding the
acceptance scores. In order to find out the influence of gender on acceptance, we performed
an MANOVA with a follow-up LDA for gender. The Pillai’s Trace resulted in 0.00293
(F(4,7835) = 4.761, p < 0.001) showing that there is a significant effect of gender on overall
acceptance. The follow-up LDA showed that females have a lower score based on the
observed discriminant coefficients. The resulting coefficients were -0.33 for the intention
of use, -0.06 for perceived usefulness, -0.60 for perceived ease of use, and -0.18 for trust
(Figure 10.2 a), all with a medium effect size (Cohen’s D = 0.45). Additionally, the LDA
showed that perceived usefulness and trust were less affected by gender than the intention of
use and the perceived ease of use (Figure 10.2 a). These findings indicate that females and
males have an almost equivalent attitude towards the perceived usefulness but differ in the
perception of ease of use and, consequently, the intention of using self-driving cars. Thus,
we interpreted that females anticipate difficulties in handling and therefore score lower in the
intention to use.
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The effect of age group

As a next step, we investigated what influence age had on the answers in the questionnaire.
Similar to the effects of gender, the result of the MANOVA was paired with a follow-up
LDA for the age group to find the influence of the TAM items. The resulting Pillai’s Trace of
0.04561 (F(16,313) = 24.107, p < 0.001) indicated a significant effect of age group on the
overall acceptance. LDA resulted in discriminant coefficients of -0.27 for the intention of
use, -0.19 for perceived usefulness, -0.46 for perceived ease of use, and -0.30 for trust. These
results showed that age has a negative effect on all TAM items. The age group under 20 years
showed high scores in all questions, with medium effect sizes compared to the age group
between 20-40 (Cohen’s D = 0.50) and 61-80 (Cohen’s D = 0.43) (for the full list of the effect
sizes, see Appendix I Table 10.1). Similar to the analysis of gender, perceived ease of use was
affected by age the most (Figure 10.2 b). Together with the decreased intention of use, it can
be stated that older adults anticipate hardships in using this technology, therefore showing
lower scores in the intention to use. However, the overall acceptance scores increased again
beyond 80 years of age, especially in the perceived usefulness (Figure 10.2 b). This is also
reflected in smaller effect sizes between the age group below 20 and above 80 years (Cohen’s
D = 0.18) (SI table1). Concluding, data showed the highest acceptance in the age group
below 20 years, with a general decrease of acceptance until 80 years.

The effect of condition

A central hypothesis of the study was, that compared to a traditional taxi the acceptance
level of AVs is reduced, but can be partially recovered by making the decisions of the AV
transparent. The result of MANOVA showed that the condition had a significant effect with
Pillai’s Trace of 0.00259 (F(8,15672) = 2.541, p = 0.009). The LDA for condition resulted in
coefficients of -1.12 for the intention of use, 0.99 for perceived usefulness, -0.33 perceived
ease of use, and 0.44 for trust, with overall small effect sizes in all comparisons (Cohen’s
D = <0.11) (Appendix I Table 10.2). While the effect on trust and ease of use is negligible
between conditions, differences could be found in intention to use and perceived usefulness.
The AVAS condition had a slightly higher median score in the perceived usefulness of 71
compared to 69 in the TaxiDriver (Figure 10.2 c). Here, the AVAS condition resulted in
a lower median score of 65 than the TaxiDriver with a median of 68 (Figure 10.2 a). We
concluded that there were no AVerse effects of the condition on the ease of use like in
gender and age. Still, there was a negative effect on the intention to use such technology
independently of gender and age. These results already accommodated that additional factors
besides age and gender negatively influenced the intention of use. This observed effect
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could also be due to technology aversion, which had already been mentioned in the effects
of age and gender. It can be summarized that there was a small positive effect of in-car
communication methods on accepting AVs regarding the ease of use and a small negative
effect regarding the intention of use.

The Interaction effect of gender and age group

In examining the effects of gender, age and condition, it became clear that these factors
separately did not explain all variance observed in the data. There was a significant interaction
effect of gender and age group with Pillai’s Trace of 0.00498 (F(16,31352) = 2.441, p =
0.001). According to the follow-up LDA, there was a negative effect for the intention of
use and perceived ease of use (both -0.73) and a positive effect on the perceived usefulness
(0.22) and trust (0.55) in the questionnaire items. Here, the effect sizes were most notably
between the age groups 21-60 years compared to under 20 years and above 60 for each
gender (Appendix I Table 10.3). These results support findings of the previous analyses on
gender and age. In addition, it could be shown that the interaction of gender and age had a
significant influence on the acceptance of AVs. In addition, the largest effect sizes ( 0.5 <
Cohens’ D <= 0.9) resulted by comparing female participants in the age between 21-60 years
against the male participants in the same range. Participants below 20 years had the highest
TAM scores, and females between the ages of 21-60 years showed the lowest TAM scores.
Although there is was a decrease in all TAM factors in both genders for ages between 21-60
years old compared to the below 20 years, female participants showed stronger decreases in
TAM scores (Figure 10.3). This accounts especially for the intention of use and perceived
ease of use. Once again, as age increases for people between ages 21-80 years, we can also
observe TAM scores. In conclusion, gender and age group interaction significantly affect
all TAM factors, specifically negative influences on the intention of use and perceived ease
of use for AVs, but a positive effect on perceived usefulness and trust. This means that
although the AV was seen as useful and trustworthy, there were still other hidden factors
that decreased the ease of use and the intention to use it. Consequently, the demographic
factors of age, gender and the interaction of these two, have much more impact on the items
of the TAM questionnaire. The positive effects of a self-explanatory AV were not sufficient
to compensate for the negative influence of demographics on ease of use and, accordingly,
intention to use.
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Fig. 10.2 The descriptive categorical plot of the mean questionnaire answers for each of the
main factors a) gender, b) age group, and c) condition.
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Fig. 10.3 Mean of answers for questions regarding the usefulness, intention, trust, and ease
for age group and gender combined.
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10.4.2 Behavioral Results

Identification of critical events

As a first step in the analysis of head movement, we tried to determine if the behavior of the
participants differs during the critical events from the baseline parts of the drive. The initial
analysis was conducted independently of the driving condition. We considered the mean
and variance of head orientation over all participants as the relevant dependent variables.
Collapsing the data over conditions, we tested whether the mean of head orientation in each
frame was significantly different from the distribution resulting from a permutation over time
(permutation test). The head orientation differed significantly from the baseline at the end
on the first and second and at the very end of the third event. (Figure 10.4). Further, we
observed differences early in the trial, when participants where intensely looking around
inside the car. There were also three other significant intervals observed over the trial. During
these intervals, pedestrians were visible on the sidewalk in crowded areas of the city. We
assume that this is related to a need for information to assess the situation. A last period
of deviant head orientation is observed at the very end of the drive, when participants have
prepared to get out of the car in a congested area. By applying this method we are confident
that an additional measure of head movements is a valid approach to enhance subjective
data. Overall, compared to the baseline head orientation, the three critical events revealed
significant differences in the participant behavior regardless of the condition effect. These
differences were not limited to the critical event intervals but identified in additional areas of
the trial.

The effect of condition

In the next stage, we looked at the extent to which the observed variance was associated with
the effect of the condition. We investigated whether participants head movements objectively
varied between conditions. Differences in head orientation were seen as indicators of
participants’ reaction to the environment in different experimental conditions. In visualizing
the head movement data, we observed differences in the mean head orientation, over large
portions of the drive and during the critical traffic events. (Figure 10.5). In order to determine
if these differences were significant, a one-way ANOVA based on head orientation was
calculated for each frame as a dependent variable and applied a post-hoc comparison of
Tukey HSD in those significant Intervals. The ANOVA result showed significant differences
in head orientation between the three conditions for most of the frames (F>10, p < 0.05)
(Figure 10.6). Specifically, the TaxiDriver condition was significantly different from the
other two on much of the drive. The post-hoc comparison revealed larger mean difference
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Fig. 10.4 Time intervals of significant differences in head orientation after the permutation
test (n=1000). Shaded areas represent the critical traffic event intervals. a) Mean of head
orientation over all subjects. Each point indicates an average of the head orientation across
the participant within each frame. b)Variance of head orientation over all subjects. The
red areas indicate the intervals where there was a difference in head orientation between all
participants. Please note that the data is collapsed over condition.
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Fig. 10.5 Mean head orientation in each frame divided in three conditions. The positive and
negative values of the mean orientation relate respectively to the right and left directions.
Shaded areas represent the critical traffic event intervals.

(Meandiff) for TaxiDriver compared to AVAS (i.e. Meandiff = 2.07, p = 0.001 for frame
= 1300) and RadioTalk (i.e. Meandiff = 1.77, p = 0.001 for frame = 1300) conditions.
This outcome was most often constant during the experimental trial, including all three
critical events. At the beginning of the first and the second events, no significant differences
Were observed between the RadioTalk and AVAS conditions were found. In the third event
we noted differences across all three conditions. At this point, the participants got the
lowest degrees of the head orientation in the AVAS condition, and the highest degree in
the TaxiDriver condition. In particular, we observed a higher mean head orientation in
the TaxiDriver condition at the beginning of the critical traffic events. This means that the
distribution of head orientations in the angular space were wider in the TaxiDriver condition
compared to the two autonomous conditions (Figure 10.5).

Head angular velocity

To gain deeper insights into the participants’ head movement behavior, we calculated the
magnitude of change in head orientation over time as the angular velocity. We quantify the
absolute value of the angular velocity in frame n for each critical traffic event separately
(wn = |qn �qn�1|/Dt) where qn is the head orientation in frame n and Dt = 0.04s based on
the experiment’s overall average frame rate. Angular velocity analysis showed that in the
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Fig. 10.6 Time intervals of significantly different behavior between the three conditions. The
graph depicts the P and F values of one-way ANOVA overall the experimental trial. Each dot
shows the original F value of each frame. The red dash indicates the significance threshold (p
< 0.05). Shaded areas represent the critical traffic event intervals. The result of Tukey’s post
hoc comparison is represented by different colors. Each color shows the significant variable
mean(s) in cross-check.
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Fig. 10.7 Head angular velocity for the critical event intervals. The y axis refers the rotation
change divided by the number of event frames.

AVAS condition, participants rotated their heads significantly faster only during the first
critical traffic event (F(2,24447) = 71.35, p < 0.01). In the second critical traffic event, no
significant differences were observed between the conditions (F(2,24447) = 2.8, p= 0.06).
In the third critical traffic event, the angular velocity in AVAS was significantly lower than
in the other two conditions (F(2,24447) = 29.06, p < 0.01) (Figure 10.7). Overall, the data
revealed that the angular velocity of head movement decreased during the experimental trial
in all three conditions. However, the AVAS condition reduced the head’s angular velocity to a
greater degree than the other autonomous condition. With angular velocity analysis, we were
able to show that participants’ behavior changed as an effect of self-explaining AV over time.

10.4.3 Questionnaire comparison

The head angular velocity was an illustration of the participant’s head movements behavior
during the trial. The calculation of the relationship between angular velocity and TAM items
allowed us to determine if the self-assessment of participants was expressed in their prior
behavior during the experimental trial. We used Pearsons’ correlation for the participant’s



252 | Appendix 3 - Talking cars, doubtful users - a population study in virtual reality

absolute head angular velocity over the entire trial and the participants’ respective TAM
item scores. The analysis showed a positive correlation between the head angular velocity
and all TAM item scores for all three conditions (Figure 10.8). The correlation between the
angular velocity and trust was lower than its correlation to other TAM items. Along with
the previous finding in the analysis of the questionnaire, the mismatch between trust and
the other items of the questionnaire was demonstrated in the correlation between the items
and the angular velocity. The dissociation between trust and the other questionnaire items
suggests that trust is not an ideal item in self assessments via a questionnaire. This allegation
is supported by the mismatch in the self-assessment together with the objective behavioral
data. As a result, we argue that the objective behavioral data was able to reflect the findings
of the TAM questionnaire.

10.5 Discussion

The present study revealed that self-reported acceptance in conjunction with objective
observation, provide a better understanding of modulating acceptance factors. The results
indicated that, subjective data from a post-experimental questionnaire and objective data
from head movements during the experimental trial were largely congruent. The outcome
of the study on gender, age, and the effect of condition on the overall acceptance showed
less acceptance of female participants toward AV than among males. However, this effect is
even more pronounced in the intention to use AVs. The results also suggested that people
under the age of 20 have the highest acceptance toward AV, declining gradually with age
while increasing again above the age of 80. Concerning the effect of a self-explaining AV,
we found a small positive effect in the ease of use and a small negative effect regarding
the intention of use. However, the age, gender, and the interaction of these two factors
have a substantially greater impact on the questionnaire results. Therefore, the positive
effects of a self-explanatory AV are not sufficient to compensate for the negative influence
of demographic data on ease of use and the intention to use. It could be demonstrated
that participants’ head orientation differed between the conditions by analyzing the data
on head movements. In particular in the TaxiDriver condition, we observed significant
differences across the entire drive with additional differentiation between conditions during
the critical events. Further, we observed a decline in the head’s angular velocity over time
for all conditions. The latter effect was most substantial in the AVAS condition. Finally,
correlate the magnitude of the participant’s head angular velocity to the TAM scores showed
a significant relationship between acceptance as a combination of the TAM factors, which
was weaker for the trust factor.
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Fig. 10.8 Summary of the Pearson correlation between the head angular velocity and the TAM
questionnaire items. The correlation p value for Intention, usefulness, ease of use and trust
are as follows for each condition: a) AVAS (Intention: p <0.001, Usefulness: p <0.0010, Ease
of use: p <0.001, Trust: p <0.01) b) RadioTalk (Intention: p <0.001, Usefulness: p <0.001,
Ease of use: p <0.001, Trust: p <0.001) c) TaxiDriver (Intention: p <0.001, Usefulness: p
<0.001, Ease of use: p <0.001, Trust: p <0.001)
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Earlier studies were primarily based on the responses of potential users identified through
questionnaires Howard and Dai (2014); Raats et al. (2020); Wintersberger et al. (2020).
However, behavioral data is not as susceptible as questionnaire answers and can be used to
validate possible self-assessments Davis and Venkatesh (1996a). The presented study could
show a dissociation of the self-assessed trust from other TAM items, in particular with the
intention to use. This observation contrasts with previous research such as that of Belanche
Belanche et al. (2012). We demonstrated that self-assessments are strongly modulated by the
demographic factors such as age and gender, as well as the interaction of these two factors.
Behavioral data confirmed the dissociation of trust and intention, by showing a connection
between head movements and scores in intention, ease of use and perceived usefulness items.
Therefore we argue that inclusion of behavioral data is a valid approach to better understand
underlying factors of acceptance and justify potentially flawed subjective data. This is due to
the fact that head movements can be considered as part of non-verbal communication among
humans Mehrabian (2017) that contains information about the participant’s emotions and
intentions Gunes and Pantic (2010). For instance, the angular velocity of the head and its
acceleration were higher during negative affects Hammal et al. (2015). The combination of
subjective and objective data sources allows data from the questionnaire to be validated. In
conclusion, behavioral data could be described as an important resource that can be used to
validate investigations into the technology acceptance model and its underlying factors.

Due to the nature of the experiment in a public exhibition and a large number of visitors,
we used a simplified version of the technology acceptance questionnaire. Thus, it may fail
to capture the full aspect and spectrum of factors that modulate acceptance, such as the
technology self-efficacy, which might play a critical role in perceived ease of use. Moreover,
the questionnaire was translated into German, and we were not able to validate it prior to
using it in the experiment. As a result, part of the variance in the data could be caused by
the translation. However, such an effect is considered to be minuscule and negligible since
our main findings aligned with those of the previous work Chen and Chan (2011); Koo
et al. (2016); Othman (2021); Venkatesh and Morris (2000). Certainly, when it comes to
trust in AVs, there are more modern and validated methods such as STS-AD Holthausen
et al. (2020) and Jian scale Jian et al. (2000) which could better explain the underlying
factors of trust. Therefore, adapting such methods will undoubtedly benefit future studies
to explore the trust in AVs. However here our initial goal is to investigate acceptance in
AVs and to design behavioral methods to study acceptance and trust. Given that the Jian
and STS-AD scales are questionnaire-based measures, suffers the same issues arising from
self reporting nature of questionnaires. Due to the simplified nature of the study, we can
not directly address and analyze the underlying information processing that influences the
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attitude. Nonetheless, we are confident in making informed statements because of the
magnitude of the effects of a vast data-set. Additionally, it is also possible that cybersickness
has influenced TAM scores and head movement data. Nevertheless, we tried to control the
motion and cybersickness as much as we could in this trial. To reduce the probability of
emerging cybersickness, we have tried to pay attention to certain precautions in the creation
of the environment. Among them falls a bigger static frame for the participants as the
car interior. In addition, we only used a low-speed environment, with no tight corners, to
minimize cybersickness van Emmerik et al. (2011). Furthermore, we acknowledge that a
more precise measurement instrument such as eye trackers would have improved the analysis
and the findings. However, once again, the nature of the experiment and the absence of
on-site experimenters made it impossible to use such methods. Another criticism might
be that the experimental time was limited to 90 seconds, and each participant observed a
single experimental condition. However, this experiment already provides an opportunity to
investigate participants’ acceptance in communicative AVs. Additionally, the vast amount
of data collected through the experiment allowed for entirely data-driven analyses both for
questionnaire and behavioral data. Consequently, the results of this study are valuable in
understanding public acceptance of AVs and the importance of objective measures.

Despite these limitations, we are confident that we were able to demonstrate the effect of
a self-explaining AV based on subjective and objective data. As mentioned earlier, previous
research has explained trust as a combination of the communication style, feedback, and
the anthropomorphic characteristics of the AV Belanche et al. (2012); Koo et al. (2015b).
In contrast, Hoff and Bashir argued that trust is largely shaped by the users’ personality
traitsHoff and Bashir (2015). This is supported by new findings in real driving scenarios,
where personality traits were identified as relevant factors of trust Stephan (2019), and were
only out weighted by the actual driving performance. These factors are summarized under
"dispositional trust," which comprises age and gender, and personality traits. Consistent with
previous research our study could show that the demographic factors have a greater impact
on acceptance compared to the characteristics of AVs.

Nevertheless, our findings are not generalizable across demographic groups, since their
communication needs are different: While we see a positive influence of the talking car in one
group, the second group may regard the in-vehicle information as excessive and distracting.
Thereafter, the user-specific communication could increase trust in doubtful users - making
them more confident to properly operate such a system since it might be able to increase
the knowledge of the autonomous system. However, further investigation is required using
more extensive questionnaires to examine other acceptance modulators, specifically trust in
combination with more objective measuring instruments such as eye tracking. In the end, we
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Table 10.1 Effect Sizes between different age groups on Intention to use, perceived usefulness,
perceived ease of use and trust. Numbers in the table present the Cohen’s D and in the case
of difference Hedges G

age group below 20 20 - 40 40 - 60 60 - 80 above 80

below 20 0 0.40 0.50 0.43 0.17 / 0.2
20 - 40 0.40 0 0.10 0.01 0.18 / 0.20
40 - 60 0.50 0.10 0 0.08 0.28
60 - 80 0.43 0.01 0.08 0 0.20 / 0.22

above 80 0.17 / 0.2 0.18 / 0.20 0.28 0.20 / 0.22 0

Table 10.2 Effect Sizes between different condition on Intention to use, perceived usefulness,
perceived ease of use and trust. Numbers in the table present the Cohen’s D and in the case
of difference Hedges G

condition AVAS RadioTalk TaxiDriver

AVAS 0 0.05 0.11
RadioTalk 0.99 0 0.06
TaxiDriver 0.11 0.06 0

argue that user specific in-vehicle communication can be helpful in creating guidelines for
the development of a safer and inclusive future of autonomous mobility.
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Table 10.3 Effect Sizes between different combination of gender and age group on Intention
to use, perceived usefulness, perceived ease of use and trust. Numbers in the table present
the Cohen’s D and in the case of difference Hedges G

gender = male

Gender/Age Group below 20 20 - 40 40 - 60 60 - 80 80+

Male / below 20 0 0.30 0.36 0.39 0.28 - 0.32
Male / 20 - 40 0.30 0 0.06 0.07 0
Male / 40 - 60 0.36 0.06 0 0.01 0.05
Male / 60 - 80 0.39 0.07 0.01 0 0.06

Male / 80+ 0.28 - 0.32 0 0.05 0.06 0
Female / below 20 0.31 0.01 0.05 0.06 0.04

Female / 20 - 40 0.73 0.42 0.36 0.35 0.39 - 0.41
Female / 40 - 60 0.90 0.58 0.51 0.51 0.53 - 0.56
Female / 60 - 80 0.78 - 0.80 0.46 0.40 0.40 0.42 - 0.44

Female / 80+ 0.29 - 0-33 0 0.03 0.05 0.01

gender = female

Gender/Age Group below 20 20 - 40 40 - 60 60 - 80 80+

Male / below 20 0.31 0.73 0.9 0.78 - 0.80 0.29 - 0-33
Male / 20 - 40 0.01 0.42 0.58 0.46 0
Male / 40 - 60 0.05 0.36 0.51 0.40 0.03
Male / 60 - 80 0.06 0.35 0.51 0.40 0.05

Male / 80+ 0.04 0.39 - 0.41 0.53 - 0.56 0.42 - 0.44 0.01
Female / below 20 0 0.42 0.57 0.46 0.01

Female / 20 - 40 0.42 0 0.15 0.03 0.37 - 0.40
Female / 40 - 60 0.57 0.15 0 0.11 0.51 - 0.55
Female / 60 - 80 0.46 0.03 0.11 0 0.41 - 0.44

Female / 80+ 0.01 0.37 - 0.40 0.51 - 0.55 0.41 - 0.44 0
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