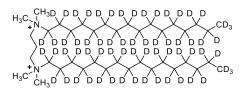
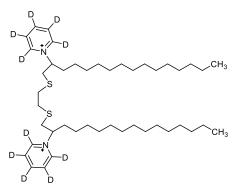
Supporting Information

Mass spectrometric detection and characterization of metabolites of gemini surfactants used as gene delivery Vectors


Wei Jin¹, Randy Purves^{1, 2}, Ed Krol¹, Ildiko Badea¹ and Anas El-Aneed^{1*}

¹Drug Design & Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5.

²Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, 116 Veterinary Rd, Saskatoon, SK, Canada, S7N 2R3.


*Corresponding author. E-mail address: anas.el-aneed@usask.ca (A. El-Aneed)

a 16-3-16-D₆₆

[M]²⁺ m/z 323.51 (C₃₉H₁₈D₆₆N₂²⁺)

b 16(Py)-S-2-S-16(Py)-D₁₀

 $[M]^{2+}$ m/z 354.31 (C₄₄H₆₈D₁₀N₂S₂²⁺)

c 16-7N(GK)-16-D₄

 $[M]^{2+}$ m/z 413.43 (C₅₀H₁₀₂D₄N₆O₂²⁺)

Figure S1, The structures of deuterated gemini surfactants, a) 16-3-16- D_{66} , b) 16(Py)-S-2-S-16(Py)- D_{10} , and c) 16-7N(GK)-16- D_4

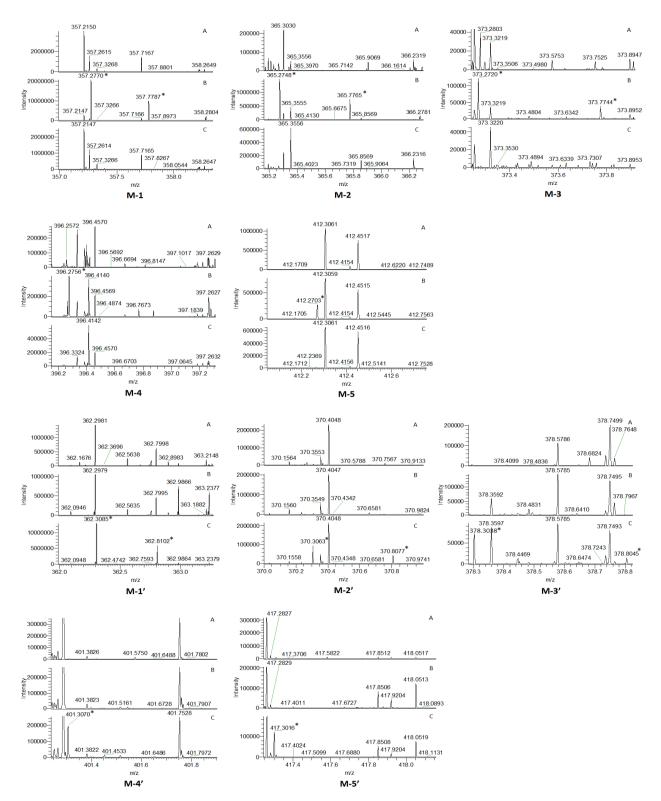


Figure S2. MS spectra of the metabolites of 16(Py)-S-2-S-16(Py) and 16(Py)-S-2-S-16(Py)-D₁₀ based on accurate mass measurement at 5 h of treatment. (* denotes the peak of the metabolite. panel A- control, panel B- cells

treated with 16(Py)-S-2-S-16(Py) nanoparticles, and panel C- cells treated with 16(Py)-S-2-S-16(Py)-D₁₀ nanoparticles. Zoomed in all three panels to show the peaks of the metabolites).

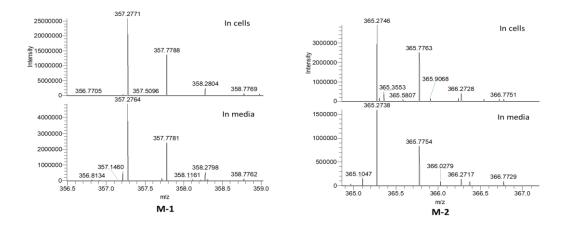


Figure S3. MS spectra of metabolite M-1 (m/z 357) and M-2 (m/z 365) of 16(Py)-S-2-S-16(Py) produced in PAM 212 cells and media at 10 h of treatment. The ion intensity of M-1 and M-2 generated by natural oxidation of 16(Py)-S-2-S-16(Py) in media is lower compared with that within cells. Ion count was 18% in the media for M-1 in comparison to treated cells while it was 41% for M-2. This indicates that oxidation metabolism occurred in cells (i.e, biological system).

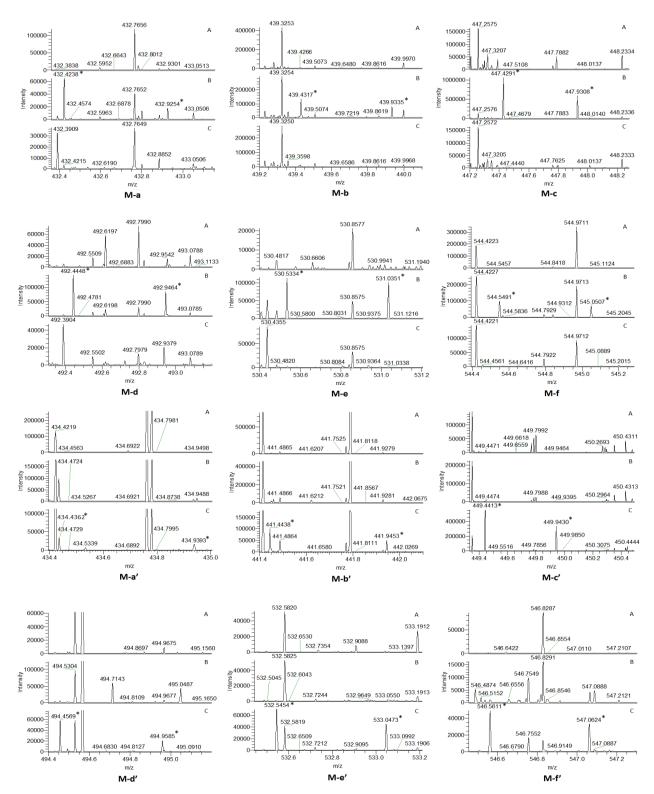


Figure S4. MS spectra of the metabolites of 16-7N(GK)-16 and 16-7N(GK)-16-D₄ based on accurate mass measurement at 5 h treatment. (* denotes the peaks of the identified metabolites. panel A- control, panel B-

cells treated with 16-7N(GK)-16 nanoparticles, and panel C- cells treated with 16-7N(GK)-16-D₄ nanoparticles. Zoomed in to show the peaks of the metabolites).

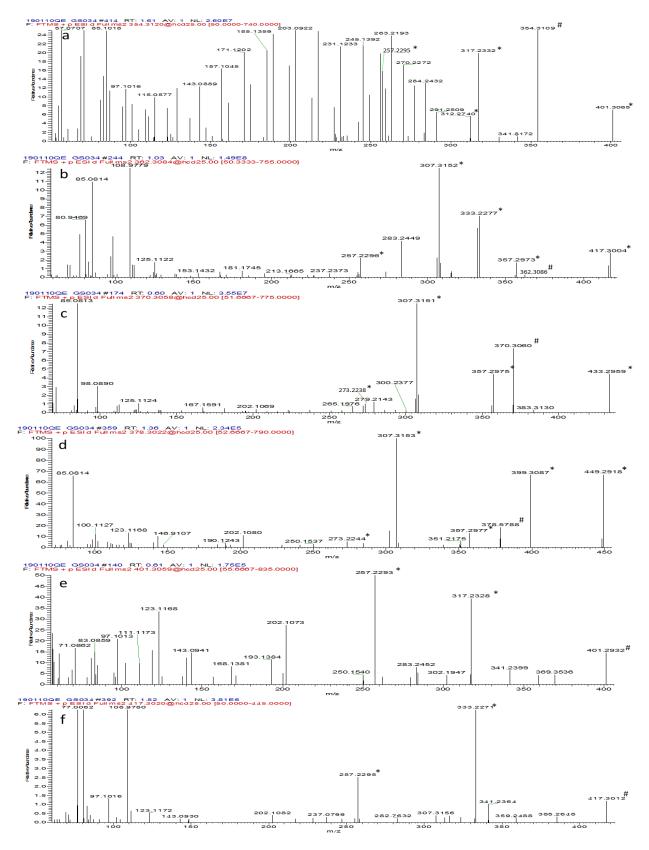


Figure S5. The MS/MS spectra of 16(Py)-S-2-S-16(Py)-D₁₀ and its metabolites: a) 16(Py)-S-2-S-16(Py)-D₁₀, b) M-1', c) M-2', d) M-3', e) M-4', and f) M-5' (# denotes the parent ion and * denotes the diagnostic product ion).

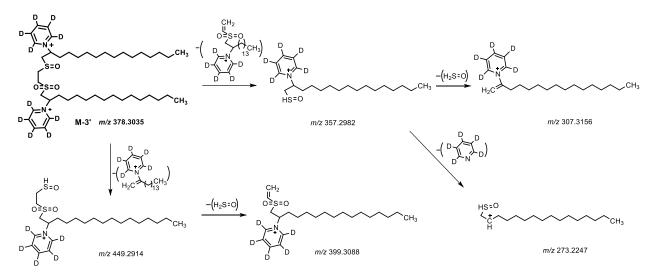


Figure S6. The proposed structures of major product ions of metabolite M-3' of 16(Py)-S-2-S-16(Py)-D₁₀,

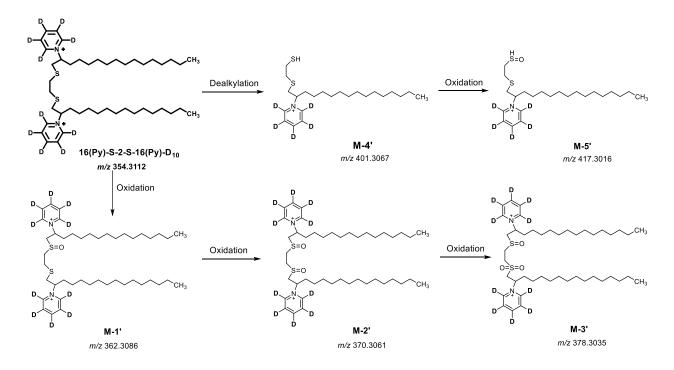


Figure S7. The metabolites of 16(Py)-S-2-S-16(Py)-D₁₀ and its proposed metabolic pathway.

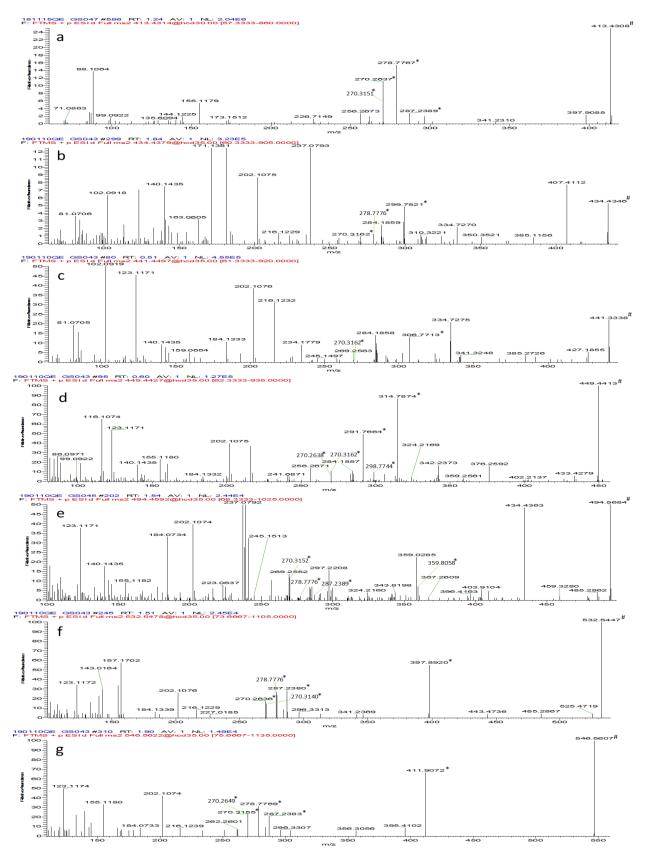


Figure S8. The MS/MS spectra of $16-7N(GK)-16-D_4$ and its metabolites: a) $16-7N(GK)-16-D_4$, b) M-a', c) M-b', d) M-c', e) M-d', f) M-e', and g) M-f'. (# denotes the parent ions and * denotes the diagnostic product ions).

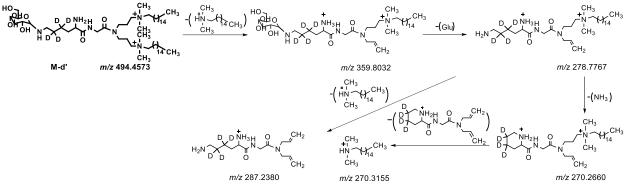


Figure S9. The proposed structures of major product ions of the metabolite M-d' of 16-7N(GK)-16-D₄

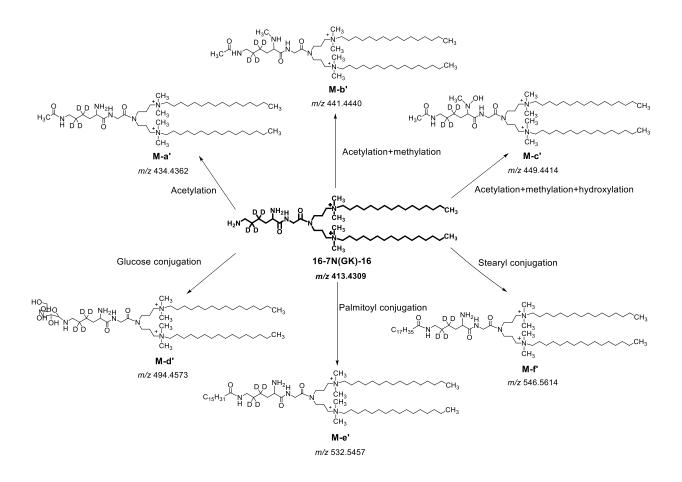


Figure S10. The metabolites of 16-7N(GK)-16-D₄ and its proposed metabolic pathway.

Table S1. Potential metabolites based on accurate mass measurements for the gemini surfactants 16(Py)-S-2-
S-16(Py)-D ₁₀ and 16-7N(GK)-16-D ₄ .

Name	Molecular Formula	Exact Mass (<i>m/z</i>)	Observed Mass (m/z)	Mass Accuracy (ppm)	Metabolic Reactions
16(Py)-S-2-S-16(Py)-D ₁₀	$C_{44}H_{68}D_{10}N_2S_2{}^{2+}$	354.3112	354.3115	0.8	NA
M-1'	$C_{44}H_{68}D_{10}N_2OS_2{}^{2\text{+}}$	362.3086	362.3085	0.3	Oxidation
M-2'	$C_{44}H_{68}D_{10}N_2O_2S_2{}^{2+}$	370.3061	370.3063	0.5	Oxidation
M-3'	$C_{44}H_{68}D_{10}N_2O_3S_2{}^{2+}$	378.3035	378.3038	0.8	Oxidation
M-4'	C23H37D5NS2+	401.3067	401.3070	0.7	Dealkylation
M-5'	$C_{23}H_{37}D_5NOS_{2}{}^+$	417.3016	417.3016	0.0	Dealkylation, Oxidation
16-7N(GK)-16-D4	$C_{50}H_{102}D_4N_6O_2{}^{2+}$	413.4309	413.4307	0.5	NA
M-a'	$C_{52}H_{104}D_4N_6O_{3^{2+}}$	434.4362	434.4362	0.0	Acetylation
M-b'	$C_{53}H_{106}D_4N_6O_3{}^{2+}$	441.4440	441.4438	0.5	Acetylation, Methylation
M-c'	$C_{53}H_{106}D_4N_6O4^{2+}$	449.4414	449.4413	0.2	Acetylation, Methylation, Hydroxylation
M-d'	$C_{56}H_{112}D_4N_6O_7{}^{2+}$	494.4573	494.4569	0.8	Glucose conjugation
M-e'	$C_{66}H_{132}D_4N_6O_3{}^{2+}$	532.5457	532.5454	0.6	Palmitoyl conjugation
M-f'	$C_{68}H_{136}D_4N_6O_3{}^{2+}$	546.5614	546.5611	0.5	Stearyl conjugation