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Keywords: For epileptic seizure detection and prediction, to address the computational bottleneck of the von Neumann
CNN architecture, we develop an in-memory memristive crossbar-based accelerator simulator. The simulator
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software is composed of a Python-based neural network training component and a MATLAB-based memristive
crossbar array component. The software provides a baseline network for developing deep learning-based signal
processing tasks, as well as a platform to investigate the impact of weight mapping schemes and device and
peripheral circuitry non-idealities.
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1. Introduction

The unpredictability of seizure occurrences and lack of understand-
ing of the underlying mechanism of epilepsy introduce many chal-
lenges to managing seizure symptoms [1-3]; especially for patients
with drug-resistant epilepsy. An accurate epileptic seizure prediction
system would inform patients and first-responders, in a timely manner,
to intervene before seizures occur. Electroencephalogram (EEG) is a
commonly used device to monitor brain activity and can detect changes
in activities associated with seizure events. Deep Learning (DL) has
shown to be a promising solution to tackle many engineering problems,

outperforming State-Of-The-Art (SOTA) methods. The main advantage
of DL networks lies within their ability to automatically extract fea-
tures [4]. The main drawback of DL networks is increased model
complexity and computational time. Through parallelization, Graphics
Processing Units (GPUs) can reduce the training and inference time for
DL networks, however, within the von Neumann architecture, the need
to constantly transfer data between memory and computing units is
difficult to parallelize [5,6]. In-Memory Computing (IMC) addresses the
aforementioned bottleneck, achieving constant time complexity, O(1),
for Multiply-Accumulate (MAC) operations [7].
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Fig. 1. Software system overview.

Table 1

Seizure detection performance comparison on university of Bonn dataset.

Source: Adapted from [8].

Paper Pre-processing Method Parallelization Parameters Accuracy (%)
[9] v 1D-CNN X 21,436 99.90
[10] v 1D-CNN X 16,778,144 92.00
[11] v 2D-CNN X 106,388 98.00
[12] v 2D-CNN X 1,603,080 99.45
Abdelhameed et al. (2021) v 2D-CNN X 10,304,467 100.00
Ours X 1D-CNN v 10,778 99.84

*Not reported.

Using our software, we simulated a parallel Convolutional Neural
Network (CNN) using memristive crossbar arrays employing IMC, and
demonstrated that our system is capable of achieving SOTA perfor-
mance while requiring 2-2800x fewer network parameters and 2 orders
of magnitude reduction in latency compared to hybrid memristive-
Complementary Metal-Oxide-Semiconductor (CMOS) accelerators [8].
We also investigated the impact of device and circuit non-idealities,
and proposed new methods to mitigate such impacts. In this work,
we describe the software that enabled the training of the adopted
neural networks and the simulations of our hybrid memristive-CMOS
accelerator design.

2. Impact overview

The software is composed of two major components, a Python-
based parallel CNN training module, and a MATLAB-based inference
memristive crossbar simulator (see Fig. 1). Currently, three datasets,
SWEC-ETHZ, Bonn, and CHBMIT, are supported.

2.1. Parallel convolutional neural networks

Using Pytorch, a parallel CNN architecture is implemented and
tested across all three datasets. This serves to facilitate the develop-
ment of methods for seizure detection and prediction, by providing
a lightweight, SOTA CNN architecture for the research community to
deploy or improve upon. Tables 1 and 2 provide a comparison of
seizure detection and prediction performance of our proposed parallel
CNN against SOTA models in literature. In fact, the parallel network
architecture can be applied to various time-series-based classification
tasks, such as EEG emotion recognition or Electrocardiogram (ECG)
myocardial infarction detection.

Fixed seeds and deterministic algorithms are used to ensure re-
sults are reproducible and consistent across runs. This enables a fair
comparison and exploration of varying network architectures, hyper-
parameters, and preprocessing techniques. During training, checkpoints
of the model with the best accuracy are saved. A postprocessing script
is employed to convert .h5 checkpoints to text files, as an interface
between the Python-based training module and the MATLAB-based
crossbar simulator. Saved checkpoints not only enable communication
between Python and MATLAB components, but they also enable future
hardware deployment investigation and transfer learning.

2.2. Memristive crossbar array simulation

To perform a simulation of memristive crossbar arrays, a crossbar
array model by A. Chen that takes into account line resistance and
nonlinear device characteristics is employed [20]. The crossbar model
source code is implemented in MATLAB, in order to leverage matrix
computation efficiency to solve for output crossbar currents at each
column with given input voltages at each row.

The pretrained network, in the form of text files, is imported and
mapped onto 7 64 X 64 crossbar arrays. To enable the representation
of both negative and positive weights, a differential weight mapping
scheme is employed, whereby the left and right columns represent
negative and positive weights respectively. The true weight is thus the
difference between right and left memristor weights.

While Chen’s model takes into account line resistance and non-
linear device characteristics, it fails to consider other device and cir-
cuit non-idealities. Our software improves upon Chen’s model to take
into account several crossbar non-idealities, including input and out-
put resolutions, weight write resolution, weight write deviation, stuck
Ron/Ropr devices, line and source resistance, and conductance range
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Table 2
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Seizure prediction performance comparison on SWEC-ETHZ and CHB-MIT datasets.

Source: Adapted from [8].

Paper Method Parallelized Parameters Sensitivity (%) Specificity (%) Accuracy (%) FPR®
CHB-MIT
[13] 2D-CNN X N/R¢ 81.20 N/R¢ N/R¢ 0.16
[10]® 2D-CNN X N/R¢ N/R¢ N/R¢ 92.00 N/R¢
[14] 2D-CNN X 49,560 82.71 88.21 98.19 N/R®
[15]* 2D-CNN X N/R¢ 88.80 88.60 88.70 N/R®
[16]* 3D-CNN X 28,459,615 96.66 99.14 98.33 N/R¢
[171° 2D-CNN X 9,695,012 84.00 99.00 99.00 0.2
[18] 1D-CNN 4 105,538 95.55 99.68 99.64 N/R¢
Ours 1D-CNN v 10,778 99.24 98.68 99.01 0.47
SWEC-ETHZ

[19]* Ensemble HD X N/R¢ 96.38 97.31 96.85 N/R¢
[18] 1D-CNN 4 105,538 94.57 99.86 99.81 N/R¢
Ours 1D-CNN v 10,778 98.22 97.02 97.54 0.99

aIndicates the results are reported across the entire dataset and patient-wise performance was not reported.

bFalse positive rate (per hour).

¢Not reported.
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Fig. 2. Impact of hardware non-idealities on performance degradation.

Source: Adapted from [8].

variation. All of the non-idealities are simulated by varying the mem-
ristor weights or input voltages and output currents of the crossbars.
The degree of variation for non-idealities can be customized through
pre-defined variables in the configuration section of different scripts.
Therefore, our simulation software can be easily adapted by other
researchers to comprehensively simulate their custom crossbar array
designs. Fig. 2 summarizes the simulated impact of different non-
idealities on the hardware performance of our proposed parallel CNN
for seizure detection and prediction. An interesting application of our
simulation is to investigate how different network weight mapping
schemes and layouts impact the vulnerability to different non-idealities.
In other words, how can crossbar weights be mapped to minimize the
impact of device non-idealities?

With all crossbar weights mapped and non-idealities considered,
output currents can be solved using input voltages and crossbar
weights. Digital circuit blocks can also be simulated through corre-
sponding computations and operations on the output currents. Outputs

from crossbars are fed to subsequent arrays until the final inference
result is computed. The operation can be repeated for the entire dataset,
and final metrics can be computed. While we applied our system to the
application of epileptic seizure detection and prediction using DL, our
simulator can be used to simulate any algorithm that adopts matrix—
vector multiplication operations. To comprehensively benchmark our
memristive inference accelerator, between 3 to 7 degrees of variation
for each non-idealities are simulated using 5 different seeds for all 3
datasets.

3. Conclusion and future improvements

In this work, we presented an end-to-end pipeline for the training
and simulation of hybrid memristive-CMOS accelerators for epileptic
seizure detection and prediction. The Python-based neural network
training and validation component can facilitate future work on DL-
based signal processing tasks. The MATLAB-based memristive crossbar
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array simulation provides a comprehensive benchmark for custom in-
ference accelerators, as well as providing a platform to investigate
the impact of weight mapping schemes and layouts on the system’s
vulnerability to non-idealities. For our application, a fixed network
architecture is employed. The MATLAB simulation component relies
on the assumption of fixed network architecture and crossbar config-
urations. Automatic mapping of different network architecture weights
onto different crossbar array configurations would greatly facilitate an
end-to-end verification pipeline, from network training to simulation.
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