

Building a Blockchain-based API Access Control System

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

KHA THAI LE

© Copyright KHA THAI LE, October 2023. All rights reserved.

Unless otherwise noted, the copyright of the material in this thesis belongs to the author.

i

PERMISSION TO USE

In presenting this thesis/dissertation in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying this thesis/dissertation

in any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors. They supervised my thesis/dissertation work or, in their absence, the Head of the

Department or the Dean of the College in which my thesis work was done. It is understood that

any copying or publication, or use of this thesis/dissertation or parts thereof for financial gain shall

not be allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made of any

material in my thesis/dissertation.

DISCLAIMER

Reference in this thesis/dissertation to any specific commercial products, process, or service by

trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement,

recommendation, or favouring by the University of Saskatchewan. The views and opinions of the

author expressed herein do not state or reflect those of the University of Saskatchewan and shall

not be used for advertising or product endorsement purposes.

Requests for permission to copy or to make other uses of materials in this thesis/dissertation in

whole or part should be addressed to:

 Head of the Department of Computer Science

 Department of Computer Science

 University of Saskatchewan

 176 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

 OR

 Dean

 College of Graduate and Postdoctoral Studies

 University of Saskatchewan

 116 Thorvaldson Building, 110 Science Place

 Saskatoon, Saskatchewan S7N 5C9 Canada

ii

ABSTRACT

API providers can expose their service and data via APIs. However, there must be an access control

mechanism in place to control which client can access the APIs. Blockchain technology holds

significant potential for this use case. While blockchain may introduce latency, it also offers

inherent features including decentralization, data immutability, scalability, and traceability.

This thesis explores implementing a blockchain-based access control system and conducts

performance evaluations. The proposed comprehensive solution features a straightforward

architecture and a user-friendly web interface. It has been deployed in a cloud environment for

development, testing, and performance assessments. Extensive experiments have been conducted

to analyze latency and determine the system's breaking point. It can withstand 14000 client apps

loading it simultaneously within the cloud environment where it was deployed.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who have contributed to completing this

thesis.

First and foremost, I sincerely thank Dr. Ralph Deters, who supported me during my research with

his patient guidance, encouragement, and advice. Secondly, my appreciation goes to Graduate

Chair Dr. Julita Vassileva. Dr. Ralph and Dr. Julita provided the knowledge needed for the thesis.

They also provided unwavering support during my personal challenges, including family loss,

depression during the COVID-19 pandemic, and stress from my full-time on-campus work.

Furthermore, I would like to show appreciation to my committee members: Dr. Ralph Deters, Dr.

Julita Vassileva, and Dr. Chris Zhang. I would also like to thank my Multi-User Adaptive

Distributed Mobile and Ubiquitous Computing (MADMUC) Lab colleagues for their friendship

and support. Personally, I would love to express my gratitude to my family members in Vietnam

for their love and support, as well as my dear friend in Saskatoon, Maliha Mahbub, who always

encouraged and supported me.

iv

Table of Contents

PERMISSION TO USE ... I

ABSTRACT .. II

ACKNOWLEDGEMENTS .. III

TABLE OF CONTENTS .. IV

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

LIST OF ABBREVIATIONS .. XIV

1. INTRODUCTION .. 1

2. PROBLEM DEFINITION .. 3

2.1 Research Objectives .. 5

3. LITERATURE REVIEW ... 6

3.1 Blockchain .. 6

3.1.1 The Blockchain Platform Layer ... 7

3.1.2 The Protocol Layer - Consensus .. 9

3.1.3 Types of Blockchains ... 10

3.1.4 The Smart Contract Layer .. 11

3.1.5 Wallet 12

3.2 Hyperledger Fabric ... 12

3.2.1 The execute-order-validate pattern .. 12

3.2.2 System Components .. 14

3.2.3 Consensus .. 14

3.3 Access Control .. 15

3.3.1 Discretionary Access Control (DAC) .. 16

v

3.3.1.1 Policy .. 16

3.3.1.2 Model .. 16

3.3.1.3 Mechanism .. 18

3.3.2 Mandatory Access Control (MAC) .. 20

3.3.2.1 Policy .. 20

3.3.2.2 Model ... 21

3.3.2.3 Mechanism .. 23

3.3.3 Role-based Access Control (RBAC) ... 24

3.3.3.1 Policy .. 24

3.3.3.2 Model .. 24

3.3.4 Attribute-based Access Control (ABAC) .. 25

3.3.4.1 Policy .. 25

3.3.4.2 Model .. 26

3.3.5 Related Works: Blockchain-based Access Control Mechanisms 27

3.3.5.1 RBAC mechanism .. 27

3.3.5.2 ABAC mechanism .. 28

3.3.6 Summary .. 29

3.4 API Management .. 31

3.5 Summary ... 33

4. DESIGN AND ARCHITECTURE ... 35

4.1 Architecture... 35

4.2 Data Model Design ... 36

4.3 Wallet Management .. 38

4.4 Workflows... 39

vi

4.4.1 Adding an endpoint .. 39

4.4.2 Requesting & Granting Access .. 41

4.4.3 Accessing Endpoint ... 42

5. IMPLEMENTATION ... 44

5.1 Technology Stack.. 44

5.2 Hyperledger Fabric Network Configuration ... 47

5.3 Chaincode ... 48

5.4 Demo ... 49

5.5 Blockchain Explorer – System Traceability ... 67

6. PERFORMANCE EVALUATION .. 71

6.1 Methodology ... 71

6.1.1 Hardware Setup .. 71

6.1.2 System Preparation for Accessing Endpoints .. 73

6.2 Experiments .. 73

6.2.1 Experiment 1: Latency ... 73

6.2.2 Overhead latency of the system ... 74

6.2.3 Overhead latency of Hyperledger Fabric ... 97

6.2.4 Experiment 2: Breaking point .. 109

6.3 Summary ... 114

7. CONCLUSIONS AND FUTURE WORK ... 116

7.1 Conclusion .. 116

7.2 Contribution .. 118

7.3 Limitation and Future Work ... 118

8. REFERENCES ... 121

vii

9. APPENDIX: CONNECTION POOL FOR HYPERLEDGER FABRIC GATEWAY -

ELIMINATING SYSTEM BOTTLE NECK ... 123

9.1 Scenario 1: Direct API access ... 123

9.2 Scenario 2: Introducing the Blockchain VM with Hyperledger Fabric bypassed 126

9.3 Scenario 3: Enabling Hyperledger Fabric ... 128

9.4 Scenario 4: Performance of Access Control Data Retrieval ... 132

9.5 Scenario 5: Scaling Up Peers in the Hyperledger Fabric Network 135

9.6 Scenario 6: Connection Pool for Hyperledger Fabric Gateway.. 138

9.7 Summary ... 141

viii

LIST OF TABLES

Table 3-1 An access control matrix example .. 17

Table 3-2 An authorization table example .. 19

Table 3-3 Access control types summary ... 30

Table 4-1 Entity-relationship diagram explanation .. 37

Table 5-1 Technology stack explanation .. 44

Table 5-2 Chaincode (smart contract) methods explanation .. 48

Table 6-1 Experiment VMs' Hardware Specifications ... 72

Table 6-2 Q1 Latency comparison: Direct API Access vs Blockchain-enabled access control ... 94

Table 6-3 Q3 Latency comparison: Direct API Access vs Blockchain-enabled access control ... 95

Table 6-4 Q1 Latency Comparison: Hyperledger Fabric bypassed vs. Hyperledger Fabric enabled

... 107

Table 6-5 Q3 Latency Comparison: Hyperledger Fabric bypassed vs. Hyperledger Fabric enabled

... 108

Table 6-6 Comparing the error rates of the 1-peer setup and 9-peer setup 113

ix

LIST OF FIGURES

Figure 2-1 Traditional API Access Control .. 3

Figure 2-2 Blockchain-based API Access Control ... 4

Figure 3-1 Blockchain 1.0 (Bitcoin technology stack) ... 6

Figure 3-2 Blockchain 2.0 Technology Stack... 7

Figure 3-3 Anatomy of a Block .. 8

Figure 3-4 Anatomy of a Blockchain .. 8

Figure 3-5 The three stages of the Raft consensus mechanism .. 15

Figure 3-6 Access control layers... 15

Figure 3-7 A lattice-based MAC model.. 21

Figure 3-8 ABAC elements .. 26

Figure 3-9 ABAC model architecture ... 26

Figure 3-10 RBAC-SC mechanism design ... 28

Figure 3-11 The API gateway within an API management platform ... 32

Figure 4-1 Proposed Architecture ... 35

Figure 4-2 Entity-relationship diagram ... 37

Figure 4-3 Sequence diagram: endpoint registration use case. ... 40

Figure 4-4 Sequence diagram: endpoint discovery use case. ... 41

Figure 4-5 Sequence diagram: endpoint invocation use case. .. 43

Figure 5-1 Technology Stack .. 44

Figure 5-2 Technology Stack with Highlighted System Components.. 47

Figure 5-3 Chaincode (smart contract) methods ... 48

Figure 5-4 Demo: API Provider Registration step 1 ... 50

Figure 5-5 Demo: API Provider registration step 2. ... 51

Figure 5-6 Demo: API Provider logging in. ... 52

Figure 5-7 Demo: API Provider homepage. ... 53

Figure 5-8 Demo: API Provider adding a server. ... 54

Figure 5-9 Demo: API Provider homepage showing the added server. 55

Figure 5-10 Demo: API Provider adding an endpoint. ... 56

Figure 5-11 Demo: API Provider homepage showing the added endpoint. 57

x

Figure 5-12 Demo: Client app developer registration step 1. ... 58

Figure 5-13 Demo: Client app developer registration step 2. ... 59

Figure 5-14 Demo: Client app developer logging in. ... 60

Figure 5-15 Demo: Client app developer homepage. ... 61

Figure 5-16 Demo: Client app developer viewing the endpoint. .. 62

Figure 5-17 Demo: Client app developer requesting access to an endpoint. 63

Figure 5-18 Demo: API provider viewing the endpoint access request. 64

Figure 5-19 Demo: API Provider approving the endpoint access request. 65

Figure 5-20 Demo: Client app developer viewing the granted endpoint access. 66

Figure 5-21 Demo: Client app developer embedding the access grant ID into the client app. 67

Figure 5-22 Demo: The client app works and can invoke the endpoint. 67

Figure 5-23 Blockchain Explorer dashboard. ... 68

Figure 5-24 Blockchain Explorer Blocks view. .. 68

Figure 5-25 Blockchain Explorer Transaction view. .. 69

Figure 5-26 Blockchain explorer inspecting a transaction. .. 69

Figure 5-27 Blockchain explorer viewing the API provider registration event. 70

Figure 5-28 Blockchain explorer viewing the event where the API provider added an endpoint. 70

Figure 6-1 Hardware setup for experiments. .. 72

Figure 6-2 Direct API access latency for one client app .. 75

Figure 6-3 Direct API access latency for ten client apps .. 75

Figure 6-4 Direct API access latency for 20 client apps ... 76

Figure 6-5 Direct API access latency for 30 client apps ... 76

Figure 6-6 Direct API access latency for 40 client apps ... 77

Figure 6-7 Direct API access latency for 50 client apps ... 77

Figure 6-8 Direct API access latency for 60 client apps ... 78

Figure 6-9 Direct API access latency for 70 client apps ... 78

Figure 6-10 Direct API access latency for 80 client apps ... 79

Figure 6-11 Direct API access latency for 90 client apps ... 79

Figure 6-12 Direct API access latency for 100 client apps ... 80

Figure 6-13 Direct API access latency for 150 client apps ... 80

Figure 6-14 Direct API access latency for 200 client apps ... 81

xi

Figure 6-15 Direct API access latency for 250 client apps ... 81

Figure 6-16 Direct API access latency for 300 client apps ... 82

Figure 6-17 Direct API access latency for 350 client apps ... 82

Figure 6-18 Direct API access latency for 400 client apps ... 83

Figure 6-19 Direct API access latency for 450 client apps ... 83

Figure 6-20 Direct API access latency for 500 client apps ... 84

Figure 6-21 Blockchain-Enabled Access Control latency for one client app 85

Figure 6-22 Blockchain-Enabled Access Control latency for ten client apps 85

Figure 6-23 Blockchain-Enabled Access Control latency for 20 client apps 86

Figure 6-24 Blockchain-Enabled Access Control latency for 30 client apps 86

Figure 6-25 Blockchain-Enabled Access Control latency for 40 client apps 87

Figure 6-26 Blockchain-Enabled Access Control latency for 50 client apps 87

Figure 6-27 Blockchain-Enabled Access Control latency for 60 client apps 88

Figure 6-28 Blockchain-Enabled Access Control latency for 70 client apps 88

Figure 6-29 Blockchain-Enabled Access Control latency for 80 client apps 89

Figure 6-30 Blockchain-Enabled Access Control latency for 90 client apps 89

Figure 6-31 Blockchain-Enabled Access Control latency for 100 client apps 90

Figure 6-32 Blockchain-Enabled Access Control latency for 150 client apps 90

Figure 6-33 Blockchain-Enabled Access Control latency for 200 client apps 91

Figure 6-34 Blockchain-Enabled Access Control latency for 250 client apps 91

Figure 6-35 Blockchain-Enabled Access Control latency for 300 client apps 92

Figure 6-36 Blockchain-Enabled Access Control latency for 350 client apps 92

Figure 6-37 Blockchain-Enabled Access Control latency for 400 client apps 93

Figure 6-38 Blockchain-Enabled Access Control latency for 450 client apps 93

Figure 6-39 Blockchain-Enabled Access Control latency for 500 client apps 94

Figure 6-40 Latency comparison: Direct API Access vs Protected API Access 96

Figure 6-41 Blockchain-Bypassed Access Control latency for one client app 97

Figure 6-42 Blockchain-Bypassed Access Control latency for ten client apps 98

Figure 6-43 Blockchain-Bypassed Access Control latency for 20 client apps 98

Figure 6-44 Blockchain-Bypassed Access Control latency for 30 client apps 99

Figure 6-45 Blockchain-Bypassed Access Control latency for 40 client apps 99

xii

Figure 6-46 Blockchain-Bypassed Access Control latency for 50 client apps 100

Figure 6-47 Blockchain-Bypassed Access Control latency for 60 client apps 100

Figure 6-48 Blockchain-Bypassed Access Control latency for 70 client apps 101

Figure 6-49 Blockchain-Bypassed Access Control latency for 80 client apps 101

Figure 6-50 Blockchain-Bypassed Access Control latency for 90 client apps 102

Figure 6-51 Blockchain-Bypassed Access Control latency for 100 client apps 102

Figure 6-52 Blockchain-Bypassed Access Control latency for 150 client apps 103

Figure 6-53 Blockchain-Bypassed Access Control latency for 200 client apps 103

Figure 6-54 Blockchain-Bypassed Access Control latency for 250 client apps 104

Figure 6-55 Blockchain-Bypassed Access Control latency for 300 client apps 104

Figure 6-56 Blockchain-Bypassed Access Control latency for 350 client apps 105

Figure 6-57 Blockchain-Bypassed Access Control latency for 400 client apps 105

Figure 6-58 Blockchain-Bypassed Access Control latency for 450 client apps 106

Figure 6-59 Blockchain-Bypassed Access Control latency for 500 client apps 106

Figure 6-60 Latency comparison: Hyperledger Fabric bypassed vs enabled. 109

Figure 6-61 Error Rate vs. Number of Client Apps, with 1-peer Hyperledger Fabric network (run

1) ... 110

Figure 6-62 Error Rate vs. Number of Client Apps, with 1-peer Hyperledger Fabric network (run

2) ... 111

Figure 6-63 Error Rate vs. Number of Client Apps, with 1-peer Hyperledger Fabric network (run

3) ... 111

Figure 6-64 Error Rate vs. Number of Client Apps, with 9-peer Hyperledger Fabric network (run

1) ... 112

Figure 6-65 Error Rate vs. Number of Client Apps, with 9-peer Hyperledger Fabric network (run

2) ... 112

Figure 6-66 Error Rate vs. Number of Client Apps, with 9-peer Hyperledger Fabric network (run

3) ... 113

Figure 6-67 Experiment 1 summary ... 115

Figure 7-1 Simplified architecture. ... 117

Figure 9-1 Scenario 1 Overview ... 124

Figure 9-2 Scenario 1 latency scatter chart for one client app instance. 124

xiii

Figure 9-3 Scenario 1 latency scatter chart for ten client app instances. 125

Figure 9-4 Scenario 2 overview. ... 126

Figure 9-5 Scenario 2 latency scatter chart for one client app instance. 127

Figure 9-6 Scenario 2 latency scatter chart for ten client app instances. 128

Figure 9-7 Scenario 3 overview. .. 129

Figure 9-8 Scenario 3 latency scatter chart for one client app instance. 130

Figure 9-9 Scenario 3 latency scatter chart for ten client app instances. 131

Figure 9-10 Scenario 3 error rate bar chart. .. 132

Figure 9-11 Scenario 4 highlights the bottleneck. .. 133

Figure 9-12 Scenario 4 overview. ... 133

Figure 9-13 Scenario 4 latency scatter chart for one client app instance. 134

Figure 9-14 Scenario 4 latency scatter chart for ten client app instances. 134

Figure 9-15 Scenario 4 error rate bar chart. .. 135

Figure 9-16 Scenario 5 overview. ... 136

Figure 9-17 Scenario 5 latency scatter chart for one client app instance. 137

Figure 9-18 Scenario 5 latency scatter chart for ten client app instances. 137

Figure 9-19 Scenario 5 error rate bar chart. .. 138

Figure 9-20 Scenario 6 overview. ... 139

Figure 9-21 Scenario 6 latency scatter chart for one client app instance. 140

Figure 9-22 Scenario 6 latency scatter chart for ten client app instances. 140

Figure 9-23 Scenario 6 error rate bar chart. .. 141

xiv

LIST OF ABBREVIATIONS

ABAC Attribute-Based Access Control

ACL Access Control List

AMs Attribute Managers

APIs Application Programming Interfaces

CH Context Handler

CSV Comma-Separated Values

EAG Endpoint Access Grant

EVM Ethereum Virtual Machine

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

MAC Mandatory Access Control

MLS Multilevel Security Policies

NPD Named Protection Domain

PAP Policy Administration Point

PBFT Practical Byzantine Fault Tolerance

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Points

PoS Proof of Stake

PoW Proof of Work

RBAC Role-Based Access Control

SAML Security Assertion Markup Language

SDK Software Development Kit

UI User Interface

VM Virtual Machine

XACML eXtensible Access Control Markup Language

YAML Yet Another Markup Language

1

1. INTRODUCTION

APIs can be used to expose software, service, or data over a network or the Internet. While they

enable clients to interact with these resources, they also introduce concerns related to control and

security. When APIs are left publicly accessible without control mechanisms, API providers face

challenges [1]:

• They cannot track which client apps access their APIs.

• They cannot enforce access rights and service level agreements.

• They cannot grant or revoke access on the fly.

• They cannot trace historical events or block malicious clients.

To address these issues, API providers may implement their own access control solutions, but this

can lead to centralized control, limiting scalability and flexibility. For instance, Google Maps

utilizes access tokens provided to client developers for accessing its APIs, with token management

centralized within Google. This centralized approach has limitations. It lacks scalability, the access

control data may change over time, and it may not suit the needs of smaller developers looking to

implement and offer their own APIs. Therefore, there is a demand for a decentralized, distributed,

reliable, auditable, and data immutable solution that supports robust API access control.

Blockchain is a technology that inherently meets those criteria. It has gotten significant attention

and has been applied in various industries, including digital assets, healthcare, medical records,

IoT, and supply chain management. In these sectors, it has been used for access control [2].

However, to the best of our knowledge, its potential for API access control has yet to be extensively

explored. Thus, it is a promising candidate for building the solution with room for exploration.

This exploration involves several aspects. Firstly, like any technology, blockchain would introduce

performance impacts including overhead latency. These impacts must be measured, and

adjustments must be made to mitigate them. Secondly, the solution's scalability can be explored,

allowing the system to accommodate increased traffic and serve more clients effectively. Thirdly,

determining the system's capacity for concurrent client interactions under heavy load is essential.

Fourthly, having traceability is also vital. It is necessary to determine whether the system provides

mechanisms for inspecting events that have occurred within the system.

2

This thesis aims to develop an access control system using blockchain for managing API access.

The rest of the thesis is organized as follows:

• Chapter 2 defines the problems.

• Chapter 3 reviews the related knowledge, technologies, and research work.

• Chapter 4 presents the architecture, data model, design choices, and sequence diagram.

• Chapter 5 presents the technology stack of the actual implementation, code snippets, and

user interface screenshots.

• Chapter 6 presents the experiments that evaluate the performance of the proposed solution.

• Chapter 7 concludes the contributions of this thesis and discusses future work.

3

2. PROBLEM DEFINITION

Traditional access control systems have certain drawbacks. They are centralized and have a single

point of failure because a central authority manages all access decisions. The access control data

stored in these systems can be modified by malicious users or system administrators. Moreover,

they may suffer from low scalability and lack a comprehensive audit trail. The absence of an audit

trail can impact monitoring and accountability, making it challenging to detect and address

potential security breaches or unauthorized access attempts [3]. When multiple API providers

implement a traditional access control system to manage their APIs, the system might resemble

the following diagram:

Figure 2-1 Traditional API Access Control

The diagram illustrates various API providers exposing different APIs. An API can contain

multiple API endpoints. The client apps, which can be smartphone apps, web browsers, or back-

end apps, represents the entities that invokes these API endpoints. In this context, a client app can

4

be seen as accessing the APIs as a resource. The API providers implement access control solutions

to manage and control which client apps can access their APIs. In this case, access control is

centralized at each API provider, potentially creating a single point of failure. If the access control

server for a specific API provider fails, the corresponding client apps cannot access their APIs.

A blockchain-based solution, on the other hand, can address the limitations and look like the

following:

Figure 2-2 Blockchain-based API Access Control

A blockchain is a network of peer nodes. Thanks to its decentralized and tamper-resistant nature,

blockchain eliminates the need for a central authority, mitigating the risk of single points of failure

and enhancing overall security. The diagram shows that each API provider no longer relies on the

individual node that handles access control. Instead, the providers make use of the network of

multiple nodes. Moreover, blockchain's transparent and immutable ledger provides a

comprehensive audit trail of all access control activities. Every access request and permission

5

change are recorded in an unchangeable way, promoting accountability and trust among authorized

parties. Thus, blockchain can be an intriguing option for API access control.

2.1 Research Objectives

The primary objective of this thesis is to develop a functional, full-stack access control system

using blockchain for managing API endpoints access, with a straightforward architecture and web

user interface. Subsequently, through performance evaluation experiments on the implementation,

the following research questions will be addressed:

Research Question 1: What is the system's overhead latency in milliseconds when transitioning

from not using the proposed solution to using it?

Understanding the impact of the proposed solution on latency is essential for system administrators,

API providers, and client app developers. This question aims to quantify the increase in round-trip

time when the proposed solution is used compared to its absence.

Research Question 2: What is the specific latency impact, in milliseconds, of the chosen

blockchain technology?

After evaluating the overall system latency for research question 1, isolating and measuring the

specific impact of the chosen blockchain technology on API response times is crucial. This

question determines how much longer API responses take when enabling blockchain technology

into the system.

Research Question 3: What is the system's maximum concurrent client app capacity?

Identifying the system's maximum load capacity is critical to prevent errors or timeouts when

numerous client apps invoke their respective APIs. This question aims to provide a clear threshold

for the number of clients the proposed solution can handle before it overloads and breaks down.

6

3. LITERATURE REVIEW

This chapter presents the background for building a blockchain-based API access control system.

First, section 3.1 discusses the evolution of blockchain and its main concepts. Second, section 3.2

discusses Hyperledger Fabric - the specific blockchain technology used for the implementation.

Then, section 3.3 presents access control concepts, including some blockchain-based access

control-related works. Finally, section 3.4 covers an overview of API management.

3.1 Blockchain

This section introduces the high-level overview of blockchain using separate layers of concerns.

The subsections will elaborate on each layer.

The evolution of blockchain started with the introduction of Bitcoin or blockchain 1.0, a digital

currency and a technology stack. The term Bitcoin refers to components in the stack [4]:

• The underlying blockchain platform (blockchain layer).

• The Bitcoin protocol (protocol layer).

• The Bitcoin wallet, and the Bitcoin currency itself (currency layer).

The following diagram illustrates the stack:

Figure 3-1 Blockchain 1.0 (Bitcoin technology stack)

Bitcoin aims to be a decentralized and trustless alternative to traditional currency. To do that, it

must eliminate the need for a central authority or intermediaries and solve the double-spending

problem. The blockchain platform and protocol layers work together to achieve those goals.

Furthermore, thanks to the core capability of the first blockchain implementation that allows two

arbitrary clients on the Internet to conduct any transaction, there were efforts to tackle more use

7

cases besides money and payment. However, overall, they were still limited to buying and trading

[4].

The next wave of blockchain came with new protocols and the smart contracts layer. More areas

and markets other than currency, like banking, crowdfunding, and smart property, joined the

decentralization movement. New protocols ran on the previous blockchain (Bitcoin blockchain) or

new separate blockchain platforms. Anything above the protocol layer can be considered the

application layer at this stage. At the application layer, anything can be on a blockchain, from the

physical world to intangible and figurative things. Moreover, once they are modelled as digital

assets on the blockchain, access control can be enforced on them [4].

Figure 3-2 Blockchain 2.0 Technology Stack

A large ecosystem has grown around the blockchain technology stack, facilitating sophisticated

blockchain-based software systems [4].

3.1.1 The Blockchain Platform Layer

The blockchain platform layer is the first layer of a blockchain stack and is responsible for

decentralization and data integrity. The blockchain platform is a peer-to-peer network of nodes.

Each node is a machine holding the same ledger. Each ledger contains a chain of blocks. Each

block is cryptographically linked to the previous block in the chain through a hash function. Any

form of data can be put inside a block’s content. The rest of a block (the header) contains metadata

that facilitates adding new blocks to the chain in a linear, chronological order, forming an unbroken

and tamper-proof record of all transactions [2]. The following diagram describes a basic block in

a ledger:

8

Figure 3-3 Anatomy of a Block

When a node needs to put data into a new block, it would also expect to receive the digital signature,

meaning that the data creator has signed the data with their private key. The digital signature and

the data are included in the block content, which gets hashed, and the resulting hash (current block

hash) is included in the block header. The nature of hashing ensures that even the slightest

modification to the data will result in a completely different hash value. The block header also

contains the previous block's hash value as a reference. This way, we have two blocks chained

together. Any tampering with the content of the previous block would produce a different hash

value. During the verification process, one can detect that the previous block hash reference on the

new block does not match the actual hash value of the content of the previous block. When the

ledger's first block (genesis block) gets created, it does not have the previous block hash in its

header [2].

Figure 3-4 Anatomy of a Blockchain

9

Depending on the protocol that runs on top of the blockchain, each block header can contain more

metadata, and each block content can have the corresponding data type. For instance, in the case

of Bitcoin, the block header can also have a timestamp and a nonce for consensus usage. And the

block content contains a set of transactions [2]

The protocol layer also regulates which node can add new blocks to the network. A new block gets

broadcasted to all other nodes when it is added. All network nodes independently follow and

enforce whichever rules the protocol layer regulates to ensure the new block is valid before adding

it to their own ledgers. Doing so allows each node to operate autonomously without a central

controlling authority, effectively addressing the centralization problem. How each node handles a

new block and maintains its ledger also enforces data integrity [2].

3.1.2 The Protocol Layer - Consensus

The protocol layer is the second layer of a blockchain stack. It presents a consensus mechanism

and networking rules, defining the overall goal of the stack. In a distributed network full of

untrustworthy nodes and avoids using central authorities, the consensus algorithm forces all nodes

to agree on a universal ledger state to preserve data consistency. The choice of which consensus

mechanism to use depends on the decentralization, security, and scalability requirements. There

must be a balance between those criteria, and no perfect algorithm solves everything [2].

The Bitcoin protocol uses the proof of work (PoW) consensus mechanism. The nodes with

sufficient hardware can join this process and are called miners. When clients broadcast data, i.e.,

Bitcoin transactions, to the network, each miner receives and puts the data into a block content.

The protocol then picks a random number. This number is called a nonce. The nonce and the block

content are then hashed. Suppose the hash value does not comply with a particular network rule,

such as having a certain number of leading zeros. In that case, the nonce is incremented or re-

generated, and the miner starts hashing again. This repeating step is called solving a mathematical

puzzle and requires significant computational power. When the miner finds the correct hash, it

assembles the block and broadcasts the result to the network. Once other nodes verify the block

and the transactions inside, all nodes append the block to their ledger, and the miner who found

the solution is rewarded with a certain amount of cryptocurrency [2].

10

In a distributed network with no central authority and clients who can submit data to any node, a

malicious user can submit two transactions that spend the exact balance to two different nodes,

effectively making a double-spending attack. However, with PoW, to successfully carry out a

double spending attack, the malicious user would need to modify the first transaction so that it

appears the money has not been spent. Achieving this is extremely difficult because of the nature

of blockchain, which guarantees that it is immutable after a block has been added. Moreover,

changing one block would require re-calculating all subsequent blocks across, and that must be

done to most of the network nodes so that the new forked ledger is not rejected [5].

An alternative consensus mechanism to PoW that does not require significant computational

resources and is more energy-saving is Proof of Stake (PoS). In PoS, the nodes with the most

currency, i.e., hold more stake, are prioritized when the network needs to select a node to commit

a new block, which is rational because the more stake a node holds, the less likely it is malicious.

Many protocols, such as Ethereum, started with PoW first to make sure the network has enough

stakeholders, then gradually switched to PoS [2]

Another energy-efficient consensus mechanism is Practical Byzantine Fault Tolerance (PBFT).

PBFT requires that the nodes in the network are known, and it contains three phases for adding a

new block. First, a node is selected as a primary node, which proposes the block to other nodes.

Then, the other nodes validate the proposal and communicate with each other to confirm that they

all have received it. Finally, they communicate to confirm the agreement and finish adding the

block to the network [2].

There are many other consensus mechanisms. One of the ones that Hyperledger Fabric can be

configured to use is called Raft.

3.1.3 Types of Blockchains

Bitcoin is a public blockchain and the first one. Public blockchain refers to the blockchain

platforms where each machine hosting a network node is publicly available. Any machine on the

internet can join and become a node of a public blockchain. Other than Bitcoin, Ethereum is

11

another decent public blockchain. If Bitcoin started blockchain 1.0, Ethereum was one of the

pioneers of blockchain 2.0, finishing off Satoshi’s plan with Smart Contracts, turning the whole

stack into a foundational general-purpose cryptocurrency platform. Ethereum refers to the entire

stack, blockchain, protocol, and currency. The Ethereum blockchain itself is also public [4].

Regarding the consensus mechanism, public blockchains allow all nodes to join the process, but it

is typically slow [2].

On the other hand, private blockchains only allow registered and granted nodes to operate within

the network and have a membership system that only allows specific clients to submit transactions.

Private blockchains also implement consensus mechanisms just like public blockchains. However,

since there are significantly fewer nodes, private blockchains can utilize more lightweight and

resource-friendly consensus algorithms to process transactions faster. Hyperledger Fabric is one

of the private blockchains [2].

Depending on the purpose and requirements, one can choose between the main types of

blockchains. For instance, if low latency and high load capacity are prioritized, a private

blockchain can be selected, and vice versa.

3.1.4 The Smart Contract Layer

The smart contract layer is the top layer in a blockchain stack, above the protocol layer. According

to [4], as seen in Bitcoin, smart contracts were introduced in the blockchain 2.0 wave to enable

more complicated and programmable instructions than simply buying and trading. The word

"contract" emphasizes establishing rules that multiple parties must adhere to complete a transaction

successfully. For instance, a bus driver has a "contract" with a school principal about driving a

group of students around the city for sightseeing. The driver will only get paid if he adheres to

specific criteria outlined in the contract. These criteria may include maintaining detailed records

such as the date and time of student pick-up, the number of students transported, the time of student

drop-off back at the school, etc. There may be no trust between the driver and principal, but the

contract protects them, and the law will punish either of them if the contract is violated. That is

how things would go with a traditional "contract." In a smart contract context, the driver and

principal can use a blockchain-based app and a smart contract to automate and enforce the agreed-

12

upon terms. When the driver fulfills his obligations and meets the specified conditions, such as

recording the required information accurately on the app, the smart contract automatically triggers

the fund transfer. As a result, the driver's currency balance increases, reflecting his payment, while

the school's currency balance decreases accordingly.

There are more characteristics of smart contracts, such as autonomy, meaning when they are

deployed, they act on their own, get triggered automatically when some conditions are met, and

should be able to manage the resources they need appropriately. Smart contracts are also supposed

to be deployed on all peers in a blockchain network instead of one node, i.e., they are decentralized.

Moreover, since they are distributed to many nodes and automated, they should also be

deterministic. After all smart contracts have finished executing their programmed logic, all nodes

should be in the same state, which will be verified by the protocol layer [4].

3.1.5 Wallet

In a blockchain, a wallet is software that runs on the client side and holds the following purposes:

• A unique address for identifying the user.

• A private key for signing data and transactions.

• The currency balances.

Due to the decentralized autonomy, no other than the clients manage their wallets. There are no

trusted intermediaries that can help recover lost passwords or accounts. If the wallet is gone, the

user loses access to all data on the blockchain [4].

3.2 Hyperledger Fabric

Hyperledger Fabric (or Fabric) is an open-source private blockchain technology from the Linux

Foundation and the first blockchain that supports developing distributed apps in common

programming languages [6]. Hyperledger Fabric has been used in many production use cases

across different industries and for implementing the proposed solution in this paper. This section

discusses how it stands out among blockchain technologies and its components.

3.2.1 The execute-order-validate pattern

Blockchain platforms before Fabric, whether private or public, follow the order-execute pattern.

This pattern means the consensus protocol of the network organizes the transactions to a specific

13

order, and then each peer processes the transactions in that order. It is simple but has many

disadvantages [6]:

● The consensus mechanism cannot be changed after it has been deployed.

● The trust model cannot be changed, e.g., an order-execute network cannot switch from

assuming peers to be trustless and potentially malicious to assuming peers to be trusted.

● A domain-specific language must be designed for developers to write smart contracts

instead of letting them use common and stable programming languages.

● The throughput of the network is limited.

● The network is vulnerable to denial-of-service attacks, such as a smart contract that

executes deliberately slow.

● All transactions must be deterministic so that all peers end up in the same state after

processing them. It is difficult for smart contract developers to write such code, and the

resulting code can be limited in functionality or efficiency.

● Each peer must run every smart contract, which can affect confidentiality.

Hyperledger Fabric, on the other hand, follows the three-phase execute-order-validate pattern

instead. A Hyperledger Fabric application developer should be aware of the pattern and understand

that due to the pattern, there are two parts of the application [6]:

● The chaincode part: the smart contract, and it runs in the execute phase.

● The endorsement policy part: select the peers to run the chaincode, e.g., half of the peers,

peers A and B only, etc. Only the system administrators can set this policy, and the peers

specified by the policy are called the endorsers.

After the application has been written and the endorsement policy has been in place, the three

phases work as follows, starting with the execution phase [6]:

● The endorsers receive a transaction proposal from a client.

● Each endorser executes the proposal against its ledger without worrying about the

consensus, i.e., it only simulates the execution, resulting in a readset and writeset (rw-sets).

For example, the client submitting a transaction about "Alice transfer Bob $20" can result

in a readset of [(key: 'alice', version: 1), (key: 'bob', version: 1)], and a writeset of [(key:

'alice', value: $80), (key: 'bob', value: $70)].

● The endorsers then send the rw-sets back to the client.

● The client creates a complete transaction and sends it to the ordering service.

14

At this stage, the ordering phase takes place [6]:

● The ordering service sorts the transactions it has received into blocks.

● The blocks are then broadcasted to the peers.

Then, for each block, the validation phase takes place, containing three steps [6]:

● Other than the chaincode that the application developers write, Fabric also has its system

chaincodes. One of them is the validation system chaincode that runs here and checks the

endorsements against the endorsement policy. If it detects anything invalid, the

corresponding transaction is ignored.

● Rw-sets are then validated. When a peer checks the readsets’ keys, it checks their versions

against its ledger. If there is a conflict, the transaction is ignored.

● Each peer then adds the block to its ledger, stores the result of the validation phase, and

applies the writesets to its ledger.

3.2.2 System Components

This section describes the main components within a Hyperledger Fabric network. Being a private

blockchain, it makes sense for Hyperledger Fabric to have a Membership Service. Clients and peers

in Fabric can be grouped into nodes, and the Membership Service issues and keeps track of their

identities, credentials, and certificates. Then the Ordering Service is needed for the Order phase in

the execute-order-validate pattern. It also manages the channels and can reconfigure them. Then,

we have Peer Gossip, a protocol implemented by each peer and responsible for broadcasting

information among the peers. Then there is the Ledger, which persists the state of the blockchain

network and uses a simple format under the hood: tuples of (key, value, version), i.e., a versioned

key-value data structure in each peer. Finally, there is the Chaincode Execution Environment. For

each peer, the application chaincodes run inside a Docker container so that it is isolated and easy

to manage, and the system chaincodes run directly on the peer host [6].

3.2.3 Consensus

Fabric offers multiple consensus protocols including PBFT, Kafka, and Solo. However, the

protocol that it recommends is Raft. When a group of peers follow Raft to reach a consensus, they

elect a leader, and each of them can be in only one of the three states: Follower, Candidate, or

Leader [7]. The following diagram shows how the peers switch between the states:

15

Figure 3-5 The three stages of the Raft consensus mechanism

As shown in the diagram [8], all peers start as followers. After not receiving anything from a leader

peer for a while, they switch to the candidate state and vote for a leader. The next leader is the one

that has the highest vote, and if it detects another leader with a higher term, it goes back to being

a follower.

3.3 Access Control

This section discusses access control concepts since access control is needed in the proposed

solution for managing access to API endpoints. An access control system is a facility that directly

regulates and limits how valid clients, whether they are users or applications on behalf of users,

access protected resources and functionalities of a software system. Software that does not

implement access control gives clients direct access to its resources. If those clients are malicious,

they can abuse the software, cause security breaches, and compromise everything [9].

There are many access control types. Different layers of concern can be used to understand them

[10]:

Figure 3-6 Access control layers

16

The diagram shows that an access control type typically has three layers. At the top, we have the

policy layer for defining high-level rules. Then, there is the model layer for providing a formal

representation. Thanks to the formality, the access control type can be reasoned about, analyzed,

evaluated, and proved that it can provide the expected level of security. Then, we have the

mechanism layer at the bottom referring to the software and hardware implementation of the high-

level rules [10].

There are four common access control types:

● Discretionary Access Control (DAC)

● Mandatory Access Control (MAC)

● Role-Based Access Control (RBAC)

● Attribute-Based Access Control (ABAC)

The following subsections use the 3-layer policy-model-mechanism format to explain them. It is

worth noting that one of DAC's mechanisms, capability-based mechanism, is related to blockchain

technology. This connection will be elaborated upon in the DAC's mechanisms subsection.

3.3.1 Discretionary Access Control (DAC)

3.3.1.1 Policy

The policy layer of the Discretionary Access Control (DAC) type enforces explicit access control

rules associated with the requestor's identity. A rule typically follows the "who can do what action,

and on which resource?". A resource owner can grant permissions to users, and a user can share

granted permissions with other users, hence the name "discretionary" [10].

3.3.1.2 Model

One of the standard DAC models is the Access Matrix model. As mentioned, a model presents

formalization to reason about the system easily. In this case, the model presents the notion of a

matrix. A triple of (S, O, A) indicates the state of the system, i.e. (Subjects, Objects, Access matrix).

An access matrix is like a table whose rows represent subjects, columns represent objects, and

each cell contains allowed actions. It is worth noticing that the model is built on the following

essential elements [10]:

● Objects: what objects to protect?

17

● Subjects: what or who can operate on those objects?

● Actions (or rights): what actions or operations can be done on those objects?

The subjects, objects, and actions can vary depending on the context. In the context of this thesis,

they can be but not limited to:

● Objects: the API endpoints

● Subjects: the client that sends HTTP requests to those endpoints

● Actions (or rights): the HTTP verbs that a client can send to and endpoints, e.g., GET,

POST, PUT, DELETE

In addition to those elements, there are primitive operations that can change the state of the access

matrix like [10]:

● create subject: adds a new subject with identity and attributes.

● delete subject: removes a subject with associated authorizations or attributes.

● create object: adds a new object with identity and attributes.

● delete object: removes an object with associated authorizations or attributes.

● enter action (or assign a subject to an object): grants a subject authorization to access an

object.

● delete action (or remove subject from object): revokes a subject's authorization to access

an object.

Within the context of this thesis, an access matrix for controlling access to API Endpoints can look

like the following.

Table 3-1 An access control matrix example

 Endpoint 1 Endpoint 2 Endpoint 3

Provider X OWN

GET

POST

PUT

DELETE

OWN

GET

POST

PUT

DELETE

OWN

GET

POST

PUT

DELETE

Client A GET

POST

GET

18

PUT

DELETE

Client B GET GET

PUT

PUT

Client C PUT GET

POST

DELETE

The table presents three endpoint objects and four subjects (the provider and three clients) and

their corresponding actions, e.g., the provider owns and is allowed all actions on the endpoints,

while client B can only send GET requests to endpoint 1. From there, primitive operations can be

used to build commands that can change the system's state. For instance:

command CREATE_ENDPOINT(api_provider, endpoint):

create object endpoint

enter action Own into A[api_provider, endpoint] end.

command GRANT_ENDPOINT(api_provider, client, endpoint, allowed_actions):

if Own in A[api_provider, endpoint]

then enter action allowed_actions into A[client, endpoint] end.

3.3.1.3 Mechanism

The Access Matrix model provides the notion of the matrix for more straightforward reasoning

about the system. However, using a matrix for storing all subjects and objects and their access

control actions may not be efficient in actual software implementation since it can waste resources

and make writing and managing code difficult. Hence, there are different approaches to the Access

Matrix model at the mechanism layer. One common approach is to use an authorization table,

which puts non-empty cells of the matrix into a table of three columns (subject, action, object)

[10]. For example:

19

Table 3-2 An authorization table example

Subject Action Object

API Provider X Own Endpoint 1

Client A GET Endpoint 1

Client A POST Endpoint 1

Client A PUT Endpoint 1

Client A DELETE Endpoint 1

… … …

Another approach is to use an access control list (ACL), which organizes rules according to the

objects, meaning each object has an associated list of subjects and allowed actions, for instance:

Endpoint 1:

API Provider X: [Own, GET, POST, PUT, DELETE]

Client A: [GET, POST, PUT, DELETE]

Client B: [GET]

Client C: [PUT]

Endpoint 2: …

A third approach is the Capability mechanism, or Capability-based, which organizes rules

according to the subjects, meaning each subject has an associated list of objects and allowed

actions, for instance:

API Provider X:

 Endpoint 1: [Own, POST, PUT, DELETE]

20

 Endpoint 2: [Own, POST, PUT, DELETE]

 Endpoint 3: [Own, POST, PUT, DELETE]

Client A:

 Endpoint 1: [GET, POST, PUT, DELETE]

 Endpoint 2: [GET]

 Endpoint 3: []

Client B: …

In a capability-based mechanism, after a subject is granted a set of privileges (e.g., API provider

X is assigned a set of access rights to the three endpoints), the access control system can create a

form of an access token that references the subject and the set of privileges. Then, when the user

presents the token to the system, the user can use the privileges without having to authenticate that

the user is the subject. In contrast, an ACL mechanism would require the authentication step [11].

Additionally, thanks to an access token, the capability-based mechanism shares similarities with

blockchain technology, such as Bitcoin. In the case of Bitcoin, as long as a user possesses a

cryptographic key, the user can access the digital currency associated with that key within the

Bitcoin network [12].

3.3.2 Mandatory Access Control (MAC)

3.3.2.1 Policy

Mandatory Access Control (MAC) uses the following essential elements to build rules on [10]:

● Objects: passive entities storing information

● Users: human beings

● Subjects (not the same as subjects in DAC): programs or processes that operate on behalf

of the users, i.e., active entities that request access to the objects.

In contrast to DAC, where permissions come from resource owners, in MAC, permissions come

from the central system administrator, who assigns security labels to users, subjects, and objects.

Other users cannot change the rules. Access is allowed or denied based on the security

21

classification of the subject and object rather than on whether a specific action is authorized. There

are many subtypes of MAC, such as Multilevel security policies (MLS).

In MLS, the security labels are classified into access classes. Each user, subject, and object is

associated with an access class containing a security level and one or many categories and can be

represented like this: (security level, categories). Security levels are hierarchically ordered. The

categories, though, are not ordered. They only reflect their functional areas and facilitate finer-

grained access classes. Additionally, the access class of a user is called a clearance [10].

3.3.2.2 Model

One of the fundamental formalizations of MAC models is lattice [10]. A lattice-based MAC model

can look like the following example.

Figure 3-7 A lattice-based MAC model

The diagram shows Top Secret and Secret security levels; and None (i.e. {}), nuclear, and crypto

categories. The top of the lattices represents a high level of sensitivity, and the bottom of the

lattices represents a low level of sensitivity. Each point of the lattice is an access class that can be

assigned to users, subjects, and objects in the system [10]. Suppose we have three users:

● Alice: (Secret, {Nuclear}).

● Bob: (Top Secret, {Nuclear, Crypto}).

● Charlie: (Secret, {}).

And three objects:

● A nuclear power plant, classified as Nuclear.

● A cryptography system, classified as Crypto.

● A public website, classified as None ({}).

Then, based on the lattices:

22

● Alice is authorized to access the nuclear power plant (because she has a clearance of Secret

and is authorized to access Nuclear information). However, she is not authorized to access

the cryptography system or the public website.

● Bob is authorized to access both the nuclear power plant (because he has a clearance of

Top Secret and is authorized to access Nuclear information) and the cryptography system

(because he has a clearance of Top Secret and is authorized to access Crypto information),

but he is not authorized to access the public website.

● Charlie is authorized to access the public website (because he has a clearance of Secret and

is authorized to access None information). However, he is not authorized to access the

nuclear power plant or the cryptography system.

The set of access classes is partially ordered. In a partially ordered set, some elements can be

compared, and some cannot be, meaning not all access classes can be compared because some

access classes may have the same security level but different categories or the same categories but

different security levels. However, when two access classes can be compared, they have a

dominant relationship, e.g., the access class (Top Secret, {nuclear}) dominates the access class

(Secret, {nuclear}) because it has a higher security level and the same categories. The dominance

relationship also gives rise to the following properties [10]:

● Reflexivity: Every access class in the lattice is related to itself.

● Transitivity: If access class A is related to access class B and access class B is related to

access class C, then access class A is related to access class C.

● Antisymmetry: If access class A is related to access class B and access class B is related to

access class A, then A and B are the same access class.

● Existence of a least upper bound: Given any two access classes, A and B, a least upper

bound access class C dominates both A and B.

● Existence of a greatest lower bound: Given any two access classes, A and B, a greatest

lower bound access class C is dominated by both A and B.

Other MAC models build upon the lattice-based model to achieve further security goals. To

achieve secrecy and integrity, two common models are Bell-LaPadula and Biba. Both models are

about controlling the direct and indirect flow of data within the lattices. The Bell-LaPadula model

defines the following principles [10]:

23

● No-read-up: A subject can read an object if the subject has a higher access class than the

object's access class, i.e., the subject has higher clearance or trustworthiness, and its access

class dominates the object's access class. This principle prevents lower-level

subjects/objects from accessing sensitive data of the higher level.

● No-write-down: A subject can write to an object if the subject has a lower access class than

the object's access class, i.e., the subject has lower clearance or trustworthiness, and the

object's access class dominates its access class. This principle prevents sensitive data from

flowing to lower-level subjects/objects.

The Biba model, on the other hand, defines the following principles [10]:

● No-read-down: a subject can read an object if the object has a higher access class than the

subject’s.

● No-write-up: a subject can write to an object only if the subject has a lower access class

than the object’s.

Secrecy is preserved by preventing the information flow from higher classes to lower classes (no-

write-down). In contrast, integrity is preserved by preventing the information flow from lower

classes to higher classes (no-write-up). If both characteristics must be enforced, each subject or

object must have appropriate access classes for each characteristic.

3.3.2.3 Mechanism

The Bell-Padula model was initially designed to implement an access control mechanism for

computer operating systems, and it makes the following assumptions [10]:

● Information is stored in objects (files)

● There are different levels of sensitivity to information.

● There are restrictions on who can access information at different levels.

The model and those assumptions fit the context of computer operating systems perfectly. Later,

there were studies to expand the model for controlling database systems [10].

24

3.3.3 Role-based Access Control (RBAC)

3.3.3.1 Policy

There are use cases where neither DAC nor MAC can fit. However, Role-based Access Control

(RBAC) can because it offers both DAC's flexible permission-granting ability and MAC's

organizational constraints. When a user is granted permission to do something, the user has a

privilege. RBAC is about putting a layer called "role" between the user and the privileges and

appropriately grouping those privileges into roles. Furthermore, due to the notion of role, RBAC

is about what a user means to the organization rather than the actual identity. The general steps are

[10]:

● Define the roles.

● Assign rights or privileges to each role.

● Assign each user a role.

● Users can then access a service or resource through the role.

3.3.3.2 Model

Named protection domain (NPD) is a common model in RBAC. Since the main idea is to properly

group privileges, in the NPD model, each task in a system is associated with a set of privileges

needed to carry out the task [10]. For instance, a bank system can have a task "approve loan." An

NPD called Loan_Approvable can be defined for the task, and it is associated with a bunch of

privileges:

● Can access customer credit history data.

● Can access customer income and employment data.

● Can view loan application forms and supporting documents.

● Can set loan terms and interest rates.

● Can request additional information or documentation from the customer.

● etc.

The NPD can then be assigned to a user or another NPD. The privileges, NPDs, and users together

form a directed acyclic graph. The NPDs can also be referred to as roles [10].

25

The granularity of a role can vary from being specific, like the Loan_Approvable example, to being

general, like Bank_Staff, Bank_Supervisor, Director, etc. After users have adopted roles, they can

carry out any task or access any resource regulated by the roles. It is worth noticing that some

DAC models can have a notion of "group," which groups users, while a role in RBAC groups

privileges.

There are some advantages to having the notion of role between users and privileges. Firstly, the

management process becomes simpler because system admins assign privileges to roles and then

roles to users instead of assigning privileges directly to users. Given an organization, when a new

user or an application is added, the admin must assign a role corresponding to the user or

application's responsibilities. Similarly, when a user quits, or an application is removed, the admin

must unassign the role. Secondly, roles can form a hierarchy that naturally fits an organization. If

a user is assigned a specific role, they may also be allowed to use all the "sub-roles" associated

with that role. The user can do more things without asking for permission for each action. Thirdly,

when a role hierarchy is appropriately built in an organization, the admin can enforce separation

of duties and avoid giving a user too many privileges that can damage the system should the user

turn malicious. Moreover, besides containing privileges, a role can also contain constraints [10].

For example, staff in a bank can activate the Loan_Approvable role, but the admin can limit the

role so that the staff can only approve two loans a day.

3.3.4 Attribute-based Access Control (ABAC)

3.3.4.1 Policy

Attribute-based Access Control (ABAC) is comparable to RBAC. However, instead of introducing

the notion of role between user and privileges, ABAC introduces the notion of attributes, which

are any information or metadata associated with the subjects and objects. Furthermore, since those

attributes can change in runtime, ABAC can be static or dynamic, making it versatile and fine-

grained. The general steps that an ABAC policy defines are [13]:

● Define the subjects and objects.

● Define the objects’ descriptors. Each descriptor contains attributes of the corresponding

object.

● Define the subjects’ descriptors. Each descriptor contains attributes of the related subject.

26

● Define the permissions. Each permission is an object descriptor associated with an

operation.

● When a user requests access to a resource, the ABAC system checks the user’s and resource

descriptors. Determine if the user should be granted access based on the defined

permissions.

Figure 3-8 ABAC elements

3.3.4.2 Model

XACML is one of the ABAC models since it provides a formal language and a template

architecture for representing and building an ABAC system. The architecture defines the following

components [14]:

Figure 3-9 ABAC model architecture

● Policy Enforcement Point (PEP): processes access requests from the user and allows or

denies access to the associated resource.

● Policy Administration Point (PAP): manages the access control rules.

27

● Attribute Managers (AMs): keep track of the subjects, resources, and environment

attributes used to make access control decisions.

● Policy Information Points (PIPs): AMs are usually abstracted away, and the PIP is the

interface to query or update the AMs.

● Policy Decision Point (PDP): evaluates and returns the result decision on whether access

is allowed or denied given an access request, policy, and attributes.

● Context Handler (CH): orchestrates the system.

The architecture can be implemented as a distributed system where the components interact using

HTTP requests or as a monolith system where the components are just classes invoking each other.

That is up to the developer.

3.3.5 Related Works: Blockchain-based Access Control Mechanisms

3.3.5.1 RBAC mechanism

Cruz, Kaji, and Yanai [15] proposed a blockchain-based Role-Based Access Control solution

called RBAC-SC. They pointed out that the role assignment entity may differ from the service

provider or resource owner within some RBAC systems. In such a case, from the point of view of

the role assigner, the service provider is inconsequential to it because what service is being

provided does not affect the role-assigning process. On the other hand, when a user requests access

to the service, the service provider must actively contact the role assigner for user role validation;

failure to do so leads to a security breach in the system. The paper proposed a blockchain-based

RBAC mechanism where the university (the role assigner) first submits a student role management

smart contract to the blockchain. Then, when a student eats at a restaurant (the service provider),

the restaurant queries the contract for the details, uses the details and follows a challenge-response

protocol against the student’s app to validate the student’s role at the university. Ultimately, the

restaurant does not have to contact the university directly. Instead, it accesses the published role

data on the blockchain, i.e., the service provider gets what it needs without contacting the role

assigner directly.

28

Figure 3-10 RBAC-SC mechanism design

The blockchain platform that the paper used was Ethereum. All the RBAC logic was implemented

into an Ethereum smart contract, including the following functions [15]:

● addUser(): add a user to the blockchain and assign a role

● removeUser(): make a user invalid and revoke their role.

● addEndorsee(): allow a user to endorse another user by adding them to the blockchain, e.g.,

a student endorsing another student.

● removeEndorsee(): allow a user to remove an endorsee from the blockchain.

● changeStatus(): deactivate the smart contract and indicate that it should not be used

anymore.

RBAC-SC, as presented, focuses on access control between a university and students accessing

services at a restaurant. It has a limited scope with moderate traffic. And its access control

decisions are infrequent, occurring mainly when students access restaurant services. On the other

hand, an API access control system deals with a broader use case of regulating access to APIs

offered by providers, potentially handling higher volumes of requests and with the need for real-

time evaluation of access permissions for every incoming request.

3.3.5.2 ABAC mechanism

Maesa, Mori, and Ricci [14] followed the XACML model to build a blockchain-based ABAC

mechanism. The components mentioned in the XACML reference architecture were implemented

as follows:

29

● PEP: a Java component that acts as a gateway between the subjects requesting access and

the resource, providing an API for handling access requests and responses.

● PAP: a Java component where the resource owner submits an XACML file containing

attributes and rules for each resource. The PAP component then parses the file into smart

contract code and sends the contract to the CH. After the CH has deployed the contract to

the blockchain, it returns the contract address to the PAP. The PAP then keeps track of the

resource and its associated contract address.

● CH: the bridge between the PEP and PAP and the blockchain. When the CH receives the

smart contract from PAP, it compiles the contract into EVM bytecode, which is supposed

to execute on the Ethereum blockchain. The CH sends the bytecode to the blockchain using

web3j and returns the resulting address to the PAP. When the CH receives an access request

from the PEP, it extracts the resource ID from the request, fetches the corresponding smart

contract address from the PAP, and then submits a transaction to the blockchain to execute

the deployed smart contract where the evaluation of whether the access is allowed or denied

takes place. The CH then forwards the result back to the PEP.

● PDP and PIP: in this mechanism, the PDP and PIP are logically incorporated into the smart

contracts on the blockchain.

This mechanism can be extended to various use cases, including API access control. However, it

may result in a complex system due to several factors. Firstly, the resource owner must have ABAC

and XACML knowledge beyond simple grant and revocation actions. Moreover, smart contracts

are not directly written, maintained, and tested. Instead, they are generated from the XACML

policy files, and submitting multiple XACML policy files leads to deploying smart contracts on

the blockchain. This complexity can present challenges for users and developers implementing the

system.

3.3.6 Summary

The following table summarizes the presented access control types. It selects one that fits the

specific use case of this thesis, which is an access control system for API endpoints that would

result in:

30

● A straightforward system architecture, allowing for convenient experiment setup for

extensive performance evaluation.

● An intuitive user interface, allowing the API providers to grant or revoke access at their

will for each endpoint.

● A straightforward smart contract implementation.

Table 3-3 Access control types summary

Access

control type Description

Fit for the

use case Explanation

DAC

Access is based

on the resource

owner's

discretion

Yes

DAC allows the API providers to have fine-

grained control over access to their API

endpoints. Moreover, working out a mechanism

based on the access matrix model to implement

into a smart contract would be straightforward.

The architecture and user interface that come

with the mechanism would also be manageable.

MAC

Access is based

on predefined

rules or policies

that are

independent of

the resource

owner's

discretion.

No

Rules and security levels must be defined and

assigned up front, leaving no flexibility. From

the point of view of API providers, there is no

granting and revoking. All access control rules

are not up to the API providers.

31

RBAC

Access is based

on the role of the

user

No

Instead of focusing on granting or revoking

access to the endpoints, the API provider would

also have to group the clients into roles, which

may not be straightforward and may make the

smart contract implementation complex due to

the role managing part.

ABAC

Access is based

on attributes or

characteristics of

the user,

resource, or

context.

No

While ABAC fits the context of API access

control, using ABAC may result in a complex

system architecture. Moreover, granting and

revoking can become less intuitive for the API

providers because they must submit and manage

more attributes for each endpoint and client.

3.4 API Management

Controlling access to API endpoints is part of a set of practices that facilitate the creation,

publishing, and monitoring of APIs throughout their lifecycle, also known as API management.

Since this thesis is about implementing access control for API endpoints, this section first gives an

overview of API management and then goes into the details related to access control. According

to De et al. [1], API management is a comprehensive solution that supports every step in the

complete life cycle of an API suite, from when it is designed to when it is built, released,

maintained, and retired. The critical component within an API management tool is the API

gateway. It is a facade between the clients and the back-end services, an entry to the system.

Moreover, it can be a single host or a group of hosts, i.e., a group of gateway services. The

following diagram illustrates the API gateway and its internal logical layers.

32

Figure 3-11 The API gateway within an API management platform

Here, De et al. [1] indicates that when a client sends a request to the gateway, the request must

pass through multiple layers, including the API security layer for security enforcement. Its content

can be validated and transformed to the appropriate format, and after that, it gets forwarded or

routed to the appropriate back-end service. In addition, the gateway can limit the traffic and cache

the response if needed to keep the load on the back-end services adequate. The gateway forms a

stable communication link between the clients and the back-end services.

Regarding the API security layer, it can be broken into the following aspects [1]:

• Authentication: responsible for identifying the client's identity that makes the API call. In

this case, the client is an app. The app can be a smartphone app from either of the app

distributors, such as App Store and Google Play, a PC app, or a web app. The API gateway

gives each app a name and a Universally Unique Identifier (UUID). The gateway also

keeps track of the UUIDs and allows the system admin to revoke them if needed.

• Authorization: after identifying the app, the gateway must determine what resources or

methods the app can access. Usually, the app or the developer fetches an access token from

the gateway, and then the app will embed the token in requests. The access token is

associated with the access privileges that the app has.

• Identity mediation: if the back-end services behind the gateway also require knowing the

client's identity, the system can have a dedicated identity management system like SAML.

• Data privacy: any sensitive data should be encrypted or masked. If keys and certificates are

used, they should also be managed appropriately.

• DoS protection: Denial-of-service (DoS) attacks are common for APIs, and the gateway

should be able to protect them from those attacks.

33

• Threat detection: the gateway should be able to detect malicious requests, such as

malformed formats, embedded scripts, etc. and handle them.

By concentrating on the access control of API endpoints, this thesis deals with the API security

layer of the API gateway. There are generally three roles surrounding an API suite [1]:

● API providers: create, manage, and maintain APIs, making them available for consumption

by API clients.

● API clients: consume APIs to build applications or services that rely on them for

functionality or data.

● Product managers: responsible for strategically planning, designing, and implementing

API programs. Their main goal is to ensure that the API program fits the organization's

goals and meets the needs of both API providers and clients.

This thesis focuses on the API provider and API client roles. From the perspective of each role, an

API management tool offers many functionalities, including:

● Authentication and authorization (or access control)

● API Discovery

● API Auditing, Logging and Analytics

3.5 Summary

This chapter shows the foundational concepts behind blockchain technology and Hyperledger

Fabric, the blockchain that was chosen to implement the access control system proposed in this

thesis. IBM backs Hyperledger Fabric, which has been used in many industries and companies,

has a large community, and offers tooling options that can facilitate building and testing

blockchain-based system applications. Hyperledger Fabric stands out from other blockchain

technologies thanks to using the execute-order-validate pattern instead of the order-execute pattern.

Furthermore, Hyperledger Fabric chaincode allows using familiar programming languages such

as Java, Go, and JavaScript to develop smart contracts instead of requiring developers to learn and

use some domain-specific language. However, Hyperledger Fabric has disadvantages and potential

performance issues explored in the experiments chapter.

34

The various access control types are also discussed, and the Discretionary Access Control (DAC)

type was chosen because it fits the API endpoint access control use case. It is rational to leave the

access control decision to the resource owner (API provider) instead of the system administrators

like in MAC or RBAC. Moreover, DAC can result in a straightforward system architecture, a

flexible access control implementation, and a user-friendly front-end for the API providers.

API management is also discussed, highlighting the importance of having a gateway in front of

any API system, and access control is part of the responsibilities of that gateway.

35

4. DESIGN AND ARCHITECTURE

This chapter will first present the overall system architecture for the API access control solution

with the main components and their relationship with each other. Then, since the core idea is about

storing and checking access control rules as data on the blockchain, the data model will be

discussed with proper design so that the implementation is clean and maintainable. Thirdly, the

design choices for managing the wallets for authentication and user management will be described.

Finally, sequence diagrams will present the typical workflows and use cases.

4.1 Architecture

The following diagram illustrates the high-level overview of the components:

Figure 4-1 Proposed Architecture

Sentry is the component at the diagram's centre and the architecture's core. Sentry is the gateway

that protects the API endpoints. API endpoints are owned and registered with Sentry by the API

provider. The app developer uses Sentry to request access to the API endpoints, then embed

necessary credentials and tokens into the client app so that the client app can access the API

36

endpoints via Sentry. The client app and app developer are both forms of clients. Finally, Sentry

stores and queries access control data from the Hyperledger Fabric network.

The architecture addresses the following key points:

• There must be a place to store and manage the access control rules; in this case, the

Hyperledger Fabric blockchain network is responsible for that.

• The component forwarding requests to the protected API endpoints should be separate from

the blockchain. Otherwise, if the forwarding logic is implemented on the blockchain, the

peers would bombard the protected API points due to the nature of having a consensus

mechanism, and the peers would bombard the protected API endpoints.

• The Hyperledger Fabric blockchain network manages the rules, and Sentry orchestrates the

forwarding and other tasks.

4.2 Data Model Design

As mentioned in the architecture, the access control data is stored in the Hyperledger Fabric ledger,

so the chaincode must be written to manage data properly. And since there are many entities that

have a certain relationship to each other (i.e., client, provider, endpoint, etc.), an entity-relationship

diagram can be used to design the data model for the system:

37

Figure 4-2 Entity-relationship diagram

The diagram presents the following entities:

Table 4-1 Entity-relationship diagram explanation

Entity Explanation

API provider entity This entity represents the API provider. A primary key identifies each API

provider entity with the provider’s name. Each provider can own multiple

origin servers.

Client entity This entity represents both the client app developer and the client app

itself. The primary key is the client’s name, which is formed by

concatenating the app developer's name and the app's name.

Origin server entity This entity represents a server machine that hosts the protected API

endpoints. It is defined by a composite key consisting of the provider’s

and server's names. Each server entity stores the host address and can host

multiple endpoints.

38

Endpoint entity An API contains multiple endpoints. An endpoint is uniquely defined by

a composite key consisting of the provider’s name, server name, path

(e.g., /ping), and verb (e.g., GET).

Endpoint Access

Grant entity (EAG)

This entity represents that one client has been granted access to one

endpoint. The relationship between the client and endpoint entities is

initially many-to-many, meaning each client can access multiple

endpoints, and each endpoint can be granted to multiple clients. To

simplify this complex relationship, it is resolved through the EAG entity.

Each client can possess multiple EAGs, while each EAG is associated

with only one client. Similarly, each endpoint can be linked to multiple

EAGs, with each EAG associated exclusively with one endpoint.

Furthermore, each EAG contains an “approved by” field, which is initially

null. When the API provider approves the EAG, the provider’s name is

put into the “approved by” field. Another field is “revoked,” which is

initially false. When an API provider revokes an EAG, the field is set to

true.

4.3 Wallet Management

According to the system architecture, the API providers and clients interact with Sentry instead of

directly with the blockchain network. Furthermore, it is essential to keep the users abstracted away

from blockchain details when using the system to ensure a smooth user experience for them. Hence,

a wallet management and user authentication mechanism are needed so that when Sentry needs to

interact with the blockchain network on behalf of the user, it has the proper wallet to do so. That

leads to two possible designs:

• Server-managed wallet: when new users register with Sentry, they can use regular

usernames and passwords. Sentry then creates Fabric wallets and stores the users’

credentials and corresponding wallets. It can use a simple file for storage, a separate

database, etc. When a user signs in, Sentry verifies the credentials and retrieves the correct

wallet for interacting with the blockchain.

39

• Client-managed wallet: only a username is needed when a new user registers. Sentry then

creates a Fabric wallet, compresses it, encrypts it with symmetric encryption, and sends the

encrypted wallet back to the user as a “password.” The secret key used for the symmetric

encryption is stored safely at Sentry. When a user signs in, Sentry can retrieve the wallet

by decrypting and decompressing the “password.” This “password” will be called an

encrypted wallet in later chapters.

The client-managed wallet approach was chosen to keep things simple and avoid scalability

overheads when having extra file storage and database involved.

4.4 Workflows

This section presents a sequence diagram of the key operations of the system.

4.4.1 Adding an endpoint

The following sequence diagram is for the use case where the API provider registers an endpoint.

40

Figure 4-3 Sequence diagram: endpoint registration use case.

The diagram demonstrated the following workflow:

• The provider first uses the browser to submit a form at the Sentry front-end website.

• The front-end then sends an HTTP request to the AddOriginServer endpoint on the back-

end.

• The back-end then invokes the AddOriginServer method of the chaincode deployed on the

blockchain.

• After the origin server data has been added to all peers’ ledgers, the blockchain returns a

message to the back-end confirming that the data has been added.

• The back-end sends an HTTP response to the front-end, confirming that the origin server

has been added.

41

• The front-end reloads the page to confirm with the provider that the origin server has been

added.

4.4.2 Requesting & Granting Access

The following sequence diagram is for the use case where the client app developer has discovered

on the Sentry website about the endpoint that the provider previously registered on the Sentry

website.

Figure 4-4 Sequence diagram: endpoint discovery use case.

The diagram demonstrated the following workflow, broken into two parts:

• The client app developer first clicks a button on Sentry front-end website to request access

to an endpoint.

• The front-end sends an HTTP request to the AddEndpointAccessGrant endpoint on the

back-end.

• The back-end then invokes the AddEndpointAccessGrant method of the chaincode

deployed on the blockchain.

42

• After the data has been added to all peers’ ledgers, the blockchain returns a message to the

back-end confirming that the data has been added.

• The back-end sends an HTTP response to the front-end confirming that the access request

to the endpoint has been added.

• The front-end reloads the page to confirm with the developer that the access request has

been added and is waiting for approval from the provider.

After an access request has been added, the second part begins:

• On the provider’s browser, an access request and the client app developer’s information

will appear. The provider then clicks a button to approve the request.

• The front-end then sends an HTTP request to the Approve endpoint on the back-end.

• The back-end then invokes the Approve method of the chaincode deployed on the

blockchain.

• After the EAG grant object has been updated and saved to all peers’ ledgers, the blockchain

returns a message to the back-end confirming that the approval has been done.

• The back-end sends an HTTP response to the front-end confirming that the access request

has been approved.

• The front-end reloads the page to confirm with the provider that the access request approval

was successful.

When the client app developer reloads the page, the approved endpoint should show the ID of the

EAG.

4.4.3 Accessing Endpoint

After the client app developer has been granted access to an endpoint, The developer then embeds

the encrypted wallet and the EAG ID into the client app so that the client app can call the protected

endpoint. The following sequence diagram describes the use case where the client app invokes the

endpoint.

43

Figure 4-5 Sequence diagram: endpoint invocation use case.

The diagram demonstrated the following workflow:

• The client app attaches the encrypted wallet and EAG ID into a request's header of a request

and sends it to the Sentry back-end.

• The back-end then decrypts the wallet and uses it together with the EAG ID to call the

GetOriginServerInfo method of the chaincode deployed on the blockchain.

• Thanks to the wallet, the blockchain knows which client is trying to access the protected

API. And thanks to the EAG ID, the blockchain can retrieve the endpoint access grant

record and check if the provider has approved it. If the access is valid, the blockchain

returns the origin server data.

• From the origin server data, the back-end figures out the exact address, and forwards the

HTTP request of the client app to the destination.

• When the endpoint responds, the back-end forwards the response to the client app.

Throughout the process, the address of the origin server that hosts the protected API is hidden from

the client.

44

5. IMPLEMENTATION

This chapter presents the main aspects of implementing the proposed blockchain-based API

endpoint access control system. It begins by showing the tools, libraries, and technologies used for

the implementation. Then, the configuration of the Hyperledger Fabric blockchain network is

described. Following this, the smart contract (chaincode) is presented.

The chapter then highlights the system's practical interaction with end users through screenshots.

Lastly, the exploration of the Hyperledger Fabric blockchain is depicted using a set of screenshots

from the Blockchain Explorer tool.

5.1 Technology Stack

The following diagram presents the technologies used for the implementation.

Figure 5-1 Technology Stack

Table 5-1 Technology stack explanation

Technology Explanation

Ubuntu LTS An operating system

45

Fablo A tool that takes a single YAML file that describes the desired Hyperledger Fabric

network (e.g., number of orderers and peers, consensus mechanism, channels,

etc.) and generates necessary configuration files and shell scripts that create such

a network that runs on top of Docker and maintain it [16]

Docker A containerization platform widely used in software development. It allows

developers to package applications, dependencies, and runtime environments into

self-contained units called containers. These containers can be easily deployed

and executed on any system that supports Docker, ensuring consistent behaviour

across different environments. This technology simplifies the process of software

development, testing, and deployment, making it a popular choice for building

scalable and portable applications [17]

Hyperledger

Fabric

A blockchain framework. Under the hood, Fabric utilizes Docker containers to

encapsulate and isolate various components of the blockchain network, including

peers, orderers, and the certificate authority. Thanks to doing so, the deployment

of blockchain networks is simplified, making it easier for developers to set up and

maintain distributed ledger systems.

fabric-

contract-api

A JavaScript module used in Hyperledger Fabric chaincode development to

simplify the implementation of smart contracts. It provides a set of classes and

functions that abstract the low-level details of the Hyperledger Fabric chaincode

[18]

Node.js A server-side runtime environment built on Chrome's V8 JavaScript engine. It

allows developers to execute JavaScript code outside the browser, enabling

server-side application development. Node.js provides an event-driven, non-

blocking I/O model that makes it highly efficient. Its extensive package manager,

npm, offers a vast ecosystem of libraries and modules, simplifying the

development process and enhancing code reusability [19]

Express A web application framework for Node.js. It helps build web servers and APIs as

46

well as simplifies handling HTTP requests and responses with its intuitive routing

system and middleware support [20]

fabric-node-

sdk

A Node.js software development kit (SDK) for Hyperledger Fabric. It enables

developers to interact with the Hyperledger Fabric network, create, endorse,

submit transactions, invoke the functions on the chaincode, and query the

blockchain's state [21]

http-proxy A Node.js module that facilitates HTTP proxying, allowing a server to forward

incoming HTTP requests to other destinations. In this case, the destinations are

the protected API endpoints [22]

Pug A template engine for Node.js. It provides a concise syntax for generating HTML

pages. In this case, those pages are the front-end user interface for the API

providers and clients [23]

K6 A load-testing tool designed to assess the performance of web applications and

APIs [24]

The following diagram indicates which core system component is made with which technology:

47

Figure 5-2 Technology Stack with Highlighted System Components

As shown in the diagram, Sentry is built on top of Express and consists of two parts:

• The front-end: this is the user interface generated by Pug for the API providers to add and

manage the API endpoints and for the app developer to discover and get access to those

endpoints.

• The back-end: this uses the fabric-node-sdk module to interact with the chaincode running

on the peers of the Hyperledger Fabric network to manage and query access control data

and then uses the http-proxy to forward the requests to the protected API endpoints.

5.2 Hyperledger Fabric Network Configuration

A YAML file was put together for Fablo to create the Hyperledger Fabric network, containing the

following key properties:

• Two orderers using the RAFT consensus mechanism.

• One organization with one peer

• One channel for the organization and its peers

• One Node.js chaincode deployed on all the peers within the organization.

48

The number of peers in the organization is changed during the performance evaluation experiments.

Every time the YAML file is changed, the whole Hyperledger Fabric network is destroyed and

recreated to ensure the system's state is always clean and fresh for testing and development.

5.3 Chaincode

The following is a summarized representation of the chaincode, focusing on its main

functionalities:

const { Contract } = require('fabric-contract-api');

class Sentry extends Contract {

 async AddClient

 async AddProvider

 async GetUser

 async AddOriginServer

 async AddEndpoint

 async AddEndpointAccessGrant

 async GetEndpointAccessGrant

 async Approve

 async Revoke

 async Enable

 async GetOriginServerInfo

}

Figure 5-3 Chaincode (smart contract) methods

As shown in the code, the chaincode extends from the Contract object of the fabric-contract-api

module and consists of the following methods:

Table 5-2 Chaincode (smart contract) methods explanation

Method Explanation

49

AddClient Adds a new client to the system.

AddProvider Adds a new API provider to the system.

GetUser

Retrieves user information based on the caller. A user can either be a

client or an API provider.

AddOriginServer Adds a new origin server associated with an API provider.

AddEndpoint Adds an endpoint to an origin server.

AddEndpointAccessGrant Grants access to a client for an endpoint.

GetEndpointAccessGrant Retrieves information about an endpoint access grant.

Approve Approves an endpoint access grant.

Revoke Revokes an endpoint access grant.

Enable Re-enable a revoked endpoint access grant.

GetOriginServerInfo

Retrieves information about the origin server related to an access

grant, containing the origin server’s address so Sentry knows where

to forward the traffic.

5.4 Demo

This section demonstrates how the API providers and app developers use Sentry. Take the scenario

where a software developer has developed a suite of APIs containing the endpoint GET /sample-

get. In this case, such a developer can be called an API provider. Assuming no access control exists

for the API, the provider can use Sentry to protect the endpoints. From the point of view of the

provider, here are the steps they can follow:

50

1. Head to the register page, tick the box to verify that it is an API provider, then input a name,

and click Create Account

Figure 5-4 Demo: API Provider Registration step 1

2. Sentry will redirect the provider to the login page and show an encrypted Hyperledger

Fabric wallet that the provider can use to log in. To the provider, it is like a password. The

provider needs to copy and keep the wallet secure.

51

Figure 5-5 Demo: API Provider registration step 2.

3. Check the box to confirm bringing an API provider again and use the registered name and

provided password to log in.

52

Figure 5-6 Demo: API Provider logging in.

4. On the home page, there is no server initially.

53

Figure 5-7 Demo: API Provider homepage.

5. Click Add Server and fill in the details, e.g., Name the server “sample-server” and specify

the host address, "http://localhost:9998.” The address is like that for demo purposes;

practically, it would be something other than localhost.

http://localhost:9998/

54

Figure 5-8 Demo: API Provider adding a server.

6. Click submit; Sentry will add and track the server.

55

Figure 5-9 Demo: API Provider homepage showing the added server.

7. Click on the server to expand it; there will be a little form to add an endpoint, so fill in the

path.

56

Figure 5-10 Demo: API Provider adding an endpoint.

8. Click submit, and the sample-get endpoint will be added.

57

Figure 5-11 Demo: API Provider homepage showing the added endpoint.

Suppose a developer needs to create a Node.js app that invokes the GET /sample-get endpoint

from the sample-server that Sentry now protects. Here are the steps that the developer can follow:

1. Head to the register page and fill in the app and developer names.

58

Figure 5-12 Demo: Client app developer registration step 1.

2. After clicking submit, the developer is directed to the login page, and an encrypted

Hyperledger Fabric wallet is provided.

59

Figure 5-13 Demo: Client app developer registration step 2.

3. Fill in the app name, the developer’s name, and the wallet.

60

Figure 5-14 Demo: Client app developer logging in.

4. At the homepage, all providers registered with Sentry will be shown; here, we have the

sample-api provider listed.

61

Figure 5-15 Demo: Client app developer homepage.

5. Click on the provider to view the endpoint.

62

Figure 5-16 Demo: Client app developer viewing the endpoint.

6. Click the Request Access button.

63

Figure 5-17 Demo: Client app developer requesting access to an endpoint.

At this stage, on the provider’s side:

1. The provider will get an access request from the developer asking permission to use the

GET /sample-get endpoint.

64

Figure 5-18 Demo: API provider viewing the endpoint access request.

2. The provider clicks Approve to grant permission to the developer. After the endpoint has

been approved, there is a “Revoke” button. When the provider does not want the sample-

app client to access the endpoint anymore, they can just click the revoke button.

65

Figure 5-19 Demo: API Provider approving the endpoint access request.

Back to the developer’s side:

1. The developer should see that the requested endpoint and an access grant ID in brackets

have been granted.

66

Figure 5-20 Demo: Client app developer viewing the granted endpoint access.

2. Embed the app name, developer name, encrypted wallet, and the access grant ID into the

sample-app. Which, in this case, is a simple Node.js app

67

Figure 5-21 Demo: Client app developer embedding the access grant ID into the client app.

3. At this stage, the sample-app works when browsing it in the web browser.

Figure 5-22 Demo: The client app works and can invoke the endpoint.

5.5 Blockchain Explorer – System Traceability

The Blockchain Explorer is used to demonstrate that every interaction with the smart contract

deployed on the Hyperledger Fabric network is recorded in the underlying ledger of each peer

node. It is a web-based app for browsing the blocks inside the blockchain [25].

When browsing the Hyperledger Fabric blockchain created for the demo in the previous chapter,

the blockchain-explorer tool’s dashboard showed that there were 20 blocks with 20 transactions

committed; there was one node and one chaincode deployed on the network:

68

Figure 5-23 Blockchain Explorer dashboard.

On the blocks section, all blocks in the blockchain can be viewed:

Figure 5-24 Blockchain Explorer Blocks view.

In the transactions section, all transactions in the blockchain can be viewed:

69

Figure 5-25 Blockchain Explorer Transaction view.

In this case, each block contains one transaction. The following is a transaction in a block near the

beginning of the blockchain:

Figure 5-26 Blockchain explorer inspecting a transaction.

When inspecting its reads and writes values, we see that this transaction was about registering the

API provider.

70

Figure 5-27 Blockchain explorer viewing the API provider registration event.

There is another transaction showing the step where the API provider added an endpoint in the

demo:

Figure 5-28 Blockchain explorer viewing the event where the API provider added an endpoint.

Similarly, there are transactions about requesting access to the endpoint, granting access to the

endpoint, etc.

71

6. PERFORMANCE EVALUATION

This chapter presents the experiments to evaluate the system's performance and answer the

research questions. First, the hardware setup is presented, followed by the strategy and tools used

for the experiments, followed by the experiments and graphs.

6.1 Methodology

6.1.1 Hardware Setup

The system was deployed to virtual machines (VM) running on a private cloud infrastructure. Then,

a suite of performance evaluation scripts was run against the system to record statistics in CSV

format. From the statistics, the graphs were plotted. The performance evaluation scripts suite

contains the following:

• K6 scripts: these are written using K6, an open-source tool from Grafana labs for load-

testing and validating performance and reliability [24]. These scripts create and manage

virtual client app to load the system with traffic.

• Preparation scripts: these are written using the Mocha test framework to bring the system

to a certain state. After that, the K6 scripts take over and load test the system.

72

The following diagram presents the VMs created on the private cloud and the corresponding

system components deployed:

Figure 6-1 Hardware setup for experiments.

As shown in the diagram. There are three VMs in total:

• The Load-Testing VM is for running the tool K6 which creates and manages the virtual

client apps for load-testing the system.

• The Blockchain VM is for running Sentry and the Hyperledger Fabric network; the network

can be configured to have up to 9 peers, depending on the experiment.

• The API Endpoint VM is where the server with the protected API endpoints is deployed.

The following table shows the hardware specifications of the VMs:

Table 6-1 Experiment VMs' Hardware Specifications

VMs Hardware specifications

Load-Testing VM OS: Ubuntu

CPU: 8 cores

Memory: 32GB

73

Blockchain VM OS: Ubuntu

CPU: 4 cores

Memory: 8GB

API Endpoint VM OS: Ubuntu

CPU: 4 cores

Memory: 8GB

6.1.2 System Preparation for Accessing Endpoints

The primary focus of all experiments is on the “Accessing endpoint” workflow described in

Chapter 4, where the client apps send requests to the protected endpoints. This workflow

determines the overall efficiency because the system must serve the most traffic. To get a fresh

system to the state where the workflow can occur, preparation scripts send HTTP requests to Sentry

and carry out the following prerequisite steps of the “Accessing endpoint” workflow:

• Register an API provider account.

• Register the VM that hosts the endpoints to be a protected server.

• Register the endpoints.

• Register a client account.

• Request endpoint access for the client account.

• Approve the endpoint access request.

After the access has been granted, the credentials are stored for the virtual client apps created by

K6 to use so that they can send requests to the protected endpoints via Sentry.

6.2 Experiments

6.2.1 Experiment 1: Latency

Latency in this context means how long it takes for the client app to send a request to one of the

protected API endpoints and receive a response. This experiment aims to determine two key

aspects: the overhead latency of the system and the latency specific to the Hyperledger Fabric

component within the system, which correspond to research questions 1 and 2, respectively.

74

To address research question 1, virtual client applications were used to simulate user interactions

and generate load, and the round-trip time of these interactions was measured and compared. To

begin with, the Blockchain VM was bypassed, meaning that the load was sent to an API endpoint

on the API Endpoint VM directly (Direct API access scenario). After collecting the first set of

statistics, the Blockchain VM was enabled, and the loading process was repeated, with the load

passing through both the Blockchain VM and the API Endpoint VM (Blockchain-enabled access

control scenario). Once research question 1 was addressed, research question 2 was explored. The

Blockchain VM remained enabled to do this, but the Hyperledger Fabric component was bypassed

(Blockchain-bypassed access control scenario). Once again, virtual client applications were used

to load the system. By comparing the roundtrip time statistics obtained from both the full system

and the system with the Hyperledger Fabric component bypassed, research question 2 was

addressed.

6.2.2 Overhead latency of the system

The detailed steps for the Direct API access scenario were as follows: K6 running on the load-

testing VM initiated with one virtual client app. The virtual client app went through multiple

iterations for 60 seconds. In each iteration, it sent a request to the API endpoint and reported the

round-trip time once it got the response. Every round-trip time was parsed and stored, resulting in

a CSV file of thousands of iterations and their corresponding round-trip time after 60 seconds,

which was used to plot scatter charts (notice that the dashed line highlights the zone between Q1

and Q3):

75

Figure 6-2 Direct API access latency for one client app

The testing procedure was repeated with more sets of virtual client apps, resulting in the following

scatter charts:

Figure 6-3 Direct API access latency for ten client apps

76

Figure 6-4 Direct API access latency for 20 client apps

Figure 6-5 Direct API access latency for 30 client apps

77

Figure 6-6 Direct API access latency for 40 client apps

Figure 6-7 Direct API access latency for 50 client apps

78

Figure 6-8 Direct API access latency for 60 client apps

Figure 6-9 Direct API access latency for 70 client apps

79

Figure 6-10 Direct API access latency for 80 client apps

Figure 6-11 Direct API access latency for 90 client apps

80

Figure 6-12 Direct API access latency for 100 client apps

Figure 6-13 Direct API access latency for 150 client apps

81

Figure 6-14 Direct API access latency for 200 client apps

Figure 6-15 Direct API access latency for 250 client apps

82

Figure 6-16 Direct API access latency for 300 client apps

Figure 6-17 Direct API access latency for 350 client apps

83

Figure 6-18 Direct API access latency for 400 client apps

Figure 6-19 Direct API access latency for 450 client apps

84

Figure 6-20 Direct API access latency for 500 client apps

At this point, the Blockchain-enabled access control scenario took over. With the three VMs in the

private cloud environment, the Blockchain VM was enabled and configured with one peer node in

the Hyperledger Fabric network. Subsequently, once access to the protected API endpoints had

been granted, K6 running on the load-testing VM started loading the system. After it has finished

loading the system with multiple sets of virtual client apps, the following scatter charts were plotted:

85

Figure 6-21 Blockchain-Enabled Access Control latency for one client app

Figure 6-22 Blockchain-Enabled Access Control latency for ten client apps

86

Figure 6-23 Blockchain-Enabled Access Control latency for 20 client apps

Figure 6-24 Blockchain-Enabled Access Control latency for 30 client apps

87

Figure 6-25 Blockchain-Enabled Access Control latency for 40 client apps

Figure 6-26 Blockchain-Enabled Access Control latency for 50 client apps

88

Figure 6-27 Blockchain-Enabled Access Control latency for 60 client apps

Figure 6-28 Blockchain-Enabled Access Control latency for 70 client apps

89

Figure 6-29 Blockchain-Enabled Access Control latency for 80 client apps

Figure 6-30 Blockchain-Enabled Access Control latency for 90 client apps

90

Figure 6-31 Blockchain-Enabled Access Control latency for 100 client apps

Figure 6-32 Blockchain-Enabled Access Control latency for 150 client apps

91

Figure 6-33 Blockchain-Enabled Access Control latency for 200 client apps

Figure 6-34 Blockchain-Enabled Access Control latency for 250 client apps

92

Figure 6-35 Blockchain-Enabled Access Control latency for 300 client apps

Figure 6-36 Blockchain-Enabled Access Control latency for 350 client apps

93

Figure 6-37 Blockchain-Enabled Access Control latency for 400 client apps

Figure 6-38 Blockchain-Enabled Access Control latency for 450 client apps

94

Figure 6-39 Blockchain-Enabled Access Control latency for 500 client apps

Using the Q1 and Q3 values from the Direct API Access and Blockchain-enabled access control

scenarios, the following tables can be constructed:

Table 6-2 Q1 Latency comparison: Direct API Access vs Blockchain-enabled access control

Client app

count

Q1 Latency (ms) of

Direct API Access

Q1 Latency (ms) of Blockchain-

enabled access control

Q1 Latency

Difference (ms)

1 0.399 10.005 9.606

10 2.012 37.731 35.719

20 4.637 67.015 62.378

30 6.917 100.027 93.11

40 9.801 131.714 121.913

50 11.749 165.335 153.586

60 14.662 194.299 179.637

70 17.536 227.884 210.348

80 20.312 265.253 244.941

95

90 22.494 296.069 273.575

100 25.782 336.699 310.917

150 40.121 502.741 462.62

200 51.209 702.11 650.901

250 66.578 866.02 799.442

300 82.435 1039.623 957.188

350 92.19 1209.222 1117.032

400 106.609 1355.652 1249.043

450 122.308 1562.393 1440.085

500 135.271 1712.416 1577.145

Table 6-3 Q3 Latency comparison: Direct API Access vs Blockchain-enabled access control

Client app

count

Q3 Latency (ms) of

Direct API Access

Q3 Latency (ms) of Blockchain-

enabled access control

Q3 Latency

Difference (ms)

1 0.449 11.754 11.305

10 2.666 49.923 47.257

20 5.364 86.886 81.522

30 7.941 129.855 121.914

40 11.055 169.848 158.793

50 13.469 217.053 203.584

60 16.895 255.706 238.811

70 20.314 290.942 270.628

80 23.55 331.526 307.976

90 26.093 374.353 348.26

100 29.671 413.432 383.761

96

150 45.265 586.756 541.491

200 57.061 759.36 702.299

250 74.069 944.615 870.546

300 89.825 1145.744 1055.919

350 102.689 1352.884 1250.195

400 116.65 1497.932 1381.282

450 134.486 1719.428 1584.942

500 146.399 1893.226 1746.827

The tables present latency statistics for two scenarios: direct API access and protected API access

(Blockchain-enabled access control). It compares the Q1 and Q3 latency values for these scenarios.

A line chart can be plotted from the Q1 latency difference and Q3 latency difference from the two

tables to visualize the trend:

Figure 6-40 Latency comparison: Direct API Access vs Protected API Access

97

The two tables and the chart provide an answer to research question 1. It can be anticipated that

when transitioning from openly accessible APIs to having them controlled by the proposed

blockchain-based solution, the more client apps accessing their APIs at once, the more significant

the latency becomes. When 500 client apps hit the system simultaneously, compared to the openly

accessible APIs scenario, the blockchain-based solution added an overhead latency of around

1577.145 to 1746.827 ms. As the number of client apps increased, the overhead latency increased

linearly.

6.2.3 Overhead latency of Hyperledger Fabric

With the statistics of how the Direct API access scenario and how the protected API access

scenario (Blockchain-enabled access control scenario) handled the load available, Sentry on the

Blockchain VM was then configured to bypass Hyperledger Fabric and forward the requests to the

API Endpoint VM without running any access control logic (Blockchain-bypassed access control

scenario). Effectively, Sentry was just a reverse proxy in this case. Then, K6, running on the load-

testing VM, started loading the system. After it had finished loading the system with multiple sets

of virtual client apps, the following scatter charts were plotted.

Figure 6-41 Blockchain-Bypassed Access Control latency for one client app

98

Figure 6-42 Blockchain-Bypassed Access Control latency for ten client apps

Figure 6-43 Blockchain-Bypassed Access Control latency for 20 client apps

99

Figure 6-44 Blockchain-Bypassed Access Control latency for 30 client apps

Figure 6-45 Blockchain-Bypassed Access Control latency for 40 client apps

100

Figure 6-46 Blockchain-Bypassed Access Control latency for 50 client apps

Figure 6-47 Blockchain-Bypassed Access Control latency for 60 client apps

101

Figure 6-48 Blockchain-Bypassed Access Control latency for 70 client apps

Figure 6-49 Blockchain-Bypassed Access Control latency for 80 client apps

102

Figure 6-50 Blockchain-Bypassed Access Control latency for 90 client apps

Figure 6-51 Blockchain-Bypassed Access Control latency for 100 client apps

103

Figure 6-52 Blockchain-Bypassed Access Control latency for 150 client apps

Figure 6-53 Blockchain-Bypassed Access Control latency for 200 client apps

104

Figure 6-54 Blockchain-Bypassed Access Control latency for 250 client apps

Figure 6-55 Blockchain-Bypassed Access Control latency for 300 client apps

105

Figure 6-56 Blockchain-Bypassed Access Control latency for 350 client apps

Figure 6-57 Blockchain-Bypassed Access Control latency for 400 client apps

106

Figure 6-58 Blockchain-Bypassed Access Control latency for 450 client apps

Figure 6-59 Blockchain-Bypassed Access Control latency for 500 client apps

Using the Q1 and Q3 values from the Blockchain-enabled access control and Blockchain-bypassed

access control scenarios, the following two tables can be constructed:

107

Table 6-4 Q1 Latency Comparison: Hyperledger Fabric bypassed vs. Hyperledger Fabric enabled

Client app

count

Q1 Latency (ms) of

Blockchain-bypassed access

control

Q1 Latency (ms) of

Blockchain-enabled access

control

Q1 Latency

Difference (ms)

1 1.606 10.005 8.399

10 6.891 37.731 30.84

20 15.763 67.015 51.252

30 23.679 100.027 76.348

40 33.242 131.714 98.472

50 42.793 165.335 122.542

60 53.043 194.299 141.256

70 63.3 227.884 164.584

80 72.282 265.253 192.971

90 78.548 296.069 217.521

100 89.536 336.699 247.163

150 137.373 502.741 365.368

200 178.503 702.11 523.607

250 232.059 866.02 633.961

300 283.44 1039.623 756.183

350 318.861 1209.222 890.361

400 365.983 1355.652 989.669

450 416.866 1562.393 1145.527

500 481.886 1712.416 1230.53

108

Table 6-5 Q3 Latency Comparison: Hyperledger Fabric bypassed vs. Hyperledger Fabric enabled

Client app

count

Q3 Latency (ms) of

Blockchain-bypassed access

control

Q3 Latency (ms) of

Blockchain-enabled access

control

Q3 Latency

Difference (ms)

1 1.905 11.754 9.849

10 10.502 49.923 39.421

20 22.705 86.886 64.181

30 30.266 129.855 99.589

40 41.466 169.848 128.382

50 52.739 217.053 164.314

60 65.253 255.706 190.453

70 76.824 290.942 214.118

80 86.322 331.526 245.204

90 94.274 374.353 280.079

100 107.454 413.432 305.978

150 165.707 586.756 421.049

200 208.714 759.36 550.646

250 271.853 944.615 672.762

300 335.141 1145.744 810.603

350 379.591 1352.884 973.293

400 437.398 1497.932 1060.534

450 475.747 1719.428 1243.681

500 571.625 1893.226 1321.601

109

Figure 6-60 Latency comparison: Hyperledger Fabric bypassed vs enabled.

The two tables and the chart provide an answer to research question 2. It can be anticipated that

when using Hyperledger Fabric, the more client apps accessing their APIs at once, the more

significant the latency becomes. When 500 client apps hit the system simultaneously, Hyperledger

Fabric added an overhead latency of around 1230.53 to 1321.601ms. As the number of client apps

increased, the overhead latency increased linearly.

6.2.4 Experiment 2: Breaking point

This experiment aims to determine the system's breaking point, which is the point at which the

error rate approaches 100%, indicating that none of the requests from the client apps receive a

successful response (research question 3). A set of virtual client apps was utilized to generate load

on the system to achieve this.

The process proceeded as follows: with the three VMs in the private cloud environment, the

Blockchain VM was configured with one peer node in the Hyperledger network. Subsequently,

once access to the protected API endpoints had been granted, K6 running on the load-testing VM

110

initiated with a set of 500 virtual client apps. These virtual client apps sent requests to an API

endpoint for 60 seconds, generating a significant traffic load on Sentry and the Hyperledger Fabric

network. After 60 seconds, K6 reported the error rate, recorded in a CSV file. K6 then increased

the number of virtual client apps to 1,000 and continued this process until it reached 30,000. After

completing the last set of client apps, a bar chart was generated from the CSV file.

The entire process was repeated three times, resulting in three error rate bar charts.

Figure 6-61 Error Rate vs. Number of Client Apps, with 1-peer Hyperledger Fabric network (run 1)

111

Figure 6-62 Error Rate vs. Number of Client Apps, with 1-peer Hyperledger Fabric network (run 2)

Figure 6-63 Error Rate vs. Number of Client Apps, with 1-peer Hyperledger Fabric network (run 3)

The three charts show the system can handle a substantial load without encountering errors until

4000 client apps. From 4000 to around 7000 client apps, the error rates remained below 10%.

There was a remarkable jump at 8500 for run 1, 8000 for run 2, and 7500 for run 3. After that, the

error rate went up quickly and hit 100% at 14000 client apps for runs 1 and 3 and 15500 client

apps for run 2.

112

At this stage, the Hyperledger Fabric network on the Blockchain VM was re-configured to have

nine peers. The same load-testing process was then repeated another three times, resulting in

another three error rate bar charts:

Figure 6-64 Error Rate vs. Number of Client Apps, with 9-peer Hyperledger Fabric network (run 1)

Figure 6-65 Error Rate vs. Number of Client Apps, with 9-peer Hyperledger Fabric network (run 2)

113

Figure 6-66 Error Rate vs. Number of Client Apps, with 9-peer Hyperledger Fabric network (run 3)

The three charts shows that the system can handle a substantial load without encountering errors

until 5000 client apps for run 1 and 2 and until 4500 client apps for run 3. From 4500 to around

6500 client apps for run 1, 7500 client apps for run 2, and 8000 for run 3, the error rates remained

below 10%. Beyond that point, the error rates gradually reached 100% with no drastic spike like

the previous 1-peer setup. The error rate hit 100% at 15000 client apps for run 2 and 15500 for run

1 and 3.

The following table illustrates the overall trend of the six error rates charts:

Table 6-6 Comparing the error rates of the 1-peer setup and 9-peer setup

 1-peer setup 9-peer setup

Error rate at 0% Up to 4000 client apps Up to 4500-5000 client apps

Drastic jump of more

than 20% error rate

Yes, at around 7500-

8500 client apps

No

How the error rate

approached 100%

Quickly More slowly, the slope before the error

rates hit 100% is less steep

When did the error

rate hit 100%

At around 14000-15500

client apps

At around 15000-15500 client apps

114

After the error rate

had reached 100%

Fluctuated and

sometimes came back

down to the 80-90%

range

It Stayed the same after the error rate had

hit 100%

The table provides the answer to research question 3. With the current implementation, the system

can withstand around 14000 client apps before overloading and breaking down. Scaling up the

Hyperledger Fabric network to nine peers made the system more resilient and soothed out the error

rate slope compared to only one peer. It is worth noticing that Hyperledger Fabric supports more

than nine peers. However, Fablo only supports up to nine peers. Having more than nine peers is

likely to improve performance. This is discussed in the future work chapter as well.

6.3 Summary

The experiments showed that the proposed solution works, and the research questions were

answered:

• Research question 1: What is the system's overhead latency in milliseconds when

transitioning from not using the proposed solution to using it?

Answer: For a set of 500 client apps hitting the blockchain-based solution simultaneously,

the solution added an overhead latency of around 1577.145 to 1746.827 ms. As the number

of client apps increased, the overhead latency rose linearly.

• Research question 2: What is the specific latency impact, in milliseconds, of the chosen

blockchain technology?

Answer: For a set of 500 client apps hitting the blockchain-based solution simultaneously,

using the Hyperledger Fabric as the blockchain added an overhead latency of around

1230.53 to 1321.601ms. As the number of client apps increased, the overhead latency rose

linearly.

• Research question 3: What is the system's maximum concurrent client app capacity?

Answer: The proposed solution can withstand the concurrent load of around 14000 client

apps before overloading and breaking down.

115

Furthermore, the first quantile Q1 and third quantile Q3 of every load-testing result from

experiment 1 can be summarized in the following line chart:

Figure 6-67 Experiment 1 summary

As shown in the chart, transitioning from direct API access to blockchain-bypassed access control,

i.e., just adding a proxy hop between the client and the API, already adds significant latency for a

larger number of clients. After that, the blockchain choice for access control integration,

Hyperledger Fabric, in this case, added even further significant latency and can get up to nearly 2

seconds roundtrip time for worst case scenario for 500 client apps.

These findings indicate the trade-off between security and performance in adopting a blockchain-

based approach for access control. While the blockchain solution inherently provides enhanced

decentralization and security, it also introduces latency, which becomes increasingly prominent

under high loads. This information is crucial for system architects and decision-makers when

determining the suitability of such a solution for their specific use case and expected user loads.

API providers and client app developers can consider using the Hyperledger Fabric-based solution

depending on the performance requirements and use case.

116

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

Blockchain technology has gotten much attention in recent years. It has been used in many

industries to enforce access control on assets such as cryptocurrencies, medical records, and supply

chain items. Despite its widespread use, there has been limited exploration into utilizing

blockchain to control API endpoint access. This area is interesting and challenging at the same

time because, unlike conventional assets, API endpoints are subject to frequent and intensive

access. Moreover, blockchain can introduce latency. Thus, proper implementation and

performance evaluation is essential for developing a functional blockchain-based API access

control solution. Employing blockchain yields the following key advantages:

● By nature, a blockchain-based system inherits an immutable data structure. New data gets

appended to the blockchain, and once it is in, it cannot be changed or falsified, even by the

system administrators.

● Every interaction with the blockchain is inherently recorded, providing traceability. Any

participant in the blockchain network can get access and traverse the blockchain to figure

out all the events that have happened.

● Hyperledger Fabric, the blockchain technology used to implement the solution proposed

by this thesis, offers the ability to write smart contracts in common programming languages.

Smart contracts are applications that run directly on the blockchain. Because it can be

written in familiar languages instead of a domain-specific language, developers can adopt

the technology, bring their experience, and maintain the code base more quickly and

efficiently.

Thanks to using blockchain, the proposed solution is functional, including the following primary

workflows:

● The API provider could add and manage access to the API endpoints.

● The client developer was able to request access to the endpoint.

● The client app was able to send traffic to the endpoint.

117

Furthermore, the Blockchain Explorer section of the implementation chapter showed a web view

where all blocks and transactions that occurred on the Hyperledger Fabric blockchain could be

inspected, providing system traceability.

The system architecture can be summarized in the following diagram:

Figure 7-1 Simplified architecture.

Sentry serves as the gateway of the system. The addresses of the servers hosting the API endpoints

are hidden from the users and client apps. Thus, Sentry is responsible for:

● Managing user interactions.

● Handling traffic from client apps and forwarding it to the protected API endpoints only if

the client apps have been granted access to those endpoints.

● Engaging with the blockchain to store and retrieve access control data.

The core access control logic was designed based on the discrete access control type (DAC) and

is written in JavaScript using the Node.js SDK provided by Hyperledger Fabric. Similarly, Sentry

is also implemented in JavaScript, leveraging the Node.js runtime and the Express web framework.

Performance evaluation of the system was conducted on virtual machines (VMs) hosted within a

private cloud infrastructure. The conducted experiments revealed the potential overhead latency

introduced by the system, including its integration with Hyperledger Fabric. Additionally, the

experiments demonstrated the system's remarkable ability to handle a substantial load of traffic

generated by many client applications.

118

7.2 Contribution

While Bitcoin and Ethereum blockchains dominate the cryptocurrency use case, Hyperledger

Fabric has been used extensively in enterprises, spanning various industries and use cases.

Nevertheless, the access control use case for API endpoints has received limited attention, despite

the potential of Hyperledger Fabric to address it. This thesis explored this aspect, presented an

architectural proposal, developed a functional and resilient solution including a straightforward

web user interface, and evaluated both the system and Hyperledger Fabric’s overhead latency.

Additionally, the system's traceability, an inherent characteristic of blockchain, was also

demonstrated.

7.3 Limitation and Future Work

Like any work, this thesis has weaknesses, limitations, and potential areas for improvement. The

following points highlight the limitations and disadvantages of the implementation and

experiments, along with suggestions for future enhancements:

• Tooling: The tools, libraries, and utilities around Hyperledger Fabric are constrained and

often challenging to use. Some tools are unmaintained, obsolete, or not stable. For instance,

the Hyperledger Caliper Benchmarks tool encountered issues during setup despite

following the documentation, inhibiting further experimentation. Furthermore, the tool is

at version v0.5.0, which is unstable [26].

• Hardware resources: The hardware resources employed for the implementation and

experiments were limited compared to enterprise-grade hardware. Future work could

utilize more powerful machines with increased CPU and memory capacities.

• CPU and memory monitoring: The CPU and memory of all machines should have been

monitored throughout the experiments. Future work could do this for a more

comprehensive understanding of the system's resource demands.

• Private data: Although end users are provided with Hyperledger Fabric wallets in the

proposed solution, the wallets remain encrypted. Sentry is the only component that can

decrypt and use the wallets to interact with the Hyperledger Fabric network directly.

However, hiding the sensitive data within the Hyperledger Fabric network will further

119

enhance the system’s security. Hyperledger Fabric’s private data collection feature could

be explored for this purpose.

• Access limits: Future work could implement usage quotas or time-based restrictions that

API providers at the point of granting access to specific API endpoints.

• API providers hosting their peers: Future work could explore the scenario in which API

providers participate in the Hyperledger Fabric network by hosting their peers and having

their own Hyperledger Fabric organization defined for further decentralization.

• Evaluate all user flows: The performance experiments focused solely on the stage after

access to an endpoint had been granted, and client apps was able to initiate traffic. Future

work could run performance assessments for all stages, including registration, access

requests, access granting, revocation.

• Scalability limit: The Hyperledger Fabric network used for development and evaluation

was established using Fablo, which supports up to nine peers. As Hyperledger Fabric can

accommodate more peers, using an alternative tool to configure the network would enable

the network to scale more. More experiments can then be conducted.

• Other blockchain platforms: Future work could implement the access control logic in

alternative blockchain platforms, conduct comparative performance evaluations, and

assess their suitability.

• Traditional solutions: Exploring a complete API endpoint access control system

implemented using traditional access control technology and comparing its performance to

the blockchain-based solution is a potential idea for future research.

• Cold start: Real-world software systems gradually grow and serve increasing numbers of

users before facing traffic spikes. Future work could adopt a more realistic approach,

allowing the system to warm up and conduct load tests over an extended period.

• Consensus liveness: In Hyperledger Fabric, a consensus mechanism ensures peers reach

the same state. However, checking whether peers are still in consensus after the mechanism

has completed is undocumented. Further experiments could be conducted to verify this

scenario.

120

• Virtual users: The K6 tool used for load-testing creates virtual users. They are actually

threads competing for limited hardware resources in one physical machine. Future work

could employ dedicated physical machines or involve real users to generate traffic.

• Network latency within the blockchain: While Hyperledger Fabric peers are isolated

containers, they share the same machine in this thesis. Deploying the network on distinct

physical machines would better emulate network latency effects within the blockchain.

• Chaos engineering: K6's consistent load-testing contrasts with the unpredictability of real-

world traffic. Future work could simulate network and server failures, configuration

changes, smart contract updates, random traffic spikes, etc.

• Different cloud services: Given the diversity of cloud providers, deploying multiple

instances of the system across various services and comparing performance between them

offers an opportunity for exploration.

121

8. REFERENCES

[1] B. De and B. De, API management. Springer, 2017.

[2] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain challenges and opportunities:

A survey,” International journal of web and grid services, vol. 14, no. 4, pp. 352–375, 2018.

[3] V. C. Hu, D. Ferraiolo, D. R. Kuhn, and others, Assessment of access control systems. US

Department of Commerce, National Institute of Standards and Technology~…, 2006.

[4] M. Swan, Blockchain: Blueprint for a new economy. “ O’Reilly Media, Inc.,” 2015.

[5] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system. Decentral,” Bus. Rev, vol. 21260,

2008.

[6] E. Androulaki et al., “Hyperledger fabric: a distributed operating system for permissioned

blockchains,” in Proceedings of the thirteenth EuroSys conference, 2018, pp. 1–15.

[7] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in 2014

USENIX annual technical conference (USENIX ATC 14), 2014, pp. 305–319.

[8] J. Shubheksha, “Understanding the Raft consensus algorithm: an academic article summary.”

Accessed: Aug. 26, 2023. [Online]. Available: https://www.freecodecamp.org/news/in-search-

of-an-understandable-consensus-algorithm-a-summary-4bc294c97e0d/

[9] R. S. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE communications

magazine, vol. 32, no. 9, pp. 40–48, 1994.

[10] P. Samarati and S. C. de Vimercati, “Access control: Policies, models, and mechanisms,” in

International school on foundations of security analysis and design, Springer, 2000, pp. 137–

196.

[11] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security approach to manage

access control in the internet of things,” Math Comput Model, vol. 58, no. 5–6, pp. 1189–1205,

2013.

[12] “What is Capability-based Security? | by Kevin Leffew | Medium.” Accessed: Oct. 04, 2023.

[Online]. Available: https://medium.com/@kleffew/what-is-capability-based-security-

227c6e5483a5

[13] A. Ubale Swapnaja, G. Modani Dattatray, and S. Apte Sulabha, “Analysis of dac mac rbac

access control based models for security,” Int J Comput Appl, vol. 104, no. 5, pp. 6–13, 2014.

[14] D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access control services,” in 2018

IEEE international conference on internet of things (ithings) and IEEE green computing and

122

communications (greencom) and IEEE cyber, physical and social computing (cpscom) and

IEEE smart data (smartdata), 2018, pp. 1379–1386.

[15] J. P. Cruz, Y. Kaji, and N. Yanai, “RBAC-SC: Role-based access control using smart contract,”

Ieee Access, vol. 6, pp. 12240–12251, 2018.

[16] “Fablo.” Accessed: Aug. 26, 2023. [Online]. Available: https://github.com/hyperledger-

labs/fablo

[17] “What is Docker | Oracle Canada.” Accessed: Aug. 26, 2023. [Online]. Available:

https://www.oracle.com/ca-en/cloud/cloud-native/container-registry/what-is-docker/

[18] “Hyperledger Fabric Contract API.” Accessed: Aug. 26, 2023. [Online]. Available:

https://hyperledger.github.io/fabric-chaincode-node/main/api/

[19] “About | Node.js.” Accessed: Aug. 26, 2023. [Online]. Available: https://nodejs.org/en/about

[20] “Express - Node.js web application framework.” Accessed: Aug. 26, 2023. [Online]. Available:

https://expressjs.com/

[21] “Hyperledger Fabric SDK for Node.js.” Accessed: Aug. 26, 2023. [Online]. Available:

https://hyperledger.github.io/fabric-sdk-node/main/module-fabric-network.html

[22] “http-party/node-http-proxy: A full-featured http proxy for node.js.” Accessed: Aug. 26, 2023.

[Online]. Available: https://github.com/http-party/node-http-proxy

[23] “Pug documentation.” Accessed: Aug. 26, 2023. [Online]. Available:

https://pugjs.org/api/getting-started.html

[24] “k6 Documentation.” Accessed: Aug. 26, 2023. [Online]. Available: https://k6.io/docs/

[25] “hyperledger-labs/blockchain-explorer.” Accessed: Aug. 26, 2023. [Online]. Available:

https://github.com/hyperledger-labs/blockchain-explorer

[26] “hyperledger/caliper: A blockchain benchmark framework to measure performance of multiple

blockchain solutions https://wiki.hyperledger.org/display/caliper.” Accessed: Aug. 26, 2023.

[Online]. Available: https://github.com/hyperledger/caliper

123

9. APPENDIX: CONNECTION POOL FOR HYPERLEDGER FABRIC

GATEWAY - ELIMINATING SYSTEM BOTTLE NECK

This appendix presents the experiments not to answer the research questions but rather to identify

the bottleneck in the proposed solution and implement a connection pool for the Hyperledger

Fabric Gateway to tune its performance. The system could withstand a concurrent load of up to

300 client apps without the connection pool. The connection pool helps increase the number of

concurrent client apps to 17000.

The system was also deployed to three VMs on the private cloud, as described in the performance

evaluation chapter. After that, different scenarios were designed so that the system’s performance

and weaknesses were exposed:

• Scenario 1: Direct API access

• Scenario 2: Introducing the Blockchain VM with Hyperledger Fabric bypassed.

• Scenario 3: Enabling Hyperledger Fabric

• Scenario 4: Performance of access control data retrieval

• Scenario 5: Scaling up peers in the Hyperledger Fabric network.

• Scenario 6: Connection pool for Hyperledger Fabric gateway

These scenarios were structured to escalate gradually, starting with fundamental load-testing, and

systematically introducing essential components. Each scenario builds upon the previous one to

pinpoint any bottleneck and part that can be tweaked for better performance. Regarding the metrics,

both latency and error rates were used to trace weaknesses. Latency in this context means how

long it takes for the client app to send a request to one of the protected API endpoints and receive

a response. An error rate in this context means the frequency at which the response status code is

not 200, indicating the proportion of unsuccessful interactions compared to the total number of

requests made.

9.1 Scenario 1: Direct API access

Focus: Determining the latency when the Blockchain VM is bypassed.

124

Figure 9-1 Scenario 1 Overview

The diagram shows only one component under load in scenario 1: the Express app on the API

endpoints VM. After load-testing, the following scatter chart shows the latency of every request

sent by one virtual client app instance:

Figure 9-2 Scenario 1 latency scatter chart for one client app instance.

125

As shown in the chart, the client app managed to finish more than 25000 requests, and most of

them had a latency of below 2ms. One request near the zeroth request reported the longest latency

at more than 10ms.

The following scatter chart shows the latency of every request sent by ten virtual client app

instances:

Figure 9-3 Scenario 1 latency scatter chart for ten client app instances.

The chart shows that the client app finished over 4,000 requests, most of which had a latency of

below 10ms.

126

9.2 Scenario 2: Introducing the Blockchain VM with Hyperledger Fabric

bypassed

Focus: Determining the latency when the Blockchain VM is enabled but with Hyperledger Fabric

bypassed.

Figure 9-4 Scenario 2 overview.

Now that we have the baseline of how just the API endpoints VM handles traffic, thanks to scenario

1. In scenario 2, the blockchain gateway VM was enabled. There was no Hyperledger Fabric

enabled for this scenario. There was just an Express app listening for HTTP traffic and using the

http-proxy module to forward the traffic to the other Express app running on the API endpoint VM.

After load-testing, the following scatter chart shows the latency of every request sent by one virtual

client app instance:

127

Figure 9-5 Scenario 2 latency scatter chart for one client app instance.

The chart shows that the client app finished over 20,000 requests, most of which had a latency of

below 5ms. One request near the zeroth request reported the longest latency at more than 20ms.

The following scatter chart shows the latency of every request sent by ten virtual client app

instances:

128

Figure 9-6 Scenario 2 latency scatter chart for ten client app instances.

As shown in the chart, the client app managed to finish more than a little more than 3,500 requests,

most of which had a latency of below 15ms.

9.3 Scenario 3: Enabling Hyperledger Fabric

Focus: Determining the latency and error rate when Hyperledger Fabric is enabled and identifying

the bottleneck.

129

Figure 9-7 Scenario 3 overview.

In scenario 3, the Hyperledger Fabric network with one peer (Peer 1) was enabled. To process

requests from the client app instances, the Express app (Sentry) retrieved and validated the access

control data from Peer 1 before using the http-proxy module to forward the requests to the Express

app on the API endpoints VM.

After load-testing, the following scatter chart shows the latency of every request sent by one virtual

client app instance:

130

Figure 9-8 Scenario 3 latency scatter chart for one client app instance.

As shown in the chart, the client app only managed to finish around 400 requests, most of which

had a latency of below 160ms. The blockchain interaction introduced remarkable latency.

The following scatter chart shows the latency of every request sent by ten virtual client app

instances:

131

Figure 9-9 Scenario 3 latency scatter chart for ten client app instances.

The chart shows that the number of requests dropped significantly, and the latency increased.

At this stage, the load testing was repeated to determine the error rate. Growing sets of virtual

client apps from 50 to 5000 were used. Each set still loaded the Blockchain gateway VM for one

minute. The following bar plot is the result of the run and shows the error rates of those sets:

132

Figure 9-10 Scenario 3 error rate bar chart.

According to the chart, the system had a low error rate until 300 client apps simultaneously hit the

Blockchain gateway VM. At that point, the system experienced a 100% error rate.

Thanks to the latency scatter chart and the error rate chart, the link between the Express app (Sentry)

and the Hyperledger Fabric network was the system's bottleneck.

9.4 Scenario 4: Performance of Access Control Data Retrieval

Focus: Analyzing data retrieval performance without involving API Endpoint VM.

Scenario 3 helped to find that the link between the Express app (Sentry) and the Hyperledger

Fabric network was the bottleneck of the system, as illustrated by the following figure:

133

Figure 9-11 Scenario 4 highlights the bottleneck.

The API endpoints VM and http-proxy module were then deliberately omitted from scenario four

so that all load-testing could focus on the bottleneck:

Figure 9-12 Scenario 4 overview.

134

After load-testing, the following scatter charts respectively show the latency of every request sent

by one virtual client app instance and by ten virtual client app instances:

Figure 9-13 Scenario 4 latency scatter chart for one client app instance.

Figure 9-14 Scenario 4 latency scatter chart for ten client app instances.

135

The following bar plot shows the error rates derived from various sets of client app instances:

Figure 9-15 Scenario 4 error rate bar chart.

The system performance was slightly better with the API endpoints VM and http-proxy module

out of the way, but overall, still unacceptable.

9.5 Scenario 5: Scaling Up Peers in the Hyperledger Fabric Network

Focus: Determining if increasing the number of peers inside the Hyperledger Fabric network can

help improve the latency and error rate.

136

Figure 9-16 Scenario 5 overview.

The diagram shows nine peers in the Hyperledger Fabric network for scenario 5. That is the highest

number of peers that Fablo allows. Fablo was the tool that helped create the Hyperledger Fabric

network.

After load-testing, the following scatter charts respectively show the latency of every request sent

by one virtual client app instance and by ten virtual client app instances:

137

Figure 9-17 Scenario 5 latency scatter chart for one client app instance.

Figure 9-18 Scenario 5 latency scatter chart for ten client app instances.

138

The following bar plot shows the error rates derived from various sets of client app instances:

Figure 9-19 Scenario 5 error rate bar chart.

As shown in the charts, the system performance unfortunately did not improve.

9.6 Scenario 6: Connection Pool for Hyperledger Fabric Gateway

Focus: Determining if implementing a connection pool for the Hyperledger Fabric gateway can

improve the latency and error rate.

139

Figure 9-20 Scenario 6 overview.

After some debugging, it was discovered that the slowest part of the code was the snippet that

handles the connection between the Express app and the Hyperledger Fabric network. Initially,

when the Express app needs to get the access control data from the Hyperledger Fabric network,

it creates a connection and closes it after the data has been retrieved. The step where the connection

is created is time-consuming, which leads to re-creating a new connection for every request coming

from the client app instances, slows down the overall performance. Hence, a connection pool was

implemented. When the Express app receives a request from a client app containing a Hyperledger

Fabric wallet, a connection is created using the wallet and saved to a pool. Then, the connection is

re-used for every subsequent request of the same wallet. In this scenario, all client app instances

shared the same connection object.

With the connection pool in place, after load-testing, the following scatter charts respectively show

the latency of every request sent by one virtual client app instance and by ten virtual client app

instances:

140

Figure 9-21 Scenario 6 latency scatter chart for one client app instance.

Figure 9-22 Scenario 6 latency scatter chart for ten client app instances.

141

The following bar plot shows the error rates derived from various sets of client app instances:

Figure 9-23 Scenario 6 error rate bar chart.

As shown in the charts, the latency significantly improved. At this point, the system could handle

way more client app instances, up to 17000 instances, before the error rate hit 100% again,

compared to only 300 instances in scenarios 4 and 5.

9.7 Summary

This appendix section presented multiple load-testing scenarios that helped identify the bottleneck

in the proposed solution. It demonstrated how implementing a connection pool for the Hyperledger

Fabric Gateway improved latency and enabled the system to handle a more substantial traffic load

from a larger set of client apps. The connection pool for the Hyperledger Fabric Gateway proved

to be a successful solution to the identified bottleneck, significantly enhancing system performance

under heavy traffic loads.

