

UNIVERSITY OF SASKATCHEWAN

RESEARCH QUESTION

How do grazing intensity and rest affect soil microbiota, plants and their interactions?

INTRODUCTION

- The grazing intensity can alter the plant's height and growth by reducing their photosynthesis and forcing them to use their storages to regrow.
- With these changes, soil microbiota can also be affected, thus impacting soil ecosystem functions, like carbon storage and plant productivity.
- Minimizing grazing impacts on ecosystem functions is important to achieve a more sustainable livestock activity.

Quantifying variability in plant-soil interactions across Saskatchewan grasslands

Leonardo de Lima Henning, John Paul Wasan, Soudeh Farzadfar and Jonathan Bennett Department of Plant Sciences, University of Saskatchewan. Saskatoon, SK, Canada.

OBJECTIVES

• Determine how grazing intensity and affect soil microbial rest communities and their interactions with plants.

METHODS

- Soil samples were collected from places with different soil types, grazing intensity and rest durations
- The samples were sieved, four tubes were stored for DNA analysis and we collected a subsample for use in a greenhouse experiment.
- In the greenhouse experiment, we inoculated native and tame forage plants with soil to assess impacts of the microbes on plant growth.

• Understand interrelationships the plant communities, among soil microbial communities, soil carbon, and future plant growth.

Figure 2: Plants growing at greenhouse.

NEXT STEPS

• We are going to assess the diversity and composition of the soil microbiota DNA through sequencing.

Figure 4: DNA samples storaged for future sequencing

• Shoot and root biomass of each plant will be measured to quantify plant growth.

• Structural equation models will be used to test direct and indirect relationship among the variables.

REFERENCES

1. Wan et al. 2021. Appl. Soil Ecol. 168 (104161).

ACKNOWLEDGEMENTS

My internship is part of the program MITACS Globalink Research Internship and is funded by MITACS and Araucaria Foundation

