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a b s t r a c t 

Recently vision transformer models have become prominent models for a multitude of vision tasks. These 

models, however, are usually opaque with weak feature interpretability, making their predictions inacces- 

sible to the users. While there has been a surge of interest in the development of post-hoc solutions that 

explain model decisions, these methods can not be broadly applied to different transformer architectures, 

as rules for interpretability have to change accordingly based on the heterogeneity of data and model 

structures. Moreover, there is no method currently built for an intrinsically interpretable transformer, 

which is able to explain its reasoning process and provide a faithful explanation. To close these crucial 

gaps, we propose a novel vision transformer dubbed the eXplainable Vision Transformer (eX-ViT), an in- 

trinsically interpretable transformer model that is able to jointly discover robust interpretable features 

and perform the prediction. Specifically, eX-ViT is composed of the Explainable Multi-Head Attention (E- 

MHA) module, the Attribute-guided Explainer (AttE) module with the self-supervised attribute-guided 

loss. The E-MHA tailors explainable attention weights that are able to learn semantically interpretable 

representations from tokens in terms of model decisions with noise robustness. Meanwhile, AttE is pro- 

posed to encode discriminative attribute features for the target object through diverse attribute discov- 

ery, which constitutes faithful evidence for the model predictions. Additionally, we have developed a 

self-supervised attribute-guided loss for our eX-ViT architecture, which utilizes both the attribute dis- 

criminability mechanism and the attribute diversity mechanism to enhance the quality of learned repre- 

sentations. As a result, the proposed eX-ViT model can produce faithful and robust interpretations with 

a variety of learned attributes. To verify and evaluate our method, we apply the eX-ViT to several weakly 

supervised semantic segmentation (WSSS) tasks, since these tasks typically rely on accurate visual expla- 

nations to extract object localization maps. Particularly, the explanation results obtained via eX-ViT are 

regarded as pseudo segmentation labels to train WSSS models. Comprehensive simulation results illus- 

trate that our proposed eX-ViT model achieves comparable performance to supervised baselines, while 

surpassing the accuracy and interpretability of state-of-the-art black-box methods using only image-level 

labels. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Over the last few years, transformer models have attracted in- 

reasing attention with encouraging results in a multitude of chal- 
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enging domains, such as natural language processing, vision, or 

raphs [1] . The Multi-Head Attention (MHA) and Multi-Layer Per- 

eptron (MLP) modules in transformers effectively model global 

epresentations without convolution [2] . The effectiveness of this 

ramework lies in its ability to capture long-range dependencies. 

espite their excellent performance, most transformer architec- 

ures are usually expressed as black boxes [3] . Specifically, the 

arge number of parameters and complex interactions between 

odules make it challenging to provide explanations for the model 

redictions. Given the high applicability of transformers in high- 

isk decision-making domains, such as healthcare and autonomous 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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riving, there is a strong necessity for gaining insights into the 

odel’s decision-making process [4] . An interpretable solution is 

ble to aid in debugging the models and identifying crucial fea- 

ures for downstream tasks. 

Explainable Artificial Intelligence (XAI) is an emerging sub- 

eld of AI pursuing to capture the properties that have influ- 

nce over the decision of a model [5] . Depending on the phases 

here predictions and explanations are performed, these methods 

an be categorized into two types: intrinsically explainable models 

nd post-hoc explanation methods. Several previous studies have 

ointed out that explainable models outperform post-hoc meth- 

ds in faithfulness and stability [6] . Unfortunately, little work has 

een done so far in the field of explainable transformers. In or- 

er to leverage advantages of explainability, recent research efforts 

ave been made to explore the possibility of building inherently 

xplainable transformers [7] . However, the explicit expressive fea- 

ures were not explored to obtain faithful explanations w.r.t. model 

ecisions. 

Recently, transformers have shown promising results in weakly 

upervised semantic segmentation (WSSS) tasks [8] . The genera- 

ion of pixel-level pseudo segmentation ground-truth labels based 

n image-level labels is a pivotal step for this task. Transformers 

mploy MHA and MLP to effectively capture long-range semantic 

orrelations, which play a critical role in localizing the target ob- 

ect. Despite the fact that different attention heads in the trans- 

ormer can attend to diverse semantic areas of an image, it is still 

nclear how to correctly align these features with a particular se- 

antic class [3] . One common issue among existing transformer- 

ased works is the utilization of a token for each class, which of- 

en highlight the most discriminative region of an object instead of 

he entire object region [1] . 

Against the above background, this paper aims to design the so- 

alled eXplainable Vision Transformer (eX-ViT) with the inherent 

ttribute of explainability and high performance for WSSS tasks. 

pecifically, the eX-ViT comprises the Explainable Multi-Head 

ttention (E-MHA) module, which can inherently provide inter- 

retable attention maps that align with informative input patterns 

ith noise robustness. Furthermore, the Attribute-guided Explainer 

AttE) module is integrated into the eX-ViT, to learn discriminative 

ttribute features for the target object. Intuitively, we assume 

ach object is made up of several attributes, which could be basic 

lements including color, shape, and texture, or higher-level local 

eatures such as body parts. Our key idea is to decompose the 

eature representation into a set of learnable attribute features for 

he target object, capable of capturing diverse and discriminative 

bject features. Besides, a novel attribute-guided loss is designed 

o promote the learning process inside AttE in a self-supervised 

anner. More precisely, this loss implicitly adds the regularization 

o force the representations to focus on various attributes of each 

arget class through the attribute discriminability mechanism and 

ttribute diversity mechanism. We then verify and evaluate our 

ethod on several WSSS tasks. To the best of our knowledge, 

his is the first work to develop an intrinsically explainable vision 

ransformer for WSSS tasks. In summary, the major contributions 

f this paper are: 

• We propose a novel eXplainable Vision Transformer (eX-ViT), 

which provides faithful and robust explanations with model- 

inherent interpretability. Specifically, the proposed eX-ViT is 

able to provide explainable representations with comparable 

or better performance than state-of-the-art transformers (e.g., 

MCTFormer [1] and TransCAM [8] ); 
• We propose a novel Explainable Multi-Head Attention (E-MHA) 

module, which, as a basic building block of the eX-ViT, has two 

key attributes. That is, it provides model-inherent explainable 
2 
attention maps that align with the informative input patterns 

and is robust to noise; 
• We propose the Attribute-guided Explainer (AttE) module, 

which is integrated into the eX-ViT to recognize diverse and 

discriminative object attribute features for the target object 

with only image-level labels through diverse attribute discov- 

ery; 
• We propose the attribute-guided loss function, which enables 

the self-supervised learning in the proposed eX-ViT, capable of 

not only learning explanations that are faithful to the model 

predictions, but also resulting in more robust feature represen- 

tations across data transformations; 
• Comprehensive simulation results demonstrate that the pro- 

posed eX-ViT is comparable to the supervised baselines, and 

outperforms the state-of-the-art transformers in accuracy and 

interpretability. 

The remainder of the paper is organized as follows. 

ection 2 briefly describes some recent related works on vision 

ransformers, XAI techniques for transformers, and weakly super- 

ised semantic segmentation methodologies. Section 3 presents 

he explainable architecture, i.e., eX-ViT, and introduces its main 

odules. Experimental results and discussions are presented in 

ection 4 , followed by concluding remarks drawn in Section 5 . 

. Related work 

.1. Transformers for vision 

Transformer-based models have recently been introduced to 

ision tasks and achieved remarkable progress. One of purely 

ransformer-based models is the ViT [2] , which has exhibited im- 

ressive performance without convolution. However, the ViT is in- 

erior to CNNs when capturing local details. DeiT [9] addressed this 

ssue by employing a strong image classifier as the teacher model 

o train data-efficient transformer models. Li et al. [8] designed the 

ransCAM, which explicitly utilizes the attention weights produced 

rom the transformer to refine CAM results. Moreover, there are 

ome research studies with modified ViT architectures that benefit 

ownstream vision tasks such as semantic segmentation. However, 

ost of the existing designs focus on efficient and effective frame- 

orks for downstream tasks without considering interpretability. 

hus these methods tend to be less faithful to the users. Recently, 

eng et al. [10] proposed the Conformer to aggregate both the con- 

olutional operations and self-attention mechanisms into a unified 

ramework. However, Conformer results in a more complicated de- 

ign and additional computational cost. Xu et al. [1] added extra 

lass tokens and enforced them learning the activation maps of 

ifferent classes, it has limited ability to encode more information 

hen it comes to a larger data set, e.g., COCO [11] . In this paper,

e aim to address these issues by proposing the so-called eX-ViT, 

hich exploits explainable features that are robust to noise and 

rovides faithful explanations. 

.2. Explainable artificial intelligence (XAI) for transformers 

There are mainly two sub-fields of explainable techniques: in- 

rinsically explainable models and post-hoc explanation methods. 

nlike post-hoc models, intrinsically explainable models aim to di- 

ectly incorporate interpretability in the structure of the models, 

hus revealing the intrinsic reasoning process of the models [6] . 

everal previous studies have pointed out that explainable mod- 

ls outperform post-hoc methods in faithfulness and stability [6] . 

nfortunately, little work has been done so far in the field of ex- 

lainable transformers. Caron et al. [7] utilized a self-supervised 

pproach called DINO based on vision transformers and concluded 
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hat the attention maps contain features about the semantic infor- 

ation of the image. But the expressive features were not explored 

o obtain faithful explanations. Different from the majority of pre- 

ious studies, we attempt to build the first explainable transformer 

rchitecture with the objective of learning interpretable features. 

In terms of post-hoc explanation approaches, there are a vari- 

ty of recent studies that explore the explainability for transform- 

rs. Chefer et al. [6] proposed a layer-wise relevance propagation 

LRP) method by introducing a relevancy propagation rule that is 

pplicable to both positive and negative contributions. This ap- 

roach, however, is not able to provide the interpretation for atten- 

ion modules besides self-attention. Abnar and Zuidema [12] pro- 

osed to combine the attention scores across multiple layers, but 

his method fails to distinguish between positive and negative at- 

ributions. Recently, Chefer et al. [13] also proposed a generic ap- 

roach to explain transformers including bi-modal ones. However, 

ost of the existing post-hoc methods tend to be fragile, sensitive, 

nd less faithful. Since they cannot faithfully uncover the decision 

aking process of the trained models, and the explanations can 

e easily impaired by different input schemes (e.g., perturbations 

r transformations). 

.3. Weakly supervised semantic segmentation 

Compared to supervised learning methods, WSSS aims at train- 

ng models with weak labels such as bounding boxes and image- 

evel labels. As the cornerstone of WSSS, The Class Activation Map- 

ing (CAM) technique is widely used in the design of WSSS tasks 

o extract object localization maps and approximate the segmen- 

ation mask [14] . Despite the encouraging results, CAM suffers 

rom the issue of incomplete object activation [1] . To address this 

rawback, several approaches have been proposed as the CAM ex- 

ansions to remove the most discriminative parts of CAM and dis- 

over more complete object localization maps. Chen et al. [15] de- 

igned the ReCAM, which a method that leverages CAM to ex- 

ract pixels belonging to specific classes and subsequently incor- 

orates them into a fully-connected layer along with the corre- 

ponding class label for further learning. Yuan et al. [16] proposed 

he multi-strategy contrastive learning framework to discover the 

imilarity and dissimilarity of contrastive sample pairs. Lee et al. 

17] learned pixel-level feedback by use of saliency map gener- 

ted from the off-the-shelf detection model. Chen et al. [4] intro- 

uced several image-specific prototype features for WSSS learn- 

ng with favorable performance. The above methods are com- 

only based on CNNs, which reveals the inherent drawback of 

onvolution. Xu et al. [1] introduced the transformer attention to 

earn class-specific localization maps. Ru et al. [3] adopted the se- 

antic affinity in self-attentions in transformers to produce more 

ntegral pseudo labels for WSSS. However, there is still a large 

ap between fully supervised semantic segmentation and previ- 

us transformer-based WSSS methods. In our work, we propose a 

ransformer-based model to extract explainable features to local- 

ze class-specific feature maps. We attempt to build a novel trans- 

ormer architecture with the objective of learning interpretable 

epresentations in a self-supervised manner to narrow the super- 

ision gap. 

. Method 

This section details our proposed network architecture, i.e., the 

X-ViT. First, we introduce the overall architecture. Second, we de- 

cribe the intuition and design of the E-MHA and discuss sev- 

ral important properties of the E-MHA. Furthermore, The AttE 

s proposed to integrate into our eX-ViT to decompose the atten- 

ion maps into features of attributes through diverse attribute dis- 

overy, and a self-supervised attribute-guided loss is adopted to 
3 
earn robust semantic representations via the attribute diversity 

echanism and attribute discriminability mechanism, which con- 

titutes faithful evidence for model predictions. 

.1. Architecture of the eX-ViT 

The overall architecture of our proposed eX-ViT is depicted in 

ig. 1 . In particular, the eX-ViT is a siamese network, which com- 

rises two branches for a pair of input images (two data aug- 

entations from an original input) to learn interpretable atten- 

ion maps in a self-supervised manner. Each branch comprises a 

ransformer encoder with L transformer layers consisting of the 

ovel Explainable Multi-Head Attention (E-MHA) module, and the 

ttribute-guided Explainer (AttE) module atop the encoder. Specif- 

cally, the parameters E in the lower branch use a momentum up- 

ate with the upper θ . Empirically, the proposed architecture can 

onveniently replace the backbone networks in existing methods 

or WSSS tasks. 

.2. Explainable multi-head attention (E-MHA) 

In this section, we introduce our novel Explainable Multi-Head 

ttention (E-MHA) module as shown in Fig. 2 , which consists of 

parallel heads. Specifically, given an input feature map X ∈ R 

T ×d 

here T is the spatial size and d is the feature dimension, each 

ead H h holds an explainable attention weight A h ∈ R 

N×d ( N is the 

patial size of A h .) that represents the relative importance of in- 

ut features. That is, A h aims to learn explainable features for the 

utput through the proposed E-MHA module. 

In particular, we structure this section around two crucial at- 

ributes of the E-MHA module: 

Noise robustness: The E-MHA is computed as a dynamic align- 

ent between the input tokens and the attention weight. When 

he module is optimized, the attention weight is driven to focus 

n the most discriminative and class-related patterns from the in- 

ut tokens. Instead of directly removing the irrelevant noises from 

he input image, we adopt a dynamic alignment mechanism in E- 

HA to extract discriminative features from the input, thus reduc- 

ng the noise information gradually and then preserving the key 

nput patterns. This favorable attribute is empirically verified in 

ection Section 4.3.1 . 

Inherent explainability: Given input X , the E-MHA aims to 

earn the attention weight that maximizes the alignment between 

nput tokens and the attention weight. During the optimization 

rocess, maximizing this alignment means encoding the projected 

nput values as eigenvectors of the attention weight. As a result of 

his property, the model-inherent attention weight is learned with 

he discriminative input patterns and thus directly used to explain 

odel decisions without needing any external tools. 

First, given input X , the projected key, query and value are ob- 

ained as follows 

 = X W 

Q 
, K = X W 

K 
, V = X W 

V 
, (1) 

here W 

Q ∈ R 

d×d , W 

K ∈ R 

d×d , and W 

V ∈ R 

d×d are trainable trans- 

orm matrices. 

Second, the self-attention operation is constructed by 

 = 

Q K 

T 

√ 

d 
, (2) 

here the obtained matrix W implies how much attention is paid 

n each token. 

Third, the attention weight A is defined as follows 

 = f θ ( W + b ) T , (3) 

here b is a trainable bias term, which is introduced as an initial 

lignment for the input patterns. f θ (·) is a non-linear function that 
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Fig. 1. Illustration of the proposed eXplainable Vision Transformer (eX-ViT) architecture. x and x 
′ 

are two different random transformations of an input image. We use a 

transformer backbone as the encoder to extract feature maps, the backbone contains consecutive L encoding layers with Explainable Multi-Head Attention (E-MHA) as the 

attention block. θ is the trainable module, while E is an exponential moving average of θ . The Attribute-guided Explainer (AttE) is proposed atop the encoder to decompose 

the attention maps into features of attributes through diverse attribute discovery, so as to facilitate the generation of more faithful and robust interpretations. We also design 

a self-supervised attribute-guided loss function for our eX-ViT, which aims at learning robust semantic representations via the attribute diversity mechanism and attribute 

discriminability mechanism. 

Fig. 2. The architecture of Explainable Multi-Head Attention (E-MHA). We use � to denote matrix multiplication. 
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cales the L2 norm of its input, i.e., f θ ( x ) = 

x 
|| x || 2 and || f θ ( x ) || ≤ 1 .

n our case, L2 norm is applied to the vector of ( W + b ) . 

In what follows, the self-attention feature S is formally ex- 

ressed as 

 = A 

T V , (4) 

ccording to Eq. (3) , || A || ≤ 1 . Therefore S in Eq. (4) is upper-

ounded as follows 

 = || A || || V || cos ( A , V ) ≤ || V || . (5) 

here both A and V are reshaped to a row-wise feature vector 

efore applying the L2 norm function || · || . When Eq. (5) is op-

imized, the attention weight A is proportional to V . In order to 

chieve maximal output, A is driven to align with the discrimina- 

ive features in V , instead of the uninformative noise. Therefore, S 

an only achieve this upper bound if all possible solutions of v ∈ V 

re encoded as eigenvectors in the weight A . This maximization 

uggests with the attention weight A , we will obtain an inherently 

xplainable decomposition of input patterns. 
4 
Overall, the computation in layer l is expressed as 

S l = E − MHA ( LN ( F l−1 )) , 

Z 

l = S l + F l−1 
, 

F l = MLP ( LN ( Z 

l )) + Z 

l 
, 

(6) 

here LN (·) is the LayerNorm layer, MLP (·) denotes the multi-layer 

erceptron layer, and F l is the output of layer l. 

Our key motivation of E-MHA is to dynamically align its at- 

ention weights with the discriminative patterns from input val- 

es while reducing the impact of noise. The cascade transformer 

ayers in the encoder enable the model to suppress the noise in- 

ormation gradually and learn discriminative input patterns. As a 

esult, the model is able to discover robust representations from 

he input image. With the attributes of noise robustness and inher- 

nt explainability, E-MHA produces the transformer attention map 

hich inherently provides an explainable combination of contribu- 

ions from discriminative input patterns w.r.t. the model predic- 

ions. 
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Fig. 3. Illustration of Attribute-guided Explainer (AttE). We aggregate the interpretable attention maps from the last K transformer layers to generate a fused attention map 

with good precision on the complete object context information. The attribute features are regarded as the complement information to better guide the localization of the 

object context, thus producing robust attribute features in a weakly supervised manner. 
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.3. Attribute-guided explainer (AttE) 

Although the proposed E-MHA provides the intuitive process 

or explainable feature learning, it is non-trivial to obtain intrin- 

ically interpretable representations that benefit the WSSS tasks 

ithout additional regularization. Inspired by the pixel-wise pre- 

iction scheme used in semantic segmentation frameworks to lo- 

alize objects, we propose the Attribute-guided Explainer (AttE) 

odule for our eX-ViT with the objective of decomposing the at- 

ention map into attribute features based on the diverse attribute 

iscovery. By which, the learned feature maps can be viewed as 

 set of attributes at a granular level that capture more complete 

bject information ( Fig. 3 ). 

Given that the transformer structure tends to learn more uni- 

orm representations across all layers, we propose to utilize the 

ransformer attention maps from the last layer in eX-ViT’s encoder, 

o learn a set of trainable attribute features. Concretely, to model 

he context attention, given the feature map F L ∈ R 

H×W ×d pro- 

uced by the encoder E θ , we first calculate a set of spatial feature

aps that capture the relative importance of all HW locations as 

ollows 

 i, j = f φ( F L ) , ∀{ i, j} ∈ H × W, (7) 

here f φ(·) is implemented by a 2-layer MLP block, with one hid- 

en layer followed by a LN layer and the ReLU activation layer. 

 i, j ∈ R 

H×W ×c is the obtained feature map with the channel dimen- 

ion c. We will investigate the influence of c on the model perfor- 

ance in Section 4.3.4 . 

Furthermore, we apply the � 2 -norm function to C i, j along the 

hannel dimension, which is formally expressed as 

 i, j = 

C i, j 

|| C i, j || 2 , (8) 

here || · || 2 denotes the L2 norm, C i, j is the normalized represen- 

ation indicating which spatial features to emphasize or suppress. 

Subsequently, C is sliced into S groups on the channel dimen- 

ion, i.e., ( C 1 , C 2 ,..., C S ), where C s ∈ R 

H×W × c 
S stands for the feature 

ap of the s th attribute, S is the total number of attributes. To this

nd, we can apply C s of attribute s to the feature F L by 

 s = C s � F L , (9) 

here � is the element-wise product, and the C s is broadcast 

long the channel dimension to match the shape of F L . G = 

 G 1 , G 2 , . . . , G S ] is the final output that is concatenated along the

hannel dimension. By this means, each feature map F L is pro- 

ected into S attribute representations that explicitly reveal which 

ixels are related to the attribute s . Likewise, we follow the same 

rocedure described from Eqs. (7) to (9) , the attribute repre- 

entation G 

′ 
of the second augmented input can be generated 
5 
ccordingly with the momentum encoder E E . And our At t E E is also

he exponential moving average of the trained At t E θ . 

In summary, the output of AttE can be seen as the decomposed 

ontributions for individual attributes. By this means, our model 

s able to encode semantically explainable features for the target 

bject in an explicit manner, which facilitates the learning of com- 

lete object context information. Moreover, we elaborately design 

ur attribute-guided loss function to guide the learning of AttE, 

hich will be presented in next subsection. 

.4. Attribute-guided loss function 

A challenging problem for typical vision transformers is that 

hey are not intrinsically interpretable due to lack of the represen- 

ational power. In our work, we propose to improve model inter- 

retability by regularizing its representations with the attribute- 

uided loss function, i.e., the global-level attribute-guided loss 

 global , the local-level attribute discriminability loss L dis loss and 

he attribute diversity loss L div . On one hand, the L global encour- 

ges the predicted attribute features to approximate the target ob- 

ect, which ensures the faithfulness of the global representations. 

n the other hand, the L dis and L di v aim to localize fine-grained 

ttributes through the attribute discriminability mechanism and 

ttribute diversity mechanism, thus enabling the robust feature 

earning. 

Since higher layers discover high-level concepts like objects or 

cenes, we propose to fuse transformer attention maps from the 

ast K encoder layers to achieve good accuracy on the complete 

bject context information. Hence, given the obtained feature map 

 

l in lth encoder layer, the fused attention map is expressed as 

ˆ 
 = 

1 

K 

K ∑ 

l 

F l , (10) 

here ˆ F is the fused transformer attention map. By this means, we 

ggregate cascaded encoder blocks to produce a reliable attention 

ap for complete object localization. As the aggregated attention 

ap 

ˆ F is attribute-agnostic, we propose to couple it with the at- 

ribute features G to generate the attribute-guided attention map. 

he process is defined as follows 

 = 

ˆ F � G , (11) 

here M represents the final output of the attribute-guided fea- 

ure map. 

Based upon M , the global-level attribute-guided loss L global is 

omputed by the multi-label soft margin loss 

 global = 

1 

C 

C ∑ 

c=1 

(y c log ( ̂  y c ) + (1 − y c ) log (1 − ˆ y c )) , (12) 
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Table 1 

mIoU (%) of localization maps on the PASCAL VOC 2012 training set. 

Method Local. Maps + denseCRF 

(CVPR’20) SCE [21] 50.9 55.3 

(CVPR’20) SEAM [20] 55.4 56.8 

(CVPR’21) EDAM [22] 52.8 58.2 

(CVPR’21) AdvCAM [23] 55.6 62.1 

(ICCV’21) ECS-Net [24] 56.6 58.6 

(ICCV’21) CSE [25] 56.0 62.8 

(CVPR’22) SIPE [4] 58.6 64.7 

(CVPR’22) ReCAM [15] 56.6 - 

(Ours) eX-ViT 59.1 65.3 
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here the prediction ˆ y c is obtained by feeding the feature map M 

nto a classification layer followed by a generalized mean pooling 

peration. By optimizing the L global , the interpretable features are 

athered as a summation of the important scores of all attribute 

eatures, which ensures the faithfulness of the explanations. 

In addition, to improve the ability of network for learning di- 

erse and discriminative attribute representations for the target 

bject, we propose the local-level attribute-guided loss through the 

ttribute discriminability mechanism and attribute diversity mech- 

nism in a self-supervised manner. Intuitively, the attribute dis- 

riminability mechanism aims to make attribute features consis- 

ently discriminative between two types of input views, while the 

ttribute diversity mechanism enables the model to learn the ef- 

ective decomposition with the attribute diversity. Formally, the at- 

ribute discriminability loss L dis is defined by 

L dis = | d − ∑ S 
s =1 d 

s | , 
d = � (g( G ) , g( G 

′ 
)) , 

d s = � (g( G s ) , g( G 

′ 
s )) , 

(13) 

here g(·) is the generalized mean pooling. And we adopt the nor- 

alized Mean Square Error as the � (·) function to calculate the 

istance between two features. As can be seen from Eq. (13) , d is 

everaged to minimize the difference between attribute features, 

hile d s is used to guarantee the consistency between G and G 

′ 
for 

ach individual attribute. Empirically, this attribute discriminability 

oss function L dis is able to facilitate the model to discover discrim- 

native class-specific attributes and obtain more comprehensive lo- 

alization maps. Meanwhile, we introduce the attribute diversity 

oss L div is formally defined by 

 div = 

1 

S(S − 1) 

S ∑ 

i =1 , j=1 

S ∑ 

i � = j 

< G i , G j > 

|| G i || 2 || G j || 2 , (14) 

he intuition behind the L div is to make attribute features to the 

aximally independent from each other, so as to make attribute 

eatures focus on different discriminative object regions. 

Overall, the loss function for the proposed eX-ViT is given below 

 = L global + αL dis + βL div , (15) 

here L global is the multi-label soft margin loss. α and β are the 

oefficient of L dis and L div , respectively. 

As a result, our attribute-guided loss promotes the learning of 

ttribute features. The global-level loss L global ensures a faithful 

ransformer model, while the L dis and L div enable discriminative 

nd robust attribute features. The effectiveness of the loss function 

s further verified in the experimental section. 

. Experiments 

In this section, we first introduce the experimental settings in- 

luding datasets and implementation details. Second, we evaluate 

he efficiency of our proposed eX-ViT and compare it with the re- 

ent state-of-the-art methods. Third, we conduct a series of abla- 

ion studies to discover the performance contribution from differ- 

nt modules in our framework. 

.1. Setup 

.1.1. Datasets 

We conduct experiments on PASCAL VOC 2012 dataset [18] and 

S COCO 2014 dataset [11] . PASCAL VOC 2012 dataset includes 

0 object classes and one background class for the semantic seg- 

entation task. Following the common experimental configuration 

rom others, we adopt the augmented dataset which contains three 

ubsets, training, validation, and testing sets, each having 10,582, 
6 
449, and 1464 images, respectively. MS COCO 2014 dataset uses 

1 classes, its training and validation sets have 82,081 images and 

0,137 images respectively. Note that image-level labels are only 

sed during training and ground-truth bounding box annotations 

re solely used during the inference time. In line with previous 

orks [3] , we report the mean Intersection-over-Union (mIoU) to 

valuate the performance of our proposed model. 

.1.2. Implementation details 

We use PyTorch for implementation and conduct experiments. 

he encoder parameters are pre-trained on ImageNet. During train- 

ng, we use the AdamW optimizer. For the transformer encoder E θ , 

he initial learning rate is set to be 5 × 10 −5 , which is further de-

ayed via a polynomial schedule. The learning rate for the rest of 

he parameters is 5 × 10 −4 . For the training on the PASCAL VOC 

012 dataset, the batch size is set as 16, and the training pro- 

ess lasts 40k iterations. On MS COCO 2014 dataset, we trained the 

odels for 80k iterations with a batch size of 8. For data augmen- 

ation, we used random scaling with a range of [0.5,2.0], random 

orizontally flipping, and random cropping. 

The default hyper-parameters are set as follows. For encoders 

 

θ and E E , it contains 12 layers, 6 heads within each E-MHA, and 

he hidden dimension is set to 384. Empirically, we set α and β in 

q. (15) as 0.5 and 1.0 respectively throughout this paper. In line 

ith previous works, we use the ResNet38 [19] as the backbone for 

emantic segmentation. At test time, only the branch with encoder 

 

θ is needed. Following the common practice in prior studies [20] , 

e use multi-scale testing and CRFs to obtain pseudo segmentation 

esults. 

.2. Comparison with state-of-the-arts 

.2.1. Comparison on localization maps 

We first evaluate the qualitative results of CAM in mIoU(%) 

n localization maps. Table 1 reports the results of our proposed 

ethod as well as other recent state-of-the-art approaches on the 

ASCAL VOC 2012 training set. As can be seen from the table, SIPE 

4] achieves the state-of-the-art result with a mIoU of 58.6%. eX- 

iT outperforms all compared methods in terms of both metrics. 

oncretely, the results show that our eX-ViT improves the mIoU to 

9.1%. We also conduct experiments based on eX-ViT with dense- 

RF post-processing, and the gain becomes up to 65.3%. Fig. 4 

hows visual comparisons of object localization maps on the PAS- 

AL VOC 2012 training set. As shown in Fig. 4 , the fused class- 

pecific attribute-guided localization map can effectively capture 

he discriminative features within the object context of the tar- 

et class with more useful clues. As a result, the fused localization 

ap by use of our eX-ViT brings notable visual improvements to 

roduce complete and precise localization maps. 

.2.2. Comparison on segmentation results 

The comparison results among the fully-supervised and 

eakly supervised state-of-the-art methods on PASCAL VOC 2012 
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Fig. 4. Visual comparison of localization maps generated by different methods on PASCAL VOC 2012 training set. From top to down: original image, ground-truth, CAM [14] , 

SIPE [4] , AdvCAM [23] and our eX-ViT. 
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Table 2 

Performance comparison of various methods in mIoU (%) on the PASCAL VOC 

2012 validation and test sets. Sup. indicates supervision type. F: full supervi- 

sion; I: image-level labels; S: saliency maps. 

Method Sup. Backbone validation test 

Fully-supervised methods 

(TPAMI’18) DeepLab [26] F ResNet101 77.6 79.7 

(PR’19) WideResNet38 [19] F WR38 80.8 82.5 

(NeurIPS’21) Segformer [27] F MiT-B1 78.7 - 

Weakly-supervised methods 

(CVPR’20) SEAM [20] I ResNet38 64.5 65.7 

(AAAI’20) RRM [28] I ResNet101 66.3 66.5 

(NeurIPS’20) CONTA [29] I ResNet38 66.1 66.7 

(ICCV’21) AuxSegNet [30] I + S ResNet38 69.0 68.6 

(CVPR’21) EPS [17] I + S ResNet101 70.9 70.8 

(CVPR’21) EDAM [22] I + S ResNet101 70.9 70.6 

(ICCV’21) CDA [31] I ResNet38 66.1 66.8 

(ICCV’21) ECS-Net [24] I ResNet38 66.6 67.6 

(ICCV’21) CSE [25] I ResNet38 68.4 68.2 

(CVPR’21) AdvCAM [23] I ResNet101 68.1 68.0 

(NeurIPS’21) RIB [32] I ResNet101 68.3 68.6 

(TPAMI’21) A2GNN [33] I ResNet101 66.8 67.4 

(TPAMI’22) LIID [34] I ResNet101 66.5 67.5 

(CVPR’22) SIPE [4] I ResNet101 68.8 69.7 

(CVPR’22) ReCAM [15] I ResNet101 68.5 68.4 

(CVPR’22) Ru et al. [3] I MiT-B1 66.0 66.3 

(CVPR’22) MCTformer [1] I ResNet38 71.9 71.6 

(PR’22) Kho et al. [35] I ResNet38 66.4 66.8 

(PR’22) RRM-ResNet [36] I ResNet101 69.3 69.2 

(PR’23) MuSCLe [16] I EfficientNet 66.6 68.8 

TransCAM [8] I ResNet38 69.3 69.6 

(Ours) eX-ViT I ResNet38 71.2 71.1 
alidation and test sets are reported in Table 2 . Among the com- 

ared methods, the eX-ViT is able to remarkably improve the seg- 

entation performance using only image-level labels on the vali- 

ation and test sets, respectively. As can be observed, compared to 

he fully-supervised methods, the eX-ViT is able to obtain compa- 

able performance with 71.2% mIoU on the validation set and 71.1% 

IoU on the test set. Compared with the recent state-of-the-art 

eakly supervised models, e.g., EPS [17] and EDAM [22] that use 

oth additional saliency maps and image-level labels as supervi- 

ion signals, eX-ViT still shows superior performance. The qualita- 

ive segmentation results on the validation set are shown in Fig. 5 . 

ased on our model, DeepLabV2 can produce accurate and com- 

lete object segmentation results in various challenging scenarios, 

ncluding different object scales and multiple objects. 

Table 3 reports the semantic segmentation results on the MS 

OCO 2014 dataset. It is observed that methods with the supervi- 

ion of saliency maps such as DSRG [37] and AuxSegNet [30] do 

ot provide results comparable or superior to the WSSS methods 

ith only image-level labels. The poor performance is caused by 

he limitation of saliency maps generated by pre-trained models. 

nstead, our method that leverages image-level labels achieves a 

egmentation mIoU of 42.9% with ResNet38 backbone, which sur- 

asses most recent state-of-the-art WSSS methods including SEAM 

20] , CSE [25] , and MCTformer [1] by a large margin. Several qual-

tative segmentation results are shown in Fig. 6 . These results con- 

rm the effectiveness of our model, which is consistent with our 

ntuition. Specifically, our eX-ViT remarkably improves the overall 

erformance with the indispensable block of E-MHA and the AttE 

odule. Adding these modules explicitly encourages eX-ViT to gain 

nsightful clues on the complete object scene, and boost the model 
7 
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Fig. 5. Qualitative segmentation results on the validation set of PASCAL VOC 2012. From top to down: original image, ground-truth, SIPE [4] and our eX-ViT. 

Table 3 

Performance comparison of the state-of-the-art WSSS methods in 

mIoU (%) on the MS COCO 2014 validation set. Sup. indicates su- 

pervision type. I: image-level labels; S: saliency maps. 

Method Sup. Backbone mIoU (%) 

CNN 

(CVPR’18) DSRG [37] I + S VGG16 26.0 

(ICCV’21) AuxSegNet [30] I + S ResNet38 33.9 

(CVPR’21) EPS [17] I + S ResNet101 35.7 

(NeurIPS’20) CONTA [29] I ResNet101 33.4 

(CVPR’20) SEAM [20] I ResNet38 31.9 

(ICCV’21) CSE [25] I ResNet38 36.4 

(ICCV’21) CDA [31] I ResNet38 33.2 

(CVPR’22) ReCAM [15] I ResNet101 39.4 

(CVPR’22) SIPE [4] I ResNet38 43.6 

(NeurIPS’21) RIB [32] I ResNet101 43.8 

Transformer 

(CVPR’22) Ru et al. [3] I MiT-B1 38.9 

(CVPR’22) MCTformer [1] I ResNet38 42.0 

(Ours) eX-ViT I ResNet38 42.9 
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fficiency in producing accurate and complete object boundaries. It 

s noted that both the RIB [32] and SIPE [4] outperform our pro- 

osed eX-ViT model on the COCO validation set. This is mainly be- 

ause that vision Transformers are a relatively new model archi- 

ecture for WSSS compared to their traditional CNNs counterparts. 

herefore, ViTs still require further refinement and optimization 

o achieve the state-of-the-art performance. We hope that the eX- 

iT’s promising performance will inspire further research effort s to 

nhance ViTs’ performance for WSSS tasks. 

.2.3. Comparison on interpretability 

To compare our method with other explainable methods, we 

lso adopt two common metrics, i.e., average precision (AP) and 

verage recall (AR). Which are commonly used in the litera- 

ure to measure interpretability. We evaluate our method using 

he DeiT backbone [9] and conduct the weakly-supervised image 
8 
egmentation experiments, which is in line with earlier work [13] . 

he quantitative results are shown in Table 4 . We can see that our 

odel clearly surpasses the ViT model which contains the raw at- 

entions, it reveals that our MAXNet achieves an AP of 15.7%, and 

n AR of 22.3%. We also observe that the post-hoc interpretabil- 

ty methods such as Rollout [12] , GradCAM [38] , and partial LRP 

39] do not obtain faithful results compared to the counterparts. 

hich is possibly caused due to the extensive noises introduced 

y gradients or propagation rules. 

Figure 7 shows three cases of visualization results along with 

heir ground truth segmentation label maps. Compared to the orig- 

nal CAM without AttE, attention maps produced with our model 

erform well in precisely locating both small and large objects 

ith more complete object boundaries. This verifies our intuition 

ith the design of eX-ViT and suggests that our proposed model 

s effective on learning comprehensive features for complete target 

bjects. 

.2.4. Analysis of misclassified examples 

Figure 8 shows two misclassfied examples along with the 

earned attributes. In the first row of Fig. 8 , the object “tv” is 

isclassified to a similar category “laptop”. The importance of the 

creen as a feature for a laptop could be the reason for this. The 

econd row shows a more complicated example. We can observe 

hile the attention map produced by our model captures most of 

etails in the image, it is unable to distinguish class-specific fea- 

ures required to make accurate predictions for the target class, i.e., 

broccoli”. In future work, we must explore a more compatible fea- 

ure extractor that can generate more robust local features. 

.3. Ablation studies 

This section presents ablation studies to analyze the con- 

ributions of each component in our eX-ViT, including the 

ransformer encoder with the proposed Explainable Multi-Head 

ttention (E-MHA), the Attribute-guided Explainer (AttE), the 
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Fig. 6. Qualitative segmentation results on the validation set of MS COCO 2014. From top to down: original image, ground-truth, SIPE [4] and our eX-ViT. 

Table 4 

Performance comparison of various methods on the MS COCO validation set. 

Method AP AP_medium AP_large AR AR_medium AR_large 

(ICCV’17) GradCAM [38] 2.3 2.3 4.7 5.5 5.9 10.7 

(ACL’19) Partial LRP [39] 4.7 8.0 5.1 10.4 19.9 8.0 

(ICLR’20) ViT [2] 5.6 9.6 6.9 11.7 21.8 10.8 

(ACL’20) Rollout [12] 0.1 0.1 0.2 0.4 0.1 0.9 

(CVPR’21) Trans. attribution [6] 7.2 10.4 12.4 13.4 21.0 19.4 

(ICCV’21) Chefer et al. [13] 13.1 14.4 24.6 19.3 23.9 33.2 

(Ours) eX-ViT 15.7 15.3 26.5 22.3 24.3 36.1 

Fig. 7. Visualization results on the MS COCO 2014 validation set. 

9 
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Fig. 8. Illustration of misclassified samples. 

Table 5 

Performance comparison of various methods in 

mIoU (%) on the PASCAL VOC 2012 training set. 

Method mIoU(%) 

(CVPR’19) ResNet50-CAM [40] 48.30 

(CVPR’20) ResNet38-CAM [20] 47.43 

(ICCV’21) Conformer-S-CAM [10] 51.70 

(Ours) E-MHA 52.31 
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Table 6 

Effect of the contributions from various modules in mIoU 

(%) on the PASCAL VOC training set. 

E θ L global L dis L div training validation 

� 44.72 50.20 

� � 53.71 55.43 

� � 51.25 54.63 

� � 52.13 55.50 

� � � 55.27 58.10 

� � � 58.08 59.82 

� � � � 59.13 61.20 

Fig. 9. Evaluation of object localization maps generated by fusing the class-specific 

attentions from the last K transformer layers in eX-ViT’s encoder E θ in terms of 

false positives (FP), false negatives (FN) and mIoU. The larger FP and FN values de- 

note having more over-activated pixels, while the higher mIoU value indicates the 

generated localization maps have fewer over-activated pixels and more complete 

object coverage. 
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lobal-level attribute-guided loss function L global , the local-level at- 

ribute discriminability loss function L dis , and the attribute diver- 

ity loss function L div . 

.3.1. Effectiveness of E-MHA 

It is an intuition that the improved transformer attention mech- 

nism in E-MHA will improve the model’s ability to generate 

seudo segmentation labels. In order to verify this idea, we sim- 

ly apply CAM to the last transformer encoder layer. Table 5 re- 

orts the mIoU results of the pseudo labels generated by CAM with 

he backbone of ResNet38, ResNet50, Conformer-S [10] , and the en- 

oder E θ in our proposed eX-ViT. As can be seen, the backbone of 

he E-MHA module shows superior performance to its CNN coun- 

erparts. Specifically, E-MHA-CAM achieves the mIoU of 52.31%, 

hich is a significant gain of +4.92% and +4.01% over ResNet38- 

AM and ResNet50-CAM, respectively. By comparing the E-MHA 

ith the recent state-of-the-art architecture, i.e., Conformer-S [10] , 

e find that our proposed E-MHA still achieves a promising re- 

ult. In details, compared to CrossFormer-S [10] which explicitly 

ses multi-scale representations with convolutions to localize ob- 

ect details, E-MHA-CAM achieves the best mIoU of 52.31%, which 

s 0.61% points higher than CrossFormer-S-CAM. The performance 

mprovement shows that exploiting the most frequent and robust 

eatures by use of E-MHA is highly effective for WSSS tasks that 

equire discriminative features to localize instances. 

.3.2. Effectiveness of the AttE and attribute-guided loss 

Table 6 gives an ablation study of each component in our pro- 

osed eX-ViT. We consider the first row as a baseline, where the 

esults of the object localization maps are obtained via the CAM 

pproach. As is observed from the table, the baseline can be fur- 

her improved to 53.71% and 55.43% on the training and validation 

et, respectively by using the attribute features obtained via AttE to 

efine the learned transformer attention from the eX-ViT. Empir- 

cally, with attribute-guided discriminability loss L the pseudo 
dis 

10 
egmentation label maps can be improved by +6.53% compared to 

he baseline on the PASCAL VOC training set (51.25% vs. 44.72%) 

ven without the global supervision L global . Moreover, the L dis fur- 

her improves the mIoU to 54.63% on the validation set. By incor- 

orating the attribute diversity loss function L div to explicitly reg- 

larize the attribute structure of the feature space, our full model 

ains promising results. Particularly, the results in Table 6 indi- 

ate that the proposed model performs better with the diversity 

onstraint L div on the local consistency, which brings +4.37% and 

.39% mIoU improvements on the training and validation sets, re- 

pectively compared to the global-level loss. This also confirms our 

heory that improving the diversity among attributes promotes the 

earning of comprehensive localization maps. 

.3.3. Influence of the number of fused transformer layers 

We further explore the impact of the number of fused trans- 

ormer layers in Eq. (10) on the PASCAL VOC training set. Following 

he common practice in the prior work [20] , we adopt three met- 

ics to evaluate the performance, i.e., false positives (FP), false neg- 

tives (FN), and mIoU. The larger FP and FN values denote higher 

egrees of over-activated and under-activated areas, respectively. In 

ig. 9 , we compare the performance of the model variants using 

ifferent numbers of the fused transformer layers. As is observed, 

hen fusing layers with more than 10, we obtain localization maps 

ith a larger F N value, which suggests the generated localization 

aps have more over-activated pixels and less complete activation 

overage. This is mainly due to the limited ability of lower lay- 

rs to encode high-level representations. By reducing the number 

f fused layers from the encoder E θ , the performance of predicted 

ocalization maps becomes much better, i.e., more complete acti- 

ation coverage (lower F N value) or fewer over-activated regions 

lower F P value). Overall, the evaluation results indicate that using 
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Fig. 10. Visualization of the learned attributes on the PASCAL VOC 2012 validation set, and MS COCO 2014 validation set, respectively. In each row, the left part is the input 

image, and the rest of images visualize the top-5 attributes, which shows that AttE attends to the discriminative attributes with a high degree of detail. 

Table 7 

The influence of the number of attributes in mIoU (%) on the PAS- 

CAL VOC and MS COCO 2014 validation sets. 

c S PASCAL VOC 

2012 v al

MS COCO 

2014 v al

512 8 69.42 40.31 

512 16 69.03 38.92 

256 4 63.48 36.69 

256 8 71.23 41.23 

256 16 70.29 42.92 

128 4 68.63 37.25 

128 8 68.56 38.79 
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Table 8 

The influence of hyperparameters in mIoU (%) on the PASCAL VOC validation 

and test sets. 

Hyperparameter value PASCAL VOC 

2012 v al

PASCAL VOC 

2012 test

α 0.1 69.8 69.4 

0.3 70.5 70.6 

0.5 71.2 71.1 

1.0 70.6 70.4 

β 0.1 69.5 69.1 

0.3 70.1 70.3 

0.5 70.6 70.2 

1.0 71.2 71.1 
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he last three attention layers can achieve the best mIoU of 71.2% 

ith lower F N and F P values. Therefore we set K = 3 throughout 

he paper. 

.3.4. Influence of the number of attributes 

The attribute-guided scheme allows the model to encode richer 

emantics into each attribute feature at a granular level. In order 

o discover the most suitable S concerning different datasets, we 

onduct extensive experiments to compare the performance of the 

odel variants with different settings of hidden dimension c and 

he number of attributes S. As shown in Table 7 , when c = 128 ,

he model learns weaker representations for both datasets. In con- 

rast, the performance becomes much better when the hidden di- 

ension is enlarged to 512. However, as the number of attributes 

ncreases to 16, the model exhibits poor mIoU accuracy. In the 

nd, we find that c = 256 achieves consistently superior perfor- 

ance across a range of attribute numbers. The best performance 

s achieved when S = 8 on the PASCAL VOC 2012 v al set, and

 = 16 on the MS COCO 2014 v al set. These observations suggest 

hat images in MS COCO 2014 tend to contain more local features 

hat are discriminative for object localization. 

Additionally, we use the Grad-CAM as a tool to visualize the 

earned attributes and use Fig. 10 to present the visualization re- 

ults. In each row of Fig. 10 , the left column is the input image,

nd the images in the rest columns visualize the top 5 attributes. 

he first two rows are from the PASCAL validation set, whereas the 

ast two rows are from the COCO validation set. By examining the 

isualization results presented in Fig. 10 , several observations can 
11
e made regarding the effectiveness of the AttE in localizing ob- 

ect attributes. Firstly, the AttE is able to effectively focus on the 

ompact regions of most objects, which is consistent with human 

bservations. Secondly, for large-area attributes such as the table 

nd ceiling, the learned attributes can accurately attend to the cor- 

esponding areas. Finally, the AttE is capable of attending to the re- 

ions of small but important attributes such as the fork and head. 

ith these observations, we can ascertain how the AttE decom- 

oses the feature map into different attributes. 

.3.5. Influence of hyperparameters 

In this section, we explore how variations of hyperparameters 

an impact the performance of our model. For this purpose, we 

rain models on PASCAL with each hyperparameter modification 

nd report the accuracy in Table 8 . It is observed that when α
s small ( < 0.5), there is a slight performance drop. On the other 

and, there is a significant accuracy drop when β is smaller than 

.0. This confirms that our model learns better features when our 

iversity loss enforces the attribute features to the maximally in- 

ependent from each other, so as to capture broader visual clues 

f objects. 

. Conclusion 

In this paper, we proposed the eX-ViT, a new explainable vi- 

ion transformer for weakly supervised semantic segmentation. In 

ur framework, a novel Explainable Multi-Head Attention (E-MHA) 
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odule is proposed to produce discriminative feature representa- 

ions with inherent explainability and noise robustness. Which is 

chieved by optimizing the dynamic alignment between the input 

okens and attention weights. Moreover, a new Attribute-guided 

xplainer (AttE) module is designed to decompose the attention 

aps into the contribution of each individual attribute, empow- 

ring the feature representation with a set of attribute maps at 

 granular level. Based on AttE, we develop a self-supervised 

ttribute-based loss to guide the learning of attribute features 

ith the attribute discriminability mechanism and attribute diver- 

ity mechanism, which promotes the generation of diverse and 

iscriminative object attributes. Extensive experiments were pre- 

ented to demonstrate that the eX-ViT surpasses the state-of-the- 

rt CNNs and transformers on two well-known benchmarks. We 

ope that the eX-ViT’s superior performance on WSSS tasks will 

nspire future research on the exploitation of the explainability of 

ransformers. 

Although our work has shown promising results, a limitation 

s that the proposed model does not incorporate attribute-level 

round-truth labels. For future studies, the model should poten- 

ially be further improved if prior fine-grained knowledge of var- 

ous attributes is integrated. Therefore, we plan to develop ap- 

roaches to learn and integrate the knowledge in our future work. 
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