ResearchOnline@JCU

This file is part of the following work:

Nielsen, Josephine Jacoba Valentin (2023) *Natural variation in heat tolerance of corals on the Great Barrier Reef.* PhD Thesis, James Cook University.

Access to this file is available from: https://doi.org/10.25903/nrh1%2Dee35

Copyright © 2023 Josephine Jacoba Valentin Nielsen

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email researchonline@jcu.edu.au

Natural variation in heat tolerance of corals on

the Great Barrier Reef

Thesis submitted by

Josephine Jacoba Valentin Nielsen

BSc (Hons1A)

April 2023

For the degree of Doctor of Philosophy in Marine Biology, within the College of Public Health, Medicine, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia

Acknowledgements

First and foremost, I wish to thank my supervisors Dr Line Bay (AIMS), Dr Ira Cooke (JCU), Dr Kate Quigley (Minderoo, JCU), Prof Jan Strugnell (JCU) and Prof David Suggett (KAUST) for enabling the project and entrusting me to complete it. I thank Prof David Suggett for taking such a large interest in the project despite only having met in person twice, both times in Cairns. Prof Jan Strugnell and Dr Kate Quigley for their continued guidance throughout the project. I am grateful to Dr Ira Cooke for his never-ending patience in guiding me through the bioinformatics and HPC aspects of my thesis, and I sincerely hope that I have not inflected permanent damage to the systems. Finally, I wish the acknowledge and thank Dr Line Bay for the important role she has played through most of my academic career, inspiring me to keep on going and thank her for her continued support.

I also wish to thank the Bay lab group and colleagues at the Australian Institute of Marine Science for embracing me for the duration of the project and longer. Without the exceptional assistance of Veronique Mocellin in the field, this thesis would not exist. Thanks also goes to Magena Marzonie, who has always been available for idea brainstorming, and has lent a patient ear to troubles and complaints for the last four years.

I wish to thank my parents for always supporting my curiosity as a child, enabled by countless visits to any and all aquariums we drove past, hours upon hours in the cold waters around Denmark, and the introduction to SCUBA diving. If not for their love and support, pursuing my dreams across the world would not have been feasible, and I am forever grateful to them and for their sacrifices to make this happen for me.

And finally, this thesis is a testament to the unwavering support I have received from my partner, Lee. Not only has he had to deal with the break-downs, the disappointments of failing experiments and sequencing outcomes one might expect during a PhD, along with acting the occasional research/experimental assistant and night-watch but he, and the rest of my family, has also dealt with the added emotional instability and general uncertainty that COVID-19 introduced into our lives. Not only with respect to project progression and timeline impacts of which there were a few, but more importantly with respect to the uncertainty and at times incomprehensible despair of border-closures, having to postpone our wedding, and not knowing when we got to see our families again.

"Shoot for the moon, even if you miss, you'll land among the stars." - Les Brown

Nature of support	Contribution	Contributors (affiliation)
Intellectual	Supervision	Line K Bay (AIMS)
support		Ira R Cooke (JCU)
		David J Suggett (KAUST)
		Kate M. Quigley (Minderoo Foundation, JCU
		Jan M Strugnell (JCU)
	Editorial assistance	Line K Bay (AIMS)
		Ira R Cooke (JCU)
		David J Suggett (KAUST)
		Kate M. Quigley (Minderoo Foundation, JCU
		Jan M Strugnell (JCU)
		Christian R Voolstra (UKON)
		Magena R Marzonie (JCU)
		Hugo B Harrison (UOB)
		Samantha Goyen (AIMS)
	Methodological advice	Christian R Voolstra (UKON)
	C	Luke Thomas (AIMS)
		Lesa Peplow (AIMS)
		Magena R Marzonie (JCU)
		Sara Bell (AIMS)
		Samantha Goyen (AIMS)
	Statistical advice	Murray Logan (AIMS)
		Hugo B Harrison (UOB)
		Matthew Nitschke (AIMS)
Data	Fieldwork	Georgina Matthews
collection		Line Bay (AIMS)
		Kirsty Frith
		Darren Anderson
		Magena R Marzonie (JCU)
		Veronique Mocellin (AIMS)
		Johnston Davidson (AIMS)
		Alyssa Budd (JCU)
		Rebecca Forster (AIMS)
		AIMS LTMP team
		RV Solander
		RV Cape Fergusson
	Laboratory work	Georgina Matthews
	-	Romain Pry
		Rachael Collins
		Kirsty Frith
		Kate Slaughter
		Ebba Dahlstrøm
		Chloe Parish
		Sasha Faul

Statement of the Contributions of Others

		AIMS National Sea Simulator and staff
		Andrea Severati (AIMS)
		Tom Barker (AIMS)
		Steven Green (AIMS)
		Justin Hochen (AIMS)
	Sequencing	Ramaciotti Centre for Genomics (UNSW)
		NovoGene (Hong Kong)
	Bioinformatics	SymPortal
		Ira R Cooke (JCU)
		Luke Thomas (AIMS)
	Logistical support	AIMS Stores
		Peter Davern ⁺
		Pia Wimmer
		Veronique Mocellin
Financial	Stipend and tuition fee	James Cook University Postgraduate Research
support		Scholarship
		Australian Government
	Project infrastructure	AIMS
	-	AIMS@JCU
		JCU
	Research funding	AIMS
	-	AIMS@JCU
		PADI Foundation
		CPHMVS HDRES
		JCU
		Auguron
	Conference travel/attendance	AIMS@JCU
		AMSA-NQ
		CPHMVS HDRES
		JCU

Thesis title	Natural variation in heat tolerance an corals on the Great Barrier Reef	nd underlying genetic and physic	ological mechanisms of
Name of Candidate	Josephine Jacoba Valentin Nielsen		
Chapter No	Details of publication(s) on which the chapter is based	Nature and extent of the intellectual input of each author, including the candidate	I confirm the candidate's contribution to this paper and consent to the inclusion of the paper in the thesis
2	Nielsen, JJV*., Matthews, G., Frith, KR., Harrison, HB., Marzonie, MR., Slaughter, KL., Suggett, DJ., & <u>Bay</u> , <u>LK.</u> (2022). Experimental considerations of acute heat stress assays to quantify coral thermal tolerance. <i>Scientific Reports</i> , <i>12</i> (16831), 1–13. <u>https://doi.org/10.1038/s41598-022-</u> <u>20138-2</u>	Authors JJVN, DJS, and LKB developed the research questions and experimental design. JJVN, GM, and LKB conducted the field work and	Name: Gina Matthews Signature
		experiments. JJVN, GM, KRF, and KS conducted the laboratory assays. KS and JJVN performed preliminary data visualisations. JJVN and HBH analysed the data with advice from DJS. JJVN produced the manuscript figures and tables. MM, HBH, LBK, JJVN, and DJS contributed to data interpretation. JJVN wrote the manuscript and all authors contributed to manuscript editing.	Name: Kirsty R Frith Signature
			Name: Hugo B Harrison Signature
			Name: Magena R Marzonie Signature
			Name: Kate L Slaughter Signature
			Name: David J Suggett Signature
			Name: Line K Bay Signature

Research output related to PhD thesis

Peer-reviewed publications:

Nielsen, J. J. V., Matthews, G., Frith, K. R., Harrison, H. B., Marzonie, M. R., Slaughter, K. L., Suggett, D. J., & Bay, L. K. (2022). Experimental considerations of acute heat stress assays to quantify coral thermal tolerance. *Scientific Reports*, *12*(16831), 1–13. https://doi.org/10.1038/s41598-022-20138-2

Conference/workshop presentations:

- AIMS@JCU Student Seminar Day, Townsville, QLD, Dec 2nd 2022. "Large-scale patterns of thermal tolerance in two species of *Pocillopora* on the Great Barrier Reef", JJV Nielsen*, KM Quigley, IR Cooke, JM Strugnell, DJ Suggett, & <u>LK Bay</u>.
- (2) Australian Marine Science Association (AMSA), Cairns, Queensland, Australia, Aug 7th – 11th 2022. "Spatial distribution of Symbiodiniaceae communities across the Great Barrier Reef in two species of Pocilloporids." JJV Nielsen*, KM Quigley, IR Cooke, JM Strugnell, DJ Suggett, & <u>LK Bay</u>.
- (3) International Society for Coral Reef Studies (ICRS), Bremen, Germany, July 3rd 8th 2022. "Effects of symbiont community and environmental history on acute heat tolerance in two common coral species across the Great Barrier Reef". JJV Nielsen*, KM Quigley, IR Cooke, JM Strugnell, DJ Suggett & <u>LK Bay.</u>
- (4) AIMS@JCU Student Seminar Day, Townsville, QLD, Nov 26th 2021 "Reef-level threshold temperatures appear highly correlated to annual temperature variability", Poster, JJV Nielsen*, E Dahlstroem, C Parish, KM Quigley, J Strugnell, I Cooke, DJ Suggett & <u>LK Bay</u>.
- (5) Three Minute Thesis Competition, College of Public Health, Medicine, and Veterinary Sciences, James Cook University, Townsville, QLD, Sep 13th 2021.
 "Temperature variability impacts coral performance". JJV Nielsen*. University-Final Runner-Up. \$500 research grant. JJVN 3MT 2021 (vimeo.com).
- (6) International Society for Coral Reef Studies (ICRS), Bremen, Germany, July 23rd 2021. "Physiological correlates of coral thermal tolerance across latitudinal gradients on the Great Barrier Reef". JJV Nielsen*, KM Quigley, IR Cooke, G Matthews, JM Strugnell, DJ Suggett & <u>LK Bay.</u>
- (7) ECT-CAD program meeting, Australian Institute of Marine Science: "Travelling the Great Barrier Reef with SeaSim-in-a-Box; the evolution of acute heat stress assays in the field", Townsville, June 3rd 2021.

- (8) Acute heat stress workshop, Australian Institute of Marine Science and James Cook University: "Developing and testing mobile acute heat stress assays on the Great Barrier Reef", Magnetic Island, QLD, Nov 26th 2020.
- (9) Torres Strait Regional Authority meeting, Australian Institute of Marine Science: "Exploring the genetic variability of adaptation through the 1000 coral genome project", Townsville, QLD, March 13th 2020.
- (10) Townsville Local Marine Advisory Committee meeting, Great Barrier Reef Marine Park Authority: "Exploring the genetic variability of adaptation through the 1000 coral genome project", Townsville, QLD, Feb 13th 2020.

Research output during Candidature

Peer-reviewed publications:

- Nielsen, J. J. V., Kenkel, C. D., Bourne, D. G., Despringhere, L., Mocellin, V. J. L., & Bay, L. K. (2020). Physiological effects of heat and cold exposure in the common reef coral Acropora millepora. *Coral Reefs*, 39(2), 259–269. https://doi.org/10.1007/s00338-019-01881-x
- Marzonie, M. R., Bay, L. K., Bourne, D. G., Hoey, A. S., Matthews, S., Nielsen, J. J. V, & Harrison, H. B. (2022). *The effects of marine heatwaves on acute heat tolerance in corals. August*, 1–13. https://doi.org/10.1111/gcb.16473

Thesis Abstract

Coral reefs are threatened globally from anthropogenic climate change with current and future rates of warming driving catastrophic loss of coral reefs. This is highlighted by the increasing frequency and severity of mass bleaching-induced coral mortality. The Great Barrier Reef (GBR) has experienced three mass bleaching events in six years. Corals already live at or near their upper thermal tolerance limits and further temperature increases, both committed to already and projected, will require that corals either move or adapt to survive.

Bleaching thresholds have been used to quantify coral thermal tolerance and explore the capacity for thermal adaptation to warming. Typically, bleaching thresholds are resolved experimentally *ex situ* (in aquarium-based experiments) through quantification of visual and/or physiological traits or *in situ* via survival observations measured in the field during a "natural" bleaching event. However, such approaches are slow and laborious. Reef management under rapid environmental change requires urgent and deep knowledge of variation in thermal tolerance, thereby necessitating the development of fast, standardised, and highly scalable protocols. Designing systems, protocols, or assays with mobility would allow researchers to test bleaching thresholds and other proxies of temperature tolerance onboard research vessels, on islands, or in isolated mainland communities thus reaching areas that have previously been excluded or less studied due to logistical challenges. This thesis explored the utility of rapid heat stress assays (18-24 h) and examined ways in which this data can be scaled and standardised. Applying such rapid and standardised approaches widespread provides an opportunity for the coral research community to generate information quickly and share results across species and geographic scales to address the urgency of the climate change challenge.

Coral restoration and adaptation approaches are currently being investigated globally as mitigation strategies for the effects of global warming. Efforts such as assisted migration and assisted gene flow rely on thermally tolerant source populations and require baseline knowledge on the drivers of differential thermal tolerance within and between coral populations, potentially across expansive spatial scales. Locating tolerant populations requires a rapid tolerance metric coupled with an understanding of other critical components of coral thermal tolerance, like disturbance history and their endosymbiotic community composition. The rapid assays investigated here meet this accelerating global need for deep knowledge of coral thermal tolerance and how it varies within and between populations.

In **chapter 2**, I focused on testing the experimental approach and methodological framework of applying rapid, acute heat stress assays on corals from the GBR. I show that sampling time post heat stress was an important driver of observed heat stress responses and document the cost and sample processing time requirements associated with quantifying multiple physiological traits. Finally, photosynthetic performance was stable across both experimental design decisions (sampling time and fragment size), making this trait more robust as a metric to quantify acute coral heat tolerance across large spatial scales.

In **chapter 3**, I employed these standardised acute heat stress assays across the latitudinal extent of the GBR to document patterns of upper heat tolerance in key coral species. Of the three species examined, *Pocillopora verrucosa* was the most tolerant compared to *Pocillopora meandrina* and *Acropora tenuis* as measured by photosynthetic threshold temperatures (ED50) following acute heat stress. These differences were largely found at the reef sector-level, potentially driven by variation in thermal disturbance histories between sectors and inter-species differences in acute heat tolerance. Another explanation could be species-level differences in the dominant symbiont types harboured within *P. verrucosa* versus *P. meandrina*.

In **chapter 4**, I investigated the role of coral host gene expression in differential thermal tolerance within a single population of *A. tenuis*, exposed to an acute heat stress. I found high intra-population differences in acute heat tolerance (ED50 range = 0.94° C) and differential physiological responses to heat stress in tissue colour change and photosynthetic efficiency. Interestingly, weighted gene co-expression network analysis (WGCNA) found two gene modules to be significantly associated with high acute heat tolerance (ED50) and nine genes were identified as potential gene expression markers of high heat tolerance. These results support the role of the coral genotype in holobiont thermal tolerance and provide a transcriptomic background to variability in coral thermal tolerance.

Overall, this thesis demonstrates the utility of applying rapid, experimental quantification of coral acute heat tolerance across large spatial scales. This approach allowed the identification of tolerant species and populations across the GBR and examined extrinsic (environment) and intrinsic (host genetics and symbionts) drivers of thermal tolerance. This thesis generated data relevant to reef management in multiple ways, including 1) by identifying reefs with high thermal tolerance for spatial protection; 2) by locating coral populations with high thermal tolerance to serve as brood and source stock for genetic management interventions such as

assisted gene flow and assisted migration and 3) by providing a measure of heat tolerance in populations which can be utilised to improve demographic and forecast modelling of coral persistence under future climate change scenarios. However, further exploration of the acute heat stress framework as well as determining the temporal stability of acute heat tolerance, is necessary to understand acute heat stress responses in relation to natural bleaching resistance.

Table of Contents

Acknowledgementsii
Statement of the Contributions of Others iii
Thesis Abstract viii
Table of Contentsxi
List of Figures xiii
List of Tablesxiv
Chapter 1 General Introduction1
1.1 Coral reefs and climate change1
1.2 Coral bleaching is a major threat under continued climate change1
1.3 The capacity for genetic adaptation to increasing heat stress in corals
1.4 The challenges associated with estimating coral thermal tolerance4
1.5 Acute heat stress assays as a tool to quantify coral thermal tolerance at scale
1.6 Multiple metrics are required to capture coral responses to thermal stress
1.7 Symbionts9
1.8 Environmental factors10
1.9 Thesis aims and objectives11
Chapter 2 Experimental considerations of acute heat stress assays to quantify coral
thermal tolerance
2.1 Abstract
2.2 Introduction
2.3 Materials and Methods
2.4 Results
2.5 Discussion
Chapter 3 Patterns of upper thermal performance in reef-building corals on the Great
Barrier Reef are influenced by sector-level differences in thermal disturbance history 41

3.1 Abstract	42
3.2 Introduction	43
3.3 Materials and Methods	46
3.4 Results	54
3.5 Discussion	65
Chapter 4 Does gene expression plasticity underpin acute heat tolerance in a	population
of reef-building coral?	70
4.1 Abstract	71
4.2 Introduction	72
4.3 Materials and methods	75
4.4 Results	84
4.5 Discussion	95
Chapter 5 General Discussion	100
5.1 Thesis summary	
-	101
5.1 Thesis summary	101
5.1 Thesis summary5.2 The need for standardised approaches to study coral thermal tolerance	101 102 104
 5.1 Thesis summary 5.2 The need for standardised approaches to study coral thermal tolerance 5.3 Identified drivers of coral heat tolerance 	101 102 104 e thermal
 5.1 Thesis summary 5.2 The need for standardised approaches to study coral thermal tolerance 5.3 Identified drivers of coral heat tolerance 5.4 Utility of ED50 derived from photosynthetic performance as proxy of acute 	101 102 104 e thermal 107
 5.1 Thesis summary 5.2 The need for standardised approaches to study coral thermal tolerance 5.3 Identified drivers of coral heat tolerance 5.4 Utility of ED50 derived from photosynthetic performance as proxy of acute tolerance 	101 102 104 e thermal 107 108
 5.1 Thesis summary 5.2 The need for standardised approaches to study coral thermal tolerance 5.3 Identified drivers of coral heat tolerance 5.4 Utility of ED50 derived from photosynthetic performance as proxy of acute tolerance 5.5 Limitations and future opportunities for acute heat stress assays 	101 102 104 e thermal 107 108 111
 5.1 Thesis summary 5.2 The need for standardised approaches to study coral thermal tolerance 5.3 Identified drivers of coral heat tolerance 5.4 Utility of ED50 derived from photosynthetic performance as proxy of acute tolerance	101 102 104 e thermal 107 108 111
 5.1 Thesis summary 5.2 The need for standardised approaches to study coral thermal tolerance 5.3 Identified drivers of coral heat tolerance 5.4 Utility of ED50 derived from photosynthetic performance as proxy of acute tolerance 5.5 Limitations and future opportunities for acute heat stress assays 5.6 Concluding remarks 	101 102 104 e thermal 107 108 111 113 114

List of Figures

Figure 1.1 Timeline of bleaching events on the Great Barrier Reef since 19923
Figure 1.2 Thesis summary14
Figure 2.1 Collection and experimental designs
Figure 2.2 Schematic overview of the experimental tank set-up24
Figure 2.3 Physiological responses of large (full) and small (hatched) coral fragments31
Figure 2.4 Percent change in physiological metrics over time
Figure 2.5 Relationships between multiple physiological responses to heat stress
Figure 3.1 Collection details and experimental design
Figure 3.2 Acute heat tolerance patterns of three coral species across the GBR58
Figure 3.3 Relative abundance (%) of the 28 ITS2-type profiles recovered61
Figure 3.4 Symbiont communities differed between coral host species and environments63
Figure 3.5 Physiological condition in relation to acute heat tolerance (ED50)64
Figure 4.1 Experimental design and tank set-up77
Figure 4.2 Colony-level variation in physiological responses to acute heat stress
Figure 4.3 Physiological maintenance score (PM) across four traits
Figure 4.4 Photo-physiological performance derived from Rapid Light Curves
Figure 4.5 Gene expression differences in coral host and symbionts90
Figure 4.6 Gene ontology (GO) terms significantly enriched in response to acute heating91
Figure 4.7 Differential gene expression between treatments
Figure 4.8 Modules identified by WGCNA and their association with Treatment94
Figure 5.1 Contributions of acute heat stress assays to coral conservation109

List of Tables

Table 2.1 Coral collection and experiment details	22
Table 2.2 Cost of consumables and time requirements for each assay	35
Table 2.3 Costs and benefits of measures of coral thermal tolerance	35
Table 3.1 Latitudinal gradient in Pocillopora collections.	54
Table 3.2 Sector-wide averages of thermal variables.	57
Table 4.1 Sampling overview.	76
Table 5.1 Recommendations to improve the use of the ED50 trait	111

Chapter 1 General Introduction

1.1 Coral reefs and climate change

Coral reefs are some of the most diverse ecosystems on the planet, harbouring up to 25% of all described marine species (Knowlton, 2001; Thornton & Richardson, 2022). The reefs support nearly a billion people globally (Sing Wong et al., 2022) and in Australia alone contribute \$6.4 billion annually to the economy (Costanza et al., 2014; Deloitte Access Economics, 2017). Global sea surface temperatures (SSTs) have increased by 0.65°C since 1880 (Lough et al., 2018) and unless there is immediate global action to completely eliminate greenhouse gas emissions, warming of a further 2°C is likely within this century (Raftery et al., 2017). However, climate change has placed coral reef ecosystems under threat globally with total reef area declining by 14% since 2009 (Souter et al., 2020). Continued warming will increase the severity of cyclones, the frequency and intensity of weather anomalies, heighten the deleterious effects of ocean acidification and, in general, make the climate more unpredictable (Crabbe, 2012; Hoegh-Guldberg et al., 2019). Increasing SSTs by 1.5°C will reduce global thermal refuges (areas likely to experience less impacts of climate change) on coral reefs to 0.2% of their overall area (Ashcroft, 2010; Osman et al., 2018), while 2°C of warming will effectively erode away thermal refuges (0% of coral reef pixels, Dixon et al., 2022).

1.2 Coral bleaching is a major threat under continued climate change

Corals are complex animals, living in symbiosis with a wide range of microorganisms and threatened by climate change. Corals associate with photosynthetic endosymbiotic dinoflagellates in the family Symbiodiniaceae (Abrego et al., 2008; Coles & Brown, 2003; Cunning et al., 2015). When temperature increases, the symbiosis between the coral host and Symbiodiniaceae is disrupted (Baker et al., 2008; Gates et al., 1992; Weis, 2008). As the density of symbiont cells decreases in the coral tissues, colour is lost, and corals appear white; this phenomenon is referred to as bleaching. While bleaching is a complex response to many stressors (Suggett & Smith, 2020), it is most commonly witnessed as the result of corals suffering thermal stress (Baker, 2001; Gates et al., 1992; Lirman et al., 2011). If the

perturbations which caused bleaching (for example thermal stress and/or solar irradiance) persist, the coral eventually dies (Suggett & Smith, 2011). As such, the mounting pressure from climate change on the persistence of coral reefs has prompted a need to understand the mechanistic underpinnings of coral resilience to environmental disturbances, and particularly to gradual and acute heat stress.

Bleaching is a global issue. Since 2003, 10% of all Caribbean reefs have experienced heat stress annually with that year identified as a tipping point (Muñiz-Castillo et al., 2019). Additionally, Kalmus et al., (2022) projects that as of 2021, 79% of coral reefs globally are likely to experience severe bleaching events at least once every five years with 91% of reefs to experience severe bleaching once every 10 years. As predicted by Hoegh-Guldberg, (1999) these observations support projections that reefs will continue to experience more frequent bleaching as thermal refuges decrease under continued climate change (Dixon et al., 2022; Kalmus et al., 2022; McManus et al., 2021). Severe thermal disturbances leading to widespread bleaching and subsequent coral mortality are now recognised as drivers of natural selection (Drury, 2020; Genevier et al., 2019). The Great Barrier Reef (GBR) has experienced three major bleaching events in just six years (2016/2017, 2020, and 2022, Fig 1.1). As evidenced by the 2016/17 events on the GBR, bleaching events are heterogenous in trajectory, intensity, duration, and spatial footprint. For example, in 2016/17, the southern sector of the GBR experienced relatively less heat stress while the northern sector recorded coral cover losses of upwards of 50.3%, resulting in a reef-wide coral decline of 30% (Hughes et al., 2017; Hughes et al., 2018). In contrast, during the 2020 event, the entire latitudinal extent of the GBR experienced bleaching to some level, indicating that the southern regions are not immune to thermal stress (Nolan et al., 2021; Page et al., 2023). These recurrent, extensive, and severe bleaching events pose a significant challenge to the persistence of coral reefs and corals will need to adapt to the oceans of the future either through natural processes or through active management approaches.

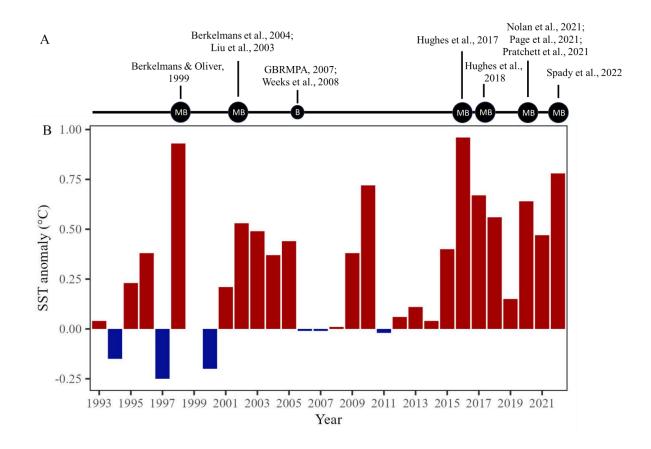


Figure 1.1 Timeline of bleaching events on the Great Barrier Reef since 1992. A) Mass bleaching events on record are denoted as "MB" in large black circles while local-scale bleaching events are noted as "B" in smaller black circles. References are associated with each bleaching event. B) SST anomalies on the GBR from 1992 to 2022 based on a 30-year climatology (1961-1990). Data obtained from the Australian Bureau of Meteorology and based on the NOAA ERSST v5 2°-2° grid data (Australian climate variability & change - Time series graphs (bom.gov.au)).

1.3 The capacity for genetic adaptation to increasing heat stress in corals

Genetic adaptation is required for current coral populations to persist under continued climate change (Bay et al., 2017; Rose et al., 2018). Adaptation works through selective pressures which alter the frequency of better-suited genotypes within populations across multiple generations. Therefore, to increase coral thermal tolerance by means of adaptation requires either genome mutations, genetic drift, and/or gene flow leading to increased standing genetic variation within populations (Pavlova et al., 2017; Petit & Excoffier, 2009; van Oppen et al., 2011). Corals can have high genetic diversity (Drury et al., 2016; Matias et al., 2022) and evidence from laboratory (Humanes et al., 2022; Quigley et al., 2020; Wright et al., 2019), field (Cooke et al., 2020; D'Angelo et al., 2015; Howells et al., 2011), and modelling studies (Matz

et al., 2020; McManus et al., 2021) have demonstrated that corals have some capacity to adapt to changing thermal environments and that this capacity is (partly) heritable (reviewed in Bairos-Novak et al., 2021; Howells et al., 2022). This heritable capacity for local adaptation is an important requirement for the development and implementation of new genetic conservation efforts (van Oppen et al., 2015; Voolstra et al., 2021a).

Due to the mounting pressure from climate change, coral reef managers are now looking beyond traditional conservation methods such as Marine Protected Areas (MPAs), restricted use zones, coral predator control, and steps to improve water quality (Mellin et al., 2019). On the GBR, several types of novel interventions are under investigation (Anthony et al., 2020; Boström-Einarsson et al., 2020; McLeod et al., 2022). Genetic interventions such as assisted gene flow, selective breeding and managed translocation of target individuals have been used successfully in terrestrial and aquatic management (Aitken & Bemmels, 2016; Aitken & Whitlock, 2013; Pavlova et al., 2017) and are now being applied on the GBR (McLeod et al., 2022; van Oppen & Quigley, 2022). However, these genetic conservation approaches all rely on understanding the adaptive potential along with the occurrence of thermally tolerant corals but the mechanisms of genetic adaptation in corals is not fully understood (Baums et al., 2022) and there is a lack of a full appreciation of the level and occurrence of local adaptation to thermal regimes on the GBR.

1.4 The challenges associated with estimating coral thermal tolerance

Thermal tolerance, and the variation herein, is key to understanding coral survival under continued climate change and has received significant scientific attention. Traditionally, the majority of coral thermal tolerance studies were undertaken *in situ* in the field, either during natural thermal stress events (Guest et al., 2012; Hoey et al., 2016), or using common garden/transplantation studies (Bay & Palumbi, 2017; Kenkel et al., 2015) or under experimental conditions *ex situ* in aquaria (Coles & Jokiel, 1977; Middlebrook et al., 2010; Pratchett et al., 2020). Long-term monitoring of coral communities has enabled the detection of community-level patterns of thermal tolerance (AIMS, 2022; McClanahan et al., 2007) and serves to identify relative tolerance between species (Loya et al., 2001). However, the pressing need to further our understanding of coral thermal tolerance requires multiple sources of evidence spanning spatial, temporal and biological scales (van Woesik et al., 2022).

Variability in coral thermal tolerance can be investigated with common garden and reciprocal transplant experiments in which colonies are moved along an environmental gradient (Howells et al., 2013; Kenkel et al., 2015), hence removing the requirement of a natural bleaching event to occur. The experimental transplantation of corals along such gradients has been used to examine physiological responses to projected future environments (Sampayo et al., 2016; Tisthammer et al., 2021). However, under natural conditions, it is challenging to confirm if the observed patterns are the result of a single driver such as differential thermal tolerance or potentially due to interactions of multiple environmental variables (McClanahan et al., 2007). Aquarium-based experiments can offer highly controlled conditions under which drivers of differential thermal tolerance can be examined by isolating multiple factors simultaneously (D'Angelo & Wiedenmann, 2012). This was recently exemplified by Cleves et al., (2020c) who utilised aquarium-based thermal stress experiments to document specific gene function (gene HSF1) in thermal tolerance of coral larvae. Despite the usefulness and increasing potential of ex situ, aquarium-based assessments of coral thermal tolerance, undertaking such experiments carry limitations, particularly around logistics, husbandry, and costs (Orejas et al., 2019) which may reduce the scope of such experiments with regards to sample volume and accessible study locations. Additionally, target species must be able to be maintained in aquaria successfully long-term. However, not all species can be easily maintained in aquaria (Delbeek 2001). This has resulted in an under-representation of species in thermal tolerance studies which predominantly rely on Pocillopora damicornis, Stylophora pistillata, and Acropora millepora (McLachlan et al., 2020). To further our understanding of coral thermal tolerance, it is therefore important to broaden the scope of species assessed as well as developing standardised experimental methods for this purpose.

1.5 Acute heat stress assays as a tool to quantify coral thermal tolerance at scale

Acute heat stress assays have been widely used across scientific disciplines, including in human medicine (Gianrossi et al., 1989), caterpillars and insects (Kingsolver et al., 2013; Kingsolver & Gomulkiewicz, 2003), as well as aquatic and marine invertebrates (Kim et al., 2017; Pallarés et al., 2012; Qin et al., 2018) to obtain fitness measurements rapidly. In this thesis, acute heat stress assays refer to rapid (<24h) experimental *ex-situ* exposures to high levels of thermal stress above the site-specific max monthly mean (MMM) climatology). These assays expose

corals to heating challenges lasting six hours, followed by a short recovery period. These methods were originally developed by Palumbi and colleagues working along the thermally variable reef areas in American Samoa (Bay & Palumbi, 2015; Oliver & Palumbi, 2011). They showed that these assays provide a valuable, valid, and fast way of assessing coral thermal tolerance across spatial scales (Cunning et al., 2021; Voolstra et al., 2020). Voolstra et al., (2020) further showed that thermal performance results obtained from these acute heat stress assays were comparable to standard, long-term (3-week) thermal exposure studies. Additionally, coral genotypes that had performed well under acute heat stress exposure also fared well through a natural bleaching event in Samoa (Morikawa & Palumbi, 2019; Rose et al., 2018), demonstrating the ability of the experimental framework to identify thermally tolerant individuals within a population. The assays have further allowed for large sample sizes across spatial scales (Cunning et al., 2021; Marzonie et al., 2022; Nielsen et al., 2022) that would not be feasible with traditional, land-based aquarium experiments. For example, Cunning et al., (2021) surveyed 229 colonies of Acropora cervicornis along a 2° latitudinal gradient in Florida, USA, while Marzonie et al., (2022) quantified thermal tolerance of 376 colonies of three coral species across 6.7° latitude in the Coral Sea, Australia.

Previous efforts to compare results from the substantial literature of coral thermal tolerance has in part been hindered by the lack of a common experimental framework and shared variables and traits quantified (Grottoli et al., 2020; McLachlan et al., 2020). For example, McLachlan et al., (2020) highlights that even different methods of standardisation (such as chlorophyll concentration per cm⁻² vs g⁻¹ dry weight) hinder comparisons between studies. Additionally, Kellermann et al., (2019) found that exposure duration significantly influenced thermal performance of multiple traits, making sampling time an important consideration for heat stress studies. Finally, Leggat et al., (2022) recommended that the amount of heat stress applied during experiments should be reported to enable cross-comparisons between studies. Globally, there is now a push to adopt a standardised protocol and treatment temperatures relative to the local thermal environment to allow direct comparisons of relative heat tolerance between studies and populations.

1.6 Multiple metrics are required to capture coral responses to thermal stress

After identifying a suitable experimental framework for quantifying coral thermal tolerance, choosing how to measure thermal tolerance is a challenging task as this trait spans multiple levels of biological organisation. Macro-physiological measures such as survival, growth, and reproductive output are ideal fitness traits to quantify coral thermal tolerance (Barott et al., 2021; Hazraty-Kari et al., 2022; Madin et al., 2014). However, quantifying size changes or reproductive output in corals is challenging and highly time dependent. Reproductive studies are confined to once per year for most species (Baird et al., 2021) while substantial time is required for size changes to be detectable (Harriott, 1998; Smith et al., 2007). To overcome these challenges, tissue and cellular responses to thermal stress have been used as proxies of thermal tolerance. For example, common markers of coral health such as changes in photosynthetic efficiency, chlorophyll, protein, and lipid content all show a general decrease with increasing temperatures (Al-Moghrabi et al., 1995; Barshis et al., 2013; Conlan et al., 2014; Fitt et al., 2009; Nielsen et al., 2020; Roth et al., 2012; Thomas et al., 2018) while other metrics like antioxidative enzyme activities are generally increased under thermal stress (Gardner et al., 2017b; Krueger et al., 2015; Lutz et al., 2015). However, how these common physiological indicators respond to acute heating has received little attention.

While photosynthesis is paramount to coral productivity (Anthony & Hoegh-Guldberg, 2003; Lohr et al., 2019), it also contributes to the symbiosis break-down between coral and algae symbionts due to high production of harmful reactive oxygen species (ROS) during stress (Gardner et al., 2017b). Therefore, declines in photosynthetic efficiency, and in particular in maximum photochemical yield (F_{ν}/F_m), are considered an early sign of thermal stress (Jones & Berkelmans, 2012) and detecting such responses can be achieved relatively easily and non-destructively. Maximum photochemical yield of Photosystem II (F_{ν}/F_m) has been used widely in the literature to document thermal stress in multiple organisms (González-Guerrero et al., 2021; Jones & Berkelmans, 2012; Lohr et al., 2019). Obtaining photo-physiological data is also rapid and allows researchers to fully capitalise on the high experimental throughput of acute heat stress assays (see **chapter 2**; Nielsen et al., 2022). Additionally, coral tissue colour has been used as a rapid indicator of colony health (Chow et al., 2016; Siebeck et al., 2006) with visible paling indicating bleaching and therefore thermal stress (Jones & Berkelmans, 2011; Tsang & Ang, 2015). Tissue colour has been shown to correlate to chlorophyll content (Nielsen

et al., 2020; Winters et al., 2009) and symbiont cell density (Siebeck et al. 2006). Importantly, given that photographic assessments of tissue colour can scale rapidly with the advance of automated image processing (Macadam et al., 2021), this trait could serve as a rapid indicator of thermal stress.

Coral thermal tolerance is governed through multiple physiological and transcriptional pathways (Cleves et al., 2020c; Kenkel et al., 2013). Therefore, holobiont thermal tolerance is rarely captured by measuring only one fitness trait as tolerance is a complex and multivariate trait prone to physiological trade-offs (Day et al., 2008; Jones & Berkelmans, 2010; Precoda et al., 2020; Quigley et al., 2021), although the extent of such trade-offs in thermally tolerant corals is still under investigation (Lachs et al., 2023). Importantly, candidate traits should show a clear, direct relationship between temperature and the trait response and the trait should ideally be clearly linked to the overall fitness of the organism (Angilletta et al., 2003; Kingsolver & Woods, 2016; Wikelski & Cooke, 2006). As a minimum, it has been recommended that studies focus on quantifying at least one symbiont and one host trait (Grottoli et al., 2021). Additionally, the concept of a cascading network response to heat stress supports the capture of multiple tolerance measures (Gardner et al., 2017a; Suggett & Smith, 2020). Further, responses to disturbance are time-dependent and initial reactions to thermal stress may happen rapidly as part of physiological acclimatization but these costly mechanisms are quickly replaced by long-term processes which maintain homeostasis under thermal stress (Borowitzka, 2018), making the sampling time point an important consideration for the experimental outcomes.

1.6.1 Transcriptional mechanisms of heat tolerance

The molecular common stress responses (CSRs) following thermal disturbances have been well studied in corals exposed to long-term thermal stress (Cleves et al., 2020b; Cziesielski et al., 2019; Dixon et al., 2020; Louis et al., 2017). The genes or clusters involved with these responses in corals generally involve upregulation of heat shock proteins (*hsp*) and antioxidative enzymes at the early onset of heat stress (Louis et al., 2017; Meyer et al., 2011) followed by upregulation of genes involved in apoptosis and protein folding (Cleves et al., 2020b; Maor-Landaw & Levy, 2016). Although some processes such as protein expression changes are known to show rapid transcriptional responses to heat stress (Traylor-Knowles et al., 2017), little is currently known about the wider molecular responses to acute heat exposure. Recently, Voolstra et al., (2021b) documented contrasting patterns of gene expression

strategies between two populations of *Stylophora pistillata* with one showing a large shift in expression levels of a suite of genes while the other population recorded almost no differentially expressed genes across three different temperatures (30, 33, and 36°C, respectively). Following on, Savary et al., (2021) tracked gene expression responses to acute heat stress through time; immediately after heat stress and at 18h post heating, following a recovery period. They found that corals exposed to the most extreme temperature (34.5°) under acute heat stress assays failed to return to baseline expression profiles at the recovery sampling point and highlighted significant genotypic variation in transcriptional responses (despite the study only including five genotypes). Transcriptional responses to thermal stress can not only be early indicators of coral stress (Bay et al., 2013) but through biomarkers, can also be used to predict how corals fare through a disturbance (Bay & Palumbi, 2017). Additionally, capacity for phenotypic plasticity may originate from increased gene expression plasticity (Kenkel & Matz, 2016). Therefore, documenting the transcriptional diversity and plasticity (Granados-Cifuentes et al., 2013) of corals in response to thermal challenges will further inform genetic adaptive capacity.

1.7 Symbionts

Corals are symbiotic animals and their thermal tolerance is influenced by the community composition of their photosynthetic endosymbionts of the family Symbiodiniaceae (Baker et al., 2004; Berkelmans & van Oppen, 2006; LaJeunesse et al., 2018; Wall et al., 2020). Some Symbiodiniaceae taxa, such as representatives in the genus *Durusdinium*, are capable of increasing holobiont bleaching thresholds by 1°C or more (Berkelmans & van Oppen, 2006; Cunning et al., 2015; Quigley et al., 2020). Studies previously focussed on the role of the dominant symbiont taxa (Berkelmans & van Oppen, 2006; Jones & Berkelmans, 2010) but in the last decade, the importance of low-abundance, background strains has been recognised (Cunning et al., 2015; Quigley et al., 2014), driven in part by advances in sequencing technology and cost reductions. Environmental factors also affect symbiont communities given their establishment is regulated by both environmental and genetic influences (Quigley et al., 2018). However, the extent appears to be highly host-species specific, likely due to these genetic influences. For example, *Pocillopora verrucosa* in the Red Sea (Sawall et al., 2014; Ziegler et al., 2014) and *Acropora tenuis* on the GBR (Cooke et al., 2020; Matias et al., 2022)

tend to show very conserved Symbiodiniaceae communities across significant environmental (thermal and depth) gradients (Cooke et al., 2020; Matias et al., 2022; Sawall et al., 2014; Ziegler et al., 2014) whereas *A. millepora* (Cantin et al., 2009; van Oppen et al., 2001) and *Platygyra daedalea* are more flexible in their associations (Howells et al., 2016). However, we do not currently have a good understanding of the distribution of tolerant symbionts within coral species with potentially highly conserved communities, like the species studies here. Further, environmental factors associated with different symbiont communities are not well understood. Therefore, we need to document and describe the symbiont communities of thermally tolerant corals at the level of intra- and interpopulation, across spatial scales and identify potential environmental drivers of community differences.

1.8 Environmental factors

Past environmental history is a major driver of local adaptation to temperature in coral populations. Classical thermal adaptation theory predicts that higher tolerance is found in heterogenous environments (Angilletta, 2009; Gilchrist, 1995; Magozzi & Calosi, 2015; Nilsson-Örtman et al., 2012) and this has been experimentally validated in corals (for example Barott et al., 2021; Palumbi et al., 2014; Quigley & van Oppen, 2022) where thermal variability promotes a wider thermal tolerance breadth than what is expected in homogenous thermal environments (Oliver & Palumbi, 2011; Richter-Boix et al., 2015; Safaie et al., 2018; Schoepf et al., 2015b). However, the optimal trait temperature is often lower in variable environments compared to homogenous ones which favour the evolution of thermal specialists (Seebacher et al., 2015). Corals' thermal strategies on the GBR can be ambiguous with species or populations not adhering to a strictly generalist-specialist trade-off (Jurriaans & Hoogenboom, 2019) whereby generalists maintain higher performance across a wide thermal spectrum and specialists record greater performance but over a narrow thermal spectrum (Gilchrist, 1995; Seebacher et al., 2015).

Recent studies have further showed that coral thermal tolerance is correlated to sitespecific Maximum Monthly Mean (MMM) temperatures and Degree Heating Weeks (DHW) (Mason et al., 2020) while Marzonie et al., (2022) reported a strong positive relationship between the exposure to mild (DHW>4) heatwaves and acute thermal tolerance. As other environmental variables such as salinity (D'Angelo et al., 2015), water quality (Wooldridge, 2009), oxygen content (Alderdice et al., 2021) and nutrients (Béraud et al., 2013; Rosset et al., 2017; Wiedenmann et al., 2013) also impact the metabolic and physiological pathways of coral, these variables have also been shown to impact holobiont thermal tolerance. To identify areas or coral populations characterised by increased temperature tolerance, it is therefore important to investigate the impacts of thermal history and other environmental covariates across large spatial scales on the Great Barrier Reef. This knowledge will help identify specific conditions conducive to high thermal tolerance which could have wider implications for restoration initiatives on the reef. Incorporation of site-specific thermal disturbance history has previously highlighted differences in bleaching susceptibilities within species; both on a smaller scale (~15 ha, Drury et al., (2022b) and across ocean basins (Kenya vs GBR; McClanahan et al., 2004). Further, large-scale gradients of SSTs have been shown to impact coral thermal tolerance (Carilli et al., 2012), and understanding the drivers or environmental covariates of high heat tolerance can therefore be furthered by increasing the spatial footprint of such investigations. Finally, to successfully implement assisted translocation approaches as considered under genetic management interventions (Baums et al., 2019; McLeod et al., 2022), it is important to first understand both upper and lower tolerance limits. For example, corals from the central GBR experienced significant winter bleaching when transplanted to the southern region (Howells et al., 2013). Therefore, patterns of coral thermal tolerance must be examined across latitudinal and thermal gradients.

1.9 Thesis aims and objectives.

To increase our understanding of the drivers of coral thermal tolerance at scale and the need for foundational knowledge for genetic management approaches under climate change, in this thesis I aimed to **document and describe the distribution of thermally tolerant coral (populations) across the Great Barrier Reef (GBR) and investigate the underlying drivers and co-variates of enhanced tolerance**. This thesis demonstrates the first application of acute heat stress assays to quantify thermal tolerance in multiple coral species across the latitudinal extent of the GBR. Mapping thermally tolerant corals will provide benefits to conservation and restoration activities by not only documenting occurrence but could also serve as the basis for modelling thermal tolerance capacity based on information on the drivers of this differential tolerance. In chapter 2: *Experimental considerations of acute heat stress assays to quantify coral thermal tolerance*, I completed multiple field tests using the acute heat stress assay system across the far northern reaches of the GBR. Specifically, I aimed to:

- Field test, assess and resolve multiple experimental design and methodological decisions.
- Provide a cost analysis for the acquisition of data on common coral thermal tolerance traits.
- Examine the use of rapidly quantifiable proxy traits to guide trait choice for future studies.

I show how experimental and methodology decisions such as coral fragment size and sampling time point influence the responses to heat stress across multiple physiological traits. I also provide a cost-benefit analysis of common coral health physiological traits to inform downstream analyses for other chapters in this project. Finally, I show how rapid measures of heat stress (photosynthetic efficiency and tissue colour change) may be used as proxies of acute heat tolerance when studies need to scale up investigations and traditional laboratory-based assays become too time- and labour-consuming, creating a bottleneck.

This chapter was published in *Scientific Reports* and the version in the thesis is the same as the published version:

Nielsen, J. J. V., Matthews, G., Frith, K. R., Harrison, H. B., Marzonie, M. R., Slaughter, K. L., Suggett, D. J., & Bay, L. K. (2022). Experimental considerations of acute heat stress assays to quantify coral thermal tolerance. *Scientific Reports*, *12*(16831), 1–13. <u>https://doi.org/10.1038/s41598-022-20138-2</u>

In Chapter 3: Patterns of upper thermal performance in reef-building corals on the Great Barrier Reef are dictated by sector-level differences in thermal disturbance history, I deployed acute heat stress assays across 11.5° latitude along the GBR with the aims to:

- Quantify acute heat tolerance in multiple coral species across the latitudinal extent of the Great Barrier Reef.
- Document and describe spatial patterns of symbiont communities on the Great Barrier Reef.
- Examine environmental and thermal history covariates of high and low acute heat tolerance.

This chapter utilised the experimental design decisions and cost-benefit framework identified in **Chapter 2** to provide the largest experimental assessment of heat tolerance on the GBR to date. Here, I incorporate the importance of the dominant Symbiodiniaceae community in two species of *Pocillopora* in recognition of its contribution to holobiont tolerance. I also perform an environmental covariate analysis in which I combine 19 thermal history variables to identify the maximum SST and the number of mild heating events (where heat stress > 3 DHW) as factors that explained the greatest amount of variation in differences in upper acute heat tolerance within three coral species on the GBR.

In Chapter 4: *Does gene expression plasticity underpin acute heat tolerance in a population of reef-building coral?* I performed acute heat stress assays to focus on intra-population variation in physiological and transcriptomic responses to acute heat stress. Focusing on a single population allowed me to interrogate the genetic mechanisms underlying host responses to acute heat tolerance more closely. Specifically, I aimed to:

- Identify thermally tolerant and intolerant individuals from within a population using acute heat stress and multiple physiological traits.
- Identify gene expression patterns and potential biomarkers of thermal tolerance between thermally tolerant and intolerant colonies.

This chapter combined high-throughput heat tolerance phenotyping with transcriptomic analyses to identify host drivers of increased heat tolerance within a population. I describe significant effects of acute heat stress exposure on gene expression profiles 24 h after heat stress and find a small number of genes which were significantly upregulated in the heat tolerant colonies in the absence of heat stress and propose these could serve as gene expression markers of acute heat tolerance.

Finally, I combine the results from chapters 2-4 in Chapter 5: *General Discussion* where the major context of the thesis and its wider implications are interrogated. I highlight future directions and opportunities for this research, including how this data can contribute towards coral management initiatives through identification of areas of exceptional heat tolerance for spatial protection but also through the identification of thermally tolerant brood- and source-stock for genetic interventions. I describe how these data can feed into coral demographic modelling to improve forecasts of survival and recovery following heat stress. Finally, I discuss the limitations of acute heat stress assays and highlight the need for further ground-truthing of

the experimental framework to ensure that acute heat stress tolerance is indeed indicative of long-term, natural bleaching and mortality resilience under natural marine heat wave events.

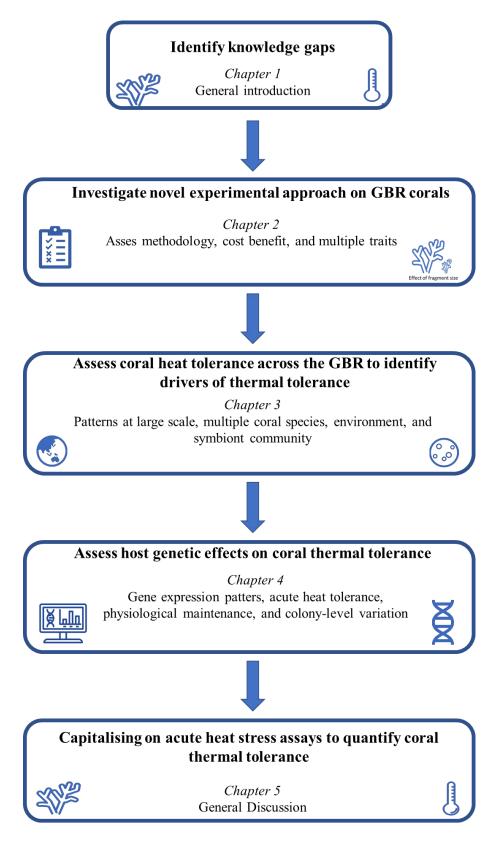
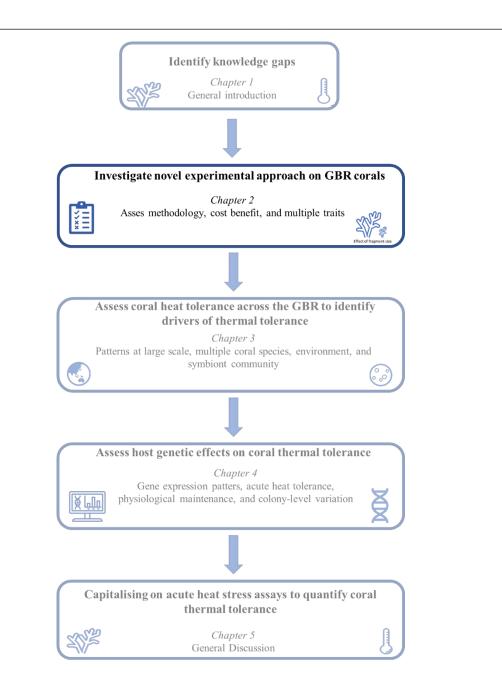



Figure 1.2 Thesis summary.

Chapter 2 Experimental considerations of acute heat stress assays to quantify coral thermal tolerance.

- This paper was published and the text has only been altered with respect to formating but otherwise appears as in the published version.
- Nielsen, J. J. V., Matthews, G., Frith, K. R., Harrison, H. B., Marzonie, M. R., Slaughter, K. L., Suggett, D. J., & Bay, L. K. (2022). Experimental considerations of acute heat stress assays to quantify coral thermal tolerance. *Scientific Reports*, 12(16831), 1–13. <u>https://doi.org/10.1038/s41598-022-20138-2</u>

2.1 Abstract

Understanding the distribution and abundance of heat tolerant corals across seascapes is imperative for predicting responses to climate change and to support novel management actions. Thermal tolerance is variable in corals and intrinsic and extrinsic drivers of tolerance are not well understood. Traditional experimental evaluations of coral heat and bleaching tolerance typically involve ramp-and-hold experiments run across days to weeks within aquarium facilities with limits to colony replication. Field-based acute heat stress assays have emerged as an alternative experimental approach to rapidly quantify heat tolerance in many samples yet the role of key methodological considerations on the stress response measured remains unresolved. Here, I quantify the effects of coral fragment size, sampling time point, and physiological measures on the acute heat stress response in adult corals. The effect of fragment size differed between species (Acropora tenuis and Pocillopora damicornis). Most physiological parameters measured here declined over time (tissue colour, chlorophyll-a and protein content) from the onset of heating, with the exception of maximum photosynthetic efficiency (F_{ν}/F_m) which was surprisingly stable over this time scale. Based on these experiments, I identified photosynthetic efficiency, tissue colour change, and host-specific assays such as catalase activity as key physiological measures for rapid quantification of thermal tolerance. I recommend that future applications of acute heat stress assays include larger fragments (>9 cm²) where possible and sample between 10 - 24 h after the end of heat stress. A validated high-throughput experimental approach combined with cost-effective genomic and physiological measurements underpins the development of markers and maps of heat tolerance across seascapes and ocean warming scenarios.

2.2 Introduction

Coral reefs are under increasing threat from climate change with strong and direct impacts from the interaction of chronic ocean warming (Pörtner et al., 2019) and the increasing frequency of acute heat waves driving episodes of mass coral bleaching (Genevier et al., 2019; Hughes et al., 2018). The process of bleaching is a well-described physiological response to the interaction of temperature and light, resulting in nutritional (Morris et al., 2019) and oxidative stress in the coral holobiont (reviewed in Suggett & Smith, 2020). It is recognised as the loss of coral colour due to expulsion of symbiotic algae and/or photosynthetic pigments (Baker et al., 2008; Brown et al., 1994; Suggett & Smith, 2011). When environmental stressors persist and/or events are extreme, bleaching may be followed by coral mortality (Maynard et al., 2008; Weis, 2010). Therefore, the ability of populations and species to cope with increasing temperature extremes is likely to define the structure and function of coral reefs into the future. Until recently, high throughput approaches capable of measuring and comparing heat tolerance within and between populations had only been applied to coral larvae (Dixon et al., 2015; Meyer et al., 2011) and not to adult colonies (Grottoli et al., 2021).

Acute thermal stress experiments provide a tool to identify and predict tolerance to stress using large sample sizes across environmental gradients (Evensen et al., 2022). In the marine environment, such experiments have been used to investigate heat stress thresholds in metabolic (Song et al., 2019), molecular (Juárez et al., 2018; Kim et al., 2017), and/or behavioural (Pallarés et al., 2012; Qin et al., 2018; Zanuzzo et al., 2019) traits across a variety of marine vertebrates and invertebrates. These various approaches have identified heat-tolerant corals after exposure to acute thermal stress (Cunning et al., 2021; Evensen et al., 2021; Morikawa & Palumbi, 2019; Rose et al., 2018; Thomas et al., 2018; Voolstra et al., 2020). For example, Morikawa et al., (2019) showed that nursery corals which survived a natural bleaching event (American Samoa) all originated from top-performing colonies under acute heat stress assays. Further work in the Red Sea has demonstrated that physiological responses (including photosynthetic efficiency) from such acute assays could be differentiated among four species (Evensen et al., 2022) and were consistent with those from more traditional, longer-term heating experiments (Evensen et al., 2021; Voolstra et al., 2020). Consequently, acute heat stress assays are highly applicable to quantify how corals respond to different temperature treatments across broad spatial and temporal scales in the field (Cunning et al.,

2021; Klepac & Barshis, 2022). However, specific experimental considerations have not been resolved for these assays.

As acute heat stress assays increase the extent of sampling possible, the processing times of ever more extensive coral phenotypic data creates an increasing bottleneck (Gardner et al., 2017a; Madin et al., 2016; Suggett et al., 2022). Existing physiological metrics of bleaching sensitivity, such as quantification of pigment (chlorophyll-a), protein, and antioxidative enzyme activity assays (e.g. catalase; Krueger et al., 2015) are invasive and labour-intensive to obtain. High-throughput assessment often relies on real time, non-invasive, and active fluorescence-based measures of the photo-physiological performance of coral endosymbionts – notably the maximum photochemical yield of photosystem II (PSII), F_{ν}/F_{m} (dimensionless; Leggat et al., 2011; Nitschke et al., 2018) – as a first order proxy for other physiological metrics. F_{ν}/F_m is long evidenced in quantifying declining endosymbiont function as corals bleach under heat stress (Nitschke et al., 2018; Warner et al., 1999), and correlates to other heat-response characteristics such as declining chlorophyll-a content (Fitt et al., 2001), protein content (Tolosa et al., 2011), and changes to the microbial community composition (Grottoli et al., 2018). Other studies have employed image-based measures of colour to rapidly assay bleaching (Chow et al., 2016); for example, Nielsen et al., (2020) showed a strong relationship between tissue colour and chlorophyll-a content. Thus, coupling readily quantifiable, costeffective parameters and their relationship to thermal tolerance with acute heat stress assays allows faster quantification of the coral bleaching response and provides a platform for developing a deeper insight into patterns of thermal tolerance across time and space.

To ensure that growing acute heat stress data sets (Cunning et al., 2021; Evensen et al., 2022; Voolstra et al., 2020) are comparable among studies to support robust reconciliation through cross-study meta-analyses, a consistent set of guidelines will be required. A common standardised framework is required to resolve drivers of bleaching susceptibility between species and regions spanning different geographical (habitat, reef, region) and biological (colony, population, species) scales (McLachlan et al., 2020). Basic operational factors that can potentially influence measures of thermal tolerance remain largely untested (Edmunds & Burgess, 2018; Madin et al., 2014). The size of the sampled fragment has been shown to affect thermal tolerance and bleaching resistance in some corals (Pausch et al., 2018; Shenkar et al., 2005). Similarly, it is unknown whether physiological changes occur linearly or non-linearly over time, and by extension, whether studies measuring at different time points can be compared (Hoey et al., 2016; Middlebrook et al., 2010).

I examined how the understanding of heat tolerance based on acute assays is affected by fundamental methodological considerations. I firstly investigate the effect of experimental fragment size using two common coral species of varying thermal sensitivities, *Acropora tenuis* and *Pocillopora damicornis*. Since published studies of acute thermal tolerance have sampled at slightly different time-points, I then examined the effect of sampling time on the resulting acute heat stress phenotypes of *A. tenuis* over 48 h. Due to the high-throughput potential of these acute heat stress assays, I provide a cost analysis of the physiological metrics included here and finally I investigate how rapid, non-invasive measures of coral thermal tolerance (F_v/F_m and colour change) compare to more time-consuming and labour-intensive measures using evidence from multiple physiological traits. I discuss experimental considerations and cost effectiveness of physiological responses to heat stress. This study benefits the development of cost-effective and rapid descriptors of (heat) stress tolerance amongst coral populations for targeted protection or propagation.

2.3 Materials and Methods

2.3.1 Study region, species, and collection

Acute heat stress assays on Acropora tenuis and Pocillopora damicornis were conducted in the Far Northern Great Barrier Reef (FNGBR) in January 2019 (Fig 2.1A). This region of the Reef is characterised by high summer temperatures and irradiance (Bainbridge, 2017; Smith & Spillman, 2019) and experienced consecutive bleaching events in the austral summers of 2016 and 2017 (18-82 % bleaching, n = 15 reefs (Hughes et al., 2018). All coral samples were collected on SCUBA (3 - 6 m) under Great Barrier Reef Marine Park permit G16/38488. Colony colour was assessed against the Coral Watch reference chart at the time of collection (Siebeck et al., 2006). Fragments were placed in perforated zip-lock bags for no more than two h, and further fragmented for experiments. Fragments were placed in aquaria (60 L) on the vessel deck, supplied with ambient flow-through seawater, and shaded with cloth prior to being moved into the experimental tanks. Seven separate experimental runs were conducted no later than 24 h after collection across three experiments (Table 2.1). The two species were selected to represent two abundant genera and for their ease of collection with hand tools. Collection, transport, and fragmentation are likely stressful for corals and the protocol did not allow for recovery time prior to experimental exposure, hence heated fragments were compared to ambient-held fragments.

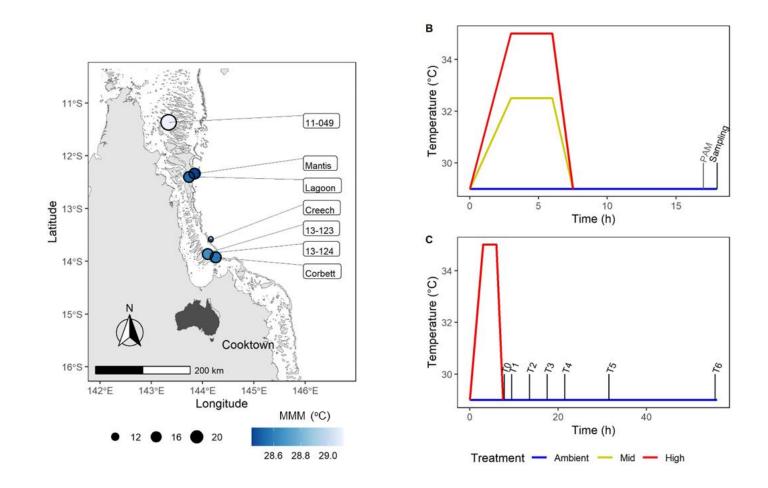


Figure 2.1 Collection and experimental designs used to examine the influence of fragment size on two species (*A. tenuis* and *P. damicornis*) and time of sampling on multiple physiological measures. A: Map of sampling locations, size of dot indicates number of colonies sampled per site and colour shows Max Monthly Mean (MMM) temperature of each site. Map generated in R version 4.1.3. B: Temperature profiles used to test for size effects in *A. tenuis* and *P. damicornis* (ambient and high treatments only, experiment 1) and to investigate multiple physiological measures across five reefs in *A. tenuis* (all three treatments, experiment 3). C: Temperature profile and sampling time points for assessing changes in physiological metrics through time (experiment 2).

Purpose of experiment			Species collected	Species collected Colonies sampled		MMM °C	Collection date	Experiment date	
1.Fragment	13-123	144.1348°E,	A. tenuis	9	Ambient and +6°C	28.6	14/01	15/01	
Size effect		13.8552°S	P. damicornis	9					
2.Time effect	Creech	144.1071 °E,	A. tenuis	9	Ambient and +6°C	28.46	15/01	16/01	
		13.6447°S							
3.Alternative	Corbett	144.2405°E,	A. tenuis	18	Ambient, +3°C, +6°C	28.58	10-11/01	11/01	
physiological		13.9227°S							
measurements									
	13-124	144.0906°E,	A. tenuis	15	Ambient, +3°C, +6°C	28.66	12-13/01	13/01	
		13.8517°S							
	Lagoon	143.7394∘E,	A. tenuis	15	Ambient, +3°C, +6°C	28.54	18/01	19/01	
		12.3922°S							
	Mantis	143.8808°E,	A. tenuis	15	Ambient, +3°C, +6°C	28.44	20/01	21/01	
		12.3041°S							
	11-049	143.3262°E,	A. tenuis	23	Ambient and +6°C	29.11	28/01	28/01	
		11.3637°S							

Table 2.1 Coral collection and experiment details. Collection dates are given as day of January 2019.

2.3.2 Temperature treatments and experimental design

Heat treatment profiles were designed following Palumbi et al., (2014) and Voolstra et al., (2020) using a new delivery system designed by the National Sea Simulator Facility at the Australian Institute of Marine Science (AIMS). The tank-based heat stress assay system was specifically designed for mobility and flexibility of application following the CBASS (Coral Bleaching Automated Stress System) principle outlined by Voolstra et al. (2020). The system used here consisted of two sets of three tanks, one set with temperature control capability (temperature manipulation system, Fig 2.2) and the other without (ambient system, Fig 2.2). The temperature manipulation system consisted of three independent acrylic tanks (55 L), each supplied with heated flow-through seawater (55 L h⁻¹). Tanks were placed in water jackets to aid in temperature control and stability. The jackets were supplied with recirculating, warm seawater, heated with a titanium heating element (Omega 2 kW) held in a separate jacket (sump, Fig 2.2) and pumped between jackets using a submersible pump (Reefe RP2400LV 24v). The sump also held a heat exchange coil (Wateco 56") to heat seawater delivered to the tanks. Temperature was controlled with a programmable logic controller (Siemens S7 15-11-1 PN). For the ambient system, both the jackets and experimental tanks were supplied with flowthrough seawater pumped from the ocean (55 L h⁻¹). Every tank was fitted with a circulation pump (Turbelle® nanostream® 6055, Tunze, Penzburg, Germany). The temperature manipulation system was run indoors onboard a research vessel and treatments consisted of an initial ramp up over three h from ambient incoming seawater to the desired treatment temperature. Treatment temperature was held for three h, followed by ramp down to ambient within 1.5 h. Once returned to ambient temperature, corals were maintained for 11 h in the dark before data collection and sampling (Fig 2.1B). The control treatment was held at ambient temperature for the duration of the experiment and ambient temperatures ranged between 29.5 - 30.9°C across the sampling duration. Treatments used were ambient, mid (approx. +3°C) and high (+6°C). Experimental temperatures and Max Monthly Mean (MMM) temperatures are presented in Appendix A.1. Lighting profiles followed summer, mid-day light levels at Lizard Island in the northern GBR (450 µmol photons m⁻² s⁻¹, no ramping, 7h:11h light:dark, 60% blue, 20% white, 10% green, and 10% red, 10 m, Lizard Island Light From 26 Feb 2012 | AIMS metadata | aims.gov.au). I conducted three separate experiment to test the effects of 1) fragment size, 2) timing of measurements and 3) physiological proxies for heat tolerance. In experiment 2 (time-effect), ambient-treated corals experienced reductions in most physiological measures

and thus responses were expressed as % change in physiological measures (colour change, F_v/F_m , chlorophyll- α and protein content, and catalase activity) in heated corals relative to their ambient counterparts.

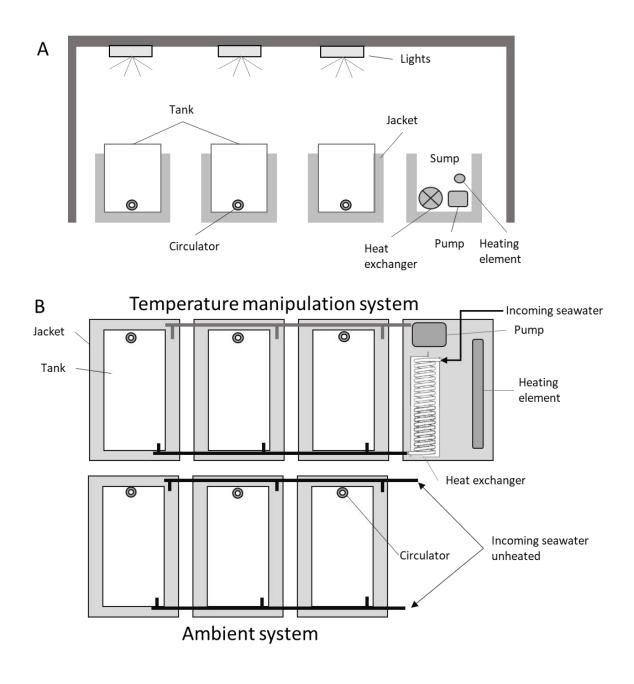


Figure 2.2 Schematic overview of the experimental tank set-up. (A) Side view of the temperature manipulation system, with three experimental tanks in water jackets and a fourth jacket acting as sump for heating water for both tanks and jackets. The sump contained the heating element, heat exchange coil, and a submersible pump to pump recirculating water to the jackets while the tanks were supplied

with warm water from the heating coil. (B) Top-down view of the temperature manipulation and ambient systems. The ambient system was supplied unheated seawater to both jackets and tanks.

2.3.3 Experiment 1 - Size effect

Nine colonies each of *A. tenuis* and *P. damicornis* (Table 2.1) from reef 13-123 were fragmented into six large $(9.05 \pm 0.44 \text{ cm}^2, 12.45 \pm 0.7 \text{ cm}^2, A. tenuis$ and *P. damicornis*, respectively) and six small fragments $(3.51 \pm 0.19 \text{ cm}^2, 7.13 \pm 0.34 \text{ cm}^2, A. tenuis$ and *P. damicornis*, respectively). Three large and three small fragments from each colony were assigned to the two treatments (ambient and +6°C, 1 size pair per tank per treatment, n = 216 for both species, Appendix A.1). The fragments were wrapped in aluminium foil and snap frozen in liquid N₂ 11 h after the end of heat stress for further analysis (Fig 2.1B).

2.3.4 Experiment 2 - Time effect

Samples of *A. tenuis* were collected from nine individual colonies at Creech reef (Table 2.1). Samples were further fragmented (18 per colony, ~5 cm in length), and distributed across treatments (ambient and $+6^{\circ}$ C, n = 3 fragments per colony per tank, total = 162 fragments, Appendix A.1). Sampling occurred immediately after the end of heat stress (T₀), and then at two h (T₁), six h (T₂), 10 h (T₃), 14 h (T₄), 24 h (T₅), and 48 h (T₆) after the end of heat stress (Fig 2.1C). At each sampling point, one fragment per colony per treatment was sampled apart from T₆ (48 h) when all remaining fragments were sampled and preserved (Fig 2.1C).

2.3.5 Experiment 3 – Alternative physiological measurements

Collections of *A. tenuis* to evaluate physiological metrics (including chlorophyll-*a* and protein content, catalase activity, tissue colour change, and photosynthetic efficiency) took place across five reefs and included 86 colonies (Table 2.1, Appendix A.1). Four fragments were made per colony except for reef 11-049 where only two fragments per colony were made. Fragments were distributed between treatments (n = 1 per colony per treatment) and sampled after an 11 h recovery period at ambient temperature (Fig 2.1B).

2.3.6 Photosynthetic efficiency

Photo-physiological status is a common diagnostic to measure effects of heat exposure and coral bleaching (Fitt et al., 2001; Suggett & Smith, 2011) and thus I also quantified photosystem II (PSII) maximum photochemical efficiency (F_v/F_m , dimensionless) using Pulse Amplitude Modulated Fluorometry of chlorophyll-*a* (PAM, Diving-PAM, Heinz Walz GmbH, Effeltrich, Germany, MI = 8, SI = 8, saturation width = 0.8, Gain = 3, Damp = 2; Nitschke et

al., 2018; Saxby et al., 2003). A clear piece of PVC tubing was used to maintain a constant distance (2 mm) between the glass fibre-optic probe (6 mm Ø) and the coral fragment. Samples were dark acclimated for 30 min before measurements were taken. Each fragment was measured twice at different spots approx. 1/3 distance from the apical corallite. For experiments 1 (size) and 3 (physiological measures), values of F_{ν}/F_m were determined 10 h after the end of heat stress (Fig 2.1B). For experiment 2 (time) F_{ν}/F_m was measured at each sampling time point (T₀ – T₆, Fig 2.1C).

2.3.7 Visual signs of bleaching

For experiments 1 (size) and 3 (physiological measures), samples were photographed prior to, and after, heat treatment with a digital SLR camera (Nikon D300, F stop = 4, shutter speed = 100, ISO = 400). For experiment 2 (time), samples were also photographed at each time point ($T_0 - T_6$, Fig 2.1C). Photographs were taken at a distance of 25 cm against a dark background, which included the *Coral Watch* colour reference chart (Siebeck et al., 2006). Tissue colour was assessed as per Nielsen et al. (2020).

2.3.8 Sampling and sample preparation for physiological assays

A pressurized air gun and 0.02 μ m filtered seawater (FSW) was used to remove tissue from coral skeletons (Deschaseaux et al., 2013). The resulting slurry was homogenised (30 s, 40% power, Pro200, Bio-gen Series, ProScientific, USA) and aliquots were removed for chlorophyll-*a* quantification (1 mL), centrifuged (5 min, 4°C, 1500 rpm) and the supernatant discarded. The resulting symbiont pellet was stored dry at -80°C. Remaining tissue slurry was centrifuged (5 min, 4°C, 1500 rpm) to separate host tissues from Symbiodiniaceae cells. Host tissue was aliquoted (500 µL) into 96-well tissue culture plates for protein analysis. For catalase activity, 1 mL of host tissue was aliquoted into Eppendorf tubes.

2.3.9 Surface area quantification

Surface area of each blasted coral skeleton was quantified according to the double wax dipping method (Holmes et al., 2008), which has been shown to accurately calculate the surface area of branching species (Naumann et al., 2009). Skeletons were bleached (10%), rinsed, dried, and stored at room temperature prior to dipping. Cylindrical shapes of known sizes were used to produce a standard curve of surface area. Skeletons and standards were immersed (4 s) into hot wax (65°C), removed, swirled to air-dry and left to dry for a further 15 min before weighing.

The dipping procedure was repeated, and surface area calculated as the weight difference between the first and second dip.

2.3.10 Chlorophyll-a quantification

Pre-chilled ethanol (0.8 mL, EtOH, 95%) was added to each frozen sample and vortexed until the pellet was fully resuspended then sonicated (3 min, 40% power, Sonic Power® MU-600, Mirae Ultrasonic Tech Co, Korea), vortexed, and incubated on ice in the dark to extract pigments (20 min). Triplicate aliquots (200 μ L) were loaded onto a 96 microwell plate (Immulon® 4, HBX) using EtOH (95%) as a blank and absorbance was read immediately at 664 nm and 649 nm. Chlorophyll-*a* content was calculated following Equation 1 (Licthenthaler, 1987; Ritchie, 2006), corrected for absorbance in the blanks and normalised to surface area of the coral fragment.

$$((13.36*Abs_{664nm})-(5.19*Abs_{649nm}))/0.794$$
 (1)

2.3.11 Protein content

Water-soluble protein content was determined using the Bio-Rad *DC* Protein Assay following the manufacturer's guidelines. Protein samples were thawed on ice, homogenised and diluted 1:1 in NaOH (200 μ L, 1M). Samples were sonicated using an ultrasound water bath for 5 min (40% amplitude, Sonic Power® MU-600, Mirae Ultrasonic Tech Co, Korea) before being digested in an oven for 1 h at 90°C. Samples were then centrifuged (10 min, 2000 rpm) before loading 10 μ L per replicate into a microtiter plate (96-well, 300 μ L, Immulon® 4, HBX). Reagent A (25 μ L) was added and allowed to stand for 5 min before adding 200 μ L of Reagent B. The plate was covered and incubated in the dark at room temperature for 15 min. After incubation, the plate was loaded into the spectrophotometer (Synergy H4 Hybrid Reader®, Bio-Tek, Winooski, VT, USA) and absorbance read at 750 nm (25°C). Protein content was normalised to surface area and reported as mg cm⁻².

2.3.12 Catalase activity

Catalase activity was quantified as the change in H_2O_2 concentration over time (Krueger et al., 2015). Samples were thawed on ice, vortexed (40 s) and 30 µL were added to a UV-transparent micro-well plate (UV-Star®, 96 wells, Greiner Bio-One, Monroe, NC, USA) in triplicate with FSW as blanks. 60 µL of PBS (50 mM, pH 7) and 20 µL of EDTA (10 mM) were added to the plate before adding 120 µL of H_2O_2 (50 mM) as substrate for the reaction. The plate was

immediately loaded into the spectrophotometer (Synergy H4 Hybrid Reader®) and absorbance was read at 240 nm every 30 s for 15 min. Catalase activity (U) was assessed over the linear portion of the curve and expressed as specific activities (U mg⁻¹ protein).

2.3.13 Cost-benefit of alternative physiological measurements

A qualitative cost-benefit analysis was conducted to contrast the data returned relative to resource and time investment across the various physiological measurements. I identified the consumables and (capital) equipment required for each physiological measurement (Appendix A.7-10). Cost of consumables per 100 samples was calculated from pricing available online or via direct quotes. No shipping or GST costs were included. The cost of equipment use per 100 samples was based on an approximation of how many samples were likely to be processed over a conservative lifespan of the respective item. Time estimates were based on in-laboratory experiences processing the samples for this study (n = 779 fragments). Chlorophyll, protein, and catalase assays according to methods presented here, require the samples to be tissue blasted. Therefore, the cost and time requirement of tissue blasting should be accounted for if planning to conduct any of these. Similarly, these assays are standardised to fragment surface area, and the costs associated with this assay are therefore also included. No sample preservation costs were included in these estimates.

2.3.14 Statistical analyses

All statistical analyses were conducted in R (R Core Team, 2020). The effects of fragment size were investigated by generalised linear mixed effects models. I assumed a Gaussian distribution of all dependent variables and checked for normality of modelled residuals and homoscedasticity of plotted residuals (package DHARMa; Hartig & Lohse, 2021). The models were fitted by restricted maximum likelihood and generated using the *glmmTMB* function in the R package glmmTMB (Brooks et al., 2017), where treatment (ambient vs high) and fragment size (large vs small) were used as fixed effects. Colony identity was fitted as a random effect with a random intercept (Harrison et al., 2018). Model fit was evaluated by assumption fit and R² (Nakagawa & Schielzeth, 2013). Adjusted p-values for the Post-hoc Tukey HSD tests were calculated using the single-step method.

Because of the decline in coral condition in the ambient treatment evident in the time effect experiment, data were transformed to percent change in the heated treatment relative to ambient and modelled against a gaussian distribution using a linear mixed effects model using the glmmTMB R package (Brooks et al., 2017). Assumptions and homoscedasticity were

confirmed as above. Time was modelled as a categorical variable rather than a continuous to allow direct, post-hoc comparisons between specific sampling times. Post-hoc comparisons were investigated with Tukey's HSD tests.

The relative importance of multiple physiological metrics driving observed differences in thermal responses to acute heat stress was assessed by Principal Component Analysis (PCA) performed in R, using the package vegan (Oksanen et al., 2020). Based on Eigenvalues (>1), I used two principal components (PCs) to account for the variability within the data. PC1 (43%) and PC2 (21%) cumulatively accounted for 64% of the variance. Additionally, each physiological trait was correlated to each other and a heatmap produced using the lattice R package (Sarkar, 2008).

2.4 Results

2.4.1 Experiment 1: Effect of fragment size

Effect of fragment size differed between species and physiological metrics investigated. Collectively, fragment size affected nearly all examined physiological measures in *P*. *damicornis* except photosynthetic efficiency while an effect of fragment size was largely absent in *A. tenuis* samples. Treatment at high temperatures resulted in significant declines across all measures relative to treatment at ambient temperatures. Tissue colour change was affected by the interaction of treatment and fragment size in both species (*A. tenuis*, df = 106, z = -3.26, p = 0.001; *P. damicornis*, df = 106, z = 2.50, p = 0.023). In *A. tenuis*, large fragments (-0.34 ± 0.05 colour units) exhibited nearly twice the colour loss of small fragments (-0.19 ± 0.07 colour unit, df = 106, t = -4.231, p < 0.0001, Fig 2.3A) while in *P. damicornis*, large fragments (-0.40 ± 0.06 colour unit) exhibited less colour loss relative to the small fragments (-0.91 ± 0.06 colour unit), Fig 2.3F, df = 106, t = 5.745, p < 0.0001). See statistical outputs in Appendix A.2 and A.3.

Chlorophyll-*a* content and catalase activity (U) in *P. damicornis* were both affected by the interaction of treatment and fragment size (Chl- α ; df = 96, z = -1.975, p = 0.048, Fig 2.3H; catalase; df = 86, z = 2.82, p = 0.005, Fig 2.3J, respectively). Catalase activity (U) varied within heat-treated corals between fragment sizes (df = 86, t = -2.146, p = 0.035; large = 0.286 ± 0.1 U; small = 0.03 ± 0.01) but not for ambient corals (df = 86, t = 1.851, p = 0.068). In *A. tenuis*, chlorophyll-*a* content and catalase activity were only affected by temperature (chlorophyll-*a* df = 104, z = -6.24, p < 0.001, Fig 2.3C; catalase activity df = 93, z = 2.38, p = 0.017, Fig 2.3E) but not fragment size, or their interaction.

Photosynthetic efficiency was only affected by treatment in both species, but not fragment size or their interaction (Fig 2.3B and 2.3G). Finally, *P. damicornis* protein content was affected by both treatment and fragment size, but not by their interaction (Treatment; df = 102, z = -3.173, p = 0.002; Size df = 102, z = -2.761, p = 0.0058, Fig 2.3I). In *A. tenuis*, protein content was only impacted by treatments (df = 91, z = -5.112, p < 0.0001, Fig 2.3D).

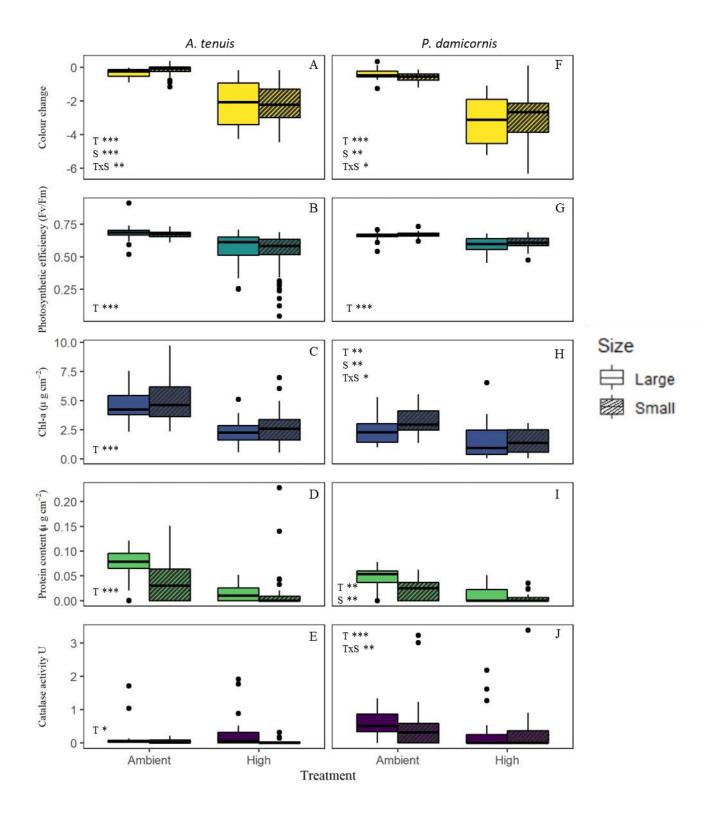


Figure 2.3 Physiological responses of large (full) and small (hatched) coral fragments to temperature treatment in *A. tenuis* (left panels) and *P. damicornis* (right panels). Bold line inside boxes shows the median, boxes indicate the interquartile range and dots represent data outliers. Significant effects are indicated for treatment (T), size (S) and their interaction (T x S) by asterisk where * p <0.05, ** p < 0.005, *** p < 0.0005.

2.4.2 Experiment 2: Time effect

All physiological metrics except catalase experienced a significant initial decline immediately following heat stress (Appendix A.4). Most metrics then continued to decline through time before reaching a steady-state between 10 to 24 h after heat stress. However, photosynthetic efficiency was stable until the final sampling point at 48 h (Fig 2.4). Coral tissue colour recorded an initial decrease immediately following the exposure to heat stress (0h, T₀, -9.98%, z = -3.18, p = 0.0015), and remained stable until six h and then declined steadily until 24 h (T₅; post hoc T₂-T₅ t =7.57 p < 0.001) before stabilising again and remaining unchanged until 48 h (T₆, Fig 2.4A, T₅-T₆ t = 2.51, p = 0.18). Similarly, chlorophyll-*a* content declined at 0 h (T₀, -24.18%, z = -2.44, p = 0.015) before stabilising at 10 h (T₃, Fig 2.4A). In contrast, photosynthetic efficiency (F_v/F_m) declined by 5.8% immediately following the experiment (z = -2.4, p = 0.016) and remained stable until the 24-hour sampling point (T₅, Fig 2.4A) before declining again after 48 h (T₆, Fig 2.4A).

Antioxidative catalase activity did not change initially following exposure to heat stress but recorded a significant increase six h after heat stress (T₀-T₂, t = -3.24, p = 0.037). Catalase activity then decreased towards the end of the experiment and was nearly absent by 24 h (T₅, -88.38%, Fig 2.4B). Finally, protein content recorded an initial decrease immediately following heat exposure (26.44%, z = -2.35, p = 0.019) and then declined in the first 10 h (T₀-T₃ t = 3.48, p = 0.02) before stabilising (-58.1%, Fig 2.4B). All statistical outcomes from post-hoc comparisons are presented in Appendix A.5.

2.4.3 Experiment 3: Physiological measures comparisons

To investigate how rapid, non-invasive measures of coral thermal tolerance (F_v/F_m and colour change) compared to more time-consuming and labour-intensive measures, I performed a Principal Component Analysis. The PCA identified response patterns of multiple physiological measures to acute thermal exposure in *A. tenuis* (Fig 2.5). Four of the five physiological response measurements (colour change, protein and chlorophyll content, and F_v/F_m) were correlated to and accounted for variation along PC1 (43% variation explained), while only catalase activity separated data along PC2 (21% variation explained). All physiological metrics analysed were significant in driving the separation among samples (Fig 2.5A, Appendix A.6).

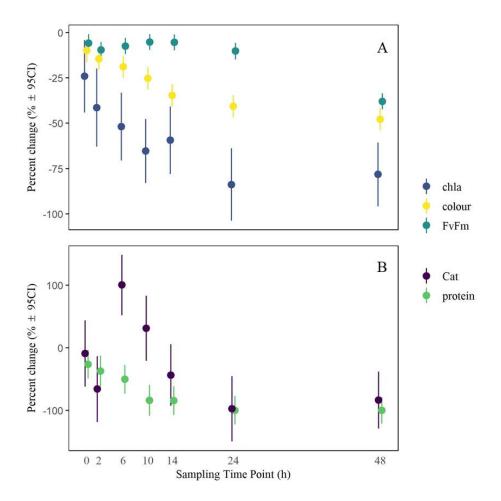


Figure 2.4 Percent change in physiological metrics over time in heat-treated relative to ambient corals. Fragments from nine colonies were sampled through time at $0 - 48 h(T_0-T_6)$ after the end of heat stress from both an ambient (29.6 °C) and heated treatment (34.6 °C). (A) Fluorometric and colour assays. (B) Biochemical assays. Points represent the estimated marginal means of physiological metrics at each sampling time point (T₁-T₆). Error bars indicate the upper and lower 95% confidence intervals.

To identify which metrics were driving data variability I examined correlations among the physiological metrics (Fig 2.5B). Both tissue colour change and maximum photochemical yield (F_v/F_m) showed a significantly positive correlation to the three laboratory-derived metrics (catalase, protein, and chlorophyll- α content). Both tissue colour change and F_v/F_m were most strongly correlated with host protein content. As such, both non-invasive physiological measures of tolerance describe overall patterns observed.

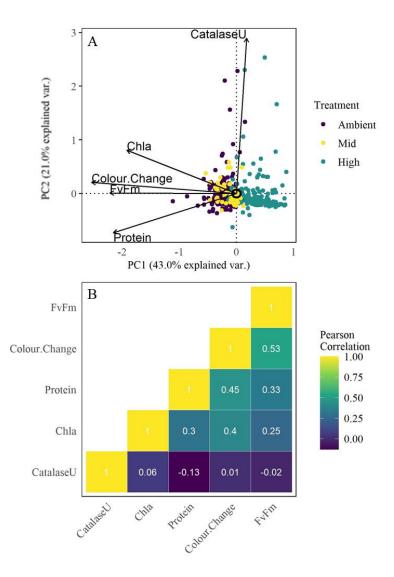


Figure 2.5 Relationships between multiple physiological responses to heat stress in *A. tenuis*. (A) Principal Component Analysis (PCA) of five physiological traits in response to acute heat stress in *A.tenuis* (n reefs = 7, n samples = 423) and (B) correlation heatmap between all traits. Yellow diagonal are self-comparisons.

2.4.4 Cost-benefit analysis

Of all physiological measurements utilised here, the more rapid field-based measures of maximum photochemical yield (F_v/F_m) and tissue colour change carried the lowest associated costs (including labour) and were also the most time-efficient (Tables 2.2 and 2.3, Appendix A.7). Based on 100 samples, I estimated a time of ~ 45 min to gather and a further 45 min to analyse maximum photochemical yield data and ~100 min to gather and analyse tissue colour changes. In comparison, > 28 h was required to quantify protein content in the laboratory with catalase and chlorophyll assays each requiring approximately 25 h to complete.

Assay	Consumable cost 100 samples (\$AUD)	Time requirement 100 samples (min)	Time cost \$33 h ⁻¹	Total
Photosynthesis efficiency (PAM)	NA	90	\$49.5	\$49.5
Tissue colour change	NA	102	\$56.1	\$56.1
Tissue blasting	\$156	1210	\$665.5	\$821.5
Chlorophyll	\$27	305	\$167.75	\$194.75
Protein	\$49	463	\$254.65	\$303.65
Catalase	\$85	480	\$264	\$349
Surface area	\$4.2	585	\$321.75	\$325.95
Total for 100 samples	\$321.2	54h	\$1,782	
			Grand total	\$2,103.2

Table 2.2 Cost of consumables and time requirements for each assay to process 100 samples.

Table 2.3 Costs and benefits of measures of coral thermal tolerance. Benefit classification used based on 100 samples; financial; Cheap < \$200, Moderate \$200-\$600, Expensive > \$600. Time; Effective < 5h, Moderate 5 -10 h, Intensive >10 h per 100 samples. Level of training required; low = little to no instruction required, easy to do from protocol, no specialised laboratory skills required; Moderate = some basic laboratory skills required, operator generally supervised a couple of times then works from protocol, special instruction in equipment use. Hourly rate used for time cost is \$33 AUD per hour. See Appendices A.7 and A.8 for an overview and price-guideline for the equipment required for each of these assays. Cell colours reflect coding for high (red; expensive, intensive), medium (yellow; moderate) and low (green; cheap, effective, low) across categories.

Assay	Location	Cost	Time	Level of training required
F_{v}/F_{m}	Field	Cheap	Effective	Moderate
Colour change	Field	Cheap	Effective	Low
Tissue blasting	Lab	Expensive	Intensive	Low
Chlorophyll	Lab	Moderate	Moderate	Moderate
Protein	Lab	Moderate	Moderate	Moderate
Catalase	Lab	Moderate	Moderate	Moderate
Surface area	Lab	Moderate	Moderate	Low

2.5 Discussion

Variation in coral thermal tolerance both within-(Cornwell et al., 2021; Marhoefer et al., 2021) and between-(McClanahan et al., 2020) reef systems is likely key to their continued survival under further ocean warming (Drury et al., 2017; Magozzi & Calosi, 2015; Morikawa & Palumbi, 2019). To date, aquarium-based ramp-and-hold experiments have been widely applied to investigate variation in thermal tolerance but are limited logistically in terms of how many samples can be included and the sampling areas they can cover. Recently, acute heat stress assays have increased the capacity to quantify heat tolerance in adult corals (e.g. Cunning et al., 2021; Voolstra et al., 2020) through field-deployments with rapid experimental turnover. However, efforts to scale towards higher throughput both within studies and through comparisons among studies must be based on solid methodologies that control technical sources of variance and utilise common measures of coral thermal tolerance (Grottoli et al., 2021; McLachlan et al., 2020).

This study investigated the effect of fragment size and sampling timing on coral acute thermal tolerance. I presented a cost analysis of all physiological measures analysed herein to provide planning background to other users of acute thermal stress assays and finally, I showed how rapid, non-invasive measures of coral thermal tolerance (F_v/F_m and tissue colour change) compared to more time-consuming and labour-intensive measures using evidence from multiple physiological traits. Together, these results highlight the need to consider fundamental experimental design criteria of these assays to ensure that results are repeatable and comparable among studies.

2.5.1 Fragment size affected P. damicornis more than A. tenuis

There are currently no guidelines on appropriate fragment sizes for experimental examination of coral thermal tolerance (Grottoli et al., 2021) and this metric is rarely reported (McLachlan et al., 2021). The coral restoration literature has suggested that larger fragments may result in greater survival (Okubo et al., 2007) although this is not always the case (Bruno, 1998; Howlett et al., 2021; Suggett et al., 2019). With the advance of acute heat stress assays, fragment size could therefore be a source of technical variability. In this study, effect of fragment size differed between species; one out of five physiological responses of *A. tenuis* were significantly affected by fragment size while in *P. damicornis* four out of five measures showed significant fragment size effects. In *A. tenuis*, large fragments showed greater colour loss than the small fragments

in the ambient treatment. Similarly, fragments of *Acropora palmata* have recorded differential bleaching resistance during a natural thermal stress event where small fragments recorded less bleaching than larger ones (Pausch et al., 2018). Additionally, corallite formation differs between the two species where *A. tenuis* produces an apical corallite characteristic for the *Acroporids* while *P. damicornis* does not. The presence of an apical corallite in the absence of Symbiodiniaceae-rich tissues could potentially skew the colour change metric. Whilst I did not test this factor explicitly, it would be important in the future to consider species-specific morphology when designing data-gathering protocols that span diverse taxa.

Changes in protein content and catalase enzyme activity were more pronounced in large relative to small fragments in *P. damicornis*. Protein and catalase assays from small fragments may be nearing the detection limits of the instrument (spectrophotometer), and the issue is further compounded by quantifying surface area by wax dipping as uncertainty increases when used on small fragments (Veal et al., 2010). To avoid potential detection limits of assays and instruments, I recommend using larger fragments (~ 9 cm² for *A. tenuis* and ~ 12 cm² for *P. damicornis*). Ultimately, properties that require normalisation – and therefore introduce error propagation from >1 measurement – may be less suitable to detect more subtle changes through acute stress experimentation. Interestingly, size effects primarily occurred in ambient-treated corals and were absent in heat-treated fragments, suggesting that a fragment size effect is introduced to the experiments initially, but that this effect is insignificant compared to the applied heat exposure. While this is important to consider when comparing heated to non-heated coral fragments, I demonstrate no size effect on physiological responses in either species in the heated treatment, highlighting that any initial size effects are not likely to influence thermal tolerance results obtained by this approach.

2.5.2 Choosing when to sample post heat stress impacts conclusions drawn

Responses to heat stress varies with exposure duration and sampling time. Sampling variation may therefore limit how different combinations of measurements can ultimately be used to reconcile large-scale heat stress assay data sets. Therefore, sampling time is a critical component of experimental design. Here I observed that physiological responses decreased up to 24 h post heating with the notable exception of photosynthetic efficiency which was stable up to 24 h. I therefore recommend sampling between 10 - 24 h post heating. Sampling prior to 10 h post heating could fail to detect a response while sampling post 24 h may result in sampling

of mortality or severe tissue necrosis, particularly at higher temperatures (see Voolstra et al., 2021b). I did not sample past two days post heating (48 h) to maintain the rapidity of these acute heat stress assays. Other studies have also reported rapid changes in response to acute heat stress; for example, Dove et al., (2006) found significantly reduced protein and chlorophyll content following a six-hour temperature exposure while Traylor-Knowles et al., (2017) found upregulated heat shock protein expression in response to heat stress after only 2 h 30 min and evidence of protein degradation after 5 h. The decline through time observed in most traits in the present study may complicate direct comparisons of results between studies depending on the traits quantified and the sampling time point.

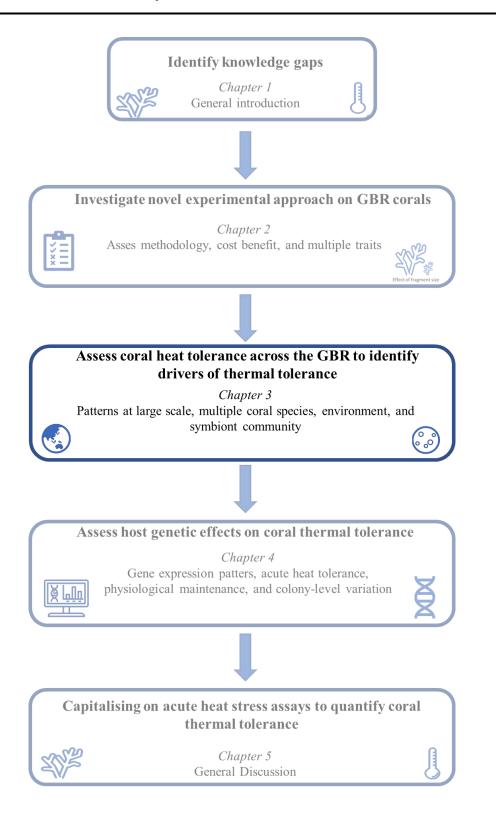
2.5.3 Time- and cost- efficient physiological measures to capture coral thermal tolerance variability

Capitalising on the rapid throughput of acute heat stress assays requires the adoption of standardised phenotyping measures which can be quantified rapidly in the field at minimal cost. Maximum photochemical yield (F_v/F_m) and tissue colour change are both time- and cost-efficient to capture, making them ideal candidate measurements for rapid tests of coral thermal tolerance. While photosynthetic efficiency was the fastest measure quantified in this study, the capital outlay for a fluorometer such as the one used here (~\$50,000 AUD) may be beyond the scope of some groups. However, cheaper alternatives exist (for example AquaPen®, ~\$4,050 AUD) and the costings presented here are highly conservative. While fluorometric data is fast to gather and has a low cost per sample when considering the lifespan of the instrument, it is not currently possible to calibrate fluorometric data between studies due to the lack of universal standards, multiple sensor types, and diverse sampling protocols used (Schuback et al., 2021; Suggett et al., 2022). This makes direct comparisons between studies challenging.

When considering capital costs and accessibility, tissue colour change is by far the most cost-effective measure captured, further reducing processing and analysis time investment through the development of automated approaches (Macadam et al., 2021). Recent technological advances also allow scaling of automated bleaching assessments with the implementation of new technologies such as hyperspectral imaging (Teague et al., 2019), despite additional and significant capital costs. If these rapid measures (tissue colour change and F_{ν}/F_m) are to be used at a large scale, it is important to keep their relationship to coral thermal tolerance in mind and carefully consider which measures best address the research question.

2.5.4 Selecting physiological measures of coral thermal tolerance for acute heat stress assays

Photosynthetic efficiency and tissue colour change are higher-order traits, derived from multiple other measures. For example, changes in tissue colour can result from a loss of Symbiodiniaceae cells, loss of chlorophyll pigmentation within those cells (Chow et al., 2016), or the loss of coral tissue itself. Photosynthetic efficiency, on the other hand, is a direct measure of viability of the symbiont partners and only an indirect indicator of thermal tolerance of the coral holobiont (Middlebrook et al., 2010; Suggett & Smith, 2011). I therefore examined whether tissue colour change and photosynthetic efficiency captured differences in other physiological measures of thermal tolerance in A. tenuis. I found that both photosynthetic efficiency and tissue colour change showed similar responses to heat stress as chlorophyll-a and protein content but not catalase activity. Similarly, acute heat stress studies of Stylophora *pistillata* (Evensen et al., 2021) found that changes in F_{ν}/F_m values correspond well to other physiological measures quantified and a high correlation between F_{ν}/F_m and tissue colour change was reported in Siderastrea sidereal (Davies et al., 2018). Coral host catalase activity showed an opposite trend to all other measures as catalase was correlated to PC2 rather than PC1 (Fig 2.5A). The opposing trend displayed by the catalase vector in the PCA is expected as catalase generally increases during heat stress (Krueger et al., 2015; Tang et al., 2020), while all other measures quantified here are expected to decrease. As a mechanistic measure of heat tolerance, catalase activity or other antioxidative enzymes provide valuable insight into the host responses to acute heat stress (Krueger et al., 2015) but are impractical and timeconsuming for 'routine' use of high throughput assays. Due to the scalability of acute heat stress assays, it is also possible to utilise these experiments for higher throughput mechanistic studies including metabolomics, proteomics and gene expression analyses (Sweet et al., 2021; Voolstra et al., 2021b).


Finally, when selecting which physiology traits to measure for acute heat stress assays, it is important to consider the data variability that appears inherent with this experimental approach. I document large standard errors in all responses despite sampling > 110 colonies. However, this is also the case for other acute heat stress assays (Klepac & Barshis, 2022; Voolstra et al., 2020). As such, alternate indicators of thermal tolerance may have different capacities to resolve subtle differences in temperature thresholds (Evensen et al., 2022).

Acute stress experiments have resolved thermal tolerances of many organisms including fish (Newton et al., 2010; Waltham & Sheaves, 2017), intertidal invertebrates (Iwabuchi & Gosselin, 2020), extremophiles (Cox et al., 2010), and coral; both in adult life stages (Voolstra et al., 2020) and larvae (Dixon et al., 2015; Quigley et al., 2017). Here, I assess aspects of experimental design for acute heat stress assays and their applicability to coral studies. I suggest that sampling occurs more than 10 h after the end of heat stress but before the 24 h mark. I conclude that by adopting standardised approaches, these experiments have the capacity to address the yet unresolved mechanisms of thermal tolerance and provide a means to obtain information spanning emergent physiological responses and thermal thresholds to underlying transcriptional regulation (Voolstra et al., 2019). If large datasets are collected across spatial and temporal scales, insights such as environmental and genomic drivers of tolerance and thermal adaptation could be identified. Scaling efforts to quantify thermal tolerance is becoming increasingly important due to the continued threat to coral reefs globally from climate change.

Data availability statement

Data and associated code to produce the statistical and graphical components of this manuscript are available on JJVN's GitHub (https://github.com/josephinenielsen/AcuteHeatStressMethods SciReps.git).

Chapter 3 Patterns of upper thermal performance in reef-building corals on the Great Barrier Reef are influenced by sector-level differences in thermal disturbance history

3.1 Abstract

Mortality from coral bleaching is a significant threat to reefs worldwide. The capacity of corals to acclimate and/or adapt is important for their continued survival under all projected global emission scenarios. Variation in the susceptibility of different coral species and individuals to thermal stress varies greatly, and large-scale studies of coral thermal tolerance provide an opportunity to investigate the potential for both acclimation and adaptation across individuals, populations, and environmental gradients. Here, I deployed acute heat stress assays across 11.5° latitude to quantify and describe patterns of acute heat tolerance in multiple coral species and populations. I show that the number of mild heat stress events (DHW >3) were highly negatively correlated while maximum sea surface temperature (max SST) were highly positively correlated with acute heat tolerance (represented here by ED50) across three common reef-building coral species along the latitudinal extent of the Great Barrier Reef. I also show that *Pocillopora verrucosa* has a higher acute heat tolerance (36.21°C) compared to both P. meandrina (35.22°C) and Acropora tenuis (35.31°C). The high acute heat tolerance observed in the northern GBR and in *P. verrucosa* is likely influenced by recent severe warming events while the acute heat tolerance of both P. meandrina and A. tenuis were more strongly correlated with longer-term trends in SST. Differences in acute heat tolerance between species likely reflect their spatial distribution patterns on the GBR and the differences in recent thermal disturbance histories within reef sectors. Symbiont community composition varied significantly across environmental gradients within each species. Specifically, differences within symbiont community composition in *P. meandrina* were associated with variable acute heat tolerance between colonies, with the dominant symbiont taxa differing between P. meandrina and P. verrucosa. Finally, I show that the relationship between acute heat tolerance (ED50) and coral physiology (catalase activity, protein, and chlorophyll-a content) differed between the two Pocillopora species. When ED50 was modelled as a function of all co-variates investigated, maximum SST was the strongest driver of acute heat tolerance. Taken together, these results highlight the need to consider drivers of thermal tolerance within the coral holobiont across scales. Understanding the distribution of thermally tolerant coral individuals and their associated symbiont communities is important for future projections of coral demographics and a necessary first step in developing targeted management approaches to optimize the return on effort of coral restoration.

3.2 Introduction

Coral bleaching is a sign of poor reef health that results in fitness reductions (Leuzinger et al., 2012), increased disease susceptibility (Pinzón et al., 2014) and ultimately drives mortality of reef-building corals (Maynard et al., 2008). While bleaching can result from multiple environmental disturbances, it is most widely recorded as a response to thermal stress, typically elicited when water temperatures exceed long-term mean maximum temperatures by 1 - 2°C (LaJeunesse et al., 2007; Smith & Spillman, 2019). If elevated temperatures are extreme or prolonged, bleaching can rapidly lead to widespread coral mortality (Hughes et al., 2018). Bleaching events have occurred throughout the tropics with three mass bleaching events (2016/17, 2020, and 2022) recorded since 2016 on the Great Barrier Reef (GBR) of varying spatial extent, duration, and severity (Fig 1.1; Hughes et al., 2017; Page et al., 2023; Spady et al., 2022). Studies relying on reciprocal transplant experiments have shown that local adaptation to thermal regimes can occur (Howells et al., 2013; Palumbi et al., 2014; Schoepf et al., 2015a) with corals exhibiting significant capacity for plasticity and genetic adaptation (Marhoefer et al., 2021). However, the adaptive component and extent of this tolerance is not well-understood.

Quantification of thermal and bleaching tolerance requires the use of traits across multiple scales of biological organisation (Cziesielski et al., 2018; Gardner et al., 2017a). Growth and reproductive output are key fitness traits (Edmunds & Putnam, 2020; Madin et al., 2016); however, both are temporally-intensive to measure robustly, making them less feasible to quantify for large-scale, high-throughput studies of coral thermal tolerance. As such, the use of proxy traits is required (Carturan et al., 2018; Muller et al., 2018). Photosynthetic performance is considered a key indicator of early-onset thermal stress due to its importance in coral productivity but also due to its role in the symbiosis breakdown between the coral host and the endosymbionts (Warner et al., 1996). Photosynthetic performance is quick and relatively cost-effective to quantify in the field (Nielsen et al., 2022) and has been widely used in acute high-throughput heat stress assessments of coral thermal tolerance (Cunning et al., 2021; Evensen et al., 2022; Marzonie et al., 2022; Voolstra et al., 2020). Such studies have employed an Effective Dose 50 (ED50) measurement as a proxy of coral thermal tolerance. ED50 is a widely used concept in pharmacology and ecotoxicology to describe the medicinal dose required to induce a specific response in 50% of the population subjected to the dose

(Kenny et al., 2022; Tallarida, 1992). In the case of coral thermal tolerance research, ED50 values represent the temperature required to reduce the maximum photochemical yield (F_{ν}/F_m) by 50% relative to a control (Evensen et al., 2022; Marzonie et al., 2022), and where ED50 temperature can be expressed either in absolute terms, typically around ~33-36°C (Cunning et al., 2021; Evensen et al., 2022) or in relative terms as °C above local maximum monthly mean (MMM) temperatures (Marzonie et al., 2022).

Whilst coral heat and bleaching tolerance is shaped by thermal histories (McClanahan et al., 2007; Scheufen et al., 2017), the main driver remains highly debated. Some studies highlight the importance of the maximum temperature and deviation from MMMs (Berkelmans & Willis, 1999; Claar et al., 2018; Glynn & D'Croz, 1990), whereas others emphasise the critical role of temperature variability enhancing thermal tolerance (Marhoefer et al., 2021; Palumbi et al., 2014; Schoepf et al., 2015b). For example, in a review of observed bleaching patterns, Baumann et al., (2016) found that number of days above the bleaching threshold (MMM+1°C) was the main determinant of coral community composition on reefs in Belize. In contrast, multiple studies have shown that average thermal variability appears to predominantly determine coral thermal tolerance across multiple physiological (growth, F_{ν}/F_m) and demographic (population-level) traits (Barshis et al., 2018; Cornwell et al., 2021; Sully et al., 2019). Safaie et al., (2018) further demonstrated that high frequency (daily temperature range) thermal variability best predicted coral bleaching severity out of 27 thermal metrics, and that only a 1°C increase in daily temperature range reduced the likelihood of severe bleaching by a factor of 33. Such daily fluctuations also appear significant in aposymbiotic corals (*Platygyra* verweyi in Taiwan; (Wang et al., 2019), where corals from thermally variable environments recorded much higher threshold temperatures relative to corals from a more homogeneous site. As such, the heterogeneous environments of coral reefs has likely given rise to differential thermal tolerances between populations, species, and even individuals (Quigley & van Oppen, 2022). Along with the highly heterogenous thermal environment of coral reefs, local-scale environments are also impacted by a range of oceanographic processes (wave energy, upwelling, etc) promoting environments that may reduce local heat stress (Eakin et al., 2009; Wyatt et al., 2023), further confounding the partitioning of differential thermal tolerance to any one metric/environment characteristic.

Corals exist in symbiosis with a wide range of micro-organisms – comprising a microbial community – that can also impact the thermal tolerance of the host (Voolstra et al., 2021a; Ziegler et al., 2017). In particular, the type of endosymbiotic dinoflagellates (Family:

Symbiodiniaceae; LaJeunesse et al., 2018) affects the coral holobiont thermal tolerance (Berkelmans & van Oppen, 2006; Cunning & Baker, 2020; Silverstein et al., 2015). The symbiosis between the coral animal and the endosymbiotic Symbiodiniaceae can be either highly conserved or flexible. Some genera, such as Porites are known to associate with only a few symbiont types (Cunning et al., 2015; Edmunds et al., 2012) while other coral taxa associate more freely with multiple types (Abrego et al., 2008; Quigley et al., 2022b). Different symbionts can confer alternate thermal tolerance limits to their coral hosts with some types known to increase holobiont tolerance by 1°C (Berkelmans & van Oppen, 2006); for example, Durusdinium (LaJeunesse et al., 2018) is often associated with corals living in warmer environments (Cunning et al., 2015; Rowan, 2004). Evidence has shown that symbiont communities can be either stable across large spatial scales (Sawall et al., 2014) or exhibit extensive variation across even small spatial scales (<1 km; De Souza et al., 2022; Ros et al., 2021). Therefore, it is important to resolve spatial distribution patterns of thermally tolerant symbionts as well as the genetic and community-level diversity harboured by corals. Such a step is essential to identify coral populations for targeted spatial management and understand large-scale patterns of symbiont communities.

To better understand the drivers of variation in coral thermal tolerance, I determined proxies for the upper thermal tolerance in three common corals species *Pocillopora verrucosa*, *P. meandrina*, and *Acropora tenuis* across 11.5° of latitude on the Great Barrier Reef, Australia. Specifically, I quantified four physiological proxies for bleaching tolerance (F_v/F_m for all species; and changes in chlorophyll-*a* and protein content along with catalase activity in the two *Pocillopora* species) to acute heat stress exposure and examined the extent to which variation could be explained by thermal environment characteristics across 19 reefs. I further analysed differences in Symbiodiniaceae community composition within the *Pocillopora* species to resolve the extent to which observed variations in acute heat tolerance could be explained by changes in symbiont association. *P. verrucosa* showed higher acute heat tolerance than *P. meandrina* and *A. tenuis*, which likely reflected both sector-wide thermal disturbance histories and differences in symbiont communities. Overall, the variation found in this study highlights the need to consider drivers of heat tolerance in multiple coral species across large spatial scales.

3.3 Materials and Methods

3.3.1 Collections and field experiments

This study was conducted at 19 reefs across the GBR. Collections were made under GBRMPA Permits # G16/38488, G19/43423.1, and G19/43148.1 (Fig. 3.1; Appendix B.1). Field collections and experimental protocols followed those in Chapter 2 (Nielsen et al., 2022). In brief, coral fragments were collected on SCUBA, stored in perforated plastic zip-lock bags for no more than two h before being further fragmented onboard the research vessel and then distributed through all treatments such that each colony was present in all treatments. In total, 17 runs of the heat stress system were completed. All fragments were secured upright on PVC racks and photographed within 30 min prior to treatment. Temperature started at 11am for each run and was ramped from local maximum monthly means (MMM) to target treatment temperatures over a three-hour period, held for three h, before being ramped down over 1.5 – 2 h. One hour after ramp down, all samples were assessed for photochemical yield of Photosystem II (F_{ν}/F_m). Following an 11 h hold at MMM, fragments were again photographed and snap-frozen in liquid nitrogen for subsequent laboratory processing. Artificial light was provided (500 µmol photons m⁻² s⁻¹, no ramping, 12h:12h light:dark, 60% blue, 20% white, 10% green, and 10% red, 10 m, Lizard Island Light From 26 Feb 2012 | AIMS metadata | aims.gov.au) from beginning of each run until 7pm at night. Flow rates were set to 0.8 L min⁻ ¹ (turn-over rate once per hour).

3.3.2 Species selection

Three coral species Acropora tenuis, Pocillopora meandrina, and P. verrucosa were chosen for this study. A. tenuis and P. verrucosa were chosen partly due to their wide-ranging distributions on the GBR (Lukoschek et al., 2016) and expected differences in thermal tolerance (Guest et al., 2012; Pratchett et al., 2013). P. meandrina was included to provide a within-genus comparison between two closely related species (Johnston et al., 2022) previously shown to possess different acute heat tolerances (Marzonie et al., 2022). Species-level identification of the Pocillopora species was performed by RFLP assays (Fig 3.1F-G, see section 3.3.4.1 below). Photosynthetic performance was assessed for all three species across the GBR and the resulting acute heat tolerance trait (ED50, see below) was used in the environmental co-variates analysis. To explore acute heat tolerance further, physiological

measurements (tissue colour change, catalase activity, protein, and chlorophyll-*a* content) and Symbiodiniaceae community composition were assessed for *P. meandrina* and *P. verrucosa* to ensure deeper characterisation of the acute heat stress response.

3.3.3 Physiological measurements

Maximum photochemical yield (F_v/F_m , dimensionless) was assessed for all species by chlorophyll-a fluorescence. Corals were dark acclimated for 30 min prior to measurement by Pulse Amplitude Modulated (PAM) Fluorometry using a Diving-PAM (Heinz Walz GmbH, Effeltrich, Germany, MI = 8, SI = 8, saturation width = 0.8, Gain = 3, Damp = 2). A clear piece of PVC tube was used to maintain a set distance (2 mm) from the coral fragment and the fibreoptic probe (6 mm Ø). Acropora tenuis measurements were taken at 1/3 distance from the fragment tip on opposite sides of the fragment to minimise overlap between replicate measurements. Pocillopora measurements were taken on flat tissue surfaces which were not shaded from the experimental lights by other parts of the fragment. Each fragment was measured 2-3 times, and the values averaged. As ED50 is relatively new in coral research outside ecotoxicology (see Voolstra et al., 2020), other physiological metrics of coral health (including chlorophyll-a and protein content, catalase enzyme activity, and tissue colour) were also assessed for responses to acute heat stress. Changes in coral tissue colour was assessed by photographs following Nielsen et al (2020, 2022). Photographs were taken of each fragment before and after treatment, including the CoralWatch Coral Health Chart as a colour standard (Siebeck et al., 2006) and all photographs were processed with ImageJ. All laboratory-based physiological assays were prepared using the air-tissue stripping technique and conducted as previously detailed in Chapter 2 (Nielsen et al., 2022), and quantified with spectrophotometric-based protocols. Chlorophyll pigments were ethanol extracted (Ritchie, 2006) and total water-soluble protein content quantified with the Bio-Rad DC Protein Assay following the manufacturer's recommendations. Catalase enzyme activity was calculated over the linear part of the absorption curve as a change in H₂O₂ concentration over time (Krueger et al., 2015).

Figure 3.1 Collection details and experimental design. (A) Map of collection sites with reefs coloured by their respective GBR reef sectors. (B) Representative experimental heating profile indicating the four temperature treatments (MMM, $+3^{\circ}$ C, $+6^{\circ}$ C, $+9^{\circ}$ C), time point of quantification of maximum photochemical yield (F_{v}/F_m) marked as PAM on the profile, and preservation (sampling) for laboratory assays. (C) Example colony confirmed by RFLP as *Pocillopora meandrina*. (D) Example colony that was not assigned as either *P. meandrina* or *P. verrucosa* by RFLP, and (E) Example colony confirmed as *Pocillopora verrucosa* by RFLP. (F) *SacI* enzyme RFLP to identify *P. meandrina* samples with the presence of two bands compared to three (not *P. meandrina*) and (G) *AciI* enzyme RFLP to identify *P. verrucosa*).

3.3.4 Symbiodiniaceae composition

3.3.4.1 DNA extraction and Pocillopora identification

DNA was extracted from frozen coral samples following a modified Wayne's approach (Wilson et al., 2003). Tissue (~20 mg) was removed with a scalpel in a petri dish. The lysis buffer (250 μ L; MilliQ 159.5 μ L, Tris pH 9 27.5 μ L, EDTA 55 μ L, NaCl 5.5 μ L, SDS 27.5 μ L) was added to the petri dish and used to transfer the coral tissue to a microcentrifuge tube (1.5 mL). Scalpel and forceps were cleaned in bleach (10%) and MilliQ between samples. A new petri dish was used for each sample. Samples were vortexed (5 s) and incubated for 30

min (37°C). Samples were transferred to ice and 7 μ L of Proteinase K was added along with ~ 10 acid-washed glass beads (710-1,180 μ m). The samples were bead-beaten (FastPrep FP24-5G, All-Metal QuickPrep, 30 s X 3 at 4 m s⁻¹) before being incubated for 1 hour (65°C, 30 rpm). Then 62.5 μ L of KOAc (5M) was added, samples vortexed and incubated on ice for 30 min. Samples were centrifuged (15 min, 14,680 rpm) and the resulting supernatant transferred to a clean tube (1.5 mL). RNA-ase (10 μ L) was added and samples vortexed before incubation at 37°C for 30 min. DNA was precipitated by the addition of 250 μ L of isopropanol (100%), vortexing, and centrifuging (15 min, 13,000 rpm). The supernatant was discarded and ethanol added (250 μ L, 70%). Tubes were gently flicked to resuspend the DNA before centrifuging again (5 min, 13,000 rpm). The pellets were air-dried until no droplets were visible (15-20 min) and 50 μ L of UltraPure H₂O was added. Samples were left in the fridge (4°C) for a minimum of 24 h to allow DNA to fully resuspend in the water. DNA concentrations were checked by Qubit High-Sensitivity assays where all samples were diluted 1:10 to avoid overloading the Qubit reader (max concentration 100 μ g μ L⁻¹).

DNA extracted from Pocillopora samples was normalised to a concentration of 10 ng μ L⁻¹ with UltraPure H₂O. Species ID was confirmed for all extracted colonies using Restriction Fragment Length Polymorphism assays (RFLP) with the Acil restriction enzyme kit (Johnston et al., 2018; Magalon et al., 2007). The PCR mix consisted of 4 µL MyTaq Buffer (5x), 0.4 µL MyTaq Polymerase, 0.25 µL of the forward and reverse primers (ORF FatP6.1, Appendix B.2), 0.3 μ L BSA, and 12.8 μ L MilliQ per sample. 2 μ L DNA (10 ng μ L⁻¹) was added to each tube to make a total volume of 20 µL. PCR conditions were as follows; initial denaturation of 60 s at 94°C followed by 40 cycles of elongation (30 s at 94°C, 30 s at 53 °C, 75 s at 72 °C), and final incubation at 72 °C for 5 min. After PCR, samples were digested with the AciI enzyme kit (0.1 µL enzyme, 1.0 µL 10x NE buffer, 8.9 µL PCR product) first at 37 °C (1 h) followed by 20 min at 65 °C. Digested samples were visualised on a gel (3 µL digested product, 2% agarose TAE, 90 min, 70 V) using a 100 bp ladder (GeneRuler) as a reference. Samples showing three bands (209, 338, 431 bp) were confirmed to be P. verrucosa. Samples where only two bands were visible were further investigated to test if they were P. meandrina which was confirmed by digestion with the SacI enzyme (0.05 µL enzyme; 1 µL 10xNE buffer; 8.95 µL PCR product per sample). This was incubated for 1 h (37 °C) and digestion halted by incubation at 65 °C for 20 min. Gels were visualised similarly to the verrucosa RFLP gels and corals showing two bands (298, 682 bp) were designated as P. meandrina. Corals that could not be confirmed as

either *P. meandrina* or *P. verrucosa* were classed as "*unidentified*" although likely to be a cryptic species of either *P. meandrina* or *P. verrucosa* as per Johnston et al., (2022). These unidentified samples were excluded from analysis (Fig. 3.1 C-E).

3.3.4.2 ITS2 Sequencing

Symbiodiniaceae DNA was amplified by PCR targeting the ITS2 gene region using primers from Pochon et al., (2001). For each sample, the master mix contained the following: UltraPure water (16.5 μ L), forward and reverse primer (Appendix B.2), 1 μ L each, final primer concentration of 0.4 μ M each), MyTaq buffer (5x, 5 μ L), MyTaq DNA polymerase (2.5U, 0.5 μ L), and 10 ng of DNA template in 1 μ L buffer. The PCR heated to 95°C for 3 min followed by 30 cycles consisting of a hold at 95°C (30 s), 59°C (30 s), and 72°C (30 s). This was followed by a final hold at 72°C for 7 min. PCR products were visualised on an agarose gel (2% agarose, 0.5x TBE, 90 V, 30 min, EtBr stain) on the Fusion FX® Imager (Vilber Lourmat, Collégien, France). PCR products were randomised across species within plates and submitted to Ramaciotti Centre for Genomics (UNSW, Sydney, Australia). Samples were sequenced on a single run of the Illumina Mi-Seq v3 platform using 2x300bp read lengths.

3.3.5 Thermal covariates of acute heat tolerance

To examine the extent to which thermal history characteristics underly differences in acute thermal tolerance between species, nineteen temperature variables were selected (Appendix B.3). Maximum monthly mean (MMM) temperatures were obtained from NOAA Coral Reef Watch Operational Daily Near-Real-Time Global 5-km Satellite Coral Bleaching Monitoring Products, accessed through <u>ERDDAP - NOAA Coral Reef Watch Operational Daily Near-Real-Time Global 5-km Satellite Coral Bleaching Monitoring Products - Data Access Form (hawaii.edu)</u> for each individual reef coordinate. These describe both long-term patterns in Sea Surface Temperatures (SST) as well as disturbance history characteristics (DHWs). Long-term SST and DHW variables were collected in weekly time-steps from 1985 until 1 week prior to reef-specific collection dates while recent variables covered only the five years immediately prior to collection.

3.3.6 Statistical methods

3.3.6.1 Acute heat tolerance and ED50

To enable comparisons of heat required to stress multiple populations and quantify acute heat tolerance, ED50 values were calculated from the maximum photochemical yield (F_v/F_m) data at 15 reefs. Four reefs had to be omitted due to insufficient declines in F_v/F_m to derive ED50s. The ED50 response curves (Evensen et al., 2021; Marzonie et al., 2022) were constructed in R (R Core Team, 2022), using the *medrm()* function (Package medrc, Gerhard & Ritz, 2018; Ritz et al., 2015) with a three parameter log logistic regression (LL.3) to account for slope. The higher the ED50 values, the greater the acute heat tolerance of the individual or species. Absolute acute heat tolerance (ED50) was modelled as the temperature required to reduce photosynthetic efficiency by 50% relative to MMM-treated corals while relative acute heat tolerance (°C above MMM) was modelled as the temperature above local MMM required to reduce photosynthetic efficiency by 50% relative to MMM-treated corals. Significant differences in acute heat tolerance between species were assessed by *emmeans()* in the DHARMa R package (Hartig & Lohse, 2021).

3.3.6.2 Thermal history

Thermal history co-variates of acute heat tolerance were visualised by Principal Component Analysis (PCA) constructed in the R package vegan (Oksanen et al., 2020) to reduce dimensionality (Appendix B.4). Each variable was initially correlated (Pearson correlation) to acute heat tolerance (ED50) for each of the three coral host species (*A. tenuis, P. meandrina*, and *P. verrucosa*) which revealed two variables to be significantly correlated across all species; number of heating events where heat stress exceeded 3-DHW (DHW3) and maximum SST (max_SST). These variables were checked for low collinearity (variance inflation scores < 3) using the *vif()* function in the R package car (Fox & Weisberg, 2019). The effect of a species interaction with either thermal history variable was compared by AICc scores and found not to significantly improve the model. Therefore, the linear model was fit as ED50 ~ species + max_SST + DHW3. The goodness-of-fit of the model was assessed by the *check_model()* function in the R package performance (Appendix B.5, Lüdecke et al., 2021).

3.3.6.3 Symbiont community

Demultiplexed .fastq files (forward and reverse) were submitted to SymPortal (Hume et al., 2019). This framework first removes non-Symbiodiniaceae sequences and then groups remaining Symbiodiniaceae sequences by genera. SymPortal then defines 'Defining Intragenomic Variants' (DIVs) by identifying within-sample informative intragenomic sequences. ITS2 type profiles are predicted from repeated co-occurrence of DIVs with similar relative abundances within samples. This results in distinct taxonomic units below, at, or above the species level (Hume et al., 2019), the meaning of which is currently under debate (Davies et al., 2022). Only samples with more than 1,000 reads were used for analysis to generate DIV count tables and Generalised UniFrac distance (d = 0.5) was used to construct distance matrices. Using generalised UniFrac distances take into account the weight on abundant lineages, and so the resulting distance is not dominated by highly abundant lineages (Chen et al., 2012). Principal Coordinate Analysis (PCoA) was used to visualise community differences and plot DIVs and environmental factors associated with the data patterns. PCoAs were conducted with the *cmdscale()* function in the vegan R package (Oksanen et al., 2020). Environmental factors were fitted to the PCoA by the *envfit()* function. These patterns were formally analysed by PERMANOVAs conducted also in R, using the *adonis3()* function with 999 permutations (Chen et al., 2022).

3.3.6.4 Physiology

Differences in physiology between treatments were examined by fitting linear mixed effects models in R (R Core Team, 2022) using the *lme()* function in the nlme package (Pinheiro et al., 2017). All models were fitted by restricted maximum likelihood and specified with an interaction of species and treatment as fixed effects with colony ID fitted as a random effect. Model assumptions were checked for normality and homoscedasticity with qq plots in the car package. Significant differences were assessed by Wald's tests and estimated marginal means (*emmeans()*, Lenth, 2023). Correlations between physiological metrics and ED50s were performed using the Spearman rank-correlations.

3.3.6.5 Co-variates of acute heat tolerance (ED50)

To investigate how the multiple predictors discussed above influence acute heat tolerance together, a linear model (ED50 ~ species + max_SST + DHW3 + Chla + catalase + protein + PCo1 + PCo2) was fitted to all complete data cases in the nlme() R package. Variance inflation was examined using variance inflation scores (*vif()*) while model performance was calculated

using *check_model()* in the performance R package as above. The relative importance of each variable was extracted using the *calc.relimp()* function (relaimpo package). Due to the lack of symbiont community and physiology data for *A. tenuis*, this species was omitted from this analysis. Physiological data used was collected in the MMM treatment.

3.4 Results

3.4.1 Latitudinal collection gradient in Pocillopora

From a total sample set of 309 corals collected from the *Pocillopora* genus, 141 were confirmed as *P. verrucosa*, 96 as *P. meandrina*, and 72 as neither (Table 3.1). Both *P. verrucosa* and *P. meandrina* showed strong latitudinal trends in spatial distribution. The northern sectors of Cape Grenville, Princess Charlotte Bay, and Cairns accounted for 74% of the collected *P. verrucosa* samples while the southern sectors (Swains and Capricorn Bunker) accounted for just 5% of samples. In contrast, the northern sectors held 27% of collected *P. meandrina* and 30% unidentified *Pocillopora* samples while the southern sectors accounted for 66% and 59% of *P. meandrina* and unidentified *Pocillopora* samples, respectively. The 72 unidentified colonies were excluded from analyses as their species identification could not be confirmed.

Sector		A. tenuis	P. meandrina P. verrucos		Unidentified Total color Pocillopora count				
	Cape Grenville	30	5	48	2	85			
	Princess Charlotte Bay	69	19	48	15	151			
	Cairns	15	2	8	5	30			
	Townsville	45	7	30	8	90			
	Swains	30	30	4	15	79			
	Capricorn Bunker	92	34	3	28	157			
	Species total colonies	281	97	141	73	592			

Table 3.1 Latitudinal gradient in *Pocillopora* collections. Numbers indicate the number of colonies sampled per species within each reef sector. Total colony count per sector is given in the right column and total species counts are shown on the bottom row. Sectors are listed from north to south.

3.4.2 Species-level differences in acute heat tolerance

All three coral species (*A. tenuis, P. meandrina*, and *P. verrucosa*) exhibited significant declines in maximum photosynthetic yield (F_v/F_m) with increasing treatment temperatures (Wald's test, species * treatment, df = 9, F = 9.23, p < 0.0001; Appendix B.6). Values of acute heat tolerance (ED50) derived from the temperature-driven declines of F_v/F_m differed between the coral species (Fig 3.2A). Absolute acute heat tolerance (ED50) values ranged by 0.99°C between the three species with *P. verrucosa* showing the greatest acute heat tolerance (ED50) across the data set at $36.21 \pm 0.131^{\circ}$ C (*meandrina – verrucosa*, t ratio = -3.712, p = 0.0007;

tenuis – *verrucosa* t ratio = -4.135, p = 0.0001, respectively). *P. meandrina* ($35.22 \pm 0.108^{\circ}$ C) and *A. tenuis* ($35.31 \pm 0.076^{\circ}$ C) did not differ in their absolute acute heat tolerances (ED50; t ratio = -0.113, p = 0.993, Appendix B.7). Although relative acute heat tolerance (°C above MMM) showed a narrower range for the three species (0.22° C) than absolute acute heat tolerance between the three species (Appendix B.8). Therefore, relative acute heat tolerance (°C above MMM) was not analysed further.

3.4.3 Thermal covariates of acute thermal tolerance

Coral acute heat tolerance (ED50) exhibited significant variation across the GBR for each of the three species (Fig 3.2B). At the level of reef sector, all three species exhibited similar trends whereby ED50 values were higher in the northern-most sector $(36.31 \pm 0.11 \text{ °C})$ compared to the central (Townsville, 35.77 ± 0.05 °C) and the most southern sector (Capricorn Bunker, 34.98 ± 0.05 °C) (Fig 3.2B, Appendix B.9). However, there were significant differences between species within these reef sectors. In the Northern sector, P. verrucosa recorded significantly higher ED50 values (36.46 ± 0.13 °C) than *P. meandrina* (35.97 ± 0.28 °C, Post Hoc Tukey's t = -2.06, p = 0.026, Fig 3.2B) and A. tenuis $(36.23 \pm 0.19 \text{ °C}; t = -3.03 \text{ m p} =$ 0.0076, Appendix B.24). In the Townsville sector, only A. tenuis and P. verrucosa differed significantly in their respective ED50 values with P. verrucosa recording half a degree higher acute heat tolerance $(36.08 \pm 0.07 \text{ °C})$ than A. tenuis $(35.57 \pm 0.06 \text{ °C}; t = -4.7, p < 0.001, Fig.$ 3.2B). In the Capricorn Bunker sector, P. verrucosa again recorded the highest acute heat tolerance $(35.89 \pm 0.22 \text{ °C})$ compared to both *A. tenuis* $(34.97 \pm 0.06 \text{ °C}; t = -2.375, p = 0.048)$ and *P. meandrina* $(34.93 \pm 0.09 \text{ °C}; t = 3.204, p = 0.004)$ which also differed significantly to A. tenuis (t = 2.48, p = 0.037, Fig 3.2B) in this sector. Finally, there was no difference in acute heat tolerance between the three species in the Swains sector (Fig 3.2B, Appendix B.24).

The reef sectors were also characterised by differences in thermal history (Table 3.2, Appendix B.4). The northern sectors recorded higher maximum and average SSTs compared to the southern sectors, with the highest average SST (26.8 °C) recorded in the northern sector of Cape Grenville. Similarly, the highest heat stress (DHW) recorded during the time series (1985 - 1 month prior to collection) was in the Princess Charlotte Bay sector (11.9 DHW) compared to 5.9 - 6.3 DHW in the Swains and Capricorn Bunker, respectively. Except for

Cairns (n = 5), the northern sectors (n = 9.5 in Cape Grenville and n = 10 in Princess Charlotte Bay) recorded more frequent marine heat waves (DHW>2) than the southern sectors (n = 5 Swains; n = 5.8 in the Capricorn Bunker.). Finally, the occurrence of DHW > 3 was similar across the GBR sectors (3 – 5.7, Table 3.2).

Each species was characterised by a different relationship between acute heat tolerance (ED50) and the suite of 19 thermal history variables examined (Fig 3.2C, Appendix B.10). While ED50s of both A. tenuis and P. meandrina showed significant positive correlations with 11 thermal history variables, including maximum SST (cor = 0.47 and 0.6, respectively), ED50s of *P. verrucosa* were only positively associated with the maximum SST (cor = 0.33 p = 0.025, Fig 3.2C). All three species showed significant negative effects on ED50 by number of heating where heat stress exceeded 3 DHW (*P. meandrina* = -0.28, *A. tenuis* = -0.41, *P. vertucosa* = -0.51). Interestingly, the effect of mean heat stress during heating events (mean DHW) differed between the two Pocillopora species. In P. meandrina, ED50 values were positively correlated with increasing mean DHW (cor = 0.31, p = 0.023) while in *P. verrucosa* this correlation was negative (cor -0.31, p = 0.03, Fig 3.2C). As such, acute heat tolerance of *P. meandrina* and *P.* verrucosa exhibit different responses as heat stress event loading (DHW) increases. Further, the annual variability in SSTs (range SST) was not correlated to ED50 in *P. verrucosa* (cor = 0.04) while this variable recorded strong negative correlations with ED50 values in both P. *meandrina* (cor = -0.51) and A. *tenuis* (cor = -0.65), leading to a decrease in acute heat tolerance (ED50) as annual temperature variability (range SST) increased. Additionally, ED50 values in *P. verrucosa* were significantly negatively correlated with frequency of heatwaves (DHW2) p = 0.026, DHW3 p = 0, and DHW4 p = 0, Fig 3.2C), whereby acute heat tolerance (ED50) was reduced on reefs that recorded frequent heat stress events.

Differences in ED50 across the GBR owing to environmental history were predicted by a linear model incorporating species identity, maximum SST, and the number of mild heating events (DHW > 3, Fig 3.2D) fitted to all data. Together, this model accounted for 51% of the variability within the ED50 response ($R^2 = 0.509$) with max_SST contributing the most to the model (24.5%), followed by species identity (15.5%) and number of heating events where DHW > 3 (10.96%)

Table 3.2 Sector-wide averages of thermal variables from a sampling period of 1985 - 1 month prior to collection). MMM = maximum monthly mean climatology, SST = sea surface temperature, DHW = degree heating week. The highest heat stress loading (max_DHW) represents the highest value recorded within the sector. Sectors are listed from north to south.

Region	Sector	MMM	max_SST	min_SST	mean_SST	DHW > 2	DHW > 3	DHW > 8	Max DHW
		(°C)	(°C)	(°C)	(°C)				
North	Cape Grenville	28.5	30.2	22.7	26.8	9.5	3.5	1.0	9.99
North	Princess Charlotte Bay	28.6	30.5	22.4	26.6	10.0	4.5	1.3	11.9
North	Cairns	28.6	31.0	21.8	26.4	5.0	3.0	1.0	8.8
Central	Townsville	28.5	30.7	21.4	26.3	9.3	5.7	0.3	8.9
South	Swains	27.5	29.6	20.4	25.0	5.0	3.0	0.0	5.9
South	Capricorn Bunker	27.1	29.0	19.3	24.4	5.8	5.0	0.0	6.3

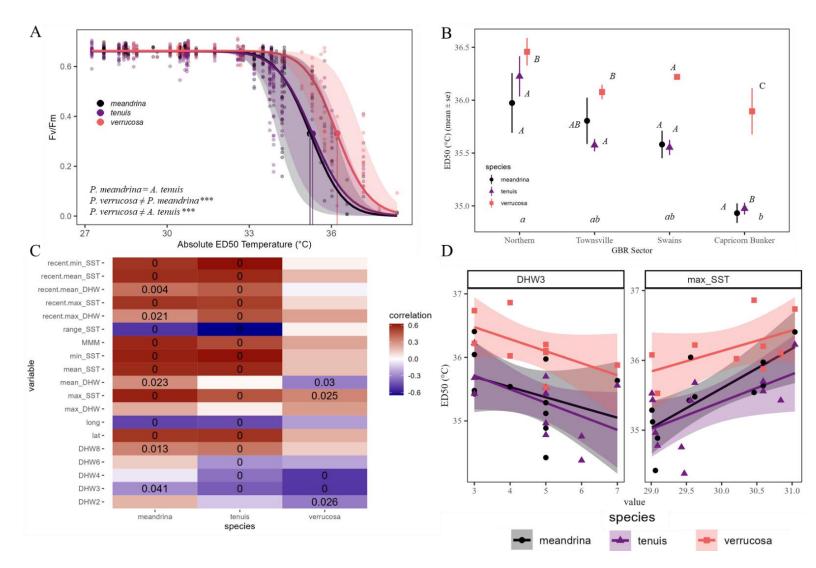


Figure 3.2 Acute heat tolerance patterns of three coral species across the GBR. (A) ED50 between *P. meandrina* (black), *A. tenuis* (purple), and *P. verrucosa* (orange) from log-logistic regressions. Bands indicate 95% CI of the ED50 estimate. Post-hoc comparisons show species contrasts and the asterisks indicate

the statistical significance level (p < 0.05 *, p < 0.001 **, p < 0.001 ***) from Post Hoc Tukey's tests.. (B) Mean species ED50 values across four reef sectors (north to south). Points show the mean ED50 per species per sector (*P. meandrina* = black circle, *P. verrucosa* = orange square, and *A. tenuis* = purple triangle) and the whiskers indicate the standard error. Post-hoc comparisons show sector-level contrasts in small itallics while within-sector differences between species are shown in capital itallics. (C) Heatmap correlations (Pearson correlation, p < 0.05) between 19 thermal history variables and species ED50. Recent SST and DHW variables are grouped together, followed by long-term SST and DHW trends. Finally, heat wave variables are grouped together. Tile values show significance results from Pearson correlation tests. Non-significant p-values are not shown. (D) Linear regression of ED50 and two thermal variables significantly correlated with all species; this included the number of heating events where heat stress exceeded 3 DHW (DHW3) and the maximum SST (max SST) recorded. Each point represents an individual reef.

3.4.4 Dominant Symbiodiniaceae association shows host-specificity and geographic stability

The number of ITS2-type profiles identified differed between P. vertucosa (n = 17) and P. *meandrina* (n = 11), and each profile was unique to their respective host species (Appendix B.12 and B.13). The dominant symbiont type profile differed between the two species but was remarkably stable within species between the six reef sectors (Fig 3.3). In P. meandrina the ITS2-type profile C1/C42.2/C42u-C1b-C42a-C1151-C1au-C1az-C115d was the most abundant except in the Capricorn Bunker (most abundant = C1/C42.2/C42g/C42a-C1b-C1au-C1az-C42h-C3), while in *P. verrucosa*, C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p was the most abundant type profile across the GBR, with the exception of the Capricorn Bunkersector (Fig 3.3, Appendix B.14). Presence (and abundance) of the C1d DIV in the P. verrucosa colonies along with the absence in P. meandrina suggests that Cladocopium pacificum (Johnston et al., 2022; Turnham et al., 2021) is most likely the dominant symbiont species harboured by P. verrucosa (Appendix B.14). Despite low absolute abundance, both the C42-a and C42-b DIVs, diagnostic of C. latusorum (Davies et al., 2022; Johnston et al., 2022; Turnham et al., 2021) were present in the P. meandrina samples and absent in P. verrucosa (Appendix B.15). Additionally, two out of the 141 P. verrucosa samples co-associated with symbionts of the genus Durusdinium (<10% relative abundance, ITS2-type profiles D1-D2d-D1aa-D1z-D1hy and D1/D2d-D1aa-D1z) with one sample from the Cairns and one from the Princess Charlotte Bay sector.

3.4.5 Symbiodiniaceae community composition varied across environmental gradients and acute heat tolerance

Symbiodiniaceae community composition (DIVs) varied significantly between *Pocillopora meandrina* and *P. verrucosa* (PERMANOVA; df = 1, p = 0.0001, R2 = 0.49, F = 230.27, Fig 3.4A). Community differences of symbionts between the two coral hosts were primarily associated with Principal Coordinate 1 (PCo1 33.3% of variation explained). *P. verrucosa* samples were differentiated along PCo2 (7.8% variation explained), which corresponded to clustering between the reef sectors for this species (Fig 3.4A); specifically, the two northernmost sectors (Cape Grenville and Princess Charlotte Bay) separating from the Cairns and Townsville sectors further south. Reef-level differences in intra-species symbiont community composition were evidenced by significant differences across environmental variables including latitude, coral cover, frequency of marine heatwaves (DHW > 3), and the maximum

SST recorded (Appendix B.16 and B.17). These results highlight variability in symbiont community composition of *P. verrucosa* and *P. meandrina* on the GBR at the scale of reef sector.

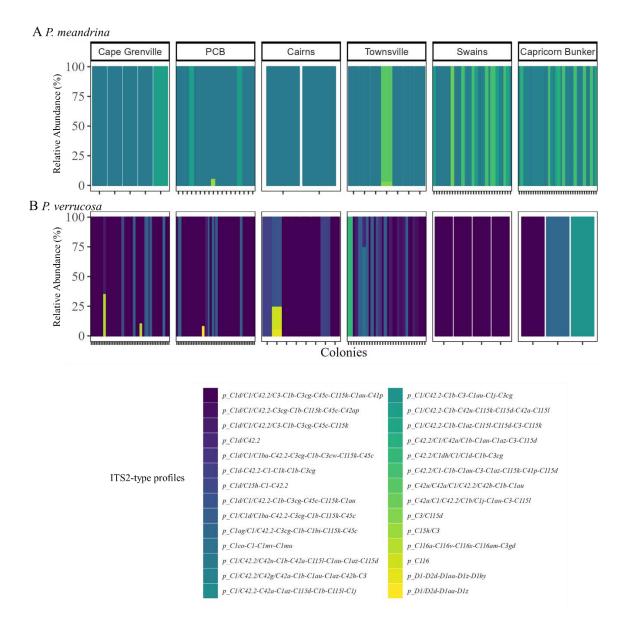


Figure 3.3 Relative abundance (%) of the 28 ITS2-type profiles recovered by the SymPortal analytical framework in *P. meandrina* (A) and *P. verrucosa* (B) across the six reef sectors of the GBR (listed from north to south). PCB = Princess Charlotte Bay. Each vertical bar corresponds to a sample.

Interestingly, symbiont community composition within *P. meandrina* was significantly correlated with acute heat tolerance (ED50, PEMANOVA df = 1, $R^2 = 10.17$, p = 0.001), whereby the greatest variation in ED50 separated primarily along PCo2 (23.3% variation explained, Fig 3.4B, Appendix B.18). Although no single DIV was associated with increased

heat tolerance, there was a trend towards corals with high ED50s having a greater abundance of the C42u, C42az, and C41p DIVs compared to those with low ED50 (Appendix B.19). The two *P. verrucosa* colonies that hosted *Durusdinium* also recorded 0.2°C higher ED50s (37.36 – 37.38°C) than the other colonies hosting *Cladocopium* (35.04 – 37.16°C, Appendix B.20). Despite high community structure by environment, Symbiodiniaceae community composition did not account for colony-level differences in F_v/F_m -derived ED50 threshold temperatures in *P. verrucosa* (Appendix B.16).

3.4.6 Physiological condition in the absence of heat stress as a predictor of acute heat tolerance

Physiological condition (catalase activity, protein, and chlorophyll-*a* content) of corals were assessed in the MMM treatment for both *P. verrucosa* and *P meandrina* (n = 51 and n = 45, respectively) and compared to corresponding colony values of acute heat tolerance (ED50). In *P. verrucosa*, only chlorophyll-*a* content significantly correlated with ED50 (S = 7,800, cor = 0.49, p = 0.001, Fig 3.5A). In *P. meandrina* protein content negatively (S = 23,040, cor = -0.62, p < 0.0001) and catalase activity positively correlated (S = 9,626, cor = 0.32, p = 0.003) with ED50s (Fig 3.5A). In *P. meandrina*, protein content and catalase activity explained 39.4% and 3.3% of the variation in ED50s while in *P. verrucosa*, chlorophyll-*a* content accounted for 17% of ED50 variation. Additionally, both chlorophyll-*a* and protein content in the MMM treatment differed significantly between the two species (Post-Hoc Tukeys; chlorophyll t = - 3.002, p = 0.009; protein t = 3.582, p = 0.0014, Fig 3.5B) while there was no species difference in catalase activities (Appendix B.21).

When all traits were combined, variability in acute heat tolerance (ED50) was most strongly predicted by the maximum SST (max_SST, 19.2%). Overall, the linear model accounted for 75% of the variation in ED50. Protein content was by far the strongest physiological co-variate examined, accounting for 16.8%, followed closely by coral species (15.5%). When modelled as principal coordinates, symbiont communities along PCo1 accounted for 12.2% of ED50 variation. This axis also corresponds to the main split between the two coral host species *P*. *verrucosa* and *P. meandrina*. In contrast, the axis associated with community differences within species (PCo2), accounted for only 1.6% of variation. Chlorophyll content (4.2%), catalase activity (2.9%) and number of marine heat waves where DHW > 3 (4.33%) all accounted for less than 5% of trait variation.

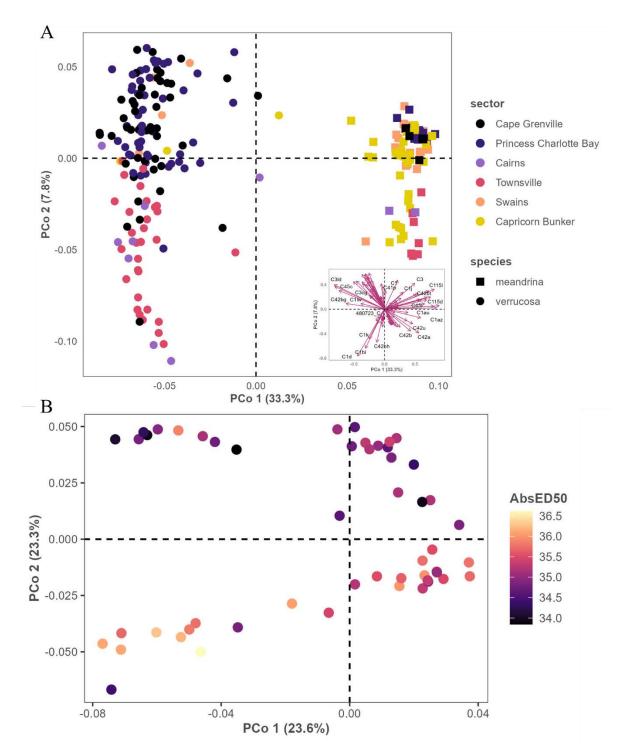


Figure 3.4 Symbiont communities differed between coral host species and environments based on generalised UniFrac distance matrices. (A) Principal Coordinate Analysis (PCoA) of the species-split in symbiont community composition between *P. meandrina* (squares) and *P. verrucosa* (circles). Insert shows how the individual DIVs are correlated to the ordinated space. Points are coloured by the six reef regions. Principal Coordinate 1 accounted for 33.3% of the variability in symbiont communities while PCo2 accounted for 7.8%. (B) Acute thermal tolerance (ED50) was significantly associated with symbiont community composition in *P. meandrina*. Points are coloured by colony-level ED50 (range = $33.85 - 36.62^{\circ}$ C; PCo1 accounted for 23.6% of data variation while PCo2 accounted for 23.3%.

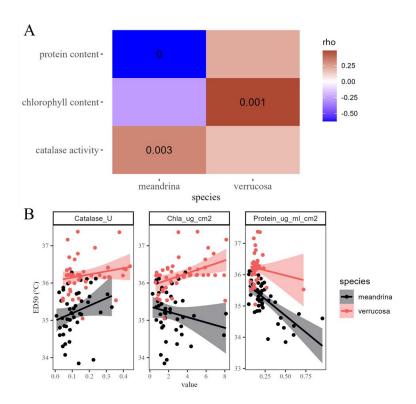


Figure 3.5 Physiological condition in relation to acute heat tolerance (ED50). (A) Correlation heatmap of three physiological traits (protein and chlorophyll-*a* content, and catalase activity) against colony ED50s. Tile colour corresponds to Spearman's rank correlation (rho) and the tile numbers indicate the statistical significance of the correlation. Non-significant values are not shown. (B) Linear regressions of three physiological traits against ED50 between the two species; *P. meandrina* (black) and *P. verrucosa* (orange). The bands show 95% confidence intervals.

3.5 Discussion

Documenting the sources of variation in coral thermal tolerance at scale is key to understanding the survival of coral reefs under continued warming. While multiple drivers of heat tolerance across biological scales and organisation have been extensively investigated (for example reviewed in Cziesielski et al., 2019; McClanahan, 2022; McLachlan et al., 2020; van Woesik et al., 2022), there has been little integration across large (> 1,000 km), reef-system wide geographic scales to date (but see Marzonie et al., 2022). After quantifying coral responses to acute heat stress across 11.5° of latitude on the GBR, I found strong variation in heat tolerance among species and reef sectors. The differences in acute heat tolerance between species potentially reflect inherent species-level differences in thermal tolerance potential among the three species. Based on contrasting effects of symbiont communities and physiological condition on acute heat tolerance documented here, it is clear that multiple factors govern coral thermal tolerance across large spatial scales.

3.5.1 Species-level differences in acute thermal tolerance (ED50)

Coral thermal tolerance differs among genera (Loya et al., 2001; Marshall & Baird, 2000) with *Acropora* and *Stylophora* typically identified as among the least tolerant (Baker et al., 2008; Guest et al., 2012). This assertion is confounded by large variation among species within a genus. Using a standardised measure of acute heat tolerance (ED50), this study found that *P. verrucosa* recorded significantly higher acute heat tolerance than *P. meandrina* and *A. tenuis*. The high acute heat tolerance of *P. verrucosa* relative to *P. meandrina* could reflect distribution ranges defined by thermal history, whereby *P. verrucosa* with a high thermal optimum (29.5°C, Álvarez-Noriega et al., 2023) favours a warmer environment than *P. meandrina*. Similar results have been reported in Hawaii where *P. meandrina* are predominantly found on cooler reefs (Johnston et al., 2018), suggesting that this species indeed has a lower temperature tolerance (Marzonie et al., 2022). This is further supported by a general pattern within reef sector whereby *P. verrucosa* recorded the highest and *P. meandrina* the lowest acute heat tolerances throughout. Further, acute heat tolerance was higher in the northern sectors in all three species examined here. A similar positive, linear relationship between local MMM and acute heat tolerance (ED50) was reported by Evensen et al., (2022) in the Red Sea.

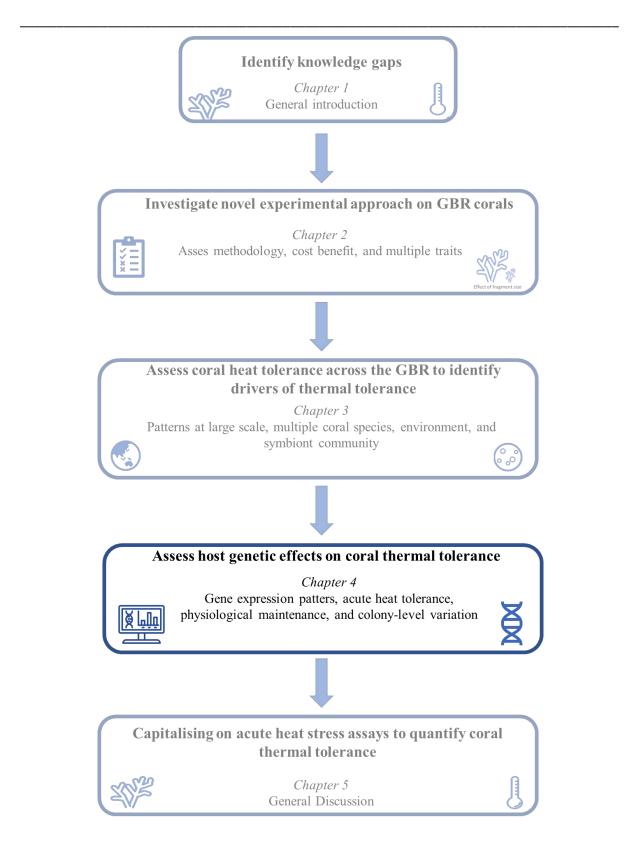
While the ED50 obtained for *P. verrucosa* in this study (36.21°C) was similar to that calculated from comparable experiments conducted in the Red Sea (35.15 - 36.73°C; Evensen et al., 2022), P. verrucosa was found to be the least tolerant species examined out of Stylophora pistillata, Porites lobata, and Acropora hemprichii in that region. The reef regions (Red Sea vs GBR) vary in their MMM gradients. The Red Sea show a greater range of MMM (4.5°C, Evensen et al., 2022) than the GBR (1.6 °C in this study), and this greater long-term thermal gradient may account for the contrasting species tolerance rankings observed in the Red Sea and on the GBR. Further, the relative ED50s obtained here for P. verrucosa (7.73°C) and P. meandrina (7.75°C) also fall within the range of relative ED50s previously reported from the Coral Sea for these species (7.74 °C and 7.42°C, respectively; Marzonie et al., 2022). However, in contrast to Marzonie et al., (2022), the present study finds no difference in the relative heat tolerance between the two Pocillopora species, potentially due to the sample underrepresentation of *P. meandrina* in the north and of *P. verrucosa* in the south. The narrow range and lack of significant differences between species in the relative ED50s could indicate that GBR coral populations are at least somewhat adapted to their local environments, having matched their acute heat tolerance to long-term MMM trends.

3.5.2 Sector-specific thermal disturbance history is a strong driver of coral acute thermal tolerance.

Thermal history can impact coral thermal tolerance, generally leading to higher heat tolerance in individuals from highly variable environments (Barshis et al., 2018; Gilchrist, 1995; Mayfield et al., 2012). The thermal disturbance history of the GBR is highly sector dependent (Cheung et al., 2021; Mellin et al., 2019) and it was therefore not surprising that acute heat tolerance differed at this scale. Decreasing acute heat tolerance in *P. verrucosa* was primarily driven by the frequency of marine heatwaves over DHW >3 while responses in both *P. meandrina* and *A. tenuis* were better explained by long-term SST trends. The higher acute heat tolerance in northern sectors correspond both to the more severe thermal stress disturbance history of this region and to higher long-term temperatures. For example, the Princess Charlotte Bay sector recorded the highest heat stress loading relative to the southern sectors. Additionally, colonies from the northern sectors (Cape Grenville, Princess Charlotte Bay, Cairns), were the only populations tested here that experienced more than eight DHW over the time series. These severe heatwave events were coupled with higher frequency of heat stress in the north, particularly in the Cape Grenville and Princess Charlotte Bay sectors. However, increased frequency of mild heatwaves (DHW > 3) on the GBR did not result in increased acute thermal tolerance (ED50) in any of the three species whereas acute heat tolerance increased with increasing maximum SST. Similarly, in Porites lobata from the Red Sea, recent, severe bleaching led to decreased ED50s (Evensen et al., 2022). The decline in acute heat tolerance with increasing frequency of mild heatwaves could indicate that regular heatwaves may be eroding thermal tolerance of the populations overall. These results are in contrast to Hughes et al., (2021), where the authors highlight that recurrent, frequent (every 1 - 3 year events) increase bleaching thresholds due to hardening, similar to results from the Coral Sea where the frequency of mild heatwaves (DHW > 4) resulted in an increase in acute heat tolerance (ED50, Marzonie et al., 2022). The Coral Sea recorded a higher frequency of mild marine heatwaves compared to the reefs examined here and is further characterised by large, spatially isolated reefs, highly limiting the possibility of gene flow between reefs, giving rise to populations likely to show high local adaptation (Benzie, 1994; Payet et al., 2022). In contrast, the GBR is characterised by high levels of gene flow between populations (Bay et al., 2006; Smith-Keune & van Oppen, 2006), potentially increasing the time required for local adaptation to occur and therefore showing a negative correlation between acute heat tolerance and the frequency of mild marine heat waves.

3.5.3 Symbiont communities are highly structured by host species and thermal environment

Symbiodiniaceae composition is an important component of coral holobiont thermal tolerance (Strader & Quigley, 2022). Both *Pocillopora* species examined here are known to transmit Symbiodiniaceae vertically (Apprill et al., 2009; Hirose et al., 2000), and have co-evolved with their symbionts (Johnston et al., 2022; Turnham et al., 2021). In the current study, host species showed clear differences in community composition both with regards to the dominant symbiont type and the make-up of communities between populations. The split in dominant type between the two *Pocillopora* species reflects the established and highly host-specific associations observed between *Cladocopium pacificum (P. verrucosa)* and *C. latusorum (P. meandrina)* in the Pacific (Johnston et al., 2022; Turnham et al., 2021). This is further supported by the presence of the diagnostic ITS2 sequences for *C. pacificum* (C1d) in *P. verrucosa* and *C. latusorum* (C42a and C42b) in *P. meandrina* in this study (Davies et al., 2022). These dominant, host-specific associations have been shown to be stable across


environmental gradients in Pocillopora in the Red Sea (Sawall et al., 2014) and the Pacific (Turnham et al., 2021) as was also the case in the present study. Further, the dominant ITS2type profile reported here for *P. verrucosa* corresponds to the dominant profile reported by Grima et al., (2022) in the northern GBR. Interestingly, the wider community composition varied significantly across the spatial and thermal gradients examined here, particularly within P. verrucosa. High environmental structuring of symbiont communities were also reported for A. tenuis (Cooke et al., 2020; Matias et al., 2022) and this could therefore represent a reefsystem characteristic of the GBR. As such, identifying structuring of symbiont communities by environment within coral host species is an important consideration and potential restraint for assisted management (Buerger et al., 2020; Quigley et al., 2018). Symbiont community make-up within P. meandrina contributed significantly to colony-level acute heat tolerance (ED50) where high heat tolerance was associated with changes in abundance of some ITS2 sequence variants. Similarly, Hoadley et al., (2021) documented significant effects of symbiont community within Cladocopium C15 lineages on coral heat tolerance, supporting that finescale differences in community composition within Symbiodiniaceae can indeed affect holobiont heat tolerance. However, as dominant symbiont type was host-specific, it was not possible to determine if host species differences in ED50s were driven primarily by symbiont type or coral species.

3.5.4 Relationship between acute heat tolerance and physiology

Changes in photosynthetic performance and declines in physiological traits are common indicators of heat stress in corals (Gardner et al., 2017b; Grottoli et al., 2021; Nitschke et al., 2018). The F_{v}/F_{m} -derived trait ED50 used here has been proposed as a rapid proxy of heat tolerance for use in large-scale assessments (Cunning et al., 2021; Evensen et al., 2021; Nielsen et al., 2022). Yet, few studies have quantified the relationship between this trait and common physiological responses to heat stress. Here, colony-level ED50 only correlated to chlorophyll*a* content in *P. verrucosa* but not in *P. meandrina*. This is surprising given that the trait (ED50) is derived from fluorescence measurements of chlorophyll-*a*, and it was therefore expected that ED50 should reflect chlorophyll-*a* concentrations. However, the relationship between chlorophyll content and photosynthetic efficiency is not always conserved (Magney et al., 2020). In corals, numerous factors can regulate fluorescence quenching (Nitschke et al., 2022), such as self-shading and within-tissue light gradients (Wangpraseurt et al., 2019), which can disrupt the relationship between chlorophyll content and photosynthetic efficiency further. The lack of a relationship between ED50 and chlorophyll-*a* content in *P. meandrina* could potentially reflect photo-physiological differences between the dominant symbiont types harboured (Lohr et al., 2019; Suggett et al., 2022). Corals with higher catalase activity recorded higher acute heat tolerance, perhaps because these higher enzyme activities allow the coral to respond faster to thermal stress and the production of harmful reactive oxygen species (Teixeira et al., 2013). Protein content, and high energetic reserves more broadly, are typically recognised as key drivers of both bleaching resistance (Anthony et al., 2009; Gibbin et al., 2018) and recovery potential (Schoepf et al., 2015a). In keeping with this, protein content was the best of three physiological predictors of acute heat tolerance (ED50) although the relationship was surprisingly negative. The extent to which high protein content leads to higher thermal tolerance is likely to be both species- and population specific (Jung et al., 2021).

Coral thermal tolerance is a complex trait governed across multiple biological scales. This study documented significant differences in acute heat tolerance (ED50) between P. meandrina, Acropora tenuis, and P. verrucosa sampled across 11.5° latitudes on the GBR. Warmer, northern reefs hosted more thermally-tolerant corals (Cornwell et al., 2021), and acute heat tolerance showed evidence of adaptation to local thermal environments (Jurriaans & Hoogenboom, 2019). When all co-variates were combined, maximum SST exerted the largest effect on coral acute heat tolerance followed closely by protein content and species identity while within-host species symbiont community differences had little overall effect. Having established the respective roles and impacts of thermal history and symbiont community on coral thermal tolerance, much variation remains unexplained. For example, host-specific genetic variation and transcriptional plasticity in response to heat stress were not examined here. Despite high levels of reef-connectivity on the GBR, it is unlikely that heat-adapted coral genotypes would spread beyond the northern sectors naturally within the short period of time needed given current warming rates (Quigley et al., 2019), necessitating genetic management interventions. Such interventions, like assisted gene flow, require foundational knowledge of thermally tolerant corals and where to find them. Based on the spatial scale and highthroughput experimental design of the present study, these acute heat stress assays lend themselves well to document not only the geographical locations of thermally tolerant populations but also to investigate the underlying mechanisms, whether environmental, symbionts, or host genetics.

Chapter 4 Does gene expression plasticity underpin acute heat tolerance in a population of reef-building coral?

4.1 Abstract

Reef-building corals exhibit high variation in their thermal tolerance, which may contribute to critical differences in survival following mass bleaching events. Heat tolerance is, therefore, an important trait governing corals' survival under climate change, and there is an urgent need to understand its mechanistic drivers. Although the molecular responses of corals to heat stress are now well documented, fewer studies have linked transcriptomic responses directly to physiological outcomes related to heat tolerance. To examine the molecular basis of heat tolerance, here I combined RNA sequencing with physiological measurements of heat stress (F_q'/F_m') , tissue colour, and mass changes) to identify tolerant individuals, and quantified gene expression profiles associated with high heat tolerance in corals following acute heat stress exposure at 34°C relative to ambient (27.5°C) conditions with multiple partial coral colonies (n = 30) of the species Acropora tenuis sourced from the central Great Barrier Reef (Davies) Numerous genes recognised to form part of a shared coral heat stress response were upregulated in response to acute heat stress following a recovery period, such as heat shock proteins, photoprotective genes encoding for ubiquitin-, green fluorescent protein-, and Raslike proteins. A relatively smaller number of "frontloaded" genes were also identified in highly tolerant individuals. These included an ATP-dependent DNA helicase, sodium- and chloridedependent GABA transporter 2, and Kelch-like protein 28. This study furthers our understanding of both biochemical and transcriptomic responses to thermal stress in a common reef-building coral species. It also identifies genes indicative of acute heat tolerance for further validation and gene expression biomarker development.

4.2 Introduction

Corals must respond to increasing warming, either through phenotypic plasticity or genetic adaptation, to ensure their persistence under continued climate change (Chevin & Hoffmann, 2017; Drury et al., 2022a). Severe thermal stress events leading to mortality may act as selective pressures on coral populations (Barshis et al., 2018) potentially increasing the proportion of better-suited genotypes over time through local adaptation. Although corals have demonstrated some ability to adapt to their local environment (Howells et al., 2016; Kirk et al., 2018; Thomas et al., 2018), the molecular mechanisms underpinning patterns of local adaptation are not well understood. On shorter time scales, individual corals can respond to environmental disturbances rapidly through changes in gene expression (Barshis et al., 2013; Traylor-Knowles et al., 2017; Whitehead & Crawford, 2006), the proximate mechanism linking coral genotypes to phenotypes (Kenkel & Matz, 2016). While the general transcriptomic environmental stress response of corals has been well-studied (Cziesielski et al., 2019; Dixon et al., 2020; Drury et al., 2017), heat tolerance is a complex trait for which the loci responsible remain poorly defined and associated genetic variation poorly mapped.

High-resolution transcriptomic analysis enables the identification of functional mechanisms underlying organism responses to perturbations (De Nadal et al., 2011; López-Maury et al., 2008). Gene expression analysis has been widely used to interrogate the underlying mechanisms of coral thermal stress and has identified a core, molecular heat stress response (Cziesielski et al., 2019). Many of these co-regulated genes are involved with regulating cell death, immune responses, heat shock proteins (HSPs), protein folding and degradation, as well as dealing with reactive oxygen species and growth regulation (Bellantuono et al., 2012; Cziesielski et al., 2018; Fitt et al., 2009; Granados-Cifuentes et al., 2013; Kenkel et al., 2014; Maor-Landaw & Levy, 2016; Seneca & Palumbi, 2015). Some heat response genes have been proposed as gene expression biomarkers (GEBs, reviewed in Louis et al., 2017) with the purpose of detecting early-onset coral heat stress, prior to the manifestation of visual and other physiological indicators (Morgan et al., 2001). Such markers provide a valuable heat stress screening tool which may be scaled rapidly (Kenkel et al., 2013). Further, heat tolerance and thermal resilience of an individual may be predictable from gene expression profiles (Avila-Magaña et al., 2021; Bay & Palumbi, 2017; Kenkel et al., 2014), for example through quantification of frontloaded gene expression levels (Barshis et al., 2013). Frontloading of genes (i.e. higher expression levels in resilient individuals compared to sensitive ones in the

absence of stressors), was recently shown to increase resilience to environmental disturbances in juvenile corals (Vidal-Dupiol et al., 2022). Combining transcriptomic analyses with physiological measures of coral heat tolerance may increase our ability to detect GEBs and increase our understanding of the functional molecular mechanisms underlying heat tolerance in corals.

Thermal tolerance of the coral holobiont is partially dictated by the symbiont community (Berkelmans & van Oppen, 2006; Howells et al., 2011; Ziegler et al., 2017). The holobiont heat stress response involves breakdown of symbiosis leading to bleaching (Rowan, 2004; Suggett & Smith, 2011), combined with independent physiological and transcriptional responses to stress in the host (Bay et al., 2013; Bellantuono et al., 2012; Kirk et al., 2018) and associated symbionts (Cunning & Baker, 2020; and reviewed in Jiang et al., 2021). The variability in light harvesting and utilisation strategies between different symbiont types (Lohr et al., 2019) may indicate different adaptive strategies for optimising photosynthetic output and minimising photosynthetic stress during heating (Nitschke et al., 2022; Suggett et al., 2015). Rapid light curves (RLCs) allow estimation of multiple photochemical parameters including how the photosynthetic apparatus handles excess light through quantification of photochemical and non-photochemical quenching (Appendix C.1, Nitschke et al., 2018; Ralph & Gademann, 2005; White & Critchley, 1999), providing high-resolution data on photo-physiological responses to heat stress. Holobiont-level physiological measures of heat tolerance should also be considered when quantifying coral heat tolerance (Grottoli et al., 2021; Nielsen et al., 2022). Coral tissue colour is a quick and cost-effective proxy of bleaching (Chow et al., 2016; Siebeck et al., 2006) which can be readily quantified following acute heat stress assays (Nielsen et al., 2022). Capturing multiple physiological measures of heat tolerance is required to understand thermal stress responses (Gardner et al., 2017a).

Studies that pair gene expression measurements (RNA-Seq) with quantified heat tolerance of corals are now required to examine physiological and transcriptomic drivers of heat stress responses as they are being mounted by the coral animal and associated symbionts. Recently, ED50 (Effective-Dose 50, Dimmitt et al., 2017) has been proposed to rapidly quantify coral heat tolerance in large sample sizes (**Chapter 3**; Cunning et al., 2021; Evensen et al., 2022; Marzonie et al., 2022). The trait, derived from photochemical efficiency measurements (F_v/F_m), documents the temperature required to reduce photosynthetic performance by 50% relative to controls and has confirmed differential acute heat tolerance

between coral species and populations, across both large (Evensen et al., 2022; Marzonie et al., 2022) and small spatial scales (Evensen et al., 2021). Finally, organism thermal resilience can also be quantified in terms of their ability to maintain homeostasis under stress (Kenkel & Matz, 2016; López-Maury et al., 2008; Ruiz-Jones & Palumbi, 2017). Examining coral heat stress responses using multi-trait analyses incorporating physiology and gene expression is necessary to begin to disentangle these complex factors (Cziesielski et al., 2018; Gardner et al., 2017a).

Here, I examine the mechanistic drivers of acute heat tolerance in the model coral species, *Acropora tenuis*, by comparing transcriptomic responses to physiological measures of thermal tolerance. I describe significant gene expression differences in response to acute heating in the host and find a much smaller set of differentially expressed genes in the dominant symbiont partner of the coral animal. Gene expression patterns were further differentiated between highly tolerant and sensitive individuals by comparing 25 differentially expressed genes in the heated treatment and nine frontloaded genes significantly upregulated in the ambient treatment. Finally, in recognising that thermal tolerance is a multi-variable trait, colony-level physiological maintenance was derived from multiple traits (photosynthetic efficiency, tissue colour change, and mass changes) and these were used to construct a gene co-expression network to identify gene modules associated with physiological maintenance following heat stress. This was used as a proxy of resilience. Together, the results of this study highlight the utility of combining transcriptomic analyses with physiological responses to heat stress to increase understanding of mechanistic drivers and molecular predictors of heat tolerance in corals.

4.3 Materials and methods

4.3.1 Coral collection and husbandry

Partial colonies (n = 30) of *Acropora tenuis* were collected from Davies Reef (18°49.620'S, 147°37.608'E) on the Great Barrier Reef (GBR) between March 10th-12th 2019 (GBRMPA permit # G12/35236.1). Corals were held in outdoor, partially shaded aquaria and maintained at ambient temperature (27.5°C) at the National Sea Simulator Facility at the Australian Institute of Marine Science. Corals were fragmented into ~40 fragments per colony and transferred into indoor aquaria (280 L) on March $22^{nd} - 24^{th}$ to acclimate to indoor conditions. During this time, corals were fed *Artemia* daily (5 mL⁻¹) before being transferred to experimental tanks on May 25-27th 2019 after 64 days of acclimation (55 L, flow rate = 55 L h⁻¹, Fig 1B). Each tank was fitted with a circulation pump (Turbelle® nanostream® 6055, Tunze, Penzburg, Germany), and a Hydra light suspended above the tank (AquaIllumination®, 400-700 nm, C2 Development, Ames, Iowa, USA; 350 µmol m⁻¹ s⁻¹, 3 h ramping, 12:12 h light:dark).

4.3.2 Experimental conditions and design

For each of the 30 coral colonies, coral nubbins (n = 40 total) were split into five groups (n = 8 nubbins per group). For each individual colony, these eight nubbins per treatment were randomly assigned to tanks and separately exposed to five different temperature treatments; ambient (27.5°C), 30, 32, 34, and 35.5°C (Appendix C.2). Each temperature treatment had four replicate tanks and temperature ramping commenced on separate days for each treatment (30°C on May 30th, ambient on June 1st, 32°C on June 3rd, 35.5°C on June 5th, and 34°C on June 7th), and were staggered due to logistical constraints associated with water delivery at required temperatures and sampling time to complete photographing and PAM fluorometry. All sampling time points were relative to the starting time of each treatment. Temperature ramped from ambient to treatment temperature over 3 h and was maintained for 3 h at treatment temperature (Fig 4.1A), before rapidly (1 h) ramping down to ambient. Destructive sampling by preservation in liquid nitrogen occurred at 6 h, 24, h, 10 d, and 5 wks after the end of heat stress (Fig 4.1A, Table 4.1). At each sampling time-point, two replicate fragments per colony per treatment were preserved. Samples preserved at the 24 h sampling point in the ambient and

34°C treatments were used for the gene expression analysis by RNA-Seq. Corals were maintained in aquaria for five weeks post heat stress to assess the impacts of acute heating on recovery and survival.

Sampling time point	Fragments in system prior to sampling	Sampling activity undertaken		
TO	1200	Prior photographs		
		Prior weighing		
6 h	1200	Photographs		
		RLC		
		Destructive sampling		
24 h	900	Photographs		
		RLC		
		Destructive sampling		
10 d	600	Photographs		
		Weighing		
		RLC		
		Destructive sampling		
5 wks	300	Photographs		
		Weighing		
		RLC		
		Destructive sampling		

Table 4.1 Sampling overview.

4.3.3 Physiological traits

All fragments were photographed (Nikon® D18, four Ikelite strobes) prior to treatment and again at each sampling time point following Nielsen et al., (2020). All fragments assigned to the 10 days and five weeks sampling time point were weighed (Davies, 1989) prior to treatment and again before sampling, and mass change was reported as mass change in g d⁻¹ g⁻¹. Photosynthetic efficiency was assessed at each sampling time point by Rapid Light Curves (RLCs, 1 h low light incubation <75 PAR, eight actinic light steps (Appendix C.1b), 20 s, Diving-PAM, Heinz Walz GmbH, Effeltrich, Germany; MI = 4, Gain = 4, SI = 8, SW = 0.8s, Damp = 2, LC-width = 20s, LC-int = 3, probe = 6 mm). RLCs are comprised of multiple, short light steps increasing in intensity (Ralph & Gademann, 2005). While these curves are generally too short to ensure maximum induction of photoprotective mechanisms (González-Guerrero et al., 2021), they are useful for corals due to their speed of assessments. Multiple photosynthesis parameters were used to calculate the maximum (F_v/F_m) and effective (F_q '/ F_m ') photochemical efficiency. For full definitions of the photosynthesis parameters, please see Appendix C.1. A response curve was fitted using least squares non-linear regression (Hennige et al., 2010;

Nitschke et al., 2018) which produced an estimate of the minimum saturating light irradiance required to saturate photosystem II (E_k).

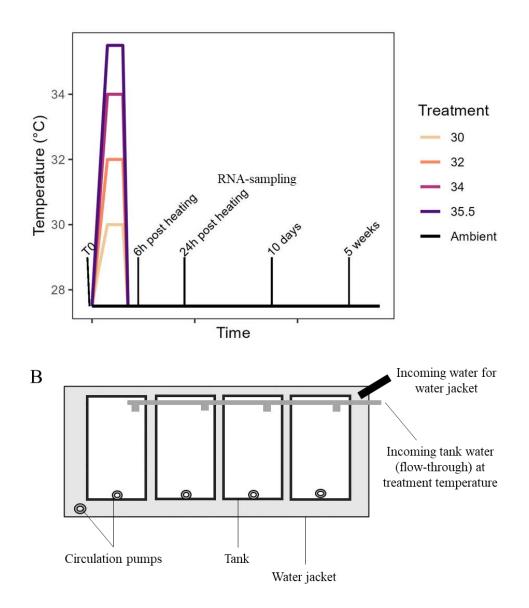


Figure 4.1 Experimental design and tank set-up. (A) Temperature treatment profiles and sampling design through time. Time series on x-axis not to scale. (B) Schematic of treatment tank setup with one system per treatment.

4.3.4 Physiological maintenance (PM)

Composite metrics of multiple physiological traits have been used to quantify coral thermal tolerance (Humanes et al., 2022). To rank individual colonies based on their ability to maintain physiological homeostasis during heat stress, I calculated mean colony performance across

physiological traits (colour change, weight change, and photosynthesis performance) in the 34 °C treatment. For each trait, mean colony changes were calculated for each treatment (see Appendix C.4 for trait-specific sample sizes and trait ranges). For colour and weight changes, colonies were given a rank score from 1 - 30, with 1 being the least tolerant colony and 30 being the most tolerant. For E_k and F_q'/F_m' , colonies were scored from 1-23 due to missing data for seven colonies. For colour change, low maintenance was defined as the greatest decrease in tissue colour in the 34°C treatment where highly tolerant colonies showed little to no colour change. For weight changes, the least tolerant colonies were those which recorded the greatest weight loss $(-7.04 * 10^{-4} \text{ g d}^{-1} \text{ g}^{-1})$ while tolerant corals recorded little to no weight loss and even recorded a slight weight gain in some cases (greatest weight gain = $1.79 * 10^{-4}$ g d⁻¹ g⁻¹). For photosynthetic performance, scores were derived from both minimum saturating irradiance (E_k) where tolerant colonies had a high minimum saturating irradiance (E_k) value and F_q'/F_m' where tolerant individuals recorded high values. Each raw ranking score was then normalised (score / n genotypes) to produce normalised ranks between 0 - 1 and account for the different number of genotypes included in the four traits. The average of normalised ranks was then calculated to produce a composite score of physiological maintenance (PM, Appendix C.4-5). The 20% of genotypes with the lowest PM were classed as "low" performers while the 20% of genotypes which recorded the highest average PM scores were classed as "high" performers. As one of the six high-performing genotypes did not have photosynthesis data, an extra genotype was included here.

4.3.5 RNA extraction and sequencing

To quantify gene expression in response to acute heat stress, samples from the 34°C treatment were compared to those from the ambient treatment at the 24 h time point. The most extreme treatment was not included due to severe tissue sloughing which impacts down-stream analyses (Voolstra et al., 2021b). Working with preserved samples, a small piece (<5 mm) was cut by scissors from below the apical corallite and placed in a 1.5 mL microcentrifuge tube where ~100 μ L of acid-washed glass beads (710-1,189 μ m) were added along with 600 μ L of Buffer RLT (supplied with the Qiagen RNeasy Mini Kit), and 6 μ L of BME (β -mercaptoethanol). The samples were stored on ice and all tools were cleaned between samples with 70% ethanol followed by RNAZap (Invitrogen, MA, USA). The samples were vortexed in pairs at maximum speed for 30 sec and rested on ice. This was repeated five times so all samples were vortexed

for a total of 2 min 30 sec. If tissue was still visible on the fragment, samples were vortexed for another 30 sec and checked again. The liquid was transferred into a clean microcentrifuge tube (1.5 mL) and centrifuged (3 min, 10k rpm, 4°C). Without disturbing any of the resulting skeletal debris and bead pellet, the liquid was withdrawn and placed into a new clean microcentrifuge tube (1.5 mL) and total RNA was extracted using the Qiagen RNeasy Mini Kit following manufacturer's protocol. In brief, 600 µL of ethanol (70%) was added to the buffer and mixed by pipetting. Ethanol, buffer, and precipitate (700 µL) was transferred to a spin column placed in a collection tube and centrifuged at 10k rpm for 30 sec at 4°C. Flow-through was discarded. This was repeated until all of the sample had passed through the spin column. Buffer RW1 (350 µL) was added to each sample, incubated on the benchtop at room temperature for 5 min, centrifuged (30 sec, 10k rpm, 4°C) and the flow through was discarded. Working at room temperature, 80 µL of DNase solution was added directly to the column membrane and left to incubate for 15 min. Buffer RW1 (350 µL) was then added to each sample and centrifuged at 10k rpm (30 sec, 4°C). Then 500 µL of Buffer RPE was added and the spin columns centrifuged (30 sec, 10k rpm, 4°C) following a 1 min incubation at room temperature. The flow through was discarded. This was repeated a second time (500 µL, 2 min, 10k rpm, 4°C) after which the spin column was placed into a clean collection tube and spun dry (10k rpm, 1 min, 4°C). To elute RNA, 60 µL of RNase-free water was added directly to the spincolumn membrane. Samples were incubated at room temperature for 5 min before being centrifuged (1 min, 10k rpm, room temperature) to elute RNA. The RNA elution was repeated using the same 60 μ L followed by a 5 min incubation at room temperature.

The quantity of total RNA extracted was obtained using the Qubit HS RNA quantification kit on a Qubit 3.0 Fluorometer (Thermo Fisher Scientific). RNA purity was assessed by absorbance ratios on the Nanodrop 2000 (Thermo Fisher Scientific). All samples were analysed on the Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA) to obtain the RNA integrity number (RIN, Schroeder et al., 2006). Extracted samples were shipped on dry ice to a commercial sequencing provider (Novogene, Hong Kong) for library preparation and sequencing. Upon sample receipt at the sequencing facility, mRNA was purified from the total extracted RNA samples by poly-T oligo-attached magnetic beads. The first strand of cDNA was then synthesised by random hexamer primers while the second cDNA strand was synthesised by dUTP rather than dTTP and directional libraries were generated. Quantified and

quality-controlled libraries were pooled and sequenced on the NovaSeq 6000 Illumina platform on a single S4 lane, returning paired-end 150bp reads.

4.3.6 Coral and Symbiodiniaceae gene expression

Raw RNA-seq reads were assessed using the moqc (github.com/marine-omics/moqc) Nextflow (Ewels et al., 2020) pipeline to confirm that read quality was high and that bacterial or unexpected eukaryotic taxa did not account for a significant fraction of reads (e.g. > 10%). Taxonomic profiling by moqc was based on classifying a subset of 1 million reads per sample by KrakenUniq (Breitwieser et al., 2018; Wood & Salz, 2014) using a custom database designed for corals and their symbionts (github.com/marine-omics/moqc). Results from this KrakenUniq step were visualised with Krona interactive plots (Ondov et al., 2011) and used to identify the dominant Symbiodiniaceae genus in each sample. Quality of reads were assessed by fastp (Chen et al., 2018) and a report for all samples was generated using MultiQC (version 1.11, Ewels et al., 2016).

After passing initial quality checks, all samples were processed using a second custom Nextflow pipeline (github.com/marine-omics/morp) designed for dual organism alignment (e.g. coral and symbiont). In this pipeline, the reference transcriptomes of Acropora tenuis (Cooke et al., 2020; Liew et al., 2016; ReFuGe 2020 Consortium, 2015) and Cladocopium goreaui (Chen et al., 2022) were concatenated to create a combined reference and this was then indexed using bowtie2 (Langmead & Salzberg, 2012). Adapter and quality trimmed reads (via fastp) were then mapped to this combined reference using bowtie2 and quantified at the transcript level using RSEM (Li & Dewey, 2011). Transcript counts generated by RSEM were then imported into R statistical software (R Core Team, 2022) using tximport() (Soneson et al., 2015). Four unpaired genotypes (i.e. where one treatment was not sequenced) were excluded from analysis to result in an equal (balanced) sample design. Further, sample-to-sample distances were visualised on a heatmap which further identified a separate sample cluster, comprised of six samples which were also removed given potential species misidentification (Appendix C.6). A total of 34 paired (ambient and heated) samples were included in the analysis, representing 17 genotypes. Low abundance genes were defined as those with read counts < 20 in more than half the samples and 42,086 such genes were excluded. Normalisation, statistical modelling and differential gene expression was performed with the DESeq2 package (Love et al., 2014), which modelled errors using a negative binomial distribution and Wald's tests were used to determine statistical significance between gene expression across treatment groups. All genes across both organisms (coral host and symbiont) were analysed simultaneously with a False Discovery Rate (FDR) adjustment of 0.05 to account for statistical inflation due to multiple testing. Differentially expressed genes (DEGs) were then separated based on organism of origin prior to gene enrichment analyses.

Rank-based gene ontology analysis with adaptive clustering was used to identify enriched clusters in response to heat stress (Wright et al., 2015) using the GO_MWU procedure with Uniprot accession IDs used for each gene identified from the coral host. This method does not rely on previously identifying genes as significantly differentially expressed but rather examines all genes present and uses a continuous measure (logFold2Change) to determine enrichment.

4.3.7 Identification of co-expression gene modules associated with physiological maintenance under acute heat stress.

Weighted gene co-expression network analysis (WGCNA) was undertaken to identify sets of genes (modules) with similar expression profiles that were also significantly associated with physiological maintenance (PM) in recognition of the multifaceted physiological and transcriptomic responses to heat stress in corals. Host gene count tables from all samples were analysed with the WGCNA R package (Langfelder & Horvath, 2008, 2023; Zhang & Horvath, 2005). Outlying genes were identified with the in-built package function goodSamplesGenes(), and outliers were visualised on a hierarchical cluster dendrogram (hclust()) and also on a PCA before being filtered out. All samples (n = 18) passed this quality control step, but 5,027 outlying genes were removed (Appendix C.7). A DESeq2 object was created (Love et al., 2014) and genes which did not have at least 15 counts in more than 75% of all samples were filtered out before a variance-stabilising transformation was applied with the package function vst(). After removal of low count genes, a total of 11,644 genes were analysed. The soft power threshold was selected by examination of the *pickSoftThreshold()* outputs accounting for a scale free topology model fit of $R^2 > 0.8$ with minimal mean connectivity. Here, a power of 12 was used (Appendix C.7.3). The network was constructed with the blockwiseModules() function with a mergeCutHeight of 0.25, and a minimal module size of 30 genes. Treatment (ambient vs 34°C) and physiological maintenance (PM) category (low vs high) were coded as

binary variables prior to calculation of correlation coefficients of module eigengenes and significant associations were visualised on a heatmap.

4.3.8 Statistical methods

4.3.8.1 Physiological responses to acute heat stress

To document declines in physiological traits (colour change, buoyant weights, and F_q'/F_m') across treatments, generalised linear mixed effect models were fitted with the R function *glmmTMB()* from that package with restricted maximum likelihood (Brooks et al., 2017). Treatment and genotype ID were modelled as fixed effects, assuming a Gaussian distribution of all dependent variables and model assumptions of normality and homoscedasticity of plotted residuals were checked with the DHARMa package (Hartig & Lohse, 2021). Adjusted *p*-values for the Post-Hoc Tukey's HSD tests were obtained using the single-step method. To specifically test for differences between genotypes within the 34°C treatment, linear mixed effect models were fitted, also with restricted maximum likelihoods with the *lme()* function in the nlme package (Pinheiro et al., 2017). Here, genotype was modelled as the single fixed effect while tank was included as a random effect. Assumptions of normality and homoscedasticity were checked by *qqPlot()* in the car package (Fox & Weisberg, 2019) and Wald's tests conducted. Adjusted *p*-values for Post-Hoc Tukey's HSD tests were calculated with the Bonferroni adjustment (Whitlock & Schluter, 2009). All analyses were performed in R (version 4.2.1; R Core Team, 2022).

4.3.8.2 ED50

As the development of a rapid proxy of coral thermal tolerance is central to the overall thesis, acute heat tolerance (ED50) was quantified at the 24 h sampling point, where the maximum PSII photochemical efficiency (F_v/F_m) was calculated from the rapid light curve data for each genotype. Seven genotypes with missing data in the 35.5°C treatment were excluded from the analysis. The average F_v/F_m was calculated for each genotype (n = 23) across two replicate samples and modelled using a three parameter logistic regression model with the *drm()* function in the drc R package (Ritz et al., 2015).

To correlate gene expression profiles to acute thermal tolerance (ED50), differential gene expression was recalculated with the DESeq() function (Love et al., 2014). ED50 category was used as the grouping factor of interest and reflected the top eight performing genotypes (highest

ED50), middle eight genotypes and bottom seven genotypes (lowest ED50s). Samples identified previously as outliers and those where ED50s could not be calculated due to insufficient declines in photosynthetic output were excluded from analysis, and each treatment was analysed separately, with 19 samples in the ambient treatment and 14 in the heat treatment. Given the overall thesis aim of understanding how rapid proxies of heat tolerance (here ED50) relate to coral physiology it was important to investigate gene expression patterns solely based on ED50 performance.

4.4 Results

4.4.1 Colony-level variation in physiological responses to acute heat stress

Over time, all coral individuals exhibited decreases in photosynthetic performance, loss of tissue colour, and reduced growth as acute thermal stress increased (Appendix C.8, C9, C.11, C.13). At 34°C, corals exhibited significant variability in physiological responses to acute heat stress between individual colonies. While tissue colour change decreased significantly across treatments (Wald's test, df = 4, F = 544.15, p < 0.0001, Appendix C.9), there were also significant differences in colour loss between individuals at 34° C (Wald's test, df = 29, F = 37.56, p < 0.0001, Fig 4.2A, Appendix C.10). Colour change ranged from a decrease in colour (-3.65, genotype ID 16) to an increase and darkening in colour (0.13, genotype ID 27). In total, 11 statistically significant groupings were identified using the Tukey's HSD test (Fig 4.2A, Appendix C.10). Effective photochemical efficiency (F_q'/F_m') also showed differences between individual colonies (Wald's test, df = 22, F = 6.96, p < 0.0001, Fig 4.2B). Significant differences were influenced primarily by the low performance of genotype ID 20 (0.549 \pm 0.0125, Fig 4.2B, Appendix C.12) compared to the other 21 genotypes (range 0.615 - 0.704). Weight changes showed significant treatment effects 10 days after the end of heating (Wald's test, df = 3, F = 13.61, p < 0.0001, Appendix C.13) with genotype differences within the 34° C treatment (Wald's test, df = 29, F = 2.21, p = 0.0206, Fig 4.2C, Appendix C.14). Finally, acute thermal tolerance (ED50) also showed significant differences between genotypes and ranged by 0.94°C (mean= 35.27°C) between the lowest (34.8°C genotype ID 24) and highest (35.74°C genotype ID 30) ED50 (Fig 4.2C, Appendix C.15, Appendix C.29).

Overall, physiological responses differed by genotype across these traits whereby some individuals were able to maintain physiological homeostasis at high temperature. For example, genotype ID 8 showed high physiological maintenance across all traits (colour change, F_q'/F_m' , weight change, and ED50), consistently ranking amongst the top five genotypes (Fig 4.2). Genotype ID 30 similarly showed a high capacity for physiological maintenance. However, most colonies showed contrasting physiology between traits. For example, genotype ID 16 recorded a relatively high ED50 (35.49°C) but high weight loss (-1.58 * 10⁻⁴ g d⁻¹ g⁻¹) while genotype ID 25 showed low photochemical efficiency (F_q'/F_m' , 0.62) but remarkably little change in tissue colour (0.13). When a composite measure of physiological maintenance across four traits (colour change, weight change, F_q'/F_m' , and E_k) was calculated, four genotypes were categorised as "high" scorers and five genotypes as "low" scorers (Fig 4.3, Appendix C.16 and

C.17). Correlations between the different physiological traits across genotypes revealed a significant correlation between tissue colour change and F_q'/F_m' (cor = 0.597, p < 0.01), with no other significant correlations detected (Appendix C.17b. and C.28).

4.4.2 Photosynthetic performance

The photo-physiological characteristics responded strongly in both treatments. The minimum saturating intensity (E_k) differed significantly between treatments (ANOVA, df = 4, F = 84.82, p = <0.0001, Fig 4.4A). The ambient treatment (27.5°C) and the 30°C treatments recorded similar high E_k means (187.1 and 174.3, respectively, Tukey's; t ratio = 1.64, p = 0.47). E_k means also did not differ significantly between the 32°C and 34°C treatments (126.2 and 132.6, respectively, Tukey's t ratio = -0.768, p = 0.94, Fig 4.4A). The 35.5°C treatment recorded the lowest E_k values (45.5). F_qF_{mMax} was relatively stable across all treatments but experienced significant declines in the 35.5°C treatment (ANOVA, df = 4, F = 485.8, p < 0.0001, Fig 4.4B, Appendix C.27). Additionally, corals in the 34°C treatment recorded significantly lower F_qF_{mMax} values than those in the 30°C treatment (Tukey's, t ratio = 3.36, p = 0.008). Only the hottest treatment (35.5°C) resulted in a shift of preferential photochemical (1-C: Fig 4.4D) vs non-photochemical (1-Q: Fig 4.4C) energy dissipation and resulted insignificant reductions in rETR relative to all other treatments (Fig 4.4E).

4.4.3 RNA-Seq yields and taxonomic classification

The average number of sequenced reads per sample was 47.27 million \pm 1.107 million (mean \pm SE, ~23.63 read pairs, range; 40 – 67 million reads). Most classified reads (64 \pm 1.4 % per sample) belonged to *Acropora. Cladocopium* was identified as the primary symbiont genus (18.23 \pm 0.7 % per sample, Fig 4.5A) in these samples. Symbionts from the genus *Durusdinium* symbionts were also present in all samples but at very low abundance (<0.56 \pm 0.02 %, Appendix C.18). While most classified reads were identified as originating from the coral or its dominant symbiont via KrakenUniq, the mean mapping rate to the combined reference transcriptome was low ~38.51 \pm 0.59 % (mean \pm SE; range 26 – 46.3%). Coral host-derived reads mapped to 30,327 reference genes while symbiont-derived reads mapped to 45,322 genes (Appendix C.18).

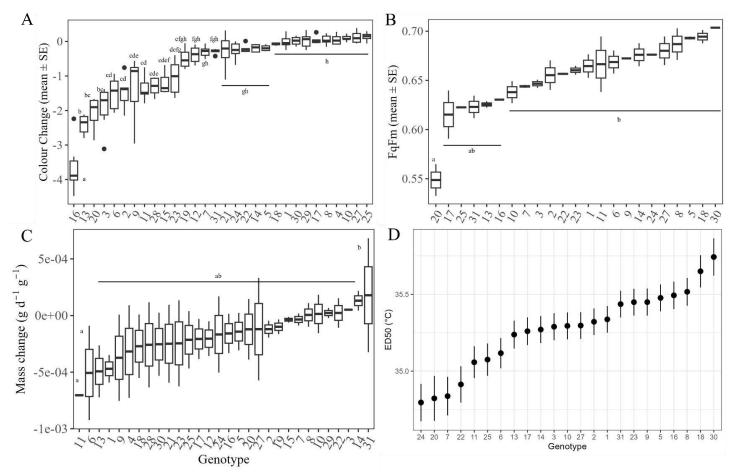


Figure 4.2 Colony-level variation in physiological responses to acute heat stress after heating. (A) Tissue colour change (final – initial colour score); (B) effective photochemical efficiency (F_q '/ F_m '); (C) weight changes 10 days after heating expressed as grams per day per gram initial weight; (D) Colony-level ED50 used to define acute heat tolerance as low, mid, high. ED50 temperature is shown on the x-axis, the black circle indicates the mean ED50 per genotype and the whiskers show the 95% confidence intervals. Small lettering indicates Tukey's HSD post-hoc groupings with a Bonferroni correction. Genotype ID is listed from poorest to best performance (left – right). Tissue colour change (A), F_q '/ F_m ' (B), and ED50 (D) quantified 24 h after heating while weight changes (C) were quantified 10 days after heating. Finally, A – C was quantified in the 34°C treatment, while ED50 (D) was derived from photosynthetic performance across all treatments.

8 -	0.87	0.87	0.8	0.96	0.87	
29-	0.83	0.8	0.87	in the second of the		IT' 1 DM
14 -	0.76	0.63	0.97	0.7	0.74	High PM
30 -	0.73	0.77	0.3	0.87	1	
18-	0.66	0.7	0.23	0.74	0.96	
27 -	0.65	0.97	0.63	0.17	0.83	
22 -	0.64	0.6	0.9	0.52	0.52	
25 -	0.63	1	0.4	0.91	0.22	
17-	0.61	0.83	0.43	1	0.17	
24 -	0.6	0.57	0.5	0.57	0.78	
10-	0.58	0.93	0.83	0.22	0.35	
3 -	0.58	0.13	0.93	0.83	0.43	1.00
o ⁵⁻	0.56	0.67	0.57	0.09	0.91	1.00
Genotype ID 4 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 1	0.55	0.4	0.7			- 0.75
dx 4-	0.55	0.9	0.2			
b 31 -	0.55	0.5	1	0.43	0.26	0.50
je 15 -	0.53	0.33	0.73			0.25
- 1-	0.47	0.73	0.13	0.39	0.61	0.23
12 -	0.45	0.43	0.47			
23 -	0.44	0.37	0.37	0.48	0.57	
7 -	0.44	0.47	0.77	0.13	0.39	
11 -	0.43	0.27	0.03	0.78	0.65	
21 -	0.43	0.53	0.33			
2 -	0.42	0.2	0.67	0.35	0.48	
6-	0.4	0.17	0.07	0.65	0.7	
20 -	0.28	0.1	0.6	0.3	0.13	
28 -	0.28	0.3	0.27			
13 -	0.27	0.07	0.1	0.61	0.3	Low PM
9 -	0.18	0.23	0.17	0.26	0.04	
16-	0.17	0.03	0.53	0.04	0.09	
	mean_Rank	Colour change	Weight change Trait	Ek	FqFm	-

Figure 4.3 Physiological maintenance score (PM) across four traits. The tile colours and values indicate the normalised rankings (0-1). The boxes show the physiological maintenance score category (red = high PM, blue = low PM), where low scores < 0.28 and high scores > 0.70.

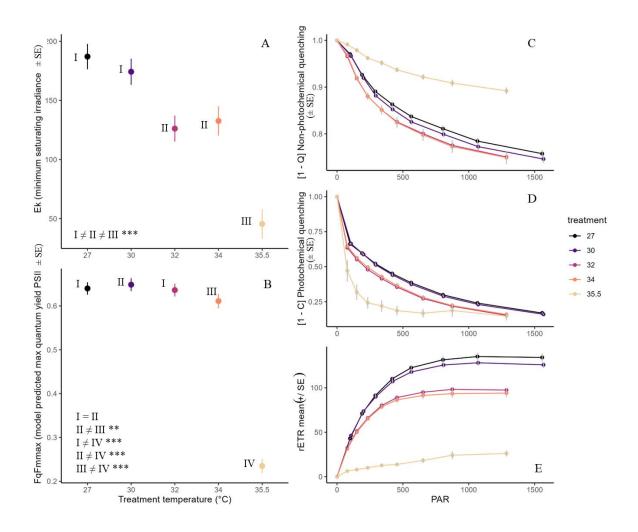


Figure 4.4 Photo-physiological performance derived from Rapid Light Curves24h after heat exposure across all five treatments. (A) Mean saturating intensity (E_k) by treatment. (B) Mean F_qF_{mMax} by treatment. (C) Light levels where non-photochemical quenching occurs (1-Q). (D) Photochemical quenching (1-C). (E) Relative Electron Transfer Each curve is coloured by treatment and presents the mean of that treatment at the respective PAR level. The bars on each curve indicate the standard errors.

4.4.4 Gene expression response to acute heat stress

After filtering low abundance genes, 13,293 were retained from the host reference and 20,270 from the symbiont reference. Of the host genes, 569 were significantly up-regulated (higher expression in heated treatment) and 266 downregulated 24 h after heat stress. In the symbiont reads retrieved, 17 genes were upregulated and seven downregulated (Appendix C.19). When visualised on a Principal Component plot, treatment was a much stronger driver of expression profiles in the host (Fig 4.5B) than it was in the symbionts (Fig 4.5D). In the host, treatments separated along PC2 (26.1% variation explained). Genotype appeared to be the main driver of separation along PC1 (48.5% variation explained), with one colony (ID 20) showing divergent

expression from all others (Fig 4.5C and E). Classic coral heat stress response genes such as heat shock proteins (hsp68 and hsp16.41), Ubiquitin-like proteins, and green-fluorescent-protein (GFP)-like fluorescent chromoproteins were significantly upregulated in response to treatment (Appendix C.20). Additionally, photoprotective genes such as Ubiquitin-protein ligases and Ras-related protein (Rab-30) were also significantly upregulated in response to heating (Appendix C.20).

In the coral host, 84.8 % of differentially expressed genes had gene ontology annotations (n = 11,269) and from these, a total of 28 GO terms were significantly ($P_{adj} < 0.05$) enriched among genes that changed expression in response to acute heating (Appendix C.21, Fig 4.6). Broadly, a suite of GO terms related to cytoskeleton activity (microtubule, microfilament, cytoskeletal protein binding, motor activity) were significantly up-regulated in response to heating. In contrast, DNA and RNA processing GO terms were down-regulated in response to heating (terms including structural constituent of ribosome, ncRNA, rRNA metabolic process, RNA processing, DNA replication checkpoint, and DNA metabolic process; Fig 4.6).

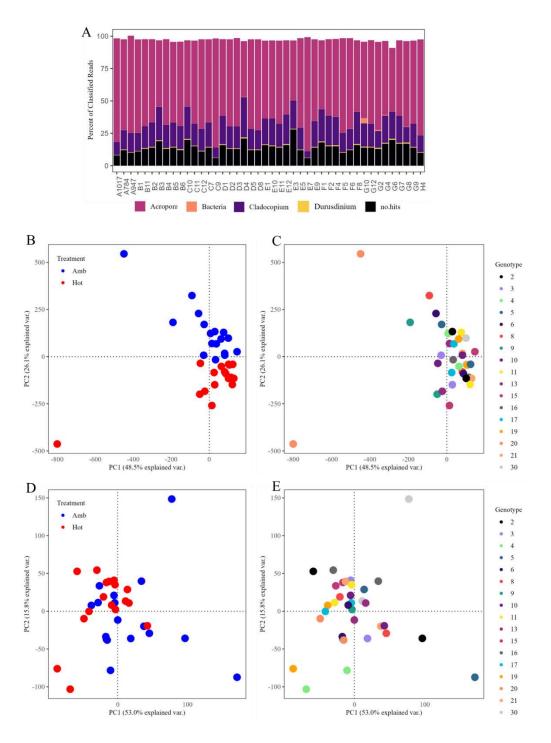


Figure 4.5 Gene expression differences in coral host and symbionts in response to acute heat stress. (A) Taxonomic classification of reads from KrakenUniq with each bar representing a sample. The dark pink bars show the proportion of reads classified as *Acropora*, the purple bars show reads from *Cladocopium*, orange reads originate from bacteria while the yellow reads show the proportion of reads from *Durusdinium*. The black bar shows the proportion of reads which could not be classified. Bars do not sum to 100% due to exclusion of some taxa such as background Symbiodiniaceae genera (*Breviolum* and *Fugacium*). Gene expression patterns in *Acropora tenuis* in response to treatment (B) and genotype (C) visualised on a Principal Component (PCA) plot. PCA of gene expression patterns in *Cladocopium* spp in response to treatment (D) and coral host genotype (E). For B and D, dots are coloured by treatment (blue = ambient samples, red = heated 34°C samples). For B-E, the proportion of data variability explained by each principal component is given in the axis title.

Figure 4.6 Gene ontology (GO) terms significantly enriched in response to acute heating. Points are coloured by ontology (Biological Process (BP) = black, Cellular Component (CC) = purple, Molecular function (MF) = orange) and the size corresponds to the adjusted p-value (P_{adj}). The number of genes identified within each term is shown on the x-axis and GO terms are given by name on the y axis. The terms are separated by direction of enrichment (down vs up).

4.4.5 Differential gene expression in tolerant vs intolerant individuals

In the heated treatment, eight host genes were significantly downregulated in heat tolerant vs sensitive individuals while 17 were upregulated (Fig 4.7A). Of these genes, annotations only existed for 16 (five down- and 11 upregulated, Appendix C.23). Tolerant individuals recorded significant downregulation of two Ubiquitin-protein ligases, and upregulation of a dual serine/threonine and tyrosine protein kinase, all of which are homologous to genes typically noted as part of the classic stress response proteins (Appendix C.23). The number of DEGs was similar in the ambient treatment with four down-regulated and nine up-regulated genes (Fig 4.7B) in the tolerant individuals. Here, three down- and six up-regulated genes had annotations. Interestingly, two genes were significantly upregulated in tolerant genotypes in both the ambient and heated treatment (ATP-dependent DNA helicase and sodium- and chloride-dependent GABA transporter, Appendix C.24). Further, GFP-like non-fluorescent chromoprotein was significantly down-regulated in tolerant individuals under ambient conditions. The symbiont profiles (Fig 4.7C and D) recorded a more muted response in the number of DEGs relative to the host, with only seven down-regulated genes reported in the heated treatment (Fig 4.7C). Finally, when visualised on a Principal Component plot, there was little separation between the three ED50 categories (low, mid, high) in either treatment (Fig 4.7E and F).

To investigate the relationship between gene expression patterns and genotype capacity for physiological maintenance (PM, section 4.4.1, Fig 4.3), I conducted a weighted gene coexpression network analysis (WGCNA). The 11,644 host genes were assigned to 12 gene modules (Fig 4.8A, Appendix C.25) of which three modules (grey, blue, brown) were significantly associated with differences in physiological maintenance (high vs low PM, Fig 4.8B). The blue module (n = 1,953 genes) was downregulated in individuals with high physiological maintenance capacities (high PM, cor = -0.57, Fig 4.8B) and significantly enriched for three ontologies, all pertaining to extracellular functions: extracellular space (GO:0005615), plasma membrane (GO:0005886), and the extracellular region (GO:0005576). Although both the brown (n = 981 genes) and grey (n = 2,939 genes) modules were significantly upregulated (grey cor = 0.5; brown cor = 0.65) in tolerant individuals, no terms were significantly enriched at the GO level .

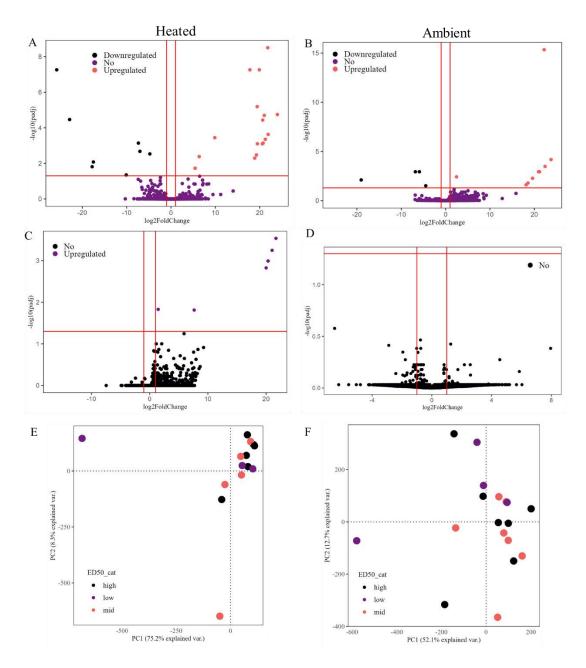


Figure 4.7 Differential gene expression between treatments with respect to acute heat tolerance. (A-D); volcano plots showing the direction of DEGs in the heated (left) and the ambient treatment (right). The red lines indicate the significance cut-offs applied (log2foldchange > 1, and $P_{adj} < 0.05$). Host DEGs (A and B). Symbiont DEGs (C and D). Principal Component ordination plot of host gene expression coloured by ED50 category in the heated (E) and the ambient (F) treatments.

MEgrey -	-0.24	0.5*	
	10 Auto Americana		- 0.8
MEgreen -	-0.93***	-0.21	- 0.6
MEblue -	-0.7**	-0.57*	0.0
MEpurple –	-0.14	-0.28	- 0.4
MEturquoise -	-0.04	0.4	- 0.2
MEgreenyellow –	-0.26	0.36	- 0.0
MEblack -	0.46	-0.01	
MEred -	0.24	0.19	0.2
MEpink -	0.75***	-0.17	0.4
MEbrown -	0.61**	0.65**	0.6
MEyellow -	0.54*	-0.36	
MEmagenta -	0.08	-0.17	0.8
	Treatment	PM score	

Figure 4.8 Modules identified by WGCNA and their association with Treatment and PM category. Gene clusters associated with treatment and physiological maintenance score (PM), respectively. Co-expression modules are named by their assigned colours. The heatmap colours correspond to the correlation coefficient between the module eigengenes and the trait (treatment and PM score). The numbers show this correlation coefficient and the asterisk indicate the significance level of the correlation where * p < 0.05, ** p < 0.01, *** p < 0.001.

4.5 Discussion

Gene expression is a key mechanism of coral thermal tolerance. As a fitness-related trait (Kenkel & Matz, 2016), it has important implications for continued reef survival and thus conservation efforts. Coupling high-throughput acute heat stress assays with transcriptomic responses enable the potential for rapid, large-scale assessment of underlying molecular drivers of heat tolerance in corals across species and populations. It does this by documenting the hundreds to thousands of loci involved in the coral heat stress response, critical for acute tolerance. This study also shows genotypic differences in physiology across multiple photosynthetic measures and tissue colour change in response to acute heating at 34°C. It then correlates these physiological differences to significant differential gene expression patterns in 17 colonies of Acropora tenuis 24 h after the end of acute heat stress. Interestingly, I find a small number of frontloaded genes in highly tolerant genotypes (high ED50) to be significantly upregulated in the ambient treatment. Further, weighted gene co-expression network analysis revealed two gene modules that significantly associate with physiological maintenance (PM scores) and one module was also significantly enriched for three gene ontology terms, all related to extracellular proteins. Finally, the significant declines observed in multiple photosynthetic metrics indicate that corals suffered progressively deleterious heat stress across treatments with near photosynthetic inhibition at the most extreme temperature treatment (35.5°C). Taken together, these results highlight that acute heat exposure impacts coral gene expression 24 h after exposure and identifies a small number of genes as potential gene expression markers of high acute heat tolerance.

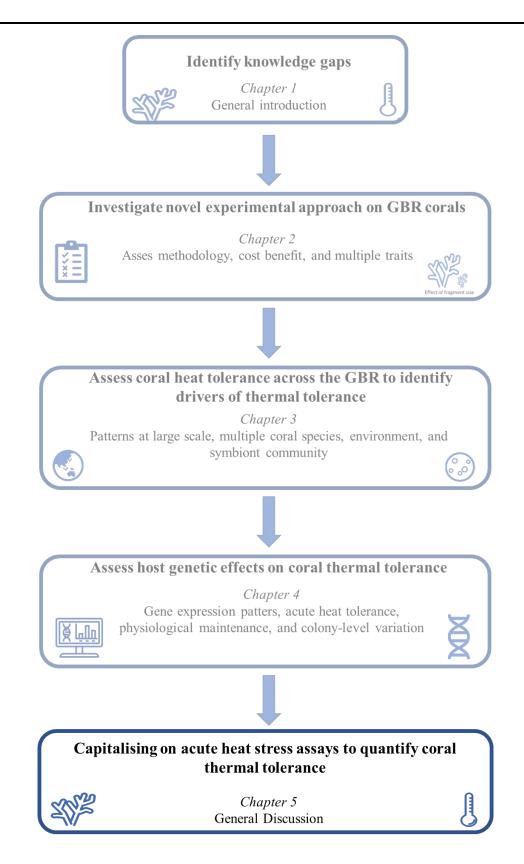
4.5.1 Genes significantly associated with high acute heat tolerance as potential markers of tolerance

Coupling transcription responses to measures of holobiont thermal tolerance enables the detection of genes (or gene clusters) that are involved with thermal tolerance and may have important implications for the detection of genetic markers of thermal tolerance within a population (Bay & Palumbi, 2017b; Louis et al., 2017). A small number of genes (9) were significantly upregulated in the absence of thermal stress in highly tolerant individuals (high ED50). Some of these genes are involved in pathways typically activated under thermal stress. For example, one gene plays a critical role in DNA repair and recombination (Uniprot O50224,

Castillo-Tandazo et al., 2019), a key cellular process known to occur under plant (Dorn & Puchta, 2020) and coral heat stress (Maor-Landaw & Levy, 2016) while another functions as a transport mediator to maintain cellular communication functions (Uniprot P31646, Ikeda et al., 2012). Interestingly, the potentially photoprotective gene coding for Ubiquitin-protein ligase (Gabilly et al., 2019) was down-regulated in heat-tolerant individuals following acute heat exposure. The rapid acute heat tolerance trait (ED50) used in this study is a symbiont-derived response and the connection between ED50 and coral transcriptomic responses requires further investigation. Maintaining optimal conditions for symbiosis is a process that requires precise regulation of the environment within the coral and it was therefore surprising to document little transcriptomic differences between genotypes with high versus low ED50s. This is further supported by the small number of DEGs observed with respect to heat tolerance category (ED50 high vs low) compared to the number of DEGs observed with respect to treatment. Therefore, weighted gene co-expression network analysis was conducted on individual corals' ability to maintain physiological performance following heat stress (PM scores). This trait incorporated both holobiont- (colour change and weight changes) and symbiont-specific traits (E_k and F_q'/F_m'). One module which was significantly associated with PM scores was enriched for three gene ontologies (extracellular space, plasma membrane, and extracellular region). Plasma membrane ontologies have also been reported in comparisons of heat-stressed vs ambient coral larvae (Strader & Quigley, 2022), while genes associated with the extracellular space/region potentially result in growth advantage in blue coral under warmer temperatures (Guzman et al., 2019). Further, it is possible that corals which were able to maintain physiological homeostasis (high PM scores) lost less symbiont cells than their thermally sensitive counterparts (low PM scores), and therefore these corals were less active in the extracellular and plasma membrane regions. However, monitoring symbiont density changes was beyond the scope of the current study. The distinction between acute heat tolerance (ED50) and physiological maintenance (PM) was incorporated to acknowledge that thermal tolerance is a complex trait, as highlighted here by the complex patterns of responses observed between genotypes and traits (Appendix C.28). Genes with differential baseline expression levels could serve as indicators of heat tolerance but asserting this requires functional assays to confirm their biological function in coral under thermal stress.

4.5.2 Highly variable gene expression following acute heat stress

Since both physiological and molecular responses to heat stress depend on the duration and severity of the stressor (Bellantuono et al., 2012; Cleves et al., 2020a), it was of interest to investigate patterns of gene expression following an acute heat stress procedure and subsequent recovery period. In this study, I found that gene expression profiles were still significantly different between heated and ambient samples 24 hours after the end of the acute thermal challenge. I also found a large number of differentially expressed host genes in response to treatment (569 up and 266 down regulated), which is common for coral heat stress studies which normally report hundreds to thousands of DEGs (Dixon et al., 2020). Interestingly, the 34°C temperature treatment resulted in more subtle difference in expression profiles within the symbionts where only 24 DEGs were detected, potentially due to the lower number of reads retrieved from the non-target symbionts fraction. Further characterisation of these genes would be of interest but was outside the scope of this study. This muted DEG response in the symbionts could lead to the interpretation that the symbiont community was resilient to the acute heat stress applied but likely reflects the reduced statistical power as fewer reads were obtained from symbionts compared with the coral host. Finally, it is possible that symbiont gene expression works on a timescale not captured in this study. Other studies have reported highly divergent numbers of symbiont DEGs in response to heat stress, spanning a couple of hundred (Avila-Magaña et al., 2021) to a few thousand genes (Gierz et al., 2017). Declines in coral tissue colour and symbiont photosynthetic performance strongly indicate that the symbionts experienced thermal stress at 34°C. While the number of symbiont DEGs was low, colour change could have result from a loss of Symbiodiniaceae cells within the host tissues.


The signature of DEG changes 24 hrs after the cessation of heat stress was also noted by Savary et al., (2021) in response to their most extreme acute heat exposure (34.5°C). The authors suggest that this temperature for *Stylophora pistillata* in the Red Sea therefore represents a thermal threshold and that corals experienced mortality at this temperature (Savary et al., 2021). In the present study, while the 34°C treatment may have resulted in a thermal threshold for some individuals as shown by severe declines in tissue colour and photosynthetic efficiency, others were able to maintain photosynthetic efficiency or only recorded a slight decline relative to ambient-treated corals. Phenotypic plasticity in stress responses at the population level is an important consideration of coral acclimation potential as there are genetic differences underlying these responses as shown through significant heritability estimates (Kenkel & Matz, 2016). As such, it was encouraging that the 30 colonies of *A. tenuis* tested here showed very different physiological responses to acute heat stress. It was therefore not unexpected that gene expression profiles would also record high variation between individuals (Cunning & Baker, 2020; Granados-Cifuentes et al., 2013). Here, acute heat tolerance (ED50) and gene expression patterns were assessed in 17 colonies, which is assumed to provide a high level of genetic coverage (Baums et al., 2019). Further analysis of the data generated here would be of interest to investigate associations between gene expression and certain alleles.

4.5.3 Gene expression profiles 24 hours post stress contain only some common indicators of coral thermal stress

Transcriptional responses to heat stress are well-described in cnidaria (Cleves et al., 2020b; Dixon et al., 2020; Maor-Landaw & Levy, 2016). Heat stress is often associated with increased expression of heat shock proteins, and proteins involved in DNA repair (Barshis et al., 2013; Juárez et al., 2018). In this study, some common heat stress-response genes were significantly up and down-regulated following the acute heat challenge. For example, two heat shock proteins and a GFP-like protein were significantly upregulated in response to heating. The upregulation of heat shock proteins is well-documented in the cnidarian heat stress response (Barshis et al., 2013; Eghtesadi-Araghi et al., 2010; Haguenauer et al., 2013) while GFP-like proteins have previously been down-regulated under thermal stress (Hume et al., 2013). However, GFP-like proteins have potential photoprotective abilities (Krasowska et al., 2021; Smith et al., 2013), and as such, its upregulation here is likely to represent a photo-protective response mounted alongside other common photo-protective genes upregulated in this study, including Ubiquitin-like proteins (Barshis et al., 2010; Gabilly et al., 2019) and Ras-related proteins (Starcevic et al., 2010). Despite documenting differential expression of such "core" stress-response genes (Cleves et al., 2020b; Dixon et al., 2020), these were not significantly enriched at the ontology level, and it is likely that the recovery period following the exposure to acute heat stress results in a more muted core heat stress response. Further, genes involved with nitrogen cycling, peptide processing, and biosynthetic processes were downregulated in response to heating. Changes to the nutrient cycling between coral host and symbionts contributes to the breakdown of the symbiosis (Morris et al., 2019; Rädecker et al., 2021), and downregulation of these genes therefore indicates that corals were indeed experiencing stress.

Coral thermal tolerance and the role of genetic variation is becoming an increasingly important trait to understand under continued climate change. As transcriptomic changes respond rapidly to environmental perturbations, these approaches further our understanding of coral acclimatory responses to acute thermal stress. Here, acute heat stress significantly impacted gene expression patterns in the host 24 h after exposure concurrent with substantial declines in symbiont-associated physiological traits. Further, by combining transcriptomic analyses with physiological measures of tolerance, this study found a small number of frontloaded host genes in resilient individuals that could be potential gene expression markers of high acute heat tolerance and found multiple genes to be associated with physiological maintenance following acute heat stress. These results add to our existing knowledge of the molecular thermal stress response in corals from an acute perspective. Taken together, the colony variability in gene expression, acute heat tolerance, and physiological responses to acute heat stress observed within this single coral population highlight the need to carefully consider the role of the coral host when managing coral populations and provides evidence of genetic variation in acute heat tolerance already present within a single population, a necessity for potential acclimation and adaptation.

Chapter 5 General Discussion

5.1 Thesis summary

This thesis employed a recently developed high-throughput experimental approach to quantify the heat tolerance of three key reef-building coral species across the latitudinal extent of the Great Barrier Reef (GBR). Acute heat stress assays have been suggested as an avenue for rapidly scaling efforts to investigate temperature tolerance across multiple species and populations (Quigley et al., 2022a; Voolstra et al., 2023; Voolstra et al., 2021a). My thesis particularly focussed on the fundamental technical aspects of acute heat stress assays during large-scale field applications to examine the upper heat tolerance limits of several coral species. I describe how multiple factors influence the acute heat tolerance of coral, including symbiont community composition, host gene expression plasticity, and thermal disturbance histories. My research therefore highlights the complexity of studying coral thermal tolerance at scale and provides recommendations for improvements to the method, and in turn provide a framework to evolve more effective application of heat stress assays in the future.

In Chapter 2, I examined key experimental and methodological considerations for the application of acute heat stress assays to quantify coral thermal tolerance in a field-setting. I described how photosynthetic performance – a well-used diagnostic of coral heat sensitivity (e.g. Leggat et al., 2022; Nitschke et al., 2018) – may serve as the best-candidate rapid proxy of acute heat tolerance. The chapter also highlighted the need to consider multiple physiological traits when assessing corals' responses to heat stress. Further, using photosynthetic performance as a rapid proxy for acute heat tolerance, in Chapter 3 I applied acute heat stress assays to examine > 500 coral colonies from three species across 11.5° latitude along the GBR. I documented higher heat tolerance in *Pocillopora verrucosa* compared to both Pocillopora meandrina and Acropora tenuis and demonstrate reef-sector differences in tolerance, explained primarily by recent thermal disturbance histories as well as long-term trends in SST. I found that dominant symbiont taxa differed between the two Pocillopora species and document how differences in the background symbiont community partially explain colony-level variation in acute heat tolerance (ED50) in P. meandrina, before describing the relationship between common physiological indicators of coral heat stress (catalase activity, protein and chlorophyll content) and F_{ν}/F_m -derived ED50s. While these results document physiological changes in response to acute heat stress, little remains known about the underlying genetic mechanisms regulating responses to such rapid temperature stress.

Therefore, in **Chapter 4**, I examined transcriptome-wide patterns of gene expression within a single population of *A. tenuis* in response to severe, acute heating. Expression patterns were affected 24 h after the end of the thermal challenge with strong evidence of genotypic variation in physiological responses to heat stress. I document a small number of significantly upregulated genes associated with high acute heat tolerance in the ambient treatment which could therefore be predictive of high acute heat tolerance. Overall, this thesis demonstrates the possibility of undertaking large-scale assessments of coral heat tolerance utilising a field-deployable system, opening opportunities to rapidly map tolerant populations for reef management purposes, both across and within populations In the following, I will explore the broader context of the main findings to, in turn, provide recommendations for further optimising and ground-truthing of the methodology. I conclude with an overview of the potential of these assays to elucidate the drivers and mechanisms of coral thermal tolerance at scale.

5.2 The need for standardised approaches to study coral thermal tolerance

Twenty-first century management has an urgent need to better understand the drivers of coral thermal tolerance at scale given the unprecedented rates of global warming (Donner et al., 2005; Matz et al., 2020; van Woesik et al., 2022). Approaches such as genome-wide association studies (GWAS) and seascape genomics to predict heat tolerance require large sample sizes, as well as evidence from multiple levels of biological organisation (Fuller et al., 2020; Liggins et al., 2019; Thomas et al., 2022). Traditional quantification of coral heat tolerance has relied on long-term (8 - 40 days) ramp-and-hold aquarium-based experiments (Gibbin et al., 2015; Glynn & D'Croz, 1990; Jokiel & Coles, 1977; McLachlan et al., 2020). Such approaches are therefore still impractical when considered at reef-system spatial scales, such as the latitudinal extent of the GBR. In contrast, acute heat stress assays provide a potential experimental framework for analysing coral tolerance with the assays taking < 1 day to complete. Acute heat stress assays were developed to test differential heat tolerance of corals experiencing severe, daily thermal fluctuations in distinct, but spatially close, reef areas in American Samoa (Palumbi et al., 2014). Such assays have since been deployed in multiple reef systems and have successfully resolved differential thermal tolerance within and between diverse reef environments (Cornwell et al., 2021; Cunning et al., 2021; Marzonie et al., 2022; Voolstra et al., 2020).

Physiological responses to acute heat stress assayed in this thesis were indeed quantifiable in GBR corals and resembled those documented as responses to long-term thermal stress. Previous studies of acute heat tolerance have primarily quantified declines in chlorophyll content and photosynthetic performance (Cunning et al., 2021; Evensen et al., 2021; Voolstra et al., 2020), while relatively little is known about other physiological responses to acute heating in corals. In addition to the aforementioned declines in photosynthetic efficiency (F_{ν}/F_m) , in Chapters 2 and 3 I also documented significant declines in multiple physiological traits commonly associated with the coral heat stress response, including chlorophyll-a and protein content (Oliver & Palumbi, 2011; Voolstra et al., 2020). While previous studies have demonstrated that protein expression levels can respond to heating within 90 min (Traylor-Knowles et al., 2017), it is likely that marked declines in protein content reported here were associated with tissue loss rather than rapid catabolism (DeMerlis et al., 2022). Overall, I found that physiological trait responses declined through time during the recovery period, further complicating comparisons between long- and short-term studies. However, these temporal declines were only investigated in one coral species (A. tenuis) and hence caution should be exerted if extrapolating either across species or rates of decline to enable comparisons. Further, temperature-induced stress responses should be considered relative to the amount of experimental heat stress applied (Leggat et al., 2022) and therefore, studies utilising acute heat stress assays would benefit from reporting temperature treatments relative to site-specific Maximum Monthly Mean climatology temperatures (Skirving et al., 2020). Finally, the outcomes of heat stress studies, and more recently, of acute heat stress assays, remain complicated to resolve because of variance in factors within experimental designs (including fragment size, acclimation, exposure time and severity, and sampling time points) and quantified traits. Here, I document acute heat stress responses from the transcriptomic and level through to physiology and higher-order proxy traits (tissue colour change and ED50) and find the acute heat stress response to be highly trait dependent. This underpins that trait selection must be a specific consideration of the research question (Chapter 2) and consideration of multiple co-variates is required (Chapter 3) to fully elucidate the acute heat stress response in corals. As such, this thesis highlights not only the need for experimental standardisation but also the benefit of ensuring that this information is widely available and feasible to implement.

5.3 Identified drivers of coral heat tolerance

5.3.1 Transcriptional responses as indicators of acute heat tolerance

Transcriptional studies have provided a wealth of information about the processes and regulation involved in mounting coral responses to stress (Cziesielski et al., 2019; Bellantuono et al. 2012; Seneca and Palumbi 2015). Responses can be mounted rapidly (hours), for example to increase reactive oxygen scavenging capacity and heat shock protein content (Alderdice et al., 2021; Bay et al., 2009; Traylor-Knowles et al., 2017). Few studies have examined gene expression profiles following acute heat stress assays (e.g. Dixon et al., 2015; Savary et al., 2021; Voolstra et al., 2021b) while responses to chronic heat exposure (> 2 days) have received the majority of attention (for example reveiwed in Cziesielski et al., 2019; Dixon et al., 2020; Drury, 2020). The transcriptional and physiological results documented here (Chapter 4) together with previous work (Savary et al., 2021; Thomas et al., 2022; Voolstra et al., 2021b) highlights that heat challenge employed by acute heat stress assays is sufficiently stressful to elicit detectable changes in gene expression. However, the magnitude of differentially expressed genes detected was lower than for many long-term heat stress experiments. Savary et al., (2021) suggested that sampling 12 hours after acute heat exposure may have failed to detect some differentially expressed genes, either due to a delay in mounting the response or due to a return to baseline expression, both of which require sampling through time to resolve. The time required for genes to return to baseline expression levels can provide information on the recovery potential of individuals following episodes of heat stress (Walker et al., 2022) but the temporal characteristics of the molecular acute heat stress response are poorly defined. Further, only one study has directly compared gene expression patterns between acute heat stress assays and chronic heat exposure experiments (Savary et al., 2021). Therefore, it is currently unknown whether the acute and chronic molecular heat stress responses involve similar pathways. Finally, it is important to contextualise transcriptional studies which typically rely on correlational results, with respect to physiology and heat resilient phenotypes (Cziesielski et al., 2019; Kirk et al., 2018; Latimer et al., 2015).

Expression markers that allow for rapid screening of thermal tolerance have been used widely in crop evolution (Rustamova et al., 2019), and similar principles have been applied to corals (Lundgren et al., 2013; Weis, 2010). This relies on the principle that expression levels of certain genes implicated in thermal tolerance can reliably predict holobiont tolerance (Bay & Palumbi, 2017; Strader & Quigley, 2022). In **Chapter 4**, I identified significantly

upregulated genes associated with high acute heat tolerance (ED50). The higher expression levels in the baseline condition is referred to as frontloading (Barshis et al., 2013), a potential anticipatory protective genetic mechanism (Teixeira et al., 2013), promoting higher heat tolerance in these corals (Fifer et al., 2021). Front-loading has been proposed as a genetic mechanism enhancing coral heat tolerance (Barshis et al., 2013). However, few of these potential gene expression markers of heat tolerance (Louis et al., 2017) have been experimentally validated to increase thermal tolerance (Parkinson et al., 2020). Finally, incorporating molecular-based insights into phenotyping of heat tolerance more effectively, is a logical direction for these high-throughput assays given the reduced time and cost requirements over traditional long-term ramp-and-hold experiments.

5.3.2 Coral heat tolerance influenced by local thermal history

Corals show evidence of adaptation to local thermal regimes at a variety of scales including within-reef habitats (e.g. Marhoefer et al., 2021; Thomas et al., 2022) and across latitudes (e.g. Dixon et al., 2015; Howells et al., 2013; Johnston et al., 2018). Locally variable environments can result in higher heat tolerance (DeMerlis et al., 2022; Oliver & Palumbi, 2011) although few studies have examined environmental covariates of increased heat tolerance across entire reef systems (but see Baumann et al., 2016; Dalton & Carroll, 2011; Osman et al., 2018). In Chapter 3, I show that absolute acute heat tolerance (ED50) across three coral species varied significantly between reef sectors and was predicted by site-specific maximum SSTs and the number of marine heating events where heat stress exceeded 3°C - heating weeks (DHW). The presence of higher acute heat tolerance at reefs with higher maximum SSTs in this thesis indicates local adaptation at a latitudinal scale (Evensen et al., 2022; Fuller et al., 2020; Howells et al., 2013) as has also been evidenced recently through the application of seascape genomics (Liggins et al., 2019; Selmoni et al., 2020). This is further supported by the lack of difference in relative heat tolerance (°C above local MMM), suggesting that corals across the GBR have matched thermal tolerance to their local MMM, unlike Coral Sea corals (Marzonie et al., 2022). Similarly, sites characterised by high maximum SSTs hosted stress-tolerant coral species in Belize (Baumann et al., 2016). However, global patterns of high SST as a driver of heat tolerance have been debated (Sully et al., 2019). It is possible that heatwave disturbance histories work in synergy with high maximum SSTs (Quigley & van Oppen, 2022) and that these patterns are therefore dependent on multiple thermal co-variates. For example, acute heat 105 tolerance was negatively impacted by the frequency of mild marine heatwaves in this thesis while previous research on similar species in the Coral Sea identified a positive correlation of marine heatwave frequency on acute heat tolerance (Marzonie et al., 2022). As such, patterns of thermal co-variates of acute heat tolerance likely require further investigation to ascertain whether species- and reef-system specific.

5.3.3 Species-specific influence of Symbiodiniaceae communities on acute heat tolerance

Endosymbiotic Symbiodiniaceae are important determinants of coral holobiont thermal tolerance (Berkelmans & van Oppen, 2006; Howells et al., 2011) and physiology (Wall et al., 2020; Yuyama & Higuchi, 2014). These symbionts differ in their photo-physiological characteristics (Chang et al., 1983; Cooper et al., 2011; Hoadley et al., 2021; Nitschke et al., 2022). Therefore, when examining patterns of heat tolerance at scale, it is important to consider the diversity of these symbiont communities. In **Chapter 3**, I found that acute heat tolerance was only significantly associated with the symbiont communities of *P. meandrina* and not *P. verrucosa*. Contrary to Grima et al., (2022), *P. verrucosa* examined here showed greater community variability than *P. meandrina*. This highlights that small spatial scale studies of symbiont communities are likely to under-representing community variability evident at larger spatial scales. While *Pocillopora* corals generally have highly conserved symbiont partners (Johnston et al., 2022; Turnham et al., 2021) due to their vertical transmission mode (Baird et al., 2009). Latitudinal differentiation in *P. verrucosa* symbiont communities were observed here, similarly to recent results from the South China Sea (Chen et al., 2021), potentially due to rapid diversification of these symbionts (D'Angelo et al., 2015; Howells et al., 2016).

Interestingly, the two *P. verrucosa* colonies which contained *Durusdinium*-type symbionts recorded greater acute heat tolerance (ED50) than colonies which only associated purely with *Cladocopium*-type symbionts. While *Pocillopora spp* generally associate with *Cladocopium*-type symbionts, these data support that associations with *Durusdinium* are possible (Ros et al., 2021; Torres et al., 2021) and recent evidence from the eastern Pacific suggests that the *Pocillopora-Durusdinium* association may become more abundant following episodes of heating (Palacio-Castro et al., 2022). Encouragingly for conservation efforts, Haydon et al., (2023) found the *Pocillopora-Durusdinium* association to be maintained following transplantation and symbiont shuffling may remain an important resilience feature for some species (Quigley et al., 2022b). However, the rarity of this association in natural reef systems (observed here in 1.4% of *P. verrucosa* samples) highlights the potential benefits of

assisted evolution approaches applied at scale (van Oppen et al., 2015). This necessitates detailed study of the cost and benefits of these associations (Buerger et al., 2020; Scharfenstein et al., 2022).

5.4 Utility of ED50 derived from photosynthetic performance as proxy of acute thermal tolerance

A high through-put proxy of acute thermal tolerance was needed to fully capitalise on the rapid heat stress experimental profile, both from a standardisation perspective but also due to the high throughput possible (for example, n = 3,409 unique samples presented in this thesis). Previous studies used the effective dose ED50 of photosynthetic performance (Cunning et al., 2021; Evensen et al., 2022; Marzonie et al., 2022) as a measure of acute heat tolerance. Photosynthesis is particularly sensitive to heat stress (Sharkey, 2005) and photosynthetic declines have long been used as an early indicator of potential heat stress in corals due to the direct link between photosynthetic output and energy transfer to the host (Roth & Deheyn, 2013; Saxby et al., 2003; Suggett & Smith, 2020). In Chapter 2, I describe how photosynthetic performance could serve as a potential rapid proxy trait of acute thermal tolerance based on temporal stability, the lack of interactions with fragment size, as well as the low time investment required to process large sample sizes before quantifying ED50 across the GBR in three species in Chapter 3. ED50 was only significantly impacted by symbiont community composition of one coral species and the relationship between physiological traits (protein and chlorophyll content, and catalase activity) and ED50 differed between the two Pocillopora species. This was surprising, given that ED50 was derived from measurements of photosynthetic efficiency. This potentially reflects differences in photo-physiological mechanisms employed by different symbionts harboured under heat stress (Hoadley et al., 2021; Lohr et al., 2019). However, it also highlights a potential over-simplification of coral heat tolerance, representing a holobiont trait by quantification of a purely symbiont-derived measure. Therefore, it is likely that not all measures of bleaching tolerance will show high congruence with ED50.

The GBR-wide absolute ED50 for *P. verrucosa* (36.21°C) is similar to those reported for the same species in the Red Sea and the Coral Sea respectively (36.0°C and 36.1 °C, Evensen et al., 2022; Marzonie et al., 2022). This is despite the lower MMMs of GBR reefs used in this

thesis and a much narrower range of reef-specific MMMs compared to the Red Sea (1.6 °C vs 4.55 °C). Taken together, these results imply that ~36°C may be a shared acute thermal tolerance threshold of *P. verrucosa* across ocean basins, potentially indicating that this species have similar long-term bleaching thresholds or thermal optima dynamics (Álvarez-Noriega et al., 2023) which could be the focus of further study. This thesis further investigates the variation and utility of the ED50 metric at two distinct organisational levels, both within and between populations. The variation in ED50 documented within a single population (Davies reef, $35.27 \pm 0.054^{\circ}$ C, **Chapter 4**) closely matches the overall variation found across the GBR ($35.31 \pm 0.076^{\circ}$ C, **Chapter 3**). This finding potentially indicates that the ED50 trait is not governed by underlying spatial and environmental history but potentially highly genetically controlled by either host or symbiont (Cunning et al., 2022; Cornwell et al., 2021) Finally, the link between ED50 values, acute heat tolerance, and coral resilience to bleaching during natural marine heatwave events must be further investigated either through classic ramp-hold experiments relying on common indicators of heat stress (such as physiology) or in-field survival observations.

5.5 Limitations and future opportunities for acute heat stress assays

The relationship between experimentally derived acute heat tolerance and ecologically observed *in situ* bleaching resistance remains poorly understood. Further ground-truthing of this method is required to understand how acute heat tolerance relates to measures of long-term thermal tolerance including thermal breadth and thermal optimums (Abrego et al., 2022; Klepac & Barshis, 2022; Sinclair et al., 2016). As a priority, studies should aim to correlate acute heat tolerance to long-term heat resilience under laboratory-based experiments. Currently, only three studies have attempted this, all utilising *Stylophora pistillata* from the Red Sea (Evensen et al., 2021; Savary et al., 2021; Voolstra et al., 2020) with mixed results across physiology and gene expression patterns. The correlation between physiological and transcriptomic responses to both acute and long-term heat stress needs to be further extended to other species and regions. For example, recent work on the central GBR elucidated thermal performance curves of multiple coral species and identified the highest thermal optimum (T_{opt} Angilletta, 2006) in *P. verrucosa* (29.5°C) while *A. tenuis* recorded a lower T_{opt} (28.2 °C' Álvarez-Noriega et al., 2023). Promisingly, this supports the acute thermal tolerance species rankings presented in this thesis, supporting the acute assay experimental framework. The

temporal stability of acute heat stress responses also needs to be investigated. Cunning et al., (2021) demonstrated that although the absolute value of ED50 showed seasonality, the overall rankings of thermally tolerant colonies did not. Encouragingly, Morikawa & Palumbi, (2019) showed higher bleaching resistance during a natural bleaching event in coral fragments that originated from colonies with high acute heat tolerance. It is imperative to understand how these acute *ex-situ* experiments compare with long-term bleaching and mortality resilience under natural marine heat wave conditions to leverage the spatial flexibility and high-throughput potential offered by acute heat stress assays.

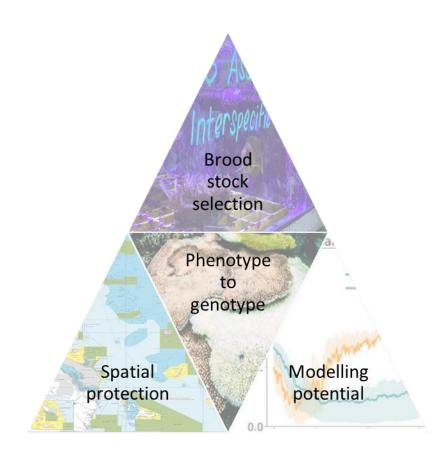


Figure 5.1 Contributions of acute heat stress assays to coral conservation. Image credits; bottom left to right; GBRMPA, Peter Mumby, McManus et al., 2021; top AIMS SeaSim

Continued global warming is likely to outpace phenotypic and adaptive capacities of many organisms (Radchuk et al., 2019), including corals (Matz et al., 2018), necessitating novel or improved conservation management solutions (Beever et al., 2016). Large-scale active management approaches require large volumes of data where acute heat stress assays can contribute to multiple aspects. Specifically, I considered how acute heat stress assays could support the following dimensions of knowledge and capacity building in conversation management: spatial protection, modelling potential, linking phenotypes-genotypes, and brood stock selection for active management interventions to seed enhanced corals onto reefs (Fig 5.1). Spatial protection, for example through the implementation of "Marine Protected Areas" (MPAs) and "no-take" zones, were particularly developed to support fisheries (Cicin-Sain & Belfiore, 2005) but are now commonly used for coral reef management (Kleypas et al., 2021; McClanahan et al., 2012; Mellin et al., 2019). The spatial footprint of acute heat stress assays allow for the identification of coral populations exhibiting high heat tolerance (Darling & Côté, 2018; Decarlo & Harrison, 2019; Quigley & van Oppen, 2022) across spatial scales and could therefore underpin better informed spatial protection for heat-resilient corals (Kalmus et al., 2022; Voolstra et al., 2023, Fig 5.1 "spatial protection"). However, MPAs are not sufficient to address the threats posed by climate change (Boersma & Parrish, 1999; Kearney et al., 2012) and we need to further our collective understanding of coral heat tolerance. High-resolution physiological data from acute heat stress assays can parameterise predictive models of coral persistence under climate change (Fig 5.1 "modelling potential") and may dramatically improve model prediction accuracy (Baskett, 2012; Mason et al., 2020), as shown for coral reef-associated fish (Illing & Rummer, 2017). Despite this, knowledge of thermal tolerance is often omitted in present models (Evans et al., 2015; Thompson et al., 2013). By combining standard protocols of phenotyping corals (Voolstra et al., 2021a) with multi-trait analyses including -omics approaches, acute heat stress assays can directly enhance our mechanistic understanding of coral responses to heat stress (Cziesielski et al., 2018, Fig 5.1 "phenotype to genotype"). Through genetic analyses these assays may enable estimation of adaptive genetic variation present within a population in key fitness traits (Kleypas et al., 2021). For example, incorporating adaptive responses into modelling projections of coral cover significantly increased the accuracy of bleaching frequency predictions (Logan et al., 2014). New management actions that involve the active genetic management of populations via a range of methods such as intraspecific hybridisation (also called assisted gene flow) and selective breeding (A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs, 2019; Bay et al., 2019) are currently being examined on reefs and in laboratories

around the world (McLeod et al., 2022). These intervention methods require foundational knowledge of both the distribution of heat resilient coral populations and the drivers of differential heat tolerance (Caruso et al., 2021). Acute heat stress assays have been successful in selecting thermally-tolerant donor colonies for construction of resilient coral nurseries (Morikawa & Palumbi, 2019) and could be applied to identify stock populations ideal for selective breeding interventions (Matz et al., 2020, Fig 5.1 "broodstock selection"). As such, once outstanding questions about the connection between acute and long-term heat tolerance and temporal stability of the acute heat stress response have been addressed, these assays can provide a powerful tool to increase knowledge of large- and small-scale drivers of heat tolerance in corals.

	Recommendation	Actions
1	Determine link between ED50 and natural bleaching resilience	Compare ED50s to bleaching susceptibility, survival and recovery in the field during a natural bleaching event.
		Compare ED50s to long-term thermal challenges in aquaria
2	Understand genetic and transcriptomic	Compare transcriptomic responses to acute and long-term
	drivers of heat tolerance	heat stress to develop markers of tolerance.
3	Development and wide implementation	Continued collaboration and communication globally with
	of standardised approaches and thermal	sharing of detailed methods and schematics of experimental
	stress indicators	systems.
		Selection of key indicators of thermal stress and bleaching
		resilience

Table 5.1 Recommendations to improve the use of the ED50 trait to quantify acute heat tolerance in corals.

5.6 Concluding remarks

Climate change has driven irreversible damage to ecosystems globally (Lee et al., 2023), including on coral reefs. The heat and bleaching tolerance of corals is an important factor in coral reef persistence, and we must further our understanding of drivers of high temperature tolerance in these key habitat-forming species. This thesis demonstrates the applicability of quantifying thermal tolerance of corals with an acute heat stress assay, providing the largest spatial scale assessment of heat tolerance to date. I showed that heat tolerance was driven by complex interactions of thermal history, symbiont communities, physiology, and coral host genetics. The data generated from studies that combine large-scale assessments of coral heat

tolerance with fine-scale quantification of thermal stress responses will provide baseline information that support multiple modelling and management objectives, making such projects highly impactful in coral reef conservation and management under climate change.

References

- A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs. (2019). https://doi.org/https://doi.org/10.17226/25279
- Abrego, D., Baird, A. H., Howells, E. J., & Smith, S. D. . (2022). Pools of resilience. Bulletin of Marine Science, 98(1), 51–52. https://doi.org/https://doi.org/10.5343/bms.2021.0019
- Abrego, David, Ulstrup, K. E., Willis, B. L., & van Oppen, M. J. H. (2008). Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. *Proceedings. Biological Sciences / The Royal Society*, 275(1648), 2273–2282. https://doi.org/10.1098/rspb.2008.0180
- AIMS. (2022). Continued coral recovery leads to 36-year highs across two-thirds of the Great Barrier Reef; Annual Summary Report Of Coral Reef Condition. https://www.aims.gov.au/sites/default/files/2022-08/AIMS_LTMP_Report_on GBR coral status 2021 2022 040822F3.pdf
- Aitken, S. N., & Bemmels, J. B. (2016). Time to get moving: Assisted gene flow of forest trees. *Evolutionary Applications*, 9(1), 271–290. https://doi.org/10.1111/eva.12293
- Aitken, S. N., & Whitlock, M. C. (2013). Assisted Gene Flow to Facilitate Local Adaptation to Climate Change. Annual Review of Ecology, Evolution, and Systematics, 44(1), 367–388. https://doi.org/10.1146/annurev-ecolsys-110512-135747
- Al-Moghrabi, S., Allemand, D., Couret, J. M., & Jaubert, J. (1995). Fatty acids of the scleractinian coral *Galaxea fascicularis*: effect of light and feeding. *Journal of Comparative Physiology B*, 165(3), 183–192. https://doi.org/10.1007/BF00260809
- Alderdice, R., Suggett, D. J., Cárdenas, A., Hughes, D. J., Kühl, M., Pernice, M., & Voolstra, C. R. (2021). Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility. *Global Change Biology*, 27(2), 312–326. https://doi.org/10.1111/gcb.15436
- Álvarez-Noriega, M., Marrable, I., Noonan, S. H. C., Barneche, D. R., & Ortiz, J. C. (2023). Highly conserved thermal performance strategies may limit adaptive potential in corals. *Proceedings of the Royal Society B: Biological Sciences*, 290(1990). https://doi.org/10.1098/rspb.2022.1703
- Angilletta, M. J. (2006). Estimating and comparing thermal performance curves. *Journal of Thermal Biology*, *31*(7), 541–545. https://doi.org/10.1016/j.jtherbio.2006.06.002
- Angilletta, M. J. J. (2009). *Thermal adaptation*. Oxford University Press. https://doi.org/10.1093/acprof.oso/9780198570875.001.1
- Angilletta, M. J., Wilson, R. S., Navas, C. A., & James, R. S. (2003). Tradeoffs and the evolution of thermal reaction norms. *Trends in Ecology and Evolution*, 18(5), 234–240. https://doi.org/10.1016/S0169-5347(03)00087-9
- Anthony, K. R N., & Hoegh-Guldberg, O. (2003). Kinetics of Photoacclimation in Corals. *Oecologia*, 134, 23–31.
- Anthony, Kenneth R.N., Helmstedt, K. J., Bay, L. K., Fidelman, P., Hussey, K. E., Lundgren, P., Mead, D., McLeod, I. M., Mumby, P. J., Newlands, M., Schaffelke, B., Wilson, K. A., & Hardisty, P. E. (2020). Interventions to help coral reefs under global change—A complex decision challenge. *PLoS ONE*, *15*(8 August), 1–14. https://doi.org/10.1371/journal.pone.0236399

- Anthony, Kenneth R.N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G., & Middlebrook, R. (2009). Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. *Functional Ecology*, 23(3), 539–550. https://doi.org/10.1111/j.1365-2435.2008.01531.x
- Apprill, A., Marlow, H. Q., Martindale, M. Q., & Rappé, M. S. (2009). The onset of microbial associations in the coral Pocillopora meandrina. *ISME Journal*, 3(6), 685–699. https://doi.org/10.1038/ismej.2009.3
- Ashcroft, M. B. (2010). Identifying refugia from climate change. *Journal of Biogeography*, 37(8), 1407–1413. https://doi.org/10.1111/j.1365-2699.2010.02300.x
- Avila-Magaña, V., Kamel, B., DeSalvo, M., Gómez-Campo, K., Enríquez, S., Kitano, H., Rohlfs, R. V., Iglesias-Prieto, R., & Medina, M. (2021). Elucidating gene expression adaptation of phylogenetically divergent coral holobionts under heat stress. *Nature Communications*, 12(1), 1–16. https://doi.org/10.1038/s41467-021-25950-4
- Bainbridge, S. J. (2017). Temperature and light patterns at four reefs along the Great Barrier Reef during the 2015–2016 austral summer: understanding patterns of observed coral bleaching. *Journal of Operational Oceanography*, 10(1), 16–29. https://doi.org/10.1080/1755876X.2017.1290863
- Baird, A. H., Bhagooli, R., Ralph, P. J., & Takahashi, S. (2009). Coral bleaching: the role of the host. *Trends in Ecology and Evolution*, 24(1), 16–20. https://doi.org/10.1016/j.tree.2008.09.005
- Baird, A. H., Guest, J. R., Edwards, A. J., Bauman, A. G., Bouwmeester, J., Mera, H., Abrego, D., Alvarez-Noriega, M., Babcock, R. C., Barbosa, M. B., Bonito, V., Burt, J., Cabaitan, P. C., Chang, C. F., Chavanich, S., Chen, C. A., Chen, C. J., Chen, W. J., Chung, F. C., ... Yusuf, S. (2021). An Indo-Pacific coral spawning database. *Scientific Data*, 8(1), 1–9. https://doi.org/10.1038/s41597-020-00793-8
- Bairos-Novak, K. R., Hoogenboom, M. O., van Oppen, M. J. H., & Connolly, S. R. (2021). Coral adaptation to climate change: Meta-analysis reveals high heritability across multiple traits. *Global Change Biology*, 27(22), 5694–5710. https://doi.org/10.1111/gcb.15829
- Baker, A. C. (2001). Reef corals bleach to survive change. *Nature*, *411*(6839), 765–766. https://doi.org/10.1038/35081151
- Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. *Estuarine, Coastal and Shelf Science*, 80(4), 435–471. https://doi.org/10.1016/j.ecss.2008.09.003
- Baker, A. C., Starger, C. J., McClanahan, T. J., & Glynn, P. W. (2004). Corals' adaptive response to climate change. *Nature*, *430*(August), 741.
- Barott, K. L., Huffmyer, A. S., Davidson, J. M., Lenzb, E. A., Matsuda, S. B., Hancock, J. R., Innis, T., Drury, C., Putnam, H. M., & Gates, R. D. (2021). Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. *Proceedings of the National Academy of Sciences of the United States of America*, 118(22). https://doi.org/10.1073/pnas.2025435118
- Barshis, D.J., Stillman, J. H., Gates, R. D., Toonen, R. J., Smith, L. W., & Birkelands, C. (2010). Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? *Molecular Ecology*, 19, 1705–1720. https://doi.org/10.1111/j.1365-294X.2010.04574.x
- Barshis, Daniel J., Birkeland, C., Toonen, R. J., Gates, R. D., & Stillman, J. H. (2018). Highfrequency temperature variability mirrors fixed differences in thermal limits of the massive coral Porites lobata. *Journal of Experimental Biology*, 221(24). https://doi.org/10.1242/jeb.188581

- Barshis, Daniel J, Ladner, J. T., Oliver, T. A., Seneca, F. O., Traylor-Knowles, N., & Palumbi, S. R. (2013). Genomic basis for coral resilience to climate change. *Proceedings of the National Academy of Sciences of the United States of America*, 110(4), 1387–1392. https://doi.org/10.1073/pnas.1210224110
- Baskett, M. L. (2012). Integrating mechanistic organism-environment interactions into the basic theory of community and evolutionary ecology. *Journal of Experimental Biology*, 215(6), 948– 961. https://doi.org/10.1242/jeb.059022
- Baumann, J. H., Townsend, J. E., Courtney, T. A., Aichelman, H. E., Davies, S. W., Lima, F. P., & Castillo, K. D. (2016). Temperature regimes impact coral assemblages along environmental gradients on lagoonal reefs in Belize. *PLoS ONE*, 11(9), 1–19. https://doi.org/10.1371/journal.pone.0162098
- Baums, I.B., Chamberland, V. F., Locatelli, N. S., & Conn, T. (2022). Maximizing Genetic Diversity in Coral Restoration Projects. In M.J.H van Oppen & M. Aranda Lastra (Eds.), *Coral Reef Conservation and Restoration in the Omics Age*. Spinger. https://doi.org/https://doi.org/10.1007/978-3-031-07055-6_3
- Baums, Iliana B., Baker, A. C., Davies, S. W., Grottoli, A. G., Kenkel, C. D., Kitchen, S. A., Kuffner, I. B., LaJeunesse, T. C., Matz, M. V., Miller, M. W., Parkinson, J. E., & Shantz, A. A. (2019). Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. *Ecological Applications*, 29(8). https://doi.org/10.1002/eap.1978
- Bay, L. K., Crozier, R. H., & Caley, M. J. (2006). The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef. *Marine Biology*, 149(5), 1247–1256. https://doi.org/10.1007/s00227-006-0276-6
- Bay, L. K., Rocker, M., Boström-Einarsson, L., Babcock, R., Burger, P., Cleves, P. A., Harrison, D., Negri, A. P., Quigley, K. M., Randall, C. J., van Oppen, M. J. H., & Webster, N. S. (2019). *Reef Restoration and Adaptation Program: Intervention Technical Summary*. https://researchers.mq.edu.au/en/publications/reef-restoration-and-adaptation-programintervention-technical-su
- Bay, L.K., Guerecheau, A., Andreakis, N., Ulstrup, K. E., & Matz, M. V. (2013). Gene Expression Signatures of Energetic Acclimatisation in the Reef Building Coral Acropora millepora. *PLoS ONE*, 8(5), 1–10. https://doi.org/10.1371/journal.pone.0061736
- Bay, Line K., Ulstrup, K. E., Nielsen, H. B., Jarmer, H., Goffard, N., Willis, B. L., Miller, D. J., & van Oppen, M. J. H. (2009). Microarray analysis reveals transcriptional plasticity in the reef building coral acropora millepora. *Molecular Ecology*, 18(14), 3062–3075. https://doi.org/10.1111/j.1365-294X.2009.04257.x
- Bay, R. A., & Palumbi, S. R. (2015). Rapid acclimation ability mediated by transcriptome changes in reef-building corals. *Genome Biology and Evolution*, 7(6), 1602–1612. https://doi.org/10.1093/gbe/evv085
- Bay, R. A., & Palumbi, S. R. (2017). Transcriptome predictors of coral survival and growth in a highly variable environment. *Ecology and Evolution*, 7(13), 4794–4803. https://doi.org/10.1002/ece3.2685
- Bay, R. A., Rose, N. H., Logan, C. A., & Palumbi, S. R. (2017). Genomic models predict successful coral adaptation if future ocean warming rates are reduced. *Science Advances*, *3*(11), 1–10. https://doi.org/10.1126/sciadv.1701413
- Beever, E. A., O'Leary, J., Mengelt, C., West, J. M., Julius, S., Green, N., Magness, D., Petes, L., Stein, B., Nicotra, A. B., Hellmann, J. J., Robertson, A. L., Staudinger, M. D., Rosenberg, A. A., Babij, E., Brennan, J., Schuurman, G. W., & Hofmann, G. E. (2016). Improving Conservation

Outcomes with a New Paradigm for Understanding Species' Fundamental and Realized Adaptive Capacity. *Conservation Letters*, 9(2), 131–137. https://doi.org/10.1111/conl.12190

- Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O., & Rodriguez-Lanetty, M. (2012). Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress. *PLoS ONE*, 7(11), 1–14. https://doi.org/10.1371/journal.pone.0050685
- Benzie, J. (1994). Patterns of gene flow in the Great Barrier Reef and Coral Sea. In A. Beaumont (Ed.), *Genetics and Evolution of Aquatic Organisms* (First). Chapman & Hall.
- Béraud, E., Gevaert, F., Rottier, C., & Ferrier-Pagès, C. (2013). The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. *Journal of Experimental Biology*, 216(14), 2665–2674. https://doi.org/10.1242/jeb.085183
- Berkelmans, R., & Willis, B. L. (1999). Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. *Coral Reefs*, 18(3), 219–228. https://doi.org/10.1007/s003380050186
- Berkelmans, Ray, & van Oppen, M. J. H. (2006). The role of zooxanthellae in the thermal tolerance of corals: a "nugget of hope" for coral reefs in an era of climate change. *Proc. R. Soc. B*, 273(1599), 2305–2312. https://doi.org/10.1098/rspb.2006.3567
- Boersma, P. D., & Parrish, J. K. (1999). Limiting abuse: Marine protected areas, a limited solution. *Ecological Economics*, 31(2), 287–304. https://doi.org/10.1016/S0921-8009(99)00085-3
- Borowitzka, M. A. (2018). The 'stress' concept in microalgal biology—homeostasis, acclimation and adaptation. *Journal of Applied Phycology*, *30*(5), 2815–2825. https://doi.org/10.1007/s10811-018-1399-0
- Boström-Einarsson, L., Babcock, R. C., Bayraktarov, E., Ceccarelli, D., Cook, N., Ferse, S. C. A., Hancock, B., Harrison, P., Hein, M., Shaver, E., Smith, A., Suggett, D., Stewart-Sinclair, P. J., Vardi, T., & McLeod, I. M. (2020). Coral restoration – A systematic review of current methods, successes, failures and future directions. *PLoS ONE*, *15*(1), 1–25. https://doi.org/10.1371/journal.pone.0226631
- Breitwieser, F., Baker, D., & Salzberg, S. L. (2018). KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. *Genome Biology*, 19(198).
- Brooks, M, E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB Balances Speed and Flexibility Among Packaages for Zero-inflated Generalized Linear Mixed Modelling (pp. 378–400). The R Journal. https://journal.r-project.org/archive/2017/RJ-2017-066/index.html.
- Brown, B. E., Dunne, R. P., Scoffin, T. P., & Le Tissier, M. D. A. (1994). Solar damage in intertidal corals. *Mar. Ecol. Prog. Ser.*, 105, 219–230.
- Bruno, J. F. (1998). Fragmentation in Madracis mirabilis (Duchassaing and Michelotti): How common is size-specific fragment survivorship in corals? *Journal of Experimental Marine Biology and Ecology*, 230(2), 169–181. https://doi.org/10.1016/S0022-0981(98)00080-X
- Buerger, P., Alvarez-Roa, C., Coppin, C. W., Pearce, S. L., Chakravarti, L. J., Oakeshott, J. G., Edwards, O. R., & van Oppen, M. J. H. (2020). Heat-evolved microalgal symbionts increase coral bleaching tolerance. *Science Advances*, 6(20), 1–9. https://doi.org/10.1126/sciadv.aba2489
- Cantin, N. E., van Oppen, M. J. H., Willis, B. L., Mieog, J. C., & Negri, A. P. (2009). Juvenile corals can acquire more carbon from high-performance algal symbionts. *Coral Reefs*, 28(2), 405–414. https://doi.org/10.1007/s00338-009-0478-8
- Carilli, J., Donner, S. D., & Hartmann, A. C. (2012). Historical temperature variability affects coral

response to heat stress. PLoS ONE, 7(3), 1-9. https://doi.org/10.1371/journal.pone.0034418

- Carturan, B. S., Parrott, L., & Pither, J. (2018). A modified trait-based framework for assessing the resilience of ecosystem services provided by coral reef communities. *Ecosphere*, 9(5). https://doi.org/10.1002/ecs2.2214
- Caruso, C., Hughes, K., & Drury, C. (2021). Selecting Heat-Tolerant Corals for Proactive Reef Restoration. *Frontiers in Marine Science*, 8(May 2021). https://doi.org/10.3389/fmars.2021.632027
- Castillo-Tandazo, W., Smeets, M. F., Murphy, V., Liu, R., Hodson, C., Heierhorst, J., Deans, A. J., & Walkley, C. R. (2019). ATP-dependent helicase activity is dispensable for the physiological functions of Recql4. *PLoS Genetics*, 15(7), 1–19. https://doi.org/10.1371/journal.pgen.1008266
- Chang, S. S., Prezelin, B. B., & Trench, R. K. (1983). Mechanisms of photoadaptation in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. *Marine Biology*, *76*, 219–229.
- Chen, B., Yu, K., Liao, Z., Yu, X., Qin, Z., Lianf, J., Wang, G., Wu, Q., & Jiang, L. (2021). Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. *Science of The Total Environment*, 765, 142690. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.142690
- Chen, J., Zhang, X., & Yang, L. (2022). *GUniFrac: Generalized UniFrac Distances, Distance-Based Multivariate Methods and Feature-Based Univariate Methods for Microbiome Data Analysis* (1.7). https://cran.r-project.org/package=GUniFrac
- Chen, Jun, Bittinger, K., Charlson, E. S., Hoffmann, C., Lewis, J., Wu, G. D., Collman, R. G., Bushman, F. D., & Li, H. (2012). Associating microbiome composition with environmental covariates using generalized UniFrac distances. *Bioinformatics*, 28(16), 2106–2113. https://doi.org/10.1093/bioinformatics/bts342
- Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics*, 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560
- Chen, Y., Shah, S., Dougan, K. E., van Oppen, M. J. H., Bhattacharya, D., & Chan, C. X. (2022). Improved Cladocopium goreaui Genome Assembly Reveals Features of a Facultative Coral Symbiont and the Complex Evolutionary History of Dinoflagellate Genes. *Microorganisms*, 10(8). https://doi.org/10.3390/microorganisms10081662
- Cheung, M. W. M., Hock, K., Skirving, W., & Mumby, P. J. (2021). Cumulative bleaching undermines systemic resilience of the Great Barrier Reef. *Current Biology*, *31*(23), 5385-5392.e4. https://doi.org/10.1016/j.cub.2021.09.078
- Chevin, L. M., & Hoffmann, A. A. (2017). Evolution of phenotypic plasticity in extreme environments. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1723). https://doi.org/10.1098/rstb.2016.0138
- Chow, M. H., Tsang, R. H. L., Lam, E. K. Y., & Ang, P. (2016). Quantifying the degree of coral bleaching using digital photographic technique. *Journal of Experimental Marine Biology and Ecology*, 479, 60–68. https://doi.org/10.1016/j.jembe.2016.03.003
- Cicin-Sain, B., & Belfiore, S. (2005). Linking marine protected areas to integrated coastal and ocean management: A review of theory and practice. *Ocean and Coastal Management*, 48(11–12), 847–868. https://doi.org/10.1016/j.ocecoaman.2006.01.001
- Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J., & Baum, J. K. (2018). Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. *PLoS ONE*, *13*(2), 1–22. https://doi.org/10.1371/journal.pone.0190957

- Cleves, P. A., Krediet, C. J., Lehnert, E. M., Onishi, M., & Pringle, J. R. (2020). Insights into coral bleaching under heat stress from analysis of gene expression in a sea anemone model system. *Proceedings of the National Academy of Sciences of the United States of America*, 117(46), 28906–28917. https://doi.org/10.1073/pnas.2015737117
- Cleves, P. A., Shumaker, A., Lee, J. M., Putnam, H. M., & Bhattacharya, D. (2020). Unknown to Known: Advancing Knowledge of Coral Gene Function. *Trends in Genetics*, 36(2), 93–104. https://doi.org/10.1016/j.tig.2019.11.001
- Cleves, P. A., Tinoco, A. I., Bradford, J., Perrin, D., Bay, L. K., & Pringle, J. R. (2020). Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor. *Proceedings of the National Academy of Sciences of the United States of America*, 117(46), 28899–28905. https://doi.org/10.1073/pnas.1920779117
- Cocciardi, J. M., Hoskin, C. J., Morris, W., Warburton, R., Edwards, L., & Higgie, M. (2019). Adjustable temperature array for characterizing ecological and evolutionary effects on thermal physiology. *Methods in Ecology and Evolution*, 2019(March), 1339–1346. https://doi.org/10.1111/2041-210X.13236
- Coles, S., & Jokiel, P. (1977). Effects of temperature on photosynthesis and respiration in hermtypic corals. *Marine Biology*, *43*(3), 209–216. https://doi.org/10.1007/bf00402313
- Coles, S. L., & Brown, B. E. (2003). Coral bleaching Capacity for acclimatization and adaptation. *Advances in Marine Biology*, *46*, 183–223. https://doi.org/10.1016/S0065-2881(03)46004-5
- Conlan, J. A., Jones, P. L., Turchini, G. M., Hall, M. R., & Francis, D. S. (2014). Changes in the nutritional composition of captive early-mid stage Panulirus ornatus phyllosoma over ecdysis and larval development. *Aquaculture*, 434, 159–170. https://doi.org/10.1016/j.aquaculture.2014.07.030
- Cooke, I., Ying, H., Forêt, S., Bongaerts, P., Strugnell, J. M., Simakov, O., Zhang, J., Field, M. A., Rodriguez-Lanetty, M., Bell, S. C., Bourne, D. G., van Oppen, M. J. H., Ragan, M. A., & Miller, D. J. (2020). Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. *Science Advances*, 6(48). https://doi.org/10.1126/sciadv.abc6318
- Cooper, T. F., Ulstrup, K. E., Dandan, S. S., Heyward, A. J., Kühl, M., Muirhead, A., O'Leary, R. A., Ziersen, B. E. F., & van Oppen, M. J. H. (2011). Niche specialization of reef-building corals in the mesophotic zone: Metabolic trade-offs between divergent Symbiodinium types. *Proceedings* of the Royal Society B: Biological Sciences, 278(1713), 1840–1850. https://doi.org/10.1098/rspb.2010.2321
- Cornwell, B., Armstrong, K., Walker, N., Lippert, M., Nestor, V., Golbuu, Y., & Palumbi, S. R. (2021). Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral acropora hyacinthus in palau. *ELife*, *10*, 1–15. https://doi.org/10.7554/eLife.64790
- Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014). Changes in the global value of ecosystem services. *Global Environmental Change*, 26(1), 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002
- Cox, J., Schubert, A. M., Travisano, M., & Putonti, C. (2010). Adaptive evolution and inherent tolerance to extreme thermal environments. *BMC Evolutionary Biology*, 10(1). https://doi.org/10.1186/1471-2148-10-75
- Crabbe, M. (2012). Environmental effects on coral growth and recruitment in the Caribbean. *Journal of the Marine Biological Association of the United Kingdom*, 92(04), 747–752. https://doi.org/10.1017/S0025315411001913

- Cunning, R, Gillette, P., Capo, T., Galvez, K., & Baker, A. C. (2015). Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. *Coral Reefs*, *34*(1), 155–160. https://doi.org/10.1007/s00338-014-1216-4
- Cunning, R, Parker, K. E., Johnson-Sapp, K., Karp, R. F., Wen, A. D., Williamson, O. M., Bartels, E., D'Alessandro, M., Gilliam, D. S., Hanson, G., Levy, J., Lirman, D., Maxwell, K., Million, W. C., Moulding, A. L., Moura, A., Muller, E. M., Nedimyer, K., Reckenbeil, B., ... Baker, A. C. (2021). Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations. *Proceedings of the Royal Society B: Biological Sciences*, 288(1961). https://doi.org/10.1098/rspb.2021.1613
- Cunning, Ross, & Baker, A. C. (2020). Thermotolerant coral symbionts modulate heat stress-responsive genes in their hosts. *Molecular Ecology*, 29(15), 2940–2950. https://doi.org/10.1111/mec.15526
- Cunning, Ross, Yost, D. M., Guarinello, M. L., Putnam, H. M., & Gates, R. D. (2015). Variability of Symbiodinium communities in waters, sediments, and corals of thermally distinct reef pools in American Samoa. *PLoS ONE*, 10(12), 1–17. https://doi.org/10.1371/journal.pone.0145099
- Cziesielski, M. J., Liew, Y. J., Cui, G., Schmidt-Roach, S., Campana, S., Marondedze, C., & Aranda, M. (2018). Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. *Proceedings of the Royal Society B: Biological Sciences*, 285(1877). https://doi.org/10.1098/rspb.2017.2654
- Cziesielski, M. J., Schmidt-Roach, S., & Aranda, M. (2019). The past, present, and future of coral heat stress studies. *Ecology and Evolution*, 9(17), 10055–10066. https://doi.org/10.1002/ece3.5576
- D'Angelo, C., Hume, B. C. C., Burt, J., Smith, E. G., Achterberg, E. P., & Wiedenmann, J. (2015). Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. *ISME Journal*, 9(12), 2551–2560. https://doi.org/10.1038/ismej.2015.80
- D'Angelo, C., & Wiedenmann, J. (2012). An experimental mesocosm for long-term studies of reef corals. *Journal of the Marine Biological Association of the United Kingdom*, 92(4), 769–775. https://doi.org/10.1017/S0025315411001883
- Dalton, S. J., & Carroll, A. G. (2011). Monitoring coral health to determine coral bleaching response at high latitude eastern Australian Reefs: An applied model for a changing climate. *Diversity*, *3*(4), 592–610. https://doi.org/10.3390/d3040592
- Darling, E. S., & Côté, I. M. (2018). Seeking resilience in marine ecosystems. *Science*, *359*, 986–987. https://doi.org/10.1126/science.aas9852
- Davies, P. S. (1989). Short-tern growth measurements of corals using an accurate buoyant weighing technique. *Marine Biology*, *101*, 389–395.
- Davies, S., Gamache, M. H., Howe-Kerr, L. I., Kriefall, N. G., Baker, A. C., Banaszak, A. T., Bay, L. K., Bellantuono, A. J., Bhattacharya, D., Chan, C. X., Claar, D. C., Coffroth, M. A., Cunning, R., Davy, S. K., del Campo, J., Diaz-Almeyda, E. M., Frommlet, J. C., Fuess, L. E., Gonzalez-Pech, R. A., ... Parkinson, J. E. (2022). Building Consensus around the Assessment and Interpretation of Symbiodiniaceae Diversity. *LaJeunesse TC*, *16*(June), 1–66. https://doi.org/10.20944/preprints202206.0284.v1
- Davies, S. W., Ries, J. B., Marchetti, A., & Castillo, K. D. (2018). Symbiodinium functional diversity in the Coral Siderastrea siderea Is influenced by thermal stress and reef environment, but not ocean acidification. *Frontiers in Marine Science*, 5(APR), 1–14. https://doi.org/10.3389/fmars.2018.00150

- Day, T., Nagel, L., Van Oppen, M. J. H., & Caley, M. J. (2008). Factors Affecting the Evolution of Bleaching Resistance in Corals. *Source: The American Naturalist*, 171(2), 72–88. https://doi.org/10.1086/524956
- De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. *Nature Reviews Genetics*, 12(12), 833–845. https://doi.org/10.1038/nrg3055
- De Souza, M. R., Caruso, C., Ruiz-Jones, L., Drury, C., Gates, R., & Toonen, R. J. (2022). Community composition of coral-associated Symbiodiniaceae differs across fine-scale environmental gradients in Kāne'ohe Bay. *Royal Society Open Science*, 9(9). https://doi.org/10.1098/rsos.212042
- Decarlo, T. M., & Harrison, H. B. (2019). An enigmatic decoupling between heat stress and coral bleaching on the Great Barrier Reef. *PeerJ*, *7*, e7473. https://doi.org/https://doi.org/10.7717/peerj.7473
- Delbeek, J, C. (2001). Coral farming: past, present and future trends. *Aquarium Sciences and Conservation*, *3*, 171–181.
- Deloitte Access Economics. (2017). At what price? The economic, social and icon value of the Great Barrier Reef. *Deloitte Access Economics*, 92.
- DeMerlis, A., Kirkland, A., Kaufman, M., Mayfield, A., Formel, N., Kolodziej, G., Manzello, D., Lirman, D., Traylor-Knowles, N., & Enochs, I. (2022). Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress. *Coral Reefs*, 41, 435–445. https://doi.org/10.1007/s00338-022-02232-z
- Deschaseaux, E. S. M., Deseo, M. A., Shepherd, K. M., Jones, G. B., & Harrison, P. L. (2013). Air blasting as the optimal approach for the extraction of antioxidants in coral tissue. *Journal of Experimental Marine Biology and Ecology*, 448, 146–148. https://doi.org/10.1016/j.jembe.2013.07.002
- Dimmitt, S., Stampfer, H., & Martin, J. H. (2017). When less is more efficacy with less toxicity at the ED50. *British Journal of Clinical Pharmacology*, 83(7), 1365–1368. https://doi.org/10.1111/bcp.13281
- Dixon, A., Forster, P. M., Heron, S. F., Stoner, A. M. K., & Beger, M. (2022). Future loss of localscale thermal refugia in coral reef ecosystems. *PLOS Climate*, 1(2), e0000004. https://doi.org/10.1371/journal.pclm.0000004
- Dixon, G., Abbott, E., & Matz, M. (2020). Meta-analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. *Molecular Ecology*, 29(15), 2855–2870. https://doi.org/10.1111/mec.15535
- Dixon, G. B., Davies, S. W., Aglyamova, G. V., Meyer, E., Bay, L. K., & Matz, M. V. (2015). Genomic determinants of coral heat tolerance across latitudes. *Science*, *348*(6242), 1460–1462.
- Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M., & Hoegh-Gulberg, O. (2005). Global assessment of coral bleaching and required rates of adaptation under climate change. *Global Change Biology*, *11*(12), 2251–2265. https://doi.org/10.1111/j.1365-2486.2005.01073.x
- Dorn, A., & Puchta, H. (2020). DNA repair meets climate change. *Nature Plants*, *6*(12), 1398–1399. https://doi.org/10.1038/s41477-020-00804-x
- Dove, S., Ortiz, J. C., Enríquez, S., Fine, M., Fisher, P., Iglesias-Prieto, R., Thornhill, D., & Hoegh-Guldberg, O. (2006). Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. *Limnology and Oceanography*, 51(2), 1149–1158. https://doi.org/10.4319/lo.2006.51.2.1149
- Drury, C., Dale, K. E., Panlilio, J. M., Miller, S. V., Lirman, D., Larson, E. A., Bartels, E., Crawford,

D. L., & Oleksiak, M. F. (2016). Genomic variation among populations of threatened coral: Acropora cervicornis. *BMC Genomics*, 286(17). https://doi.org/10.1183/s12864-016-2583-8

- Drury, Crawford. (2020). Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress. *Molecular Ecology*, 29(3), 448–465. https://doi.org/10.1111/mec.15337
- Drury, Crawford, Dilworth, J., Majerová, E., Caruso, C., & Greer, J. B. (2022). Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral. *Nature Communications*, *13*(1), 1–9. https://doi.org/10.1038/s41467-022-32452-4
- Drury, Crawford, Manzello, D., & Lirman, D. (2017). Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis. *PLoS ONE*, *12*(3), 1–21. https://doi.org/10.1371/journal.pone.0174000
- Drury, Crawford, Martin, R. E., Knapp, D. E., Heckler, J., Levy, J., Gates, R. D., & Asner, G. P. (2022). Ecosystem-scale mapping of coral species and thermal tolerance. *Frontiers in Ecology* and the Environment, 20(5), 285–291. https://doi.org/10.1002/fee.2483
- Eakin, C. M., Lough, J. M., & Heron, S. F. (2009). Climate variability and change: Monitoring data and evidence for increased coral bleaching stress. In M. J. H. van Oppen & J. M. Lough (Eds.), *Coral Bleaching. Patterns, Processes, Causes and Consequences* (pp. 41–67). Springer. https://doi.org/10.1007/978-3-540-69775-6 4
- Edmunds, P. J., & Burgess, S. C. (2018). Correction: Size-dependent physiological responses of the branching coral Pocillopora vertucosa to elevated temperature and PCO2(J. Exp. Biol. (2016) 219 (3896-3906) Doi: 10.1242/jeb.146381). *Journal of Experimental Biology*, 221(23), 3896– 3906. https://doi.org/10.1242/jeb.194753
- Edmunds, P. J., & Putnam, H. M. (2020). Science-based approach to using growth rate to assess coral performance and restoration outcomes: Coral growth and future success. *Biology Letters*, *16*(7). https://doi.org/10.1098/rsbl.2020.0227rsbl20200227
- Edmunds, P. J., Putnam, H. M., & Gates, R. D. (2012). Photophysiological Consequences of Vertical Stratification of Symbiodinium in Tissue of the Coral Porites lutea. *Biol. Bull*, 223(2), 226–235.
- Eghtesadi-Araghi, P., Darvish Bastami, K., & Nozhat, F. (2010). Seventy-kilodalton protein density in Porites spp.: Possible useful proxy for cold stress in coral reefs. *Comparative Clinical Pathology*, 21(5), 693–697. https://doi.org/10.1007/s00580-010-1159-2
- Evans, T. G., Diamond, S. E., & Kelly, M. W. (2015). Mechanistic species distribution modelling as a link between physiology and conservation. *Conservation Physiology*, *3*(1), 1–16. https://doi.org/10.1093/conphys/cov056
- Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R., & Barshis, D. J. (2021). Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. *Limnology* and Oceanography, 4–45. https://doi.org/10.1002/lno.11715
- Evensen, N., Voolstra, C., Fine, M., Perna, G., Buitrago-López, C., Cárdenas, A., Banc-Prandi, G., Rowe, K., & Barshis, D. (2022). Empirically derived thermal thresholds of four coral species along the Red Sea using a portable and standardized experimental approach. *Coral Reefs*, *accepted*. https://doi.org/10.1007/s00338-022-02233-y
- Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarise analysis results from multiple tools and samples in a single report. *Bioinformatics*, 1:32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354.
- Ewels, P., Peltzer, A., Fillinger, S., Patel, H., Alneberg, J., Wilm, A., Carcia, M., Tommaso, P., & Nahsen, S. (2020). The nf-core framework for community-curated bioinformatics pipelines. *Nat*

Biotechnol. https://doi.org/10.1038/s41587-020-0439-x.

- Fifer, J., Bentlage, B., Lemer, S., Fujimura, A. G., Sweet, M., & Raymundo, L. J. (2021). Going with the flow: How corals in high-flow environments can beat the heat. *Molecular Ecology*, 30(9), 2009–2024. https://doi.org/10.1111/mec.15869
- Fitt, W. K., Gates, R. D., Hoegh-Guldberg, O., Bythell, J. C., Jatkar, A., Grottoli, A. G., Gomez, M., Fisher, P., Lajuenesse, T. C., Pantos, O., Iglesias-Prieto, R., Franklin, D. J., Rodrigues, L. J., Torregiani, J. M., van Woesik, R., & Lesser, M. P. (2009). Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. *Journal of Experimental Marine Biology and Ecology*, 373(2), 102–110. https://doi.org/10.1016/j.jembe.2009.03.011
- Fitt, William K., Brown, B. E., Warner, M. E., & Dunne, R. P. (2001). Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. *Coral Reefs*, 20(1), 51–65. https://doi.org/10.1007/s003380100146
- Fox, J., & Weisberg, S. (2019). *An* {*R*} *Companian to Applied Regression* (No. 3). https://socialsciences.mcmaster.ca/jfox/Books/Companion/
- Fuller, Z. L., Mocellin, V. J. L., Morris, L. A., Cantin, N., Shepherd, J., Sarre, L., Peng, J., Liao, Y., Pickrell, J., Andolfatto, P., Matz, M., Bay, L. K., & Przeworski, M. (2020). Population genetics of the coroal Acropora millepora: Toward genomic prediction of bleaching. *Science*, 369(6501). https://doi.org/10.1126/science.aba4674
- Gabilly, S. T., Baker, C. R., Wakao, S., Crisanto, T., Guan, K., Bi, K., Guiet, E., Guadagno, C. R., & Niyogi, K. K. (2019). Regulation of photoprotection gene expression in Chlamydomonas by a putative E3 ubiquitin ligase complex and a homolog of CONSTANS. *Proceedings of the National Academy of Sciences of the United States of America*, 116(35), 17556–17562. https://doi.org/10.1073/pnas.1821689116
- Gardner, S. G., Raina, J. B., Nitschke, M. R., Nielsen, D. A., Stat, M., Motti, C. A., Ralph, P. J., & Petrou, K. (2017). A multi-trait systems approach reveals a response cascade to bleaching in corals. *BMC Biology*, 15(1), 117. https://doi.org/10.1186/s12915-017-0459-2
- Gardner, S. G., Raina, J. B., Ralph, P. J., & Petrou, K. (2017). Reactive oxygen species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress. *Journal of Experimental Biology*, 220(10), 1787–1791. https://doi.org/10.1242/jeb.153049
- Gates, R. D., Baghdasarian, G., & Muscatine, L. (1992). Temperature stress causes host-cell detachment in symbiotic Cnidarians: implications for coral bleaching. *Biological Bulletin*, *182*(3), 324–332. https://doi.org/Doi 10.2307/1542252
- Genevier, L. G. C., Jamil, T., Raitsos, D. E., Krokos, G., & Hoteit, I. (2019). Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. *Global Change Biology*, 25(7), 2338– 2351. https://doi.org/10.1111/gcb.14652
- Gerhard, D., & Ritz, C. (2018). *medrc: Mixed effect dose-response curves* (1.1-0). https://rdrr.io/github/DoseResponse/medrc/
- Gianrossi, R., Detrano, R., Mulvihill, D., Lehmann, K., Dubach, P., Colombo, A., McArthur, D., & Froelicher, V. (1989). Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. *Circulation*, 80(1), 87–98. https://doi.org/10.1161/01.CIR.80.1.87
- Gibbin, E. M., Krueger, T., Putnam, H. M., Barott, K. L., Bodin, J., Gates, R. D., & Meibom, A. (2018). Short-term thermal acclimation modifies the metabolic condition of the coral holobiont. *Frontiers in Marine Science*, 5(FEB), 1–11. https://doi.org/10.3389/fmars.2018.00010
- Gibbin, E. M., Putnam, H. M., Gates, R. D., Nitschke, M. R., & Davy, S. K. (2015). Species-specific differences in thermal tolerance may define susceptibility to intracellular acidosis in reef corals.

Marine Biology, 162(3), 717-723. https://doi.org/10.1007/s00227-015-2617-9

- Gierz, S. L., Forêt, S., & Leggat, W. (2017). Transcriptomic analysis of thermally stressed Symbiodinium reveals differential expression of stress and metabolism genes. *Frontiers in Plant Science*, 8(February), 1–20. https://doi.org/10.3389/fpls.2017.00271
- Gilchrist, G. W. (1995). Specialists and Generalists in Changing Environments . I . Fitness Landscapes of Thermal Sensitivity. *The American Naturalist*, *146*(2), 252–270.
- Glynn, P. W., & D'Croz, L. (1990). Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. *Coral Reefs*, 8(4), 181–191. https://doi.org/10.1007/BF00265009
- González-Guerrero, L. A., Vásquez-Elizondo, R. M., López-Londoño, T., Hernán, G., Iglesias-Prieto, R., & Enríquez, S. (2021). Validation of parameters and protocols derived from chlorophyll a fluorescence commonly utilised in marine ecophysiological studies. *Functional Plant Biology*. https://doi.org/10.1071/FP21101
- Granados-Cifuentes, C., Bellantuono, A. J., Ridgway, T., Hoegh-Guldberg, O., & Rodriguez-Lanetty, M. (2013). High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity. *BMC Genomics*, 14(1), 228. https://doi.org/10.1186/1471-2164-14-228
- Grima, A. J., Clases, D., Gonzalez de Vega, R., Nitschke, M. R., Goyen, S., Suggett, D. J., & Camp, E. F. (2022). Species-specific elementomes for scleractinian coral hosts and their associated Symbiodiniaceae. *Coral Reefs*, 41(4), 1115–1130. https://doi.org/10.1007/s00338-022-02259-2
- Grottoli, A. G., Toonen, R. J., van Woesik, R., Vega Thurber, R., Warner, M. E., McLachlan, R. H., Price, J. T., Bahr, K. D., Baums, I. B., Castillo, K. D., Coffroth, M. A., Cunning, R., Dobson, K. L., Donahue, M. J., Hench, J. L., Iglesias-Prieto, R., Kemp, D. W., Kenkel, C. D., Kline, D. I., ... Wu, H. C. (2021). Increasing comparability among coral bleaching experiments. *Ecological Applications*, *31*(4), 1–17. https://doi.org/10.1002/eap.2262
- Grottoli, Andrea G, Wilkins, M. J., Johnston, M. D., Levas, S., Schoepf, V., Dalcin, M. P., Wilkins, M. J., Warner, M. E., Cai, W.-J., Hoadley, K. D., Pettay, D. T., & Melman, T. F. (2018). Coral physiology and microbiome dynamics under combined warming and ocean acidification. *PloS One*, 13(1), e0191156.
- Guest, J. R., Baird, A. H., Maynard, J. A., Muttaqin, E., Edwards, A. J., Campbell, S. J., Yewdall, K., Affendi, Y. A., & Chou, L. M. (2012). Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. *PLoS ONE*, 7(3), 1–8. https://doi.org/10.1371/journal.pone.0033353
- Guzman, C., Atrigenio, M., Shinzato, C., Aliño, P., & Conaco, C. (2019). Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea. *PeerJ*, 7, e7785. https://doi.org/https://doi.org/10.7717/peerj.7785
- Haguenauer, A., Zuberer, F., Ledoux, J. B., & Aurelle, D. (2013). Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: From population to functional genetics. *Journal of Experimental Marine Biology and Ecology*, 449, 349–357. https://doi.org/10.1016/j.jembe.2013.10.010
- Harriott, V. J. (1998). Growth of the staghorn coral Acropora formosa at Houtman Abrolhos, Western Australia. *Marine Biology*, 132(2), 319–325. https://doi.org/10.1007/s002270050397
- Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., Robinson, B. S., Hodgson, D. J., & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. *PeerJ*, 2018(5), 1–32.

https://doi.org/10.7717/peerj.4794

- Hartig, F., & Lohse, L. (2021). Package "DHARMa" Residual Diangonstics for Hierarchical (Multi-Level/Mixed) Regression Models (0.4.4). CRAN. https://cran.rstudio.com/web/packages/DHARMa/DHARMa.pdf
- Haydon, T. D., Matthews, J. L., Seymour, J. R., Raina, J.-B., Seymour, J. E., Chartrand, K., Camp, E. F., & Suggett, D. J. (2023). Metabolomic signatures of corals thriving across extreme reef habitats reveal strategies of heat stress tolerance. *Proc. R. Soc. B*, 290, 20221877. https://doi.org/http://doi.org/10.1098/rspb.2022.1877
- Hazraty-Kari, S., Tavakoli-Kolour, P., Kitanobo, S., Nakamura, T., & Morita, M. (2022). Adaptations by the coral Acropora tenuis confer resilience to future thermal stress. *Communications Biology*, *5*(1), 1–10. https://doi.org/10.1038/s42003-022-04309-5
- Hennige, S. J., Smith, D. J., Walsh, S. J., McGinley, M. P., Warner, M. E., & Suggett, D. J. (2010). Acclimation and adaptation of scleractinian coral communities along environmental gradients within an Indonesian reef system. *Journal of Experimental Marine Biology and Ecology*, 391(1– 2), 143–152. https://doi.org/10.1016/j.jembe.2010.06.019
- Hirose, M., Kinzie 3rd, R. A., & Hikada, M. (2000). Early development of zooxanthella-containing eggs of the corals Pocillopora verrucosa and P. eydouxi with special reference to the distribution of zooxanthellae. *The Biological Bulletin*, 199(1), 68–75. https://doi.org/https://doi.org/10.2307/1542708
- Hoadley, K. D., Pettay, D. T., Lewis, A., Wham, D., Grasso, C., Smith, R., Kemp, D. W., LaJeunesse, T., & Warner, M. E. (2021). Different functional traits among closely related algal symbionts dictate stress endurance for vital Indo-Pacific reef-building corals. *Global Change Biology*, 27(20), 5295–5309. https://doi.org/10.1111/gcb.15799
- Hoegh-Guldberg, O., Jacob, D., Taylor, M., Guillén Bolaños, T., Bindi, M., Brown, S., Camilloni, I. A., Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Hope, C. W., Payne, A. J., Pörtner, H.-O., Seneviratne, S. I., Thomas, A., ... Zhou, G. (2019). The human imperative of stabilizing global climate change at 1.5°C. *Science*, *365*(6459), eaaw6974. https://doi.org/10.1126/science.aaw6974
- Hoegh-Guldberg, Ove. (1999). Climate change, coral bleaching and the future of the world's coral reefs. *Marine and Freshwater Research*, 50(8), 839–866. https://doi.org/10.1071/MF99078
- Hoey, A., Howells, E., Johansen, J., Hobbs, J.-P., Messmer, V., McCowan, D., Wilson, S., & Pratchett, M. (2016). Recent Advances in Understanding the Effects of Climate Change on Coral Reefs. *Diversity*, 8(2), 12. https://doi.org/10.3390/d8020012
- Holmes, G., Ortiz, J., Kaniewska, P., & Johnstone, R. (2008). Using three-dimensional surface area to compare the growth of two Pocilloporid coral species. *Marine Biology*, 155(4), 421–427. https://doi.org/10.1007/s00227-008-1040-x
- Howells, E.J, Beltran, V. H., Larsen, N. W., Bay, L. K., Willis, B. L., & van Oppen, M. J. H. (2011). Coral thermal tolerance shaped by local adaptation of photosymbionts. *Nat. Clim. Chang.*, 2(February), 116–120. https://doi.org/10.1038/nclimate1330
- Howells, Emily J., Abrego, D., Meyer, E., Kirk, N. L., & Burt, J. A. (2016). Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. *Global Change Biology*, 22(8), 2702–2714. https://doi.org/10.1111/gcb.13250
- Howells, Emily J., Bay, L. K., & Bay, R. A. (2022). Identifying, Monitoring, and Managing Adaptive Genetic Variation in Reef-Building Corals under Rapid Climate Warming. September, 55–70. https://doi.org/10.1007/978-3-031-07055-6_4

Howells, Emily J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L., & Bay, L. K. (2013). Historical

thermal regimes define limits to coral acclimatization. *Ecology*, 94(5), 1078–1088. https://doi.org/10.1890/12-1257.1

- Howlett, L., Camp, E. F., Edmondson, J., Henderson, N., & Suggett, D. J. (2021). Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef. *PLoS ONE*, 16(1 January), 1–15. https://doi.org/10.1371/journal.pone.0244961
- Hughes, T.P., Kerry, J., Álvarez-Noriega, M., Álvarez-Romero, J., Anderson, K., Baird, A., Babcock, R., Beger, M., Bellwood, D., Berkelmans, R., Bridge, T., Butler, I., Byrne, M., Cantin, N., Comeau, S., Connolly, S., Cumming, G., Dalton, S., Diaz-Pulido, G., ... Wilson, S. (2017). Global warming and recurrent mass bleaching of corals. *Nature*, *543*, 373–377. https://doi.org/10.1038/nature21707
- Hughes, Terry P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., Baird, A. H., Baum, J. K., Berumen, M. L., Bridge, T. C., Claar, D. C., Eakin, C. M., Gilmour, J. P., Graham, N. A. J., Harrison, H., Hobbs, J. P. A., Hoey, A. S., Hoogenboom, M., Lowe, R. J., ... Wilson, S. K. (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. *Science*, *359*(6371), 80–83. https://doi.org/10.1126/science.aan8048
- Hughes, Terry P., Kerry, J. T., Connolly, S. R., Álvarez-Romero, J. G., Eakin, C. M., Heron, S. F., Gonzalez, M. A., & Moneghetti, J. (2021). Emergent properties in the responses of tropical corals to recurrent climate extremes. *Current Biology*, 31(23), 5393-5399.e3. https://doi.org/10.1016/j.cub.2021.10.046
- Humanes, A., Lachs, L., Beauchamp, E. A., Bythell, C., Edwards, A. J., Golbuu, Y., Martinez, H. M., Palmowski, P., Treumann, A., Steeg, E. Van Der, Hooidonk, R. Van, & Guest, J. R. (2022). *Within-population variability in coral heat tolerance indicates climate adaptation potential.*
- Hume, B. C. C., Smith, E. G., Ziegler, M., Warrington, H. J. M., Burt, J. A., LaJeunesse, T. C., Wiedenmann, J., & Voolstra, C. R. (2019). SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. *Molecular Ecology Resources*, 19(4), 1063–1080. https://doi.org/10.1111/1755-0998.13004
- Hume, B., D'Angelo, C., Burt, J., Baker, A. C., Riegl, B., & Wiedenmann, J. (2013). Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: Prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. *Marine Pollution Bulletin*, 72(2), 313–322. https://doi.org/10.1016/j.marpolbul.2012.11.032
- Ikeda, S., Tachikawa, M., Akanuma, S. I., Fujinawa, J., & Hosoya, K. I. (2012). Involvement of γaminobutyric acid transporter 2 in the hepatic uptake of taurine in rats. *American Journal of Physiology - Gastrointestinal and Liver Physiology*, 303(3), 291–297. https://doi.org/10.1152/ajpgi.00388.2011
- Illing, B., & Rummer, J. L. (2017). Physiology can contribute to better understanding, management, and conservation of coral reef fishes. *Conservation Physiology*, 5(1), 1–11. https://doi.org/10.1093/conphys/cox005
- Iwabuchi, B. L., & Gosselin, L. A. (2020). Implications of acute temperature and salinity tolerance thresholds for the persistence of intertidal invertebrate populations experiencing climate change. *Ecology and Evolution*, 10(14), 7739–7754. https://doi.org/10.1002/ece3.6498
- Jiang, J., Wang, A., Deng, X., Zhou, W., Gan, Q., & Lu, Y. (2021). How Symbiodiniaceae meets the challenges of life during coral bleaching. *Coral Reefs*, 40(4), 1339–1353. https://doi.org/10.1007/s00338-021-02115-9
- Johnston, E. C., Cunning, R., & Burgess, S. C. (2022). Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo' orea and their symbionts (Symbiodiniaceae).

- Johnston, E. C., Forsman, Z. H., & Toonen, R. J. (2018). A simple molecular technique for distinguishing species reveals frequent misidentification of Hawaiian corals in the genus Pocillopora. *PeerJ*, 2018(2), 1–14. https://doi.org/10.7717/peerj.4355
- Jokiel, P. L., & Coles, S. L. (1977). Effects of Temperature on the Mortality and Growth of Hawaiian Reef Corals. *Marine Biology*, 43(3), 201–208.
- Jones, A., & Berkelmans, R. (2010). Potential costs of acclimatization to a warmer climate: Growth of a reef coral with heat tolerant vs. sensitive symbiont types. *PLoS ONE*, *5*(5). https://doi.org/10.1371/journal.pone.0010437
- Jones, A., & Berkelmans, R. (2012). The photokinetics of thermo-tolerance in Symbiodinium. *Marine Ecology*, 33(4), 490–498. https://doi.org/10.1111/j.1439-0485.2012.00514.x
- Jones, A. M., & Berkelmans, R. (2011). Tradeoffs to Thermal Acclimation: Energetics and Reproduction of a Reef Coral with Heat Tolerant Symbiodinium Type-D. *Journal of Marine Biology*, 2011, 1–12. https://doi.org/10.1155/2011/185890
- Juárez, O. E., Lafarga-De la Cruz, F., Leyva-Valencia, I., López-Landavery, E., García-Esquivel, Z., Díaz, F., Re-Araujo, D., Vadopalas, B., & Galindo-Sánchez, C. E. (2018). Transcriptomic and metabolic response to chronic and acute thermal exposure of juvenile geoduck clams Panopea globosa. *Marine Genomics*, 42(October), 1–13. https://doi.org/10.1016/j.margen.2018.09.003
- Jung, E. M. U., Stat, M., Thomas, L., Koziol, A., & Schoepf, V. (2021). Coral host physiology and symbiont dynamics associated with differential recovery from mass bleaching in an extreme, macro-tidal reef environment in northwest Australia. *Coral Reefs*, 40(3), 893–905. https://doi.org/10.1007/s00338-021-02094-x
- Jurriaans, S., & Hoogenboom, M. O. (2019). Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 374(1778). https://doi.org/10.1098/rstb.2018.0546
- Kalmus, P., Ekanayaka, A., Kang, E., Baird, M., & Gierach, M. (2022). Past the Precipice? Projected Coral Habitability Under Global Heating. *Earth's Future*, 10(5), 1–14. https://doi.org/10.1029/2021EF002608
- Kearney, R., Buxton, C. D., & Farebrother, G. (2012). Australia's no-take marine protected areas: Appropriate conservation or inappropriate management of fishing? *Marine Policy*, 36(5), 1064– 1071. https://doi.org/10.1016/j.marpol.2012.02.024
- Kellermann, V., Chown, S. L., Schou, M. F., Aitkenhead, I., Janion-Scheepers, C., Clemson, A., Scott, M. T., & Sgrò, C. M. (2019). Comparing thermal performance curves across traits: How consistent are they? *Journal of Experimental Biology*, 222(11). https://doi.org/10.1242/jeb.193433
- Kenkel, C. D., Meyer, E., & Matz, M. V. (2013). Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. *Molecular Ecology*, 22(16), 4322–4334. https://doi.org/10.1111/mec.12390
- Kenkel, C. D., Setta, S. P., & Matz, M. V. (2015). Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. *Heredity*, 115(6), 509–516. https://doi.org/10.1038/hdy.2015.52
- Kenkel, C. D., Sheridan, C., Leal, M. C., Bhagooli, R., Castillo, K. D., Kurata, N., Mcginty, E., Goulet, T. L., & Matz, M. V. (2014). Diagnostic gene expression biomarkers of coral thermal stress. *Molecular Ecology Resources*, 14(4), 667–678. https://doi.org/10.1111/1755-0998.12218
- Kenkel, C.D., & Matz, M. V. (2016). Gene expression plasticity as a mechanism of coral adaptation to a variable environment. *Nature Ecology & Evolution*, 1. https://doi.org/10.1038/s41559-016-0014

- Kenkel, Carly D., Sheridan, C., Leal, M. C., Bhagooli, R., Castillo, K. D., Kurata, N., Mcginty, E., Goulet, T. L., & Matz, M. V. (2013). Diagnostic gene expression biomarkers of coral thermal stress. *Molecular Ecology Resources*, 14(4), 667–678. https://doi.org/10.1111/1755-0998.12218
- Kenny, B., Preuss, C., & McPhee, A. (2022). ED50. In *StatPearls*. https://www.ncbi.nlm.nih.gov/books/NBK538269/
- Kim, K. S., Chou, H., Funk, D. H., Jackson, J. K., Sweeney, B. W., & Buchwalter, D. B. (2017). Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. *Journal of Experimental Biology*, 220(14), 2598–2605. https://doi.org/10.1242/jeb.156919
- Kingsolver, J. G., Diamond, S. E., & Buckley, L. B. (2013). Heat stress and the fitness consequences of climate change for terrestrial ectotherms. *Functional Ecology*, 27(6), 1415–1423. https://doi.org/10.1111/1365-2435.12145
- Kingsolver, J. G., & Gomulkiewicz, R. (2003). Environmental Variation and Selection on Performance Curves. *Integrative and Comparative Biology*, 43(3), 470–477. https://doi.org/10.1093/icb/43.3.470
- Kingsolver, J. G., & Woods, H. A. (2016). Beyond thermal performance curves: Modeling timedependent effects of thermal stress on ectotherm growth rates. *American Naturalist*, 187(3), 283–294. https://doi.org/10.1086/684786
- Kirk, N. L., Howells, E. J., Abrego, D., Burt, J. A., & Meyer, E. (2018). Genomic and transcriptomic signals of thermal tolerance in heat-tolerant corals (Platygyra daedalea) of the Arabian/Persian Gulf. *Molecular Ecology*, 27(24), 5180–5194. https://doi.org/10.1111/mec.14934
- Klepac, C. N., & Barshis, D. J. (2022). High-resolution in situ thermal metrics coupled with acute heat stress experiments reveal differential coral bleaching susceptibility. *Coral Reefs*, 41(4), 1045–1057. https://doi.org/10.1007/s00338-022-02276-1
- Kleypas, J., Allemand, D., Anthony, K., Baker, A. C., Beck, M. W., Hale, L. Z., Hilmi, N., Hoegh-Guldberg, O., Hughes, T., Kaufman, L., Kayanne, H., Magnan, A. K., Mcleod, E., Mumby, P., Palumbi, S., Richmond, R. H., Rinkevich, B., Steneck, R. S., Voolstra, C. R., ... Gattuso, J. P. (2021). Designing a blueprint for coral reef survival. *Biological Conservation*, 257, 109107. https://doi.org/10.1016/j.biocon.2021.109107
- Knowlton, N. (2001). The future of coral reefs. *Proceedings of the National Academy of Sciences of the United States of America*, 98(10), 5419–5425. https://doi.org/10.1073/pnas.091092998
- Krasowska, J., Pierzchała, K., Bzowska, A., Forró, L., Sienkiewicz, A., & Wielgus-kutrowska, B. (2021). Chromophore of an enhanced green fluorescent protein can play a photoprotective role due to photobleaching. *International Journal of Molecular Sciences*, 22(16). https://doi.org/10.3390/ijms22168565
- Krueger, T., Hawkins, T. D., Becker, S., Pontasch, S., Dove, S., Hoegh-Guldberg, O., Leggat, W., Fisher, P. L., & Davy, S. K. (2015). Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. *Comparative Biochemistry and Physiology -Part A*: *Molecular and Integrative Physiology*, 190, 15–25. https://doi.org/10.1016/j.cbpa.2015.08.012
- Lachs, L., Humanes, A., Pygas, D. R., Bythell, J. C., Mumby, P. J., Ferrari, R., Figueira, W. F., Beauchamp, E., East, H. K., Edwards, A. J., Golbuu, Y., Martinez, H. M., Sommer, B., van der Steeg, E., & Guest, J. R. (2023). No apparent trade-offs associated with heat tolerance in a reefbuilding coral. *Commun*, 6(400). https://doi.org/https://doi.org/10.1038/s42003-023-04758-6

- LaJeunesse, T. C., Reyes-Bonilla, H., & Warner, M. E. (2007). Spring "bleaching" among Pocillopora in the Sea of Cortez, Eastern Pacific. *Coral Reefs*, 26(2), 265–270. https://doi.org/10.1007/s00338-006-0189-3
- LaJeunesse, Todd C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., & Santos, S. R. (2018). Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. *Current Biology*, 28(16), 2570-2580.e6. https://doi.org/10.1016/j.cub.2018.07.008
- Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559. https://doi.org/10.1186/1471-2105-9-559
- Langfelder, P., & Horvath, S. (2023). WGCNA: Weighted Correlated Network Analysis. http://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
- Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature Methods*, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
- Latimer, C. A. L., Foley, B. R., & Chenoweth, S. F. (2015). Connecting thermal performance curve variation to the genotype: A multivariate QTL approach. *Journal of Evolutionary Biology*, 28(1), 155–168. https://doi.org/10.1111/jeb.12552
- Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. ., Connors, S. ., Denton, F., Diongue-Niang, A., Dodman, D., Garshagen, M., Geden, O., Hayward, B., ... Zommers, Z. (2023). Synthesis Report of the IPCC Sixth Assessment Report (AR6). In *IPCC*. https://report.ipcc.ch/ar6syr/pdf/IPCC AR6 SYR LongerReport.pdf
- Leggat, W., Heron, S. F., Fordyce, A., Suggett, D. J., & Ainsworth, T. D. (2022). Experiment Degree Heating Week (eDHW) as a novel metric to reconcile and validate past and future global coral bleaching studies. *Journal of Environmental Management*, 301(October 2021), 113919. https://doi.org/10.1016/j.jenvman.2021.113919
- Leggat, W., Seneca, F. O., Wasmund, K., Ukani, L., Yellowlees, D., & Ainsworth, T. D. (2011). Differential Responses of the Coral Host and Their Algal Symbiont to Thermal Stress. *PLoS ONE*, 6(10), e26687. https://doi.org/10.1371/journal.pone.0026687
- Lenth, R. (2023). *emmeans: Estimated Marginal Means, ak Least-Squares Means* (1.8.1-1). https://cran.r-project.org/package=emmeans
- Leuzinger, S., Willis, B. L., & Anthony, K. R. N. (2012). Energy allocation in a reef coral under varying resource availability. *Marine Biology*, 159(1), 177–186. https://doi.org/10.1007/s00227-011-1797-1
- Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics*, 23(323). https://doi.org/10.1186/1471-2105-12-323
- Licthenthaler, H. K. (1987). Chlorophylls and Carotenoids Pigments of Photosynthetic Biomembranes. *Methods in Enzymology*, 148, 350–382.
- Liew, Y. J., Aranda, M., & Voolstra, C. R. (2016). Reefgenomics.Org a repository for marine genomics data. *Database*, 2016. https://doi.org/https://doi.org/10.1093/database/baw152
- Liggins, L., Treml, E. A., & Riginos, C. (2019). Seascape Genomics: Contextualizing Adaptive and Neutral Genomic Variation in the Ocean Environment. In M. F. Oleksiak & O. Rajora (Eds.), *Population Genomics: Marine Organisms* (pp. 171–218). Spinger. https://doi.org/https://doi.org/10.1007/13836_2019_68

Lirman, D., Schopmeyer, S., Manzello, D., Gramer, L. J., Precht, W. F., Muller-Karger, F., Banks, K.,

Barnes, B., Bartels, E., Bourque, A., Byrne, J., Donahue, S., Duquesnel, J., Fisher, L., Gilliam, D., Hendee, J., Johnson, M., Maxwell, K., McDevitt, E., ... Thanner, S. (2011). Severe 2010 cold-water event caused unprecedented mortality to corals of the Florida reef tract and reversed previous survivorship patterns. *PLoS ONE*, *6*(8). https://doi.org/10.1371/journal.pone.0023047

- Logan, C. A., Dunne, J. P., Eakin, C. M., & Donner, S. D. (2014). Incorporating adaptive responses into future projections of coral bleaching. *Global Change Biology*, 20(1), 125–139. https://doi.org/10.1111/gcb.12390
- Lohr, K. E., Camp, E. F., Kuzhiumparambil, U., Lutz, A., Leggat, W., Patterson, J. T., & Suggett, D. J. (2019). Resolving coral photoacclimation dynamics through coupled photophysiological and metabolomic profiling. *Journal of Experimental Biology*, 222(8). https://doi.org/10.1242/jeb.195982
- López-Maury, L., Marguerat, S., & Bähler, J. (2008). Tuning gene expression to changing environments: From rapid responses to evolutionary adaptation. *Nature Reviews Genetics*, 9(8), 583–593. https://doi.org/10.1038/nrg2398
- Lough, J. M., Anderson, K. D., & Hughes, T. P. (2018). Increasing thermal stress for tropical coral reefs: 1871-2017. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-24530-9
- Louis, Y. D., Bhagooli, R., Kenkel, C. D., Baker, A. C., & Dyall, S. D. (2017). Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. *Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology*, 191, 63–77. https://doi.org/10.1016/j.cbpc.2016.08.007
- Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8
- Loya, Y., Sakai, K., Nakano, Y., & Woesik, R. Van. (2001). Coral bleaching: the winners and the losers. *Ecology Letters*, *4*, 122–131. https://doi.org/10.1046/j.1461-0248.2001.00203.x
- Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R Package for Assessment, Comparison and Testing of Statistical Models. *Journal of Open Source Software*, 6(60), 3139. https://doi.org/10.21105/joss.03139
- Lukoschek, V., Riginos, C., & van Oppen, M. J. H. (2016). Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef. *Molecular Ecology*, *25*(13), 3065–3080. https://doi.org/https://doi.org/10.1111/mec.13649
- Lundgren, P., Vera, J. C., Peplow, L., Manel, S., & van Oppen, M. J. H. (2013). Genotype environment correlations in corals from the Great Barrier Reef. *BMC Genetics*, 14(1), 9. https://doi.org/10.1186/1471-2156-14-9
- Lutz, A., Raina, J. B., Motti, C. A., Miller, D. J., & Van Oppen, M. J. H. (2015). Host coenzyme Q redox state is an early biomarker of thermal stress in the coral Acropora millepora. *PLoS ONE*, *10*(10), 1–19. https://doi.org/10.1371/journal.pone.0139290
- Macadam, A., Nowell, C. J., & Quigley, K. (2021). Machine learning for the fast and accurate assessment of fitness in coral early life history. *Remote Sensing*, *13*(16), 1–17. https://doi.org/10.3390/rs13163173
- Madin, J. S., Baird, A. H., Dornelas, M., & Connolly, S. R. (2014). Mechanical vulnerability explains size-dependent mortality of reef corals. *Ecology Letters*, 17(8), 1008–1015. https://doi.org/10.1111/ele.12306
- Madin, J. S., Hoogenboom, M. O., Connolly, S. R., Darling, E. S., Falster, D. S., Huang, D., Keith, S. A., Mizerek, T., Pandolfi, J. M., Putnam, H. M., & Baird, A. H. (2016). A Trait-Based Approach

to Advance Coral Reef Science. *Trends in Ecology and Evolution*, *31*(6), 419–428. https://doi.org/10.1016/j.tree.2016.02.012

- Magalon, H., Flot, J. F., & Baudry, E. (2007). Molecular identification of symbiotic dinoflagellates in Pacific corals in the genus Pocillopora. *Coral Reefs*, 26(3), 551–558. https://doi.org/10.1007/s00338-007-0215-0
- Magney, T. S., Barnes, M. L., & Yang, X. (2020). On the Covariation of Chlorophyll Fluorescence and Photosynthesis Across Scales. *Geophysical Research Letters*, 47(23), 1–7. https://doi.org/10.1029/2020GL091098
- Magozzi, S., & Calosi, P. (2015). Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming. *Global Change Biology*, *21*(1), 181–194. https://doi.org/10.1111/gcb.12695
- Maor-Landaw, K., & Levy, O. (2016). Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. *PeerJ*, 2016(3). https://doi.org/10.7717/peerj.1814
- Marhoefer, S. R., Zenger, K. R., Strugnell, J. M., Logan, M., van Oppen, M. J. H., Kenkel, C. D., & Bay, L. K. (2021). Signatures of Adaptation and Acclimatization to Reef Flat and Slope Habitats in the Coral Pocillopora damicornis. *Frontiers in Marine Science*, 8(September). https://doi.org/10.3389/fmars.2021.704709
- Marshall, P., & Baird, A. (2000). Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. *Coral Reefs*, *19*, 155–163. https://doi.org/https://doi.org/10.1007/s003380000086
- Marzonie, M. R., Bay, L. K., Bourne, D. G., Hoey, A. S., Matthews, S., Nielsen, J. J. V, & Harrison, H. B. (2022). *The effects of marine heatwaves on acute heat tolerance in corals*. *August*, 1–13. https://doi.org/10.1111/gcb.16473
- Mason, R. A. B., Skirving, W. J., & Dove, S. G. (2020). Integrating physiology with remote sensing to advance the prediction of coral bleaching events. *Remote Sensing of Environment*, 246(February), 111794. https://doi.org/10.1016/j.rse.2020.111794
- Matias, A. M. A., Popovic, I., Thia, J. A., Cooke, I. R., Torda, G., Lukoschek, V., Bay, L. K., Kim, S. W., & Riginos, C. (2022). Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef. *Evolutionary Applications, January*, 1–18. https://doi.org/10.1111/eva.13435
- Matz, M. V., Treml, E. A., Aglyamova, G. V., & Bay, L. K. (2018). Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. *PLoS Genetics*, 14(4), 1–19. https://doi.org/10.1371/journal.pgen.1007220
- Matz, M. V., Treml, E. A., & Haller, B. C. (2020). Estimating the potential for coral adaptation to global warming across the Indo-West Pacific. *Global Change Biology*, 26(6), 3473–3481. https://doi.org/10.1111/gcb.15060
- Mayfield, A. B., Chan, P. H., Putnam, H. M., Chen, C. S., & Fan, T. Y. (2012). The effects of a variable temperature regime on the physiology of the reef-building coral Seriatopora hystrix: Results from a laboratory-based reciprocal transplant. *Journal of Experimental Biology*, 215(23), 4183–4195. https://doi.org/10.1242/jeb.071688
- Maynard, J. A., Anthony, K. R. N., Marshall, P. A., & Masiri, I. (2008). Major bleaching events can lead to increased thermal tolerance in corals. *Marine Biology*, 155(2), 173–182. https://doi.org/10.1007/s00227-008-1015-y
- McClanahan, T. R. (2022). Coral responses to climate change exposure. *Environmental Research Letters*, *17*(7). https://doi.org/10.1088/1748-9326/ac7478

- McClanahan, T. R., Baird, A. H., Marshall, P. A., & Toscano, M. A. (2004). Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. *Marine Pollution Bulletin*, 48(3–4), 327–335. https://doi.org/10.1016/j.marpolbul.2003.08.024
- McClanahan, T R, Ateweberhan, M., Muhando, C., Maina, J., & Mohammed, S. M. (2007). Climate change and spatio-temporal variation in seawater temperature effects on coral bleaching and mortality in East Africa. *Ecological Monographs*, 77(4), 503–525. https://doi.org/10.1890/06-1182.1
- McClanahan, Tim R., Donner, S. D., Maynard, J. A., MacNeil, M. A., Graham, N. A. J., Maina, J., Baker, A. C., Alemu I., J. B., Beger, M., Campbell, S. J., Darling, E. S., Eakin, C. M., Heron, S. F., Jupiter, S. D., Lundquist, C. J., McLeod, E., Mumby, P. J., Paddack, M. J., Selig, E. R., & van Woesik, R. (2012). Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. *PLoS ONE*, 7(8). https://doi.org/10.1371/journal.pone.0042884
- McClanahan, Timothy R., Maina, J. M., Darling, E. S., Guillaume, M. M. M., Muthiga, N. A., D'agata, S., Leblond, J., Arthur, R., Jupiter, S. D., Wilson, S. K., Mangubhai, S., Ussi, A. M., Humphries, A. T., Patankar, V., Shedrawi, G., Julius, P., Ndagala, J., & Grimsditch, G. (2020). Large geographic variability in the resistance of corals to thermal stress. *Global Ecology and Biogeography*, 29(12), 2229–2247. https://doi.org/10.1111/geb.13191
- McLachlan, R. H., Dobson, K. L., Schmeltzer, E. R., Thurber, R. V., & Grottoli, A. G. (2021). A review of coral bleaching specimen collection, preservation, and laboratory processing methods. *PeerJ*, *9*, 1–21. https://doi.org/10.7717/peerj.11763
- McLachlan, R. H., Price, J. T., Solomon, S. L., & Grottoli, A. G. (2020). Thirty years of coral heatstress experiments: a review of methods. *Coral Reefs*, 39(4), 885–902. https://doi.org/10.1007/s00338-020-01931-9
- McLeod, I. M., Hein, M. Y., Babcock, R., Bay, L., Bourne, D. G., Cook, N., Doropoulos, C., Gibbs, M., Harrison, P., Lockie, S., van Oppen, M. J. H., Mattocks, N., Page, C. A., Randall, C. J., Smith, A., Smith, H. A., Suggett, D. J., Taylor, B., Vella, K. J., ... Boström-Einarsson, L. (2022). Coral restoration and adaptation in Australia: The first five years. *PloS One*, *17*(11), e0273325. https://doi.org/10.1371/journal.pone.0273325
- McManus, L. C., Forrest, D. L., Tekwa, E. W., Schindler, D. E., Colton, M. A., Webster, M. M., Essington, T. E., Palumbi, S. R., Mumby, P. J., & Pinsky, M. L. (2021). Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. *Global Change Biology*, 27(18), 4307–4321. https://doi.org/10.1111/gcb.15725
- Mellin, C., Matthews, S., Anthony, K. R. N., Brown, S. C., Caley, M. J., Johns, K. A., Osborne, K., Puotinen, M., Thompson, A., Wolff, N. H., Fordham, D. A., & MacNeil, M. A. (2019). Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. *Global Change Biology*, 25(7), 2431–2445. https://doi.org/10.1111/gcb.14625
- Meyer, E., Aglyamova, G. V., & Matz, M. V. (2011). Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. *Molecular Ecology*, 20(17), 3599–3616. https://doi.org/10.1111/j.1365-294X.2011.05205.x
- Middlebrook, R., Anthony, K. R. N., Hoegh-Guldberg, O., & Dove, S. (2010). Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. *The Journal of Experimental Biology*, *213*(Pt 7), 1026–1034. https://doi.org/10.1242/jeb.031633

- Morgan, M. B., Vogelien, D. L., & Snell, T. W. (2001). Assessing coral stress responses using molecular biomarkers of gene transcription. *Environmental Toxicology and Chemistry*, 20(3), 537–543. https://doi.org/10.1002/etc.5620200312
- Morikawa, M. K., & Palumbi, S. R. (2019). Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. *Proceedings of the National Academy of Sciences of the United States of America*, 116(21), 10586–10591. https://doi.org/10.1073/pnas.1721415116
- Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G., & Bay, L. K. (2019). Nutrient Availability and Metabolism Affect the Stability of Coral–Symbiodiniaceae Symbioses. *Trends* in *Microbiology*, 27(8), 678–689. https://doi.org/10.1016/j.tim.2019.03.004
- Muller, E. M., Bartels, E., & Baums, I. B. (2018). Bleaching causes loss of disease resistance within the threatened coral species acropora cervicornis. *ELife*, 7, 1–20. https://doi.org/10.7554/eLife.35066
- Muñiz-Castillo, A. I., Rivera-Sosa, A., Chollett, I., Eakin, C. M., Andrade-Gómez, L., McField, M., & Arias-González, J. E. (2019). Three decades of heat stress exposure in Caribbean coral reefs: a new regional delineation to enhance conservation. *Scientific Reports*, 9(1), 1–14. https://doi.org/10.1038/s41598-019-47307-0
- Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. *Methods in Ecology and Evolution*, 4(2), 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
- Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C., & Wild, C. (2009). Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. *Coral Reefs*, *28*(1), 109–117. https://doi.org/10.1007/s00338-008-0459-3
- Newton, J. R., Smith-Keune, C., & Jerry, D. R. (2010). Thermal tolerance varies in tropical and subtropical populations of barramundi (Lates calcarifer) consistent with local adaptation. *Aquaculture*, 308(SUPPL.1), S128–S132. https://doi.org/10.1016/j.aquaculture.2010.05.040
- Nielsen, J. J. V., Kenkel, C. D., Bourne, D. G., Despringhere, L., Mocellin, V. J. L., & Bay, L. K. (2020). Physiological effects of heat and cold exposure in the common reef coral Acropora millepora. *Coral Reefs*, 39(2), 259–269. https://doi.org/10.1007/s00338-019-01881-x
- Nielsen, J. J. V., Matthews, G., Frith, K. R., Harrison, H. B., Marzonie, M. R., Slaughter, K. L., Suggett, D. J., & Bay, L. K. (2022). Experimental considerations of acute heat stress assays to quantify coral thermal tolerance. *Scientific Reports*, 12(16831), 1–13. https://doi.org/10.1038/s41598-022-20138-2
- Nilsson-Örtman, V., Stoks, R., De Block, M., & Johansson, F. (2012). Generalists and specialists along a latitudinal transect: Patterns of thermal adaptation in six species of damselflies. *Ecology*, 93(6), 1340–1352. https://doi.org/10.1890/11-1910.1
- Nitschke, M.R, Rossetn, S. ., Oakley, C. A., Gardner, S. G., Camp, E. F., Suggett, D. J., & Davy, S. K. (2022). The diversity and ecology of Symbiodiniaceae: A traits-based review. Advances in Marine Biology, 92, 55–127. https://doi.org/https://doi.org/10.1016/bs.amb.2022.07.001.
- Nitschke, Matthew R., Gardner, S. G., Goyen, S., Fujise, L., Camp, E. F., Ralph, P. J., & Suggett, D. J. (2018). Utility of photochemical traits as diagnostics of thermal tolerance amongst great barrier reef corals. *Frontiers in Marine Science*, 5(FEB), 1–18. https://doi.org/10.3389/fmars.2018.00045
- Nolan, M. K. B., Schmidt-Roach, S., Davis, A. R., Aranda, M., & Howells, E. J. (2021). Widespread bleaching in the One Tree Island lagoon (Southern Great Barrier Reef) during record-breaking temperatures in 2020. *Environmental Monitoring and Assessment*, 193(9). https://doi.org/10.1007/s10661-021-09330-5

- Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. ., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., & Wagner, H. (2020). vegan (2.5-7). https://cran.r-project.org/web/packages/vegan/vegan.pdf
- Okubo, N., Motokawa, T., & Omori, M. (2007). When fragmented coral spawn? Effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. *Marine Biology*, *151*(1), 353–363. https://doi.org/10.1007/s00227-006-0490-2
- Oliver, T. A., & Palumbi, S. R. (2011). Do fluctuating temperature environments elevate coral thermal tolerance? *Coral Reefs*, 30(2), 429–440. https://doi.org/10.1007/s00338-011-0721-y
- Ondov, B., Bergman, N., & Phillippy, A. (2011). Interactive metagenomic visualization in a Web browser. *BMC Bioinformatics*, *12*(1), 385. https://github.com/marbl/Krona/wiki
- Orejas, C., Taviani, M., Ambroso, S., Andreou, V., Bilan, Bo, M., Brooke, S., Buhl-Mortensen, P., Cordes, E., Dominguez-Carrió, Ferrier-Pagès, C., Godinho, A., Gori, A., Grinyó, J., Gutiérrez-Zárate, C., Hennige, S., Jiménez, C., Larsson, A. I., Lartaud, F., ... Carreiro-Silva, M. (2019). 38 Cold-Water Coral in Aquaria: A Focus on the Mediterranean. In C. Orejas & C. Jimenes (Eds.), *Mediterranean Cold-Water Corals: Past, Present and Future*. Springer. https://doi.org/10.1007/978-3-319-91608-8_38
- Osman, E. O., Smith, D. J., Ziegler, M., Kürten, B., Conrad, C., El-Haddad, K. M., Voolstra, C. R., & Suggett, D. J. (2018). Thermal refugia against coral bleaching throughout the northern Red Sea. *Global Change Biology*, *24*(2), e474–e484. https://doi.org/10.1111/gcb.13895
- Page, C. A., Giuliano, C., Bay, L. K., & Randall, C. J. (2023). High survival following bleaching highlights the resilience of a highly disturbed region of the Great Barrier Reef. *Ecosphere*, 14(2), e4280. https://doi.org/10.1002/ecs2.4280
- Palacio-Castro, A. M., Smith, T. B., Brandtneris, V., Snyder, G. A., van Hooidonk, R., Mate, J. ., Manzello, D., Glynn, P. W., Fong, P., & Baker, A. C. (2022). Increased dominance of heattolerant symbionts creates resilient coral reefs in near-term ocean warming. *Proceeding of the National Academy of Sciences of the United Stated of America*, 120(8), e2202388120. https://doi.org/https://doi.org/10.1073/pnas.2202388120
- Pallarés, S., Arribas, P., Céspedes, V., Millán, A., & Velasco, J. (2012). Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. *Ecological Entomology*, 37(6), 508–520. https://doi.org/10.1111/j.1365-2311.2012.01393.x
- Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N., & Bay, R. A. (2014). Mechanisms of reef resilience. Science, 344(6186), 895–899.
- Palumbi, Stephen R, Barshis, D. J., Traylor-Knowles, N., & Bay, R. A. (2014). Mechanisms of reef coral resistance to future climate change. *Science*, 344(6186), 895–899.
- Parkinson, J. E., Baker, A. C., Baums, I. B., Davies, S. W., Grottoli, A. G., Kitchen, S. A., Matz, M. V., Miller, M. W., Shantz, A. A., & Kenkel, C. D. (2020). Molecular tools for coral reef restoration: Beyond biomarker discovery. *Conservation Letters*, 13(1), 1–12. https://doi.org/10.1111/conl.12687
- Pausch, R. E., Williams, D. E., & Miller, M. W. (2018). Impacts of fragment genotype, habitat, and size on outplanted elkhorn coral success under thermal stress. *Marine Ecology Progress Series*, 592, 109–117. https://doi.org/10.3354/meps12488
- Pavlova, A., Beheregaray, L. B., Coleman, R., Gilligan, D., Harrisson, K. A., Ingram, B. A., Kearns, J., Lamb, A. M., Lintermans, M., Lyon, J., Nguyen, T. T. T., Sasaki, M., Tonkin, Z., Yen, J. D. L., & Sunnucks, P. (2017). Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: A call for assisted gene flow. *Evolutionary*

Applications, 10(6), 531-550. https://doi.org/10.1111/eva.12484

- Payet, S. D., Pratchett, M. S., Saenz-Agudelo, P., Berumen, M. L., DiBattista, J. D., & Harrison, H. B. (2022). Demographic histories shape population genomics of the common coral grouper (Plectropomus leopardus). *Evolutionary Applications*, 15(8), 1221–1235. https://doi.org/10.1111/eva.13450
- Petit, R. J., & Excoffier, L. (2009). Gene flow and species delimitation. *Trends in Ecology and Evolution*, 24(7), 386–393. https://doi.org/10.1016/j.tree.2009.02.011
- Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2017). nlme: Linear and Nonlinear Mixed Effects Models (R package version 3.1-131). https://cran.r-project.org/package=nlme
- Pinzón, J. H. C., Dornberger, L., Beach-Letendre, J., Weil, E., & Mydlarz, L. D. (2014). The link between immunity and life history traits in scleractinian corals. *PeerJ*, 2014(1), 1–16. https://doi.org/10.7717/peerj.628
- Pochon, X., Pawlowski, J., Zaninetti, L., & Rowan, R. (2001). High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. *Marine Biology*, 139(6), 1069–1078. https://doi.org/10.1007/s002270100674
- Pörtner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J., Rama, B., & Weyer, N. (2019). *IPCC Special Report on the Ocean and Cryosphere in a Changing Cimate.*
- Pratchett, M. S., Caballes, C. F., Newman, S. J., Wilson, S. K., Messmer, V., & Pratchett, D. J. (2020). Bleaching susceptibility of aquarium corals collected across northern Australia. *Coral Reefs*, 39(3), 663–673. https://doi.org/10.1007/s00338-020-01939-1
- Pratchett, M. S., McCowan, D., Maynard, J. A., & Heron, S. F. (2013). Changes in Bleaching Susceptibility among Corals Subject to Ocean Warming and Recurrent Bleaching in Moorea, French Polynesia. *PLoS ONE*, 8(7), 1–10. https://doi.org/10.1371/journal.pone.0070443
- Precoda, K., Hardt, M. J., Baird, A. H., & Madin, J. S. (2020). Tissue biomass trades off with growth but not reproduction in corals. *Coral Reefs*, *39*(4), 1027–1037. https://doi.org/10.1007/s00338-020-01925-7
- Qin, G., Johnson, C., Zhang, Y., Zhang, H., Yin, J., Miller, G., Turingan, R. G., Guisbert, E., & Lin, Q. (2018). Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation. *Biology Open*, 7(6), 1–7. https://doi.org/10.1242/bio.032888
- Quigley, K. M., Randall, C. J., van Oppen, M. J. H., & Bay, L. K. (2020). Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. *Biology Open*, 9, 1–11. https://doi.org/10.1242/BIO.047316
- Quigley, K., & van Oppen, M. J. (2022). Predictive models for the selection of thermally tolerant corals based on offspring survival. *Nature Communications*, *13*(1), 1–13. https://doi.org/10.1038/s41467-022-28956-8
- Quigley, K.M., Davies, S. W., Kenkel, C. D., Willis, B. L., Matz, M. V., & Bay, L. K. (2014). Deep-Sequencing Method for Quantifying Background Abundances of Symbiodinium Types: Exploring the Rare Symbiodinium Biosphere in Reef-Building Corals. *PLoS ONE*, 9(4). https://doi.org/10.1371/journal.pone.0094297
- Quigley, Kate M., Bay, L. K., & van Oppen, M. J. (2020). Genome-wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. *Molecular Ecology*, 29, 2176–2188. https://doi.org/10.1111/mec.15482

Quigley, Kate M., Bay, L. K., & Willis, B. L. (2017). Temperature and water quality-related patterns

in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus Acropora. *Frontiers in Marine Science*, 4(DEC), 1–17. https://doi.org/10.3389/fmars.2017.00401

- Quigley, Kate M., Bay, L. K., & Willis, B. L. (2018). Leveraging new knowledge of Symbiodinium community regulation in corals for conservation and reef restoration. *Marine Ecology Progress Series*, 600, 245–253. https://doi.org/10.3354/meps12652
- Quigley, Kate M., Hein, M., & Suggett, D. J. (2022). Translating the 10 golden rules of reforestation for coral reef restoration. *Conservation Biology*, 36(4), 1–8. https://doi.org/10.1111/cobi.13890
- Quigley, Kate M., Marzonie, M., Ramsby, B., Abrego, D., Milton, G., van Oppen, M. J. H., & Bay, L. K. (2021). Variability in Fitness Trade-Offs Amongst Coral Juveniles With Mixed Genetic Backgrounds Held in the Wild. *Frontiers in Marine Science*, 8(February), 1–12. https://doi.org/10.3389/fmars.2021.636177
- Quigley, Kate M., Ramsby, B., Laffy, P., Harris, J., Mocellin, V. J. L., & Bay, L. K. (2022). Symbioses are restructured by repeated mass coral bleaching. *Science Advances*, 8(49), eabq8349. https://doi.org/10.1126/sciadv.abq8349
- Quigley, Kate M, Bay, L. K., & van Oppen, M. J. H. Van. (2019). The active spread of adaptive variation for reef resilience. *Ecology and Evolution*, 1–14. https://doi.org/10.1002/ece3.5616
- R Core Team. (2020). *R: A language and environment for statistical computing* (3.3.2). Foundation for Statistical Computing.
- R Core Team. (2022). R: A language and environment for statistical computing (4.2.1). Foundation for Statistical Computing. https://www.r-project.org/
- Radchuk, V., Reed, T., Teplitsky, C., van de Pol, M., Charmantier, A., Hassall, C., Adamík, P., Adriaensen, F., Ahola, M. P., Arcese, P., Miguel Avilés, J., Balbontin, J., Berg, K. S., Borras, A., Burthe, S., Clobert, J., Dehnhard, N., de Lope, F., Dhondt, A. A., ... Kramer-Schadt, S. (2019). Adaptive responses of animals to climate change are most likely insufficient. *Nature Communications*, *10*(1), 1–14. https://doi.org/10.1038/s41467-019-10924-4
- Rädecker, N., Pogoreutz, C., Gegner, H. M., Cárdenas, A., & Roth, F. (2021). Heat stress destabilizes symbiotic nutrient cycling in corals. *Proceeding of the National Academy of Sciences of the United Stated of America*, 118(5), e2022653118. https://doi.org/10.1073/pnas.2022653118
- Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R., & Liu, P. (2017). Less than 2 °c warming by 2100 unlikely. *Nature Climate Change*, 7(9), 637–641. https://doi.org/10.1038/nclimate3352
- Ralph, P. J., & Gademann, R. (2005). Rapid light curves: A powerful tool to assess photosynthetic activity. *Aquatic Botany*, 82(3), 222–237. https://doi.org/10.1016/j.aquabot.2005.02.006
- ReFuGe 2020 Consortium. (2015). The ReFuGe 2020 Consortium-using "omics" approaches to explore the adaptability and resilience of coral holobionts to environmental change. *Frontiers in Marine Science*, 2(SEP). https://doi.org/10.3389/fmars.2015.00068
- Richter-Boix, A., Katzenberger, M., Duarte, H., Quintela, M., Tejedo, M., & Laurila, A. (2015). Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. *Evolution*, 69(8), 2210–2226. https://doi.org/10.1111/evo.12711
- Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. *Photosynthesis Research*, *89*(1), 27–41. https://doi.org/10.1007/s11120-006-9065-9
- Ritz, C., Baty, F., Streibig, J., & Gerhard, D. (2015). Doese-Response Analysis Using R. *PLoS ONE*, 30(10). https://doi.org/10.1371/journal.pone.0146021.

- Ros, M., Suggett, D. J., Edmondson, J., Haydon, T., Hughes, D. J., Kim, M., Guagliardo, P., Bougoure, J., Pernice, M., Raina, J. B., & Camp, E. F. (2021). Symbiont shuffling across environmental gradients aligns with changes in carbon uptake and translocation in the reefbuilding coral Pocillopora acuta. *Coral Reefs*, 40(2), 595–607. https://doi.org/10.1007/s00338-021-02066-1
- Rose, N. H., Bay, R. A., Morikawa, M. K., & Palumbi, S. R. (2018). Polygenic evolution drives species divergence and climate adaptation in corals. *Evolution*, 72(1), 82–94. https://doi.org/10.1111/evo.13385
- Rosset, S., Wiedenmann, J., Reed, A. J., & D'Angelo, C. (2017). Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. *Marine Pollution Bulletin*, 118(1–2), 180–187. https://doi.org/10.1016/j.marpolbul.2017.02.044
- Roth, M. S., & Deheyn, D. D. (2013). Effects of cold stress and heat stress on coral fluorescence in reef-building corals. *Scientific Reports*, *3*, 1421. https://doi.org/10.1038/srep01421
- Roth, M. S., Goericke, R., & Deheyn, D. D. (2012). Cold induces acute stress but heat is ultimately more deleterious for the reef-building coral Acropora yongei. *Scientific Reports*, 2, 240. https://doi.org/10.1038/srep00240
- Rowan, R. (2004). Coral bleaching: thermal adaptation in reef coral symbionts. *Nature*, *430*(7001), 742. https://doi.org/10.1038/430742a
- Ruiz-Jones, L. J., & Palumbi, S. R. (2017). Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. *Science Advances*, *3*(3), 1–11. https://doi.org/10.1126/sciadv.1601298
- Rustamova, S. M., Suleymanova, Z. J., Isgandarova, T. Y., Zulfugarova, S. T., Mammadov, A. C., & Huseynova, I. M. (2019). Identification of Stress Responsive Genes by Using Molecular Markers to Develop Tolerance in Wheat. In M. Hasanuzzaman, K. Nahar, & M. Hossain (Eds.), *Wheat Production in Changing Environments*. Springer. https://doi.org/10.1007/978-981-13-6883-7 16
- Safaie, A., Silbiger, N. J., McClanahan, T. R., Pawlak, G., Barshis, D. J., Hench, J. L., Rogers, J. S., Williams, G. J., & Davis, K. A. (2018). High frequency temperature variability reduces the risk of coral bleaching. *Nature Communications*, 9(1), 1–12. https://doi.org/10.1038/s41467-018-04074-2
- Sampayo, E. M., Ridgway, T., Franceschinis, L., Roff, G., Hoegh-Guldberg, O., & Dove, S. (2016). Coral symbioses under prolonged environmental change: living near tolerance range limits. *Scientific Reports*, 6(November), 36271. https://doi.org/10.1038/srep36271
- Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer. http://lmdvr.r-forge.r-project.org.
- Savary, R., Barshis, D. J., Voolstra, C. R., Cárdenas, A., Evensen, N. R., Banc-Prandi, G., Fine, M., & Meibom, A. (2021). Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. *Proceedings of the National Academy* of Sciences of the United States of America, 118(19). https://doi.org/10.1073/pnas.2023298118
- Sawall, Y., Al-Sofyani, A., Banguera-Hinestroza, E., & Voolstra, C. R. (2014). Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora vertucosa along large-scale nutrient and temperature gradients in the Red Sea. *PLoS ONE*, 9(8), 1–12. https://doi.org/10.1371/journal.pone.0103179
- Saxby, T., Dennison, W. C., & Hoegh-Guldberg, O. (2003). Photosynthetic responses of the coral Montipora digitata to cold temperature stress. *Marine Ecology Progress Series*, 248(April 2017), 85–97. https://doi.org/10.3354/meps248085

- Scharfenstein, H. J., Chan, W. Y., Buerger, P., Humphrey, C., & van Oppen, M. J. H. (2022). Evidence for de novo acquisition of microalgal symbionts by bleached adult corals. *ISME Journal*, 16(6), 1676–1679. https://doi.org/10.1038/s41396-022-01203-0
- Scheufen, T., Krämer, W. E., Iglesias-Prieto, R., & Enríquez, S. (2017). Seasonal variation modulates coral sensibility to heat-stress and explains annual changes in coral productivity. *Scientific Reports*, 7(1), 1–15. https://doi.org/10.1038/s41598-017-04927-8
- Schoepf, V., Grottoli, A. G., Levas, S. J., Aschaffenburg, M. D., Baumann, J. H., Matsui, Y., & Warner, M. E. (2015). Annual coral bleaching and the long-term recovery capacity of coral. *Proceedings of the Royal Society B: Biological Sciences*, 282(1819). https://doi.org/10.1098/rspb.2015.1887
- Schoepf, V., Stat, M., Falter, J. L., & McCulloch, M. T. (2015). Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. *Scientific Reports*, 5(November), 1–14. https://doi.org/10.1038/srep17639
- Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., & Ragg, T. (2006). The RIN: An RNA integrity number for assigning integrity values to RNA measurements. *BMC Molecular Biology*, 7, 1–14. https://doi.org/10.1186/1471-2199-7-3
- Schuback, N., Tortell, P. D., Berman-Frank, I., Campbell, D. A., Ciotti, A., Courtecuisse, E., Erickson, Z. K., Fujiki, T., Halsey, K., Hickman, A. E., Huot, Y., Gorbunov, M. Y., Hughes, D. J., Kolber, Z. S., Moore, C. M., Oxborough, K., Prášil, O., Robinson, C. M., Ryan-Keogh, T. J., ... Varkey, D. R. (2021). Single-Turnover Variable Chlorophyll Fluorescence as a Tool for Assessing Phytoplankton Photosynthesis and Primary Productivity: Opportunities, Caveats and Recommendations. *Frontiers in Marine Science*, 8(July). https://doi.org/10.3389/fmars.2021.690607
- Seebacher, F., Ducret, V., Little, A. G., & Adriaenssens, B. (2015). Generalist–specialist trade-off during thermal acclimation. *Royal Society Open Science*, 2(1). https://doi.org/10.1098/rsos.140251
- Selmoni, O., Rochat, E., Lecellier, G., Berteaux-Lecellier, V., & Joost, S. (2020). Seascape genomics as a new tool to empower coral reef conservation strategies: An example on north-western Pacific Acropora digitifera. *Evolutionary Applications*, 13(8), 1923–1938. https://doi.org/10.1111/eva.12944
- Seneca, F. O., & Palumbi, S. R. (2015). The role of transcriptome resilience in resistance of corals to bleaching. *Molecular Ecology*, 24(7), 1467–1484. https://doi.org/10.1111/mec.13125
- Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. *Plant, Cell and Environment*, 28(3), 269–277. https://doi.org/10.1111/j.1365-3040.2005.01324.x
- Shenkar, N., Fine, M., & Loya, Y. (2005). Size matters: Bleaching dynamics of the coral Oculina patagonica. *Marine Ecology Progress Series*, 294(2001), 181–188. https://doi.org/10.3354/meps294181
- Siebeck, U. E., Marshall, N. J., Klüter, A., & Hoegh-Guldberg, O. (2006). Monitoring coral bleaching using a colour reference card. *Coral Reefs*, 25(3), 453–460. https://doi.org/10.1007/s00338-006-0123-8
- Silverstein, R. N., Cunning, R., & Baker, A. C. (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. *Global Change Biology*, 21(1), 236–249. https://doi.org/10.1111/gcb.12706

- Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., Dong, Y., Harley, C. D. G., Marshall, D. J., Helmuth, B. S., & Huey, R. B. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? *Ecology Letters*, 19(11), 1372–1385. https://doi.org/10.1111/ele.12686
- Sing Wong, A., Vrontos, S., & Taylor, M. L. (2022). An assessment of people living by coral reefs over space and time. *Global Change Biology*, 28(23), 7139–7153. https://doi.org/10.1111/gcb.16391
- Skirving, W., Marsh, B., De La Cour, J., Liu, G., Harris, A., Maturi, E., Geiger, E., & Mark Eakin, C. (2020). Coraltemp and the coral reef watch coral bleaching heat stress product suite version 3.1. *Remote Sensing*, 12(23), 1–10. https://doi.org/10.3390/rs12233856
- Smith-Keune, C., & Van Oppen, M. (2006). Genetic structure of a reef-building coral from thermally distinct environments on the Great Barrier Reef. *Coral Reefs*, 25(3), 493–502. https://doi.org/10.1007/s00338-006-0129-2
- Smith, E. G., D'Angelo, C., Salih, A., & Wiedenmann, J. (2013). Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. *Coral Reefs*, 32(2), 463–474. https://doi.org/10.1007/s00338-012-0994-9
- Smith, G., & Spillman, C. (2019). New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. *Coral Reefs*, 38(5), 1039–1056. https://doi.org/10.1007/s00338-019-01829-1
- Smith, L. W., Barshis, D., & Birkeland, C. (2007). Phenotypic plasticity for skeletal growth, density and calcification of Porites lobata in response to habitat type. *Coral Reefs*, *26*(3), 559–567. https://doi.org/10.1007/s00338-007-0216-z
- Soneson, C., Love, M. I., & M.D., R. (2015). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. *F1000Research*, 4(1521). https://doi.org/https://doi.org/10.12688/f1000research.7563.2
- Song, M., Zhao, J., Wen, H. S., Li, Y., Li, J. F., Li, L. M., & Tao, Y. X. (2019). The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). *PLoS ONE*, 14(5), 1–23. https://doi.org/10.1371/journal.pone.0217133
- Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D., & Staub, F. (2020). Status of Coral Reefs of the World:2020.
- Spady, B. L., Skirving, W. J., Liu, G., De La Cour, J. L., McDonald, C. J., & Manzello, D. P. (2022). Unprecedented early-summer heat stress and forecast of coral bleaching on the Great Barrier Reef, 2021-2022 [version 4]. https://doi.org/https://doi.org/10.12688/f1000research.108724.4
- Starcevic, A., Dunlap, W. C., Cullum, J., Malcolm Shick, J., Hranueli, D., & Long, P. F. (2010). Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching. *PLoS ONE*, 5(11). https://doi.org/10.1371/journal.pone.0013975
- Strader, M. E., & Quigley, K. M. (2022). The role of gene expression and symbiosis in reef-building coral acquired heat tolerance. *Nature Communications*, 13(1), 1–8. https://doi.org/10.1038/s41467-022-32217-z
- Suggett, D. J., Camp, E., Edmondson, J., Boström-Einarsson, L., Ramler, L., Lohr, K., & Patterson, J. T. (2019). Optimizing return-on-effort for coral nursery and outplanting practices to aid restoration of the Great Barrier Reef. *Restoration Ecology*, 27, 683–693. https://doi.org/https://doi.org/10.1111/rec.12916
- Suggett, D. J., Goyen, S., Evenhuis, C., Szabó, M., Pettay, D. T., Warner, M. E., & Ralph, P. J. (2015). Functional diversity of photobiological traits within the genus Symbiodinium appears to

be governed by the interaction of cell size with cladal designation. *New Phytologist*, 208(2), 370–381. https://doi.org/10.1111/nph.13483

- Suggett, D. J., Nitschke, M. R., Hughes, D. J., Bartels, N., Camp, E. F., Dilernia, N., Edmondson, J., Fitzgerald, S., Grima, A., Sage, A., & Warner, M. E. (2022). Toward bio-optical phenotyping of reef-forming corals using Light-Induced Fluorescence Transient-Fast Repetition Rate fluorometry. *Limnology and Oceanography: Methods*. https://doi.org/10.1002/lom3.10479
- Suggett, D. J., & Smith, D. J. (2011). Interpreting the sign of coral bleaching as friend vs. foe. *Global Change Biology*, 17(1), 45–55. https://doi.org/10.1111/j.1365-2486.2009.02155.x
- Suggett, D. J., & Smith, D. J. (2020). Coral bleaching patterns are the outcome of complex biological and environmental networking. *Global Change Biology*, 26(1), 68–79. https://doi.org/10.1111/gcb.14871
- Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G., & van Woesik, R. (2019). A global analysis of coral bleaching over the past two decades. *Nature Communications*, 10(1), 1–5. https://doi.org/10.1038/s41467-019-09238-2
- Sweet, M., Bulling, M., Varshavi, D., Lloyd, G. R., Jankevics, A., Najdekr, L., Weber, R. J. M., Viant, M. R., & Craggs, J. (2021). Species-Specific Variations in the Metabolomic Profiles of Acropora hyacinthus and Acropora millepora Mask Acute Temperature Stress Effects in Adult Coral Colonies. *Frontiers in Marine Science*, 8(March), 1–15. https://doi.org/10.3389/fmars.2021.574292
- Tallarida, R. (1992). Statistical analysis of drug combinations for synergism. *Pain*, 49(1), 93–97. https://doi.org/10.1016/0304-3959(92)90193-F
- Tang, J., Ni, X., Wen, J., Wang, L., Luo, J., & Zhou, Z. (2020). Increased Ammonium Assimilation Activity in the Scleractinian Coral Pocillopora damicornis but Not Its Symbiont After Acute Heat Stress. *Frontiers in Marine Science*, 7(September), 1–10. https://doi.org/10.3389/fmars.2020.565068
- Teague, J., Willans, J., Allen, M. J., Scott, T. B., & Day, J. C. C. (2019). Applied marine hyperspectral imaging; coral bleaching from a spectral viewpoint. *Spectroscopy Europe*, 31(1), 13–17.
- Teixeira, T., Diniz, M., Calado, R., & Rosa, R. (2013). Coral physiological adaptations to air exposure: Heat shock and oxidative stress responses in Veretillum cynomorium. *Journal of Experimental Marine Biology and Ecology*, 439, 35–41. https://doi.org/10.1016/j.jembe.2012.10.010
- Thomas, L., Rose, N. H., Bay, R. A., López, E. H., Morikawa, M. K., Ruiz-Jones, L., & Palumbi, S. R. (2018). Mechanisms of Thermal Tolerance in Reef-Building Corals across a Fine-Grained Environmental Mosaic: Lessons from Ofu, American Samoa. *Frontiers in Marine Science*, 4(February), 1–14. https://doi.org/10.3389/fmars.2017.00434
- Thomas, L., Underwood, J. N., Rose, N. H., Fuller, Z. L., Richards, Z. T., Dugal, L., Grimaldi, C. M., Cooke, I. R., Palumbi, S. R., & Gilmour, J. P. (2022). Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. *Science Advances*, 8(17), 1–12. https://doi.org/10.1126/sciadv.abl9185
- Thompson, R. M., Beardall, J., Beringer, J., Grace, M., & Sardina, P. (2013). Means and extremes: Building variability into community-level climate change experiments. *Ecology Letters*, 16(6), 799–806. https://doi.org/10.1111/ele.12095

Thornton, S., & Richardson, L. . (2022). Coral Reefs. National Geographic.

https://education.nationalgeographic.org/resource/coral-reefs

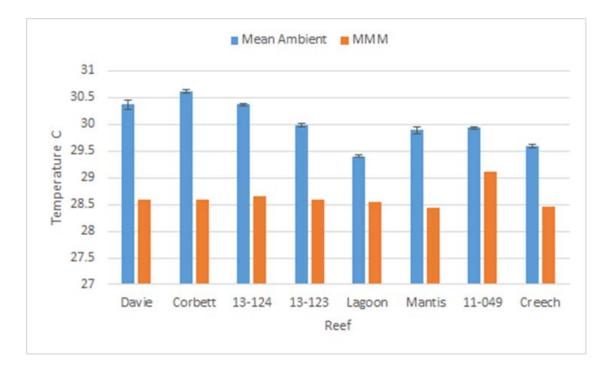
- Tisthammer, K. H., Timmins-Schiffman, E., Seneca, F. O., Nunn, B. L., & Richmond, R. H. (2021). Physiological and molecular responses of lobe coral indicate nearshore adaptations to anthropogenic stressors. *Scientific Reports*, *11*(1), 1–11. https://doi.org/10.1038/s41598-021-82569-7
- Tolosa, I., Treignier, C., Grover, R., & Ferrier-Pagès, C. (2011). Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. *Coral Reefs*, *30*(3), 763–774. https://doi.org/10.1007/s00338-011-0753-3
- Torres, A. F., Valino, D. A. M., & Ravago-Gotanco, R. (2021). Zooxanthellae Diversity and Coral-Symbiont Associations in the Philippine Archipelago: Specificity and Adaptability Across Thermal Gradients. *Frontiers in Marine Science*, 8(October), 1–15. https://doi.org/10.3389/fmars.2021.731023
- Traylor-Knowles, N., Rose, N. H., Sheets, E. A., & Palumbi, S. R. (2017). Early transcriptional responses during heat stress in the coral Acropora hyacinthus. *Biological Bulletin*, 232(2), 91– 100. https://doi.org/10.1086/692717
- Tsang, R. H. L., & Ang, P. (2015). Cold temperature stress and predation effects on corals: their possible roles in structuring a nonreefal coral community. *Coral Reefs*, *34*(1), 97–108. https://doi.org/10.1007/s00338-014-1210-x
- Turnham, K. E., Wham, D. C., Sampayo, E., & LaJeunesse, T. C. (2021). Mutualistic microalgae codiversify with reef corals that acquire symbionts during egg development. *ISME Journal*, 15(11), 3271–3285. https://doi.org/10.1038/s41396-021-01007-8
- van Oppen, M. J.H., Palstra, F. P., Piquet, A. M. T., & Miller, D. J. (2001). Patterns of coraldinoflagellate associations in Acropora: Significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. *Proceedings of the Royal Society B: Biological Sciences*, 268(1478), 1759–1767. https://doi.org/10.1098/rspb.2001.1733
- van Oppen, M. J H, Souter, P., Howells, E. J., Heyward, A., & Berkelmans, R. (2011). Novel genetic diversity through somatic mutations: Fuel for adaptation of reef corals? *Diversity*, 3(3), 405– 423. https://doi.org/10.3390/d3030405
- van Oppen, Madeleine J. H., & Quigley, K. M. (2022). Enhancing corals using assisted evolution. In P. Hutchings, S. Hamylton, & O. Hoegh-Guldberg (Eds.), *Coral Reefs of Australia: Perspectives from Beyond the Water's Edge* (pp. 291–295). CSIRO Publishing.
- van Oppen, Madeleine J H, Oliver, J. K., Putnam, H. M., & Gates, R. D. (2015). Building coral reef resilience through assisted evolution. *Proceedings of the National Academy of Sciences*, 112(8), 1–7. https://doi.org/10.1073/pnas.1422301112
- van Woesik, R., Shlesinger, T., Grottoli, A. G., Toonen, R. J., Thurber, R. V., Warner, Mark, E., Hulver, A. M., Chapron, L., Mclachlan, R. H., Albright, R., Crandall, E., Decarlo, T. M., Donovan, M. ., Eirin-Lopez, J., Harrison, H. B., Heron, S. F., Huang, D., Humanes, A., Krueger, T., ... Zaneveld, J. (2022). Coral-bleaching responses to climate change across biological scales. *Global Change Biology*, 1–22. https://doi.org/10.1111/gcb.16192
- Veal, C. J., Carmi, M., Fine, M., & Hoegh-Guldberg, O. (2010). Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. *Coral Reefs*, 29(4), 893–897. https://doi.org/10.1007/s00338-010-0647-9
- Vidal-Dupiol, J., Harscouet, E., Shefy, D., Toulza, E., Rey, O., Allienne, J. F., Mitta, G., & Rinkevich, B. (2022). Frontloading of stress response genes enhances robustness to environmental change in chimeric corals. *BMC Biology*, 20(1), 1–18.

https://doi.org/10.1186/s12915-022-01371-7

- Voolstra, C. R., Buitrago-López, C., Perna, G., Cárdenas, A., Hume, B. C. C., Rädecker, N., & Barshis, D. J. (2020). Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. *Global Change Biology*, 26(8), 4328–4343. https://doi.org/10.1111/gcb.15148
- Voolstra, C. R., Peixoto, R. S., & Ferrier-pag, C. (2023). Mitigating the ecological collapse of coral Effective strategies to preserve coral reef ecosystems. *EMBO Reports*, e56826. https://doi.org/10.15252/embr.202356826
- Voolstra, C. R., Suggett, D. J., Peixoto, R. S., Parkinson, J. E., Quigley, K. M., Silveira, C. B., Sweet, M., Muller, E. M., Barshis, D. J., Bourne, D. G., & Aranda, M. (2021). Extending the natural adaptive capacity of coral holobionts. *Nature Reviews Earth & Environment*, 0123456789. https://doi.org/10.1038/s43017-021-00214-3
- Voolstra, C. R., Valenzuela, J. J., Turkarslan, S., Cárdenas, A., Hume, B. C. C., Perna, G., Buitrago-López, C., Rowe, K., Orellana, M. V., Baliga, N. S., Paranjape, S., Banc-Prandi, G., Bellworthy, J., Fine, M., Frias-Torres, S., & Barshis, D. J. (2021). Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. *Molecular Ecology*, 30(18), 4466–4480. https://doi.org/10.1111/mec.16064
- Walker, N. S., Cornwell, B. H., Nestor, V., Armstrong, K. C., Golbuu, Y., & Palumbi, S. R. (2022). Persistence of phenotypic responses to short-term heat stress in the tabletop coral Acropora hyacinthus. *PLoS ONE*, *17*(9 September), 1–20. https://doi.org/10.1371/journal.pone.0269206
- Wall, C. B., Kaluhiokalani, M., Popp, B. N., Donahue, M. J., & Gates, R. D. (2020). Divergent symbiont communities determine the physiology and nutrition of a reef coral across a lightavailability gradient. *ISME Journal*, 14(4), 945–958. https://doi.org/10.1038/s41396-019-0570-1
- Waltham, N. J., & Sheaves, M. (2017). Acute thermal tolerance of tropical estuarine fish occupying a man-made tidal lake, and increased exposure risk with climate change. *Estuarine, Coastal and Shelf Science, 196*, 173–181. https://doi.org/10.1016/j.ecss.2017.06.032
- Wang, J. T., Wang, Y. T., Keshavmurthy, S., Meng, P. J., & Chen, C. A. (2019). The coral Platygyra verweyi exhibits local adaptation to long-term thermal stress through host-specific physiological and enzymatic response. *Scientific Reports*, 9(1), 1–11. https://doi.org/10.1038/s41598-019-49594-z
- Wangpraseurt, D., Lichtenberg, M., Jacques, S. L., Larkum, A. W. D., & Kühl, M. (2019). Optical properties of corals distort variable chlorophyll fluorescence measurements. *Plant Physiology*, 179(4), 1608–1619. https://doi.org/10.1104/pp.18.01275
- Warner, M. E., Fitt, W. K., & Schmidt, G. W. (1996). The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: A novel approach. *Plant, Cell and Environment, 19*(3), 291–299. https://doi.org/10.1111/j.1365-3040.1996.tb00251.x
- Warner, Mark E, Fittt, W. K., & Schmidt, G. W. (1999). Damage to Photosystem II in Symbiotic Dinoflagellates . A Determinant of Coral Bleaching Author (s): Mark E. Warner, William K. Fitt and Gregory W. Schmidt Source : Proceedings of the National Academy of Sciences of the United States of America, Pu. *Pnas*, 96(14), 8007–8012.
- Weis, V. (2008). Cellular mechanisms of Cnidarian bleaching: stress cause the collapse of symbiosis. *Journal of Experimental Biology*, 211, 3059–3066. https://doi.org/10.1242/jeb.009597
- Weis, V. M. (2010). The susceptibility and resilience of corals to thermal stress: Adaptation, acclimatization or both?: NEWS and VIEWS. *Molecular Ecology*, 19(8), 1515–1517.

https://doi.org/10.1111/j.1365-294X.2010.04575.x

- White, A. J., & Critchley, C. (1999). Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. *Photosynthesis Research*, *59*, 63–72. https://doi.org/https://doi.org/10.1023/A:1006188004189
- Whitehead, A., & Crawford, D. L. (2006). Neutral and adaptive variation in gene expression. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5425–5430. https://doi.org/10.1073/pnas.0507648103
- Whitlock, M. C., & Schluter, D. (2009). *The Analysis of Biological Data*. Roberts and Comapny Publishers.
- Wiedenmann, J., D'Angelo, C., Smith, E. ., Hunt, A. ., Legiret, F.-E., Postle, A. ., & Actherberg, E. . (2013). Nutrient enrichment can increase the susceptibility of reef corals to bleaching. *Nature Climate Change*, 3, 160–164. https://doi.org/https://doi.org/10.1038/nclimate1661
- Wikelski, M., & Cooke, S. J. (2006). Conservation physiology. *Trends in Ecology and Evolution*, 21(1), 38–46. https://doi.org/10.1016/j.tree.2005.10.018
- Wilson, S. G., Carleton, J. H., & Meekan, M. G. (2003). Spatial and temporal patterns in the distribution and abundance of macrozooplankton on the southern North West Shelf, Western Australia. *Estuarine, Coastal and Shelf Science*, 56(5–6), 897–908. https://doi.org/10.1016/S0272-7714(02)00285-8
- Winters, G., Holzman, R., Blekhman, A., Beer, S., & Loya, Y. (2009). Photographic assessment of coral chlorophyll contents : Implications for ecophysiological studies and coral monitoring. *Journal of Experimental Marine Biology and Ecology*, 380(1–2), 25–35. https://doi.org/10.1016/j.jembe.2009.09.004
- Wood, D., & Salz. (2014). Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome Biology*, 15(R46).
- Wooldridge, S. A. (2009). Water quality and coral bleaching thresholds: Formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. *Marine Pollution Bulletin*, 58(5), 745–751. https://doi.org/10.1016/j.marpolbul.2008.12.013
- Wright, R. M., Aglyamova, G. V., Meyer, E., & Matz, M. V. (2015). Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. *BMC Genomics*, 16(1), 1–12. https://doi.org/10.1186/s12864-015-1540-2
- Wright, R. M., Mera, H., Kenkel, C. D., Nayfa, M., Bay, L. K., & Matz, M. V. (2019). Positive genetic associations among fitness traits support evolvability of a reef-building coral under multiple stressors. *Global Change Biology*, 25(10), 3294–3304. https://doi.org/10.1111/gcb.14764
- Wyatt, A. S. J., Leichter, J. J., Washburn, L., Kui, L., Edmunds, P. J., & Burgess, S. C. (2023). Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics. *Nature Communications*, 14(1), 1–17. https://doi.org/10.1038/s41467-022-35550-5
- Yuyama, I., & Higuchi, T. (2014). Comparing the effects of symbiotic algae (Symbiodinium) clades C1 and D on early growth stages of Acropora tenuis. *PLoS ONE*, 9(6), 1–8. https://doi.org/10.1371/journal.pone.0098999
- Zanuzzo, F. S., Bailey, J. A., Garber, A. F., & Gamperl, A. K. (2019). Comparative Biochemistry and Physiology, Part A The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) families under normoxia and mild hypoxia ☆. *Comparative Biochemistry and Physiology, Part A*, 233(September 2018), 30–38. https://doi.org/10.1016/j.cbpa.2019.03.020
- Zhang, B., & Horvath, S. (2005). A General Framework for Weighted Gene Co-Expression Network


Analysis. Statistical Applications in Genetics and Molecular Biology, 4(1).

- Ziegler, M., Arif, C., Burt, J. A., Dobretsov, S., Roder, C., LaJeunesse, T. C., & Voolstra, C. R. (2017). Biogeography and molecular diversity in the genus Symbiodinium around the Arabian Peninsula. *Journal of Biogeography*. https://doi.org/10.1111/jbi.12913
- Ziegler, Maren, Roder, C. M., Büchel, C., & Voolstra, C. R. (2014). Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea. *Coral Reefs*, *33*(4), 1115–1129. https://doi.org/10.1007/s00338-014-1192-8
- Ziegler, Maren, Seneca, F. O., Yum, L. K., Palumbi, S. R., & Voolstra, C. R. (2017). Bacterial community dynamics are linked to patterns of coral heat tolerance. *Nature Communications*, 8, 1–8. https://doi.org/10.1038/ncomms14213

Appendix A – Supplementary materials for Chapter 2

Supplementary Table A.1 Treatment temperature (High and Mid) achieved during each acute heat stress experimental run compared to the ambient sea-water temperature.

Experiment	Reef	Treatment combo	Mean heated	Heated	Mean ambient	Ambient SE	Temperature
			temperature	SE	temperature		difference
1	13-123	High/Ambient	34.89	0.059	29.94	0.026	4.952381
	A. tenuis						
	13-123	High/Ambient	35.02	0.068	30.03	0.049	4.990476
	P. damicornis						
2	Creech	High/Ambient	34.63	0.097	29.59	0.029	5.038889
3	11-049	High/Ambient	34.99	0.12	29.96	0.020	5.035714
	13-124	High/Ambient	34.98	0.061	30.55	0.013128	4.433333
	13-124	Mid/Ambient	33.44	0.027	30.2	0.040237	3.24
	Corbett	High/Ambient	35.23	0.037	30.8	0.016903	4.433333
	Corbett	Mid/Ambient	32.99	0.060	30.39	0.015065	2.594444
	Davie	High/Ambient	34.99	0.034	30.87	0.062994	4.12
	Davie	Mid/Ambient	34.21	0.031	29.96	0.066898	4.255556
	Lagoon	High/Ambient	35.09	0.089	29.53	0.023035	5.561905
	Lagoon	Mid/Ambient	33.37	0.049	29.46	0.013436	3.911111
	Mantis	High/Ambient	35.28	0.085	30.37	0.027021	4.913333
	Mantis	Mid/Ambient	33.53	0.079	29.84	0.082896	3.688889

Supplementary Figure A.1 Difference between mean (±SE) ambient temperature at time of experiment and the reef-specific Max Monthly Mean (MMM) temperature obtained from NOAA.

Species	Trait	Transformation	Term	df	Z	р
A. tenuis	Colour change	Cube root	Treatment	106	-6.714	1.89E-11
			Size	106	4.231	2.32E-05
			Treatment*Size	106	-3.255	0.00114
	Chlorophyll a	NA	Treatment	104	-6.236	< 0.0001
			Size	104	1.19	0.234
			Treatment*Size	104	-0.079	0.937
	Catalase	log	Treatment	93	2.382	0.0172
	activity		Size	93	-1.309	0.1904
			Treatment*Size	93	-1.281	0.2003
	Protein	log	Treatment	91	-5.112	< 0.0001
	content		Size	91	-0.775	0.438
			Treatment*Size	91	0.882	0.378
	F_{v}/F_{m}	NA	Treatment	212	-10.13	< 0.0001
			Size	212	0.82	0.413
			Treatment*Size	212	1.26	0.207
P. damicornis	Colour change	Cube root	Treatment	106	-9.273	< 0.0001
			Size	106	-2.631	0.0085
			Treatment*Size	106	2.499	0.0125
	Chlorophyll a	NA	Treatment	96	-2.776	0.0055
			Size	96	2.653	0.00797
			Treatment*Size	96	-1.975	0.04827
	Catalase	log	Treatment	86	-4.546	< 0.0001
	activity		Size	86	-1.851	0.064175
			Treatment*Size	86	2.82	0.004804
	Protein	log	Treatment	102	-3.173	0.00151
	content		Size	102	-2.761	0.00577
			Treatment*Size	102	0.136	0.89186
	F_{v}/F_{m}	NA	Treatment	195	-8.15	< 0.0001
			Size	195	-1.31	0.192
			Treatment*Size	195	0.27	0.785

Supplementary Table A.2 Statistical outputs for size and treatment effects in *A. tenuis* and *P. damicornis*. Significant effects are indicated in **bold**.

Species	Trait	Contrast	df	T ratio	р
A. tenuis	Colour change	Large Heated - Large Ambient	106	6.714	< 0.0001
		Small Ambient - Large Ambient	106	-4.231	< 0.0001
		Small Heated - Large Heated	106	0.371	0.7114
		Small Heated - Small Ambient	106	11.316	< 0.0001
P. damicornis	Chlorophyll <i>a</i>	Large Heated - Large Ambient	96	2.776	0.0066
		Small Ambient - Large Ambient	96	5.586	< 0.0001
		Small Heated - Large Heated	96	-2.653	0.0093
		Small Heated - Small Ambient	96	0.177	0.8603
	Colour change	Large Heated - Large Ambient	106	9.279	< 0.0001
		Small Ambient - Large Ambient	106	5.745	< 0.0001
		Small Heated - Large Heated	106	2.631	0.0098
		Small Heated - Small Ambient	106	-0.902	0.3689
	Catalase activity	Large Heated - Large Ambient	86	4.546	< 0.0001
		Small Ambient - Large Ambient	86	0.225	0.8228
		Small Heated - Large Heated	86	1.851	0.0676
		Small Heated - Small Ambient	86	-2.146	0.0347

Supplementary Table A.3 Post-hoc contrasts of physiological traits for both *A. tenuis* and *P. damicornis* with respect to fragment size. Significant contrasts are indicated in **bold**.

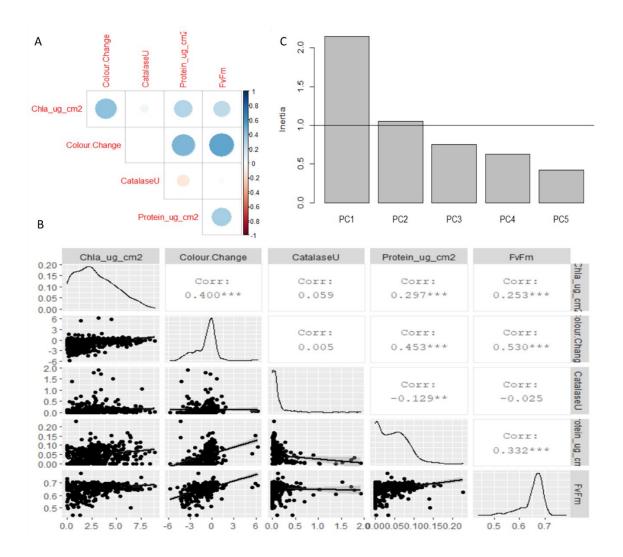
Trait	Term	estimate	d. error	Z	р
Catalase	Intercept	-9.22	26.014	-0.35	0.72
	T ₁	-56.85	33.85	-1.68	0.093
	T ₂	109.48	33.8	3.24	0.0012
	T ₃	40.42	34.34	1.18	0.24
	T ₄	-34.53	34.56	-1.00	0.32
	T ₅	-88.38	35.40	-2.50	0.013
	T ₆	-74.58	32.88	-2.27	0.023
Chlorophyll	Intercept	-24.18	9.90	-2.44	0.015
	T ₁	-17.29	14.57	-1.19	0.24
	T ₂	-27.73	13.55	-2.05	0.041
	T ₃	-41.19	13.20	-3.12	0.0018
	T ₄	-35.25	13.55	-2.60	0.0093
	T ₅	-59.65	14.00	-4.26	< 0.0001
	T ₆	-54.06	13.20	-4.10	< 0.0001
Colour change	Intercept	-9.98	3.14	-3.18	0.0015
	T ₁	-4.49	2.93	-1.53	0.13
	T ₂	-8.96	2.93	-3.05	0.0023
	T ₃	-15.33	2.93	-5.23	< 0.0001
	T ₄	-24.73	2.93	-8.43	< 0.0001
	T ₅	-30.70	2.93	-10.46	< 0.0001
	T ₆	-37.81	2.93	-12.89	< 0.0001
Protein	Intercept	-26.44	11.25	-2.35	0.019
	T ₁	-10.89	16.56	-0.66	0.51
	T ₂	-24.05	16.91	-1.51	0.13
	T ₃	-57.61	16.56	-3.48	0.0005
	T ₄	-58.08	15.91	-3.65	0.0003
	T ₅	-73.56	15.91	-4.62	< 0.0001
	T ₆	-73.56	15.41	-4.78	< 0.0001
F_{v}/F_{m}	Intercept	-5.85	2.43	-2.40	0.016
	T ₁	-3.85	3.01	-1.28	0.20
	T ₂	-1.61	3.01	-0.54	0.59
	T ₃	0.60	3.01	0.20	0.84

Supplementary Table A.4 Statistical outputs for sampling time effect in *A. tenuis*. Significant effects are indicated in **bold**.

 T ₄	0.40	3.01	0.13	0.90
T ₅	-4.43	3.11	-1.43	0.154
T ₆	-32.10	3.01	-10.65	< 0.0001

Traits	contrast	estimate	SE	df	t ratio	p value
Protein	T0 - T1	10.88921	16.6	39	0.658	0.9942
	T0 - T2	24.04836	15.9	39	1.511	0.7364
	T0 - T3	57.61369	16.6	39	3.479	0.0196
	T0 - T4	58.07697	15.9	39	3.65	0.0124
	T0 - T5	73.55848	15.9	39	4.623	0.0008
	T0 - T6	73.55836	15.4	39	4.775	0.0005
	T1 - T2	13.15916	16.6	39	0.795	0.9842
	T1 - T3	46.72448	17.2	39	2.719	0.1204
	T1 - T4	47.18777	16.6	39	2.849	0.0908
	T1 - T5	62.66928	16.6	39	3.784	0.0086
	T1 - T6	62.66915	16.1	39	3.898	0.0063
	T2 - T3	33.56532	16.6	39	2.027	0.415
	T2 - T4	34.02861	15.9	39	2.139	0.3513
	T2 - T5	49.51012	15.9	39	3.112	0.0495
	T2 - T6	49.50999	15.4	39	3.214	0.0386
	T3 - T4	0.46329	16.6	39	0.028	1
	T3 - T5	15.9448	16.6	39	0.963	0.959
	T3 - T6	15.94467	16.1	39	0.992	0.9528
	T4 - T5	15.48151	15.9	39	0.973	0.9569
	T4 - T6	15.48138	15.4	39	1.005	0.9498
	T5 - T6	-0.00012	15.4	39	0	1
Chlorophyll	T0 - T1	17.29	14.6	45	1.187	0.8955
	T0 - T2	27.73	13.6	45	2.046	0.4014
	T0 - T3	41.19	13.2	45	3.121	0.0457
	T0 - T4	35.24	13.6	45	2.601	0.15
	T0 - T5	59.65	14	45	4.262	0.0018
	T0 - T6	54.06	13.2	45	4.097	0.0031
	T1 - T2	10.44	14.1	45	0.738	0.9893
	11-12	10.11		-		

Supplementary Table A.5 Post-hoc contrasts of physiological traits over time, *A. tenuis*. Significant contrasts are indicated in **bold**.


T1 - T4	17.96	14.1	45	1.27	0.8618
T1 - T5	42.36	14.6	45	2.908	0.0764
T1 - T6	36.77	13.8	45	2.665	0.1313
T2 - T3	13.46	12.7	45	1.058	0.9369
T2 - T4	7.52	13.1	45	0.574	0.9972
T2 - T5	31.92	13.6	45	2.356	0.2412
T2 - T6	26.33	12.7	45	2.07	0.3876
T3 - T4	-5.94	12.7	45	-0.467	0.9991
T3 - T5	18.46	13.2	45	1.399	0.7993
T3 - T6	12.87	12.3	45	1.043	0.941
T4 - T5	24.4	13.6	45	1.801	0.5544
T4 - T6	18.81	12.7	45	1.479	0.7556
T5 - T6	-5.59	13.2	45	-0.424	0.9995

Traits	contrast	estimate	SE	df	t ratio	p value
Colour	T0 - T1	4.49	2.93	53	1.532	0.7249
change	T0 - T2	8.96	2.93	53	3.054	0.0513
	T0 - T3	15.33	2.93	53	5.225	0.0001
	T0 - T4	24.73	2.93	53	8.429	<.0001
	T0 - T5	30.7	2.93	53	10.462	<.0001
	T0 - T6	37.81	2.93	53	12.887	<.0001
	T1 - T2	4.47	2.83	53	1.577	0.6971
	T1 - T3	10.84	2.83	53	3.826	0.006
	T1 - T4	20.24	2.83	53	7.145	<.0001
	T1 - T5	26.2	2.83	53	9.251	<.0001
	T1 - T6	33.32	2.83	53	11.763	<.0001
	T2 - T3	6.37	2.83	53	2.249	0.2878
	T2 - T4	15.77	2.83	53	5.568	<.0001
	T2 - T5	21.74	2.83	53	7.674	<.0001

T2 - T6	28.85	2.83	53	10.186	<.0001
T3 - T4	9.4	2.83	53	3.318	0.0257
T3 - T5	15.37	2.83	53	5.425	<.0001
T3 - T6	22.48	2.83	53	7.937	<.0001
T4 - T5	5.97	2.83	53	2.106	0.3641
T4 - T6	13.08	2.83	53	4.619	0.0005
T5 - T6	7.12	2.83	53	2.512	0.1758
T0 - T1	3.849	3.01	51	1.277	0.8591
T0 - T2	1.612	3.01	51	0.535	0.9982
T0 - T3	-0.597	3.01	51	-0.198	1
T0 - T4	-0.396	3.01	51	-0.131	1
T0 - T5	4.428	3.11	51	1.426	0.7855
T0 - T6	32.099	3.01	51	10.651	<.0001
T1 - T2	-2.237	2.8	51	-0.798	0.9841
T1 - T3	-4.446	2.8	51	-1.586	0.6916
T1 - T4	-4.245	2.8	51	-1.514	0.735
T1 - T5	0.579	2.9	51	0.2	1
T1 - T6	28.25	2.8	51	10.078	<.0001
T2 - T3	-2.209	2.8	51	-0.788	0.9851
T2 - T4	-2.008	2.8	51	-0.716	0.991
T2 - T5	2.816	2.9	51	0.972	0.9578
T2 - T6	30.488	2.8	51	10.876	<.0001
T3 - T4	0.201	2.8	51	0.072	1
T3 - T5	5.025	2.9	51	1.734	0.5969
T3 - T6	32.696	2.8	51	11.664	<.0001
T4 - T5	4.824	2.9	51	1.665	0.6417
T4 - T6	32.496	2.8	51	11.592	<.0001
T5 - T6	27.672	2.9	51	9.551	<.0001

 F_v/F_m

Traits	contrast	estimate	SE	df	t ratio	p value
Catalase	T0 - T1	56.8	33.8	37	1.679	0.6334
	T0 - T2	-109.5	33.8	37	-3.239	0.0371
	T0 - T3	-40.4	34.3	37	-1.177	0.8983
	T0 - T4	34.5	34.6	37	0.999	0.951
	T0 - T5	88.4	35.4	37	2.497	0.1899
	T0 - T6	74.6	32.9	37	2.268	0.2861
	T1 - T2	-166.3	33.8	37	-4.921	0.0003
	T1 - T3	-97.3	34.3	37	-2.832	0.0956
	T1 - T4	-22.3	34.6	37	-0.646	0.9947
	T1 - T5	31.5	35.4	37	0.891	0.9717
	T1 - T6	17.7	32.9	37	0.539	0.998
	T2 - T3	69.1	33.1	37	2.089	0.38
	T2 - T4	144	31.9	37	4.51	0.0011
	T2 - T5	197.9	33	37	6.002	<.0001
	T2 - T6	184.1	30.6	37	6.006	<.0001
	T3 - T4	74.9	33.7	37	2.223	0.3083
	T3 - T5	128.8	34.6	37	3.726	0.0105
	T3 - T6	115	32.3	37	3.562	0.0163
	T4 - T5	53.9	33.1	37	1.629	0.6649
	T4 - T6	40.1	30.5	37	1.312	0.842
	T5 - T6	-13.8	31.9	37	-0.433	0.9994

Supplementary Figure A.6 Support graphs for Principal Component Analysis of alternative physiological measurements. (A and B); some of the physiological measurements were correlated to each other. C; Screeplot showing the Eigen values of the five principle components generated. Principle components were plotted only for those where inertia > 1 (PC1 and PC2, specifically).

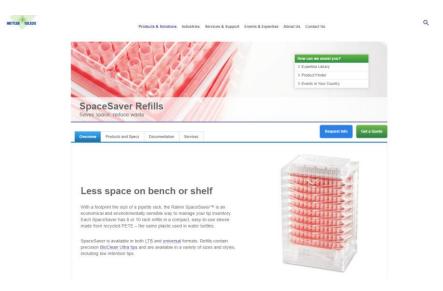
Supplementary Table A.7 The cost of equipment use per 100 samples was based on an approximation of how many samples were likely to be processed over a conservative lifespan of the respective item. For example, I assumed that a refrigerated centrifuge would have a lifespan of at least 10,000 samples whereas an icebox would only last for 1,000 samples However, within this calculation I did not consider differences in centrifuge times across different physiological measurements, where the centrifuge is used once for chlorophyll extractions as opposed to three times successively for tissue blasting.

Equipment	Assays required for	Cost	Lifespan
			(# samples)
Diving-PAM	Photosynthesis efficiency	\$49,074	100,000
Camera + memory card	Tissue colour change	\$1,800	100,000
Memory card (SD)	Tissue colour change	\$55	100,000
Coral Health Colour Chart	Tissue colour change	\$5	1,000
Airgun	Tissue blasting	\$63.72	10,000
Centrifuge, refrigerated	Tissue blasting, chlorophyll, protein	\$11,720	10,000
Styrofoam coolers	Tissue blasting, chlorophyll, protein, catalase	\$10	1,000
Homogeniser	Tissue blasting	\$927	10,000
Pipette, single channel	Tissue blasting, chlorophyll, protein,	\$432	10,000
	catalase, symbiont density		
Vortex	Tissue blasting, chlorophyll, catalase,	\$369	10,000
	symbiont density		
Oven	Protein	\$2,220	100,000
Pipette, multi-channel	Protein, catalase	\$1,420	10,000
Sonicator	Chlorophyll, protein	\$1,500	10,000
Spectrophotometer	Chlorophyll, protein, catalase	\$25,000	100,000
Stopwatch	Chlorophyll, protein, catalase, surface area	\$12	1,000
Scale	Surface area, chemical preparations	\$995	10,000
Forceps	Tissue blasting, surface area	\$1.58	1,000
Waterbath	Surface area	\$1,115	10,000
Ultralow freezer	Sample storage	\$50,000	100,000

Assay	Other costs/special considerations	Benefit
Photosynthetic	Expensive initial outlay for instrument	In-field data gathering
efficiency		Range of photo-physiological data available
Tissue colour		In-field data gathering
change		Rapid processing - especially with more automation coming online
		Accessible technology
Tissue blasting	Samples require special storage to be viable	Leg-work for a wide range of physiological measurements
	Requires multiple pieces of laboratory equipment	
Chlorophyll	Ethanol (hazardous chemical) or other solvent	Specific measurement of symbiont bleaching response
	Specialist training - spectrophotometer	
Protein	Specialist training - spectrophotometer	Specific measurement of either symbiont and/or host physiological response to heat stress
	Requires extraction kits	
Catalase	Long downstream data processing	Specific measurement of either symbiont and/or host physiological response to heat stress
	Expensive microwell plates required	
	Specialist training - spectrophotometer	
Surface area	Required for most assays listed	Cheaper than 3D photogrammetry methods
	Prone to operator error	
	Less accurate than 3D photogrammetry methods	

Supplementary Table A.8 Overview of other costs, special consideration, and benefits for each assay examined here.

Supplementary material A.9 Pricing for Cost Benefit Analysis. This material consists of direct links to pages where the consumables and equipment required for the assays presented here can be purchased. These prices formed the basis of Appendix A.10 below.


Ethanol – absolute, 2.5L

Ethanol | Sigma-Aldrich (sigmaaldrich.com)

MERCK	Ethanol					×	Q			0	AU EN
Applications - Products -	Services ~ Support ~								Login / Sign Up	Quick Order	₩ Cart
	Products Building Blocks Explorer Genes Papers		Showing 1-30 of 3020 r		hanol" Advanced Search Structure Sea	arch Relevance	•		Compare		
	Technical Documents Site Content		CH ₃ CH ₂ OH	Etha							
	Product Category building blocks (567) bloactive small molecules (390)	^		CA5 Nu 64-17-5	Weight: 200-578-6	Beilstein Registry Number: 1718733	Linear f CH ₃ CH		#1.5		
	antibiotics (78)		Product Number	P	roduct Description		SDS				
	stable isotopes (67)		443611	а	nhydrous, denatured		4		Pricing III		
	columns (62) solvents (57) albumins (47)		1.00983	a	colute for analysis EMSURE [®] ACS/SO,Reag. Ph	Eur 🧐	±		Pricing ×		
	SHOW MORE		SKU	Pack Size	Availability	Price	Quantity				
		120	1009831000	1L	Available to ship on August 22, 2021 - FR	KOM A\$34.6	-	+	0		
	Special Grade Aldrich ^{CPR} (370)	^	1009832511	2.5 L	Available to ship on August 22, 2021 - FR	KOM A\$64.6	-	+	0		
	Analytical (151)		1009832500	2.5 L	Available to ship on August 22, 2021 - FR	KOM A\$72.0	-	+	0		
	analytical standard (121) certified reference material (72) BioReagent (51)					Request a Bulk (Drder	Add To	Cart		

Pipette tips - red, green, and blue used

SpaceSaver Pipette Tip Refills | Made from recycled PETE (mt.com)

BioClean Ultra Pipette Tips

BioClean[™] has long been the standard for assuring customers that Rainin tips are high quality and free of biological contaminants.

Benefits of RAININ BioClean Ultra tips:

No additives are added to the tips during the manufacturing process Tips are free from any biological contaminants Tested to very low detection levels using sensitive techniques RAININ pipette and RAININ tips are very compatible in terms of fit Fine point tip designed ensures complete sample delivery The tip plastic doesn't have any defects ; quality checks during manufacturing process

Green-Pak SpaceSaver with LTS Tips:

Item(s)	Catalogue no	Quantity	Price
GPS-LTS-A-10µL-960/10	30389291	1	\$57
GPS-LTS-A-250µL-960/10	30389299	1	\$57
GPS-LTS-A-1000µL-768/8	30389292	1	\$57

prices listed are subjected to price changes

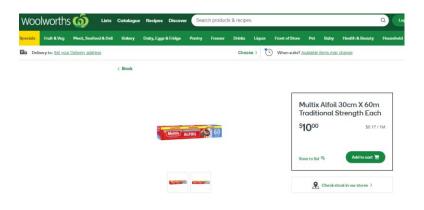
Spec plates – Chlorophyll and protein assays only

Immulon[®] Immunoassay Plates and Strip Assemblies | Krackeler Scientific, Inc.

Immulor	n® Multip	le Sa	mple D	ispos	able P	lasticwa	re							
Cat.No.	Brand	Name	Туре	Treated	Number of Wells	Material	Well Volume	Well Shape	Color	LId	Packaging	Addi Into	CS	
677-3355	1mmulon®		Immuno assay plate	N	95	Polystyrene	0.33mL	Flat	Clear	N	Pack of 50	Immulon 1 B	\$184.80 50/CS	
677-3455	Intimulon®		Immuno aisay piate	N	96	Polystyrene	0.33mi.	Flat	Clear	N	Pack of 50	immulon 2 HB	\$218.40 50/CS	
677-3855	Immulon®		Immuno assay plate	N	95	Polystyrene	0.33mL	Fist	Clear	N	Pack of 50	Immulon 4 HBX	\$238.35 50/CS	*
677-3555	Immulon®		Immuno atsay plate	N.	96	Potystyrene	0.20mL	Round	Clear	N	Pack of 50	Immulon 1 B	\$185.85 50/CS	*
677-3655	Immulon®		Immuno assay plate	N	95	Polystyrene	0.20mL	Round	Clear	N	Pack of 50	Immulon 2 HB	\$218.40 50/CS	*
677-5550	immulon®		Lid for immuno assay	N		Styrene			Clear		Parck of 50		\$200.55 50/CS	+


Deep well plates

<u>SSI Deep Well Plate - 2.0 mL, 96-well, Square, V Bottom (5/pack) | LabGear Australia - Laboratory</u> Equipment and Consumables for the Australian Scientific and Research Community


L 1800 252 215	om.au	a, Login 🗢 Wishlist
Geared up to deliver more	SEARCH	۹ 🦉
HOME SHOP LAB CONSUMABLES LAB	EQUIPMENT SSI+ SERVICE CATALOGUES PROMOTIONS LATEST NEW	S MORE -
	ate - 2.0 mL, 96-well, Square, V Bottom Iome / SS Deep Well Plate - 2.0 ml, 96-well Square, V Bottom (Separd)	(5/pack)
and the second s	SSI Deep Well Plate - 2.0 mL, 96-well, Square, V Bottom (5/pack) Product Code: SSI87753-005	
Animation	\$ 47.00	
	Please contact us for availability.	
	CATEGORIES	
	SSI / Deep Well Plates	

Air blow gun

MettleAir AG2-100 4" Compressed Air Blow Gun, 1/4" NPT, Inlet Commercial Grade, AG2-100 (Pack of 10): Amazon.com: Tools & Home Improvement

Aluminium foil

Refrigerated centrifuge with falcon-tube capacity

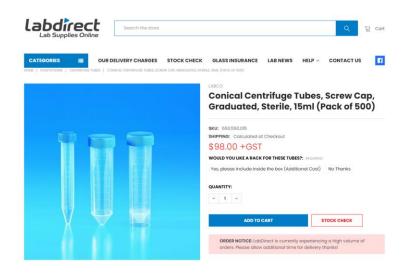
Centrifuge 5804/ 5804 R - Multipurpose Centrifuges, Centrifugation - Eppendorf South Pacific

Örder			
Type Application-driven	packages		
Please select filter Please select filte	r		
Centrifuge 5804, keypad, non-refrigerated, without rotor, 230 V/50–60 Hz (AU)	+ Net Price \$ 6,863.25	Your Price \$ 6,863.25	Add to cart
Catalog No. 5804000080	(inc gst: \$ 7,549.58)	(inc gst: \$ 7,549.58)	🗋 Inquire
Centrifuge 5804, keypad, non-refrigerated, with Rotor A-4-44 incl. adapters for 15/50 mL conical tubes,	+ Net Price	Your Price \$ 9.175.03	Add to cart
230 V/50-60 Hz (AU) Catalog No. 5804000382	(inc gst: \$ 10,092.53)	(inc gst: \$ 10,092.53)	🗋 Inquire
Centrifuge 5804, keypad, non-refrigerated, with Rotor S-4-72 incl. adapters for 15/50 mL conical tubes,	+ Net Price \$ 11.025.96	Your Price \$ 11.025.96	Add to cart
230 V/50-60 Hz (AU) Catalog No. 5804000587	(inc gst: \$ 12,128.56)	(inc gst: \$ 12,128.56)	🗋 Inquire
Centrifuge 5804 R, keypad, refrigerated, without rotor, 230 V/50-60 Hz (AU)	+ Net Price \$ 10,228.18	Your Price \$ 10,228.18	Add to cart
Catalog No. 5805000084	(inc gst: \$ 11,251.00)	(inc gst: \$ 11,251.00)	🗋 Inquire
Centrifuge 5804 R, keypad, refrigerated, with Rotor A- 4-44 incl. adapters for 15/50 mL conical tubes,	* Net Price \$ 11,721.62	Your Price \$ 11,721.62	Add to cart
230 V/50–60 Hz (AU)	(inc gst:	(inc gst:	🗅 Inquire
Catalog No. 5805000386	\$ 12,893.78)	\$ 12,893.78)	

EDTA

Merck ×Q EDTA Applications - Products - Services - Support -Lorin / Sim Up Showing 1-30 of 77 results for "EDTA" 6 d Search Struct re Search Relevance -Product Building Blocks Explorer (Keyword 'EDTA' Genes Papers Technical Do Site Content Ethyle diaminetetraacetic acid id, EDTA, Eth Product Category ^ Linear F (HO₂CO (CH₂CO Molecul Weight: 292.24 EC Number: 200-449-4 Beilstein Number: 1716295 buffers (35) bioactive small mo building blocks (3) antibodies (2) SDS Product Number Product Description EDS Riol Jitra anhydrous 2999 Pric organic acids (2) primary antibodie E9884 ACS reagent, 99.4-100.6% nowde Pricing = SHOW MORE E6758 Pricing × anhyd and constalling DieDe Brand Pack Size Availability 100 G S Available to ship on August 22, 2021 - FROM SKU E6758-100G Price A\$58.60 Millipore (1) + 0

EDTA | Sigma-Aldrich (sigmaaldrich.com)


Styrofoam coolers

Polystyrene Six Pack Esky - Rope Handle for Carrying - Foam Sales

FOAM SALES foam + polystyrene solutions	TRADE DESK 😒 SHOP 😪 CU	T-TO-SIZE RESOURCES V CONTACT US	Search
HOME / POLYSTYRINE CARES / EXXY-3X100			C MRADOUS (NEXT
		ESKY - SIX PACK	
		🗙 🗮 🚖 🌟 3 reviews	
		\$10.00	
		gty	
	~		ART
1		POSTCODE ESTIMATE SHIPPING	
		The Six Pack Esky is the smallest esky in our rat for 6 beer cans (note: not stubble/ubottles). The to take the cans, allowing a little space in below	base has 6 indents designe
		This esky features a rope handle for easy transpictions and parties.	
		Dimensions:	
		 260 x 180 x 205mm high external 	
		 230x150x175mm high internal (6 litres) 	

15ml Centrifuge tubes

Conical Centrifuge Tubes, Screw Cap, Graduated, Sterile, 15ml - Buy Online at LabDirect

Formaldehyde solution

Formaldehyde solution for molecular biology, 36.5-38% in H2O | 50-00-0 (sigmaaldrich.com)

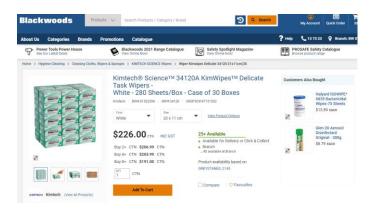
 Services v Supp	xort ~						Į.	Login / I
•	F8775 🍉 Sigma-A	ldrich.						
Ö	Formalde	hyde solu	Ition					
	for molecular biol	ogy, 36.5-38% in H	H ₂ O					
	Synonym(s):							
пг	Formalin Linear Formula:							
All Photos (1)	HCHO CAS Number:	50-00-0	Molecular Weight:	30.03	Beilstein/REAXYS N		209228	
Documents	EC Number:	200-001-8	MDL number:	MFCD00003274	PubChem Substano		4894976	
↓ sds	NACRES:	NA.31						
Q COO/COA	SKU	Pack Size	Availability		Price	Quantity	,	
E Specification Shee	F8775-25ML	25 ML	Available to ship on August 2	2,2021 - FROM	A\$49.10	-	+	0
	F8775-4X25ML	4 X 25 ML	Available to ship on August 2	1,2021 - FROM	A\$86.00	-	+	0
		500 ML	Available to ship on August 2		A\$90.70		+	0

H2O2 solution

Hydrogen peroxide solution 30 % (w/w) in H2O, contains stabilizer | 7722-84-1 (sigmaaldrich.com)

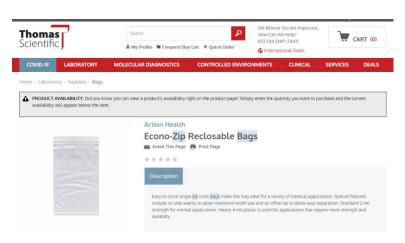
pplications ~ Products ~	 Services ~ Support 	*						Login / S
	H ₂ O ₂	H1009 > Sigma- Hydroget 30 % (w/w) in H ₂ Empirical Formula (Hi H ₂ O ₂ CAS Number: MDL number:	n peroxi O, contains stat	1 Molecular Weight:	34.01 57654227	Belistein/REAXYS /	Number: 3!	587191
	Documents	SKU	Pack Size	Availability		Price		
	<u>↓</u> sds	H1009-5ML	5 ML	 Estimated to ship on August 21, 	2021 - FROM	A\$87.30	-	+ 0
	Q COO/COA Specification Sheet	H1009-100ML	100 ML	Estimated to ship on October 12	2021	A\$94.90	-	+ 0
		H1009-500ML	500 ML	Estimated to ship on November 1		A\$219.00		+ 0

Homogeniser

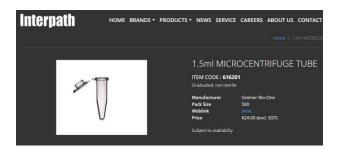

LOGIN REGISTER 1 h C B G Call us today! 203-267-4600 ۹ Search Products nizer Apoli Custom / OEM Solution Home > Rotor-Sta nogenizers > Hand-Heid H Bio-Gen PRO200 Homogenizer Product ID : 01-01200 Price: \$927.00 Small & powerful hand-held homogenizer
 Small & powerful hand-held homogenizer
 Homogenize within tube to small beakers
 Varabile speed adjustment. S003-S000 pry
 Use hand-held or post mount to a stand
 Made in the USA with a 2 Year Wartanty
 Generator probe not include
 All accessories are sold separately To buy this product Login
 Registe Request quote Email to a Colleag

PRO Scientific Bio-Gen PRO200 Homogenizer

163


KimWipes

<u>Kimtech® Science™ 34120A KimWipes™ Delicate Task Wipers -
 White - 280 Sheets/Box - Case of</u> <u>30 Boxes | KIMTECH SCIENCE* Wipers | Cleaning Cloths, Wipers & Sponges | Hygiene & Cleaning |</u> <u>Blackwoods</u>


Zip-lock bags – 4x6"

Econo-Zip Reclosable Bags (thomassci.com)

Microcentrifuge tubes, 1.5ml

1.5ml MICROCENTRIFUGE TUBE | Interpath

Multichannel pipettes

20uL

Ln#	Item No	Description	Unit Price
3	17013803	L8-20XLS+PIPET-LITE XLS+ LTS	\$1,420.00
3	17013003	8-CH PIPET 2-20	ψ1,420.00

200uL

Ln#	Item No	Description	Unit Price
4	17013805	L8-200XLS+PIPET-LITE XLS+ LTS 8-CH PIPET 20-200	\$1,420.00

Sodium Hydroxide pellets

Sodium hydroxide - 'Caustic soda', Sodium hydroxide solution (sigmaaldrich.com)

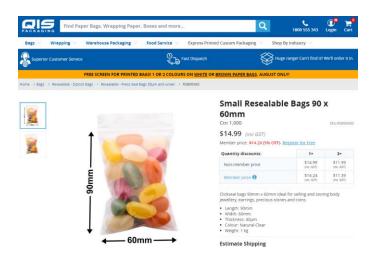
MERCK	Type in Product Names, Pro	duct Numbers, or CAS Numbers to see sugges	tions.		Q	
Applications - Produc	cts v Services v Support ·	*			Log	śn / Sign Up
	Home > Search Results > 5	iodium hydraxide (16)				
		Sodium hydroxide				
	NaOH	Synonyme: 'Caustic soda'. Sodium hydraxide solution				
	Haon	Linear Formula: NaOH				
			Molecular Weight: 40.00			
	PRODUCT COMP.					
		low to configure the comparison table. (Select				
	Select Attribute		xt Attribute		Sort By: Default	*
		uct Description um hydroxide, BioXtra, 298% (acidimetric), pai	lets (anhvdrous)			Pricing Hilde o
	SKU Pad	k Size Availability			Quantity	
	\$8045-500G 500	G 🖉 Available to ship on Augu	st 22, 2021 - FROM	A\$131.00	- + 0	
TABE	<u> </u>	ABOUT PRODUCTS	PROJECTS SERVICE & SUPPORT	CONTACT	a 🐝	CALL US
			HOME / PRODUCTS / GENE			(02) 9300 2811
			GENERAL PURPOSE OVENS - F			
1			GENERAL FAN FOR +200°C/3	CED (U		/ENS –
	0	E.	Fan Forced (Ambient +5°C	to 200°C/300°C)		
			Labec General Purpose Fai stainless steel for easy ma ranges and various model warming or heating is req warm air inside the chamb door is opened.	intenance and exc sizes (see specific uired. Using fan fo	ellent durability. Ava ations). Suitable for a rced convection heat	lable in two temperature pplications where general
			MAKE AN INQUIRY			

PBS tablets

Phosphate buffered saline - PBS, Phosphate buffered saline (sigmaaldrich.com)

MERCK	Type in Product Names, Product Numbers, or CAS Numbers to see suggestions.	Q
Applications ~ Products ~	Services 🗸 Support 🗸	Login / Sign Up
	Home > Search Results > Phosphate buffered saline (17)	
	Phosphate buffered saline Smorym: PBS. Phosphate buffered saline	
	PRODUCT COMPARISON GUIDE Use the product attributes below to compare the comparison table, (Select up to 3 total)	
	Select Attribute V Select Attribute V	Sort By: Default
	Product Number Product Description	Pricing
	P4417 Phosphate buffered saline, tablet SKU Pack Size Availability	Hide ~ Price Quantity
	P4417-50TAB 50 TABLETS Ø Available to ship on August 22, 2021 - FROM	A\$113.00 - + O

Single-channel pipettes

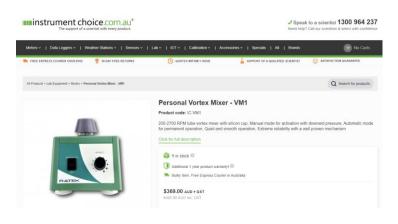

Ln#	Item No	Description	Unit Price
1	17014406	L-STARTXLS+ STARTER KIT L-20XLS+.L-200XLS+.L-1000XLS+	\$1,295.00

Protein kit – BD BioRad

BIO RAD Eng	pish			ber O.			
Life Science Research	Clinical Diagnestics	Spectroscopy	Process Separations	Food Science	Life Science Education	Corperate	
Home + My Dio-Rac + Cal	de Request History > View (Jucie Request					
Quote Details						0	
My Prote Optic Reguest History	How Page V You can review a click Quote Requ		d quote request from this pag t	e. To select and revie	w another submitted quote reque		
Quote Summary							
Quote ID: 232740001	Acc N/A	ount:	Grant App No	lication	Quote Request Sub 17-May-2020	omitted:	
		shase Plan ediatoly	New Lab No		Date Quote Needed 18-May-2020	r i	
hen			Catalog #	List Price	Add all in Quantity	ems to cart	
01 DC ^{ris} Protein Ass	uay Kit B		5000112	\$475.00	1	\$475.00	
Delergent-compat	ible colorimetric More						
					Total	\$475.00	
					and the second se	ems to cart	

Small zip-lock bags

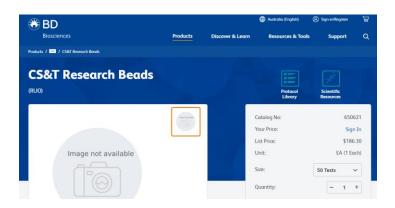
Small Resealable Bags 90 x 60mm | Seal Bags Small | QIS Packaging


Digital timer

Wiltshire Digital Timer | BIG W

Vortex mixer

Personal Vortex Mixer - VM1 (instrumentchoice.com.au)


Multi-channel reservoirs

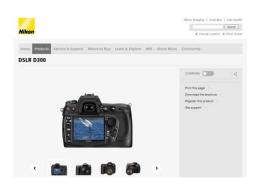
Reagent Reservoirs (thomassci.com)

BD CS&T beads

CS&T Research Beads (bdbiosciences.com)

Colour chart

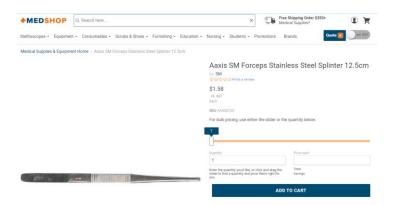
Coral Health Chart – CoralWatch


SD card

SanDisk Extreme SDXC Memory Card 128GB Black | Officeworks

Camera

Discontinued - DSLR D300 - Nikon Australia Pty Ltd


Scales

A&D FX-i Best Ammunition Reloading Scales - Shop Online (scaleshop.com.au)

Forceps

Aaxis SM Forceps Stainless Steel Splinter 12.5cm — Medshop Australia

Paraffin wax

We R Memory Keepers 1.3 Kg Wick Paraffin Wax (spotlightstores.com)

We R Memory Keepers 1.3 Kg Wick Paraffin Wax White

★★★★★ 34 Ratings - Login to rate

Waterbath

Digital Thermostatic Water Bath 4L (westlab.com.au)

	Consumables	Quantity supplied	Cost supplied	Quantity required per sample	# samples possible with supplied quantity	Cost per sample	Equipment	Quantity needed/supplied	Cost	Assumed lifespan # samples	Cost per sample over lifespan
Assay Tissue blasting	Ethanol (100%)	2.5L	\$64.60	1 mL	2500	\$0.03	Air gun	1	\$62.72	10,000	\$0.01
Tissue orasung										í.	
Tissue blasting	Formalin	25 mL (36%)	\$49.10	0.25 mL (10%)	360.231	\$0.14	Centrifuge, refrigerated	1	\$11,720	10,000	\$1.17
Tissue blasting							Esky	2	\$20	1,000	\$0.02
Tissue blasting	1	5	\$47.00	0.015	480	\$0.10	Homogeniser	1	\$927	10,000	\$0.09
Tissue blasting	Aluminium foil	60 m	\$10.00	0.00625 m2	2880	\$0.00	Pipettes	2; different sizes	\$864	10,000	\$0.09
Tissue blasting	Conical centrifuge tubes	500	\$98.00	1	500	\$0.20	Ultralow freezer	1	\$50,000	100,000	\$0.50
Tissue blasting	Sample storage boxes	5	\$34.92	0.013	405	\$0.08	Vortex	1	\$369	10,000	\$0.04
Tissue blasting	Ice										
Tissue blasting	KimWipes	30 boxes (280 sheets each)	\$226.00	3 sheets	2790	\$0.08					
Tissue blasting	Zip-lock bags (A5)	100	\$11.29	1	100	\$0.11					
	Microcentrifuge tubee (1.5	500	\$24.00	4	125	\$0.19					
Tissue blasting	mL)	500	\$24.00	7	125	\$0.19					
Tissue blasting	Pipette tipes	768	\$57.00	7	109.714	\$0.52					
Tissue blasting	Zip-lock bags, small	1000	\$15.00	1	1000	\$0.02					
Tissue blasting	Liquid nitrogen	20L	\$68.20	50mL	400	\$0.17					
Chlorophyll	Ethanol	2.5L	\$64.60	0.8	3125	\$0.02	Centrifuge	1	\$11,720	10,000	\$1.17
Chlorophyll	Spec plate	50	\$184.80	0.033	1550	\$0.12	Pipette, 200ul	1	\$432.00	10,000	\$0.04
Chlorophyll	Pipette tips blue	768	\$57.00	1	768	\$0.07	Sonicator	1	\$1,500.00	10,000	\$0.15
Chlorophyll	Pipette tips green	960	\$57.00	1	960	\$0.06	Spectrophotometer	1	\$25,000.00	100,000	\$0.25
Chlorophyll	KimWipes	30 boxes (280 sheets each)	\$226.00	0.03 (sheets)	280000	\$0.00	Vortex	1	\$369.00	10,000	\$0.04
Protein	NaOH	500g	\$131.00	0.3ml (1M)	4167	\$0.03	Centrifuge	1	\$11,720.00	10000	\$1.17
Protein	Bio-Rad protein kit	1	\$484.00		5000	\$0.10	Multichannel Pipette, 200ul	1	\$1,420.00	10000	\$0.14
Protein	Spec plate	50	\$184.80	0.033	1550	\$0.12	Pipette, 20ul	1	\$432.00	10000	\$0.04
Protein	Pipette tips green/red	960	\$57.00	4	240	\$0.24	Sonicator	1	\$1,500.00	10000	\$0.15
Protein	Alufoil	60m	\$10.00	0.0083	7228.915663	\$0.00	Spectrophotometer	1	\$25,000.00	100,000	\$0.25
Protein							Stopwatch	1	\$12.00	1000	\$0.01
Protein							Multichannel reservoirs	200	\$160.24	100000	\$0.00
Protein							Oven	1	\$2,230.00	100,000	\$0.02
Catalase	EDTA	100g	\$58.60	0.02ml (0.1mM)	17,000,000	\$0.00	Multichannel Pipette, 200ul	1	\$1,420.00	10000	\$0.14
Catalase	H2O2	100ml (30%)	\$94.90	0.12ml (50mM)	166,666	\$0.00	Pipette, 200ul	1	\$432.00	10000	\$0.04
Catalase	PBS	50 tablets	\$113.00	0.06ml (50mM)	33333.33333	\$0.00	Spectrophotometer	1	\$25,000.00	100,000	\$0.25
Catalase	Spec plate	40	\$751.00	0.033	1240	\$0.61	Stopwatch	1	\$12.00	1000	\$0.01
Catalase	Pipette tips	960	\$57.00	4	240	\$0.24	Multichannel reservoirs	200	\$160.24	100000	\$0.00
Catalase	KimWipes	30 boxes (280 sheets each)	\$226.00	0.03 (sheets)	280000	\$0.00					
Surface area	Wax	1.3 kg	\$27.00	2 grams	650	\$0.04	Scale	1	\$995.00	10000	\$0.10
Surface area							Stopwatch	1	\$12.00	1000	\$0.01
Surface area							Forceps	1	\$1.58	1000	\$0.00
Surface area							Waterbath	1	\$1,115.40	10000	\$0.11
Tissue Colour							Camera	1	\$1,800.00	100,000	\$0.02
							SD card	1	\$50.00	100,000	\$0.00
							scale bar	1	\$5.00	1,000	\$0.01
FvFm							Diving-PAM	1	\$49,074	100,000	0.49074
											1

Supplementary Table A.10 Overview of consumables, quantities required, costs, lifespan of equipment and cost per sample for each assay.

Supplementary Table A.10 continued: time requirements, samples per week, capital and consumable costs, along with total costs of each assay.

Tissue Mathem Bissing 36 11.667 56.78 51.91 $S1.63$ 12.37 $S7.19$ $S10.74$ Tissue Mathem Dati entry 600 0.7 50.41 $s7.19$ $S7.19$ $S1.074$ Tissue Mathem Dati entry 600 0.7 50.41 $s7.19$ $S7.19$ $S1.074$ Tissue Mathem Dati entry $S0.41$ $s7.19$ $S1.074$ $s7.19$ $S1.074$ Tissue Mathem Dati entry $S0.41$ $s7.19$ $S1.67$ $S7.19$ $S7.19$ $S1.074$ Tissue Mathem Dati entry $S1.62$ $S0.27$ $S1.67$ $S1.77$ $S3.70$ Tissue Mathem Assay 150 2.8 $S1.62$ $S0.27$ 3.05 $S1.77$ $S3.70$ Charophylif date entry 1680 0.25 $S1.42$ $S1.42$ $S0.49$ 4.625 $S2.68$ $S9.10$ Protein Protein Protein Protein Protein Protein	Assay	Time	Samples possible per 7h day	Minutes per sample	Labour cost per sample	Capital cost per sample	Consumable cost per sample	Time requirement per sample (min)	Labour cost per sample	Total cost per sample (capital + consumable + labour)
Trave Maining Trave Maining Trave Maining Trave Maining Date entry 600 0.7 \$0.41 Trave Maining Trave Maining Second S		Blasting	36	11.667	\$6.78	\$1.91	\$1.63	12.37	\$7.19	\$10.74
Tissee Madring Tissee Coder Taking Potons Tissee Coder Taking Potons Taking Potons Tissee Coder Taking Potons Tissee Coder Tissee Coder Tissee Coder Ta	Tissue onusuing	-							*****	
Tisse blashing Tisse blashin	Tissue blasting	Data entry	600	0.7	\$0.41					
Tissue Making Tissue Making Tissue Masting Tissue Masting										
Tisse blaiting Tisse blaiting Image blaiting Image blaiting Image blaiting Tisse blaiting Tisse blaiting Image blaiting Image blaiting Image blaiting Tisse blaiting Tisse blaiting Image blaiting Image blaiting Image blaiting Tisse blaiting Image blaiting Image blaiting Image blaiting Image blaiting Chlorophyll Assay 150 2.8 \$1.65 \$0.27 3.05 \$1.77 \$3.70 Chlorophyll Assay 1660 0.25 \$0.15 \$1.65 \$0.27 3.05 \$1.77 \$3.70 Chlorophyll Assay 96 4.375 \$2.54 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein assay 96 4.375 \$2.54 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein assay 1680 0.25 \$0.15 \$1.69 \$0.45 \$0.85 3 \$2.79 \$4.08 Chalase Chalase Assay 150<										
Tissue blashing Tissue										
Tissee blasting Tissee										
Tisse blashing Tisse blashing Size blashing Size blashing Size blashing Tisse blashing Tisse blashing Assay 150 2.8 \$1.62 \$0.27 3.05 \$1.77 \$3.70 Chlorophyll Chlorophyll Assay 96 4.375 \$2.54 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein Protein assay 96 4.375 \$2.54 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein Protein assay 96 4.375 \$2.54 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein Protein assay 96 4.375 \$2.54 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein Protein assay 150 2.8 \$1.62 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase Assay 150 2.8 \$1.62 \$0.04 \$8.55 \$3.39 \$3.66 Catalase Catalase Catalase Catalase \$0.02 </td <td></td>										
Tissue blasting Tissue blasting Tissue blasting Tissue blasting Tissue blasting Tissue blasting Issue blasting tissue blasting Issue blasting tissue blasting Issue blasting Chlorophyll Protein Protein Protein Protein Protein Protein Chlorophyll	Tissue blasting									
Tissue blasting Tissue blasting Tissue blasting Tissue blasting Tissue blasting Tissue blasting Issue blasting tissue blasting Issue blasting tissue blasting Issue blasting Chlorophyll Protein Protein Protein Protein Protein Protein Chlorophyll	Ticque blocting									
Tissue blasting Tissue blasting Tissue blasting Tissue blasting Assay 150 2.8 \$1.62 \$0.27 3.05 \$1.77 \$3.70 Chlorophyll Protein Prot										
Tissue blasting Tissue blasting Tissue blasting Chlorophyll Chlorop	Tissue orasung									
Tissue blasting Tissue blasting Solution Solution <t< td=""><td>Tissue blasting</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Tissue blasting									
Tissue blasting	Tissue blasting									
Chiorophyll Protein Protein Protein Protein Protein Protein Catalase Catalas										
Chiorophyll Chiorophyll Chiorophyll Chiorophyll data entry 1680 0.25 \$0.15 Protein Protein Protein Protein Protein Protein Protein Protein Protein assay 96 4.375 \$2.54 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein Protein Protein Protein Protein Protein Protein Assay 1680 0.25 \$0.15 \$0.49 4.625 \$2.68 \$9.10 Catalase Catalase Catalase Catalase Catalase Catalase Assay 150 2.8 \$1.62 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase Catalase Catalase Catalase Assay 75 5.6 \$3.25 \$0.45 \$0.85 \$3 \$2.79 \$4.08 Surface area Surface area Surface area Surface area Surface area Assay 75 5.6 \$3.25 \$0.04 5.85 \$3.39 \$3.66 Surface area Surface area Date entry 1680 0.25 \$0.15 \$0.09 \$0.00 1.02 \$0.59 \$0.62 Fvfm Zapping 1400 1.5 \$0.49074 0 1.65										
Chlorophyll Chlorophyll assay 96 4.375 \$2.54 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein						\$1.65	\$0.27	3.05	\$1.77	\$3.70
Chlorophyll Chlorophyll Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Catalase Cata Cata Cata Cata Cata Cata Cata Cat		data entry	1680	0.25	\$0.15					
Chlorophyll v <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
Protein assay 96 4.375 \$2.54 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein Protein 1680 0.25 \$0.15 \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein Protein Protein \$1.79 \$0.49 4.625 \$2.68 \$9.10 Protein Protein \$1.79 \$0.49 \$4.625 \$2.68 \$9.10 Protein \$1.79 \$0.49 \$4.625 \$2.68 \$9.10 Protein \$2.79 \$4.08 \$4.90 \$4.90 \$4.90 \$4.90 Catalase data entry 210 2 \$1.16 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase data entry 210 2 \$1.16 \$0.45 \$0.85 \$3 \$2.79 \$4.08 Catalase Catalase Catalase \$0.45 \$0.85 \$3.39 \$3.66 Surface area Data entry 1680 0.25 \$0										
Protein Protein Protein Protein data entry 1680 0.25 \$0.15 Protein Protein Protein Solar Solar <td></td> <td>assay</td> <td>96</td> <td>4.375</td> <td>\$2.54</td> <td>\$1.79</td> <td>\$0.49</td> <td>4.625</td> <td>\$2.68</td> <td>\$9.10</td>		assay	96	4.375	\$2.54	\$1.79	\$0.49	4.625	\$2.68	\$9.10
Protein Protein Protein Assay 150 2.8 \$1.62 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase Catalase Catalase Catalase Catalase Assay 150 2.8 \$1.62 \$0.45 \$0.85 3 \$2.79 \$4.08 Surface area Surface area Surface area Assay 75 5.6 \$3.25 \$0.22 \$0.04 5.85 \$3.39 \$3.66 Tissue Colour Taking photos 2,800 0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 Fvfm Zapping 1400 1.5 \$0.87 0 1.65 \$0.96 \$1.45										•••••
Protein Protein Protein Assay 150 2.8 \$1.62 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Assay 150 2.8 \$1.62 \$0.45 \$0.85 3 \$2.79 \$4.08 Surface area Surface area Surface area Surface area Catalase Assay 75 5.6 \$3.25 \$0.22 \$0.04 5.85 \$3.39 \$3.66 Surface area Surface area Asing photos 2.800 0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45										
Protein Protein Protein Protein Solution										
Protein Protein Second State Assay 150 2.8 \$1.62 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Assay 75 5.6 \$3.25 \$0.22 \$0.04 5.85 \$3.39 \$3.66 Surface area Surface area Surface area Surface area Surface area Asing photos 2,800 0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45	Protein									
Protein Catalase Assay 150 2.8 \$1.62 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase data entry 210 2 \$1.16 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase Catalase Catalase 210 2 \$1.16 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase Catalase 210 2 \$1.16 \$0.45 \$0.85 3 \$2.79 \$4.08 Catalase Catalase 210 2 \$1.16 \$0.45 \$0.85 \$3 \$2.79 \$4.08 Surface area Data entry 1680 0.25 \$0.15 \$0.22 \$0.04 \$.85 \$3.39 \$3.66 Surface area Surface area Surface area \$0.87 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 Data entry 482 0.87 \$0.50 \$0.49074 0 1.65 \$0.96 \$1.45										
Catalase Catadase Catadase Catalase Catalase Catalase Catalase Catalase Catalas										
Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Catalase Tisue Colour Tissue Colour Tissue Colour Taking photos Zapping2102\$1.16 2\$0.22\$0.045.85 \$0.22\$3.39 \$0.04\$3.66 \$0.25\$3.66 \$0.15FvFmZapping14001.5\$0.09 \$0.87\$0.02\$0.001.02\$0.59 \$0.96\$1.45		A	150	2.0	£1.(2	£0.45	¢0.95	2	\$2.70	£4.00
Catalase Catalase Catalase Catalase Assay 75 5.6 \$3.25 \$0.22 \$0.04 5.85 \$3.39 \$3.66 Surface area Surface area Surface area Assay 75 5.6 \$3.25 \$0.02 \$0.04 5.85 \$3.39 \$3.66 Tissue Colour Data entry 1680 0.25 \$0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45						\$0.45	\$0.85	3	\$2.79	\$4.08
Catalase Catalase Catalase Catalase Assay 75 5.6 \$3.25 \$0.22 \$0.04 5.85 \$3.39 \$3.66 Surface area Surface area Surface area Surface area Data entry 1680 0.25 \$0.15 \$0.22 \$0.04 5.85 \$3.39 \$3.66 Tissue Colour Data entry 2,800 0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45		data enu y	210	2	\$1.10					
Catalase Catalase Assay 75 5.6 \$3.25 \$0.22 \$0.04 5.85 \$3.39 \$3.66 Surface area Surface area Surface area Data entry 1680 0.25 \$0.15 \$0.22 \$0.04 5.85 \$3.39 \$3.66 Tissue Colour Data entry Taking photos 2,800 0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45										
Catalase Surface area Assay 75 5.6 \$3.25 \$0.02 \$0.04 5.85 \$3.39 \$3.66 Surface area Data entry 1680 0.25 \$0.15 \$0.02 \$0.00 1.02 \$0.59 \$0.62 Surface area Taking photos 2,800 0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45										
Surface area Surface area Data entry 1680 0.25 \$0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 Tissue Colour Taking photos 2,800 0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45										
Surface area Surface area Taking photos 2,800 0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 Tissue Colour Data entry Taking photos 2482 0.87 \$0.50 \$0.02 \$0.00 1.02 \$0.59 \$0.62 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45	Surface area	Assay	75	5.6	\$3.25	\$0.22	\$0.04	5.85	\$3.39	\$3.66
Surface area Company		Data entry	1680	0.25	\$0.15					
Tissue Colour Taking photos 2,800 0.15 \$0.09 \$0.02 \$0.00 1.02 \$0.59 \$0.62 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45										
Data entry 482 0.87 \$0.50 FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45			2 000	0.15	<u> </u>	<u> </u>	#0.00	1.02	A0.50	00.60
FvFm Zapping 1400 1.5 \$0.87 0.49074 0 1.65 \$0.96 \$1.45	Tissue Colour	~.				\$0.02	\$0.00	1.02	\$0.59	\$0.62
		Data entry	482	0.87	\$0.50					
	EvEm	Zanning	1400	15	\$0.87	0 49074	0	1.65	\$0.96	\$1.45
Uranscription 2800 0.15 \$0.09		Transcription	2800	0.15		0.45074	U	1.05	Ş0.90	91.70

Appendix B – Supplementary material for Chapter 3

Reef	Latitude	Longitude	Collection month/Year	Collection dates	MMM °C	Treatments	Species	n colonies
Lady Musgrave	-23.9074	152.3865	Jan-20	03/01/2020	27.07	MMM, +3°C, +6°C, +9°C	A. tenuis	14
							P. meandrina	10
							P. other	5
							P. verrucosa	1
Fairfax	-23.8697	152.3611	Jan-20	04/01/2020	27.08	MMM, +3°C, +6°C, +9°C	A. tenuis	18
							P. meandrina	8
							P. other	7
							P. verrucosa	0
Hoskyns	-23.808	152.2836	Jan-20	05/01/2020	27.06	MMM, +3°C, +6°C, +9°C	A. tenuis	15
-							P. meandrina	9
							P. other	4
							P. verrucosa	2
Boult	-23.7482	152.2715	Jan-20	06/01/2020	27.1	MMM, +3°C, +6°C, +9°C	A. tenuis	15
							P. meandrina	7
							P. other	12
							P. verrucosa	0
Masthead	-23.5322	151.7228	Jan-20	10/01/2020	27.17	MMM, +3°C, +6°C, +9°C	A. tenuis	15
Erskine	-23.5085	151.7685	Jan-20	10/01/2020	27.42	MMM, +3°C, +6°C, +9°C	A. tenuis	15
Chinaman	-22.0137	152.6543	Jan-20	18/01/2020	27.42	MMM, +3°C, +6°C, +9°C	P. meandrina	25
							P. other	12
							P. verrucosa	3
22-084	-22.0028	152.457	Jan-20	14/01/2020	27.52	MMM, +3°C, +6°C, +9°C	A. tenuis	15
							P. meandrina	3
							<i>P. other</i>	3
							P. verrucosa	1

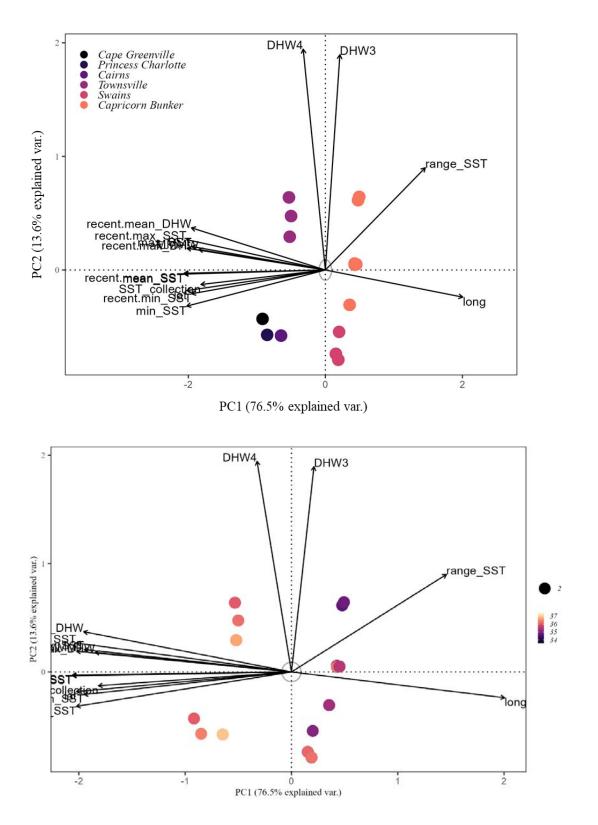
Supplementary Table B.1 Collection and experimental treatment details.

21-550	-21.9618	152.3124	Jan-20	14/01/2020	27.56	MMM, +3°C, +6°C, +9°C	A. tenuis	15
							P. meandrina	2
							P. other	0
							P. verrucosa	0
Davies	-18.4962	147.3761	Apr-21	21/04/2021	28.45	MMM, +3°C, +6°C, +9°C	A. tenuis	15
							P. meandrina	3
							<i>P. other</i>	3
							P. verrucosa	9
Chicken	-18.402	147.424	Apr-21	20/04/2021	28.37	MMM, $+3^{\circ}C$, $+6^{\circ}C$, $+9^{\circ}C$	A. tenuis	15
							P. meandrina	3
							<i>P. other</i>	5
							P. verrucosa	7
Kelso	-18.2541	146.5907	Apr-21	11/04/2021	28.63	MMM, +3°C, +6°C, +9°C	A. tenuis	15
			_				P. meandrina	1
							<i>P. other</i>	0
							P. verrucosa	14
Mackay	-16.2306	145.3908	Apr-21	16/04/2021	28.63	MMM, +3°C, +6°C, +9°C	A. tenuis	15
							P. meandrina	2
							<i>P. other</i>	5
							P. verrucosa	8
Sandbank_1	-14.198	144.9055	Jan-19	06/01/2019	28.55	MMM, +3°C, +6°C	A. tenuis	17
							P. meandrina	0
							<i>P. other</i>	0
							P. verrucosa	12
Davie	-13.9677	144.4455	Jan-19	09/01/2019	28.58	MMM, +3°C, +6°C	A. tenuis	19
							P. meandrina	3
							P. other	4
							P. verrucosa	9
Corbett	-13.9227	144.2405		11/01/2019	28.58		A. tenuis	18

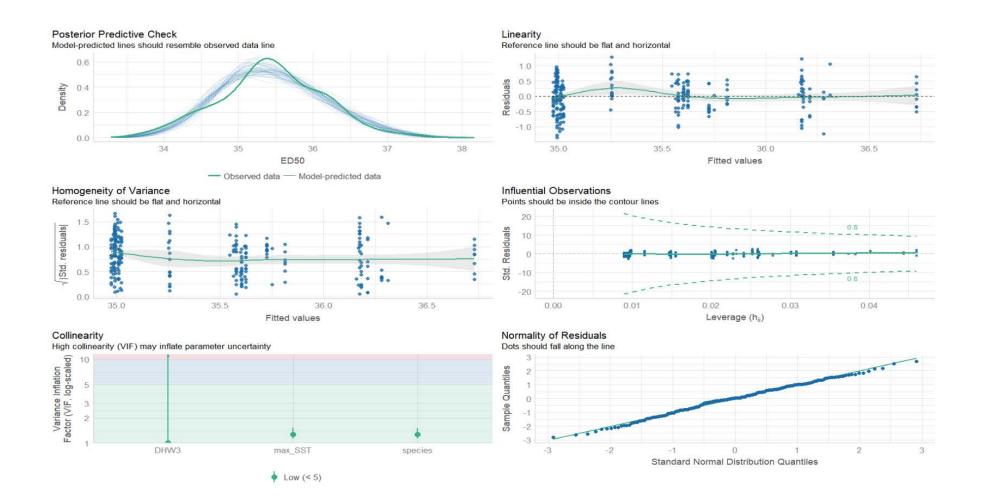
			Jan 2019	07/12/2019		MMM, +3°C, +6°C, +9°C	P. meandrina	13
			and Dec-19			(Pocillopora only)	<i>P. other</i>	10
							P. verrucosa	15
13-124	-13.8517	144.0906	Jan-19	13/01/2019	28.66	$MMM, +3^{\circ}C, +6^{\circ}C$	A. tenuis	15
							P. meandrina	3
							P. other	1
							P. verrucosa	12
Lagoon	-12.3922	143.7394	Jan-19	18/01/2019	28.54	MMM, +3°C, +6°C	A. tenuis	15
							P. meandrina	1
							<i>P. other</i>	0
							P. verrucosa	15
Mantis	-12.3384	143.8608	Jan-19 (A.	20/01/2019	28.44	MMM, $+3^{\circ}$ C, $+6^{\circ}$ C, $+9^{\circ}$ C	A. tenuis	15
			tenuis only)	01/12/2019		(Pocilloporas only)	P. meandrina	4
			and Dec-19				<i>P. other</i>	2
							P. verrucosa	33

Supplementary Table B.2 Primers used

ORF primers from Johnston et al., 2018


Forward	5'-TTTGGGSATTCGTTTAGCAG-3'
Reverse	5'-SCCAATATGTTAAACASCATGTCA-3'

ITS2 primers from Pochon et al., 2001.


Forward	5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGAATTGCAGAACTCCGTG-3'
Reverse	5'-GTCTCGTGGGGCTCGGAGATGTGTATAAGAGACAGCCTCCGCTTACTTA

Supplementary Table B.3 – Overview of environmental and thermal history variables used. All thermal history data obtained from NOAA Coral Reef Watch Operational Daily Near-Real-Time Global 5-km Satellite Coral Bleaching Monitoring Products, accessed through ERDDAP - NOAA Coral Reef Watch Operational Daily Near-Real-Time Global 5-km Satellite Coral Bleaching Monitoring Products - Data Access Form (hawaii.edu) for each reef coordinate.

Variable	Comment
Recent.min_SST	Minimum SST in the last 5 years prior to collection
Recent.mean_SST	Average SST in the last 5 years prior to collection
Recent.mean_DHW	Average heat stress (DHW) during heatwaves in the last 5 years
	prior to collection
Recent.max_SST	Maximum SST recorded in the last 5 years prior to collection
Recent.max_DHW	Maximum heat stress (DHW) recorded in the last 5 years prior to
	collection
Range_SST	Annual difference between the highest and lowest SST recorded
MMM	NOAA climatology
Min_SST	The minimum SST recorded
Mean SST	The average SST recorded
Mean_DHW	The average heat stress (DHW) recorded during heatwaves
Max_SST	The maximum SST recorded.
Max_DHW	The highest heat stress loading (DHW) recorded
Long	Reef longitude, recorded on site by GPS
Lat	Reef latitude, recorded on site by GPS
DHW8	Number of heatwave events where heat stress exceeded 8 DHW.
	DHW > 8 commonly recognised as indicator of severe bleaching
	and mortality.
DHW6	Number of heatwave events where heat stress exceeded 6 DHW
DHW4	Number of heatwave events where heat stress exceeded 4 DHW.
	DHW 3 and 4 commonly recognised as alert level for bleaching.
DHW3	Number of heatwave events where heat stress exceeded 3 DHW.
	DHW 3 and 4 commonly recognised as alert level for bleaching.
DHW2	Number of heatwave events where heat stress exceeded 2 DHW

Supplementary Figure B.4 A) PCA of environmental variables and reef sectors. B) Environmental variables and their Principal Component association with absolute ED50s.

Supplementary Figure B.5 Model checking for the linear model that best predicted ED50 from thermal variables (ED50 \sim species + max_SST + DHW3).

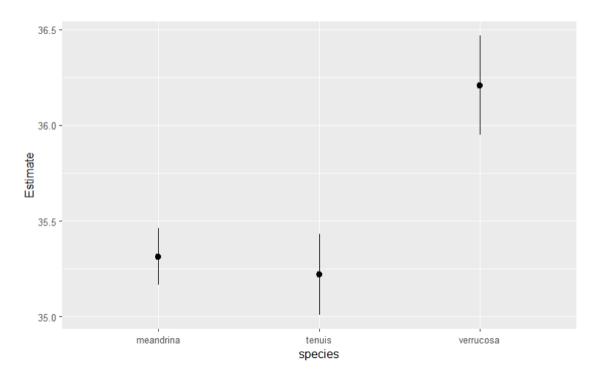
Supplementary material B.6 Statistical outputs for assessment of F_{ν}/F_m by species, treatment,

and their interaction.

Statistical test of FvFm in treatments * species, Wald's test

	numDF <int></int>	denDF <dbl></dbl>	F-value <chr></chr>	p-value <chr></chr>
(Intercept)	1	3176	139320.67	<.0001
species	3	571	7.82	<.0001
treatment	3	3176	1349.43	<.0001
species:treatment	9	3176	9.23	<.0001

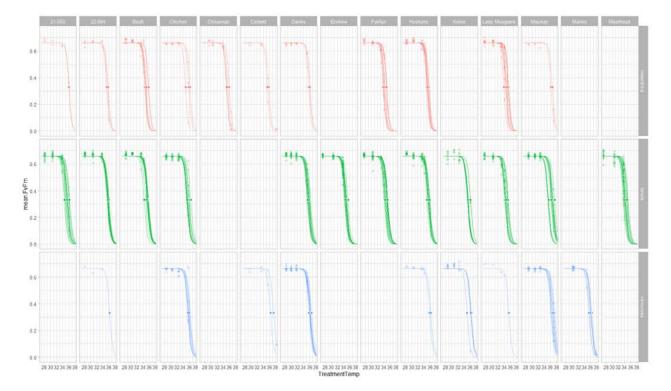
Supplementary table B.6 Mean $F_v/F_m(\pm SE)$ values per species by treatment, averaged across all reefs.

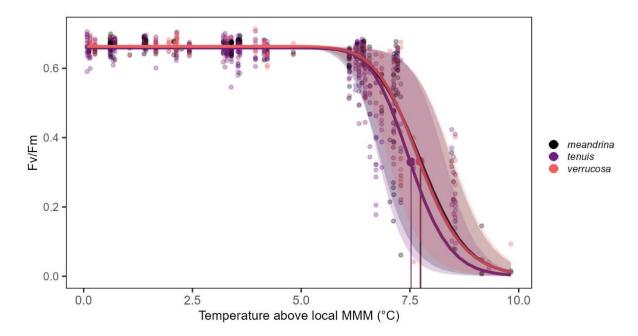

Species	F_{v}/F_{m} MMM	F_{v}/F_{m} +3°C	F_{ν}/F_m +6°C	F_v/F_m +9°C
A. tenuis	0.669 ± 0.0007	0.660 ± 0.001	0.625 ± 0.0025	0.447 ± 0.013
P. meandrina	0.667 ± 0.0001	0.663 ± 0.0018	0.631 ± 0.0036	0.406 ± 0.024
P. verrucosa	0.671 ± 0.0012	0.671 ± 0.002	0.626 ± 0.0046	0.356 ± 0.028

Supplementary material B.7 Absolute ED50s by host species statistical outputs

```
Nonlinear mixed-effects model fit by maximum likelihood
 Model: mean.FvFm ~ meLL.3(TreatmentTemp, b, d, e)
 Data: data
Random effects:
Formula: e ~ 1 | colonyID
       e.(Intercept) Residual
            0.722752 0.02889441
StdDev:
Fixed effects: list(b ~ species - 1, d ~ species - 1, e ~ species - 1)
Correlation:
                  b.spcsm b.spcst b.spcsv d.spcsm d.spcst d.spcsv e.spcsm e.spcst
b.speciestenuis
                   0.000
                           0.000
b.speciesverrucosa 0.000
d.speciesmeandrina -0.311
                           0.000
                                   0.000
d.speciestenuis
                  0.000
                          -0.276
                                   0.000
                                           0.000
d.speciesverrucosa 0.000
                          0.000 -0.169
                                           0.000
                                                   0.000
e.speciesmeandrina -0.203
                           0.000
                                  0.000 -0.054
                                                   0.000
                                                          0.000
e.speciestenuis
                   0.000
                          -0.468
                                  0.000
                                           0.000
                                                 -0.003
                                                          0.000
                                                                   0.000
                           0.000 -0.175
                                                  0.000 -0.056
                                                                          0.000
e.speciesverrucosa 0.000
                                           0.000
                                                                   0.000
Standardized Within-Group Residuals:
       Min
                    Q1
                               Med
                                            Q3
                                                       Max
-6.88483620 -0.33490805 0.06394375 0.41105626 7.02270829
Number of Observations: 981
Number of Groups: 278
```

	Value <chr></chr>	Std.Error <chr></chr>	DF <chr></chr>	t-value <chr></chr>	p-value <chr></chr>
b.speciesmeandrina	82.38376	5.110428	695	16.1207	0
b.speciestenuis	69.98497	4.406040	695	15.8839	0
b.speciesverrucosa	71.66758	8.451204	695	8.4802	0
d.speciesmeandrina	0.66171	0.002540	695	260.4911	0
d.speciestenuis	0.66080	0.001440	695	459.0097	0
d.speciesverrucosa	0.66313	0.002691	695	246.4314	0
e.speciesmeandrina	35.21934	0.108648	695	324.1593	0
e.speciestenuis	35.31381	0.076576	695	461.1632	0
e.speciesverrucosa	36.20909	0.132002	695	274.3064	0


9 rows

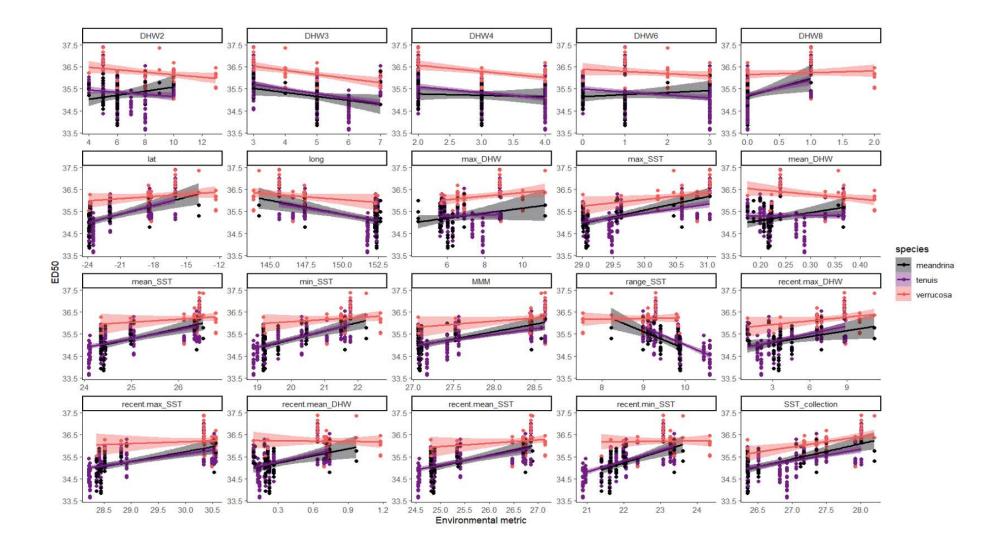

Supplementary Figure B.7 Absolute ED50 temperatures were significantly higher in *P. verrucosa* than in *P. meandrina* and *A. tenuis* yet, did not differ between the two latter species. Statistical groupings were assessed by emmeans() (Hartig & Lohse, 2021).

Post-hoc Tukey's for differences in ED50s between species

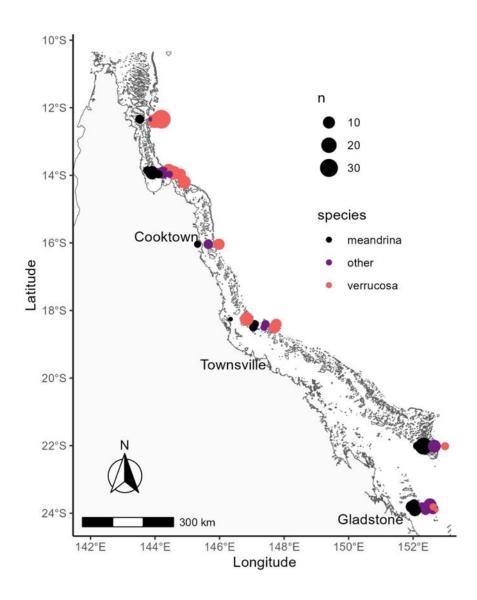
contrast	estimate	SE	df	t.ratio	p.value	
meandrina - tenuis	-0.0108	0.0956	255	-0.113	0.9929	
meandrina - verrucosa	-0.5686	0.1532	255	-3.712	0.0007	
tenuis - verrucosa	-0.5577	0.1349	255	-4.135	0.0001	
Results are averaged ov			F: S€	ector		
Degrees-of-freedom meth	nod: conta	ainment				
P value adjustment: tuk	key method	d for co	ompar	ring a fa	amily of	3 estimates
species emmean SE	E df lower	r.CL upp	per.C	CL .group)	
meandrina 35.5 0.120) 11 3	35.1	35.	8 a		
tenuis 35.5 0.102	2 11 3	35.2	35.	8 a		
verrucosa 36.1 0.150	511 3	35.6	36.	5 b		

Supplementary figure B.7.1 ED50 curves per species per reef.

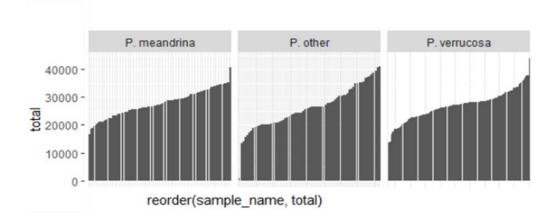
Supplementary Figure B.8 Relative ED50 (temperature above local MMM) did not significantly differ between the three species.


Supplementary material B.9 Absolute ED50 values by reef sector

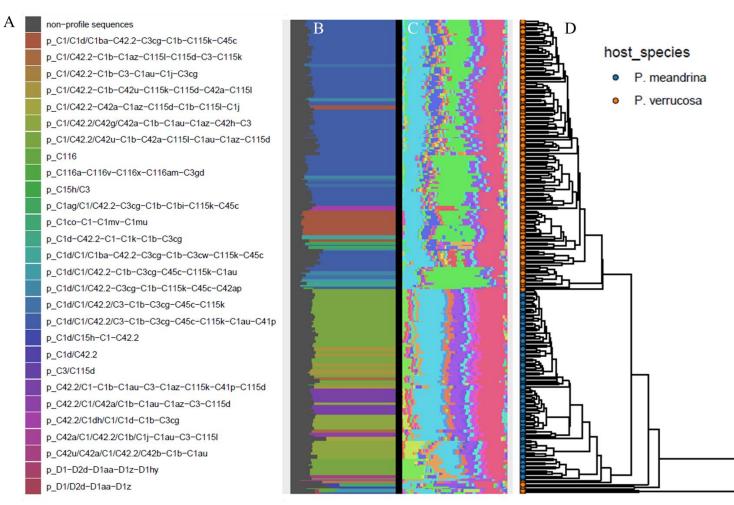
Linear mixed-effects model fit by REML Data: dat						
Random effects: Formula: ~1 site (Intercept) Residual StdDev: 0.3268465 0.4188848						
Fixed effects: ED50 ~ Sector * species Correlation:						
	(Intr)	SctrTw	SctrSw	SctrCB	spcstn	spcsvr
SectorTownsville	-0.747					
SectorSwains	-0.774	0.578				
SectorCapricorn Bunker	-0.882	0.659	0.683			
speciestenuis	-0.608	0.454	0.471	0.536		
speciesverrucosa	-0.680	0.508	0.526	0.600	0.771	
SectorTownsville:speciestenuis	0.496	-0.615	-0.384	-0.437	-0.815	-0.628
SectorSwains:speciestenuis	0.492	-0.367	-0.565	-0.434	-0.809	-0.623
SectorCapricorn Bunker:speciestenuis	0.575	-0.430	-0.445	-0.574	-0.946	-0.729
SectorTownsville:speciesverrucosa	0.538	-0.651	-0.417	-0.475	-0.610	-0.792
SectorSwains:speciesverrucosa	0.329	-0.246	-0.366	-0.290	-0.373	-0.484
SectorCapricorn Bunker:speciesverrucosa	0.477	-0.357	-0.370	-0.463	-0.541	-0.702
	SctrTw	nsvll:s	ocst Sci	trSwns:	spcst	
numD)F	denDF	F-value		р	-value


	numDF <int></int>	denDF <dbl></dbl>	F-value <chr></chr>	p-value <chr></chr>
(Intercept)	1	255	157256.51	<.0001
Sector	3	11	9.98	0.0018
species	2	255	22.03	<.0001
Sector:species	6	255	1.03	0.4049

Post hoc contrasts of absolute ED50 between sectors


Townsville - Swains Townsville - Capricorn Bunker	estimateSEdft.ratiop.value0.25550.293110.8710.81970.33300.326111.0220.74040.95680.268113.5760.01940.07750.317110.2440.99460.70130.257112.7290.07950.62370.293112.1260.2042					
Results are averaged over the	levels of: species					
Degrees-of-freedom method: con						
-	od for comparing a family of 4 estimates					
Sector emmean SE	df lower.CL upper.CL .group					
Capricorn Bunker 35.1 0.160	11 34.6 35.6 a					
Swains 35.7 0.246	11 35.0 36.5 ab					
Townsville 35.8 0.201	11 35.2 36.4 ab					
Northern 36.1 0.214	14 35.4 36.7 b					
Results are averaged over the levels of: species Degrees-of-freedom method: containment Confidence level used: 0.95 Conf-level adjustment: bonferroni method for 4 estimates P value adjustment: bonferroni method for 6 tests significance level used: alpha = 0.05 NOTE: If two or more means share the same grouping symbol, then we cannot show them to be different. But we also did not show them to be the same.						

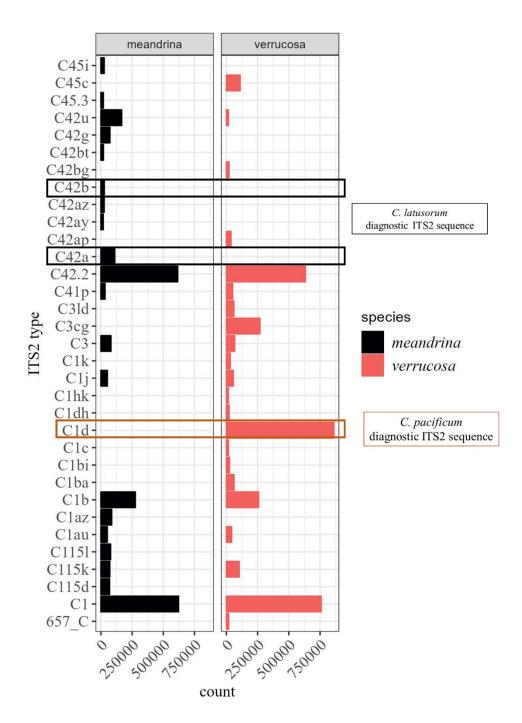
Supplementary Figure B.10 Correlations between absolute ED50 values and 20 thermal history metrics, coloured by species (P. *meandrina* = black, *A. tenuis* = purple, *P. verrucosa* = orange).


Supplementary Figure B.11 Map of collected *Pocillopora* colonies by RFLP-confirmed species (*P. verrucosa* = orange, *P. meandrina* = black, *P. others* = purple). Dot size indicates number of colonies collected within species per reef.

Supplementary Figure B.12 Sequencing read depth per sample per species, ordered from least number of reads to highest.

Supplementary Table B.12 Library statistics overview from ITS2 sequencing of *P. meandrina* and *P. verrucosa* samples.

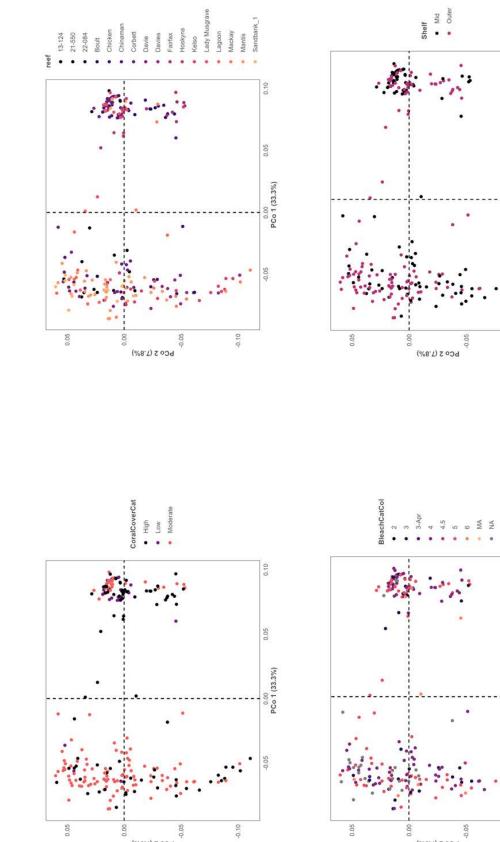
Library statistics	P. meandrina	P. verrucosa
Samples (n)	96	141
Average reads per sample	27,715.07	26,989.94
Proportion non-profile sequences	0.187	0.155
Unique type profiles (n)	11	17


Supplementary Figure B.13 ITS2 profiles: Phylogenetic tree of sample relatedness based on k-mer hierarchical clustering and generalised UniFrac distances (GUniFrac). The tree highlights the clear split in symbiont composition between *P. meandrina* (blue) and *P. verrucosa* (orange) colonies.

Supplementary Table B.14 Most abundant (relative abundance) ITS2-type profile by species and sector. The dominant types within *P. meandrina* were all C1/C42.2/C42u-C1b-C42a-C115I-C1au-C1az-C115d except for in the Capricorn Bunker Group which recorded the C3 DIV. In *P. verrucosa*, a similar trend was recorded where the most dominant ITS2-type profile was C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p except in the Capricorn Bunker Group where all three sampled colonies of this species recorded different ITS2-type profiles.Interestingly, only one of the colonies sampled from this species in this sector recorded the *C. pacificum* diagnostic ITS2 sequence (C1d) which was absent from the profiles of the other two samples.

Sector	Species	Most abundant ITS2-type profile
Cape Greenville	P. verrucosa	C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p
	P. meandrina	C1/C42.2/C42u-C1b-C42a-C1151-C1au-C1az-C115d
Princess Charlotte	P. verrucosa	C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p
Bay	P. meandrina	C1/C42.2/C42u-C1b-C42a-C1151-C1au-C1az-C115d
Cairns	P. verrucosa	C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p
	P. meandrina	C1/C42.2/C42u-C1b-C42a-C1151-C1au-C1az-C115d
Townsville	P. verrucosa	C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p
	P. meandrina	C1/C42.2/C42u-C1b-C42a-C1151-C1au-C1az-C115d
Swains	P. verrucosa	C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p
	P. meandrina	C1/C42.2/C42u-C1b-C42a-C1151-C1au-C1az-C115d
Capricorn	P. verrucosa	C1d/C1/C42.2/C3-C1b-C3cg-C45c-C115k-C1au-C41p
Bunkers		C1ag/C1/C42.2-C3cg-C1b-C1bi-C115k-C45c
		C1/C42.2-C1b-C3-C1au-C1j-C3cg
	P. meandrina	C1/C42.2/C42g/C42a-C1b-C1au-C1az-C42h-C3

Supplementary Figure B.14 Most abundant ITS2-type profiles by species (green hues = *P. meandrina*, purple hues = *P. verrucosa*) and reef sector



Supplementary Figure B.15 Bar chart of absolute DIV (ITS2 sequence) abundance from SymPortal in *P. meandrina* (black) and *P. verrucosa* (orange). The boxes indicate the diagnostic ITS2 sequences for *Cladocopium latusorum* (black, *P. meandrina*) and *C. pacificum* (orange, *P. verrucosa*).

Supplementary Table B.16 Statistical outputs from PERMANOVAs of symbiont community, thermal history, geography, and acute heat tolerance (ED50)

Terms	Variable	Species	Df	Sums of	R2	F	Р	***
				Squares				
Ecology	Species	NA	1	0.62	0.49	230.27	0.0001	***
	Coral cover	P. verrucosa	2	0.014	0.032	2.32	0.041	*
		P. meandrina	2	0.02	0.01	5.45	0.001	***
Geography	Latitude	P. verrucosa	1	0.027	0.064	9.95	0.001	***
		P. meandrina	1	0.017	0.097	10.85	0.001	***
	Longitude	P. verrucosa	1	0.024	0.056	8.79	0.001	**
		P. meandrina	1	0.013	0.071	7.99	0.001	***
	Region	P. verrucosa	2	0.071	0.17	13.70	0.001	***
		P. meandrina	2	0.05	0.28	18.11	0.001	***
	Sector	P. verrucosa	5	0.083	0.19	6.46	0.001	***
		P. meandrina	5	0.057	0.33	8.71	0.001	***
	Reef	P. verrucosa	13	0.10	0.24	3.10	0.001	***
		P. meandrina	15	0.082	0.47	4.67	0.001	***
Thermal	MMM	P. verrucosa	1	0.008	0.02	3.12	0.027	*
history		P. meandrina	1	0.025	0.14	16.90	0.001	***
	Max_SST	P. verrucosa	1	0.025	0.059	8.92	0.001	***
		P. meandrina	1	0.009	0.053	5.62	0.001	***
	Range_SST	P. verrucosa	1	0.045	0.10	16.46	0.001	***
		P. meandrina	1	0.014	0.081	9.73	0.001	***
	Mean_DHW	P. verrucosa	1	0.009	0.021	3.11	0.004	**
		P. meandrina	1	0.014	0.079	8.42	0.001	***
	DHW2	P. verrucosa	1	0.006	0.013	2.00	0.044	*
		P. meandrina	1	0.011	0.060	6.60	0.002	***
	DHW3	P. verrucosa	1	0.013	0.030	4.48	0.001	***
		P. meandrina	1	0.011	0.061	6.64	0.001	***
	DHW4	P. verrucosa	1	0.021	0.047	7.07	0.001	***
		P. meandrina	1	0.006	0.036	3.93	0.006	**
	Fv/Fm ED50	P. verrucosa	1	0.14	0.044	2.04	0.072	NS

Thermal	P. meandrina	1	0.38	0.17	10.17	0.001	***
tolerance							

PCo 2 (7.8%)

Supplementary Figure B. 17.a Symbiont community composition shows a strong split between the two coral host species but do not show evidence of clustering by reef, bleaching category, shelf position, or coral cover category. 195

0.10

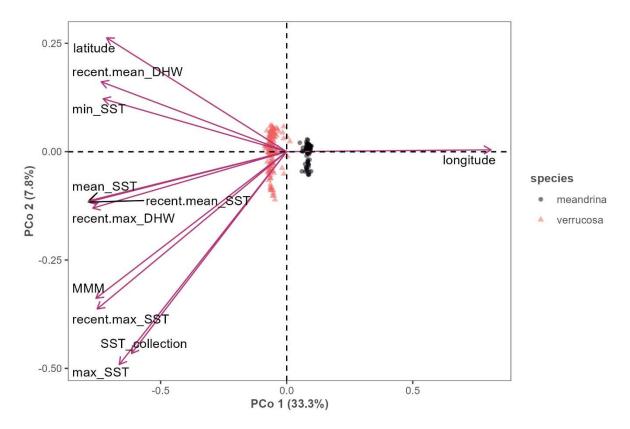
0.05

0.00 PCo 1 (33.3%)

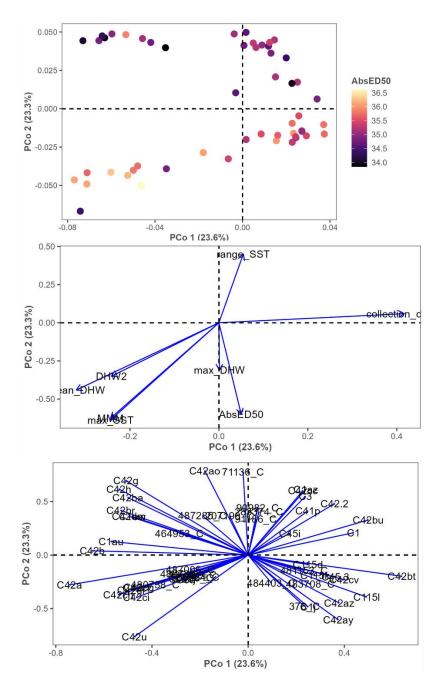
-0.05

0.10

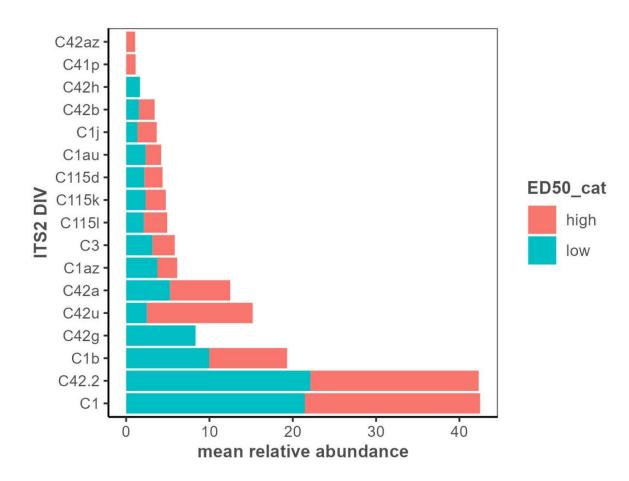
0.05

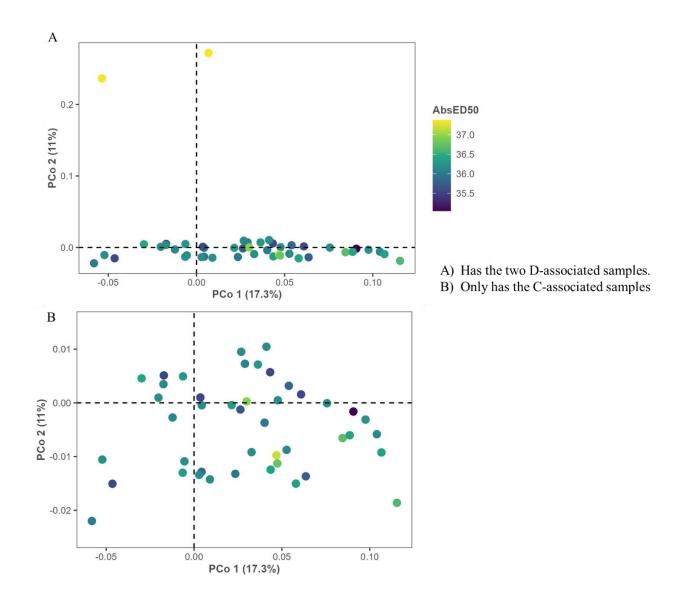

0.00 PCo 1 (33.3%)

0.05


-0.10

(%8.7) 2 oDq

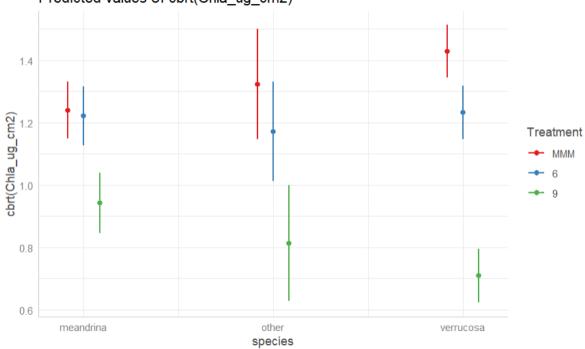

-0.10


Supplementary Figure B.17.b PCoA of symbiont communities between the two species (*P. verrucosa* = orange, *P. meandrina* = black) with vectors indicating different thermal variables associated with each reef.

Supplementary Figure B.18 A) PCoA of *P. meandrina* symbiont communities with respect to ED50. B) Association of environmental variables with ED50. C) No single ITS2 DIV was significantly associated with higher ED50.

Supplementary Figure B.19 Overview of the most abundant DIVs associated with high (red) and low (blue) acute heat tolerance (ED50).

Supplementary Figure B.20 A) ED50 was higher (by 0.2°C) in the two samples hosting *Durusdinium*-genus symbionts but (B) there was no effect of *Cladocopium* community of ED50s.

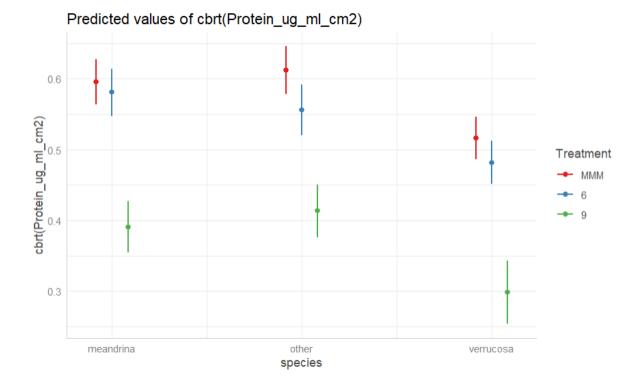

Supplementary material B.21 Statistical outputs for physiological traits

S21a - Fv/Fm

	numDF <int></int>	denDF F-value	p-value <chr></chr>
(Intercept)	1	3176 139320.	67 <.0001
species	3	571 7.82	<.0001
treatment	3	3176 1349.43	<.0001
species:treatment	9	3176 9.23	<.0001

S21b – Chlorophyll content

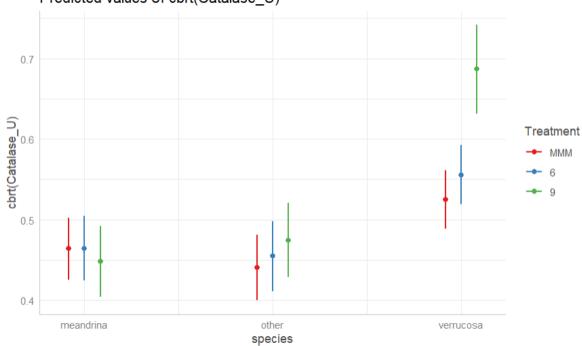
	numDF <int></int>		F-value <chr></chr>	p-value <chr></chr>
(Intercept)	1	185	2691.3747	<.0001
species	2	111	0.0685	0.9339
Treatment	2	185	119.8849	<.0001
species:Treatment	4	185	7.9479	<.0001



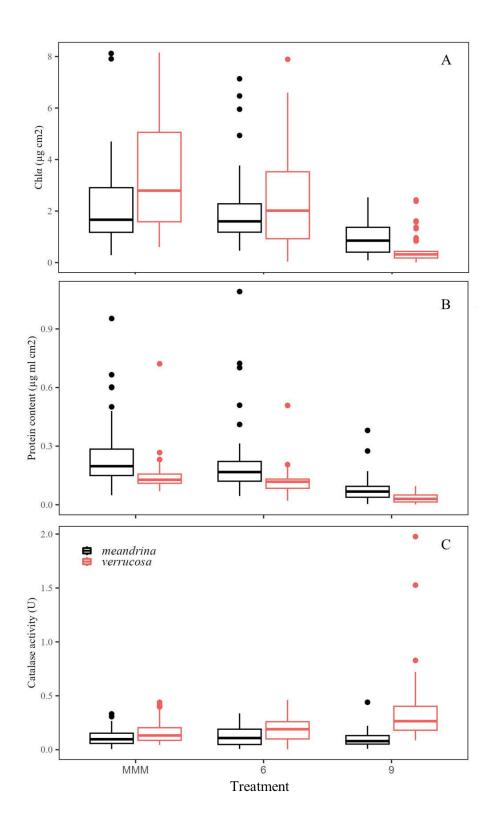
Factor	Level	contrast	estimate	SE	df	t.ratio	p.value	Sig code
Treatment	MMM	Meandrina – other	-0.0834	0.1007	111	-0.828	0.6864	
		Meandrina - verrucosa	-0.1887	0.0628	111	-3.002	0.0092	**
		Other - verrucosa	-0.1053	0.0994	111	-1.059	0.5412	
	6	Meandrina – other	0.0499	0.0936	111	0.533	0.8553	
		Meandrina - verrucosa	-0.0107	0.0645	111	-0.166	0.9849	
		Other - verrucosa	-0.0606	0.0915	111	-0.663	0.7856	
	9	Meandrina – other	0.1289	0.1056	111	1.220	0.4439	
		Meandrina - verrucosa	0.2333	0.0653	111	3.574	0.0015	**
		Other - verrucosa	0.1044	0.1032	111	1.012	0.5710	
Species	Meandrina	MMM - 6	0.0186	0.0552	185	0.337	0.9393	
		MMM - 9	0.2983	0.0559	185	5.337	< 0.0001	***
		6 - 9	0.2797	0.0578	185	4.840	< 0.0001	***
	Other	MMM - 6	0.1519	0.1082	185	1.403	0.3414	
		MMM - 9	0.5105	0.1167	185	4.376	0.0001	***
		6 - 9	0.3586	0.1061	185	3.38	0.0025	**
	Verrucosa	MMM - 6	0.1965	0.0505	185	3.894	0.0004	**
		MMM - 9	0.7202	0.0505	185	14.27	< 0.0001	***
		6 - 9	0.5237	0.0508	185	10.311	< 0.0001	***

Predicted values of cbrt(Chla_ug_cm2)

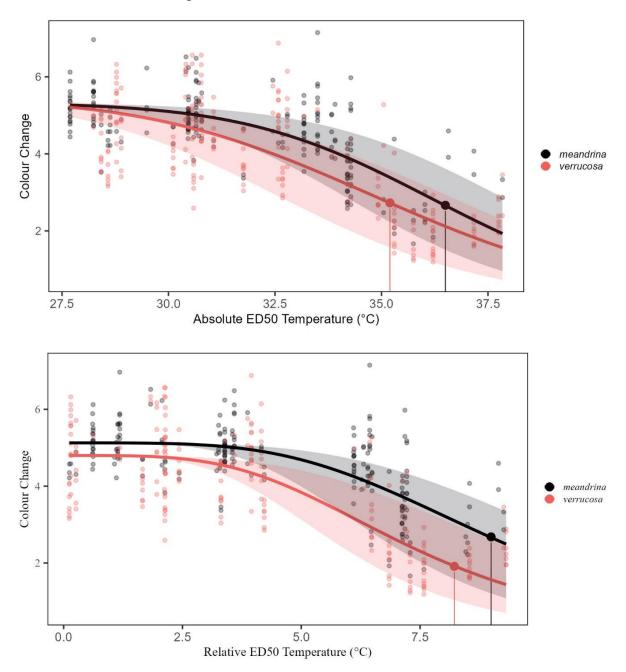
S21c – Protein content


	numDF <int></int>		F-value <chr></chr>	p-value <chr></chr>
(Intercept)	1	205	5121.201	<.0001
species	2	135	10.188	0.0001
Treatment	2	205	141.838	<.0001
species:Treatment	4	205	0.851	0.4942

Factor	Level	contrast	estimate	SE	df	t.ratio	p.value	Sig
								code
Treatment	MMM	Meandrina – other	-0.0166	0.0235	135	-0.707	0.7601	
		Meandrina - verrucosa	0.0793	0.0221	135	3.582	0.0014	**
		Other - verrucosa	0.0959	0.0228	135	4.202	0.0001	***
	6	Meandrina – other	0.0246	0.0247	135	0.995	0.5813	
		Meandrina - verrucosa	0.0992	0.0227	135	4.371	0.0001	***
		Other - verrucosa	0.0747	0.0237	135	3.153	0.0057	**
	9	Meandrina – other	-0.0226	0.0262	135	-0.862	0.6653	
		Meandrina - verrucosa	0.0928	0.0289	135	3.210	0.0047	**
		Other - verrucosa	0.1154	0.0293	135	3.936	0.0004	***
Species	meandrina	MMM - 6	0.0148	0.0193	205	0.767	0.7236	
		MMM - 9	0.2049	0.0205	205	9.973	< 0.0001	***
		6 - 9	0.1901	0.0211	205	8.992	< 0.0001	***
	Other	MMM - 6	0.0560	0.0209	205	2.681	0.0215	*
		MMM - 9	0.1989	0.0216	205	9.215	< 0.0001	***
		6 - 9	0.1430	0.022	205	6.487	< 0.0001	***
	verrucosa	MMM - 6	0.0348	0.0177	205	1.961	0.1246	
		MMM - 9	0.2185	0.0242	205	9.026	< 0.0001	***
		6 - 9	0.1837	0.0242	205	7.576	< 0.0001	***


S21d – Catalase activity

	numDF <int></int>		F-value <chr></chr>	p-value <chr></chr>
(Intercept)	1	202	3782.281	<.0001
species	2	135	20.010	<.0001
Treatment	2	202	4.469	0.0126
species:Treatment	4	202	4.987	0.0007


Factor	Level	contrast	estimate	SE	df	t.ratio	p.value	Sig code
Treatment	MMM	Meandrina – other	0.0236	0.0283	135	0.834	0.6829	
		Meandrina - verrucosa	-0.0607	0.0268	135	-2.268	0.0639	
		Other - verrucosa	-0.0843	0.0276	135	-3.052	0.0077	**
	6	Meandrina – other	0.0100	0.0299	135	0.336	0.9399	
		Meandrina - verrucosa	-0.0910	0.0275	135	-3.306	0.0035	**
		Other - verrucosa	-0.1010	0.0288	135	-3.512	0.0017	**
	9	Meandrina – other	-0.0263	0.0321	135	-0.818	0.6927	
		Meandrina - verrucosa	-0.2385	0.0356	135	-6.694	< 0.0001	***
		Other - verrucosa	-0.2122	0.0363	135	-5.847	< 0.0001	***
Species	Meandrina	MMM - 6	-0.000445	0.0253	202	-0.018	0.9989	
		MMM - 9	0.015892	0.0268	202	0.593	0.8240	
		6 - 9	0.016337	0.0275	202	0.594	0.8235	
	Other	MMM - 6	-0.014006	0.0272	202	-0.514	0.8644	
		MMM - 9	-0.033961	0.0284	202	-1.197	0.4561	
		6 - 9	-0.019955	0.0291	202	-0.687	0.7715	
	Verrucosa	MMM - 6	-0.030742	0.0235	202	-1.308	0.3924	
		MMM - 9	-0.161892	0.0314	202	-5.153	< 0.0001	***
		6 - 9	-0.131150	0.0314	202	-4.176	0.0001	***

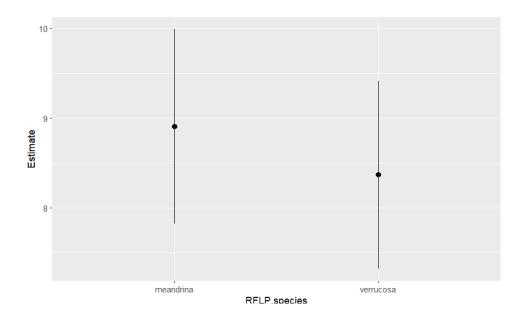
Predicted values of cbrt(Catalase_U)

Supplementary Figure B.21 Declines are widely recorded across coral species in response to increasing treatment temperatures during acute heat stress assays in A) chlorophyll- α , B) protein content, and C) catalase activity. The boxplots are coloured by species (*P. meandrina* = black, *P. verrucosa* = orange) and outline the interquartile range, the whiskers indicate 1 SD, the line inside the boxes indicates the mean per group, and the dots indicate data outliers.

Additional results for chapter 3

Supplementary Figure B.22 ED50 values derived from coral tissue colour change. Top) Absolute ED50s did not differ between species, with *P. meandrina* (black) recording a colour-change ED50 of 36.54°C and *P. verrucosa* (orange) of 35.50°C. Bottom) there were also no significant differences in the relative ED50 values derived from tissue colour change between the two species. The bands indicate 95% confidence intervals.

Statistical outputs for absolute colour-derived ED50s


```
Estimated effective doses
```

```
Estimate Std. Error Lower Upper
e:meandrina:50 36.53850 0.44659 35.66062 37.41639
0.48616 34.54222 36.45359
```

Statistical outputs for relative colour-derived ED50s

```
Estimated effective doses
```

	Estimate	Std. Error	Lower	Upper
e:meandrina:50	8.90763	0.55238	7.82167	9.99358
e:verrucosa:50	8.36760	0.53258	7.32056	9.41465

Supplementary material B.23 Model selection process. Here, I tested 16 different linear models with various combinations of thermal history variables, species, sector, and interaction terms. I compare them to a fully naïve dredge() model void of biological information.

```{r}
# need to widen the data frame
thermal.subset2<- thermal.subset %>%
spread(key = variable, value = value) %>%
ungroup() %>% # ungroup() was necessary to remove site
dplyr::select(-Sector, -colonyID, -site, -meanSite\_ED50)

options(na.action = "na.fail") dredge.mod1 <- dredge(Im(ED50~species +., data = thermal.subset2), rank = "AIC", m.lim = c(1,4))

#just look at the top 20 scoring models head(dredge.mod1, 20)

#extracting the best fit model using AIC score bestmodel1 <- get.models(dredge.mod1, 1)[[1]] lm.dredge1 <- lm(bestmodel1, data = dredge.sub) summary(lm.dredge1)

# but I should probably consider that the species need an interaction term, especially in range\_SST where verrucosa shows a very different relationship to meandrina/tenuis

Im.1 <- Im(ED50 ~ species + range\_SST+ recent.mean\_SST, data = thermal.subset2 )
Im.2 <- Im(ED50 ~ species \* range\_SST+ recent.mean\_SST, data = thermal.subset2)
# does forcing recent.max\_DHW add explanatory power?
Im.11 <- Im(ED50 ~ species \* range\_SST+ recent.mean\_SST + recent.max\_DHW, data = thermal.subset2)
# no, adding recent.max\_DHW does not significantly improve the fit.</pre>

AICc(Im.1, Im.2) # model 2 is the better model based on AICc anova(Im.2) # summary(Im.2) # interaction is significant, so worth modelling

# should check variance inflation
vif(Im.2) # ok, that's not great...

#### vif(lm.1)

#re-dredge with the interaction now specified dredge.mod2 <- dredge(Im(ED50~species\*range\_SST +., data = thermal.subset2), rank = "AIC", m.lim = c(1,4)) head(dredge.mod2, 10) #extracting the best fit model using AIC score bestmodel2 <- get.models(dredge.mod2, 1)[[1]] Im.dredge2 <- Im(bestmodel2, data = thermal.subset2) summary(Im.dredge2)

library(performance)

check\_model(Im.2)

check\_model(lm.1)

check\_model(Im.dredge2)

# compare trends in the model interaction emtrends(Im.2, pairwise~species, var = "range\_SST")

# what are the relative importance of each predictor?

library(relaimpo)

calc.relimp(lm.2, type = "lmg")

# so species accounts for 12.9%, range\_SST = 17.2%, recent.mean\_SST = 17.3%, and the interaction for 5.8% = 53.2% of total variation.

calc.relimp(lm.dredge2, type = "lmg")

calc.relimp(lm.11, type = "lmg")

r.squaredGLMM(lm.dredge2) # = 52.7% variation explained.

r.squaredGLMM(lm.6) # so a complete dredge model has some variance inflation issues but ultimately, explains 7% more variability within the data.

•••

What would happen if I dredged from the very beginning without any pre-conceived ideas of co-linear variables?

```{r}

need to widen the data frame

dredge.sub<- meta.long3 %>%

spread(key = variable, value = value) %>%

ungroup() %>% # ungroup() was necessary to remove site

dplyr::select(-Sector, -colonyID, -site)

options(na.action = "na.fail") dredge.mod3 <- dredge(Im(ED50~species +., data = dredge.sub), rank = "AIC", m.lim = c(1,4))

#just look at the top 20 scoring models head(dredge.mod3, 20)

#extracting the best fit model using AIC score bestmodel3 <- get.models(dredge.mod3, 1)[[1]] lm.dredge3 <- lm(bestmodel3, data = dredge.sub) summary(lm.dredge3)

but I should probably consider that the species need an interaction term, especially in range_SST where verrucosa shows a very different relationship to meandrina/tenuis

Im.6 <- Im(ED50 ~ species + recent.max_DHW + recent.mean_DHW + recent.min_SST, data = dredge.sub)

Im.7 <- Im(ED50 ~ species * recent.max_DHW + recent.mean_DHW + recent.min_SST, data = dredge.sub)

Im.8 <- Im(ED50 ~ species * recent.mean_DHW + recent.max_DHW + recent.min_SST, data = dredge.sub)

Im.9 <- Im(ED50 ~ species + recent.mean_DHW + recent.max_DHW + recent.min_SST, data = dredge.sub)

AICc(lm.6, lm.7, lm.8, lm.9)

model 6 and 9 are the best fit from AIC scores with same DFs,
are model 6 and 9 significantly different to each other?
anova(Im.6, Im.9) # no, they are the exact some.
should check variance inflation
vif(Im.6) # ok, that's alright

library(performance)

check_model(Im.6)

what are the relative importance of each predictor?

library(relaimpo)

calc.relimp(lm.6, type = "lmg")

so species accounts for 12.9%, range_SST = 17.2%, recent.mean_SST = 17.3%, and the interaction for 5.8% = 53.2% of total variation.

calc.relimp(Im.5, type = "Img")

calc.relimp(Im.dredge3, type = "Img")

r.squaredGLMM(lm.dredge3) # = 59.8% variation explained.

208

r.squaredGLMM(lm.6) # so a complete dredge model has some variance inflation issues but ultimately, explains 7% more variability within the data.

•••

Adding sector

Can I add in sector to help soak up more of the variability? Answer: Yes, I can. Takes me up to a total variance epxlained of 62%

```{r}

# need to widen the data frame

dredge.sub2<- meta.long3 %>%

spread(key = variable, value = value) %>%

ungroup() %>% # ungroup() was necessary to remove site

dplyr::select(-colonyID, -site)

options(na.action = "na.fail")

dredge.mod4 <- dredge(Im(ED50~species +., data = dredge.sub2), rank = "AIC", m.lim = c(1,4))

#just look at the top 20 scoring models

head(dredge.mod4, 20)

#extracting the best fit model using AIC score bestmodel4 <- get.models(dredge.mod4, 1)[[1]] Im.dredge4 <- Im(bestmodel4, data = dredge.sub2) summary(Im.dredge4)

# but I should probably consider that the species need an interaction term, especially in range\_SST where verrucosa shows a very different relationship to meandrina/tenuis

Im.12 <- Im(ED50 ~ max\_SST + recent.mean\_SST + Sector + species, data = dredge.sub2 )
Im.13 <- Im(ED50 ~ species + max\_SST + recent.mean\_SST + Sector, data = dredge.sub2)
Im.14 <- Im(ED50 ~ species \* Sector + max\_SST + recent.mean\_SST, data = dredge.sub2)</pre>

AICc(Im.12, Im.13, Im.14) # model 12 and 13 are best fit, and likely identical # are model 6 and 9 significantly different to each other? anova(Im.12, Im.13) # no, they are the exact some. summary(Im.13) # should check variance inflation

vif(lm.13) # ok, that's alright

check\_model(Im.13)

# what are the relative importance of each predictor?

library(relaimpo)

calc.relimp(lm.13, type = "lmg")

# so species accounts for 12.9%, range\_SST = 17.2%, recent.mean\_SST = 17.3%, and the interaction for 5.8% = 53.2% of total variation.

calc.relimp(Im.5, type = "Img")

calc.relimp(lm.dredge3, type = "lmg")

r.squaredGLMM(Im.dredge3) # = 59.8% variation explained.

r.squaredGLMM(lm.6) # so a complete dredge model has some variance inflation issues but ultimately, explains 7% more variability within the data.

•••

#### # Does variance explained significantly improve if I include latitude?

```{r}

need to widen the data frame

dredge.sub2<- meta.long3 %>%

spread(key = variable, value = value) %>%

ungroup() %>% # ungroup() was necessary to remove site

dplyr::select(-colonyID, -site)

options(na.action = "na.fail")

dredge.mod5 <- dredge(Im(ED50~lat + ., data = dredge.sub2), rank = "AIC", m.lim = c(1,4))

#just look at the top 10 scoring models

head(dredge.mod5, 10)

#extracting the best fit model using AIC score bestmodel5 <- get.models(dredge.mod5, 1)[[1]] Im.dredge5 <- Im(bestmodel5, data = dredge.sub2) summary(Im.dredge5)

but I should probably consider that the species need an interaction term, especially in range_SST where verrucosa shows a very different relationship to meandrina/tenuis

lm.15 <- lm(ED50 ~ max_SST + recent.mean_SST + Sector + species, data = dredge.sub2)

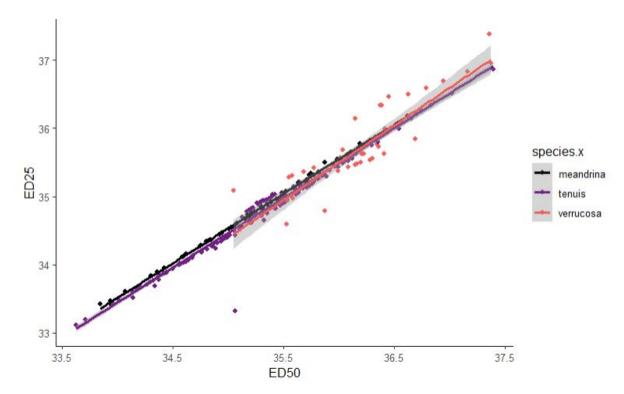
lm.16 <- lm(ED50 ~ lat + max_SST + recent.mean_SST + Sector + species, data = dredge.sub2)</pre>

AICc(Im.15, Im.16) # model 16 is a better model according to AICc # are the models significantly different to each other? anova(Im.15, Im.16) # yes, they are different summary(Im.16) # should check variance inflation vif(Im.16) # ok, there are issues here which are inherint when including latitude

check_model(lm.16)

what are the relative importance of each predictor? calc.relimp(lm.16, type = "lmg") # so species accounts for 9.4%, sector = 21%, latitude = 10%, max_SST = 11%, recent.mean_SST = 12% r.squaredGLMM(lm.16) # this model describes ~ 63% of total variation

Supplementary Material B.24 Within-sector differences in acute tolerance (ED50) between the three coral species.


| -7 | æ 0 m | - | | | | |
|----|-----------|----------------------|----------|-----------------|-----------------------|------------|
| ^ | species 🍦 | \$ector [‡] | mean 🍦 | sd [‡] | n [‡] | se 🍦 |
| 1 | meandrina | Northern | 35.97358 | 0.5642391 | 4 | 0.28211955 |
| 2 | meandrina | Townsville | 35.80475 | 0.5364455 | 6 | 0.21900297 |
| 3 | meandrina | Swains | 35.58126 | 0.3872892 | 9 | 0.12909639 |
| 4 | meandrina | Capricorn Bunker | 34.93149 | 0.5375813 | 34 | 0.09219444 |
| 5 | tenuis | Northern | 36.22536 | 0.7357440 | 15 | 0.18996828 |
| 6 | tenuis | Townsville | 35.57479 | 0.3743058 | 41 | 0.05845674 |
| 7 | tenuis | Swains | 35.55289 | 0.3903892 | 30 | 0.07127498 |
| 8 | tenuis | Capricorn Bunker | 34.97460 | 0.5369886 | 93 | 0.05568312 |
| 9 | verrucosa | Northern | 36.45767 | 0.5373518 | 17 | 0.13032694 |
| 10 | verrucosa | Townsville | 36.07732 | 0.3414409 | 25 | 0.06828818 |
| 11 | verrucosa | Swains | 36.21989 | NA | 1 | NA |
| 12 | verrucosa | Capricorn Bunker | 35.89497 | 0.3772095 | 3 | 0.21778200 |

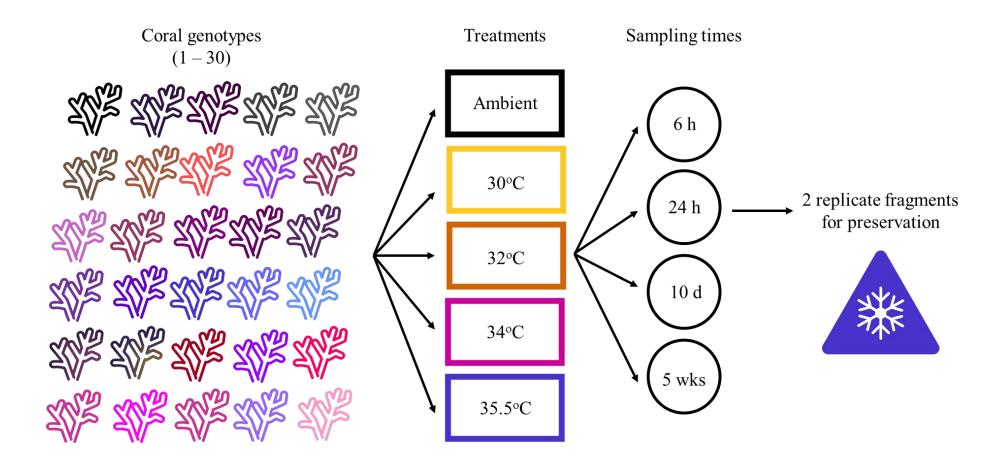
Degrees-of-freedom method: containment Confidence level used: 0.95 \$contrasts Sector = Northern: contrast estimate SE df t.ratio p.value meandrina - tenuis -0.129 0.2610 255 -0.496 0.8732 meandrina - verrucosa -0.657 0.2523 255 -2.602 0.0264 -0.527 0.1740 255 -3.029 0.0076 tenuis - verrucosa Sector = Townsville: contrast estimate SE df t.ratio p.value meandrina - tenuis 0.207 0.1854 255 1.115 0.5057 -0.296 0.1945 255 meandrina - verrucosa -1.520 0.2831 tenuis - verrucosa -0.502 0.1069 255 -4.701 <.0001 Sector = Swains: SE df t.ratio p.value contrast estimate meandrina - tenuis 0.100 0.1895 255 0.529 0.8569 -0.503 0.4567 255 meandrina - verrucosa -1.100 0.5147 tenuis - verrucosa -0.603 0.4312 255 -1.398 0.3433 Sector = Capricorn Bunker: contrast estimate SE df t.ratio p.value meandrina - tenuis -0.221 0.0891 255 -2.481 0.0365 meandrina - verrucosa -0.819 0.2557 255 -3.204 0.0043 -0.598 0.2520 255 -2.375 0.0478 tenuis - verrucosa

Degrees-of-freedom method: containment P value adjustment: tukey method for comparing a family of 3 estimates

Supplementary Material B.25 Comparison of ED50 and ED25.

The proposed ED25 trait was nearly perfectly correlated with ED50 (spearman's rank, S = 74836, p < 0.0001, rho = 0.979). Interestingly, this high correlation suggests that resilient corals record high ED traits, regardless of looking at the ED25 or the ED50 response. In contrast, a high ED25 followed by a low ED50 would have been characteristic of a tipping point response, while this indicates a more linear decline in photosynthesis.

Appendix C – Supplementary material for Chapter 4

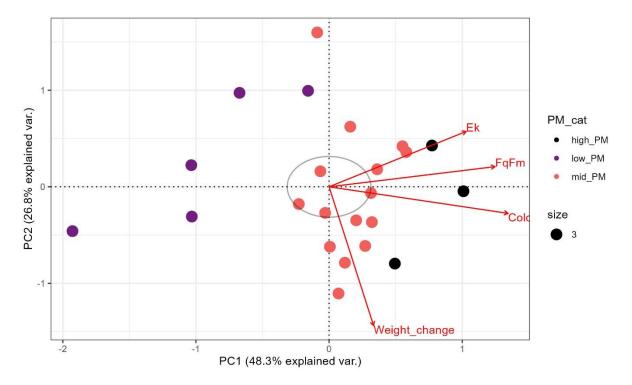

Continues next page.

Supplementary Table C.1a Rapid Light Curve (RLC) and photosynthesis terminology used.

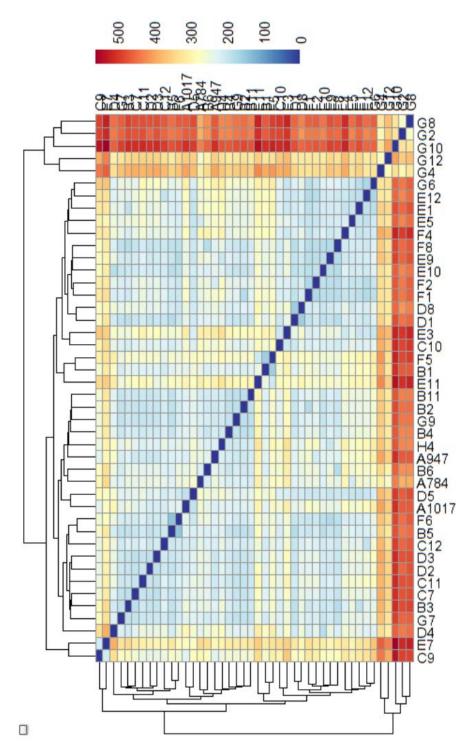
| Term | Definition | Equation | Reference |
|----------------|--|--|---------------------------|
| PSII | Algal photosystem 2 | | |
| E_k | Minimum saturating irradiance of PSII | | Nitschke et al 2018 |
| rETR | Relative Electron Transport Rate | | Ralph & Gademann, 2005 |
| [1 - Q] | Light-dependent non-photochemical quenching | (Fm` - F`)/(Fm` - Fo`) | (Suggett et al., 2015) |
| [1 - C] | Light-dependent photochemical quenching | $(F_v'/F_m')/(F_v/F_m)$ | (White & Critchley, 1999) |
| Fq'/F_m' | Effective photochemical efficiency of PSII (dimensionless) | (F _m ` - F`)/F _m ` | Nitschke et al 2018 |
| F_o | minimum dark-acclimated fluorescence yield | | |
| Fo` | minimum fluorescence yield under actinic light | | |
| F_m | maximum dark-acclimated fluorescence yield | | |
| $F_m`$ | maximum fluorescence yield under actinic light | | |
| F` | minimum fluorescence yield under actinic light | | |
| F_{v}/F_{m} | Maximum photochemical yield of PSII (dimensionless) | $(F_m - F_o)/F_m$ | |

| Actinic light step # | Ambient | 30°C | 32, 34, and 35.5°C |
|----------------------|---------|------|--------------------|
| 0 | 0 | 0 | 0 |
| 1 | 99 | 106 | 78 |
| 2 | 190 | 201 | 150 |
| 3 | 291 | 294 | 233 |
| 4 | 419 | 422 | 339 |
| 5 | 563 | 564 | 455 |
| 6 | 804 | 808 | 653 |
| 7 | 1086 | 1071 | 875 |
| 8 | 1557 | 1567 | 1286 |

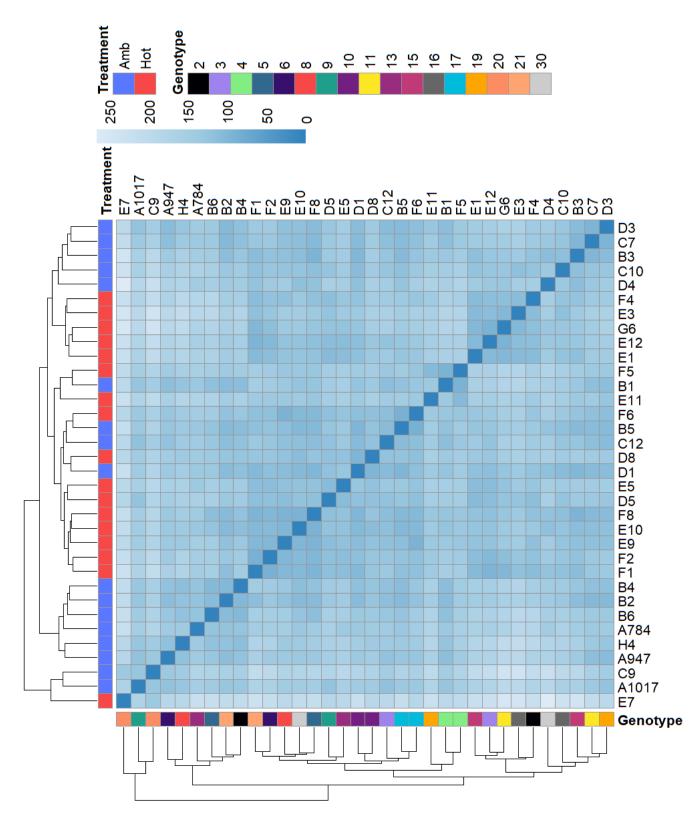
Supplementary Table C.1b Actinic light steps for each treatment.

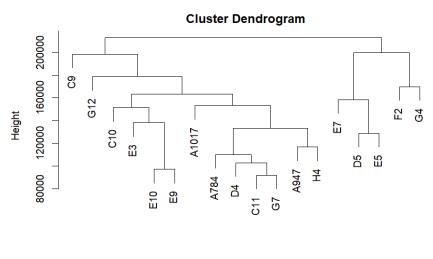

Supplementary Figure C.2 Experimental design diagram. 30 coral genotypes were fragmented into 40 fragments each, and distributed across five treatments, such that each genotype was present in each treatment by 8 fragments. At each of the four sampling time points, two fragments per genotype per treatment were collected (n = 60 fragments total per sampling point per treatment) and preserved in liquid nitrogen for downstream processing.

Supplementary Table C.3 Overview of total number of coral fragments available for physiological assays.

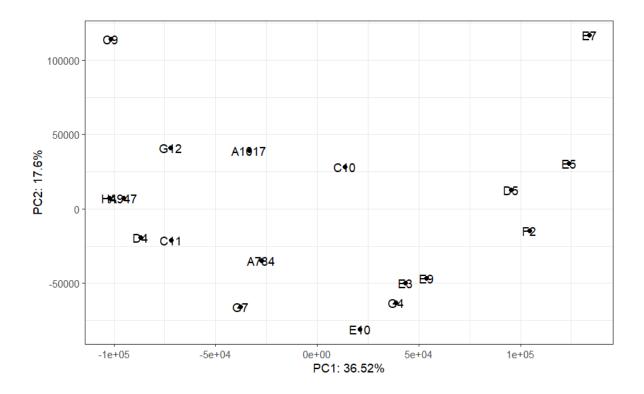

| Time point | Fragments in system | Sampling activity |
|------------|---------------------|--|
| Τ0 | 1200 | Prior photographs and weighing |
| 6 h | 1200 | Photographs post heating
RLC
2 fragments removed per genotype per treatment |
| 24 h | 900 | Photographs post heating
RLC
2 fragments removed per genotype per treatment |
| 10 d | 600 | Photographs post heating
RLC
Weighing
2 fragments removed per genotype per treatment |
| 5 wks | 300 | Photographs post heating
RLC
Weighing
2 fragments removed per genotype per treatment (all frags collected |

Supplementary Table C.4 Sampling details for physiological maintenance (PM) trait. All values derived from the 34°C treatment. The highest genotype trait mean is the most desirable state and this genotype recorded the highest PM score (30). The lowest genotype trait mean was the least desirable physiological state and this genotype recorded the lowest PM score (1).

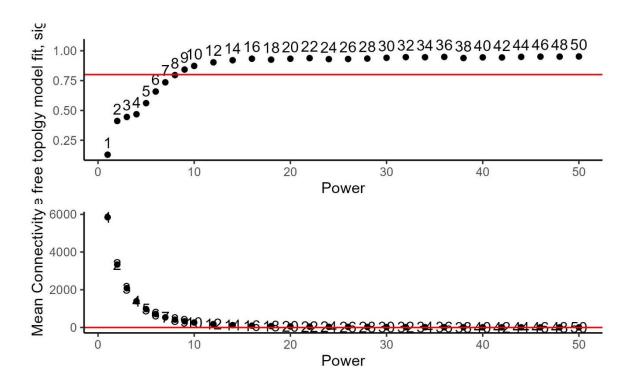

| Trait | Time | Genotypes | Fragments | Total | Highest | Lowest |
|----------------|-------|-----------|--------------|-----------|-------------------------|----------------------------|
| | point | (n) | per genotype | fragments | genotype | genotype trait |
| | | | | available | trait mean | mean |
| Colour | 24 h | 30 | 4 - 6 | 174 | 0.608 | -3.05 |
| change | | | | | | |
| F_{q/F_m} | 24 h | 23 | 1 - 2 | 44 | 0.70 | 0.53 |
| E _k | 24 h | 23 | 1 - 2 | 44 | 199.6 | 63.7 |
| Buoyant | 10 d | 30 | 3 - 4 | 115 | 1.79 * 10 ⁻⁴ | -7.04 * 10 ⁻⁴ g |
| weight | | | | | $g d^{-1} g^{-1}$ | $d^{-1} g^{-1}$ |
| changes | | | | | | |


Supplementary Figure C.5 PCA of genotype-level trait responses in high PM(black) vs low PM (purple) scoring colonies.

Supplementary Figure C.6.1 Sample-sample distance matrix based on normalised gene read counts including all 44 samples.

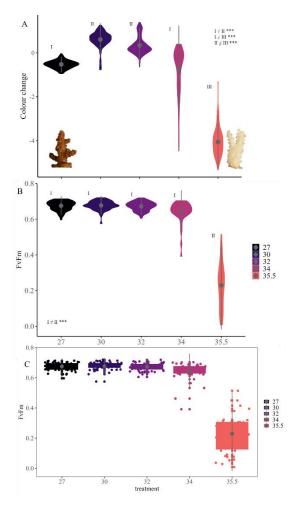


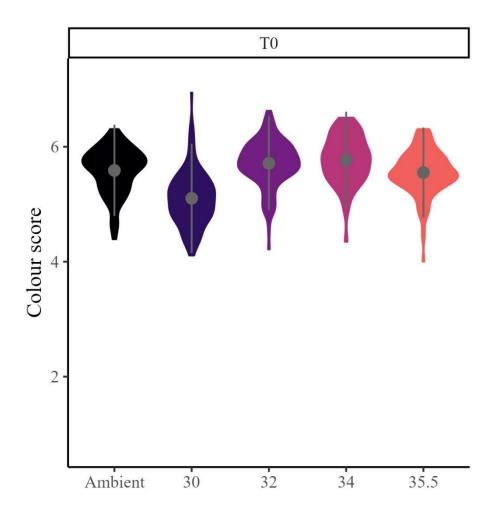
Supplementary Figure C.6.2 Sample-Sample distance matrix based on 34 samples after exclusion of outliers and unpaired samples.



dist(t(data)) hclust (*, "average")

Supplementary Figure C.7.1 Cluster dendrogram of samples included in the WGCNA. No samples were identified as outliers.


Supplementary Figure C.7.2 PCA of samples included in the WGCNA. No samples were identified as outliers.


Supplementary Figure C.7.3 Soft threshold power selection for the WGCNA. Top = free topology where red line indicates that this is greater than 0.8. Bottom = mean connectivity of the model where the red line indicates that this value is < 0.1.

Supplementary material C.8 Physiological responses to acute heat stress across treatments

Photosynthetic performance and tissue colour change showed significant effects of heating 24h after the end of thermal stress (Supplementary Figure C.8.A and C.8.B). The initial coral tissue colour was significantly lower in the 30°C treatment than in the other four treatments (df=1165, z = 108.23, p < 0.0001. Supplementary Figure C.8.C). After 24 h, colour change was significantly affected by temperature treatment (df=4, F = 544.15, p < 0.0001, Supplementary Figure C.8.A), with corals exposed to the highest treatment (35.5 °C) showing the greatest decline colour. Similarly, photosynthetic efficiency (F_v/F_m) was also significantly reduced in the extreme treatment (Wald's test, df = 4, F = 489, p < 0.001, Supplementary Figure C.8.B) but there were no effects of heating on F_v/F_m in any of the other treatments. Raw F_v/F_m values per fragment are shown in C.

Supplementary Figure C.8. Colony-level variation in physiological responses to acute heat stress 24h after heating. A) Tissue colour change (final – initial colour score) and B) maximum photochemical efficiency (F_v/F_m) show violin plots of responses across five treatments. C) The raw Fv/Fm data points. Grey circles show the treatment means and the whiskers indicate the interquartile range. Roman numerals indicate post-hoc comparisons between treatments with Bonferroni adjustments for multiple comparisons. Asterisks show significance level (p < 0.05 *, p < 0.001 **, p < 0.0001 ***). Inserts on A) show fragments of mean colour score at ambient (5.06 ± 0.05) and 35.5° C treatment (1.41 ± 0.06).

Supplementary Figure C.8.C Initial colour score differed significantly between treatments, with the 30°C treatment recording a much lower starting colour than the other four treatments.

Supplementary material C. 9 Colour change differed between treatments.

Initial colour score differed in the 30C treatment, so therefore it was necessary to use colour change for all subsequent analyses.

```
Family: gaussian (identity)
                  T0.colour.score ~ Treatment + (1 | Tank)
Formula:
Data: dat
                    logLik deviance df.resid
     ATC
              BIC
  1662.5
          1698.0
                   -824.3
                             1648.5
                                        1165
Random effects:
Conditional model:
 Groups
                      Variance Std.Dev.
         Name
          (Intercept) 0.006703 0.08187
 Tank
                      0.233323 0.48304
 Residual
Number of obs: 1167, groups: Tank, 20
Dispersion estimate for gaussian family (sigma^2): 0.233
Conditional model:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
               5.58689
                          0.05162
                                   108.23 < 2e-16 ***
              -0.49776
Treatment30
                          0.07315
                                    -6.80 1.01e-11 ***
Treatment32
              0.12049
                          0.07306
                                     1.65
                                            0.0991
                          0.07306
                                     2.53
                                                   ÷
Treatment34
               0.18449
                                            0.0116
                          0.07312
Treatment35.5 -0.04293
                                    -0.59
                                           0.5571
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# R2 for Mixed Models
```

Relative colour change across all treatments at 24h.

```
> summary(Col_lme)
Linear mixed-effects model fit by REML
  Data: dat
Random effects:
Formula: ~1 | Tank
        (Intercept)
                     Residual
StdDev:
          0.1349839 0.5639907
Fixed effects: T0.T24h.colour.change ~ Treatment
Correlation:
              (Intr) Trtm30 Trtm32 Trtm34
              -0.706
Treatment30
              -0.706
                      0.499
Treatment32
              -0.707
Treatment34
                       0.499
                              0.499
Treatment35.5 -0.706
                      0.498
                              0.499
                                     0.499
Standardized Within-Group Residuals:
        Min
                     Q1
                                 Med
                                               Q3
                                                          Max
                         0.02516243 0.46177050 4.91937014
-6.73679396 -0.38339462
Number of Observations: 868
Number of Groups: 20
                                                  denDF F-value
                                   numDF
                                      <int>
                                                    848 600.5147
(Intercept)
                                        1
```

4

544.1532

15

p-value

<.0001

<.0001

Treatment

> # emmeans for treatment comparisons

| > marginal = em | means (Col_l | lme, ~ | Treatment] |) |
|-----------------|--------------|---------|------------|---------|
| > pairs(margina | l, adjust=' | 'tukey' | ') | |
| contrast | estimate | SE c | lf t.ratio | p.value |
| Ambient - 30 | -1.127 (|).113 1 | .5 -9.975 | <.0001 |
| Ambient - 32 | -0.870 (|).113 1 | .5 -7.708 | <.0001 |
| Ambient - 34 | 0.205 (|).113 1 | .5 1.814 | 0.4014 |
| Ambient - 35.5 | 3.532 (|).113 1 | .5 31.253 | <.0001 |
| 30 - 32 | 0.257 (|).113 1 | .5 2.272 | 0.2074 |
| 30 - 34 | 1.332 (|).113 1 | 5 11.778 | <.0001 |
| 30 - 35.5 | 4.659 (|).113 1 | .5 41.158 | <.0001 |
| 32 - 34 | 1.075 (|).113 1 | .5 9.514 | <.0001 |
| 32 - 35.5 | 4.402 (|).113 1 | 5 38.921 | <.0001 |
| 34 - 35.5 | 3.327 (| 0.113 1 | .5 29.415 | <.0001 |
| | | | | |

Degrees-of-freedom method: containment

P value adjustment: tukey method for comparing a family of 5 estimates > cld(marginal, alpha=0.05, Letters=letters, adjust="bonferroni")

| - | e ra (mar g | | . p | , | | , . | | |
|---|-------------|--------|--------|----|----------|----------|--------|--|
| | Treatment | emmean | SE | df | lower.CL | upper.CL | .group | |
| | 35.5 | -4.061 | 0.0800 | 15 | -4.297 | -3.825 | a | |
| | 34 | -0.734 | 0.0799 | 15 | -0.970 | -0.499 | b | |
| | Ambient | -0.529 | 0.0798 | 19 | -0.758 | -0.301 | b | |
| | 32 | 0.341 | 0.0799 | 15 | 0.105 | 0.576 | C | |
| | 30 | 0.598 | 0.0801 | 15 | 0.362 | 0.834 | С | |
| | | | | | | | | |

Degrees-of-freedom method: containment Confidence level used: 0.95 Conf-level adjustment: bonferroni method for 5 estimates P value adjustment: bonferroni method for 10 tests significance level used: alpha = 0.05

Supplementary material C. 10 Colour change statistics for genotype effect in the 34°C and ambient treatment.

34 °C

| | numDF
<int></int> | | F-value
<chr></chr> | p-value
<chr></chr> |
|-------------|----------------------|-----|------------------------|------------------------|
| (Intercept) | 1 | 136 | 272.94641 | <.0001 |
| Genotype_ID | 29 | 136 | 37.55863 | <.0001 |

2 rouve

Degrees-of-freedom method: containment

| P value adiu | stment: t | | | | nparing a | famil∨ of | 30 estimates |
|--------------|-----------|-------|---|-------|-----------|-----------|--------------|
| Genotype_ID | | | | | upper.CL | | |
| 16 | -3.65527 | | 3 | -5.32 | -1.986 | a . | |
| 13 | -2.41541 | 0.154 | 3 | -4.09 | -0.746 | b | |
| 20 | -2.07515 | 0.154 | 3 | -3.74 | -0.405 | bc | |
| 3 | -1.92800 | 0.154 | 3 | -3.60 | | bc | |
| 6 | -1.51573 | 0.154 | 3 | -3.19 | 0.154 | cd | |
| 2 | -1.46036 | 0.154 | 3 | -3.13 | 0.209 | cd | |
| 9 | -1.37273 | 0.168 | 3 | -3.19 | 0.448 | cde | |
| 11 | -1.36037 | 0.154 | 3 | -3.03 | 0.309 | cd | |
| 28 | -1.29384 | 0.154 | 3 | -2.96 | 0.376 | cde | |
| 15 | -1.19854 | 0.168 | 3 | -3.02 | 0.623 | cdef | |
| 23 | -1.02312 | 0.168 | 3 | -2.84 | 0.798 | defg | |
| 19 | -0.49192 | 0.154 | 3 | -2.16 | 1.178 | efgh | |
| 12 | -0.39312 | | 3 | -2.06 | | fgh | |
| 31 | -0.30393 | | 3 | -2.13 | | fgh | |
| 7 | -0.29302 | | 3 | -1.96 | 1.377 | gh | |
| 21 | -0.28504 | | 3 | -1.95 | | gh | |
| 24 | -0.26026 | | 3 | -1.93 | | gh | |
| 22 | -0.20602 | | 3 | -2.03 | 1.615 | gh | |
| 14 | -0.20419 | | 3 | -2.03 | | gh | |
| 5 | -0.17828 | | 3 | -1.85 | | gh | |
| 18 | -0.07335 | | 3 | -1.89 | | h | |
| 1 | 0.00559 | | 3 | -1.66 | 1.675 | h | |
| 30 | 0.01726 | | 3 | -2.01 | 2.043 | h | |
| 8 | 0.02306 | | 3 | -1.80 | 1.849 | h | |
| 17 | 0.02907 | | 3 | -1.64 | 1.699 | h | |
| 29 | 0.02987 | | 3 | -1.64 | | h | |
| 4 | 0.05132 | | 3 | -1.62 | | h | |
| 10 | 0.11259 | | 3 | -1.71 | | h | |
| 25 | 0.12879 | | | -1.54 | | h | |
| 27 | 0.13460 | 0.154 | 3 | -1.54 | 1.804 | h | |
| | | | | | | | |

Degrees-of-freedom method: containment Confidence level used: 0.95 Conf-level adjustment: bonferroni method for 30 estimates P value adjustment: bonferroni method for 435 tests significance level used: alpha = 0.05 NOTE: If two or more means share the same grouping symbol, then we cannot show them to be different. But we also did not show them to be the same.

No significant genotype effect in **ambient** colour change after 24 hours

Linear mixed-effects model fit by REML Data: dat24amb Random effects: Formula: ~1 | Tank (Intercept) Residual StdDev: 0.0997004 0.1856031 Fixed effects: (T0.T24h.colour.change) ~ Genotype_ID Correlation: (Intr) Gn_ID2 Gn_ID3 Gn_ID4 Gn_ID5 Gn_ID6 Gn_ID7 Gn_ID8 Gn_ID9 G_ID10 G_ID11 G_ID12 Genotype_ID2 -0.675 Genotype_ID3 -0.662 0.508 Genotype_ID3 -0.661 0.505 0.499 0.505 Genotype_ID5 -0.661 0.505 0.499 0.505 Genotype_ID6 -0.650 0.482 0.490 0.482 0.492 $numDF \ denDF F-value \ <ch>p-value \ <ch P-value \ <ch P-value$

| | numDF
<int></int> | denDF
<dbl></dbl> | F-value
<chr></chr> | p-value
<chr></chr> |
|-------------|----------------------|----------------------|------------------------|------------------------|
| (Intercept) | 1 | 26 | 94.67044 | <.0001 |
| Genotype_ID | 29 | 26 | 1.39218 | 0.1985 |

| | numDF
<int></int> | | F-value
<chr></chr> | p-value
<chr></chr> |
|-------------|---|--|--|------------------------|
| (Intercept) | 1 | 239 | 25269.568 | <.0001 |
| treatment | 4 | 15 | 489.008 | <.0001 |
| | <pre>treatment27 - treatment30 -0 treatment27 - treatment32 0 treatment27 - treatment34 0 treatment27 - treatment35.5 0 treatment30 - treatment32 0 treatment30 - treatment34 0 treatment32 - treatment35.5 0 treatment32 - treatment34 0 treatment32 - treatment35.5 0 treatment34 - treatment35.5 0 Degrees-of-freedom method: cont P value adjustment: bonferroni > cld(marginal, alpha=0.05, Let</pre> | rroni")
timate
.00194 0.01
.00260 0.01
.03217 0.01
.044579 0.01
.00454 0.01
.03411 0.01
.44773 0.01
.44773 0.01
.44362 0.01
ainment
method for
ters=letter
wer.CL uppe
0.203 0
0.617 0
0.649 0
0.653 0
ainment
ni method for | SE df t.ratio p.value
13 15 -0.172 1.0000
12 15 0.232 1.0000
19 15 2.703 0.1635
20 15 37.220 <.0001
14 15 0.398 1.0000
21 15 2.822 0.1287
22 15 36.815 <.0001
20 15 2.456 0.2670
21 15 36.587 <.0001
27 15 32.445 <.0001
10 tests
s, adjust="bonferroni")
r.CL .group
.256 a
.670 b
.696 b
.698 b
.701 b | |

Supplementary material C.11 F_q'/F_m' statistics for treatment effect after 24 hours.

| (Intercent) | | | | numDF
<int></int> | denDF F-
<dbl> <c< th=""><th>hr></th><th>p-value
<chr></chr></th></c<></dbl> | hr> | p-value
<chr></chr> |
|------------------|--------|--------|----|----------------------|--|--------|------------------------|
| (Intercept) | | | | 1 | | 459.76 | <.0001 |
| genotype
rows | | | | 22 | 17 6. | 90 | 1e-04 |
| | | | | | | | |
| genotype | emmean | SE | df | lower.CL | upper.CL | .group | |
| 20 | 0.549 | 0.0125 | 3 | 0.425 | 0.672 | a | |
| 17 | 0.615 | 0.0125 | 3 | 0.491 | 0.739 | ab | |
| 25 | 0.622 | 0.0125 | 3 | 0.498 | 0.746 | ab | |
| 31 | 0.623 | 0.0125 | 3 | 0.499 | 0.747 | ab | |
| 13 | 0.626 | 0.0125 | 3 | 0.502 | 0.750 | ab | |
| 16 | 0.630 | 0.0177 | 3 | 0.455 | 0.805 | ab | |
| 10 | 0.638 | 0.0125 | 3 | 0.514 | 0.762 | b | |
| 7 | 0.644 | 0.0125 | 3 | 0.520 | 0.768 | b | |
| 3 | 0.646 | 0.0125 | 3 | 0.523 | 0.770 | b | |
| 2 | 0.655 | 0.0125 | 3 | 0.532 | 0.779 | b | |
| 22 | 0.657 | 0.0125 | 3 | 0.533 | 0.781 | b | |
| 23 | 0.661 | 0.0126 | 3 | 0.536 | 0.786 | b | |
| 1 | 0.664 | 0.0125 | 3 | 0.540 | 0.788 | b | |
| 11 | 0.666 | 0.0125 | 3 | 0.542 | 0.790 | b | |
| 6 | 0.669 | 0.0125 | 3 | 0.545 | 0.793 | b | |
| 9 | 0.673 | 0.0176 | 3 | 0.498 | 0.848 | b | |
| 14 | 0.676 | 0.0125 | 3 | 0.552 | 0.799 | b | |
| 24 | 0.676 | 0.0125 | 3 | 0.552 | 0.800 | b | |
| 27 | 0.681 | 0.0125 | 3 | 0.557 | 0.805 | b | |
| 8 | 0.687 | 0.0125 | 3 | 0.563 | 0.811 | b | |
| 5 | 0.694 | 0.0125 | 3 | 0.570 | 0.817 | b | |
| 18 | 0.695 | 0.0125 | 3 | 0.571 | 0.819 | b | |
| 30 | 0 704 | 0.0176 | 3 | 0.529 | 0.879 | b | |

Supplementary Material C.12 F_q'/F_m' statistics for genotype effect in the 34°C treatment.

Supplementary Material C.13 Buoyant weight changes across treatments at 10 days and 5 weeks post heating.

10 Days

| | | numDF
<int></int> | denDF
<dbl></dbl> | F-value
<chr></chr> | p-value
<chr></chr> |
|---|---|----------------------------|-------------------------------|---|------------------------|
| (Intercept) | | 1 | 136 | 19.47925 | <.0001 |
| Treatment | | 3 | 84 | 13.61813 | <.0001 |
| \$emmeans
Treatment
Ambient
30
32
34 | emmean
0.000110 8.336
0.000454 8.306
0.000398 8.446
-0.000205 8.106 | e-05 84 2.8
e-05 84 2.3 | 5e-05 2
9e-04 6
1e-04 5 | 5.66e-04 | |
| - | -freedom method:
level used: 0.9 | | t | | |
| Ambient - | estimate
30 -3.44e-04 0.
32 -2.88e-04 0.
34 3.15e-04 0.
5.58e-05 0. | 000119 84
000116 84 | -2.927 | 0.value
0.0224
0.0787
0.0400
0.9652 | |

30 - 325.58e-050.000118840.4710.965230 - 346.59e-040.000116845.679<.0001</td>32 - 346.03e-040.000117845.156<.0001</td>

Degrees-of-freedom method: containment P value adjustment: tukey method for comparing a family of 4 estimates

No difference in weight changes between treatments after 5 weeks

| | numDF
<int></int> | denDF
<dbl></dbl> | F-value
<chr></chr> | p-value
<chr></chr> |
|-------------|----------------------|----------------------|------------------------|------------------------|
| (Intercept) | 1 | 136 | 35.27831 | <.0001 |
| Treatment | 3 | 84 | 1.04392 | 0.3775 |

Summary table for weight changes

| Variable | Treatment | N | Mean | Std | SE |
|----------------------|-----------|----|-------------------------|-------------------------|-------------------------|
| Mass change, 10 days | Ambient | 54 | 1.26 * 10-4 | 3.50 * 10-4 | 0.96 * 10 ⁻⁴ |
| | 30 | 52 | 4.46 * 10-4 | 4.44 * 10 ⁻⁴ | 0.62 * 10 ⁻⁴ |
| | 32 | 58 | 4.82 * 10-4 | 5.40 * 10-4 | 0.71 * 10 ⁻⁴ |
| | 34 | 60 | -1.78 * 10- | 3.27 * 10-4 | 0.42 * 10 ⁻⁴ |
| | | | 4 | | |
| 5 weeks | Ambient | 54 | 0.89 * 10 ⁻⁴ | 1.61 * 10-4 | 0.22 * 10 ⁻⁴ |
| | 30 | 52 | 1.52 * 10 ⁻⁴ | 1.39 * 10 ⁻⁴ | 0.19 * 10 ⁻⁴ |
| | 32 | 58 | 0.96 * 10 ⁻⁴ | 1.34 * 10-4 | 0.18 * 10 ⁻⁴ |
| | 34 | 60 | 1.05 * 10 ⁻⁴ | 2.51 * 10 ⁻⁴ | 0.32 * 10 ⁻⁴ |

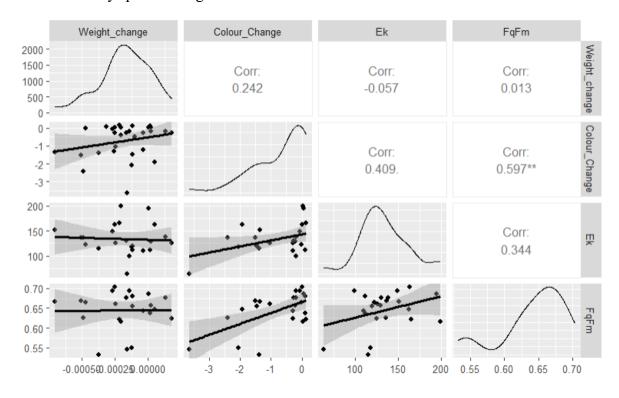
Supplementary material C. 14 Buoyant weight changes differed between genotypes in the 34°C treatment 10 days after heating.

| | numDF
<int></int> | denDF F-value | p-value
<chr></chr> |
|-------------|----------------------|---------------|------------------------|
| (Intercept) | 1 | 27 1.778480 | 0.1935 |
| Genotype_ID | 29 | 27 2.212974 | 0.0206 |

| Degrees-of-freedom method: co
P value adjustment: tukey met | | uring a fam | ily of | 30 estimates |
|--|------------------|-------------|----------|--------------|
| > cld(marginal, alpha=0.05, L | | | | |
| | E df lower.CL | | | |
| 11 -5.89e-04 0.0001 | | | ā . | |
| 6 -4.57e-04 0.0001 | 8 3 -0.00242 | 0.00150 | a | |
| 13 -4.43e-04 0.0001 | 8 3 -0.00240 | 0.00152 | ab | |
| 2 -3.28e-04 0.0001 | 8 3 -0.00228 | 0.00162 | ab | |
| 9 -3.23e-04 0.0001 | 8 3 -0.00228 | 0.00164 | ab | |
| 16 -2.73e-04 0.0001 | 8 3 -0.00223 | 0.00168 | ab | |
| 4 -2.67e-04 0.0001 | 8 3 -0.00223 | 0.00169 | ab | |
| 1 -2.63e-04 0.0001 | 8 3 -0.00222 | 0.00169 | ab | |
| 17 -2.57e-04 0.0001 | | | ab | |
| 12 -2.55e-04 0.0001 | | | ab | |
| 15 -2.45e-04 0.0001 | | | ab | |
| 7 -2.43e-04 0.0001 | | | ab | |
| 28 -2.08e-04 0.0001 | | | ab | |
| 21 -1.99e-04 0.0001 | | | ab | |
| 10 -1.94e-04 0.0001 | | | ab | |
| 29 -1.86e-04 0.0001 | | | ab | |
| 22 -1.85e-04 0.0001 | | | ab | |
| 18 -1.57e-04 0.0001 | | | ab | |
| 19 -1.50e-04 0.0001 | | | ab | |
| 30 -1.39e-04 0.0001 | | | ab | |
| 23 -1.31e-04 0.0001 | | | ab | |
| 24 -1.17e-04 0.0001 | | | ab | |
| 25 -9.97e-05 0.0001 | | | ab | |
| 14 -7.68e-05 0.0001 | | | ab | |
| 20 -7.13e-05 0.0001
3 -6.35e-05 0.0001 | | | ab | |
| 3 -6.35e-05 0.0001
5 -2.78e-05 0.0001 | | | ab
ab | |
| 27 -5.78e-06 0.0001 | | | ab | |
| 8 5.57e-05 0.0001 | | | ab | |
| 31 2.29e-04 0.0001 | | | b | |
| 51 2.250 01 0.000 | 0 5 0.001/3 | 0.00210 | | |
| Degrees-of-freedom method: co | ntainment | | | |
| Confidence level used: 0.95 | in etter interne | | | |
| Conf-level adjustment: bonfer | roni method f | or 30 esti | mates | |
| P value adjustment: bonferror | i method for | 435 tests | | |
| significance level used: alph | | | | |
| NOTE: If two or more means sh | | aroupina s | vmbol. | |
| then we cannot show the | | | ,, | |
| But we also did not sho | | | | |
| 1. | | | | |

Supplementary material C. 15 Statistical outputs for assessment of ED50 between genotypes.

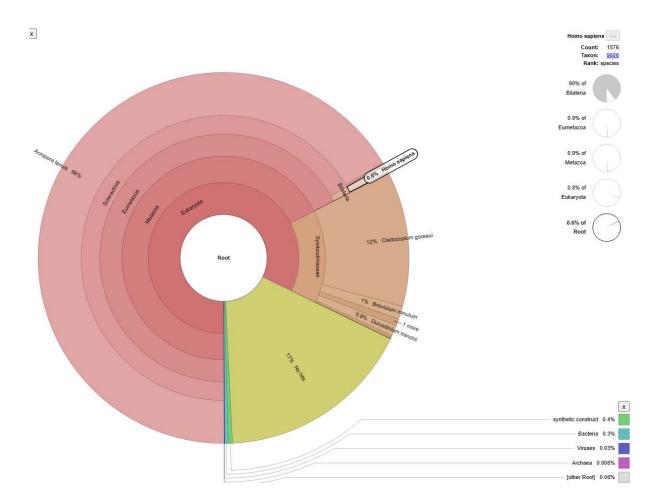
| * | ¢
Estimate | Std. [‡]
Error | ¢
Lower | ¢
Upper | \$
genotype |
|---------|---------------|----------------------------|------------|------------|----------------|
| e:1:50 | 35.33688 | 0.04330695 | 35.25084 | 35.42292 | 1 |
| e:2:50 | 35.32119 | 0.04356988 | 35.23463 | 35.40775 | 2 |
| e:3:50 | 35.28899 | 0.04420945 | 35.20116 | 35.37682 | 3 |
| e:5:50 | 35.47674 | 0.04424833 | 35.38883 | 35.56464 | 5 |
| e:6:50 | 35.11664 | 0.04960644 | 35.01808 | 35.21519 | 6 |
| e:7:50 | 34.83686 | 0.06312143 | 34.71146 | 34.96227 | 7 |
| e:8:50 | 35.51657 | 0.04551915 | 35.42614 | 35.60700 | 8 |
| e:9:50 | 35.44929 | 0.04437994 | 35.36112 | 35.53746 | 9 |
| e:10:50 | 35.29443 | 0.04419666 | 35.20663 | 35.38224 | 10 |
| e:11:50 | 35.05773 | 0.05232411 | 34.95378 | 35.16168 | 11 |
| e:13:50 | 35.23763 | 0.04584249 | 35.14655 | 35.32870 | 13 |
| e:14:50 | 35.27036 | 0.04425883 | 35.18243 | 35.35829 | 14 |
| e:16:50 | 35.49314 | 0.04518124 | 35.40338 | 35.58290 | 16 |
| e:17:50 | 35.25962 | 0.04533552 | 35.16955 | 35.34969 | 17 |
| e:18:50 | 35.64994 | 0.05291918 | 35.54481 | 35.75507 | 18 |
| e:20:50 | 34.82233 | 0.07352506 | 34.67626 | 34.96840 | 20 |
| e:22:50 | 34.91316 | 0.05942151 | 34.79511 | 35.03121 | 22 |
| e:23:50 | 35.44883 | 0.04375273 | 35.36190 | 35.53575 | 23 |
| e:24:50 | 34.79527 | 0.06131867 | 34.67345 | 34.91709 | 24 |
| e:25:50 | 35.07484 | 0.05295978 | 34.96963 | 35.18006 | 25 |
| e:27:50 | 35.29665 | 0.04369760 | 35.20984 | 35.38346 | 27 |
| e:30:50 | 35.74304 | 0.06120083 | 35.62145 | 35.86462 | 30 |
| e:31:50 | 35.43622 | 0.04373099 | 35.34935 | 35.52310 | 31 |

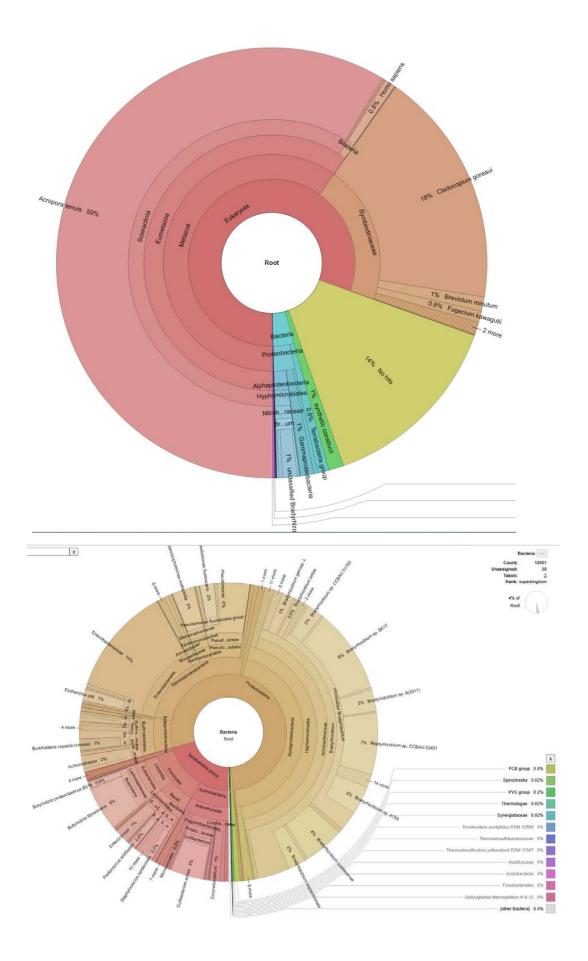

ED50 emmeans outputs

Supplementary material C. 16 Minimum saturating intensities (E_k) did not differ between genotypes within the 34°C treatment 24 h after heat stress.

| | numDF
<int></int> | denDF
<dbl></dbl> | F-value
<chr></chr> | p-value
<chr></chr> |
|-------------|----------------------|----------------------|------------------------|------------------------|
| (Intercept) | 1 | 21 (| 60.26949 | <.0001 |
| genotype | 22 | 21 | 1.09797 | 0.4166 |
| a | | | | |

Supplementary material C. 17. There were no significant differences in rank-normalised PM scores between genotypes.

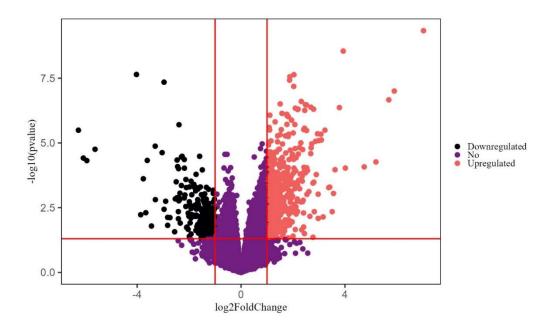

Supplementary figure C17.b Correlation between physiological trait across genotypes. Correlations were spearman rank correlations and performed on the genotype trait values from the 34°C treatment at 24 h post heating, except for weight changes which represent data collected 10 days post heating.


Supplementary Material C. 18 Krona output from KrakenUniq

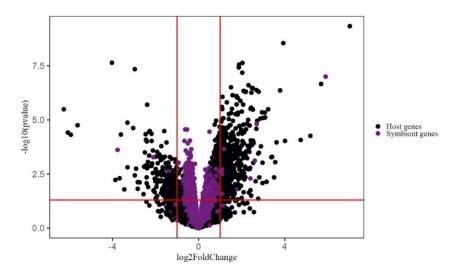
| Component | Mean % of reads | SE |
|------------------------------|-----------------|--------|
| Acorpora tenuis | 64 | 1.39 |
| Cladocopium goreaui | 18.23 | 0.72 |
| No hits | 14.14 | 0.58 |
| Bacteria | 0.23 | 0.086 |
| viruses | 0.012 | 0.001 |
| Breviolum mintum | 0.89 | 0.025 |
| Fugacium kawagutii | 0.69 | 0.025 |
| Durusdinium trenchii | 0.56 | 0.023 |
| Symbiodinium microadriaticum | 0.196 | 0.0095 |

2 samples showing presence of human reads (G8 shown below, and G10 which also had high bacteria content).

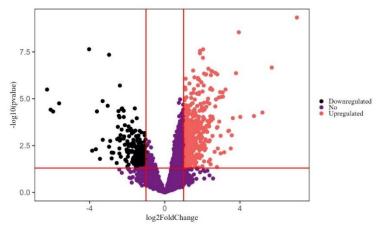
Sample G10 high (4%) content of bacteria

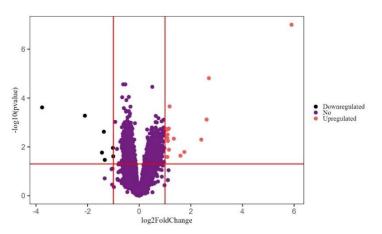

| Item | Value | se |
|-----------------------|----------------|---------------------|
| Mean reads per sample | 47.265 million | \pm 1.017 million |
| Min reads | 40.007 million | |
| Max reads | 67.084 million | |
| Mean unique alignment | 38.51 % | 0.59 % |
| Max alignment rate | 46.3 % | |
| Min alignment rate | 26.0 % | |

Supplementary Table C. 19 RNA library statistics


Supplementary material C. 20 Gene expression differences with respect to treatment

Supplementary Table C.20.1 Overview of number of differentially expressed genes after filtering low abundance genes.


| Level | Description | # genes |
|----------|------------------------|---------|
| Host | Total genes identified | 13,293 |
| | Upregulated | 569 |
| | Downregulated | 266 |
| Symbiont | Total genes identified | 20,270 |
| | Upregulated | 17 |
| | Downregulated | 7 |


Supplementary Figure C.20.2 Combined volcano plot (both coral and symbiont DEGs).

Supplementary Figure C.20.3 Combined volcano plot by gene origin.

Supplementary Figure C.20.4 Host-read volcano plot.

Supplementary Figure C.20.5 Symbiont-read volcano plot.

Supplementary Table C.21 Up- and downregulated host DEGs in response to treatment. A total of 609 contigs were included. Any contig without a Uniprot accession ID was excluded. The base mean, log2FoldChange (L2FC) and p value from DESeq() output is shown. Direction indicated whether gene was up- or downregulated in response to treatment. Finally, gene name is given for those where this information was available. If no gene name was available, the protein name was used instead (prefix ProteinName_).

| Uniprot | baseMean | L2FC | р | Direction | gene name |
|---------|----------|-------|--------|-----------|----------------------------------|
| Q9BZC7 | 680.97 | 1.01 | 0.0002 | Up | ABCA2 ABC2 KIAA1062 |
| Q8R420 | 2496.53 | 1.31 | 0.0000 | Up | Abca3 |
| O94929 | 99.53 | 1.14 | 0.0000 | Up | ABLIM3 KIAA0843 HMFN1661 |
| Q10751 | 141.19 | -1.42 | 0.0138 | Down | ACE DCP1 |
| Q2UPB1 | 496.59 | 1.08 | 0.0132 | Up | aclC AO090001000041 |
| A5D6U8 | 425.27 | -1.27 | 0.0169 | Down | acp7 papl zgc:162913 |
| P41216 | 1214.88 | 1.47 | 0.0015 | Up | Acsl1 Acsl2 Facl2 |
| P27041 | 643.16 | 1.02 | 0.0005 | Up | acvr2b |
| Q61824 | 1250.06 | 1.14 | 0.0001 | Up | Adam12 Mltna |
| Q9ZSK4 | 67.29 | 1.25 | 0.0066 | Up | ADF3 At5g59880 MMN10.12 |
| A6QLU6 | 31.00 | 1.38 | 0.0010 | Up | ADGRD1 GPR133 |
| Q8IZF6 | 375.70 | 1.05 | 0.0003 | Up | ADGRG4 GPR112 |
| O95490 | 841.14 | 1.33 | 0.0006 | Up | ADGRL2 KIAA0786 LEC1 LPHH1 LPHN2 |
| Q9HAR2 | 95.47 | 1.16 | 0.0018 | Up | ADGRL3 KIAA0768 LEC3 LPHN3 |
| Q9HAR2 | 333.31 | 1.18 | 0.0017 | Up | ADGRL3 KIAA0768 LEC3 LPHN3 |
| Q9HAR2 | 1242.89 | 1.29 | 0.0035 | Up | ADGRL3 KIAA0768 LEC3 LPHN3 |
| Q9HAR2 | 130.18 | 2.09 | 0.0000 | Up | ADGRL3 KIAA0768 LEC3 LPHN3 |
| Q6GNL7 | 744.83 | 1.09 | 0.0003 | Up | aldh111 |
| Q8K009 | 211.27 | 1.23 | 0.0004 | Up | Aldh112 |
| R1CW23 | 92.20 | 2.69 | 0.0000 | Up | ALMA7 EMIHUDRAFT_114859 |
| Q94K49 | 157.74 | -1.73 | 0.0002 | Down | ALP1 At3g63270 F16M2.120 |
| Q9CXB8 | 267.77 | 1.64 | 0.0277 | Up | Alpk1 Kiaa1527 |
| P16157 | 52.45 | 1.65 | 0.0128 | Up | ANK1 ANK |
| Q01484 | 629.00 | 1.28 | 0.0006 | Up | ANK2 ANKB |

| Q5F478 | 102.98 | 2.17 | 0.0044 | Up | ANKRD44 RCJMB04_2g14 |
|--------|---------|-------|--------|------|----------------------------|
| Q99JG3 | 568.03 | 1.39 | 0.0014 | Up | Anxa13 |
| P36633 | 147.20 | -1.13 | 0.0107 | Down | Aoc1 Abp1 |
| Q8NKE2 | 128.24 | 2.52 | 0.0000 | Up | AOX1 CNAG_00162 |
| P55088 | 1208.88 | 1.26 | 0.0006 | Up | Aqp4 |
| O43315 | 28.76 | -1.20 | 0.0044 | Down | AQP9 SSC1 |
| B2RQE8 | 58.59 | 1.01 | 0.0028 | Up | Arhgap42 Graf3 |
| Q9FFU6 | 1165.46 | 1.18 | 0.0000 | Up | At5g54830 MBG8_9 |
| Q6NRQ1 | 138.91 | -1.49 | 0.0001 | Down | b3galnt2 |
| O94766 | 29.08 | -1.21 | 0.0286 | Down | B3GAT3 |
| Q91X34 | 130.42 | 3.62 | 0.0001 | Up | Baat |
| Q497V6 | 581.49 | 1.50 | 0.0000 | Up | Bahd1 Gm117 Kiaa0945 |
| M9NDE3 | 55.28 | 1.22 | 0.0049 | Up | bark aka CG3921 |
| Q9XWB9 | 52.25 | -1.55 | 0.0103 | Down | bath-36 Y75B12B.4 |
| Q9QYN5 | 376.43 | 1.45 | 0.0140 | Up | Bcl10 |
| Q9JJS6 | 1290.31 | 1.62 | 0.0002 | Up | Bco1 Bcdo Bcdo1 Bcmo1 |
| Q1IG70 | 748.22 | -2.18 | 0.0013 | Down | betA PSEEN0372 |
| P80057 | 176.82 | 1.69 | 0.0093 | Up | blaSE mpr BLi00340 BL01804 |
| Q8K2J9 | 131.32 | 1.40 | 0.0003 | Up | Btbd6 |
| P21180 | 271.71 | -1.19 | 0.0078 | Down | C2 |
| Q8UWA5 | 2899.76 | -1.34 | 0.0005 | Down | ca2 |
| Q5VU97 | 242.19 | 1.77 | 0.0000 | Up | CACHD1 KIAA1573 VWCD1 |
| Q6PDJ1 | 143.64 | 2.16 | 0.0015 | Up | Cachd1 Kiaa1573 Vwcd1 |
| Q6PDJ1 | 258.25 | 2.18 | 0.0004 | Up | Cachd1 Kiaa1573 Vwcd1 |
| Q5VU97 | 308.79 | 2.25 | 0.0000 | Up | CACHD1 KIAA1573 VWCD1 |
| Q9VBW3 | 91.29 | -1.11 | 0.0257 | Down | Cad96Ca HD-14 CG10244 |
| Q9VBW3 | 101.94 | -1.07 | 0.0069 | Down | Cad96Ca HD-14 CG10244 |
| Q9VBW3 | 99.65 | -1.04 | 0.0173 | Down | Cad96Ca HD-14 CG10244 |
| Q9VBW3 | 156.49 | -1.03 | 0.0073 | Down | Cad96Ca HD-14 CG10244 |
| Q60431 | 828.91 | 2.41 | 0.0000 | Up | CASP3 CPP32 |
| P54965 | 945.38 | -1.49 | 0.0124 | Down | cbh CPE0709 |
| | | | | | |

| Q8VC31 | 86.95 | 1.39 | 0.0026 | Up | Ccdc9 |
|--------|---------|-------|--------|------|---|
| P28648 | 777.85 | -2.09 | 0.0177 | Down | Cd63 |
| P28648 | 664.57 | 1.73 | 0.0005 | Up | Cd63 |
| Q5VXM1 | 92.69 | -1.36 | 0.0051 | Down | CDCP2 |
| Q8BQH6 | 49.16 | 1.15 | 0.0146 | Up | Cdcp2 |
| Q8BQH6 | 118.02 | 1.37 | 0.0023 | Up | Cdcp2 |
| Q9H251 | 78.61 | 1.13 | 0.0039 | Up | CDH23 KIAA1774 KIAA1812 UNQ1894/PRO4340 |
| Q6RT24 | 29.97 | 1.57 | 0.0234 | Up | Cenpe |
| F1NPG5 | 51.47 | -1.18 | 0.0217 | Down | CENPT |
| Q6ZTR5 | 51.40 | 1.44 | 0.0005 | Up | CFAP47 CHDC2 CXorf22 CXorf30 CXorf59 |
| P04186 | 817.01 | 1.65 | 0.0017 | Up | Cfb Bf H2-Bf |
| B2ZGJ1 | 205.69 | 1.15 | 0.0004 | Up | chat |
| Q95M17 | 20.80 | -1.91 | 0.0058 | Down | CHIA |
| Q13231 | 217.14 | -1.34 | 0.0090 | Down | CHIT1 |
| P9WMV9 | 2978.89 | 1.20 | 0.0092 | Up | choD Rv3409c |
| P49582 | 86.74 | 1.83 | 0.0099 | Up | Chrna7 Acra7 |
| Q5IS75 | 144.44 | 1.13 | 0.0129 | Up | CHRNB3 |
| G5EBQ8 | 37.59 | 1.60 | 0.0013 | Up | chs-2 F48A11.1 |
| Q9UDT6 | 241.85 | 1.03 | 0.0058 | Up | CLIP2 CYLN2 KIAA0291 WBSCR3 WBSCR4 WSCR4 |
| Q7F0J0 | 869.94 | 2.37 | 0.0000 | Up | CML13 Os07g0618800 LOC_Os07g42660 P0552F09.133 P0560B08.106 |
| O23184 | 465.38 | 1.98 | 0.0000 | Up | CML19 CEN2 At4g37010 AP22.11 C7A10.350 |
| Q96M20 | 270.89 | 1.00 | 0.0232 | Up | CNBD2 C20orf152 |
| Q32L92 | 419.63 | -1.13 | 0.0428 | Down | CNN3 |
| Q9UIV1 | 286.24 | 5.69 | 0.0000 | Up | CNOT7 CAF1 |
| P97846 | 101.24 | 1.04 | 0.0001 | Up | Cntnap1 Caspr Nrxn4 |
| O54991 | 270.81 | -1.93 | 0.0003 | Down | Cntnap1 Nrxn4 |
| Q60847 | 34.00 | 1.20 | 0.0205 | Up | Col12a1 |
| P02466 | 3811.32 | -1.22 | 0.0111 | Down | Col1a2 |
| Q17RW2 | 1975.48 | -1.11 | 0.0171 | Down | COL24A1 |
| Q91VF6 | 91.16 | -1.28 | 0.0072 | Down | Col26a1 Col26a Emid2 Emu2 |
| | | | | | |

| P08120 | 2184.97 | 1.05 | 0.0004 | Up | Col4a1 Cg25C DCg1 CG4145 |
|--------|---------|-------|--------|------|--------------------------|
| P12109 | 97.82 | 1.98 | 0.0011 | Up | COL6A1 |
| P15988 | 36.16 | -1.63 | 0.0030 | Down | COL6A2 |
| P15989 | 410.13 | 1.33 | 0.0027 | Up | COL6A3 |
| A6NMZ7 | 2648.65 | 1.22 | 0.0003 | Up | COL6A6 |
| P34340 | 144.23 | 1.71 | 0.0006 | Up | col-90 C29E4.1 |
| Q5R5F2 | 57.97 | -1.55 | 0.0072 | Down | COPZ1 COPZ |
| P43510 | 108.07 | -1.00 | 0.0192 | Down | cpr-6 C25B8.3 |
| Q9BSW2 | 134.16 | 1.01 | 0.0006 | Up | CRACR2A EFCAB4B |
| Q80T79 | 206.72 | 1.02 | 0.0202 | Up | Csmd3 Kiaa1894 |
| Q62908 | 284.89 | -1.30 | 0.0045 | Down | Csrp2 Smlim |
| Q9TU53 | 159.51 | -1.74 | 0.0240 | Down | CUBN |
| O70244 | 176.91 | -3.31 | 0.0000 | Down | Cubn Ifcr |
| O70244 | 264.92 | 1.46 | 0.0001 | Up | Cubn Ifcr |
| O73853 | 309.65 | 1.14 | 0.0163 | Up | cyp17a1 cyp17 |
| P05183 | 827.76 | 1.14 | 0.0001 | Up | Cyp3a2 Cyp3a-2 Cyp3a11 |
| Q9WVK8 | 38.21 | 1.27 | 0.0459 | Up | Cyp46a1 Cyp46 |
| Q964T1 | 228.15 | 1.09 | 0.0004 | Up | CYP4C21 |
| Q9Y4B6 | 149.50 | 1.21 | 0.0019 | Up | DCAF1 KIAA0800 RIP VPRBP |
| Q9Y4B6 | 111.06 | 1.36 | 0.0019 | Up | DCAF1 KIAA0800 RIP VPRBP |
| Q80TR8 | 161.81 | 1.46 | 0.0206 | Up | Dcafl Kiaa0800 Vprbp |
| Q58A42 | 66.59 | -1.33 | 0.0103 | Down | DD3-3 DDB_G0283095 |
| Q62371 | 1452.31 | 1.74 | 0.0002 | Up | Ddr2 Ntrkr3 Tkt Tyro10 |
| P04753 | 67.14 | -1.16 | 0.0094 | Down | DHFR |
| Q9Z207 | 953.03 | 1.08 | 0.0000 | Up | Diaph3 Diap3 |
| O42412 | 50.90 | 1.13 | 0.0205 | Up | DIO3 |
| Q9UBP4 | 73.82 | -1.42 | 0.0041 | Down | DKK3 REIC UNQ258/PRO295 |
| P53454 | 389.86 | 1.33 | 0.0000 | Up | dl |
| P09623 | 103.55 | -1.11 | 0.0236 | Down | DLD LAD |
| Q9UGM3 | 471.01 | 1.74 | 0.0038 | Up | DMBT1 GP340 |
| Q566X8 | 470.24 | 1.20 | 0.0002 | Up | dmbx1b mbx2 zgc:112395 |
| | | | | | |

| E9Q8T7 | 212.87 | 1.20 | 0.0005 | Up | Dnah1 Dhc7 Dnahc1 |
|--------|---------|-------|--------|------|----------------------------|
| Q2MHE5 | 323.40 | 1.02 | 0.0003 | Up | Dok6 |
| P31429 | 142.87 | -1.41 | 0.0050 | Down | DPEP1 |
| P16444 | 176.61 | -1.14 | 0.0178 | Down | DPEP1 MDP RDP |
| Q4VSN2 | 174.92 | 2.26 | 0.0006 | Up | dstyk ripk5 |
| Q94464 | 177.70 | -3.67 | 0.0049 | Down | dymA DDB_G0277849 |
| Q86Y13 | 1019.89 | -2.19 | 0.0000 | Down | DZIP3 KIAA0675 |
| Q86Y13 | 55.84 | 1.19 | 0.0119 | Up | DZIP3 KIAA0675 |
| Q5THR3 | 190.77 | 1.08 | 0.0006 | Up | EFCAB6 DJBP KIAA1672 |
| P10079 | 212.34 | 1.36 | 0.0048 | Up | EGF1 |
| P10079 | 179.37 | 2.09 | 0.0220 | Up | EGF1 |
| Q8NDI1 | 135.20 | 1.42 | 0.0024 | Up | EHBP1 KIAA0903 NACSIN |
| P41969 | 1619.43 | 1.19 | 0.0010 | Up | Elk1 |
| Q8IZ81 | 69.55 | 1.21 | 0.0008 | Up | ELMOD2 |
| Q28CX0 | 31.15 | -1.08 | 0.0407 | Down | elp6 tmem103 TTpA007a13.1 |
| P09759 | 99.93 | 1.34 | 0.0403 | Up | Ephb1 Elk Epth2 |
| Q5BIM8 | 43.99 | 1.04 | 0.0004 | Up | ERCC8 |
| P29773 | 2168.02 | 1.42 | 0.0007 | Up | ETS-2 |
| Q06194 | 353.24 | 1.10 | 0.0006 | Up | F8 Cf8 F8c |
| Q5RA50 | 649.26 | 1.49 | 0.0003 | Up | FAM124A |
| Q5HY64 | 104.22 | 1.87 | 0.0122 | Up | FAM47C |
| Q91VS8 | 94.59 | 1.26 | 0.0209 | Up | Farp2 Kiaa0793 |
| Q91VS8 | 79.23 | 1.68 | 0.0039 | Up | Farp2 Kiaa0793 |
| O94887 | 30.06 | -1.43 | 0.0034 | Down | FARP2 KIAA0793 PLEKHC3 |
| Q14517 | 4692.28 | 1.03 | 0.0003 | Up | FAT1 CDHF7 FAT |
| Q6V0I7 | 44.94 | 1.49 | 0.0002 | Up | FAT4 CDHF14 FATJ Nbla00548 |
| Q2PZL6 | 53.45 | -1.77 | 0.0006 | Down | Fat4 Fatj |
| P98133 | 171.98 | -1.29 | 0.0347 | Down | FBN1 |
| Q96IG2 | 253.75 | 1.72 | 0.0000 | Up | FBXL20 FBL2 |
| Q7TSL3 | 184.37 | 1.21 | 0.0005 | Up | Fbx011 |
| | | | | | |

| Q9UKT5 | 327.87 | 1.09 | 0.0001 | Up | FBXO4 FBX4 |
|--------|---------|-------|--------|------|--------------------------------|
| P20693 | 143.06 | -1.99 | 0.0019 | Down | Fcer2 Fcer2a |
| B4J6M4 | 44.04 | -2.42 | 0.0013 | Down | Fen1 GH21157 |
| Q6I6M7 | 167.62 | 1.01 | 0.0018 | Up | fgfl fgf-1 |
| Q6I6M7 | 478.50 | 1.02 | 0.0003 | Up | fgfl fgf-1 |
| Q7SIF8 | 517.61 | 1.20 | 0.0015 | Up | fgfl fgf-1 |
| Q7SIF8 | 513.47 | 2.18 | 0.0000 | Up | fgfl fgf-1 |
| Q9ESL9 | 321.83 | 1.34 | 0.0028 | Up | Fgf20 |
| P48804 | 807.35 | 1.10 | 0.0237 | Up | FGF4 FGF-4 |
| Q86PM4 | 3413.90 | 1.19 | 0.0003 | Up | FGFR |
| P22607 | 3790.66 | 1.17 | 0.0002 | Up | FGFR3 JTK4 |
| A6QLR4 | 162.20 | 2.11 | 0.0029 | Up | FLOT2 |
| Q95V55 | 474.95 | 1.26 | 0.0012 | Up | foxo Afx CG3143 |
| Q6INU7 | 115.43 | 1.54 | 0.0026 | Up | frrs1 |
| Q96I24 | 98.60 | -3.45 | 0.0161 | Down | FUBP3 FBP3 |
| E1BWM5 | 400.13 | -1.55 | 0.0106 | Down | FUNDC1 |
| 093274 | 180.71 | 1.09 | 0.0132 | Up | fzd8 fz8 |
| P61315 | 68.20 | -2.10 | 0.0184 | Down | Gal3st3 |
| 008726 | 75.09 | 1.26 | 0.0052 | Up | Galr2 Galnr2 |
| Q8MVR1 | 82.13 | 1.04 | 0.0298 | Up | gbpC gefT rasGEFT DDB_G0291079 |
| Q8MVR1 | 130.35 | 1.04 | 0.0108 | Up | gbpC gefT rasGEFT DDB_G0291079 |
| Q8MVR1 | 28.42 | 1.10 | 0.0397 | Up | gbpC gefT rasGEFT DDB_G0291079 |
| Q8MVR1 | 61.45 | 1.48 | 0.0051 | Up | gbpC gefT rasGEFT DDB_G0291079 |
| Q8MVR1 | 199.33 | 1.61 | 0.0004 | Up | gbpC gefT rasGEFT DDB_G0291079 |
| Q8MVR1 | 88.93 | 1.83 | 0.0092 | Up | gbpC gefT rasGEFT DDB_G0291079 |
| Q8MVR1 | 42.02 | 2.31 | 0.0019 | Up | gbpC gefT rasGEFT DDB_G0291079 |
| Q8IWJ2 | 32.98 | 1.21 | 0.0025 | Up | GCC2 KIAA0336 RANBP2L4 |
| Q5I3Q2 | 146.31 | 2.03 | 0.0024 | Up | gdf-8 |
| P43793 | 227.92 | -1.52 | 0.0010 | Down | gdhA HI_0189 |
| Q3UPY5 | 73.17 | 1.04 | 0.0094 | Up | Glb112 |
| Q9H4G4 | 3552.27 | 1.10 | 0.0189 | Up | GLIPR2 C9orf19 GAPR1 |
| | | | | | |

| Q9H4G4 | 1407.42 | 1.17 | 0.0011 | Up | GLIPR2 C9orf19 GAPR1 |
|------------|---------|-------|--------|------|---------------------------|
| Q9H4G4 | 176.49 | 1.29 | 0.0000 | Up | GLIPR2 C9orf19 GAPR1 |
| Q9CYL5 | 250.14 | -1.75 | 0.0007 | Down | Glipr2 Gapr1 |
| Q9CYL5 | 48.36 | -1.05 | 0.0405 | Down | Glipr2 Gapr1 |
| Q8VDU0 | 38.01 | 1.82 | 0.0000 | Up | Gpsm2 Lgn Pins |
| Q9JJA9 | 571.27 | 1.16 | 0.0004 | Up | Grasp MNCb-4428 |
| Q9SZJ2 | 641.78 | 1.94 | 0.0000 | Up | GRDP2 At4g37900 F20D10.20 |
| A4D2P6 | 240.39 | 1.04 | 0.0009 | Up | GRID2IP |
| A0A1L8F5J9 | 35.44 | -1.20 | 0.0053 | Down | grin1 |
| P28799 | 182.30 | -2.83 | 0.0152 | Down | GRN |
| P28799 | 262.38 | -1.25 | 0.0315 | Down | GRN |
| P28799 | 858.45 | -1.05 | 0.0488 | Down | GRN |
| Q5ZKH0 | 100.98 | -1.07 | 0.0300 | Down | GTF2H5 RCJMB04_10n20 |
| A1Z6E0 | 2190.61 | 1.11 | 0.0012 | Up | gus CG2944 |
| Q7Z2Y8 | 110.00 | -3.04 | 0.0000 | Down | GVINP1 GVIN1 VLIG1 |
| Q8BR93 | 40.83 | 1.49 | 0.0217 | Up | Harbil |
| P58308 | 243.64 | 1.10 | 0.0035 | Up | Hertr2 Mox2r |
| V6CLA2 | 52.95 | 1.34 | 0.0331 | Up | hecd-1 C34D4.14 |
| Q6DFV5 | 124.57 | 1.35 | 0.0018 | Up | Helz Kiaa0054 |
| Q15751 | 34.81 | 1.31 | 0.0022 | Up | HERC1 |
| Q0V8S0 | 1119.95 | 1.04 | 0.0003 | Up | HGS |
| D3YXG0 | 48.30 | 1.07 | 0.0374 | Up | Hmen1 |
| Q96RW7 | 934.74 | -1.15 | 0.0344 | Down | HMCN1 FIBL6 |
| Q96RW7 | 2045.87 | 1.06 | 0.0014 | Up | HMCN1 FIBL6 |
| Q96RW7 | 130.30 | 1.15 | 0.0394 | Up | HMCN1 FIBL6 |
| A2AJ76 | 133.45 | -2.83 | 0.0075 | Down | Hmcn2 |
| A2AJ76 | 157.35 | 1.08 | 0.0116 | Up | Hmcn2 |
| Q8NDA2 | 441.75 | 1.41 | 0.0015 | Up | HMCN2 |
| Q8NDA2 | 868.10 | 1.50 | 0.0001 | Up | HMCN2 |
| Q8NDA2 | 111.22 | 2.22 | 0.0003 | Up | HMCN2 |
| | | | | | |

| A2AJ76 | 167.03 | 2.49 | 0.0001 | Up | Hmcn2 |
|--------|---------|-------|--------|------|--------------------------------------|
| Q9YGT6 | 148.14 | -1.24 | 0.0176 | Down | hoxa5a |
| P17124 | 549.63 | 1.25 | 0.0001 | Up | HRH2 |
| P17124 | 120.27 | 1.49 | 0.0004 | Up | HRH2 |
| P06581 | 267.20 | 1.11 | 0.0051 | Up | hsp-16.41 hsp16-41 Y46H3A.2 |
| 097125 | 256.47 | 1.13 | 0.0055 | Up | Hsp68 CG5436 |
| Q8K0U4 | 254.13 | -2.01 | 0.0068 | Down | Hspa12a Kiaa0417 |
| Q25197 | 64.06 | 1.13 | 0.0010 | Up | HTK7 |
| Q8TDY8 | 2382.47 | 1.03 | 0.0001 | Up | IGDCC4 DDM36 KIAA1628 NOPE |
| A6NGN9 | 70.53 | 3.38 | 0.0005 | Up | IGLON5 |
| Q921Y2 | 69.52 | 1.97 | 0.0112 | Up | Imp3 |
| B8JK39 | 376.97 | 1.11 | 0.0001 | Up | Itga9 |
| B8JK39 | 1337.53 | 1.11 | 0.0000 | Up | Itga9 |
| P18870 | 2256.84 | 1.31 | 0.0008 | Up | JUN |
| A2CG49 | 43.39 | 2.12 | 0.0000 | Up | Kalrn |
| Q7T199 | 28.73 | -1.15 | 0.0304 | Down | KCNA10 |
| Q3U0V1 | 49.22 | -2.96 | 0.0036 | Down | Khsrp Fubp2 |
| Q8K135 | 383.24 | 1.00 | 0.0001 | Up | Kiaa0319l Aavr |
| Q6UXG2 | 207.89 | 1.12 | 0.0037 | Up | KIAA1324 EIG121 UNQ2426/PRO4985 |
| Q6DDW2 | 256.71 | 1.20 | 0.0014 | Up | kiaa13241 eig1211 |
| Q96L93 | 73.35 | 1.46 | 0.0004 | Up | KIF16B C20orf23 KIAA1590 SNX23 |
| Q9FZ06 | 476.19 | 1.07 | 0.0004 | Up | KINUA ARK3 PAK At1g12430 F5O11.15 |
| Q53HC5 | 45.02 | 1.31 | 0.0204 | Up | KLHL26 |
| Q96PQ7 | 363.00 | 1.11 | 0.0000 | Up | KLHL5 |
| 015229 | 182.93 | -1.02 | 0.0015 | Down | КМО |
| Q071E0 | 114.83 | -1.05 | 0.0211 | Down | kmt5aa set8a setd8 setd8a zgc:153719 |
| Q498E6 | 76.70 | -1.27 | 0.0048 | Down | kmt5a-b mp36 setd8-b |
| P70168 | 69.77 | 1.07 | 0.0458 | Up | Kpnb1 Impnb |
| P07942 | 1057.26 | 1.12 | 0.0000 | Up | LAMB1 |
| Q00174 | 354.44 | 1.48 | 0.0000 | Up | LanA lamA CG10236 |
| Q5SW96 | 657.16 | 1.31 | 0.0009 | Up | LDLRAP1 ARH |
| | | | | | |

| Q8QGW7 | 155.31 | 1.14 | 0.0014 | Up | LITAF SIMPLE |
|--------|---------|-------|--------|------|------------------------------|
| Q5F464 | 903.44 | 1.07 | 0.0002 | Up | LPP RCJMB04_2120 |
| O75096 | 183.50 | 1.17 | 0.0087 | Up | LRP4 KIAA0816 LRP10 MEGF7 |
| 075581 | 136.16 | 1.02 | 0.0353 | Up | LRP6 |
| Q80WG5 | 215.72 | -1.15 | 0.0473 | Down | Lrrc8a Lrrc8 |
| Q8CI17 | 28.96 | 1.15 | 0.0084 | Up | Mab21L3 |
| A2VDU3 | 295.57 | 1.81 | 0.0010 | Up | MAP3K7 |
| Q61532 | 2058.93 | 1.45 | 0.0000 | Up | Mapk6 Erk3 Prkm4 Prkm6 |
| Q8BJ34 | 53.52 | 1.21 | 0.0043 | Up | Marfl Kiaa0430 Lkap |
| Q29RI9 | 47.11 | -1.05 | 0.0389 | Down | MAT2B |
| Q6Q2B2 | 517.01 | 1.59 | 0.0000 | Up | mbnl2a |
| P55023 | 23.62 | -1.16 | 0.0153 | Down | melC2 mel |
| P21956 | 201.32 | 1.84 | 0.0007 | Up | Mfge8 |
| P70490 | 60.86 | -1.40 | 0.0084 | Down | Mfge8 Ags |
| O27188 | 295.03 | -2.96 | 0.0000 | Down | mfnA MTH_1116 |
| O27188 | 5842.44 | -1.07 | 0.0009 | Down | mfnA MTH_1116 |
| Q6NUT3 | 7913.97 | 1.86 | 0.0002 | Up | MFSD12 C19orf28 |
| Q5ZIJ9 | 642.91 | 1.00 | 0.0009 | Up | MIB2 RCJMB04_25j24 |
| Q5ZIJ9 | 106.31 | 1.14 | 0.0015 | Up | MIB2 RCJMB04_25j24 |
| Q5UQ50 | 230.94 | 1.84 | 0.0056 | Up | MIMI_L668 |
| Q9CD89 | 611.76 | -2.41 | 0.0001 | Down | ML0127 |
| Q99542 | 52.16 | -1.27 | 0.0228 | Down | MMP19 MMP18 RASI |
| Q3U435 | 7435.85 | 1.85 | 0.0000 | Up | Mmp25 |
| Q3U435 | 4600.72 | 2.01 | 0.0000 | Up | Mmp25 |
| Q10738 | 8322.93 | 1.47 | 0.0017 | Up | Mmp7 |
| Q98ST7 | 2833.60 | 1.24 | 0.0022 | Up | MOXD1 DBHR MOX |
| Q98ST7 | 210.21 | 1.98 | 0.0000 | Up | MOXD1 DBHR MOX |
| P22897 | 24.46 | 1.17 | 0.0036 | Up | MRC1 CLEC13D CLEC13DL MRC1L1 |
| Q9H2W6 | 22.88 | -1.65 | 0.0023 | Down | MRPL46 C15orf4 LIECG2 |
| Q9H2W6 | 47.84 | -1.46 | 0.0307 | Down | MRPL46 C15orf4 LIECG2 |
| | | | | | |

| Q9H2W6 | 144.01 | -1.06 | 0.0122 | Down | MRPL46 C15orf4 LIECG2 |
|--------|---------|-------|--------|------|---|
| O43196 | 460.64 | 1.57 | 0.0001 | Up | MSH5 |
| A1R8N8 | 52.68 | 1.24 | 0.0070 | Up | mshA AAur_2891 |
| A1R8N8 | 41.84 | 2.82 | 0.0045 | Up | mshA AAur_2891 |
| A0LQY9 | 36.11 | 2.09 | 0.0004 | Up | mshA Acel_0073 |
| A0LQY9 | 140.23 | 2.36 | 0.0003 | Up | mshA Acel_0073 |
| A0LQY9 | 38.58 | 3.41 | 0.0005 | Up | mshA Acel_0073 |
| D5UJ42 | 69.59 | -1.60 | 0.0000 | Down | mshA Cfla_0653 |
| B1VEI4 | 46.09 | -1.00 | 0.0463 | Down | mshA cu0213 |
| B1VEI4 | 360.91 | 1.30 | 0.0208 | Up | mshA cu0213 |
| B1VEI4 | 32.40 | 1.59 | 0.0235 | Up | mshA cu0213 |
| C7R101 | 40.85 | 1.87 | 0.0004 | Up | mshA Jden_2087 |
| Q5YP47 | 83.86 | 1.62 | 0.0319 | Up | mshA NFA_51920 |
| Q0SF06 | 44.41 | 3.08 | 0.0000 | Up | mshA RHA1_ro02073 |
| C7Q4Y6 | 480.00 | 1.96 | 0.0109 | Up | mshA1 Caci_5074 |
| C7Q4Y6 | 69.52 | 2.48 | 0.0001 | Up | mshA1 Caci_5074 |
| Q91955 | 138.75 | -1.94 | 0.0026 | Down | MTPN RCJMB04_23o21 RCJMB04_35116 |
| Q3THE2 | 180.48 | -1.12 | 0.0242 | Down | Myl12b Mrlc2 Mylc2b |
| Q5E9E2 | 970.93 | -1.27 | 0.0313 | Down | MYL9 MYRL2 |
| Q28970 | 289.96 | 1.22 | 0.0039 | Up | MYO7A |
| P07207 | 141.12 | 1.04 | 0.0019 | Up | N CG3936 |
| D8VNT0 | 82.54 | -2.50 | 0.0003 | Down | ProteinName_Ryncolin-4 |
| P83553 | 1602.26 | -2.40 | 0.0017 | Down | ProteinName_Dermatopontin (Tyrosine-rich acidic matrix protein) (TRAMP) |
| P81018 | 422.85 | -2.30 | 0.0000 | Down | ProteinName_Ladderlectin |
| P35068 | 2793.20 | -2.18 | 0.0001 | Down | ProteinName_Histone H2B.1/H2B.2 |
| B3EX02 | 184.21 | -2.13 | 0.0028 | Down | ProteinName_MAM and fibronectin type III domain-containing protein 1 (Fragment) |
| P86982 | 2790.85 | -2.12 | 0.0003 | Down | ProteinName_Insoluble matrix shell protein 1 (IMSP1) (Fragment) |
| Q01528 | 6820.01 | -2.04 | 0.0216 | Down | ProteinName_Hemagglutinin/amebocyte aggregation factor (18K-LAF) |
| D9IQ16 | 434.46 | -2.04 | 0.0051 | Down | ProteinName_Galaxin |
| Q9U8W7 | 112.03 | -1.96 | 0.0122 | Down | ProteinName_Techylectin-5B |
| C0H691 | 1587.92 | -1.93 | 0.0080 | Down | ProteinName_Small cysteine-rich protein 2 (Amil-SCRiP2) (SCRiP2) |
| | | | | | |

| G8HTB6 | 142.91 | -1.52 | 0.0116 | Down | ProteinName_ZP domain-containing protein |
|--------|----------|-------|--------|------|--|
| G8HTB6 | 168.27 | -1.44 | 0.0050 | Down | ProteinName_ZP domain-containing protein |
| Q01528 | 211.86 | -1.43 | 0.0355 | Down | ProteinName_Hemagglutinin/amebocyte aggregation factor (18K-LAF) |
| P81018 | 91.31 | -1.42 | 0.0428 | Down | ProteinName_Ladderlectin |
| B8UU51 | 653.21 | -1.33 | 0.0320 | Down | ProteinName_Galaxin-2 |
| C0H691 | 20140.28 | -1.24 | 0.0075 | Down | ProteinName_Small cysteine-rich protein 2 (Amil-SCRiP2) (SCRiP2) |
| B8V7S0 | 128.69 | -1.20 | 0.0066 | Down | ProteinName_CUB and peptidase domain-containing protein 1 (Fragment) |
| B8V7S0 | 25.06 | -1.19 | 0.0248 | Down | ProteinName_CUB and peptidase domain-containing protein 1 (Fragment) |
| C0H691 | 803.39 | -1.16 | 0.0494 | Down | ProteinName_Small cysteine-rich protein 2 (Amil-SCRiP2) (SCRiP2) |
| B8VIV4 | 182.84 | -1.13 | 0.0440 | Down | ProteinName_CUB and peptidase domain-containing protein 2 (Fragment) |
| B8V7S0 | 435.56 | -1.13 | 0.0046 | Down | ProteinName_CUB and peptidase domain-containing protein 1 (Fragment) |
| B3EWZ8 | 311.26 | -1.13 | 0.0397 | Down | ProteinName_Ectin (Fragment) |
| B3EX01 | 319.13 | -1.11 | 0.0361 | Down | ProteinName_CUB domain-containing protein |
| Q76DT2 | 29.18 | -1.07 | 0.0056 | Down | ProteinName_DELTA-thalatoxin-Avl2a (DELTA-TATX-Avl2a) (Toxin AvTX-60A) (Av60A) |
| O16025 | 385.44 | -1.06 | 0.0442 | Down | ProteinName_Allene oxide synthase-lipoxygenase protein [Includes: Allene oxide synthase (EC 4.2.1.92)
(Hydroperoxidehydrase); Arachidonate 8-lipoxygenase (EC 1.13.11.40)] |
| P29241 | 58.28 | -1.05 | 0.0379 | Down | ProteinName_ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (EC 3.2.2.6) (2'-phospho-ADP-ribosyl cyclase) (2'-phospho-ADP-ribosyl cyclase/2'-phospho-cyclic-ADP-ribose transferase) (EC 2.4.99.20) (2'-phospho-cyclic-ADP-ribose transferase) (ADP-ribosyl cyclase) (ADPRC) (ADRC) (NAD glycohydrolase) (NAD(+) nucleosidase) (NADase) |
| B3EWY6 | 221.32 | -1.05 | 0.0421 | Down | ProteinName_Skeletal aspartic acid-rich protein 1 |
| B3EWY7 | 424.36 | -1.03 | 0.0206 | Down | ProteinName_Acidic skeletal organic matrix protein (Acidic SOMP) |
| P12027 | 1325.99 | 1.00 | 0.0404 | Up | ProteinName_Polysialoglycoprotein (PSGP) (Apopolysialoglycoprotein) (apoPSGP) |
| P55807 | 53.45 | 1.06 | 0.0005 | Up | ProteinName_NAD(P)(+)arginine ADP-ribosyltransferase 2 (EC 2.4.2.31) (Mono(ADP-ribosyl)transferase 2) (AT2) |
| P13908 | 227.51 | 1.08 | 0.0077 | Up | ProteinName_Neuronal acetylcholine receptor subunit non-alpha-2 (GFN-alpha-2) |
| Q3UZV7 | 51.86 | 1.17 | 0.0252 | Up | ProteinName_UPF0577 protein KIAA1324-like homolog (Estrogen-induced gene 121-like protein) (EIG121L) |
| B3EX00 | 36.97 | 1.19 | 0.0048 | Up | ProteinName_Uncharacterized skeletal organic matrix protein 1 (Uncharacterized SOMP-1) (Fragment) |
| O16025 | 1090.14 | 1.20 | 0.0063 | Up | ProteinName_Allene oxide synthase-lipoxygenase protein [Includes: Allene oxide synthase (EC 4.2.1.92)
(Hydroperoxidehydrase); Arachidonate 8-lipoxygenase (EC 1.13.11.40)] |
| P35409 | 117.63 | 1.21 | 0.0026 | Up | ProteinName_Probable glycoprotein hormone G-protein coupled receptor |
| Q17232 | 38.68 | 1.25 | 0.0047 | Up | ProteinName_Octopamine receptor |
| B3EWZ3 | 39.52 | 1.27 | 0.0022 | Up | ProteinName_Coadhesin (Fragment) |
| B3EWZ2 | 127.74 | 1.30 | 0.0030 | Up | ProteinName_Uncharacterized skeletal organic matrix protein 8 (Uncharacterized SOMP-8) |

| B3EWZ7 | 73.99 | 1.31 | 0.0017 | Up | ProteinName_Threonine-rich protein (Fragment) |
|------------------|------------------|--------------|------------------|----------|--|
| P55143 | 1949.22 | 1.37 | 0.0015 | Up | ProteinName_Glutaredoxin |
| Q9I928 | 34.76 | 1.43 | 0.0005 | Up | ProteinName_Fucolectin-4 |
| B3EX02 | 243.41 | 1.44 | 0.0009 | Up | ProteinName_MAM and fibronectin type III domain-containing protein 1 (Fragment) |
| Q03278 | 22.13 | 1.50 | 0.0004 | Up | ProteinName_Retrovirus-related Pol polyprotein from type-1 retrotransposable element R2 (Retrovirus-related Pol
polyprotein from type I retrotransposable element R2) [Includes: Reverse transcriptase (EC 2.7.7.49); Endonuclease]
(Fragment) |
| P16273 | 83.29 | 1.52 | 0.0256 | Up | ProteinName_Pathogen-related protein |
| B3EX02 | 214.64 | 1.59 | 0.0000 | Up | ProteinName_MAM and fibronectin type III domain-containing protein 1 (Fragment) |
| Q7SIC1 | 44.15 | 1.61 | 0.0369 | Up | ProteinName_Fucolectin |
| Q9I929 | 431.41 | 1.69 | 0.0003 | Up | ProteinName_Fucolectin-3 |
| B8V7S0 | 520.74 | 1.76 | 0.0000 | Up | ProteinName_CUB and peptidase domain-containing protein 1 (Fragment) |
| Q9I927 | 208.50 | 1.91 | 0.0002 | Up | ProteinName_Fucolectin-5 |
| B3EX00 | 650.83 | 1.96 | 0.0000 | Up | ProteinName_Uncharacterized skeletal organic matrix protein 1 (Uncharacterized SOMP-1) (Fragment) |
| Q9I929 | 53.01 | 1.98 | 0.0047 | Up | ProteinName_Fucolectin-3 |
| B8VIW9 | 402.08 | 2.01 | 0.0000 | Up | ProteinName_Fibronectin type III domain-containing protein (Neuroglian-like protein) |
| Q94743 | 79.54 | 2.02 | 0.0001 | Up | ProteinName_Sorcin |
| P18320 | 401.95 | 2.07 | 0.0006 | Up | ProteinName_Profilin |
| B8VIU6 | 23.18 | 2.41 | 0.0176 | Up | ProteinName_Uncharacterized skeletal organic matrix protein 5 (Uncharacterized SOMP-5) |
| O16025 | 486.03 | 2.43 | 0.0001 | Up | ProteinName_Allene oxide synthase-lipoxygenase protein [Includes: Allene oxide synthase (EC 4.2.1.92)
(Hydroperoxidehydrase); Arachidonate 8-lipoxygenase (EC 1.13.11.40)] |
| D9IQ16 | 774.18 | 2.47 | 0.0001 | Up | ProteinName_Galaxin |
| Q8WPD0
P16049 | 465.19
204.99 | 2.77
2.80 | 0.0004
0.0003 | Up
Up | ProteinName_Alpha-N-acetylgalactosamine-specific lectin (Alpha-N-acetylgalactosamine-binding lectin) (GalNAc-
specific lectin) (Lectin) (ApL) (Tn antigen-specific lectin)
ProteinName Trypsin-1 (EC 3.4.21.4) (Trypsin I) |
| Q9U6Y3 | 37.50 | 3.16 | 0.0072 | Up | ProteinName GFP-like fluorescent chromoprotein cFP484 |
| P55115 | 135.24 | -1.50 | 0.0044 | Down | nas-15 T04G9.2 |
| P55115 | 305.38 | 1.14 | 0.0002 | Up | nas-15 T04G9.2 |
| P55115 | 1001.27 | 1.57 | 0.0000 | Up | nas-15 T04G9.2 |
| O35136 | 490.98 | 1.82 | 0.0000 | Up | Ncam2 Ocam Rncam |
| 014594 | 36.53 | -1.22 | 0.0477 | Down | NCAN CSPG3 NEUR |
| Q6PBH5 | 152.03 | -1.21 | 0.0030 | Down | ndufa4 zgc:73405 |
| P18519 | 132.61 | 1.42 | 0.0014 | Up | NGFR TNFRSF16 |
| | | | | | |

| P14543 | 314.14 | -1.12 | 0.0325 | Down | NID1 NID |
|--------|--------|-------|---------|------|---|
| Q6ZUT1 | 46.27 | 1.01 | 0.00323 | Up | NKAPD1 C11orf57 |
| Q5DU56 | 208.31 | 1.01 | 0.0037 | _ | NKAPDI CHOIIS/
NIrc3 |
| | | | | Up | |
| Q5DU56 | 139.63 | 1.83 | 0.0047 | Up | NIrc3 |
| Q7RTR2 | 48.92 | 1.03 | 0.0286 | Up | NLRC3 NOD3 |
| Q7RTR2 | 43.96 | 1.04 | 0.0194 | Up | NLRC3 NOD3 |
| Q7RTR2 | 89.69 | 1.06 | 0.0070 | Up | NLRC3 NOD3 |
| Q7RTR2 | 250.34 | 1.16 | 0.0061 | Up | NLRC3 NOD3 |
| Q7RTR2 | 109.29 | 1.37 | 0.0174 | Up | NLRC3 NOD3 |
| Q7RTR2 | 151.60 | 1.40 | 0.0001 | Up | NLRC3 NOD3 |
| Q7RTR2 | 57.01 | 1.42 | 0.0079 | Up | NLRC3 NOD3 |
| Q7RTR2 | 95.09 | 1.50 | 0.0146 | Up | NLRC3 NOD3 |
| Q7RTR2 | 42.13 | 1.55 | 0.0032 | Up | NLRC3 NOD3 |
| Q7RTR2 | 181.89 | 1.91 | 0.0010 | Up | NLRC3 NOD3 |
| Q7RTR2 | 93.50 | 2.12 | 0.0055 | Up | NLRC3 NOD3 |
| Q7RTR2 | 176.80 | 2.16 | 0.0018 | Up | NLRC3 NOD3 |
| Q7RTR2 | 51.27 | 2.44 | 0.0316 | Up | NLRC3 NOD3 |
| Q7RTR2 | 223.57 | 2.53 | 0.0001 | Up | NLRC3 NOD3 |
| Q9NPP4 | 177.69 | 1.89 | 0.0019 | Up | NLRC4 CARD12 CLAN CLAN1 IPAF UNQ6189/PRO20215 |
| Q3UP24 | 60.49 | 1.90 | 0.0033 | Up | Nlrc4 Card12 Ipaf |
| F1MHT9 | 168.30 | 1.40 | 0.0044 | Up | NLRC4 IPAF |
| F1MHT9 | 297.61 | 1.75 | 0.0002 | Up | NLRC4 IPAF |
| F6R2G2 | 47.36 | -1.22 | 0.0402 | Down | nlrc4 ipaf TGas028114.1 |
| F6R2G2 | 180.53 | 2.00 | 0.0004 | Up | nlrc4 ipaf TGas028l14.1 |
| F6R2G2 | 53.51 | 2.03 | 0.0000 | Up | nlrc4 ipaf TGas028l14.1 |
| F6R2G2 | 91.34 | 2.72 | 0.0000 | Up | nlrc4 ipaf TGas028l14.1 |
| C6FG12 | 439.11 | 4.01 | 0.0001 | Up | nlrc5 |
| Q86WI3 | 176.77 | 1.55 | 0.0050 | Up | NLRC5 NOD27 NOD4 |
| Q8K3Z0 | 60.39 | 1.18 | 0.0101 | Up | Nod2 Card15 |
| Q8K3Z0 | 46.35 | 1.95 | 0.0012 | Up | Nod2 Card15 |
| | | | | - | |

| C5H5C4 | 185.54 | 1.34 | 0.0021 | Up | notumla |
|--------|---------|-------|--------|------|--------------------------|
| Q924V1 | 169.36 | 1.51 | 0.0011 | Up | Nox4 Kox |
| Q99743 | 36.04 | -1.10 | 0.0149 | Down | NPAS2 BHLHE9 MOP4 PASD4 |
| Q99743 | 48.60 | 1.84 | 0.0003 | Up | NPAS2 BHLHE9 MOP4 PASD4 |
| Q9EQD2 | 44.39 | -1.22 | 0.0056 | Down | Npffr2 Gpr74 Npff2 Npgpr |
| Q9Y5X5 | 72.61 | 1.62 | 0.0002 | Up | NPFFR2 GPR74 NPFF2 NPGPR |
| Q99J85 | 275.19 | 1.31 | 0.0413 | Up | Nptxr Npr |
| Q9GK74 | 87.30 | 1.19 | 0.0026 | Up | NPY2R |
| O35375 | 298.63 | 2.07 | 0.0000 | Up | Nrp2 |
| A6H603 | 272.87 | 1.27 | 0.0002 | Up | Nwd1 |
| Q39575 | 64.59 | 1.65 | 0.0001 | Up | ODA2 ODA-2 |
| Q29RU2 | 476.15 | 1.35 | 0.0063 | Up | OIT3 |
| Q8R4V5 | 76.54 | 1.20 | 0.0003 | Up | Oit3 Lzp |
| Q6V0K7 | 2149.23 | 1.27 | 0.0006 | Up | Oit3 Lzp |
| Q9VCA2 | 48.13 | -1.77 | 0.0005 | Down | Oret CG6331 |
| Q9VCA2 | 46.58 | -1.05 | 0.0354 | Down | Oret CG6331 |
| P29341 | 39.60 | -1.09 | 0.0080 | Down | Pabpc1 Pabp1 |
| Q8R4K8 | 1733.93 | 1.28 | 0.0001 | Up | Pappa |
| Q460N5 | 47.57 | 1.47 | 0.0037 | Up | PARP14 BAL2 KIAA1268 |
| Q2EMV9 | 240.76 | -1.51 | 0.0185 | Down | Parp14 Kiaa1268 |
| Q8BH04 | 7881.56 | 1.04 | 0.0009 | Up | Pck2 |
| P41413 | 77.57 | -1.27 | 0.0063 | Down | Pcsk5 |
| Q9DE49 | 968.83 | 1.20 | 0.0083 | Up | pdgfra |
| Q6NU98 | 44.96 | 1.07 | 0.0082 | Up | pdik1-b |
| Q8N165 | 48.16 | -1.38 | 0.0476 | Down | PDIK1L CLIK1L |
| Q5U318 | 302.07 | 1.14 | 0.0017 | Up | Pea15 |
| Q5U318 | 66.67 | 1.61 | 0.0044 | Up | Pea15 |
| O70597 | 548.72 | 1.01 | 0.0012 | Up | Pex11a Pex11 |
| P0C0R5 | 41.10 | 2.01 | 0.0031 | Up | Pik3r4 |
| Q99570 | 48.15 | 1.35 | 0.0178 | Up | PIK3R4 VPS15 |
| Q4GZT3 | 620.05 | 1.10 | 0.0002 | Up | PKD2 TRPP2 |
| | | | | | |

| P70208 | 89.28 | 1.39 | 0.0003 | Up | Plxna3 |
|--------|----------|-------|--------|------|----------------------------------|
| P29590 | 37.14 | 1.42 | 0.0108 | Up | PML MYL PP8675 RNF71 TRIM19 |
| Q6P8U6 | 4681.38 | 2.10 | 0.0001 | Up | Pnlip |
| Q80TC5 | 39.85 | 1.46 | 0.0274 | Up | Pogk Kiaa1513 |
| A6QNP3 | 110.26 | 1.03 | 0.0073 | Up | PPP1R3B |
| O95685 | 165.67 | 1.04 | 0.0029 | Up | PPP1R3D PPP1R6 |
| P20664 | 140.50 | -1.67 | 0.0140 | Down | Prim1 |
| P33610 | 123.66 | -1.14 | 0.0120 | Down | Prim2 |
| P09215 | 690.04 | 1.03 | 0.0001 | Up | Prkcd Pkcd |
| Q6MG82 | 223.39 | 1.16 | 0.0016 | Up | Prrt1 Ng5 |
| Q9NQE7 | 71.75 | -1.86 | 0.0005 | Down | PRSS16 TSSP |
| Q9NQE7 | 48.98 | -1.67 | 0.0236 | Down | PRSS16 TSSP |
| P26779 | 2116.33 | -1.24 | 0.0022 | Down | PSAP |
| Q64487 | 736.48 | 1.11 | 0.0000 | Up | Ptprd |
| P0C5E4 | 114.22 | 1.38 | 0.0027 | Up | Ptprq |
| O88488 | 122.93 | 2.44 | 0.0000 | Up | Ptprq Ptpgmc1 |
| Q3UQ28 | 174.27 | 1.03 | 0.0023 | Up | Pxdn Kiaa0230 |
| Q92626 | 5542.88 | 2.54 | 0.0010 | Up | PXDN KIAA0230 MG50 PRG2 VPO VPO1 |
| A4IGL7 | 43544.15 | 1.09 | 0.0090 | Up | pxdn pxn |
| A4IGL7 | 319.06 | 1.26 | 0.0382 | Up | pxdn pxn |
| C3ZQF9 | 312.04 | 1.12 | 0.0027 | Up | QRFPR BRAFLDRAFT_74637 |
| C3ZQF9 | 132.79 | 1.22 | 0.0001 | Up | QRFPR BRAFLDRAFT_74637 |
| Q96P65 | 213.21 | 1.10 | 0.0014 | Up | QRFPR GPR103 |
| Q4R5Y0 | 55.94 | 1.28 | 0.0015 | Up | QtsA-19889 |
| Q923S9 | 1564.44 | 1.05 | 0.0006 | Up | Rab30 Rsb30 |
| G0FUS0 | 348.35 | 1.34 | 0.0028 | Up | RAM_03320 |
| Q9CR50 | 53.35 | 1.44 | 0.0071 | Up | Rchy1 Arnip Chimp Zfp363 Znf363 |
| P55006 | 3102.54 | 1.07 | 0.0018 | Up | Rdh7 Rdh3 |
| Q9N126 | 32.72 | 1.68 | 0.0248 | Up | RDH8 PRRDH |
| Q0DXS3 | 145.51 | 1.02 | 0.0086 | Up | RDR1 Os02g0736200 LOC_Os02g50330 |
| | | | | | |

| Q0DXS3 | 32.36 | 1.14 | 0.0039 | Up | RDR1 Os02g0736200 LOC_Os02g50330 |
|------------|---------|-------|--------|------|---------------------------------------|
| Q9FT72 | 90.75 | 2.39 | 0.0016 | Up | RECQL3 RECQ3 RQL3 At4g35740 F8D20.250 |
| G3V9H8 | 95.72 | 1.70 | 0.0030 | Up | Ret |
| P07949 | 61.49 | 1.24 | 0.0000 | Up | RET CDHF12 CDHR16 PTC RET51 |
| E9Q555 | 83.59 | 1.62 | 0.0136 | Up | Rnf213 Mystr |
| A0A0R4IBK5 | 150.81 | 1.44 | 0.0059 | Up | rnf213a |
| A0A0R4IBK5 | 270.40 | 1.65 | 0.0043 | Up | rnf213a |
| A0A0R4IBK5 | 47.96 | 2.44 | 0.0001 | Up | rnf213a |
| Q9Y6N7 | 1973.85 | 1.38 | 0.0002 | Up | ROBO1 DUTT1 |
| Q9HCK4 | 138.74 | 1.02 | 0.0374 | Up | ROBO2 KIAA1568 |
| Q6XHB2 | 83.02 | 2.00 | 0.0397 | Up | roco4 DDB_G0288251 |
| O44252 | 84.88 | 1.58 | 0.0004 | Up | rost CG9552 |
| Q6NU95 | 62.62 | 1.35 | 0.0074 | Up | грар3 |
| Q8VEE0 | 57.99 | 1.44 | 0.0010 | Up | Rpe |
| P04052 | 977.25 | 1.05 | 0.0003 | Up | RpII215 CG1554 |
| P04646 | 2402.35 | -1.14 | 0.0153 | Down | Rpl35a |
| Q3SVL8 | 90.42 | -1.25 | 0.0459 | Down | rpmB Nwi_0406 |
| Q9GT45 | 204.19 | -2.41 | 0.0045 | Down | RpS26 AGAP012100 |
| P18654 | 4458.69 | 1.09 | 0.0001 | Up | Rps6ka3 Mapkapk1b Rps6ka-rs1 Rsk2 |
| P9WLL5 | 257.82 | 1.06 | 0.0010 | Up | Rv2075c MTCY49.14c |
| Q9PVX0 | 112.16 | 1.36 | 0.0000 | Up | RX2 RAX2 |
| Q4J9D2 | 62.67 | 1.21 | 0.0033 | Up | Saci_1252 |
| Q9NZJ4 | 85.51 | -1.26 | 0.0431 | Down | SACS KIAA0730 |
| Q9NZJ4 | 261.24 | 1.18 | 0.0343 | Up | SACS KIAA0730 |
| Q9NZJ4 | 234.20 | 1.55 | 0.0041 | Up | SACS KIAA0730 |
| Q9NZJ4 | 78.29 | 1.62 | 0.0020 | Up | SACS KIAA0730 |
| Q9NZJ4 | 126.07 | 2.97 | 0.0082 | Up | SACS KIAA0730 |
| A3KN83 | 168.54 | 1.01 | 0.0052 | Up | SBNO1 MOP3 |
| Q8SQC1 | 23.25 | 1.07 | 0.0346 | Up | SCARB1 |
| H1AFJ5 | 46.42 | -1.41 | 0.0062 | Down | scnn1a enacalpha |
| Q6V4S5 | 646.71 | 1.07 | 0.0000 | Up | Sdk2 Kiaa1514 |
| | | | | | |

| Q58EX2 | 257.24 | 2.56 | 0.0001 | Up | SDK2 KIAA1514 |
|--------|---------|-------|--------|------|---|
| D3ZTD8 | 69.75 | 1.11 | 0.0017 | Up | Sema5a |
| D3ZTD8 | 219.74 | 1.55 | 0.0000 | Up | Sema5a |
| Q13591 | 126.13 | 1.12 | 0.0012 | Up | SEMA5A SEMAF |
| Q9GZR1 | 127.96 | -6.07 | 0.0000 | Down | SENP6 KIAA0797 SSP1 SUSP1 FKSG6 |
| Q9DEQ4 | 1769.32 | 1.19 | 0.0001 | Up | SFRP1 |
| A2AAY5 | 1158.74 | 1.49 | 0.0001 | Up | Sh3pxd2b Fad49 Tks4 |
| P07768 | 86.51 | -1.57 | 0.0005 | Down | SI |
| Q6Q3F5 | 29.79 | 1.01 | 0.0007 | Up | Sidt1 |
| Q9NXL6 | 120.57 | 1.01 | 0.0029 | Up | SIDT1 |
| Q6A4L1 | 203.12 | 1.08 | 0.0019 | Up | slc12a8 |
| Q9Z0Z5 | 35.59 | 1.02 | 0.0040 | Up | Slc13a3 Nadc3 Sdct2 |
| Q68F72 | 164.85 | -1.03 | 0.0094 | Down | slc15a4 |
| A1L1W9 | 31.94 | 1.49 | 0.0007 | Up | slc16a10 si:ch211-241j12.1 zgc:158478 |
| Q90632 | 1011.86 | 1.06 | 0.0004 | Up | SLC16A3 MCT3 REMP |
| Q9DB41 | 617.76 | 1.27 | 0.0000 | Up | Slc25a18 Gc2 |
| Q6DIV6 | 318.56 | 1.44 | 0.0019 | Up | slc32a1 viaat |
| P23978 | 97.81 | -1.01 | 0.0217 | Down | Slc6a1 Gabt1 Gat-1 Gat1 |
| Q9QXA6 | 497.06 | -1.02 | 0.0311 | Down | Slc7a9 Bat1 |
| Q8K078 | 329.22 | 1.16 | 0.0000 | Up | Slco4a1 Oatp4a1 Oatpe Slc21a12 |
| Q499Z3 | 38.05 | 1.05 | 0.0102 | Up | SLFNL1 |
| Q5R5X9 | 2344.40 | 1.17 | 0.0011 | Up | SMYD4 |
| Q7JR71 | 3685.42 | 1.35 | 0.0023 | Up | Sod3 CG9027 |
| P41962 | 302.40 | -1.17 | 0.0082 | Down | SODC |
| Q9WTP3 | 7947.50 | 1.26 | 0.0003 | Up | Spdef Pdef Pse |
| P54735 | 299.41 | 2.37 | 0.0019 | Up | spkD sll0776 |
| Q10LI1 | 490.21 | 1.24 | 0.0008 | Up | SRFP1 Os03g0348900 LOC_Os03g22680 OsJ_10832 |
| Q10LI1 | 664.12 | 1.37 | 0.0268 | Up | SRFP1 Os03g0348900 LOC_Os03g22680 OsJ_10832 |
| Q9Y2M2 | 809.70 | 1.26 | 0.0009 | Up | SSUH2 C3orf32 FLS485 |
| Q9UBI4 | 91.99 | 1.20 | 0.0004 | Up | STOML1 SLP1 UNC24 MSTP019 |
| | | | | | |

| Q6ZWJ1 | 120.30 | -1.01 | 0.0453 | Down | STXBP4 |
|--------|---------|-------|--------|------|----------------------|
| Q8JG30 | 52.59 | -1.10 | 0.0122 | Down | SULT1B1 SULT1B |
| A2AVA0 | 233.48 | 3.79 | 0.0000 | Up | Svep1 |
| O62732 | 271.12 | 1.34 | 0.0106 | Up | SYN1 |
| Q5R4U3 | 2625.65 | 1.19 | 0.0005 | Up | TAX1BP1 |
| Q3MII6 | 250.57 | 1.03 | 0.0001 | Up | TBC1D25 OATL1 |
| Q6DFJ6 | 422.80 | 1.04 | 0.0008 | Up | tbk1 |
| O95935 | 448.50 | 1.29 | 0.0011 | Up | TBX18 |
| Q5ZMS6 | 19.53 | 1.18 | 0.0070 | Up | TDRD3 RCJMB04_1e24 |
| Q02858 | 44.01 | 1.82 | 0.0048 | Up | Tek Hyk Tie-2 Tie2 |
| Q06807 | 82.25 | 1.50 | 0.0024 | Up | TEK TIE-2 TIE2 |
| O93429 | 2727.86 | -2.74 | 0.0077 | Down | tf |
| B5XCB8 | 23.34 | 1.37 | 0.0014 | Up | thap l |
| B5XCB8 | 23.34 | 1.37 | 0.0014 | Up | thap 1 |
| Q6PFL8 | 139.74 | 1.17 | 0.0016 | Up | thyn1 zgc:66269 |
| Q9USM7 | 274.64 | -2.46 | 0.0000 | Down | tim23 SPCC16A11.09c |
| Q9W6B4 | 303.98 | -3.61 | 0.0000 | Down | TIMP3 |
| Q9R088 | 40.34 | -1.08 | 0.0020 | Down | Tk2 |
| Q9WVM6 | 147.27 | 2.04 | 0.0000 | Up | T112 |
| O57382 | 627.59 | -1.37 | 0.0272 | Down | tll2 xld |
| O57382 | 307.59 | 1.23 | 0.0003 | Up | tll2 xld |
| Q15399 | 36.14 | 1.02 | 0.0019 | Up | TLR1 KIAA0012 |
| Q68Y56 | 185.64 | 1.50 | 0.0001 | Up | TLR4 |
| Q99MX7 | 71.72 | 1.07 | 0.0005 | Up | Tmem121b Cecr6 |
| A3KN95 | 59.01 | 2.94 | 0.0000 | Up | tmem151b |
| Q9BSE2 | 134.51 | 1.08 | 0.0010 | Up | TMEM79 MATT |
| Q3MHQ7 | 1511.82 | 1.20 | 0.0003 | Up | TMEM86A |
| P69526 | 41.21 | -1.34 | 0.0015 | Down | Tmprss9 |
| P69525 | 48.95 | -1.16 | 0.0429 | Down | Tmprss9 |
| P16599 | 514.21 | -1.14 | 0.0441 | Down | Tnf Tnfa Tnfsf2 |
| P19438 | 105.30 | 1.24 | 0.0002 | Up | TNFRSF1A TNFAR TNFR1 |
| | | | | | |

| Q9WUU8 | 3046.80 | 1.30 | 0.0009 | Up | Tnip1 Abin Naf1 |
|--------|---------|-------|--------|------|---------------------------|
| Q3SYU7 | 276.94 | 1.08 | 0.0013 | Up | TNPO1 KPNB2 |
| Q92752 | 77.77 | -1.44 | 0.0116 | Down | TNR |
| Q05546 | 437.30 | 1.87 | 0.0003 | Up | Tnr |
| D2IYS2 | 359.88 | 1.17 | 0.0055 | Up | tor |
| O88898 | 147.30 | -1.38 | 0.0264 | Down | Tp63 P63 P731 Tp731 Trp63 |
| Q13114 | 360.09 | 1.02 | 0.0004 | Up | TRAF3 CAP1 CRAF1 |
| Q60803 | 265.97 | 1.03 | 0.0070 | Up | Traf3 Craf1 Trafamn |
| Q60803 | 316.76 | 1.09 | 0.0154 | Up | Traf3 Craf1 Trafamn |
| Q60803 | 175.29 | 1.30 | 0.0039 | Up | Traf3 Craf1 Trafamn |
| Q60803 | 1916.01 | 1.76 | 0.0011 | Up | Traf3 Craf1 Trafamn |
| P70191 | 190.34 | 1.80 | 0.0001 | Up | Traf5 |
| B6CJY5 | 180.53 | 1.13 | 0.0057 | Up | TRAF6 |
| P70196 | 339.96 | 1.25 | 0.0016 | Up | Traf6 |
| B5DF45 | 135.81 | 1.44 | 0.0015 | Up | Traf6 |
| Q5BIM1 | 57.98 | 1.50 | 0.0007 | Up | TRIM45 |
| E7FAM5 | 34.76 | -1.54 | 0.0482 | Down | trim71 lin41 |
| E7FAM5 | 55.23 | -1.16 | 0.0472 | Down | trim71 lin41 |
| O75762 | 1045.81 | 1.04 | 0.0077 | Up | TRPA1 ANKTM1 |
| Q9R244 | 117.67 | 1.04 | 0.0088 | Up | Trpc2 Trp2 Trrp2 |
| Q13507 | 57.71 | 1.03 | 0.0041 | Up | TRPC3 TRP3 |
| O35119 | 42.98 | 1.11 | 0.0264 | Up | Trpc4 |
| Q9BX84 | 264.43 | 1.21 | 0.0464 | Up | TRPM6 CHAK2 |
| Q96AY4 | 56.02 | -2.56 | 0.0269 | Down | TTC28 KIAA1043 TPRBK |
| Q96AY4 | 39.17 | 1.04 | 0.0187 | Up | TTC28 KIAA1043 TPRBK |
| Q96AY4 | 288.98 | 1.08 | 0.0027 | Up | TTC28 KIAA1043 TPRBK |
| Q96AY4 | 23.87 | 1.09 | 0.0434 | Up | TTC28 KIAA1043 TPRBK |
| Q96AY4 | 89.28 | 1.11 | 0.0259 | Up | TTC28 KIAA1043 TPRBK |
| Q96AY4 | 231.47 | 1.15 | 0.0003 | Up | TTC28 KIAA1043 TPRBK |
| Q96AY4 | 31.10 | 1.30 | 0.0002 | Up | TTC28 KIAA1043 TPRBK |
| | | | | | |

| Q96AY4 | 25.58 | 1.37 | 0.0054 | Up | TTC28 KIAA1043 TPRBK |
|--------|---------|-------|--------|------|-------------------------|
| Q96AY4 | 150.67 | 3.23 | 0.0000 | Up | TTC28 KIAA1043 TPRBK |
| Q96AY4 | 118.30 | 4.74 | 0.0001 | Up | TTC28 KIAA1043 TPRBK |
| A2ASS6 | 2353.79 | 1.10 | 0.0035 | Up | Ttn |
| G4SLH0 | 39.35 | -1.67 | 0.0015 | Down | ttn-1 W06H8.8 |
| O73787 | 88.41 | -1.20 | 0.0036 | Down | tubgcp3 |
| H9D1R1 | 82.66 | -1.40 | 0.0009 | Down | Txndc12 |
| Q969M7 | 119.57 | -1.02 | 0.0035 | Down | UBE2F NCE2 |
| O95164 | 133.89 | 1.04 | 0.0005 | Up | UBL3 PNSC1 |
| Q9VL06 | 39.55 | 1.37 | 0.0083 | Up | Ufd4 CG5604 |
| Q91X17 | 124.12 | 1.15 | 0.0174 | Up | Umod |
| Q9Z1N9 | 674.80 | 1.06 | 0.0000 | Up | Unc13b Unc13a |
| C5IAW9 | 170.65 | 1.05 | 0.0166 | Up | unc5b-b |
| Q7T2Z5 | 68.77 | -1.46 | 0.0012 | Down | UNC5C |
| O95185 | 114.68 | -1.17 | 0.0276 | Down | UNC5C UNC5H3 |
| Q9VB11 | 65.94 | 1.25 | 0.0017 | Up | unc80 CG18437 |
| O75445 | 46.92 | -1.34 | 0.0201 | Down | USH2A |
| A7SFB5 | 168.43 | 3.56 | 0.0009 | Up | v1g211400 |
| A7SLZ2 | 109.41 | 1.44 | 0.0495 | Up | v1g246111 |
| A7SLZ2 | 207.92 | 1.69 | 0.0001 | Up | v1g246111 |
| Q9NHV9 | 21.67 | -1.76 | 0.0069 | Down | Vav CG7893 |
| Q9JHA8 | 2730.65 | 1.25 | 0.0006 | Up | Vwa7 D17h6s56e-3 G7c |
| Q8N2E2 | 116.46 | -1.83 | 0.0005 | Down | VWDE |
| Q5ZMC3 | 100.39 | 1.05 | 0.0002 | Up | WDSUB1 RCJMB04_2i21 |
| Q9Y6F9 | 74.59 | -1.06 | 0.0486 | Down | WNT6 |
| Q14191 | 163.42 | 2.32 | 0.0000 | Up | WRN RECQ3 RECQL2 |
| O54975 | 52.29 | -1.66 | 0.0006 | Down | Xpnpep1 App |
| O31463 | 47.00 | -2.27 | 0.0000 | Down | ybgG BSU02410 |
| Q04336 | 3042.48 | 2.02 | 0.0004 | Up | YMR196W YM9646.09 |
| O34918 | 38.34 | -1.27 | 0.0191 | Down | yoaJ BSU18630 |
| Q9C0D7 | 679.33 | 1.15 | 0.0000 | Up | ZC3H12C KIAA1726 MCPIP3 |
| | | | | | |

| Q94BZ1 | 305.63 | 1.02 | 0.0017 | Up | ZIFL1 At5g13750 MXE10.2 |
|--------|--------|-------|--------|------|-------------------------|
| Q9XTR8 | 35.33 | -1.48 | 0.0069 | Down | ZK262.3 |
| Q96NB3 | 84.43 | 1.09 | 0.0093 | Up | ZNF830 CCDC16 |
| Q8R151 | 215.16 | 1.94 | 0.0002 | Up | Znfx1 |
| Q9P2E3 | 73.73 | -2.41 | 0.0085 | Down | ZNFX1 KIAA1404 |
| Q9P2E3 | 82.96 | -1.20 | 0.0177 | Down | ZNFX1 KIAA1404 |
| Q9P2E3 | 101.20 | 1.81 | 0.0001 | Up | ZNFX1 KIAA1404 |
| Q5ZLX5 | 41.84 | 1.60 | 0.0168 | Up | ZRANB2 RCJMB04_4i6 |

Supplementary Table C.22 All gene ontologies (GO terms) identified in response to treatment in the host reads. GO terms identified with the GO_MWU pipeline (Wright et al., 2015). Significant GO terms ($P_{adj} < 0.05$) are shown in **bold**. Divisions are Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). Nseqs represents the number of genes contained in each term. The term represents the most abundant GO term returned; name of the term, and adjusted p value (P_{adj}).

| Division | delta.rank | nseqs | term | name | p.adj |
|----------|------------|-------|------------|---|----------|
| BP | 52 | 4 | GO:0002526 | acute inflammatory response | 0.891971 |
| BP | 216 | 5 | GO:0000380 | alternative mRNA splicing | |
| BP | 164 | 9 | GO:0001755 | ameboidal-type cell migration | 0.565048 |
| BP | 501 | 4 | GO:0071695 | anatomical structure maturation | 0.246624 |
| BP | 30 | 50 | GO:0048513 | animal organ development | 0.778058 |
| BP | 152 | 7 | GO:0006915 | apoptotic process | 0.63562 |
| BP | 690 | 4 | GO:0001662 | behavioral fear response | 0.072994 |
| BP | -236 | 62 | GO:0044249 | biosynthetic process | 0.009984 |
| BP | 0 | 108 | GO:1901565 | branching morphogenesis of an epithelial tube | 0.99422 |
| BP | -179 | 4 | GO:1901137 | carbohydrate derivative biosynthetic process | 0.673928 |
| BP | -133 | 8 | GO:1901135 | carbohydrate derivative metabolic process | 0.66367 |
| BP | -82 | 12 | GO:0005975 | carbohydrate metabolic process | 0.720346 |
| BP | 27 | 13 | GO:0003333 | carboxylic acid transmembrane transport | 0.897696 |
| BP | -95 | 70 | GO:0009057 | catabolic process | 0.348878 |
| BP | 234 | 15 | GO:0030001 | cation transport | 0.295558 |
| BP | 50 | 39 | GO:0007389 | cell activation | 0.714083 |
| BP | -142 | 40 | GO:0000278 | cell cycle | 0.298444 |
| BP | -40 | 38 | GO:000086 | cell cycle G2/M phase transition | 0.743772 |
| BP | 84 | 7 | GO:0002064 | cell development | 0.768007 |
| BP | -267 | 36 | GO:1901566 | cellular amide metabolic process | 0.030337 |
| BP | -73 | 8 | GO:0006520 | cellular amino acid metabolic process | 0.778058 |
| BP | -143 | 131 | GO:0022618 | cellular component assembly | 0.030337 |
| BP | 119 | 69 | GO:0048869 | cellular developmental process | 0.250477 |
| BP | -47 | 53 | GO:0000184 | cellular macromolecule catabolic process | 0.691414 |
| BP | -319 | 33 | GO:0044271 | cellular nitrogen compound biosynthetic process | 0.009984 |

| BP | 292 | 7 | GO:0022412 | cellular process involved in reproduction in multicellular organism | 0.350055 |
|----|------|----|------------|---|----------|
| BP | 125 | 18 | GO:0003006 | developmental process involved in reproduction | 0.548176 |
| BP | 388 | 5 | GO:0070838 | divalent metal ion transport | 0.308791 |
| BP | -184 | 82 | GO:0006281 | DNA metabolic process | 0.02899 |
| BP | -575 | 7 | GO:0000076 | DNA replication checkpoint | 0.041465 |
| BP | -335 | 8 | GO:0000447 | endonucleolytic cleavage of tricistronic rRNA transcript (SSU-rRNA | |
| BP | 314 | 10 | GO:0003351 | epithelial cilium movement involved in extracellular fluid movement | 0.246624 |
| BP | -68 | 9 | GO:0001654 | eye development | 0.778058 |
| BP | -99 | 16 | GO:0006631 | fatty acid metabolic process | 0.639263 |
| BP | -260 | 13 | GO:0001732 | formation of cytoplasmic translation initiation complex | 0.272571 |
| BP | 309 | 7 | GO:0001704 | formation of primary germ layer | 0.325742 |
| BP | -110 | 7 | GO:0001731 | formation of translation preinitiation complex | 0.714405 |
| BP | -73 | 5 | GO:0010467 | gene expression | 0.832631 |
| BP | 206 | 6 | GO:0001835 | hatching | 0.556731 |
| BP | 348 | 9 | GO:0001947 | heart looping | 0.213022 |
| BP | 299 | 18 | GO:0002244 | hematopoietic progenitor cell differentiation | 0.11283 |
| BP | -106 | 28 | GO:0000723 | homeostatic process | 0.540046 |
| BP | -167 | 10 | GO:0008610 | lipid biosynthetic process | 0.548176 |
| BP | -356 | 6 | GO:0016042 | lipid catabolic process | 0.308791 |
| BP | -86 | 37 | GO:0044255 | lipid metabolic process | 0.550398 |
| BP | 20 | 14 | GO:0001889 | liver development | 0.925755 |
| BP | 412 | 4 | GO:0001676 | long-chain fatty acid metabolic process | 0.325742 |
| BP | -263 | 26 | GO:0034645 | macromolecule biosynthetic process | 0.08487 |
| BP | -151 | 8 | GO:0001510 | macromolecule methylation | 0.614051 |
| BP | -394 | 9 | GO:0000470 | maturation of LSU-rRNA | 0.143334 |
| BP | -375 | 6 | GO:0000463 | maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA | |
| BP | -378 | 13 | GO:0000462 | maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA | |
| BP | -331 | 9 | GO:1903046 | meiotic cell cycle process | 0.246624 |
| BP | 231 | 7 | GO:0001656 | metanephros development | 0.494505 |
| BP | 118 | 5 | GO:0001578 | microtubule bundle formation | 0.738608 |

| BP | 346 | 28 | GO:0003341 | microtubule-based movement | 0.009984 |
|----|------|-----|------------|---|----------|
| BP | 240 | 80 | GO:0007017 | microtubule-based process | 0.003268 |
| BP | -68 | 8 | GO:0000002 | mitochondrial genome maintenance | 0.790758 |
| BP | -59 | 22 | GO:0007005 | mitochondrion organization | 0.728943 |
| BP | 29 | 163 | GO:0051656 | mitotic sister chromatid segregation | 0.673928 |
| BP | 223 | 7 | GO:0015672 | monovalent inorganic cation transport | 0.501283 |
| BP | 203 | 65 | GO:0016477 | movement of cell or subcellular component | 0.030097 |
| BP | -49 | 111 | GO:0016071 | mRNA metabolic process | 0.556731 |
| BP | 150 | 30 | GO:0001701 | multicellular organism development | 0.325742 |
| BP | -335 | 50 | GO:0034470 | ncRNA processing | 0.001383 |
| BP | -192 | 24 | GO:0031570 | negative regulation of cell cycle | 0.272571 |
| BP | 365 | 5 | GO:0006469 | negative regulation of molecular function | 0.325742 |
| BP | 62 | 84 | GO:0000186 | negative regulation of multicellular organismal process | 0.540046 |
| BP | 109 | 10 | GO:0001933 | negative regulation of protein phosphorylation | 0.690906 |
| BP | 117 | 8 | GO:0009968 | negative regulation of response to stimulus | 0.691473 |
| BP | 148 | 5 | GO:0051051 | negative regulation of transport | 0.691473 |
| BP | 237 | 8 | GO:0050877 | nervous system process | 0.454292 |
| BP | 267 | 6 | GO:0000289 | nuclear-transcribed mRNA poly(A) tail shortening | 0.456921 |
| BP | -329 | 12 | GO:0000469 | nucleic acid phosphodiester bond hydrolysis | 0.157676 |
| BP | -197 | 9 | GO:0000054 | nucleobase-containing compound transport | 0.501283 |
| BP | -387 | 5 | GO:0009117 | nucleobase-containing small molecule metabolic process | 0.308791 |
| BP | 104 | 34 | GO:0000045 | organelle assembly | 0.497304 |
| BP | -38 | 10 | GO:0000266 | organelle fission | 0.877324 |
| BP | -79 | 26 | GO:0019752 | organic acid metabolic process | 0.63562 |
| BP | -238 | 14 | GO:0034654 | organic cyclic compound biosynthetic process | 0.298444 |
| BP | -161 | 9 | GO:0090407 | organophosphate biosynthetic process | 0.565865 |
| BP | 9 | 17 | GO:0001649 | osteoblast differentiation | 0.963802 |
| BP | -356 | 18 | GO:0006518 | peptide metabolic process | 0.04222 |
| BP | -380 | 11 | GO:0000413 | peptidyl-amino acid modification | 0.11283 |
| BP | -180 | 6 | GO:0008654 | phospholipid metabolic process | 0.60493 |
| BP | -161 | 16 | GO:0006796 | phosphorus metabolic process | 0.467114 |

| BP | -2 | 5 | GO:0010608 | posttranscriptional regulation of gene expression | 0.99422 |
|----|------|-----|------------|---|----------|
| BP | -112 | 13 | GO:0006486 | protein glycosylation | 0.63562 |
| BP | -59 | 26 | GO:0008104 | protein localization | 0.714083 |
| BP | 114 | 7 | GO:0000338 | protein modification by small protein removal | 0.714083 |
| BP | 65 | 421 | GO:000082 | protein modification process | 0.147421 |
| BP | 157 | 18 | GO:0006508 | proteolysis | 0.456921 |
| BP | 314 | 7 | GO:0006511 | proteolysis involved in cellular protein catabolic process | 0.325742 |
| BP | -219 | 41 | GO:0051726 | regulation of cell cycle | 0.072994 |
| BP | 237 | 11 | GO:0001558 | regulation of cell growth | 0.346245 |
| BP | 97 | 7 | GO:0042127 | regulation of cell population proliferation | 0.738608 |
| BP | 239 | 25 | GO:0051128 | regulation of cellular component organization | 0.141933 |
| BP | 904 | 4 | GO:0001868 | regulation of complement activation | |
| BP | -289 | 16 | GO:0000079 | regulation of cyclin-dependent protein serine/threonine kinase activity | 0.152753 |
| BP | -209 | 6 | GO:0000018 | regulation of DNA recombination | 0.550398 |
| BP | -60 | 4 | GO:0016486 | regulation of hormone levels | 0.877324 |
| BP | 37 | 167 | GO:0051641 | regulation of immune system process | 0.594204 |
| BP | 258 | 17 | GO:0051049 | regulation of localization | 0.20435 |
| BP | 8 | 24 | GO:0000381 | regulation of mRNA processing | 0.963802 |
| BP | 233 | 6 | GO:0001919 | regulation of receptor recycling | 0.52247 |
| BP | 97 | 133 | GO:0071900 | regulation of response to stimulus | 0.195097 |
| BP | 186 | 14 | GO:0051130 | regulation of vesicle-mediated transport | 0.42374 |
| BP | -11 | 33 | GO:0022414 | reproductive process | 0.940157 |
| BP | -149 | 9 | GO:0001541 | reproductive structure development | 0.60493 |
| BP | -491 | 4 | GO:0000712 | resolution of meiotic recombination intermediates | 0.248555 |
| BP | 113 | 29 | GO:0001666 | response to abiotic stimulus | 0.497304 |
| BP | 3 | 15 | GO:0000302 | response to chemical | 0.99422 |
| BP | 126 | 4 | GO:0010035 | response to inorganic substance | 0.741315 |
| BP | -154 | 8 | GO:0002931 | response to ischemia | 0.60493 |
| BP | -29 | 119 | GO:0006950 | response to stress | 0.714083 |
| BP | 99 | 6 | GO:0001523 | retinoid metabolic process | 0.743772 |
| | | | | | |

| BP | -420 | 19 | GO:0000027 | ribosomal large subunit assembly | 0.009984 |
|----|------|-----|------------|--|----------|
| BP | -189 | 8 | GO:000028 | ribosomal small subunit assembly | 0.548176 |
| BP | -328 | 4 | GO:0000966 | RNA 5'-end processing | 0.456921 |
| BP | -124 | 6 | GO:0032774 | RNA biosynthetic process | 0.714083 |
| BP | -268 | 22 | GO:0009451 | RNA modification | 0.11283 |
| BP | -179 | 127 | GO:0006396 | RNA processing | 0.008011 |
| BP | -71 | 77 | GO:0000375 | RNA splicing | 0.494505 |
| BP | -407 | 31 | GO:0006364 | rRNA metabolic process | 0.001486 |
| BP | -466 | 7 | GO:0000154 | rRNA modification | 0.120059 |
| BP | 11 | 147 | GO:0051276 | signal transduction | 0.873843 |
| BP | -313 | 6 | GO:0000012 | single strand break repair | 0.351531 |
| BP | -258 | 10 | GO:0044283 | small molecule biosynthetic process | 0.325742 |
| BP | -108 | 44 | GO:0044281 | small molecule metabolic process | 0.419528 |
| BP | -239 | 5 | GO:0000491 | small nucleolar ribonucleoprotein complex assembly | 0.548176 |
| BP | -250 | 6 | GO:0000245 | spliceosomal complex assembly | 0.494505 |
| BP | -296 | 24 | GO:0000387 | spliceosomal snRNP assembly | 0.058187 |
| BP | -183 | 8 | GO:0000244 | spliceosomal tri-snRNP complex assembly | 0.550398 |
| BP | -370 | 4 | GO:0002223 | stimulatory C-type lectin receptor signaling pathway | 0.379151 |
| BP | 53 | 5 | GO:000096 | sulfur amino acid metabolic process | 0.877324 |
| BP | -162 | 11 | GO:0006790 | sulfur compound metabolic process | 0.548176 |
| BP | -377 | 5 | GO:0000722 | telomere maintenance via recombination | 0.325742 |
| BP | 255 | 3 | GO:0001894 | tissue homeostasis | 0.60493 |
| BP | 29 | 81 | GO:0006811 | transport | 0.738608 |
| BP | -112 | 11 | GO:0006400 | tRNA modification | 0.664779 |
| BP | -203 | 16 | GO:0008033 | tRNA processing | 0.327682 |
| BP | -263 | 7 | GO:0002097 | tRNA wobble base modification | 0.42374 |
| BP | -491 | 5 | GO:0002098 | tRNA wobble uridine modification | 0.183369 |
| BP | 218 | 13 | GO:0035148 | tube formation | 0.346245 |
| BP | -103 | 8 | GO:0000050 | urea metabolic process | 0.714405 |
| BP | -196 | 5 | GO:0000038 | very long-chain fatty acid metabolic process | 0.60493 |
| CC | 123 | 14 | GO:0001669 | acrosomal vesicle | 0.51182 |

| CC | 118 | 6 | GO:0000421 | autophagosome membrane | 0.698628 |
|----|------|-----|------------|--|----------|
| CC | 337 | 7 | GO:0005930 | axoneme | 0.233027 |
| CC | -3 | 181 | GO:1902494 | catalytic complex | 0.979233 |
| CC | 403 | 6 | GO:0070161 | cell junction | 0.188393 |
| CC | 191 | 14 | GO:0005814 | centriole | 0.294018 |
| CC | -54 | 23 | GO:0000785 | chromatin | 0.746087 |
| CC | -125 | 25 | GO:0000775 | chromosomal region | 0.377425 |
| CC | -166 | 24 | GO:0000228 | chromosome | 0.240349 |
| CC | 201 | 12 | GO:0005929 | cilium | 0.296627 |
| CC | -494 | 6 | GO:0005680 | cullin-RING ubiquitin ligase complex | 0.08464 |
| CC | 13 | 80 | GO:0005829 | cytosol | 0.941936 |
| CC | 24 | 82 | GO:0005783 | endoplasmic reticulum | 0.79939 |
| CC | -89 | 11 | GO:0005788 | endoplasmic reticulum lumen | 0.698628 |
| CC | 12 | 53 | GO:0005789 | endoplasmic reticulum membrane | 0.941936 |
| CC | -169 | 19 | GO:0140534 | endoplasmic reticulum protein-containing complex | 0.279339 |
| CC | 176 | 4 | GO:0010008 | endosome membrane | 0.628703 |
| CC | 6 | 15 | GO:0036452 | ESCRT complex | 0.981437 |
| CC | 5 | 6 | GO:0000813 | ESCRT I complex | 0.99025 |
| CC | 197 | 6 | GO:0000815 | ESCRT III complex | 0.51182 |
| CC | -224 | 13 | GO:0000176 | exosome (RNase complex) | 0.240349 |
| CC | -154 | 39 | GO:0005615 | extracellular space | 0.201803 |
| CC | -96 | 22 | GO:0001650 | fibrillar center | 0.51182 |
| CC | 41 | 5 | GO:0000506 | $gly cosylphosphatidy linositol-N-acetyl glucosaminy ltransferase\ (GPI-GnT)\ complex$ | 0.941936 |
| CC | 81 | 27 | GO:0005794 | Golgi apparatus | 0.541518 |
| CC | 93 | 23 | GO:0098791 | Golgi apparatus subcompartment | 0.51182 |
| CC | 315 | 5 | GO:0000137 | Golgi cis cisterna | 0.294018 |
| CC | 158 | 13 | GO:0031985 | Golgi cisterna | 0.446224 |
| CC | 110 | 7 | GO:0000138 | Golgi trans cisterna | 0.698628 |
| CC | 87 | 27 | GO:0000123 | histone acetyltransferase complex | 0.51182 |
| CC | -54 | 19 | GO:0000118 | histone deacetylase complex | 0.78676 |
| | | | | | |

| CC | 2 | 4 | GO:0000836 | Hrd1p ubiquitin ligase complex | 0.992468 |
|----------|------------|---------|--------------------------|--|---------------------|
| CC | -146 | 4 | GO:0001772 | immunological synapse | 0.698628 |
| CC | -398 | 5 | GO:0031301 | integral component of organelle membrane | 0.233027 |
| CC | -99 | 110 | GO:0099080 | integral component of plasma membrane | 0.183414 |
| CC | 78 | 119 | GO:0140535 | intracellular protein-containing complex | 0.240349 |
| CC | -260 | 41 | GO:0000776 | kinetochore | 0.011395 |
| CC | 318 | 6 | GO:0002177 | manchette | 0.247884 |
| CC | -374 | 4 | GO:0016592 | mediator complex | 0.278232 |
| CC | -194 | 68 | GO:0098796 | membrane protein complex | 0.011395 |
| CC | 151 | 13 | GO:0005777 | microbody | 0.454647 |
| CC | 70 | 9 | GO:0005874 | microtubule | 0.79939 |
| CC | 336 | 4 | GO:0005875 | microtubule associated complex | 0.319948 |
| CC | -42 | 23 | GO:0005813 | microtubule organizing center | 0.812648 |
| CC | -277 | 7 | GO:0005759 | mitochondrial matrix | 0.279339 |
| CC | -79 | 53 | GO:0019866 | mitochondrial membrane | 0.446224 |
| CC | -155 | 13 | GO:0005741 | mitochondrial outer membrane | 0.446224 |
| CC | -371 | 34 | GO:0098800 | mitochondrial protein-containing complex | 0.000191 |
| CC | -109 | 135 | GO:0005739 | mitochondrion | 0.08464 |
| CC | -82 | 146 | GO:0043232 | non-membrane-bounded organelle | 0.201803 |
| CC | 17 | 5 | GO:0005643 | nuclear pore | 0.979233 |
| CC | -110 | 99 | GO:0140513 | nuclear protein-containing complex | 0.146082 |
| CC | -216 | 29 | GO:0005730 | nucleolus | 0.088558 |
| CC | 89 | 84 | GO:0005654 | nucleoplasm | 0.247855 |
| CC | 71 | 4 | GO:0000109 | nucleotide-excision repair complex | 0.913472 |
| CC | 26 | 12 | GO:0005623 | obsolete cell | 0.941936 |
| CC | 30 | 14 | GO:0005635 | organelle envelope | 0.941936 |
| CC | 157 | 8 | GO:0031970 | organelle envelope lumen | 0.51182 |
| CC | -88 | 27 | GO:0043233 | organelle lumen | 0.51182 |
| CC | -378 | 6 | GO:0098799 | outer mitochondrial membrane protein complex | 0.216375 |
| | 0.0 | | ~ ~ | | |
| CC | -80 | 34 | GO:1905368 | peptidase complex | 0.51182 |
| CC
CC | -80
296 | 34
5 | GO:1905368
GO:0000242 | peptidase complex
pericentriolar material | 0.51182
0.323772 |

| | 0.0 | | | | 0.661101 |
|----|------|-----|------------|--|----------|
| CC | 80 | 17 | GO:0000779 | phagocytic cup | 0.661181 |
| CC | -11 | 21 | GO:0000793 | photoreceptor inner segment | 0.979233 |
| CC | 159 | 9 | GO:0001750 | photoreceptor outer segment | 0.51182 |
| CC | 159 | 100 | GO:0005886 | plasma membrane | 0.011395 |
| CC | 222 | 36 | GO:0001726 | plasma membrane bounded cell projection | 0.053045 |
| CC | 523 | 9 | GO:0002102 | podosome | 0.011395 |
| CC | -110 | 19 | GO:0000502 | proteasome complex | 0.51182 |
| CC | 287 | 6 | GO:0000164 | protein phosphatase type 1 complex | 0.294018 |
| CC | 178 | 6 | GO:0000159 | protein phosphatase type 2A complex | 0.515959 |
| CC | 233 | 12 | GO:0008287 | protein serine/threonine phosphatase complex | 0.240349 |
| CC | 66 | 64 | GO:0099512 | protein-DNA complex | 0.486956 |
| CC | -382 | 5 | GO:0033177 | proton-transporting two-sector ATPase complex | |
| CC | -207 | 7 | GO:0033178 | proton-transporting two-sector ATPase complex | |
| CC | -316 | 14 | GO:0098803 | respiratory chain complex | 0.088558 |
| CC | -260 | 10 | GO:0005747 | respiratory chain complex I | 0.240349 |
| CC | -231 | 14 | GO:1990904 | ribonucleoprotein complex | 0.240349 |
| CC | 161 | 6 | GO:0090576 | RNA polymerase III transcription regulator complex | 0.572014 |
| CC | 114 | 11 | GO:0000124 | SAGA complex | 0.591687 |
| CC | -297 | 7 | GO:0005681 | spliceosomal complex | 0.247855 |
| CC | 240 | 12 | GO:0001725 | stress fiber | 0.240349 |
| CC | -55 | 15 | GO:0005667 | transcription regulator complex | 0.79939 |
| CC | -46 | 5 | GO:1902554 | transferase complex | |
| CC | 7 | 10 | GO:0005802 | trans-Golgi network | 0.981437 |
| CC | 122 | 54 | GO:0000151 | ubiquitin ligase complex | 0.233027 |
| CC | 13 | 41 | GO:0098852 | vacuolar membrane | 0.941936 |
| CC | 16 | 27 | GO:0000323 | vacuole | 0.941936 |
| CC | 163 | 52 | GO:0031410 | vesicle | 0.088558 |
| CC | -18 | 11 | GO:0000145 | vesicle tethering complex | 0.972527 |
| CC | 265 | 3 | GO:0019012 | virion | 0.51182 |
| MF | -28 | 6 | GO:0016706 | 2-oxoglutarate-dependent dioxygenase activity | 0.973487 |
| | | | | | |

| MF | -237 | 5 | GO:0003899 | 5'-3' RNA polymerase activity | 0.855211 |
|----|------|-----|------------|---|----------|
| MF | -306 | 4 | GO:0003988 | acetyl-CoA C-acyltransferase activity | 0.821499 |
| MF | 101 | 14 | GO:0016407 | acetyltransferase activity | 0.921163 |
| MF | -629 | 9 | GO:0003993 | acid phosphatase activity | 0.212146 |
| MF | 65 | 32 | GO:0022853 | active transmembrane transporter activity | 0.921163 |
| MF | 6 | 978 | GO:0016788 | adenyl nucleotide binding | 0.965643 |
| MF | -653 | 7 | GO:0070566 | adenylyltransferase activity | 0.267862 |
| MF | 6 | 162 | GO:0015179 | adrenergic receptor activity | 0.973487 |
| MF | -731 | 4 | GO:0004032 | aldo-keto reductase (NADP) activity | 0.383826 |
| MF | 219 | 32 | GO:0033218 | amide binding | 0.469436 |
| MF | -394 | 14 | GO:0004177 | aminopeptidase activity | 0.383826 |
| MF | 22 | 61 | GO:0008509 | anion transmembrane transporter activity | 0.965643 |
| MF | 210 | 6 | GO:0001671 | ATPase activator activity | 0.855211 |
| MF | -113 | 14 | GO:0016887 | ATPase activity | 0.908846 |
| MF | 102 | 10 | GO:0060590 | ATPase regulator activity | 0.954641 |
| MF | 373 | 11 | GO:0000993 | basal RNA polymerase II transcription machinery binding | 0.469436 |
| MF | -48 | 6 | GO:0005227 | calcium activated cation channel activity | 0.965643 |
| MF | 91 | 408 | GO:0000981 | calcium ion binding | 0.267862 |
| MF | 45 | 5 | GO:0004198 | calcium-dependent cysteine-type endopeptidase activity | 0.965643 |
| MF | -98 | 5 | GO:0005544 | calcium-dependent phospholipid binding | 0.965643 |
| MF | 229 | 10 | GO:0005516 | calmodulin binding | 0.765322 |
| MF | 449 | 8 | GO:0004683 | calmodulin-dependent protein kinase activity | 0.469436 |
| MF | -138 | 8 | GO:0019200 | carbohydrate kinase activity | 0.921163 |
| MF | 355 | 5 | GO:0015144 | carbohydrate transmembrane transporter activity | 0.711972 |
| MF | -70 | 20 | GO:0016831 | carbon-carbon lyase activity | 0.954641 |
| MF | 477 | 4 | GO:0016884 | carbon-nitrogen ligase activity | |
| MF | 51 | 5 | GO:0016840 | carbon-nitrogen lyase activity | 0.965643 |
| MF | -580 | 19 | GO:0140097 | catalytic activity | |
| MF | -205 | 52 | GO:0140098 | catalytic activity | |
| MF | -37 | 21 | GO:0140101 | catalytic activity | |
| MF | 126 | 61 | GO:0000978 | cis-regulatory region sequence-specific DNA binding | 0.627982 |
| | | | | | |

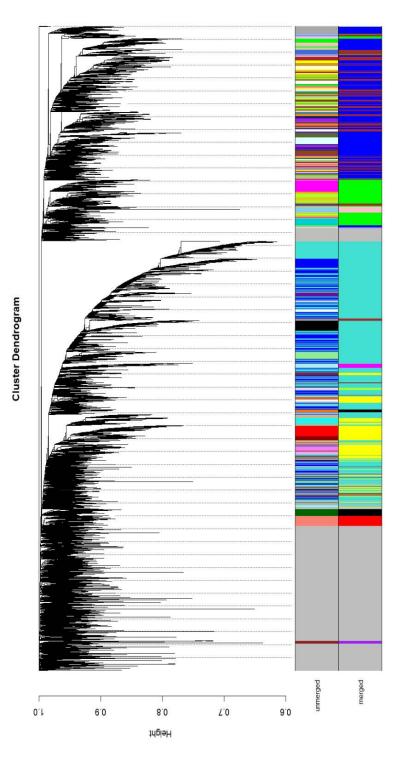
| MF | -74 | 5 | GO:0009975 | cyclase activity | 0.965643 |
|----|------|--------|--------------------------|--|----------|
| MF | 796 | 5
7 | GO:0009975
GO:0004112 | cyclic-nucleotide phosphodiesterase activity | 0.149556 |
| MF | 775 | 5 | GO:0004112
GO:0004869 | cysteine-type endopeptidase inhibitor activity | 0.267862 |
| MF | -106 | 27 | GO:0004197 | cysteine-type peptidase activity | 0.855211 |
| MF | -867 | 5 | GO:0005125 | cytokine activity | 0.197316 |
| MF | 515 | 65 | GO:0003779 | cytoskeletal protein binding | 0.000991 |
| MF | -378 | 8 | GO:0003684 | damaged DNA binding | 0.580341 |
| MF | -271 | 12 | GO:0051213 | dioxygenase activity | 0.627982 |
| MF | 337 | 10 | GO:0140297 | DNA-binding transcription factor binding | 0.580341 |
| MF | -346 | 4 | GO:0004952 | dopamine neurotransmitter receptor activity | 0.777975 |
| MF | -47 | 124 | GO:1990837 | double-stranded DNA binding | 0.855211 |
| MF | -12 | 5 | GO:0003725 | double-stranded RNA binding | 0.978652 |
| MF | -134 | 10 | GO:0004129 | electron transfer activity | 0.908846 |
| MF | 382 | 6 | GO:0000014 | endodeoxyribonuclease activity | 0.627982 |
| MF | 328 | 59 | GO:0008047 | enzyme activator activity | 0.07869 |
| MF | 258 | 32 | GO:0019899 | enzyme binding | 0.383826 |
| MF | 155 | 34 | GO:0004857 | enzyme inhibitor activity | 0.638377 |
| MF | -62 | 23 | GO:0004540 | exonuclease activity | 0.958212 |
| MF | -407 | 34 | GO:0008238 | exopeptidase activity | 0.095321 |
| MF | 413 | 11 | GO:0000062 | fatty-acyl-CoA binding | 0.434508 |
| MF | -554 | 5 | GO:0000400 | four-way junction DNA binding | 0.469436 |
| MF | -65 | 6 | GO:0001640 | G protein-coupled glutamate receptor activity | 0.965643 |
| MF | -460 | 7 | GO:0004890 | GABA-A receptor activity | 0.476838 |
| MF | -323 | 65 | GO:0016863 | galactosidase activity | 0.070119 |
| MF | -939 | 4 | GO:0015926 | glucosidase activity | 0.212146 |
| MF | -49 | 4 | GO:0046527 | glucosyltransferase activity | 0.965643 |
| MF | -788 | 9 | GO:0004364 | glutathione transferase activity | 0.095321 |
| MF | 151 | 8 | GO:0005104 | growth factor receptor binding | 0.908846 |
| MF | 836 | 20 | GO:0005085 | guanyl-nucleotide exchange factor activity | 0.00399 |
| MF | -238 | 45 | GO:0004553 | hydrolase activity | |

| MF | -978 | 7 | GO:0016799 | hydrolase activity | |
|----|------|-----|------------|---|----------|
| MF | -452 | 21 | GO:0016811 | hydrolase activity | |
| MF | -609 | 6 | GO:0016814 | hydrolase activity | |
| MF | 219 | 157 | GO:0017111 | hydrolase activity | |
| MF | -553 | 17 | GO:0016836 | hydro-lyase activity | 0.10914 |
| MF | 136 | 22 | GO:0005254 | inorganic anion transmembrane transporter activity | 0.814586 |
| MF | 145 | 7 | GO:0005229 | intracellular calcium activated chloride channel activity | 0.921163 |
| MF | -559 | 12 | GO:0003756 | intramolecular oxidoreductase activity | |
| MF | -757 | 5 | GO:0016861 | intramolecular oxidoreductase activity | |
| MF | -34 | 14 | GO:0022839 | ion gated channel activity | 0.965643 |
| MF | -517 | 34 | GO:0016860 | isomerase activity | 0.038546 |
| MF | 654 | 4 | GO:0004860 | kinase inhibitor activity | 0.465489 |
| MF | 63 | 21 | GO:0030594 | ligand-gated ion channel activity | 0.958323 |
| MF | 18 | 32 | GO:0016874 | ligase activity | 0.965643 |
| MF | -212 | 6 | GO:0004812 | ligase activity | |
| MF | 205 | 9 | GO:0016405 | ligase activity | |
| MF | -394 | 6 | GO:0016421 | ligase activity | |
| MF | 411 | 9 | GO:0016879 | ligase activity | |
| MF | 109 | 47 | GO:0052689 | lipase activity | 0.759142 |
| MF | 801 | 8 | GO:0004622 | lysophospholipase activity | 0.109669 |
| MF | -477 | 4 | GO:0005384 | manganese ion transmembrane transporter activity | 0.627982 |
| MF | 816 | 8 | GO:0004559 | mannosidase activity | 0.103424 |
| MF | -109 | 20 | GO:0000030 | mannosyltransferase activity | 0.866951 |
| MF | 443 | 8 | GO:0004181 | metallocarboxypeptidase activity | 0.469436 |
| MF | 1202 | 7 | GO:0000146 | microfilament motor activity | 0.022927 |
| MF | 719 | 26 | GO:0003777 | microtubule motor activity | 0.00399 |
| MF | 392 | 14 | GO:0072341 | modified amino acid binding | 0.383826 |
| MF | -15 | 5 | GO:0140104 | molecular carrier activity | 0.977919 |
| MF | 223 | 173 | GO:0030234 | molecular function regulator | 0.051478 |
| MF | -42 | 46 | GO:0004497 | monooxygenase activity | 0.958323 |
| MF | 653 | 52 | GO:0003774 | motor activity | 8.94E-05 |

| MF | -172 | 6 | GO:0003730 | mRNA 3'-UTR binding | 0.908846 |
|----|-------|-----|------------|---|----------|
| MF | -359 | 14 | GO:0003729 | mRNA binding | 0.450651 |
| MF | 29 | 9 | GO:0008080 | N-acetyltransferase activity | 0.970314 |
| MF | 669 | 6 | GO:0003951 | NAD+ kinase activity | 0.307941 |
| MF | -250 | 5 | GO:0003954 | NADH dehydrogenase activity | 0.855211 |
| MF | 574 | 5 | GO:0005042 | netrin receptor activity | 0.469436 |
| MF | 437 | 5 | GO:0005328 | neurotransmitter:sodium symporter activity | 0.627982 |
| MF | -821 | 9 | GO:0008170 | N-methyltransferase activity | 0.083266 |
| MF | -398 | 24 | GO:0016776 | nucleobase-containing compound kinase activity | 0.197316 |
| MF | 65 | 9 | GO:0015932 | nucleobase-containing compound transmembrane transporter activity | 0.965643 |
| MF | 10 | 25 | GO:0001882 | nucleoside binding | 0.977919 |
| MF | -382 | 6 | GO:0004550 | nucleoside diphosphate kinase activity | 0.627982 |
| MF | -1042 | 7 | GO:0019206 | nucleoside kinase activity | 0.055174 |
| MF | 398 | 87 | GO:0060589 | nucleoside-triphosphatase regulator activity | 0.00399 |
| MF | -272 | 4 | GO:0005338 | nucleotide-sugar transmembrane transporter activity | 0.855211 |
| MF | -262 | 21 | GO:0016779 | nucleotidyltransferase activity | 0.487111 |
| MF | 46 | 12 | GO:0016411 | O-acyltransferase activity | 0.965643 |
| MF | -140 | 223 | GO:0016491 | oxidoreductase activity | 0.172109 |
| MF | -206 | 39 | GO:0016616 | oxidoreductase activity | |
| MF | -220 | 8 | GO:0016620 | oxidoreductase activity | |
| MF | -12 | 18 | GO:0016627 | oxidoreductase activity | |
| MF | 50 | 6 | GO:0016634 | oxidoreductase activity | |
| MF | 121 | 9 | GO:0016638 | oxidoreductase activity | |
| MF | 20 | 5 | GO:0016641 | oxidoreductase activity | |
| MF | -43 | 10 | GO:0016646 | oxidoreductase activity | |
| MF | 9 | 19 | GO:0016651 | oxidoreductase activity | |
| MF | 484 | 8 | GO:0016653 | oxidoreductase activity | |
| MF | 397 | 5 | GO:0016667 | oxidoreductase activity | |
| MF | -512 | 6 | GO:0016702 | oxidoreductase activity | |
| MF | -31 | 12 | GO:0016903 | oxidoreductase activity | |
| | | | | | |

| MF | 651 | 7 | GO:0002039 | p53 binding | 0.267862 |
|----|------|-----|------------|---|----------|
| MF | 156 | 18 | GO:0004866 | peptidase inhibitor activity | 0.797691 |
| MF | -398 | 5 | GO:0034212 | peptide N-acetyltransferase activity | 0.638377 |
| MF | -398 | 5 | GO:0003755 | peptidyl-prolyl cis-trans isomerase activity | 0.638377 |
| MF | -172 | 9 | GO:0035091 | phosphatidylinositol binding | 0.855211 |
| MF | 728 | 7 | GO:0052866 | phosphatidylinositol phosphate phosphatase activity | 0.197316 |
| MF | 1077 | 5 | GO:0004438 | phosphatidylinositol-3-phosphatase activity | 0.094142 |
| MF | -469 | 5 | GO:0005546 | phosphatidylinositol-4 | |
| MF | 597 | 6 | GO:0001786 | phosphatidylserine binding | 0.383826 |
| MF | -486 | 5 | GO:0004623 | phospholipase A2 activity | 0.578732 |
| MF | 59 | 27 | GO:0005543 | phospholipid binding | 0.955282 |
| MF | 692 | 15 | GO:0008081 | phosphoric diester hydrolase activity | 0.058511 |
| MF | 261 | 84 | GO:0016791 | phosphoric ester hydrolase activity | 0.095321 |
| MF | -40 | 6 | GO:0016780 | phosphotransferase activity | |
| MF | -368 | 9 | GO:0004659 | prenyltransferase activity | 0.568982 |
| MF | -142 | 14 | GO:0002020 | protease binding | 0.855211 |
| MF | -252 | 7 | GO:0051998 | protein methyltransferase activity | 0.797678 |
| MF | 251 | 8 | GO:0004864 | protein phosphatase inhibitor activity | 0.772631 |
| MF | 408 | 4 | GO:0001784 | protein phosphorylated amino acid binding | 0.695243 |
| MF | -120 | 5 | GO:0008318 | protein prenyltransferase activity | 0.959015 |
| MF | 566 | 13 | GO:0004722 | protein serine/threonine phosphatase activity | 0.168563 |
| MF | 45 | 7 | GO:0030674 | protein-macromolecule adaptor activity | 0.965643 |
| MF | -222 | 16 | GO:0015078 | proton transmembrane transporter activity | 0.638377 |
| MF | -908 | 4 | GO:0016857 | racemase and epimerase activity | 0.241343 |
| MF | -235 | 89 | GO:0000048 | receptor ligand activity | 0.125384 |
| MF | -79 | 300 | GO:0003723 | RNA binding | 0.465489 |
| MF | 51 | 7 | GO:0000339 | RNA cap binding | 0.965643 |
| MF | -540 | 8 | GO:0008173 | RNA methyltransferase activity | 0.377687 |
| MF | 592 | 14 | GO:0043175 | RNA polymerase core enzyme binding | 0.122102 |
| MF | 337 | 7 | GO:0001103 | RNA polymerase II-specific DNA-binding transcription factor binding | 0.638377 |
| MF | -637 | 21 | GO:0008757 | S-adenosylmethionine-dependent methyltransferase activity | 0.047308 |

| MF | -78 | 11 | GO:0004867 | serine-type endopeptidase inhibitor activity | 0.963024 |
|----|-------|-----|------------|---|----------|
| MF | -700 | 13 | GO:0003697 | single-stranded DNA binding | 0.076687 |
| MF | 455 | 5 | GO:0003727 | single-stranded RNA binding | 0.613139 |
| MF | -210 | 21 | GO:0001614 | sodium:phosphate symporter activity | 0.627982 |
| MF | -252 | 4 | GO:0015295 | solute:proton symporter activity | 0.855211 |
| MF | -345 | 6 | GO:0033764 | steroid dehydrogenase activity | 0.673276 |
| MF | -84 | 6 | GO:0005200 | structural constituent of cytoskeleton | 0.965643 |
| MF | -704 | 77 | GO:0003735 | structural constituent of ribosome | 2.88E-08 |
| MF | 420 | 18 | GO:0004843 | thiol-dependent ubiquitin-specific protease activity | 0.257205 |
| MF | -1102 | 6 | GO:0004800 | thyroxine 5'-deiodinase activity | 0.058511 |
| MF | -63 | 13 | GO:0008483 | transaminase activity | 0.965643 |
| MF | 187 | 14 | GO:0003713 | transcription coactivator activity | 0.777975 |
| MF | 56 | 44 | GO:0003712 | transcription coregulator activity | 0.921163 |
| MF | 173 | 12 | GO:0003714 | transcription corepressor activity | 0.827695 |
| MF | 81 | 15 | GO:0008134 | transcription factor binding | 0.954641 |
| MF | -466 | 36 | GO:0008168 | transferase activity | |
| MF | -114 | 41 | GO:0016746 | transferase activity | |
| MF | 20 | 424 | GO:0016758 | transferase activity | |
| MF | -574 | 24 | GO:0016765 | transferase activity | |
| MF | 102 | 4 | GO:0046912 | transferase activity | |
| MF | -358 | 15 | GO:0046915 | transition metal ion transmembrane transporter activity | 0.432983 |
| MF | -321 | 11 | GO:0003746 | translation elongation factor activity | 0.580341 |
| MF | -55 | 9 | GO:0003743 | translation initiation factor activity | 0.965643 |
| MF | -199 | 25 | GO:0090079 | translation regulator activity | |
| MF | 37 | 196 | GO:0008324 | transmembrane transporter activity | 0.855211 |
| MF | 668 | 7 | GO:0004806 | triglyceride lipase activity | 0.259208 |
| MF | -358 | 43 | GO:0000049 | tRNA binding | 0.098685 |
| MF | 131 | 294 | GO:0004518 | ubiquitin-like protein transferase activity | 0.138002 |
| MF | 123 | 146 | GO:0004519 | UDP-glycosyltransferase activity | 0.383826 |
| MF | 531 | 6 | GO:0005247 | voltage-gated anion channel activity | 0.465489 |
| | | | | | |


| MF | -74 | 14 | GO:0008270 | zinc ion binding | 0.958323 |
|----|-----|----|------------|---|----------|
| MF | -55 | 6 | GO:0005385 | zinc ion transmembrane transporter activity | 0.965643 |

Supplementary Table C.23 Differentially expressed genes between highly tolerant individuals (high ED50) and low tolerant individuals (low ED50) in the heated treatment.

| Uniprot | baseMean | L2FC | padj | Direction | Gene name | Protein Name | |
|---------|----------|--------|-------|-----------|-------------------------------|---|--|
| E7FAM5 | 8.06 | -7.01 | 0.002 | Down | trim71 lin41 | E3 ubiquitin-protein ligase TRIM71 (EC 2.3.2.27) (Protein lin-41 homolog) (RING-type E3 ubiquitin transferase TRIM71) (Tripartite motif-containing protein 71) | |
| F6QEU4 | 15.74 | -4.78 | 0.003 | Down | trim71 lin41 | E3 ubiquitin-protein ligase TRIM71 (EC 2.3.2.27) (Protein lin-41 homolog) (RING-type E3 ubiquitin transferase TRIM71) (Tripartite motif-containing protein 71) | |
| Q7RTR2 | 40.82 | -17.79 | 0.015 | Down | NLRC3 NOD3 | NLR family CARD domain-containing protein 3 (CARD15-like protein) (Caterpiller protein 16.2) (CLR16.2) (NACHT, LRR and CARD domains-containing protein 3) (Nucleotide-binding oligomerization domain protein 3) | |
| Q54H46 | 89.59 | -22.87 | 0.000 | Down | drkA rk1 vsk1
DDB_G0289791 | Probable serine/threonine-protein kinase drkA (EC 2.7.11.1) (Receptor-like kinase 1)
(Receptor-like kinase A) (Vesicle-associated receptor tyrosine kinase-like protein 1) | |
| Q9M2U3 | 19.73 | -17.51 | 0.008 | Down | At3g55350 T22E16.10 | Protein ALP1-like (EC 3.1) | |
| P15043 | 55.42 | 21.90 | 0.000 | Up | recQ b3822 JW5855 | ATP-dependent DNA helicase RecQ (EC 3.6.4.12) | |
| Q3URF8 | 114.57 | 9.87 | 0.000 | Up | Ketd21 | BTB/POZ domain-containing protein KCTD21 (KCASH2 protein) (Potassium channel tetramerization domain-containing protein 21) | |
| Q6DG99 | 9.66 | 18.87 | 0.005 | Up | kctd6 zgc:91884 | BTB/POZ domain-containing protein KCTD6 | |
| P12263 | 125.17 | 21.03 | 0.000 | Up | F8 CF8 | Coagulation factor VIII (Procoagulant component) | |
| B1VEI4 | 32.79 | 19.26 | 0.003 | Up | mshA cu0213 | D-inositol 3-phosphate glycosyltransferase (EC 2.4.1.250) (N-acetylglucosamine-
inositol-phosphate N-acetylglucosaminyltransferase) (GlcNAc-Ins-P N-
acetylglucosaminyltransferase) | |
| C7Q4Y6 | 71.32 | 19.90 | 0.000 | Up | mshA1 Caci_5074 | D-inositol 3-phosphate glycosyltransferase 1 (EC 2.4.1.250) (N-acetylglucosamine-
inositol-phosphate N-acetylglucosaminyltransferase 1) (GlcNAc-Ins-P N-
acetylglucosaminyltransferase 1) | |
| Q4VSN2 | 151.64 | 6.36 | 0.004 | Up | dstyk ripk5 | Dual serine/threonine and tyrosine protein kinase (EC 2.7.12.1) (Dusty protein kinase) (Dusty PK) (Receptor-interacting serine/threonine-protein kinase 5) | |
| Q5R9T9 | 20.54 | 20.59 | 0.001 | Up | GBP6 | Guanylate-binding protein 6 (GTP-binding protein 6) (GBP-6) (Guanine nucleotide-
binding protein 6) | |
| Q0VD26 | 38.64 | 5.44 | 0.019 | Up | MORN4 | MORN repeat-containing protein 4 (Retinophilin) | |
| P31646 | 38.44 | 21.26 | 0.000 | Up | Slc6a13 Gabt2 Gat-2 | Sodium- and chloride-dependent GABA transporter 2 (GAT-2) (Solute carrier family 6 member 13) | |
| Q9VBW3 | 26.78 | 19.43 | 0.000 | Up | Cad96Ca HD-14
CG10244 | Tyrosine kinase receptor Cad96Ca (EC 2.7.10.1) (Cadherin-96Ca) (Tyrosine kinase receptor HD-14) | |

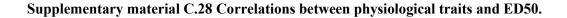
Supplementary Table C. 24 Differentially expressed genes between highly tolerant individuals (high ED50) and low tolerant individuals (low ED50) in the ambient treatment.

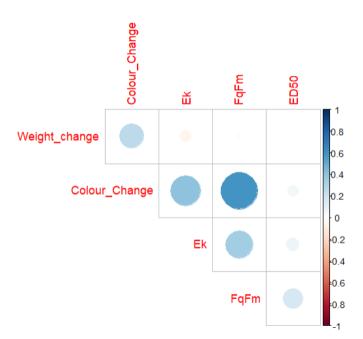
| Uniprot | baseMean | L2FC | padj | Direction | Gene name | Protein Name |
|---------|----------|--------|-------|-----------|---------------------|---|
| Q95P04 | 1878.17 | -5.91 | 0.001 | Down | NA | GFP-like non-fluorescent chromoprotein (gtCP) |
| Q95P04 | 2107.44 | -6.82 | 0.001 | Down | NA | GFP-like non-fluorescent chromoprotein (gtCP) |
| C0H694 | 14.78 | -19.04 | 0.008 | Down | NA | Small cysteine-rich protein 1 2 (Mcap-SCRiP1b) (SCRiP1b) |
| A6QLU6 | 36.42 | 20.94 | 0.001 | Up | ADGRD1 GPR133 | Adhesion G-protein coupled receptor D1 (G-protein coupled receptor 133) |
| O50224 | 26.14 | 21.18 | 0.001 | Up | recG | ATP-dependent DNA helicase RecG (EC 3.6.4.12) |
| P12263 | 66.31 | 22.22 | 0.000 | Up | F8 CF8 | Coagulation factor VIII (Procoagulant component) |
| Q7T312 | 10.00 | 18.56 | 0.016 | Up | ccdc25 zgc:64173 | Coiled-coil domain-containing protein 25 |
| Q9NXS3 | 88.15 | 22.42 | 0.000 | Up | KLHL28 BTBD5 | Kelch-like protein 28 (BTB/POZ domain-containing protein 5) |
| P31646 | 21.81 | 19.60 | 0.005 | Up | Slc6a13 Gabt2 Gat-2 | Sodium- and chloride-dependent GABA transporter 2 (GAT-2) (Solute carrier family 6 member 13) |

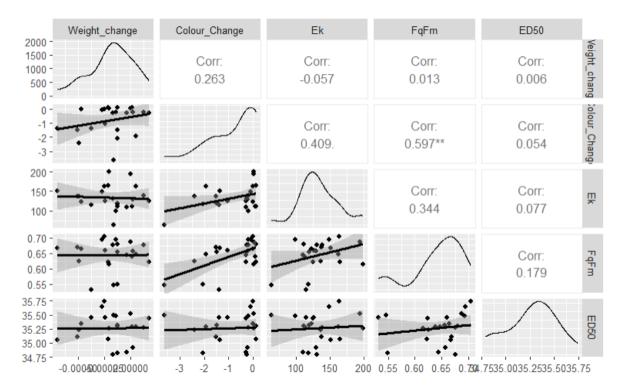
Supplementary Figure C. 25 WGCNA-assigned modules.

Supplementary Table C. 26 Number of genes per WGCNA-module. Listed by module colour name, the number of genes associated with each module, the number of associated genes with annotations, the correlation coefficient (-1 to 1) of the module eigengene to treatment, the significance level of correlation with respect to treatment, the correlation coefficient of the module eigengene to physiological maintenance and the significance level of correlation between module eigengene and physiological maintenance.

| | | | Associated w | ith treatment | Associated with physiological maintenance | |
|--------------|------------|--------------------------|-------------------------|-----------------------|---|-----------------------|
| Module | N
genes | N genes w.
annotation | Correlation coefficient | Significance
level | Correlation coefficient | Significance
level |
| Black | 170 | NS | 0.46 | | -0.01 | |
| Blue | 1953 | 1634 | -0.7 | *** | -0.57 | * |
| Brown | 981 | 859 | 0.61 | ** | 0.65 | *** |
| Green | 713 | 616 | -0.93 | *** | -0.21 | |
| Green/yellow | 38 | NS | -0.26 | | 0.36 | |
| Grey | 2939 | NS | -0.24 | | 0.5 | * |
| Magenta | 81 | NS | 0.08 | | -0.17 | |
| Pink | 112 | 89 | 0.75 | *** | -0.17 | |
| Purple | 43 | NS | -0.14 | | -0.28 | |
| Red | 179 | NS | 0.24 | | 0.19 | |
| Turquoise | 3534 | NS | -0.26 | | 0.4 | |
| Yellow | 901 | 841 | 0.54 | * | -0.36 | |

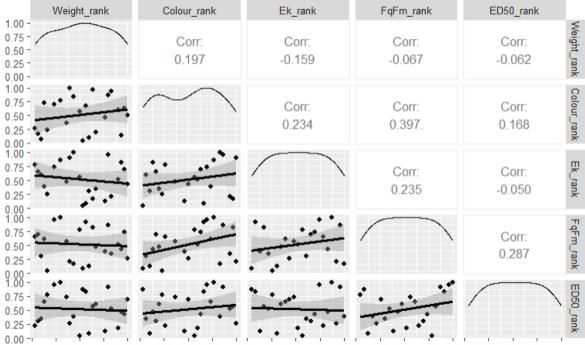

Supplementary material C. 27 Rapid Light Curve (RLC) statistics


Ek (minimum saturating irradiance)

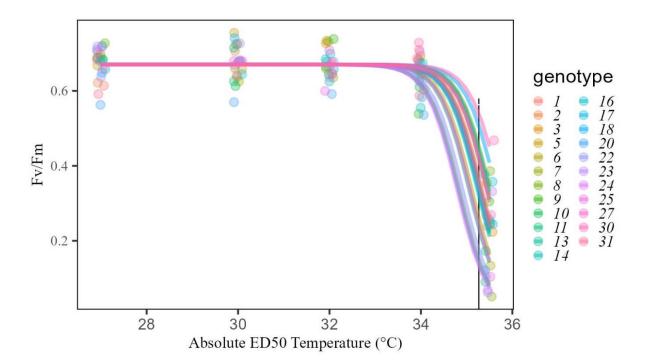

```
[1] "27"
            "30"
                   "32"
                           "34"
                                   "35.5"
              Df Sum Sq Mean Sq F value Pr(>F)
               4 591496
                          147874
                                    85.08 <2e-16 ***
treatment
             252 438005
Residuals
                            1738
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$emmeans
                     SE df lower.CL upper.CL
 treatment emmean
 27
             187.1 5.43 252
                                   176
                                             198
 30
             174.3 5.62 252
                                   163
                                             185
 32
             126.2 5.57 252
                                   115
                                             137
             132.6 6.29 252
                                   120
 34
                                             145
 35.5
              45.5 6.36 252
                                    33
                                              58
Confidence level used: 0.95
$contrasts
 contrast
                              estimate
                                         SE df t.ratio p.value
 treatment27 - treatment30
                                 12.81 7.81 252
                                                  1.639
                                                         0.4737
                                 60.90 7.78 252
                                                  7.830
                                                         <.0001
 treatment27 - treatment32
 treatment27 - treatment34
                                 54.44 8.30 252
                                                  6.556
                                                         <.0001
 treatment27 - treatment35.5
                               141.58 8.36 252
                                                 16.937
                                                         <.0001
                                48.09 7.91 252
                                                  6.076
                                                         <.0001
 treatment30 - treatment32
 treatment30 - treatment34
                                41.63 8.43 252
                                                  4.937
                                                         <.0001
                               128.77 8.49 252
 treatment30 - treatment35.5
                                                 15.173
                                                         <.0001
 treatment32 - treatment34
                                -6.46 8.40 252
                                                 -0.769
                                                         0.9392
 treatment32 - treatment35.5
                                 80.68 8.45 252
                                                  9.544
                                                         <.0001
 treatment34 - treatment35.5
                                87.14 8.94 252
                                                  9.747
                                                         <.0001
P value adjustment: tukey method for comparing a family of 5 estimates
                    SE df lower.CL upper.CL
 treatment emmean
 27
            187.1 5.43 252
                                176
                                          198
            174.3 5.62 252
 30
                                 163
                                          185
            126.2 5.57 252
 32
                                 115
                                          137
 34
            132.6 6.29 252
                                120
                                          145
 35.5
             45.5 6.36 252
                                  33
                                           58
Confidence level used: 0.95
```

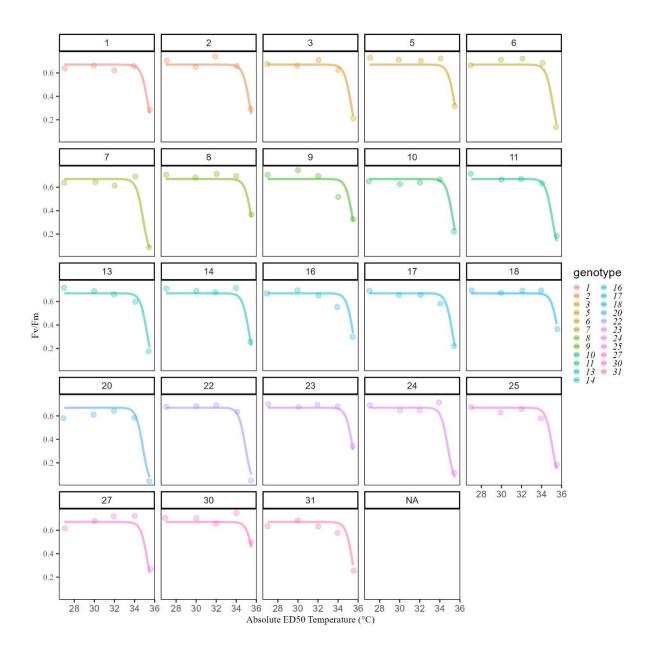
FqFm(max) (model predicted max photochemical efficiency of PSII)

Df Sum Sq Mean Sq F value Pr(>F) 1.471 treatment 4 5.885 485.8 <2e-16 *** 253 0.766 0.003 Residuals Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \$emmeans treatment emmean SE df lower.CL upper.CL 27 0.640 0.00716 253 0.626 0.654 0.648 0.00742 253 30 0.634 0.663 32 0.636 0.00735 253 0.622 0.651 34 0.611 0.00830 253 0.595 0.627 35.5 0.235 0.00830 253 0.219 0.251 Confidence level used: 0.95 \$contrasts SE df t.ratio p.value contrast estimate treatment27 - treatment30 -0.00856 0.0103 253 -0.8300.9213 treatment27 - treatment32 0.00379 0.0103 253 0.369 0.9960 0.02884 0.0110 253 treatment27 - treatment34 2.631 0.0679 0.40502 0.0110 253 36.950 treatment27 - treatment35.5 <.0001 treatment30 - treatment32 0.01235 0.0104 253 1.182 0.7617 treatment30 - treatment34 0.03739 0.0111 253 3.359 0.0080 treatment30 - treatment35.5 0.41357 0.0111 253 37.158 <.0001 treatment32 - treatment34 0.02504 0.0111 253 2.259 0.161936.192 treatment32 - treatment35.5 0.40123 0.0111 253 <.0001 0.37618 0.0117 253 treatment34 - treatment35.5 32.064 <.0001 P value adjustment: tukey method for comparing a family of 5 estimates treatment emmean SE df lower.CL upper.CL 27 0.640 0.00716 253 0.626 0.654 30 0.648 0.00742 253 0.634 0.663 32 0.636 0.00735 253 0.622 0.651 0.611 0.00830 253 0.595 34 0.627 35.5 0.235 0.00830 253 0.219 0.251 Confidence level used: 0.95

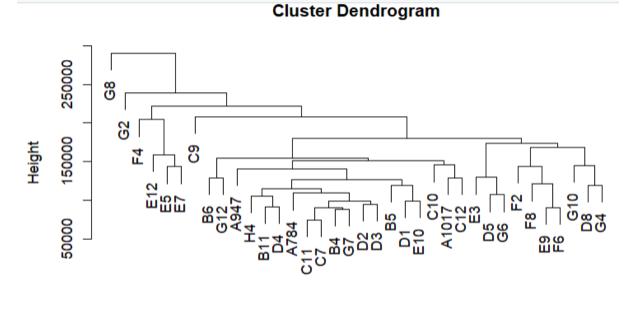


ED50 was not significantly correlated to any of the other four physiological trait rankings nor was ED50-derived colony rankings correlated to colony rankings in the other four traits.

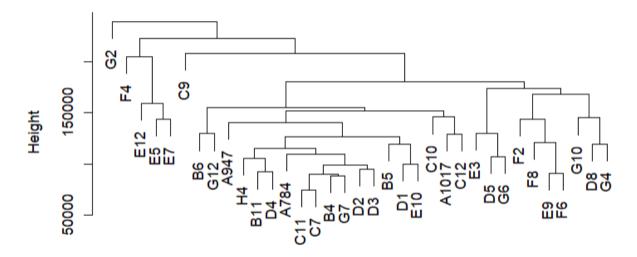


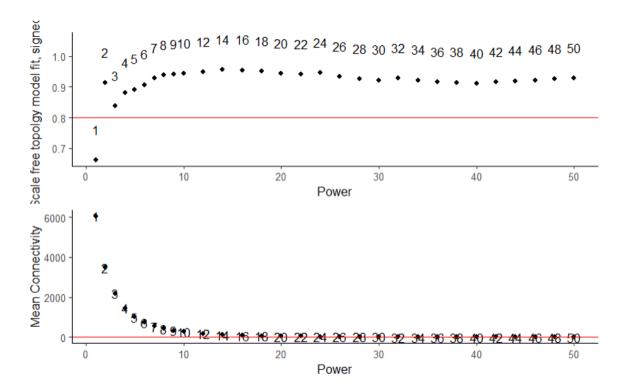


0.00 0.25 0.50 0.75 1.00000 0.25 0.50 0.75 1.00000 0.25 0.50 0.75 1.00000 0.25 0.50 0.75 1.00000 0.25 0.50 0.75 1.00

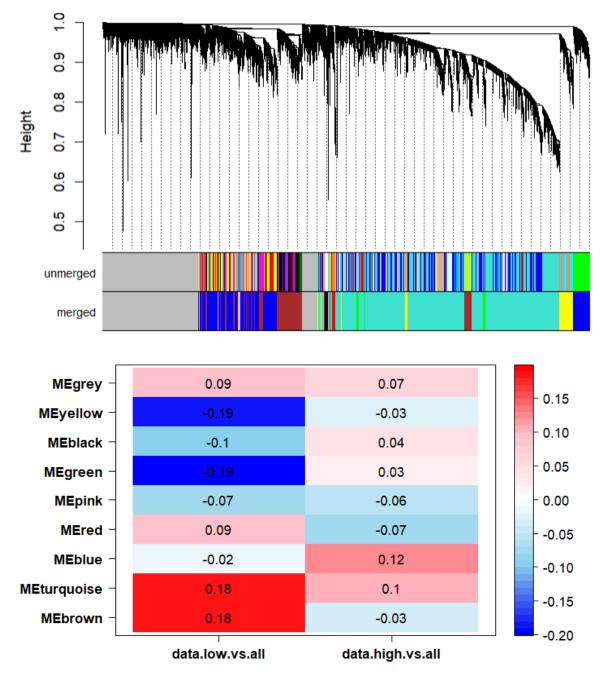

Supplementary material C.29 ED50 curves by genotype. Top graph shows all genotypes together with the mean derived ED50 (35.27°C) indicated by the vertical black line. The bottom graph shows each genotype in a separate panel.

Supplementary material C.30 WGCNA with respect to ED50 category.


Sample G8 was identified as a significant outlying sample and therefore removed from the analysis.


dist(t(data)) hclust (*, "average")

After sample exclusion:


Cluster Dendrogram

dist(t(data.subset)) hclust (*, "average")

Cluster Dendrogram

There were statistically significant co-expressed gene modules with respect to ED50 category.