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Abstract

Chemistry aims to understand the structure and reactions of molecules, which
involve phenomena occurring at microscopic scales. However, scientists perceive
the world at macroscopic scales, making it di�cult to study complex molecular
objects. Graphical representations, such as structural formulas, were developed
to bridge this gap and aid in understanding. The advent of Quantum Mechan-
ics further increased the complexity of the representation of microscopic objects.
This dichotomy between conceptual representation and predictive quantification
forms the foundation of Chemistry, now further explored with the rise of Ar-
tificial Intelligence. Recent advancements in computational sciences, increased
computational power, and developments in Machine-Learning (ML) raise ques-
tions about the traditional scientific method. Computational scientists, who have
relied on approximations based on fundamental rules, now face the possibility of
accurately simulating nature without strictly adhering to its laws. This shift chal-
lenges the association between progress in understanding a phenomenon and the
ability to predict it. Deep learning models can not only make predictions but also
create new data. While these techniques find applications in fields like Natural-
Language Processing, they su↵er from limitations and lack true intelligence or
awareness of physical laws. The thesis aims to create mathematical descriptors
for atom types, bond types, and angle types in ML procedures, ensuring the
retention of their chemical meaning. The goal is to make quantitative predic-
tions while interpreting changes in descriptors as chemical changes. To achieve
this, the thesis develops a software called Proxima for Molecular Perception,
which automatically perceives features from molecules. Proxima treats strongly
coupled electrons as covalent bonds and lone pairs, while delocalized electrons
are modeled using a Tight-Binding model. The resulting Molecular Graph cap-
tures the weak interactions between these units. Overall, this thesis explores the
intersection of computational chemistry and Machine-Learning to enhance our
understanding and predictive capabilities in the field of Chemistry by building
the so-called Virtual Laboratory, a virtual environment with automatic access to
structural databases to test chemical ideas on the fly (pre-processing) and explore
the output of computational software (post-processing).
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Figure 1: The flowchart of the Virtual Laboratory approach that underlies the
work of this thesis. The pre-processing phase requires data to be retrieved from
our SE/23 and PCS/23 databases. Thanks to Molecular Perception, the synthons
are capable to detect available fragments and through a IVR editor it is possible
to assemble them together in bigger molecules. Once the pre-processing phase is
complete, the computation step allows to explore and exploit the chemical space
by use of QM, TMA, LRA, MM, and ML techniques. In case the TMA procedure
detects new fragments these can automatically be added to the PCS/23 database
(the red arrow). The post-processing phase employs IVR tools to visualize data
and explore the chemical space.
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Chapter 1

Introduction

The goal of Chemistry is to study the structure of molecules and their reactions.
A typical chemical bond is of the order of the Angstrom, which corresponds to
10�10 meters. Chemical bond breaking and formation, instead, is a phenomenon
that can take place on the scale of picoseconds (10�12 seconds). However, the
human scale of the scientist is the scale of meters and seconds. Thus, there
is a fundamental di�culty in understanding and studying such complex objects
that led to the creation of graphical representations, such as those now known as
structural formulas. The need for graphical representations is a typical human
necessity that encompasses several other topics, such as the development of mu-
sic notation, Feynman diagrams, or even languages and phonetic symbols. The
advent of Quantum Mechanics at the end of the 20th century further complicated
the representation of such microscopic objects. In fact, if we think of a molecule
as a set of atoms sparse in space described by Cartesian coordinates (the typi-
cal XYZ coordinates), quantum mechanics actually works in a complex Hilbert
space. This dichotomy between conceptually representing a phenomenon so as to
make it understandable by a human and the ability to predict and quantify its
characteristics is at the foundation of Chemistry and it is nowadays more relevant
than ever due to the advent of Artificial Intelligence [10].

The recent advancements in computational sciences, the ever-increasing power
of CPU and GPU, the decreasing cost of computer memory, and the developments
in the Machine-Learning field, raise new questions when it comes to our tradi-
tional view of the scientific method itself. The computational scientist, up to this
point faithful to physics with layers of approximations on top of the fundamental
rules of nature, now has to deal with the possibility of simulating nature with
good accuracy without necessarily relying on its rules. This is a fundamental
shift in the way of conceiving the scientific method. In fact, up to this point,
making progress in ”understanding” a physical/chemical phenomenon was often
associated with a higher capability of predicting the phenomenon itself. The
rise of deep-learning models broke such a relation; instead of having the scientist
build approximations manually from fundamental laws, algorithms are capable of
probabilistically finding such approximations by themselves. The disadvantage
of such black-box methods is that the ”understanding” of the phenomenon is
lost and such ML models are not very flexible but excessively dependent on the
case study (or the dataset) given as a problem to study. The lack of flexibility
of such models is related to their lack of true intelligence or awareness of the

13



physical laws. However, in a world in need of even faster results (e.g. the recent
rush to discover a vaccine for the COVID pandemic) these tools are more pop-
ular than ever in giving first guesses and suggestions to the scientists, who can
later try to justify the physical meaning behind it. The most recent trends are
the Generative Machine-Learning methods (e.g. Generative Adversary Neural-
Networks or GANN [11], Stable Di↵usion [12], etc.) where the algorithms are
not only capable of making ”predictions” on some input data but are capable of
creating new data altogether. This new class of methods can already be seen in
popular products such as the most recent ChatGPT implementations [13] in the
Natural-Language Processing (NLP) landscape. Natural language text, images,
and videos are obvious fields of applications of such techniques since these items
are hardly described by any physical law, but are still solvable by us, humans.
However, even in those fields the limits of such algorithms are well known as their
capability of ”hallucinating” making convincing predictions that are extremely
wrong or creating wrong data. Moreover, there is also a long-term problem of
training new models on datasets that can also be created by ML, building a cir-
cular path in the flow of data that raises new questions on the future of the field
(such as the automatic creation of fake news, and the training of new models on
such news). This shift towards ”automated” algorithms that can process or create
data is also happening in a historical moment when technology is more available
than ever to almost anyone. The recent excitement on new forms of interactions
with technology, not only from the mobile world but also in Augmented Real-
ity and Virtual Reality, can help us identify a common denominator in recent
technology, which is the subversion of reality, not much interest in understanding
nature as itself but rather replicate it as convincingly as possible and eventually
building it from scratch (whether is the so-called Artificial Intelligence, or the
Metaverse). As a computational scientist, it is then important to keep awareness
of the goal of science, which is first and foremost ”understanding”, with the use
of fair graphical representations, over ”predicting”. However, it would be silly to
ignore such progress and their prediction capabilities in cases of a well-designed
model, and trying to identify those scenarios where it is possible to use some
of these algorithms in speeding up the research process is of scientific relevance.
As an example, the aforementioned Augmented Reality tools might increase in
popularity and availability in the next 10 years or so. The scientist has a new
opportunity then, which is to directly interact with its objects of study instead
of having to rely on some intermediary (e.g. the computer screen, some log file,
etc.). The fair use of AR won’t be to create a new parallel reality to the one we
are living, but instead to allow more natural intuitive interaction with complex
physical/mathematical abstractions that still describe our reality (in a ”What
You See Is What You Get” fashion). The same application can be thought of for
ML techniques, where a lot of procedures that the computational scientist has to
perform manually can be streamlined by automation.

The main goal of the thesis is to create a new set of mathematical descriptors
to describe atom types, bond types (synthons), or angle types to use in ML pro-
cedures while retaining the chemical meaning during the process. The goal is to
make sure that the ability to make quantitative predictions of such descriptors
goes hand in hand with the capability of interpreting changes in the descriptors
themselves in terms of chemical change. In other words, it is a link between the
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quantitative microscopic world of molecules and our traditional view of a molecule
as a set of atoms connected by springs. To determine such descriptors, it was
necessary to develop a set of tools that allow us to move from the traditional XYZ
space to this new feature space. The way to do it was to develop a software, called
Proxima, that automatically ”perceives” such features from molecules (hence the
name Molecular Perception). The Proxima’s inner way of working is to treat
ensembles of items deeply correlated with each other as single individual units.
These units are weekly coupled together in a perturbative way. In practice, Prox-
ima treats couples of strongly coupled electrons as covalent bonds and lone pairs,
and treats units of delocalized electrons with a dedicated Tight-Binding model.
The Molecular Graph is the resulting graph containing such units as nodes and
the weak interactions between them as edges of the graph. The current version
of Proxima is designed to work with fixed-topology systems, but the definition
of our perception descriptors is well-designed to be continuous descriptors to be
easily extended to changing topology systems (e.g. chemical reactions, transition
states, etc.)

The context of the thesis is the one of the Virtual Laboratory as shown in Fig.
1. The Virtual-Laboratory is a workflow encompassing all phases of a computa-
tional study from the pre-processing phase dedicated to the construction of molec-
ular systems from databases, through the computational phase that is dedicated
to applying di↵erent Molecular Perception, Quantum Mechanics, Molecular Me-
chanics and Machine-Learning techniques for both exploitation and exploration,
up to the post-processing phase employing either ML to perform data analysis or
chemical intuition through the use of Immersive Virtual Reality tools. The thesis
is organized as follows, after some initial chapters on the historical backgrounds of
traditional computational methods and Machine-Learning techniques, we discuss
our in-house software to perform Molecular Perception (required for the compu-
tation of charges and descriptors for ML). Then, a chapter is dedicated to the
definition of continuous chemical descriptors. Finally, a chapter is dedicated to
outlining some applications of our descriptors.
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Chapter 2

Representation and Computation

The human desire to understand the mechanisms of complex phenomena is at
the foundation of chemistry. By living in a world that is at the scale of the
meter, we have di�culties understanding the complexity of a quantum-governed
environment, making the problem of representing molecules a challenging task.
Anticipating the work of Kekulé, in 1861 Loschmidt [14] studied cyclic compounds
using a representation of the atoms in terms of spheres as shown in Fig. 2.1.

Figure 2.1: Joseph Loschmidt: Structural formulae, 1861.

With new discoveries and the increasing complexity of molecular structures
discovered, new representations were required. In 1891, Emil Fischer intro-
duced the Fischer projections to include three-dimensionality in the treatment
of molecules. The awareness of the three-dimensionality of a molecule is what
unlocked the study of stereo-chemistry. Thanks to discoveries in biochemistry
and crystallography, the need to represent even bigger molecules (e.g., proteins)
emerged. As a consequence, new concepts such as the ones of helix, beta-sheets,
and secondary structures required new representations. Initially, the visualization
of such complex structures employed physical models derived from accurate data
measurements. John Kendrew [15] won the Nobel Prize in 1962 for his studies on
Hemoglobin and Myoglobin with the use of X-Ray Crystallography. In Fig. 2.2,
the original structure of Myoglobin resolved by Kendrew is shown.
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Figure 2.2: The original model of the Myoglobin molecule, (the first model of a
protein molecule) built in plasticine in 1957 by Dr. J.C. (later Sir John) Kendrew.

The rationale behind such representations is that we are visual human be-
ings, and we have a natural intuition to analyze visual data. The real breaking
point that truly challenged molecular representation was the advent of Quantum
Mechanics and how much chemistry can be explained in quantum terms. The
traditional view of the world of molecules made of spherical balls connected to-
gether by springs was deeply challenged by the new discoveries in physics. In fact,
abstract and complex mathematical concepts started to be used for describing the
molecular structure, creating a gap between the quantitative nature of Quantum
Chemistry and the qualitative interpretability of traditional organic and general
chemistry.

2.1 The problem of QM Representation

At the dawn of the XXth century, physicists had to develop a new mechanical
theory for the description of phenomena such as black-body radiation and the
photoelectric e↵ect. It became evident that objects behave di↵erently at a mi-
croscopic scale. The development of quantum physics had a direct impact on
chemistry since atoms could be described in quantum terms, revolutionizing the
description of matter itself. In fact, the traditional concept of the locality of
a particle (x, y, z, t), fails under the uncertainty principle �x�p � h̄

2 . In other
words, it is not possible to know exactly both WHERE and WHEN something
is. In particular, chemists were forced to rethink molecules and atoms, not as
an assembly of particles orbiting one around the other (as planets do), but as
delocalized clouds of probabilities described by wavefunctions, functions that tell
us the ”probability” of finding a particle in a given region of space:

Z
x+dx

x

�� (t)
��2dt = P x+dx

x
(2.1)

Quantum Chemistry is focused on developing approximated quantum mod-
els not just for atoms but also for molecules. It is possible to argue that such
an ”invasion” of quantum physics into chemistry was not always well received.
In fact, the split between the classical, easy-to-represent, but imprecise vision
of molecules and the quantum, harder-to-represent, but precise description gen-
erated an equal division within the chemical community. History has strongly
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proven that chemistry is not just a single-method field but is a multidisciplinary
discipline that requires trying and confronting di↵erent approaches to the study of
matter and molecules. It is very common for today’s experimental studies to in-
clude computational analysis, and it is also important for many theoretical works
to include ”chemical” interpretations of results or experimental confirmations.
In the following, we are going to focus on time-independent quantum theory by
describing molecular structure not including the time evolution of systems. In
this context, the quantum theory determines that the energy of a system (in our
case an atom or a molecule) is discrete, not continuous, encapsulated in ”quanta”
of energy or energy levels obtained by the solution of the eigenvalue Schrödinger
equation:

Ĥ = E (2.2)

And in general any ”observable” (that is a measurable physical quantity) is
obtained by the e↵ect of an operator on the wavefunction:

x =
⌦
 
��X̂
�� 
↵
=

Z
 ⇤X̂ dx (2.3)

The importance of the wavefunction is now clear since it allows us to compute
observables, but its representation is not so obvious. For single electron systems
(e.g. the hydrogen atom) the Schrödinger equation has an analytical solution.
The most common way to visualize these wavefunctions is through the concept
of an ”orbital”. The idea is to use the square of the wavefunction which, as said
before, represents the probability of finding a particle in a region of space, and
by employing a cuto↵ value (e.g. 0.9) the function becomes an equation which,
once solved, gives rise to the orbital surfaces (as shown in Fig. 2.3):

• Ĥ i = ✏i i

• ⇢i(x) =
�� ⇤

i
(x) i(x)

��2

• ⇢i(xorb) = 0.9

• xorb = ⇢�1
i
(0.9)
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Figure 2.3: The atomic orbitals for the hydrogen atom.

The description of multi-electron systems is even more complicated due to the
presence of a correlation between electrons. The correlation e↵ect originates from
the antisymmetry of the electronic wave-function (because of the fermionic nature
of the electron), and also by the explicit potential repulsive interaction between
electrons themselves. Electronic correlation is what determines the following
inequality between the conditional probability of finding two electrons in a given
region of space and the product of the individual probabilities:

⇢(r|r0) 6= ⇢(r)⇢(r0) (2.4)

The general assumption is that it is still possible to describe the wavefunction
of a multi-electron system as a combination of single-electron wavefunctions. The
way these orbitals are combined is through Slater determinants so as to main-
tain the antisymmetry property for fermionic wavefunctions. For example, in a
wavefunction of N fermions:

 (x1, x2, ..., xN) =
1p
N !

��������

 1(x1), 2(x1), ..., N(x1)
 1(x2), 2(x2), ..., N(x2)

...
 1(xN), 2(xN), ..., N(xN)

��������
(2.5)

It is obvious how such a description gets even more complicated and harder to
represent. As a consequence, with the evolution of quantum theory, the ”second
quantization” formalism was introduced to simplify the notation. It is important
to notice how the second quantization was, in some way, a di↵erent approach to
the problem of ”human representation” of quantum systems rather than a new
physical theory since it does not provide new physical laws. In particular, in
the second quantization approach, the idea is to build a formal mathematical
language to describe quantum systems based on the human intuition of ”placing
electrons in orbitals” (though this is not physically exact since there is no orbital
without electrons). As such, given N quantum levels, we can define a quantum
state as a vector in the Fock space defined by its occupation numbers (ki = 1 if
the i-th spin-orbital is occupied, 0 otherwise):
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��k
↵
=
��k1, k2, ..., kN

↵
(2.6)

and the vacuum state occurs when all levels are empty
��vac

↵
=
��0, 0, ..., 0

↵
.

In order to add an electron to a level a creation operator is employed:

a†
P

��k1, k2, ..., 0P , ..., kN
↵
= �k

P

��k1, k2, ..., 1P , ..., kN
↵

(2.7)

Where �k

P
=
Q

P�1
Q=1(�1)kQ and a†

P

��k1, k2, ..., 1P , ..., kN
↵
= 0. In order to re-

move an electron from a spin-orbital, instead, an annihilation operator is used:

aP
��k1, k2, ..., 1P , ..., kN

↵
= �k

P

��k1, k2, ..., 0P , ..., kN
↵

(2.8)

With the same �k

P
and aP |k1, k2, ..., 0P , ..., kN

↵
= 0.

Although the use of mathematics and abstraction seems to complicate the
description of the system, it actually gets similar to the graphical intuition we
have when discussing quantum levels by adding and removing electrons (such as
the two configurations of Fig. 2.4 obtained by removing one electron from the
bottom level and adding it to the top level).

Figure 2.4: Two electronic configurations.

It is important to notice how the two main approaches usually employed in
QM methods today are to either treat electrons as occupying single orbitals or to
entirely delocalize the electrons working directly with the overall electron density
(DFT methods). The new class of methods that try to describe a QM system as
sub-sets of strongly correlated electrons weekly coupled together (F12 methods)
represents an intermediary between traditional and DFT approaches. In the
following chapter, we are going to discuss very briefly some of the most common
quantum and classical methods for computing energy and molecular properties.
It is not of course the main topic of the following thesis to give a full description
of all of the computational methods in chemistry, far from that, but it is meant to
provide a general discussion of the most common methodologies to then introduce
the advent of ML and its di↵erent philosophy in the next chapter.

2.2 Electronic Structure Methods

The analytical solution of the Schrödinger equation is only found for mono-
electronic systems such as the hydrogen atom or the H2

+ molecule. Thus, through-
out the years, multiple methods have been developed to numerically compute,
with the least amount of approximations, molecular orbitals, and energies. The
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general framework is the Born-Oppenheimer approximation (or adiabatic approx-
imation) in which the movement of the nuclei of a molecule is decoupled from
the movement of the electrons. Thus, the Schrödinger equation to solve is the
one describing the electronic structure of a molecule taking a reference geometry
with the molecular electronic Hamiltonian (in atomic units):

Ĥ =
X

PQ

hPQa
†
P
aQ +

1

2

X

PQRS

gPQRSa
†
P
a†
R
aSaQ + hnuc (2.9)

Here we are using creation and annihilation operators (a†, a) operating in
the Fock space as described in the previous section. The one-electron term hPQ

describes the kinetic energy of an electron together with the nuclear potential
energy field:

hPQ =

Z
�⇤
P
(x)

 
�1

2
r2 �

X

l

Zl

rl

!
�Q(x)dx (2.10)

Where Zl are the nuclei atomic numbers, �P are the spin-orbitals defining
the Fock space (the molecular spin-orbitals), and rl is the distance between a
generic point x and the l-th nucleus. The two-electron term describes the electron-
electron interaction term (the hardest term to compute and accounts for the
electron correlation):

gPQRS =

Z Z
�⇤
P
(x1)�⇤

R
(x2)�Q(x1)�S(x2)

r12
dx1dx2 (2.11)

Where r12 = ||x2 � x1||. The last term, the hnuc, is a number in the Born-
Oppenheimer approximation and accounts for the nuclei-nuclei interaction en-
ergy:

hnuc =
1

2

X

I 6=J

ZIZJ

RIJ

(2.12)

In general, the MO-LCAO (Linear Combination of Atomic Orbitals) approxi-
mation is taken into account to describe the molecular spin-orbitals (�P ). In par-
ticular, the molecular orbital is described as a sum of functions centered on the
nuclei such as the atomic orbitals. In general, the set of atom-centered functions
employed is called the basis set and its choice hugely impacts the computation
since it defines the shapes of the molecular orbitals.

2.2.1 Hartree-Fock

The Hartree-Fock [16] is the first method developed to compute molecular prop-
erties. The general idea of the HF method is to use a single configuration to
describe the molecule (that is a single vector in the Fock space), and the energy
is optimized by varying the coe�cients of the LCAO spin-orbital base. As a
consequence, the HF wave function can be described as:

��k
↵
= e�k̂

��0
↵

(2.13)
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Where
��0
↵
is the reference configuration and e�k̂ is an operator that carries out

unitary transformations within spin-orbitals. The other important characteristic
of the HF method is that it simplifies the shape of the Hamiltonian by taking an
”average field” for the electron-electron interaction (thus using a single variable
function) instead of punctual values for each couple of electrons (that is a two-
variable function). Thus, the ”fock operator” is used in place of the Hamiltonian
to find approximate solutions to energies and molecular orbitals:

f̂ = ĥ+ V̂ (2.14)

With ĥ the true Hamiltonian kinetic energy and nuclei potential energy, and V̂
the average Coulomb repulsion among electrons corrected for Fermi correlation:

V̂ =
X

PQ

VPQa
†
P
aQ (2.15)

VPQ =
X

I

(gPQII � gPIIQ) (2.16)

Where I runs over all occupied spin-orbitals while P and Q run over all spin-
orbitals (occupied and unoccupied). The exchange correction term is required for
the antisymmetry of the wave function. In this way, the HF method uncorrelates
the electrons so that the ”correlation energy” is generally defined using the HF
method as a reference:

Ecorr = Eexact � EHF (2.17)

As a consequence, many other methods were developed from the HF so as to
introduce back some amount of correlation (thus called post-HF methods). The
HF method is usually called Self-Consistent since the average electron-electron
potential defining the Fock matrix (VPQ) is obtained as the result of the diago-
nalization of the Fock matrix but is also required to build the Fock matrix thus
generating an iterative procedure. The eigenvalues and the eigenvectors of the
Fock matrix define both the energies and the molecular orbitals (the coe�cients
in the LCAO approximation).

2.2.2 MCSCF

The Multi Configurational Self-Consistent Field [17] is the natural evolution of
the HF method since it takes into account multiple electronic configurations.
In particular, MCSCF was proven successful in describing bond-breaking and
molecular dissociations. In MCSCF theory, the wave function is written as a
linear combination of determinants (configurations) whose expansion coe�cients
are optimized together with the MOs according to the variation principle. Thus,
the MCSCF wave function can be written as:

��k, C
↵
= e�k̂

X

i

Ci

��i
↵

(2.18)

The same unitary transformation for the spin orbitals is applied (e�k̂), but
this time instead of a single configuration we expand over multiple configurations

22



each one with its weight Ci. In this case, both the k and C terms are optimized by
minimizing the energy through the variational principle. It is important to notice
that the exact solution is only possible when all possible configurations are taken
into account (FCI). The problem with the MCSCF is that it is only possible to
treat relatively small numbers of configurations, one common approach being the
CASSCF where the choice of the configurations is limited to a subset of orbitals
(the ”active” orbitals). Thus, MCSCF methods prove a flexible framework for
treating ”static correlation” (that is correlation arising from degenerate or nearly
degenerate electronic configurations) but additional calculations need to be per-
formed to get a good description of ”dynamic correlation” (that is the correlation
due to the movement of the electrons).

2.2.3 Configuration Interaction

In the CI method (Configuration Interaction) [18] the wave function is constructed
as a linear combination of determinants:

��C
↵
=
X

i

Ci

��i
↵

(2.19)

This is in principle similar to the MCSCF method, with the di↵erence being
that only the configuration expansion is variationally optimized (that is the Ci),
the orbitals are generated separately in a preceding HF or MCSCF calculation and
are held fixed during the optimization of the configuration expansion. In theory,
MCSCF wave functions would be more flexible than the CI wave functions, but
in practice are limited to small configuration expansions. The CI successfully
allows for the computation of the dynamic correlation energy.

2.2.4 Many-Body Perturbation Theory

The Møller-Plesset method [19] uses the perturbation theory instead of the vari-
ational approach to introduce correlation in many-body systems. In particular,
the Hamiltonian is written as:

Ĥ = f̂ + �̂+ hnuc (2.20)

Where f̂ is the Fock operator, and �̂ is the fluctuation potential which de-
scribes the di↵erence between the true electron Coulomb potential ĝ of the hamil-
tonian operator and the e↵ective one-electron Fock potential V̂ of the Fock op-
erator:

�̂ = ĝ � V̂ (2.21)

Applying the standard machinery of the perturbation theory, we obtained the
second order in the perturbation:
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8
>>>>>><

>>>>>>:

E(0)
MP

=
⌦
HF

��f̂
��HF

↵
=
X

I

✏I

E(1)
MP

=
⌦
HF |�̂|HF

↵

E(2)
MP

= �
X

A>B,I>J

|gAIBJ � gAJBI |2

✏A + ✏B � ✏I � ✏J

(2.22)

Thus, the Hartree-Fock energy can be written as:

EHF = E(0)
MP

+ E(1)
MP

+ hnuc =
⌦
HF

��Ĥ
��HF

↵
(2.23)

And, by adding the second-order energy:

EMP2 = EHF �
X

A>B,I>J

|gAIBJ � gAJBI |2

✏A + ✏B � ✏I � ✏J
(2.24)

In general, the Møller-Plesset method can be employed in its second-order
formulation (MP2) or can be extended to higher orders (MP3, etc.).

2.2.5 Coupled-Cluster

The two most serious shortcomings of the CI approach are the lack of size-
extensivity and the slow convergence to the FCI limit. These limits are overcome
by the Coupled-Cluster theory [20]. The starting point is to rewrite the FCI wave
function in terms of excitation operators. The excitation operator is an operator
that promotes an electron from a spin-orbital to another in the Fock space:

X̂A

I

��HF
↵
= CA

I
a†
A
aI
��HF

↵
(2.25)

Thus obtaining:

��FCI
↵
=

 
1 +

X

AI

X̂A

I
+

X

A>B,I>J

X̂AB

IJ
+ ...

!
��HF

↵
(2.26)

It is possible to recast the linear summation of excitation operators in the FCI
in the form of a product wave function:

��CC
↵
=

"
Y

AI

(1 + X̂A

I
)

#"
Y

A>B,I>J

(1 + X̂AB

IJ
)

#
...
��HF

↵
(2.27)

In order to simplify the algebraic manipulation of this product, we notice that
since:

X̂AB

IJ
X̂AB

IJ
= 0 (2.28)

we may write:

1 + X̂AB

IJ
= 1 + X̂AB

IJ
+

1

2
X̂AB

IJ
X̂AB

IJ
+ ... = eX̂

AB
IJ (2.29)

And similar for other excitations, thus obtaining:
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��CC
↵
= exp

(
X

AI

tA
I
a†
A
aI +

X

A>B,I>J

tAB

IJ
a†
A
a†
B
aIaJ + ...

)
��HF

↵
(2.30)

Or

��CC
↵
= eT̂

��HF
↵

(2.31)

with

T̂ = T̂1 + T̂2 + ... (2.32)

being an operator containing single-excitations, double-excitations, etc. This
exponential ansatz is at the foundation of the CC method. It is common prac-
tice to truncate the summation of the T̂ operator so as reduce the number of
computations (such as the CCSD, CC-Single and Double excitations), but even
when truncating such operator we still get contributions from all determinants in
contradiction with the CI methods. The other di↵erence with the CI method is
that in this case the energy is not obtained by means of a variational approach
but instead by projecting onto a set of configurations

⌦
µ
�� that span the set of all

states obtained by applying the truncated T̂ operator.

e�T̂ ĤeT̂
��HF

↵
= ECC

��HF
↵

(2.33)

⌦
µ
��e�T̂ ĤeT̂

��HF
↵
= 0 (2.34)

The energies are obtained by inverting the equations above.

2.2.6 Density Functional Theory

In this chapter, we have stressed how the biggest problem in representing the
quantum world is having to deal with abstract quantities such as wave functions.
The complexity of the wave function is not only in its nature but also in the num-
ber of coordinates that requires: 3n spatial coordinates and n spin coordinates.
In fact, it is possible to say that the wave function contains more information
than needed and is lacking direct physical significance. The real quantity that we
can intuitively interpret is its square product that represents the electron density
(i.e. the probability of finding the electron in a given region of space):

⇢(x, y, z) = N
X

s1

...
X

sN

Z
dr2...

Z
drN

�� (r, s1, r2, s2, ..., rN , sN)
��2 (2.35)

The real advantage of using the electron density is its reduced number of
coordinates (x,y,z) with respect to the wave function. This is another example
of how the problem of representation is directly linked to the complexity of the
theoretical models for computation. The revolution happened in 1964 when Pierre
Hohenberg and Walter Kohn proved two fundamental theorems that allowed the
development of a Density Functional Theory [21].
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The Hohenberg-Kohn theorem

The first theorem states that for molecules with a non-degenerate ground state,
the ground-state molecular energy, wave function, and all other molecular elec-
tronic properties are uniquely determined by the ground-state electron probability
density. In other words, the ground-state energy is a functional of the electron
density:

E0 = E0[⇢0] (2.36)

The key is to prove that given an electron density ⇢0 for a ground-state
non-degenerate system, this uniquely identifies an external potential v(ri) in the
Hamiltonian (the external potential is essentially the coulomb interaction with
the nuclei of the molecule). Being the external potential the only di↵erence
between two molecular Hamiltonians, it proves the uniqueness of the electron
density. Let’s suppose there are two di↵erent Hamiltonians Ĥa and Ĥb (thus
two Hamiltonians that di↵er in their external potentials va(ri) and vb(ri)), the
following relations must be valid:

(
Ĥa 0,a = Ea

0 0,a

Ĥb 0,b = Eb

0 0,b

(2.37)

At this point, let’s apply the variational theorem by using  0,b as a trial
function for Ĥa:

E0,a <
⌦
 0,b

��Ĥa| 0,b

↵
=
⌦
 0,b

��Ĥa + Ĥb � Ĥb

�� 0,b

↵

=
⌦
 0,b

��Ĥa � Ĥb

�� 0,b

↵
+
⌦
 0,b

��Ĥb

�� 0,b

↵ (2.38)

Since the only di↵erence between the two Hamiltonians is the external poten-
tial we get:

E0,a <

*
 0,b

����
nX

i=1

[va(ri)� vb(ri)]

���� 0,b

+
+ E0,b (2.39)

which in turn gives rise to the following two equations:
8
>><

>>:

E0,a <

Z
⇢0,b(r)[va(r)� vb(r)]dr + E0,b

E0,b <

Z
⇢0,a(r)[vb(r)� va(r)]dr + E0,a

(2.40)

It is clear that if the two-electron densities are identical despite the di↵erent
external potentials, the summation of the two inequalities above gives rise to:
E0,a+E0,b < E0,a+E0,b which is clearly false. Thus, ⇢0 determines the molecular
electronic Hamiltonian and so the ground-state wavefunctions, energy, and other
properties. The second important theorem proves that the variational theorem
can also be applied to the electron density, thus: the true ground-state electron
density minimizes the energy functional E[⇢tr].
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The Kohn-Sham Method

The Hohenberg-Kohn theorems don’t tell us how to compute the energy from
the electron density nor how to obtain the electron density without knowing the
wavefunction first, they just prove that is theoretically possible. One strategy
to practically solve the issue is the Kohn-Sham (KS) method developed in 1965
[22] that, in principle, is capable of yielding exact results although in practice
requires an unknown operator that must be approximated. The starting point
is to consider a fictional system of n non-interacting electrons each experienc-
ing the same external potential vs(ri) such as to make the ground-state electron
probability density of the reference system equal to the exact ground-state elec-
tron density of the molecule (⇢s(r) = ⇢0(r)). Since the theorems prove that the
ground-state probability density function determines the external potential, the
vs(ri) is uniquely determined although we might not know how to practically
compute it. In the reference system, electrons do not interact with each other, so
the Hamiltonian of the reference system is simply:

Ĥs =
nX

i=1


�1

2
r2

i
+ vs(ri)

�
=

nX

i=1

ĥKS

i
(2.41)

Since the reference system is made of non-interacting particles, we can still
write the ground-state wave function of the reference system as the antisym-
metrized product (Slater determinant) of the lowest-energy KS spin-orbitals µKS

i

of the reference system, where the spatial part is an eigenfunction of the one-
electron KS operator: ĥKS

i
. In order to quantify and approximate the external

potential of the reference system, it is convenient to rewrite the energy as a func-
tional of the electron density:

Ev[⇢] =

Z
⇢(r)v(r)dr+Ts[⇢]+

1

2

Z Z
⇢(r1)⇢(r2)

r12
dr1dr2+�T [⇢]+�Vee[⇢] (2.42)

Where Ts is the kinetic energy of the reference system made of non-interacting
particles, easy to evaluate remembering that a single Slater determinant describes
the non-interacting system:

Ts = �1

2

nX

i=1

⌦
µKS

i

��r2
i

��µKS

i

↵
(2.43)

The �T [⇢] functional is the di↵erence between the kinetic energy of the
molecule and the reference system, while �Vee is the di↵erence of the poten-
tial energy between the molecule and the reference system. These two terms
get summed together in a single functional of the electron density called the
exchange-correlation functional, thus obtaining:

E0 =

Z
⇢(r)v(r)dr + Ts[⇢] +

1

2

Z Z
⇢(r1)⇢(r2)

r12
dr1dr2 + Exc[⇢] (2.44)

The variational principle on the electron density allows us to find the ground-
state electron density by variationally changing the KS orbitals of the non-
interacting system so as to minimize the energy functional. The exchange-
correlation potential is obtained from the functional as follows:
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vxc(r) =
�Exc[⇢(r)]

�⇢(r)
(2.45)

The di↵erent strategies employed to approximate such functional di↵erentiate
the di↵erent DFT methods. In the following, we are going to show just the most
relevant ones.

Local-Density Approximation

The simplest strategy to approximate the exchange-correlation functional is to
treat the problem of a homogeneous gas of electrons, which is a decent ap-
proximation in case the electron density varies extremely slowly with position
(thus Local-Density Approximation (LDA)). In the case of gas of electrons, the
exchange-correlation functional is written as:

ELDA

xc
[⇢] =

Z
⇢(r)✏xc(⇢)dr (2.46)

So that the ✏xc(⇢) term is the exchange-correlation energy per electron. It is
possible to show that the exchange-correlation energy can be decoupled as the
sum of the individual exchange and correlation contributions for which analytical
solutions are provided in the literature. In the following, we are going to show
just the exchange functional in the case of a homogeneous gas of electrons since
the expression for the correlation component is far more complicated and easily
available from literature [23].

8
<

:

vLDA

x
= �[(3/⇡)⇢(r)]1/3

ELDA

x
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Z
⇢✏xdr = �3

4
(
3

⇡
)1/3

Z
[⇢(r)]4/3dr

(2.47)

For open-shell systems, the local-spin density approximation (LSDA) gives
better results than the simple LDA, in which electrons with opposite spin have
di↵erent spatial components in the KS orbitals.

Gradient-Corrected Functionals

The LDA models work best when the electron density does not vary rapidly with
changes in position. In order to correct the behavior of the functional consid-
ering variations in electron density, Gradient-Corrected functionals (GGA) are
introduced in which the gradients of the electron density are explicitly included:

EGGA

xc
[⇢] =

Z
f(⇢,r⇢)dr (2.48)

Approximate expressions are developed using theoretical considerations such
as the behavior of the true (but unknown) functional. Often some empiricism
is thrown in by choosing the values of parameters in the functional so as to
get optimal results. Some common GGA functionals are Perdew and Wang’s
functionals PWx86, PWx91 [24–26] and Becke’s functionals B88 or Bx88 [27].
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Meta-GGA Functionals

The idea of Meta-GGA is to simply extend the treatment of the functional to
second-order gradients in the form of:

EMGGA

xc
[⇢] =

Z
f(⇢,r⇢,r2⇢, ⌧)dr (2.49)

With ⌧ being the Kohn-Sham kinetic-energy density defined as:

⌧ =
1

2

��rµKS

i

��2 (2.50)

Meta-GGA functionals require a little more time than GGA but can give
better results.

Hybrid Functionals

The exchange functional can be computed in terms of KS orbitals, in a similar
fashion to HF, as:

EHF

x
= �1
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nX

i=1

nX

j=1

⌧
µKS

i
(1)µKS

j
(2)

����
1
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����µ
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j
(1)µKS

i
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�
(2.51)

The correlation energy can thus be identified with Ec = Exc � Ex. The idea
of hybrid functionals is to mix together such definitions of the exchange energy
together with the LSDA, GGA, and Meta-GGA expressions. For example, the
popular B3LYP functional [27, 28] (where 3 means is a 3 parameter functional)
uses the following definition:

EB3LY P

xc
= (1�a0�ax)E

LSDA

x
+a0E

HF

x
+axE

B88
x

+(1�ac)E
LSDA

c
+acE

LY P

c
(2.52)

The parameters a0, ax, ac are optimized on molecular atomization energies.

Double Hybrid Functionals

Grimme [29] proposed to employ the MP2 energy correction formula to improve
DFT energies. To do so, a hybrid-GGA functional is defined as:

Hhybrid�GGA

xc
= a1E

GGA

x
+ (1� a1)E

HF

x
+ a2E

GGA

c
(2.53)

Then this functional is used to self-consistently solve for KS orbitals. Then,
an improved value of the functional is computed as:

Exc = Ehybrid�GGA

xc
+ (1� a2)E

KS�MP2
c

(2.54)

Where EKS�MP2
c

is calculated from MP2 equations as a second-order pertur-
bation. This new functional is then employed to compute ground-state properties.
Grimme defined the B2PLYP [30] functional by taking EGGA

x
as the B88 exchange

functional and EGGA

c
as the LYP correlation functional. Another functional of

this kind is the rev-DSD-PBEP86-D3(BJ) [1–3] (revDSD).
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2.2.7 F12 methods

As already discussed, the two main philosophical approaches to electronic struc-
ture calculations have been the treatment of electrons as units entirely localized in
spin-orbitals (post-HF approaches), or fully delocalized in electron densities (DFT
approaches). A di↵erent and recent way to approach the electronic structure cal-
culation problem is to place electrons in spin-orbitals, but correlate portions of
these together through a dedicated operator including an explicit radial depen-
dency. This is the general approach of the so-called F12 methods [31]. It is not
the goal of the following section to do a full review on the F12 but just to briefly
introduce the concept since it is at the philosophical foundation of our software
for Molecular Perception (Proxima), where independent portions of interacting
electrons are weekly coupled together in a perturbative way. For simplicity, we
are going to discuss the CCSD-F12 method [32], but the same F12 approach can
be employed on di↵erent levels of theory such as the MP2. Recalling the CCSD
method, the wave function is written as:

�� 
↵
= exp

⇣
T̂1 + T̂2

⌘ ���
↵

(2.55)

In traditional CCSD, the T̂1 and T̂2 operators are written as:
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>>>:
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(2.56)

With X̂ being the excitation operators, {i, j, ...} being occupied orbitals and
{a, b, ...} the virtual orbitals. In CCSD-F12 theory the T̂2 operator is modified as
follows:

T̂2 =
1

2

X

ab,ij

tij
ab
X̂ab

ij
+

1

2

X

ab,ij

⌧ ij
↵�
X̂↵�

ij
(2.57)

The additional amplitudes ⌧ ij
↵�

are defined as follows:

⌧ ij
↵�

= T ij

mn
F̂mn

↵�
(2.58)

With

F̂mn

↵�
=
⌦
mn
��F12Q̂12

��↵�
↵

(2.59)

Where the Q̂12 operator is required to make the F12 configurations orthogonal
to the configurations in the molecular orbital (MO) space. The explicitly corre-
lated terms improve the wave function’s description of electrons coming close to
each other. They augment the conventional CI expansion by additional functions,
in which the orbital products �i(r1)�j(r2) have been replaced by short-range pair
correlation functions

��uij(r1, r2)
↵
= T ij

mn
Q̂12F12(r12)

���m(r1)�n(r2)
↵

(2.60)
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The terms mn = ij and mn = ji are the most important ones. The function��uij

↵
represents a negative short-range hole in the orbital product

��ij
↵
. If added to

the reference function, it directly suppresses the probability of finding the two
��ij
↵

electrons in a spatial configuration where they are close to each other. In contrast
to orbital products, the short-range correlation factor Q̂12F12

���m�n

↵
can describe

the wave function cusp for r12 ! 0 correctly. Both aspects fix major deficiencies
of conventional wave function expansions in terms of Slater determinants. As
already stated, MP2-F12 methods exist in which the F12 operator is added as a
perturbation. In practice, the Ansatz of these methods is to express the F (r12)
term as a combination of Gaussians to fit an exponential equation.

F (r12) = �1

�
exp(��r12) ⇡

X

i

ci exp(�↵ir
2
12) (2.61)

2.2.8 The atomic charges

In this section, we are going to briefly discuss the CM5 charges employed in QM
computations since these are going to be of relevance when discussing Proxima’s
own perception algorithms. In general, the dipole moment, the electron density,
and the other multipoles are the only physical observables, but the desire to repre-
sent a delocalized quantity such as the electron density in terms of partial charges
localized on atoms is yet again an example of how methods and algorithms are
developed in order to convert QM quantities into a traditional chemical represen-
tation of molecules. Di↵erent strategies can be employed to assign such charges
and can be divided into 4 classes [33]:

• Class I. These charges are derived by using nonquantum mechanical ap-
proaches such as classical models of dipoles or by using a model to extract
the charges directly from experimental data, e.g., from the experimental
dipole moment of a diatomic molecule.

• Class II. These charges are based on a partitioning of the electron charge
density obtained from a Quantum Mechanics calculation into atomic pop-
ulations. For example, class II charges are those obtained using Hirshfeld
population analysis [34], Mulliken population analysis, Löwdin population
analysis, natural bond orbital population analysis, atomic polar tensor-
based population analysis, etc. These charges obtained from population
analysis may depend on the level of theory, for example, on the choice
of density functional and/or basis set, and they may yield an unrealistic
representation of the molecular dipole moment and higher-order multipole
moments in complex molecules.

• Class III. These atomic charges are those fitted to reproduce a physical
observable like a quantum-mechanically calculated electrostatic potential
(ESP). In general, ESP-derived charges depend on the molecular coordinate
system orientation and the choice of fitting points, and they sometimes
exhibit an unphysical dependence on internal bond rotations, and their
determination can also su↵er from ill-conditioning for interior (or buried)
atoms in molecules, especially larger ones. These deficiencies of class III
charges can be mitigated by using restrained electrostatic potential (RESP)
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fitting and introducing other refinements, for example, in the point selection
algorithm.

• Class IV. These charges are defined through parametrization to reproduce
accurately charge-dependent observables (such as dipole moments) obtained
from experimental results or from high-level Quantum Mechanics calcula-
tions that are acceptably converged for the quantity under consideration.

In the following, we are going to consider the CMx family of Class IV charges.
In particular, the CM5 charges since these are the charges used as a reference
in training our own Proxima perception algorithms. In the CM5 model [33],
atomic charges in a molecule (either neutral or ionic) are defined by the following
equations:

qCM5
k

= qHPA

k
+
X

k0 6=k

Tkk0Bkk0 (2.62)

Where k and k’ run over all the atoms in the molecule, qHPA

k
is the partial

atomic charge obtained from Hirshfeld population analysis [34] and Tkk0 = �Tk0k

is a model parameter to be determined. The term Bkk0 is defined as:

Bkk0 = exp
⇥
�↵(rkk0 �RZk

�RZk0 )
⇤

(2.63)

Here ↵ is another parameter of the CM5 model and Zi are the atomic numbers
and RZi are the covalent radii. The good agreement with experimental dipole
moments is confirmed in the original work. Conceptually is as if the original
Hirshfeld charges [34] were corrected by adding a� on the atomic charge obtained
by regression with a radial function for each couple of atoms considered. The good
agreement with experimental dipole moments is what prompted us to use such
charges as a reference when developing Proxima’s own algorithm, as shown in the
corresponding chapter.

2.3 Force Field

As already discussed at the beginning of this chapter, the advent of Quantum
Mechanics didn’t stop the study of molecules as classical entities, and in practice,
a lot of improvements have been done in recent years in increasing the accu-
racy of energy calculations with classical Force Field (FF). The goal of Molecular
Mechanics is to use classical mechanics instead of quantum mechanics for the
description of the energy of molecular systems. In particular, the goal is to find
an analytical expression that computes the energy given the geometry of the
molecule E(x1, y1, z1, ...., xn, yn, zn). The Force Field is so-called since it allows us
to compute energy, forces, gradient, and hessian analytically from the geometry
of the molecular system. In order to correctly quantify these contributions, it is
generally assumed that the molecule is in a geometry around its minimum (al-
though recent Force Field have been developed taking reactivity into account, e.g.
EVB [35], ReaxFF [36]). In this way, the energy can be reasonably approximated
using an expansion around the reference geometry ~Xeq. In fact, by expanding the
energy expression around equilibrium geometry values, it is possible to think of
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a molecule, in classical terms, as a set of atoms connected by springs. This me-
chanical model of a molecule goes back as far as 1930 [37]. In particular, Andrew
and co-workers realized that a bond can behave like a spring obeying Hooke’s
law around the minimum energy distance, and by reasoning around the ”strain”
that atoms feel in cycles where the angles are di↵erent than the conventional
tetrahedral geometry, they arrived at formalizing the concept of bending. Their
first attempt at parameterizing a mechanical model for molecules was to take
Raman spectra, calculate frequencies and associate the spring force constants to
the intensity of the frequency by manipulating physical units by means of the
formula:

⌫ =
1

2⇡

✓
k

m

◆1/2

(2.64)

Where ⌫ is the frequency, m is the reduced mass and k is the force constant.
From the Raman spectrum of ethane, they found a frequency of 990 wave number
for the vibration of two carbon atoms that gave rise to a force constant of 4x105

dynes per cm. In the original work, they went as far as trying to find a physical
spring that would replicate such force constant obtaining the values shown in Fig.
2.5, building a physical model of a molecule to study its vibrations, an example
is given in Fig. 2.6.

Figure 2.5: The parameters used for building the spring to represent oscillations
in molecules [37].

Figure 2.6: The physical models built for studying vibrations mechanically [37].

Since then, more Force Field were developed during the ’50 and ’60, with
some of them still in use today such as MM and its variations MM2, MM3, etc.
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[38–40]. In particular, MM was focused on hydrocarbons and defined the energy
of a system as a summation over stretching, bending, torsions (for the staggered
conformation in ethane), and van der Waals interactions.

E = Estretching + Ebending + Etorsion + Evdw (2.65)

Estretching =
X ks

2
(l � l0)

2 (2.66)

Ebending =
X k✓

2
(✓ � ✓0)

2 (2.67)

Etorsion =
X
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2
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2
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�
(2.68)
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Noticeably, the electrostatic term was missing from the energy expression
although they recognized its importance and they suggested using the Del-Re
method to face the issue [41] (see Chap. 4 for details on the Del-Re method). MM
later evolved in MM2 and MM3 and from MM the MMFF94 and MMFF94s [42,
43] were built. With the advancement in computers and computational power, it
was now possible to perform Molecular Dynamics simulations using these Force
Field instead of building models manually. At the same time, other Force Field
arose with particular regard to the UFF force field (1992) [44] that tried to obtain
a set of parameters valid for all the elements of the periodic table, up to AMBER
(2002) [45] which is a family of Force Field that all share the same functional
form, which allowed more research in trying to parameterize di↵erent molecules
due to the easiness of just changing parameters in the software while keeping the
same functional form. In fact, it is interesting to notice that, in general, most
Force Field employ the same functional form which is not that di↵erent from the
original equation of the MM force field:
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qiqj
✏Rij

� (2.70)

There are variations in the choices of functional forms to use, in fact in some
Force Field (e.g. UFF) the Morse equation can be employed instead of the simple
harmonic one to account for anharmonicity. Moreover, the presence of ”improper
dihedral angles” can be taken into account treating them as angles in the harmonic
equation but with a distinct set of parameters (e.g. the inversion of ammonia).
The van der Waals equation is typically used in the Lennard-Jones potential form
because of its computational advantages. Traditionally, a separated term for the
formation of hydrogen bonds [46] was employed of the form:
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Ehbond =
Cij

R12
ij

� Dij

R10
ij

In most recent Force Field, however, this term is ignored and the van der
Waals and electrostatic interactions are parameterized so as to correctly take
into account and describe the formation of hydrogen bonds.

2.4 Conclusions

In this chapter, we have discussed the problem of representation in Chemistry,
the most common electronic structure methods, and just a brief introduction
to Force Field and their history. In the next chapter, we are going to discuss
Machine-Learning (ML) methods and procedures. In particular, if all of this
chapter was based on physics as a foundational layer of rules on top of which
approximations and models are built, the next chapter is going to illustrate how
the problem of representation (that in this chapter was mostly about choosing
the right combination of coordinates/formalism and a physical model) is going
to be re-framed as the problem of finding a good Feature Space, while ”learning”
rules through probabilistic engines.
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Chapter 3

Machine-Learning

In previous chapters, we stressed the importance of representation and its strong
relation with the ability to carry out computations through physical laws. More-
over, we have also highlighted the Machine-Learning (ML) disconnection between
the ”prediction” of numerical data and the ”understanding” of data. In this chap-
ter, we are going to provide a general background on the basics of ML techniques.
In Fig. 3.1, the traditional scheme for a non-adaptive scheme is shown, which is
the typical scenario for physically based models.

Figure 3.1: The traditional scheme for non-adaptive systems.

The advantage of using non-adaptive models, which are grounded in physical
laws, is that they guarantee the validity of the output data since physical laws are
hard-coded and immutable, and possible approximations are carried out manually
giving more control to the computational expert on which method to choose. The
disadvantages of such a non-adaptive scheme arise when:

• The physical computation requires too many approximations.

• The physical computation is too slow or complex.

• The problem is not easily solved by physical rules.

• The input representation has to be pre-processed to be used in the physical
computation.
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• The output results must be post-processed to be interpreted by the user.

The di↵erent approach in ”Machine-Learning” (ML) is to use more flexible
models that can receive feedback from the environment as they carry out compu-
tations so as to adapt themselves to get better results as they ”learn” from the
environment. In Fig. 3.2, the scheme for such adaptive systems is shown. The
Machine-Learning field has deeply impacted our culture and society, especially in
those fields where strict physical rules are not available (image recognition, voice
dictation, natural language processing, etc.).

Figure 3.2: The scheme for an adaptive learning system.

The di�culty of applying ML techniques to chemistry arises from the lower
degree of control the computational scientist has over the computational engine.
In particular, the typical argument against the application of ML techniques
to chemistry is the abandonment of physical rules for the computation of ob-
servables: physical rules by themselves don’t need to receive feedback from the
environment since these rules are supposed to describe reality as well as possible
by themselves. However, we have already noticed in the previous chapter how,
even with the development of Quantum Chemistry, there are many approxima-
tions that need to be carried out in order to get reliable results. In other words,
having the exact solution ”in principle” (Ĥ = E ) does not imply having the
exact solution ”in practice”. These approximations may work for some systems
and not for others and in general the choice of the right method and basis set has
to be done manually by chemical intuition. Not only that but with the advent of
Density-Functional Theory (DFT), the problem has shifted to the definition of
the right exchange functionals that are essentially unknown, this is a field where
ML techniques could help in determining these functionals while still using a ref-
erence quantum model (thus maintaining the physical nature of the problem).
Moreover, the shift from strict physical rules to more heuristical models has al-
ready happened with the advent of Molecular Mechanics and methods based on
Force Field whose definitions are often uncertain and based on intuition from the
creators of the force field itself.

In general, ML methods are distinguished in:

• Supervised
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• Unsupervised

• Semi-Supervised

• Reinforcement Learning

This classification puts emphasis on the presence of a teacher or supervisor
that provides a precise measure of the error to the machine, this is usually pro-
vided as a training set of couples of inputs and expected outputs. The goal of
the ML procedure, in a supervised scheme, is to minimize the di↵erence between
the expected outputs and the output its model is computing by means of a loss
function. In a supervised scenario, the goal is to build a model that works with
the training set but of course, should be robust enough to be extended to un-
known inputs, thus it is important to avoid the problem of overfitting the data.
There are also other methods in ML that do not necessarily require the presence
of a supervisor, these are called unsupervised. There is also the set of ”Semi-
Supervised” algorithms used in situations when it is necessary to categorize a
large amount of data with only a few complete (labeled) examples or when there
is the need to put some constraints in the procedure. The last category is the set
of ”Reinforcement Learning” algorithms where, despite the absence of a supervi-
sor, the feedback is also given by the environment although in a more qualitative
and imprecise way, a feedback that is generally called ”reward”, and is especially
used in non-deterministic environments.

In the following sections, a brief summary of the most common algorithms
employed in ML techniques is shown without the goal to give an extensive de-
scription but just a general introduction.

3.1 The problem of Learnability

In Machine-Learning we often employ flexible parametric models, as described
before, so as to be able to receive feedback from the environment (thus simulating
the learning process). A parametric model can be split into two parts:

• A static structure

• A dynamic set of parameters

Typically the static structure of the model is immutable (except for algorithms
that include a re-modeling phase) while the learning process a↵ects the set of
parameters which can vary. In particular, if we consider a set of n parameters
we are defining an n-dimensional space, we can then define an ”hypothesis” as a
particular choice for each of these parameters:

H = {✓2, ✓2, ..., ✓n} (3.1)

In general, when working in a supervised scenario, we define a custom non-
negative error function (em) which takes the expected and predicted output values
as arguments:
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EH =
NX

i=1

em(ỹi, yi), em � 0, 8ỹi, yi (3.2)

The goal is to reduce the total error by searching for the best hypothesis H.
The most common error function is the Mean Square Error (MSE) which is also
called a loss function since it has to be minimized:

EH =
1

N

NX

i=1

(ỹi � yi)
2 (3.3)

Another useful loss function is the zero-one-loss which is useful for binary
classifications:

L0/1H(ỹi, yi) =

(
0, ỹi = yi
1, ỹi 6= y1

(3.4)

A helpful interpretation of a generic and continuous loss function can be ex-
pressed in terms of potential energy:

EnergyH =
1

2

NX

i=1

em(ỹi, yi)
2 (3.5)

Just like in the physical situation, the goal is to employ some algorithms to
explore the potential energy surface to find the minima that give us the best
hypothesis.

In practice, we are being a little naive right now by assuming that it is always
possible to find a solution to such optimization problems, but in general, it has
to be proven formally that is possible to determine the learnability of a concept
given some conditions. In 1984, computer scientist L. Valiant proposed the PAC
approach (Probably Approximately Correct) to determine whether a problem is
learnable by a computer [47]. In order to simplify its description, let’s assume
we are dealing with a classification problem where algorithm A has to learn a
set of concepts. In particular, a concept is a subset of input patterns X which
determines the same output element (which means are classified the same). The
learning process, or learning the concept, is the minimization of the loss function
as described above. However, given a problem, we may have infinite hypotheses
and a probabilistic trade-o↵ is necessary, thus:

An algorithm A can learn the class C of all concepts (making them PAC
learnable) if it’s able to find a hypothesis H with a procedure O(nk) so that A,
with a probability p, can classify all patterns correctly with a maximum allowed
errorme. This must be valid for all statistical distributions on X and for a number
of training samples which must be greater or equal to a minimum value depending
only on p and me.

3.2 Maximum-likelihood learning

The first attempt at ML comes, of course, from statistics and probabilities. In
particular, given a dataset X and a hypothesis h, we can define the likelihood of
the hypothesis as:
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L(h|X) = P (X|h) (3.6)

Where P (X|hi) is the ”a posteriori” probability of the dataset X given the
hypothesis h. In general multiple hypotheses should be considered:

max
i

L(hi|X) = min
i

1

L(hi|X)
(3.7)

And by using probabilities:

min
i

1Q
i
P (X|hi)

(3.8)

This can be turned into a simple expression by applying natural logarithms:

max
i

logL(hi|X) = min
i

� logL(hi|X) = min
i

X

i

� logP (X|hi) (3.9)

The last term is a summation that can be easily derived and used in most
optimization algorithms [48].

3.3 The Feature Space

In the previous section, we talked about data in general terms, without specifying
the type of representation of the data employed. In particular, when looking at
our dataset X we may represent each point of the dataset as a vector ~xi 2 X.
These vectors are defined in a vectorial space that is called the Feature Space.
The Feature Space represents the space of the problem studied. As a consequence,
any change in the definition of the Feature Space brings a change in the numerical
representation of each point of the dataset thus changing the quality of the ML
procedure. In other words, choosing a Feature Space is the exact problem of
choosing the ”representation” for our data (see the first chapter for the problem
of the representation). The Feature Space can be directly defined from the data if
this has a simple numerical form (e.g. in representing images of a dataset we may
define an image as an array of (width ⇥ height) numbers each one of which is the
(r,g,b) value for the pixel), or we can use smarter descriptors which already encode
useful information. The decision of the Feature Space is critical since is all the
ML algorithm knows about data: if the Feature Space does not implicitly contain
the phenomena investigated, there is no ML algorithm capable of retrieving it.
The problem of choosing the correct Feature Space can be reformulated in terms
of information theory, by defining ”entropy” [49] as:

H(X) = �
X

x2X

p(x) log2 p(x) (3.10)

The definition of entropy relies both on dataset X and on a probability dis-
tribution p and is generally measured in bits (due to the logarithm). In general,
higher entropies are preferred since it means that the given feature carries more in-
formation. For example, let’s consider the problem of tossing a coin: our dataset
is defined as X = {head, cross} and each one of these appears with the same
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probability of p = 1
2 , thus resulting in an entropy of H(X) = 1. However, if

the number of possible outcomes grows (even with the same probability p), the
entropy increases because of the summation in its definition. For general Gaus-
sian distributions it is possible to prove that the entropy is proportional to the
variance:

H(X) =
1

2
(1 + ln (2⇡�2)) (3.11)

In other words, a good feature should increase the variance in the dataset. The
other typical problem when dealing with the definition of a Feature Space is the
”independence” of the features. In principle, each feature should be independent
from the others but depending on the situation this is not always the case. It is
useful to introduce the ”conditional entropy” as:

H(X|Y ) = �
X

x2X,y2Y

p(x, y) log2
p(x, y)

p(y)
(3.12)

Thanks to the conditional entropy we can define the mutual information as
the amount of information shared by both variables and therefore the reduction
of uncertainty about X provided by the knowledge of Y:

I(X;Y ) = H(X)�H(X|Y ) (3.13)

In principle, when X and Y are independent, they don’t share any information
and this is easily proved by taking p(x, y) = p(x)p(y) for independent distribu-
tions, obtaining H(X|Y ) = H(X) thus I(X;Y ) = 0. The opposite situation is in
having close to 0 conditional entropies (which means that Y is able to describe
X quite well), then the mutual information becomes I(X;Y ) = H(X).

The choice of a Feature Space is nontrivial, and many descriptors in chemin-
formatics have been introduced to describe molecular datasets (e.g. QSAR [50],
etc.). The truth is that depending on the type of phenomena investigated, dif-
ferent Feature Spaces are required. Moreover, a common approach is to combine
di↵erent ML algorithms in multiple steps so as to let the machine decide which
Feature Space best represents the dataset. As an example, starting from an initial
numerical dataset an ML model computes a suitable Feature Space and another
ML model computes the desired quantities on this Feature Space. After a Feature
Space has been selected, this is usually normalized and the dataset is split into
a Training set and a Test set. In this way, it is possible to get an estimate of
the correctness of the ML algorithm by checking the prediction accuracy on the
Test set while training on the Training set. Of course, both sets must reflect the
original data distribution.

3.3.1 PCA

In the previous section, we stressed the importance of identifying features that
have low entropy (do not provide meaningful information) or features that share
too much information thus being redundant. It is generally good practice before
starting the training process to filter out those features that do not provide useful
information and a common way to do it is by means of the Principal Component
Analysis (PCA) [51]. The PCA is also useful in those situations when we have a
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very high number of variables and we want to reduce them. The general idea of
the PCA is to assess how much information is brought by each component, and
the correlation between them, by building a covariance matrix:

C =

2

4
�2
1...�1m
.........
�m1...�2

m

3

5 (3.14)

Where:

�ij =
1

m

X

k

(xki � E[Xi])(xkj � E[Xj]) (3.15)

C is symmetric and positive semidefinite so all the eigenvalues are non-negative.
The interpretation of each eigenvalue can be the ”weight” that the relative feature
has in describing the dataset. Thus, by ordering the eigenvalues and selecting
only the first above a certain threshold it is possible to rebuild, using the corre-
sponding eigenvectors, a sub-space whose dimension is lower than the dimension
of the original one. In this way, we are not only reducing the dimensionality of
the problem but we are also projecting the dataset in a new sub-space of features.

3.3.2 Linear-Regression

It is time to talk about ML procedures by starting with the regression models
[48], in particular with the Linear Regression model due to its simplicity and
historical relevance. The problem of regression is to obtain continuous values
(Y = {y1, y2, ..., yn}, yi 2 R) from the dataset (X = {~x1, ~x2, ..., ~xn}, ~Xi 2 Rm).
The simplicity of the linear model is to use a hyperplane to describe the behavior
of the target quantity:

y = a0 +
nX

i=1

aixi, A = {a0, a1, ..., an} (3.16)

The advantage of Linear Regression models is that they allow to treat also
some non-linear situations such as the polynomial regression, where the trick is
to increase the dimensionality of the Feature Space by including nonlinear terms:

x̄ = (x1, x2) �! x̄t = (x1, x2, x
2
1, x

2
2, x1x2) (3.17)

This is yet another example of how the right definition of a Feature Space simpli-
fies the ML model. More complex models (such as Supporting Vector Machines
or Neural Networks) should be considered when the underlying phenomena in-
vestigated is intrinsically non-linear. Some variations of the Linear Regression
are shown below.

Ridge

The Ridge regression [52] imposes an additional shrinkage penalty to the ordinary
least squares loss function:

L(w̄) = ||Xw̄ � ȳ||22 + ↵||w̄||22 (3.18)
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The introduction of a weight vector has to be kept under control by the
additional term multiplied by the coe�cient ↵ that avoids the uncontrolled growth
of the weights.

Lasso

The Lasso [53] is conceptually similar to the Ridge but imposes an L1 norm on
the weights:

L(w̄) =
1

2n
||Xw̄ � ȳ||22 + ↵||w̄||1 (3.19)

The shift to the L1 norm is to allow a potentially higher number of null
coe�cients.

Elastic-Net

The Elastic-Net [54] model tries to combine together the advantages of the Ridge
and Lasso by including both L2 and L1 norms, thus resulting in a model sparse
like a pure Lasso but with the same regularization ability as provided by Ridge:

L(w̄) =
1

2n
||Xw̄ � ȳ||22 + ↵�||w̄||1 +

↵(1� �)

2
||w̄||22 (3.20)

3.4 Classification

The problem of classification in Machine-Learning is to train the machine to
classify data in classes. As an example, if we define two classes A and B, the
machine should tell whether some data is of class A or class B. In molecular
sciences a good example of this problem could be the automatic assignment of
atom types to atoms, providing a good Feature Space, so as to classify each atom
to its corresponding type.

3.4.1 Linear-Classification

The first method we discuss is a linear method so, given two classes A and B for
simplicity, it tries to find the optimal hyperplane that separates the two classes.
In multi-class problems, the reasoning remains identical. So given our dataset:

X = {~x1, ~x2, ..., ~xn}, ~xi 2 Rm (3.21)

We have a target set for the classification:

Y = {y1, y2, ..., yn}, yi 2 {0, 1} (3.22)

By defining a weight vector:

W = {w1, w2, ..., wm}, wi 2 R (3.23)

We can define the quantity z:

z = ~x~w (3.24)
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So that if ~x is variable, z is the value determined by the hyperplane equa-
tion. Therefore, the optimization procedure regards the w coe�cients so that the
classification holds on:

sign(z) =

(
+1, x 2 A

�1, x 2 B
(3.25)

3.4.2 Logistic Regression

The Logistic Regression approach, although it’s called regression, is a classifica-
tion method based on the ”probability” of a sample belonging to a class. It can
be used, as an example, in determining whether to recommend cesarean delivery
[55]. The starting point is still the Linear Classification but instead of using the
sign of the z value directly, we use a sigmoid function that we can interpret as
the probability for the sample to belong to a class:

�(~x; ~w) =
1

1 + e�~x~w
(3.26)

At this point, finding the optimal parameters means maximizing the log-
likelihood as shown in Sec. 3.2:

L(~w; y) =
X

i

logP (yi|~xi ~w) (3.27)

Therefore we need to minimize the loss function:

j(~w) = �L(~w; y) = �
X

i

(yi log �(zi) + (1� yi) log(1� �(zi))) (3.28)

Stochastic Gradient descent algorithms

It is just worth noting that the optimization of the weights ~w for the classification
problem can be done with many other algorithms. As an example, the idea behind
the stochastic gradient-descent (SGD) is to iterate over the weights so as to move
in the opposite direction of the gradient of the loss function:

~w(k + 1) = ~w(k)� �rL(~w) (3.29)

The procedure is applied to batches randomly extracted from the overall
dataset.

3.4.3 Naive Classifier

The term naive is not because these algorithms are limited or less e↵ective, but
is due to an assumption that we are going to discuss later. The starting point for
such classifiers is the Bayes theorem of conditional probabilities defined as:

(
P (A \ B) = P (A|B)P (B)

P (B \ A) = P (B|A)P (A)
(3.30)
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Thus the Bayes theorem:

P (A|B) =
P (B|A)P (A)

P (B)
(3.31)

Let’s suppose we are testing whether a ”feature” is accurate enough in clas-
sifying correctly some data (e.g., assuming that if an email has a number of
characters below 50 it can be classified as Spam). The A-Posteriori probability
(P (Spam|text < 50 char)) behaves like a likelihood for our theory (see previ-
ous sections). The denominator is usually less important since our goal is to
maximize/minimize functions so:

P (A|B) = ↵P (B|A)P (A) (3.32)

The problem arises when there are multiple concurrent conditions:

P (A|C1 \ C2 \ ... \ Cn) (3.33)

This makes things more complicated but the assumption of the Naive Classifier
(hence the name naive) is to assume conditional independence of causes that is:

P (A|C1 \ ... \ Cn) = ↵P (C1|A)...P (Cn|A)P (A) (3.34)

In general, the conditional independence of causes is rarely true (for example,
if an email has a number of characters below 50 it can increase the probability
of finding an image thus these two conditions are not independent). However, it
usually behaves well even when the naive condition is violated [56].

In order to classify an input vector ~x into one of the classes yi, the a-posteriori
probability is computed for each class and the higher determines the assignment:

P (yi|x1, x2, ..., xn) = ↵P (yi)
Y

i

P (xi|yi) (3.35)

The probabilities are obtained by frequency counting.

3.4.4 Supporting Vector Machines

Together with Neural Networks, Support Vector Machines (SVM) [57] are usually
the best choice when a linear hyperplane is not possible to be found in a classifi-
cation task. The starting point for discussing SVM is with the usual Hyperplane
in the linear case for simplicity. In reality, for a normalized set of data is possible
to define two boundary hyperplanes containing only a few elements (the support
vectors) as shown in Fig. 3.3.

The goal is to maximize the distance between these two hyperplanes so as
to avoid misclassification due to more overlap between the two classes. In fact,
there are multiple choices for a hyperplane to divide the two classes, but just one
optimal solution that maximizes the distance between the two boundaries. In
this case, the two boundaries are parallel hence the distance between them is a
multiple of the hyperplane ~w vector:

~x2 � ~x1 = t~w (3.36)
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Figure 3.3: The two boundary hyperplanes for a normalized set of data.

by connecting two points between each boundary. Now, considering the
boundary hyperplane equation we get:

~wT~x2 + b = ~wT (~x1 + t~w) + b = (~wT~x1 + b) + t||~w||2 = 1 (3.37)

The first term of the last part is equal to -1, thus by solving for t we get:

t =
2

||~w||2 (3.38)

Thus the distance between ~x1 and ~x2 is:

d(~x1, ~x2) =
2

||~w|| (3.39)

Moreover, by imposing {�1, 1} as labels for the two classes, we can write the
following constraint for each point of the dataset:

yi(~w
T~xi + b) � 1, 8(~xi, yi) (3.40)

The Kernel Trick

In discussing non-linear problems the general approach is the same as discussed for
the Linear Regression model where the Feature Space has increased in dimensions
including non-linear terms. In the case of SVM, however, further considerations
must be done. The SVM worked by optimizing the following two equations:

8
<

:
min

1

2
||~w||

yi(~w
T~xi + b) � 1

(3.41)

By applying Lagrange Multipliers, and taking ||~w||2 instead of its square root:

L(~w, b,↵) =
1

2
~wT ~w +

X

i

↵i(1� yi(~w
T~xi + b)) (3.42)
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And by taking the corresponding derivatives we discover that the set of pa-
rameters ~w is now dependent on the new set of Lagrange multipliers ↵i, thus
having to optimize the following:

8
>>><

>>>:

max

 
X

i

↵i �
1

2

X

i,j

↵i↵jyiyj~x
T

i
~xj

!

X

i

↵iyi = 0

(3.43)

As said before, the trick to go from linear to non-linear space is to add dimen-
sions (~xi �! �(~xi)) but this comes at the cost of expensive computations (the
number of dimensions rises considerably and even the dot product �(x)T�(x)
becomes troublesome). However, the advantage of the SVM is to use the Kernel
trick to express its dot products. In particular, there are special functions (called
kernels [48, 58]) that have the nice property:

K(~xi, ~xj) = �(~xi)
T�(~xj) (3.44)

These Kernels reduce the complexity and make the SVM a good candidate
for non-linear problems. Here are some examples of Kernel functions, such as the
radial basis function:

K(~xi, ~xj) = e��|~xi�~xj |2 (3.45)

The polynomial kernel:

K(~xi, ~xj) = (�~xT

i
~xj + r)c (3.46)

And the sigmoid Kernel:

K(~xi, ~xj) =
1� e�2(�~xT

i ~xj+r)

1 + e�2(�~xT
i ~xj+r)

(3.47)

3.4.5 Decision trees

The last category of ML methods for classification tasks that we are going to
discuss is Decision Tree [59]. Even if these methods are not used a lot in complex
classification tasks, they have the great advantage of giving an easy representation
of the ”chain of thoughts” of an ML algorithm since, as the name implies, they
represent a chain of decisions done sequentially. In particular, given an input
dataset X:

X = {~x1, ~x2, ..., ~xn}, ~xi 2 Rm (3.48)

We have m features for each point in the dataset. The binary decision process
is simply defined by a threshold for each feature: if the feature is below the
threshold a choice is made, otherwise, a di↵erent choice is done as shown in Fig.
3.4.

The learning process impacts the thresholds t at every binary decision step
thus changing the ”chain of thoughts” of the algorithm. The leaf nodes are the
classes that we want to assign. In defining the ”structure” of a binary decision
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Figure 3.4: The binary decision process

tree it is important to make sure that each child node (the result of a decision)
contains less information than the parent node (the decision): in other words, the
entropy should decrease. In fact, let’s suppose we have two categories to assign
to each point in the dataset: (A, B). In this case, at the starting root node, we
will have higher uncertainty about whether the specific point is either A or B.
As we start to make decisions, we reduce the uncertainty until we reach the leaf
node A or B.

As an example, in Fig. 3.5 two choices for an atom-type classification decision
tree are shown.

Figure 3.5: Two examples of binary trees for atom type classification, the first
resulting in an increase of entropy while the second resulting in a decrease of
entropy.
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In the first choice, we get an increase in entropy since the set of atoms that
are part of a ring contains both SP3 and SP2 atoms: thus, is a bigger set than
simply the set of all SP2 atoms. A better choice for the decision tree is the latter
where the entropy is always decreasing. This concept can be further formalized
in terms of ”impurity”. To do so, let’s consider that each selection node defines
a subset of elements that satisfy its condition. For example, the set of all atoms
that are part of a ring in the first tree of Fig. 3.5. Each node is defined by the
tuple � =

⌦
i, tk
↵
where i is the index of the feature (is it in a ring or not) while

tk is the selection threshold (for general continuous features). We can now define
the total impurity for a selected node as:

I(D, �) =
Nleft

ND

I(Dleft) +
Nright

ND

I(Dright) (3.49)

Where D is the whole dataset entering the selected node, Dleft and Dright

are the resulting datasets after applying our decision. Of course, there are many
possible definitions of impurity indices that satisfy the above relation. Here we
are listing just some of them such as the Gini Impurity Index:

IGini(j) =
CX

i

p(i|j)(1� p(i|j)) (3.50)

Where C is the total number of classes and p(i|j) is the ratio between the
total number of samples belonging to class i and the total number of samples of
the selected node j. Of course, as said before, the most common interpretation
of impurity is in terms of entropy in information theory thus introducing the
Cross-Entropy Impurity Index:

ICross�entropy = �
CX

i

p(i|j) log p(i|j) (3.51)

The impurity is not only important in deciding the ”shape” of a tree but also
in deciding the ”importance” of a feature in describing a decision process. The
definition of the importance of a feature is the following:

Importance(xi) =
X

k

Nk

N
�Ixi (3.52)

The sum is extended to all nodes that use the feature xi and Nk is the number
of samples that reach that node while quantifying the change in impurity due to
feature xi.

Random Forests

The Random Forest algorithm [60] is an extension of the single binary tree algo-
rithm to optimize in parallel di↵erent binary trees defined on di↵erent subsets of
features. In order to perform the classification, a voting approach is most com-
monly used where the most voted class by the trees is considered. The importance
of a feature becomes:

Importance(xi) =
1

NTrees

X

t

X

k

Nk

N
�Ixi (3.53)
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3.5 Clustering

The problem with Classification was to let the machine learn a pattern to associate
points to certain labels (it was a supervised approach since we were responsible
for giving the right reference labels for the training data to the machine). The
Clustering approach [48], however, is unsupervised and tries to automatically
group together points that are similar to each other using some sort of similarity
metric. More formally, if we have to deal with the same dataset X:

X = {~x1, ~x2, ..., ~xn}, ~xi 2 Rm (3.54)

We assume it is possible to find a nonunique criterion so that each sample can
be associated with a specific group:

gk = G(~xi), k = {0, 1, ..., t} (3.55)

Each group is called a cluster and the process of finding G is called clustering.
In general, hard-clustering techniques are by far the most common and require
that each point is assigned to one cluster only. The opposite of that, one point
can be part of two di↵erent clusters with di↵erent weights, is called soft/fuzzy
clustering, and is not treated in the following.

3.5.1 K-means

The K-means method [61, 62] is the most common method employed in clustering
procedures. However, it requires the number of clusters to be given as an input.
The algorithm works by initially assigning k initial centroids in random positions
(the k-means++ variant uses a complicated mathematical formulation that selects
the initial centroids so that they are statistically close to the final ones):

K(0) = {~µ(0)
1 , ~µ(0)

2 , ..., ~µ(0)
k
} (3.56)

Then, the inertia of the i-th centroid is defined as follows:

SSwi =
X

t

||~xt � ~µi||2, 8i 2 (1, k) (3.57)

At the start, each point of the dataset is assigned to the cluster of the closest
centroid. Then, at the next iteration, the centroid is recalculated with the new
members of the cluster. With the new centroids recomputed, the data points
are assigned again, and so on until we reach convergence (that is, the centroids
don’t change significantly anymore). This is analogous to saying that we are
minimizing the inertia of each centroid. A variant of the K-Means algorithms
is the PAM (Partition Around Medoids) [63] instead of getting the mean point
between the data in order to compute the centroid, this is taken as a medoid
or the closest point of the dataset to the mean. The biggest limitation of the
K-Means method is its use of the Euclidean radial distance that works well with
convex data (that is data that has a tendency to form ”blobs”), but in general,
if the data show some di↵erent behavior other algorithms should be used. In
most applications, K-Means is still the best option. The only real-life di�culty
in employing the K-Means method is having to choose in advance the number of
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clusters to use. In the following, several scores and indices are introduced that
can help in evaluating the optimal number of clusters.

Inertia score

The first score that is reasonable to look for is the inertia score that we have
already introduced since the goal of the K-Means is to minimize the inertia. The
problem with the inertia score, however, is that it only reaches 0 when each point
of the dataset forms a cluster on its own which is not optimal. This score is often
interpreted with the so-called ”elbow rule” [48], which essentially means looking
for the number of clusters that have drastically reduced the inertia with respect
to the previous one while not changing a lot in subsequent clusters.

Silhouette score

The idea of the Silhouette [64] is based on the principle of increasing the internal
cohesion between the points of a cluster and increasing the distance between the
clusters themselves. After defining a distance metric (Euclidean) we can compute
the average intracluster distance for each element:

↵(i) =
1

|CI |� 1

X

j2CI ,i 6=j

d(i, j) (3.58)

We can also define the average nearest-cluster distance (that is the lowest
intercluster distance):

b(i) = min
J 6=I

1

|CJ |
X

j2CJ

d(i, j) (3.59)

Then the silhouette is defined as:

s(i) =
b(i)� a(i)

max{a(i), b(i)} (3.60)

It is a value defined between -1 and 1, 1 is optimal, and 0 means there is a
cluster overlap. A value close to -1 means that the sample has been assigned to
the wrong cluster.

Calinski-Harabasz index

The Calinski-Harabasz index (CH) [65] is also based on the concept of dense and
well-separated clusters. First, we define the inter-cluster dispersion matrix as:

B =
X

t

nt(~µ� ~µt)(~µ� ~µt)
T (3.61)

Where nt is the number of points belonging to cluster t, ~µ is the total centroid
and ~µt is the centroid of the t-th cluster. The intracluster dispersion matrix
instead can be written as:

X =
X

t

X

x2Ct

(~x� ~µt)(~x� ~µt)
T (3.62)
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For each datapoint of the cluster x. Then the CH index is defined as:

CH(k) =
N � k

k � 1

tr{B}
tr{X} (3.63)

Also, in this case, the goal is to maximize such an index so as to maximize
the inter-cluster dispersion and minimize the intracluster dispersion.

3.5.2 DBSCAN

In those situations where the dataset shows a non-convex behavior, K-Means fails.
A common alternative is the Density-Based Spatial Clustering of Applications
with Noise (also called, DBSCAN [66]). The idea is actually simple: a cluster is
defined as a high-density area (with no restrictions on its shape) surrounded by
a low-density area. The procedure starts by analyzing a small area (formally a
point surrounded by a minimum number of other samples). If the density is high
enough, this point is considered as part of a cluster. At this point, his neighbors
are taken into account and if they also are in a region of high local density
they are merged with the first area. If they don’t have an equally high density,
they determine a topological separation. When all areas have been scanned, the
clusters are automatically assigned because they are islands surrounded by empty
space. It is important to notice that in the DBSCAN approach, the number of
clusters is not required in advance, since these are automatically detected by
checking the density.

3.5.3 Spectral clustering

A more sophisticated approach consists of building a symmetric a�nity matrix A
whose elements aij determine the ”a�nity” between two samples. The choice of
the Kernel function in this case is the choice for the a�nity measurement (usually
radial basis functions). The matrix is diagonalized and the clustering procedure
is applied to a subset of eigenvectors (each spectral clustering variant has its own
procedure). This is conceptually similar to the PCA approach but works with
a�nity matrices instead of covariance matrices.

3.5.4 Hierarchical Clustering

The idea of hierarchical clustering approaches is to find a hierarchy of partial
sub-clusters that can be assembled together in bigger clusters. The agglomerating
cluster approaches use a bottom-up approach in building up bigger and bigger
clusters, while the divisive clustering approaches use a top-down approach by
splitting big clusters into smaller pieces. In general, the agglomerating clustering
approach is preferred to the divisive one for better performance.

Agglomerating clustering

The agglomerating clustering approach requires the definition of a metric in the
Feature Space which defines automatically an a�nity between data points. Once
an a�nity is defined, the next step is defining a linkage that is a criterion to
aggregate di↵erent clusters. There are many possibilities [67]:
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• Complete Linkage, where for each pair of clusters the algorithm computes
and merges them to minimize the maximum distance between the clusters
(the distance of the farthest elements).

• Average Linkage, where instead of the maximum distance between the clus-
ters the average is used.

• Ward’s linkage, that computes the sum of the squared distances within the
clusters.

A common approach to visualize the agglomeration process in action is through
dendrograms, special plots that show the agglomeration process starting from
each individual data point up to the final number of clusters.

3.6 Deep Learning

The most recent evolution in Machine-Learning methods is generally indicated
by the term ”Deep” Learning, which is usually associated with the increased
number of data available and the increased complexity of models. Deep Learning
is just a di↵erent flavor of traditional Machine-Learning. In previous sections,
we stressed the importance of the Representation of data, which is critical both
in developing a physical model of phenomena and in performing ML algorithms.
In particular, in the case of ML algorithms, we said that the definition of the
Feature Space must correctly represent the data and the underlying phenomena
of interest since that is all the machine knows about the problem. Deep Learning
techniques usually go a step further by taking a di↵erent approach to the problem
of the representation by developing models that not only learn from numerical
data but can also optimize their representation (the Feature Space) to get even
better results. The clear advantage of such methods is that we don’t have to get
extremely accurate features since the model tries to also optimize them, and this
has led to a wider application of ML to more complex problems (e.g. language
processing, vision, sound recognition, artificial intelligence, etc.). The clear dis-
advantage of deep learning approaches is in scientific research, where the desire
is not only to get the right numbers but also an ”interpretation” for their compu-
tations (a human-understandable representation). In practice, though, there are
many applications of deep learning in science due to the practical limitations of
human resources. Imagine, for example, having to search for all possible conform-
ers of a molecule. In theory, a human scientist could try to guess them manually,
optimizing the structure for each of those conformers hoping to find local minima
of the potential energy function. In small molecules, this is generally not a huge
problem, but with bigger molecules, the search becomes unfeasible for a human
researcher. The truth is: machines are good at big numbers. In the case of
conformer research, for example, employing a deep learning model can decrease
research time by automatically searching for minima structure while still allow-
ing the physical interpretation of a conformer that at that point can be manually
checked. The field of deep learning is yet another gigantic field of research that
requires a separate book to be fully described. In the following, we are just giv-
ing some basic description of two commonly used deep-learning algorithms: the
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genetic algorithms (GA), and the neural networks (NN). It is interesting to no-
tice how many deep-learning algorithms take inspiration from biology, trying to
replicate biological phenomena to imitate intelligent behavior at a deeper level
(evolution in the case of the genetic algorithms, the human brain in the case of
neural networks).

3.6.1 Genetic Algorithms

John Holland developed genetic algorithms (GAs) [68, 69] in the 1960s. They
are algorithms based on natural selection and natural laws of genetics, which aim
to solve optimization problems. These algorithms have the following iterative
process to find the optimal solution:

• Properly represent the encoding of the problem. Most of the problems use
binary encoding.

• Evaluate each individual with a fitness function or target function, which
determines the value or performance of each solution.

• Choose a configuration selection strategy, which will be in charge of the
construction of the new population (new generation).

• Choose a mechanism to implement the genetic crossover operator.

• Build a mechanism to implement the genetic mutation operator.

It is obvious from the previous points how biology inspired the development of
GAs: each individual of a population is evaluated towards a target function that
represents its biological fitness (higher is better, and the evolution process goes to
higher fitness). At each step of the evolution process, a new population is created
by the previous one by performing genetic crossover and mutation over each
individual and selecting, through a certain strategy, those individuals who can
survive. Each individual in the population is described by a set of chromosomes:

I = (c1, c2, ..., cn) (3.64)

In general, each chromosome is a set of genes, each one of which can have
di↵erent values defined as alleles. Each individual in this population is evaluated
against a fitness function f(I), which is then normalized. Normalization means
dividing the fitness value of each individual by the sum of all fitness values so that
the sum of all resulting fitness values equals 1. Then, Selection is performed by
employing di↵erent methods dependent on the value of these normalized features
(e.g. Roulette Wheel Selection, Rank Selection, etc.). At the end of the Selection
phase, a sub-set of individuals remains. To generate a new population, genetic
operators are applied. The two genetic operations are:

• Crossover: This operator swaps the genetic information of two parents to
reproduce an o↵spring. It is performed on parent pairs that are selected
randomly to generate a child population of equal size to the parent popu-
lation.
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• Mutation: This operator adds new genetic information to the new child
population. This is achieved by flipping some bits in the chromosome.
Mutation solves the problem of local minimum and enhances diversification.

The new population is then evaluated again in an iterative process until a given
number of evolutionary iterations are performed or some heuristic of convergence
is satisfied. The example of the conformer search, given in the introduction
to deep learning section, has been done through a genetic algorithm procedure
where the genes are the set of torsion angles for a molecule and the fitness is
for the resulting molecule to describe a local minima (that is a conformer). The
most important choices that must be made when applying a GA are the types of
selection + crossover and mutation. As an example, in the case of the conformer
search application, we employed the tournament selection (with a tournament
size of 2) to ensure a balance between the diversity and fitness of parents and
then switch to elitism for the last 5 percent of planned generations if the search
has not yet stopped. For the former choice, one possibility is to interpolate the
alleles with the simulated binary crossover (SBX) approach [70], which employs
the so-called � factor, defined in terms of a uniformly distributed random number
µ and a spreading factor ⌘ (the latter is proportional to how much o↵spring alleles
will resemble those of the parents):

� =

8
><

>:

1

2µ⌘+1
, µ 2 [0, 0.5]

1

2
(1� µ)

1
⌘+1 , µ 2 [0.5, 1]

(3.65)

In a second step � is employed to interpolate the parent’s coordinates:

(
C1 = 0.5[(1 + �)P1 � (1� �)P2]

C2 = 0.5[(1 + �)P2 + (1� �)P1]
(3.66)

Here, P1 and P2 (i.e. parent 1 and parent 2) are the actual specimens mating
(that is, P1 and P2 coordinates will be always mixed), whereas C1 (child 1)
and C2 (child 2) are the corresponding o↵spring. A simple constant probability
method is used to check if a specimen was to be mutated and then to uniformly
select a gene.

The (� + µ) model

In the (� + µ) evolutionary algorithm (EA) [71], at each generation µ parents
generate � o↵spring; then survival occurs and the population size is reduced back
to µ. In the implementation of the model for a conformer search application (see
Chap. 8 for details), the selection rate (s) parameter was introduced, i.e., the
number of new o↵spring that will be created at each generation; µ/2 pairs of
existing specimens always generate �/2 pairs of di↵erent o↵spring i.e. a unitary
�/µ ratio was employed and � = s · P where s is the selection rate and P the
population size. In other words, the population size P becomes (1 + s) · P when
o↵spring are generated, and it is shrunk back to P when the worst s specimens
(parents and o↵spring) are eliminated. The rationale behind the choice of this
specific method is related to the high cost of evaluating the fitness of a new
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individual, which in the case of the conformer search implies a (costly) electronic
structure calculation: high-fitness individuals are then worth being preserved in
the population until some really improved individual is found.

The island model

The island model [72] is another variant of a GA in which the operators (com-
petition, selection, survival, and reproduction) act separately on suitable sub-
populations (islands), which are mixed only at predefined intervals by a dedi-
cated operator (migration). The underlying idea is that for flexible systems the
positions of atoms belonging to di↵erent moieties can to some extent be relaxed
separately (in the GA language these would correspond to low-order nonrelated
schemata).

The ”hall of fame”

In some cases, the fitness evaluation of an individual is a time-consuming step of
the evolution, and the cost connected to the disruption of a promising specimen
is high. For this reason, a new feature, known as “hall of fame” [73], is intro-
duced which transmits a fraction of the best individuals’ h ·P to new generations
inhibiting any mutation. The new population size is then (1 + S) · P + h · P (S
is the selection pressure, P is the population size, and h is the hall of fame size)
before survivor selection, when it is shrunk to P.

3.6.2 Neural Networks

Although Neural-Networks (NNS) are still state-of-the-art ML algorithms, they
are not a very recent invention. In fact, the first perceptron was invented in 1943
by McCulloch and Pitts [74] (Fig. 3.6).

Figure 3.6: The first perceptron (1943) [75]

Their implementation of the perceptron was not in software but in hardware:
This machine was designed for image recognition. It had an array of 400 pho-
tocells, randomly connected to the ”neurons”. Weights were encoded in poten-
tiometers, and weight updates during learning were performed by electric motors.
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Today, the modern representation of a perceptron is a mathematical one and is
shown in Fig. 3.7, this is then encoded in software and not in hardware.

Figure 3.7: The modern representation of a perceptron.

In general, it acts as a binary classifier where the output can either be 0
or 1 depending on the set of weights: (wi, b) and the input values xi. Thus, a
perceptron model acts as a supervised learning model where a training set of
data is given to the machine (xi) together with the supervised classification data,
and the weights are optimized with a minimization procedure (most commonly
Stochastic Gradient-Descent) so as to better fit the data. This minimization step
is what is usually referred to as the learning step since the algorithm learns the
correct weights. The historical inspiration for the perceptron model came from
biology, in particular the neuron. In biology, a neuron is a particular cell capable
of taking some input signals and if the sum of the electric signals goes above a
given ”activation value” then the neuron fires a signal out. The activation value
in the perceptron model is represented by the b parameter. The desire of ML
scientists to replicate in software and math what the human brain does so as to
create ”real” intelligent behaviors is not really the focus of the research in ML
anymore. Although there are still many research fields (especially in biology and
psychology) that try to understand more about the way the human brain works
through the use of ML and NNS, the focus of computer scientists is on improving
the prediction skills of such algorithms even if that means departing from a strictly
biological model. In the end, the human brain acted as an inspiration for NNS
as much as evolution acted as an inspiration for genetic algorithms. In recent
years, huge neural networks have been developed with a number of neurons that
is approximately the one of the brain of a mouse, also thanks to the advancement
in hardware. The critical insight to understand is that ”intelligence” is not just
about the number of neurons or the size of the brain, but is a complex behavior
that arises from the quality of the connections between units. Unfortunately,
very little is known in biology about how these neurons form a network in the
brain, and even if we know there are areas of the brain dedicated to specific
tasks we know very little about the neuron-by-neuron connections required to
simulate a brain. In our case, our interest in neural networks really comes from
a mathematical problem: solving non-linear regression. In previous sections we
talked about linear regression and how can be used to describe even non-linearity
by employing some Kernel function (SVM) or enlarging the Feature Space with
non-linear terms. NNS provides an elegant solution to the non-linear regression
problem. In fact, although the single perceptron performs a linear combination
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of parameters and values ( ~X ~w + b), the real magic comes in combining multiple
layers of neurons. In Fig. 3.8, an example of a simple neural network and a
”deep” network is shown.

Figure 3.8: A simple and a ”deep” neural network.

Neurons are grouped together in layers, the first layer is the input layer that
receives the initial data ~x, and the last layer is the output layer that provides
continuous outputs. Neurons in the middle are said to be placed in hidden layers
and now the definition of ”deep learning” should appear clearer since is related to
the complexity of the model and the number of layers. In the introduction to deep
learning, we also said that the Feature Space is automatically optimized by the
model itself and that is still true in NNS. In fact, each hidden layer extrapolates
di↵erent information from the input data thus representing the data internally
in a way that allows him to replicate the correct outputs. The perceptron model
was a binary classifier, to allow NNS to describe continuous outputs which are
important for regression a sigmoid function is usually introduced:

�(x) =
1

1 + e�x
(3.67)

The source of non-linearity thus comes from the output of a neuron that is
usually: �( ~X ~w + b). The sigma function is the most commonly used for its nice
behavior (it ranges from 0 to 1) and the nice property of its derivatives which
simplify computations (especially with gradient descent optimizations):

��

�x
= �(1� �) (3.68)

The gradient required to perform Stochastic Gradient-Descent is computed
with a backprogagation algorithm [76] based on the chain rules of derivatives. In
fact, since each neuron takes the output of the previous layer as an input, is like
combining multiple functions in a single one thus creating a chain of functions:

output = fn(fn � 1(fn � 2(....f3(f2(f1( ~X)))...))) (3.69)

In conclusion, NNS is a great tool to perform non-linear regression whenever
the source of non-linearity is unknown or an explicit equation is not available.

3.7 Conclusions

In this chapter, we discussed the main Machine-Learning (ML) methods and pro-
cedures giving a general introduction to the field. In this context, the importance
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of building the right Feature Space is crucial for ML algorithms as much as it is
crucial for the representation and visualization of data. As a consequence, in the
next chapter, we are going to introduce the field of Molecular Perception which
tries to derive meaningful chemical descriptors for molecular systems starting
from the minimum amount of information available.
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Chapter 4

Molecular Perception

The terrific improvements in hardware and software in the last decades have trans-
formed Quantum Mechanics from a specialist domain to a general tool employed
by researchers to complement experimental studies of systems and processes of
increasing complexity from material science to drug design. At the same time, the
chemistry language is now well established and formulated using a fragment-based
discrete model employing a relatively simple and highly e↵ective vocabulary. In
this approach, not only couples of highly correlated electrons are considered as
individual components (the covalent bonds), but even groups of atoms bonded
together are considered independent units (e. g. aromatic moieties or functional
groups). Unfortunately, the mainstream quantum chemical models are not di-
rectly compatible with such vocabulary; this gave rise to a historical dichotomy
between qualitative concepts and quantitative computations which is still present
nowadays. It is possible however, to use a chemical-like functional form for the
largest contributions to the molecular energy based on a revival of the relatively
simple models employed in the early stages of Quantum Chemistry, thereby rec-
onciling the fragment-based vocabulary with first principles, providing additional
insight on the phenomena studied. As a matter of fact, the renaissance of the
valence-bond model and the increasing use of explicitly correlated electron pairs
(geminals, F12 approaches [31, 32], etc.) show that models based on loosely cou-
pled groups of strongly correlated electrons have still much to o↵er in theoretical
chemistry.

This is the general context of our work on Molecular Perception (MP) [77],
which is the set of rules and techniques that derive additional information and give
chemical meaning to an initial set of raw data. Traditional chemical perception
is performed starting from an initial set of atoms distributed in space. Suitable
heuristics are then applied to derive chemical quantities such as covalent bonds,
hydrogen bonds, charges, etc. Being able to directly identify the most relevant
chemical properties of a molecule with minimal computational complexity allows
atom types assignment for Molecular Mechanics simulations. It is also the basis
of chemical visualization. Thus, Molecular Perception aims at combining the ben-
efits of a human easy-to-interpret representation of molecules with a quantitative
analysis of the molecular properties, using Machine-Learning as a bridge between
the two fields. The Molecular Perception (MP) [77–79] algorithms and heuristics
here discussed have been implemented in a custom C++ software library called
Proxima [77], available to users in the Python language through Cython bindings
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[80]. The Python language is handy for its huge amount of resources when it
comes to ML [81–83].

The initial data for MP procedures is usually the set of atoms scattered in
space, thus:

(
Zi, 8i
~pi = [xi, yi, zi], 8i

(4.1)

However, the entry point for a perception procedure can also be the bond
order matrix that defines the two-body interaction between each pair of atoms in
the system:

(
Zi, 8i
BOij, 8i, j

(4.2)

In case Cartesian coordinates are given as inputs, a bond order matrix is com-
puted as the first step so that the subsequent MP procedures can be executed
using the same matrix as a reference irrespective of the source input. The task
is to determine a topology while keeping an internal continuous representation of
the system through the bond order matrix. The topology is generally identified
with a molecular graph [84], which is a graph whose vertices are the atoms ({Zi}),
and the edges are the two-pair bonds connecting each pair of atoms ({BOij}).
Although a bond order is defined between each couple of atoms, such represen-
tation is only kept internally by the software and only a partial molecular graph
is provided to the user, that is the molecular graph containing only those edges
whose bond order is above a given threshold (typically 0.5). In this way, the
molecular graph coincides with the traditional representation of a molecule every
chemist is used to. It is important to notice that the molecular graph is just a
particular case of a more general chemical graph where each vertex is an (almost)
independent unit in the molecule and each edge is the intensity of a connection
between these units in the molecule itself. As an example, an entire aromatic
group in a molecule can be considered almost independent because of its nature
(a group of highly coupled atoms) and thus can be treated as a single vertex in a
more general graph. However, since the goal is to simplify the representation to
the user, this information is only kept internally along the continuous bond order
matrix. Thus, in computing the topology for the system, the following operations
are performed:

• Computation of � bond orders (BO�)

• Computation of ⇡ bond orders (BO⇡)

• Computation of non-covalent bond orders (e.g., BOhbond)

Once the topology is computed and the bond order matrix is assigned, MP
algorithms can further explore the properties of the system (e.g. perception
of charges, perception of rings, etc.) or help in the pre-processing and post-
processing of the data (e.g. solvation procedures). In the following, the perception
of topology and these other perception algorithms are treated in detail.
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4.1 Topology Perception

As mentioned in the introduction, Molecular Perception aims at describing com-
plex systems starting from the minimum amount of information available [77]. In
the present context, it is su�cient to know how atoms are placed in real space
with their 3D coordinates, or how atoms are bonded to each other. In both cases,
an automatic perception fills the missing information. Proxima supports PDB
[85] and XYZ files for explicit encoding of three-dimensional coordinates. It is
also possible to provide simple SMILES [86] or connectivity matrices in order to
encode the topology information directly.

From a purely physical point, there is no distinction between ”Intra-Molecular”
and ”Inter-Molecular” phenomena; the fragment-based approach of chemistry
must, therefore, be based on some kind of approximation. To this end, we will
start by building a skeleton of covalent (possibly delocalized) bonds and then
proceed to add weaker interactions between bonds, Lone Pairs, and holes. Then,
inter-molecular interactions come into place when interactions between disjoint
fragments not linked by the covalent skeleton are considered.

In traditional chemical perception atoms are the basic bricks. However, atoms
in molecules are too di↵erent from spherical atoms to allow a simple description
of chemical phenomena. We decided, therefore, to go back to the old concept
of the valence state of an atom, i.e. an atom with a formal charge (given by
the user) in the electronic state with the maximum possible spin multiplicity.
Therefore, the basic entities of the Feature Space employed in our perception
are electrons, Lone Pairs, and holes lying in properly hybridized orbitals, which
are then employed to build the molecular framework. After defining an initial
discrete connectivity matrix, all the following operations are not performed in the
real space, but in the ’Feature Space’ of charges and bond orders, thus allowing
seamless topology modifications, which are beyond the capabilities of the most
widespread Molecular Perception packages.

4.1.1 Covalent Bonds

The perception of covalent bonds has traditionally relied on the relative distances
between the atoms [87]. Here, the standard formulation of covalent bond percep-
tion (that checks whether the relative distances are below the sum of covalent radii
plus a threshold) is enhanced through the explicit inclusion of electronegativity
[88, 89], namely

rmin  dij  rcov,i + rcov,j � 0.07��2 + tolerance (4.3)

where rmin is a threshold, which allows avoiding clashes issuing from poor
initial geometries, dij is the relative distance between the i and j centers, rcov,i
and rcov,j are the relative covalent radii, �� is the electronegativity di↵erence
and the tolerance is generally 0.4 Angstroms [87]. Noted is that pairs of atoms
at distances shorter than rmin are not connected, but are explicitly signaled by
warnings in the output.

The problem with the given formulation, however, is that it just classifies two
atoms as either bonded or not-bonded, without providing a ”strength” (a bond
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order) for the pair considered. In the following, we decided to employ this general
expression for two-body interactions [88, 89]:

BO�(r) =

(
1, if r < rm

e↵(r�rm)2 , otherwise
(4.4)

Where r is the distance between a couple of atoms considered and rm is the
theoretical bond length as described above (rcov,i + rcov,j � 0.07��2). In order
to find the value for the exponential ↵ we apply the additional constraint that
the value of the bond order at a distance of rm · 1.33 angstroms should be equal
to 0.5. Thus, in perceiving covalent bonds, only bond orders whose values are
above 0.5 are perceived. The choice of the Gaussian in describing the covalent
bond interaction allows us to cut the interaction to 1 around rm, otherwise an
exponential would introduce a non-derivable point.

4.1.2 Delocalized ⇡ systems

Once covalent bonds are perceived, electrons are considered. In Fig. 4.1, an
example of how the perception procedure works in considering electronic structure
is given.

Figure 4.1: The Molecular Perception of Covalent Bonds in NH3.

In particular, for each covalent bond perceived, a couple of electrons are local-
ized into the bond itself. As a consequence, starting from an initial configuration
for the atom of completely uncoupled electrons, these are coupled in covalent
bonds, and the remaining electrons are either coupled together in Lone Pairs (if
in even number) or radical species. In case the covalent bond perception steps
give rise to a number of covalent bonds higher than the number of electrons avail-
able, these bonds are sorted from the longest to the shortest and are removed
in this order until there is consistency between the number of electrons and the
number of covalent bonds (valence constraint). Of course, formal charges given
by the user are used to correctly assign the number of electrons to each atomic
species.

In order to compute good-quality ⇡ bond orders we have employed a semi-
empirical Tight-Binding approach. The simple TB model used in the following
always uses a single orbital per atom and is based on the original formulation of
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the Huckel-Del Re model [90–92] both for localized � and delocalized ⇡ moieties.
The ⇡ portions of the system are perceived by performing a Breadth-First Search
(BFS) [93], which groups together nearby atoms having unpaired electrons, elec-
tron pairs, and holes. The wave function for each ensemble is expressed in terms
of e↵ective orthogonal orbitals centered at the involved atoms. In the approxi-
mation that only atoms linked by a The simple TB model used in the following
always uses a single orbital per atom and is based on the original formulation of
the Huckel-Del Re model [90–92] both for localized � and delocalized ⇡ moieties.
The ⇡ portions of the system are perceived by performing a Breadth-First Search
(BFS) [93], which groups together nearby atoms having unpaired electrons, elec-
tron pairs, and holes. The wave function for each ensemble is expressed in terms
of e↵ective orthogonal orbitals centered at the involved atoms. In the approx-
imation that only atoms linked by a sigma bond are coupled, the e↵ective TB
Hamiltonian can be always recast in a tri-diagonal form, whose eigenvectors con-
vey all the information needed to obtain atomic charges and bond orders: bond
are coupled, the e↵ective TB Hamiltonian can be always recast in a tri-diagonal
form, whose eigenvectors convey all the information needed to obtain atomic
charges and bond orders:

TBij =

8
><

>:

↵ii, i = j

�ij, j = i± 1

0, otherwise

(4.5)

In the case of delocalized systems, the Tight-Binding matrix (4.5) is diagonal-
ized and the set of eigenvectors is sorted from the lowest eigenvalue to the highest
one. Then bond orders can be computed with the following expression:

BO⇡

ij
=
X

k

nkc
k

i
ck
j

(4.6)

In general, the traditional Huckel model [90–92] works well for simple ⇡ sys-
tems where each atom contributes with one orbital to the Tight-Binding scheme.
However, in considering sp systems an atom can contribute with multiple ⇡ or-
bitals such as in the case of Fig. 4.2b.

Figure 4.2: a) The single-occupied p orbitals for the ethylene molecule b) The
single-occupied p orbitals for the ethyne molecule (two orbitals for each atom).

In the case shown in such a picture, the yellow orbitals are coupled together
and the overlap with the orange orbitals goes to zero since these are orthogonal.
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In considering such systems, it is important to identify each element of the matrix
TBij with an orbital of an atom instead of directly with the atom itself. Each
atom a will be identified by an ensemble of coe�cients C(a) that correspond to
each orbital that the atom itself o↵ers to the delocalized system considered. In
this way, the previous equation used for computing the ⇡ bond orders must be
modified in the following way:

BO⇡

ij
=
X

l

n(l)
e

X

k12C(i),k22C(j)

c(l)
k1
c(l)
k2

(4.7)

Where l identifies the energy level and n(l)
e is the number of electrons in the l level.

In our implementation we employed the following definition for the �ij term for
a couple of orbitals:

�ij = �1

2
(↵i + ↵j) · cos2 ✓ ·

n
e�ij(1�

r
rm ) � 2e

�ij
2 (1� r

rm )
o

(4.8)

In this case, cos2✓ accounts for the angular dependency of the overlapping term,
while r is the actual bond length and rm is the equilibrium bond length computed
using reference covalent radii (for double and triple bonds accordingly). The
functional form of the radial component for the � term is a Morse function [94].
The maximum absolute value of the o↵-diagonal term (�) is taken as the average
of the diagonal terms (↵): as a consequence, the only parameters required are the
diagonal ↵ and the radial decay �. In order to obtain such parameters, the Wiberg
bond orders [95] were taken as references computed at the B3LYP[27]/aug-cc-
pVDZ level. In this case, the parameters were chosen so as to obtain the best
fit of Wiberg bond orders [95] with a second-order polynomial in the range of
double bonds, and a linear expression in the range of triple bonds. The need
for such interpolation arises from the natural tendency of the Huckel-like models
toward over-delocalization: for instance, in the case of benzene, the analytical
solution of a Huckel model gives a ⇡ bond order of 2

3 [96] to be added to a �
bond order of 1 and compared to a Wiberg bond order [95] of 1.4. In optimizing
parameters we also took care of correctly describing the hyperconjugation e↵ect
[97, 98] by assigning di↵erent parameters to those carbon atoms connected to
other sp3 carbon atoms with hydrogens (positive hyperconjugation: the � C-H
orbital interacts) and to those carbon atoms connected to other sp3 carbon atoms
bonded to halogens (negative hyperconjugations: the �⇤ C-X orbital interacts).
In Table 4.1, the resulting parameters are shown.
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↵ �
C1 -68.96 10.39
C2 -67.05 16.27
NSP -40.39 4.52
N1 -33.65 68.68
N2 -100.00 39.84
O1 -53.44 0.01
O2 -100.00 49.74
P1 -68.41 20.03
P2 -99.99 100.00
S1 -37.20 0.02
S2 -100.00 38.83
pHyp1 -44.43 22.58
nHyp1 -90.22 3.67
pHyp2 -62.48 73.82
nHyp2 -59.38 72.99

Table 4.1: The Tight-Binding parameters in relative units.

The best fit of Wiberg bond orders [95] is obtained with the following correc-
tions:
(
BOcorr(BOo) = 1.0007 · BO2

o
� 1.9892 · BOo + 1.9554, if BOo < 2.1

BOcorr(BOo) = 2.5942 · BOo � 4.8860, otherwise
(4.9)

Except for bonds involving sp carbons in negative or positive hyperconjugation,
for which a better fit with the Wiberg bond order [95] is given by the following
equation:

BOcorr(BOo) = �0.8548 · BO⇡ + 5.8665 (4.10)

In Fig. 4.3, the result of the correlation between the bond orders for a large set
of organic molecules is shown. This has been obtained by optimizing the ↵ and
� parameters.

Figure 4.3: The correlation between the Proxima bond order on the horizontal
axis and the Wiberg B3LYP[27]/aug-cc-pVDZ bond orders [95] for the vertical
axis. The maximum di↵erence is 0.15.
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It is of general interest to notice how the use of the cos2(✓) contribution in
the � term of the Tight-Binding matrix correctly describes the behavior of the
bond orders with changing angle values. An example is the Biphenyl molecule
observing how the bond order changes when rotating the two rings one with
respect to the other. In Fig. 4.4, the rotation around the bridge bond of the two
biphenyl groups is shown.

0 50 100 150 200 250 300 350

1.01
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1.03

1.04
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1.06

✓ (�)

The Biphenyl bond order with rotation

Figure 4.4: The change in the bond order of the bridge bond in the biphenyl
molecule as the two rings rotate in one respect to the other. The blue line is
the QM Wiberg bond order [95] computed at the B3LYP[27]/jun-cc-pVDZ level,
while the green line is the bond order computed by Proxima. On the x-axis, the
torsional angle is shown in degrees.

It is interesting to notice how the correct behavior gets replicated by Proxima,
and also how the bond order lowers as the two rings approach 90 degrees breaking
conjugation.

4.1.3 Non-Covalent Bonds

Hydrogen bonds will be considered in detail for purposes of illustration, but the
same procedure can be employed for di↵erent kinds of interactions (e.g., halogen
bonds, etc.). To check for the presence of a hydrogen bond, each possible acceptor
atom (such as nitrogen, oxygen, phosphorous, or sulfur) is checked for the presence
of Lone Pairs. If this is the case, nearby atoms are checked for the presence of
hydrogen atoms connected to donor atoms. The Lone Pairs of the acceptor atom
are actively used for the perception of the bond so as to avoid finding hydrogen
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bonds in the so-called � hole, the region inside the cone created by the rotation of
the two Lone Pairs. With respect to more traditional expressions, we don’t need
any more specific angular parameters since the best orientation of the hydrogen
atom, the Lone Pair involved, and the acceptor atom is always linear provided
that Lone Pairs are properly oriented. To this end, we enforce angles of 109.47° or
120° for couples of Lone Pairs at sp3 or sp2 centers, respectively. Single Lone Pairs
are, instead, placed by minimizing the di↵erence of the angles they form with the
other substituents. In the following, we are going to discuss the computation of
the hydrogen bond intensity for just a single hydrogen bond defined by the triplet
of atoms: (A,H,D). In this context, hydrogen bonds are considered independent
thus a complete description of non-independent interactions (such as bifurcated
bonds) is left for future works. The absolute value of the intensity of a hydrogen
bond is computed employing a radial expression such as a modified Morse recently
introduced in a work about noncovalent interactions [99], the same expression of
the � term in the TB model, in this case, the reference distance considered is
between the Donor and Acceptor atoms:

I(r) =� 1 · exp
⇢✓

↵

✓
1� r

rm

◆◆

�
"✓

r

rm

◆4

� 2

✓
r

rm

◆2

+ 3

#
exp

✓
↵

2

✓
1� r

rm

◆◆� (4.11)

The rm parameter for the computation of the global intensity is taken as the
one introduced in a study about hydrogen bond interactions [100, 101]. The
↵ parameter is chosen so that the intensity is 0.5 when r = rm + 0.4. The
di↵erence between a hydrogen bond and a � bond, however, is the presence of a
”directionality” due to the presence of a third atom: the bridge hydrogen atom. In
order to account for such directionality in quantifying the strength of a hydrogen
bond, Lone Pairs are considered. For example, in Fig. 4.5, the computation of
the intensity of a hydrogen bond is shown for a single Lone Pair configuration.

Figure 4.5: The strength of a hydrogen bond in a single Lone Pair configuration.

68



In this case, only the relative strength along the direction of the Lone Pair
is the e↵ective strength of the hydrogen bond, because of its directional nature.
In order to quantify the relative strength along the Lone Pair direction, the
traditional dot product between vectors should be used as ||I||cos(✓). However,
in cases where the hydrogen atom is placed orthogonal to the Lone Pair (with ✓
higher than 90°), we want to cut the interaction to 0. The problem with cutting
the interaction to 0 above 90° is that we introduce a non-derivable point since
the cosine has a maximum derivative around 90° angles. To solve this problem,
we compute the projection of the intensity along a given direction through a
modified operator defined as ||I||cos2(✓). By employing the square of the cosine,
instead of the single cosine, we require the derivative to go to 0 at around 90°,
so we can cut the interaction with no further problem. It is also important to
remember that these quantities are based on heuristics rather than physics and
the only important characteristic that they should respect is to describe correctly
the phenomena in relative terms. Precise values can then be obtained by other
regression methods. In practice, by treating the cos2 term as a scaling factor, we
not only need to make sure that the orientation of the D-H is correct but also that
the A-D orientation is best aligned. To do so, we simply consider the additional
angle � as shown in Fig. 4.5:

Ieff = ||I||cos2✓cos2� (4.12)

If two Lone Pairs are considered, as it is in the case of carbonyl oxygen, we
have two di↵erent sources of directionality that we must take into account. In
Fig. 4.6, the computation for the e↵ective strength of a hydrogen bond in such a
Lone Pair configuration is shown.

Figure 4.6: The strength of a hydrogen bond in a double Lone Pair configuration.

The same consideration made above on ”cutting the interaction around 0” is
still valid so, in our modified form:
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(
Id1 = ||I||cos2(✓1)cos2(�1)

Id2 = ||I||cos2(✓2)cos2(�2)
(4.13)

Moreover, in this case, we get two di↵erent directional intensities: Id1, Id2. In
order to combine them into a single number we compute the e↵ective intensity
as follows:

Ieff = Id1(1� Id2) + Id2(1� Id1) (4.14)

This can be interpreted as: the e↵ective intensity has maximum value if the
hydrogen atom is directed along d1 AND NOT along d2, OR if it is directed along
d2 AND NOT along d1. It is clear how in the general case of n Lone Pairs placed
on the acceptor atom, we can extend the treatment by computing our modified
intensities along each Lone Pair ({Idi}), and then combining them in an e↵ective
intensity:

Ieff =
nX

i

Idi
Y

j 6=i

(1� Idj) (4.15)

As an example, in Fig. 4.7, the hydrogen bond profile is given for a donor
group rotating around an acceptor.

Figure 4.7: An example of hydrogen bond intensity computed by rotation of the
donor group around the acceptor.

It is important to notice the correct representation of the � hole as an un-
favorable configuration for the formation of the hydrogen bond. Once hydrogen
bonds are detected, they can be added to the list of bonds. As a consequence,
both polarization and charge transfer across hydrogen bonds can be taken into
proper account. As mentioned above, other kinds of non-covalent interactions can
be treated in the same way whenever customary van der Waals and electrostatic
interactions are not su�ciently accurate. It is interesting to notice that, in prin-
ciple, it would be possible to check for the presence of holes in the neighborhood
of atoms with electron pairs for the detection of, more generally, dative bonds in
which hydrogen bonds are a special case. It is important to keep in mind that a
hole is assigned to a hydrogen atom by default in our procedure.
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4.2 Empty Valence

Once the topology has been assigned, MP algorithms are used to extract fur-
ther information from the system or even to manipulate the system itself for
pre-processing or post-processing operations. One example is the detection of
missing hydrogen atoms. The hydrogen atom is the simplest element and is the
most common substituent in filling the empty valence of heavier atoms. More-
over, widely employed experimental techniques such as X-Ray crystallography are
not able to detect unambiguously most hydrogen atoms due to their low charge
density. As a consequence, hydrogen atoms are very often missing from primary
sources of information and must be added by ad hoc procedures. The general
approach employed here is based on the perception of the hybridization of the in-
volved atoms, which allows us to know the number of connected atoms with their
reference geometry. As an example, if a neutral carbon atom with two connected
atoms and sp2 hybridization is detected, then a third hydrogen atom is added in
the corresponding spot. There are some edge cases though that deserve a more
careful treatment, like, e.g., terminal and isolated atoms. In the case of terminal
atoms, there is a single bond thus there are no angles to check for hybridization.
However, the perception of valence electrons permits the detection of the num-
ber of unpaired electrons. Thus, by performing ⇡ bond perception, a hydrogen
atom is added to each � unpaired electron so as to fill valences. The geome-
try used to decide the hydrogen positions takes the original bond as a reference.
In the case of isolated atoms, i.e., atoms without bonds, the valence electrons
are all unpaired except for the natural Lone Pairs. As an example, an isolated
carbon atom will have four unpaired electrons and an isolated oxygen will have
two unpaired electrons instead. Thus, an isolated carbon atom is interpreted as
methane, and an isolated oxygen atom as a water molecule. Another edge case
is aromatic rings involving nitrogen atoms. In fact, aromatic nitrogen atoms can
be bonded to a hydrogen atom or not. In this case, aromaticity can be perceived
by checking the planarity of the ring itself and the number of hydrogens added to
each nitrogen atom so that the total number of electrons delocalized in the ring
respects the aromaticity rules. The real problem with isolated atoms is that the
lack of reference bonds introduces some ambiguity in the preferred orientation of
the hydrogen atoms to be added. The general rule of thumb, developed with the
water molecule in mind, is to check for the two nearby atoms between the ones
with higher electronegativities that are closer to the central atom, as shown in
Fig. 4.8.
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Figure 4.8: Automatic addition of implicit hydrogens. Notice the change in the
orientation of the hydrogen atoms in the case of water molecules, where Proxima
uses the most electronegative nearby atoms to define hydrogen orientation.

Thus, we can define a reference plane in which to place the first two hydrogens
(as in the case of the water molecule) and additional out-of-plane hydrogens (as
in the case of the methane molecule).

4.3 Charge Perception

The other fundamental perception step, once the topology is computed, is the
perception of charges. Let’s take a two-body system (such as a � bond), the TB
matrix can be written as follows:

TB = ↵0


1 0
0 1

�
+ �0


�A ✏AB

✏BA �B

�
(4.16)

where:
↵A = ↵0 + �A�

0 (4.17)

�AB = ✏AB�
0 (4.18)

And the following is satisfied for every atom [92]:

�A = �0
A
+

X

B connected to A

�A(B)�B (4.19)

If the starting geometry of the system is only approximate, the o↵-diagonal
terms are given fixed reference values, but if su�ciently accurate geometries are
available (or during geometry optimizations) an explicit rAB dependence for the
� term can be employed as follows:

✏AB = fAB(r) +
↵0

�0
+ �̄ (4.20)

With:
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�̄ =
�A + �B

2
(4.21)

And:
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This expression is the same used for the � term of the TB model [99]. In the
case of covalent interactions, instead, the n = 0 expression is taken obtaining a
traditional Morse. Here �E is the dissociation energy and the rm parameters
are either covalent or vdW radii. Diagonalization of the TB matrix provides the
eigenvalues of each two-body system

E = ↵0 + �0

✓
�̄ ±

q
��2 + ✏2

AB

◆
(4.23)

Where:

�� =
�A � �B

2
(4.24)

Thus, by truncation to the first order (using the ✏AB expression above):

E = ��0 · fAB(r) (4.25)

Proving that the choice of the � o↵-diagonal parameter is the one determining
the shape of the overall energy of the system. At this point, charges can be directly
computed with the following expressions for a � bond:

QA =
X

Q0
A(B) (4.26)

Q0
A(B) =

�B � �A
2✏AB

(4.27)

In order to improve the computation of charges, we decided to simplify the
original formulation thus deriving a custom set of new parameters. The original
Del Re expression for the computation of the � charge is the following [92]:

Qi =
X

j

�j � �i
2✏ij

(4.28)

This equation (where for each atom the condition �i = �0
i
+
P

j
�ij�j is sat-

isfied) is employed in its first-order variation (where �i = �0
i
+
P

j
�ij�0j ). Such

approximation is generally valid for systems in which standard electronegativities
are not that di↵erent from in situ electronegativities. In general, the ✏ij and �ij
parameters can be further expressed as dependent on single atom parameters.
The simplest combination rule that we have employed in the following is simply
the average:
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✏ij =
✏0
i
+ ✏0

j

2
(4.29)

�ij =
�0
i
+ �0

j

2
(4.30)

Moreover, we decided to explicitly include the total (� + ⇡) bond order into
the equation so to account for delocalization. In addition to the total bond order,
since we want to correctly scale charges depending on the strength of the The
simple TB model used in the following always uses a single orbital per atom and
is based on the original formulation of the Huckel-Del Re model [90–92] both for
localized � and delocalized ⇡ moieties. The ⇡ portions of the system are perceived
by performing a Breadth-First Search (BFS) [93], which groups together nearby
atoms having unpaired electrons, electron pairs, and holes. The wave function for
each ensemble is expressed in terms of e↵ective orthogonal orbitals centered at
the involved atoms. In the approximation that only atoms linked by a sigma bond
are coupled, the e↵ective TB Hamiltonian can be always recast in a tri-diagonal
form, whose eigenvectors convey all the information needed to obtain atomic
charges and bond orders: bond, each term �j��i is further multiplied by the The
simple TB model used in the following always uses a single orbital per atom and
is based on the original formulation of the Huckel-Del Re model [90–92] both for
localized � and delocalized ⇡ moieties. The ⇡ portions of the system are perceived
by performing a Breadth-First Search (BFS) [93], which groups together nearby
atoms having unpaired electrons, electron pairs, and holes. The wave function
for each ensemble is expressed in terms of e↵ective orthogonal orbitals centered
at the involved atoms. In the approximation that only atoms linked by a sigma
bond are coupled, the e↵ective TB Hamiltonian can be always recast in a tri-
diagonal form, whose eigenvectors convey all the information needed to obtain
atomic charges and bond orders: bond order (BO� 2 [0, 1]) so as the �ij term.
The � charge then is:

Qi =
X

j

(�j � �i)BO�

ij

2✏ijBO�+⇡

ij

(4.31)

By taking CM5 charges computed at the B3LYP[27]/aug-cc-pVDZ level of
theory, we optimized the �i, ✏i and � parameters using a simple di↵erential evolu-
tion algorithm minimizing the RMSE value between the computed and predicted
charges. The resulting optimized charges for sp3 systems are shown in Fig. 4.9.
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Figure 4.9: The correlation between the charges computed by Proxima and the
CM5 total charges for C, N, and O atoms in the case of sp3 systems for 228 atoms
from 50 molecules.

In Fig. 4.10, instead, charges are shown for sp2/sp systems.

Figure 4.10: The correlation between the charges computed by Proxima and the
CM5 charges on a dataset of 933 atoms from 164 molecules.

The overall parameters are reported on Tab. 4.2.
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� ✏ �
H -0.028 0.221 0.053
CSP3 0.060 0.907 0.079
C1 -5.060 -61.401 0.127
C1p -3.585 -56.672 -0.098
C1n -2.047 -53.626 -0.099
C2 -8.476 -63.927 0.215
C2p 0.057 -38.541 0.380
C2n 0.054 -28.526 0.318
NSP3 0.290 0.891 0.056
NSP 0.848 7.035 -0.514
N1 -0.263 -35.300 5.043
N1(amide) -11.733 -58.479 -0.086
N2 -8.969 -33.169 -0.093
OSP3 0.351 0.843 0.131
O1 -0.871 47.050 5.554
O2 -10.505 -33.311 -0.094
PSP3 0.225 12.642 0.271
P1 -0.965 -81.853 2.098
P2 -3.234 -41.186 -0.389
S(SP3) 0.138 1.151 0.135
S1 -14.770 31.327 0.438
S2 -4.703 -45.660 -0.094
F -0.180 -2.018 -0.480
CL -0.087 -5.091 -0.617
BR 0.049 9.737 -7.187

Table 4.2: The parameters used for charge computation.

The higher variation of charges in sp2 systems with respect to the sp3 ones
are explained by the approximation of the original Del-Re model to its first it-
eration only which determines a lack of delocalization in describing the overall
atomic charge (although is partially taken into account due to the presence of
the ⇡ bond order at the denominator). In fact, the biggest deviations are seen
in small delocalized environments with di↵erent heteroatoms bonded together.
These maximum di↵erences are the nitrogens of urea (0.16 charge di↵erence in
absolute value), the carbon atom of acetone (0.16 charge di↵erence), and the ni-
trogen of ethyl carbamate (0.16 charge di↵erence). Then, all the other charges
have a di↵erence with the CM5 that is below 0.15 with an RMSE value of 0.036.
In fact, the good news is that the charge computed for systems of our interest
such as peptides and simple amides is good enough. In future developments, we
are going to study a multi-goal strategy to simultaneously optimize the Tight-
Binding parameters for charges and bond orders, although the Huckel TB method
has shown a tendency to over-delocalize (such as in the case of bond orders) while
CM5 charges show smaller variations. However, despite all these limitations, the
agreement between CM5 and Proxima charges is still good enough to justify its
use in perception procedures. In cases the user wants to reach higher precision in a
region of the molecule, it is still possible to compute CM5 charges with traditional
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QM methods and correct them point by point. In fact, Proxima can partition
the system into custom ”fragments”. The advantage of such an approach is that
it is also possible to do the opposite: instead of dividing a molecular system into
fragments, it is possible to assemble fragments together forming a new molecu-
lar system. In fact, by having access to a database of di↵erent fragments with
charges computed at the quantum level, we can assemble together these fragments
in bigger systems by just recomputing charges where necessary. In Fig. 4.11, the
mathematical equations for computed charges from disconnected fragments are
summarized. In the picture, the x/y atoms are disconnected from the A/B atoms
and then A and B are connected together. In general, the charge can always be
written as:

QA0 = QA +
�B � �A
2✏AB

+KA,B,X,Y (4.32)

Depending on whether the X atom is a terminal atom, and whether x = y,
the KA,B,X,Y changes as shown in Fig. 4.11.

Figure 4.11: The process of taking two di↵erent fragments, disconnecting the x/y
atoms from the A/B atoms, and then creating a new bond between A and B.

4.3.1 The Hydrogen Bond Charge contribution

The formation of a Hydrogen Bond introduces a � on the theoretical charges. In
general, it is a contribution of Charge Transfer (CT) and polarization. In general,
we focused on inter-molecular hydrogen bond formation such as the ones involving
water molecules. As a consequence, the polarization e↵ect was taken into account
requiring it to replicate the charge of water in bulk. In order to quantify the
Charge Transfer e↵ect, a set of clusters of water molecules and ammonia has
been taken into account. For each molecule, the �i has been computed as the
di↵erence between the CM5 charge of the i-th atom in the cluster and the same
atom in the isolated molecule. The Charge Transfer is then quantified as the
summation of these deltas onto the acceptor group.
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���� (4.33)

Where {ai} is the ensemble of atoms connected to the acceptor atom and {di}
is the ensemble of atoms connected to the donor atom. In general, for a given
hydrogen bond with an intensity I, the Charge Transfer is expressed as:

��CT
�� =

��CT
��
opt

· I (4.34)

As a consequence, the e↵ect of the Charge Transfer on the charges is the
following:

Qhb(i) = Q0(i) + %(i) ·
X

hbnds

CThbnd (4.35)

Where % is a function of the ”percentage” of Charge Transfer that each atom
involved can take upon itself (so we have the constraint of

P
%i = 1), and:

CT =

(
�
��CT

��, Donor group,
��CT

��, Acceptor group
(4.36)

The general values employed for the % function is 0.6 for the donor/acceptor
heteroatom and 1�0.6

nbonded
for each atom directly bonded to the donor/acceptor. The

Charge Transfer absolute value for the couples of N and O atoms is shown in Tab.
4.3.

Acceptor
Donor O N

O 0.086844 0.125037
N 0.125037 0.105360

Table 4.3: The Charge Transfer parameters employed between acceptor and donor
atoms.

In addition to the Charge Transfer, the e↵ect of polarization must be taken
into account, since our goal is to replicate the TIP3P [102] charges of the water
molecule in bulk. The e↵ect of Charge Transfer vanishes since there are an equal
amount of in and out-hydrogen bonds, so they compensate. In order to avoid
this e↵ect, we add an internal polarization value that compensates itself within
the molecule thus not a↵ecting the overall Charge Transfer. For each D-H donor
bond involved in a hydrogen bond, a value of 0.104 is added to the hydrogen
atom and a value of -0.104 is added to the donor atom. The polarization thus
happens on the single bond and thus does not a↵ect the Charge Transfer. In Fig.
4.12 an example of the formation of a cluster of water molecules is shown.
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Figure 4.12: The formation of a water cluster

4.4 Ring Perception

The first version of Proxima was already capable of perceiving chemical rings
in complex structures using Horton’s algorithm. [77, 103, 104] In the current
version, chemical rings can also be classified as aromatic and nonaromatic by
checking the average torsion angle for planarity and also considering the number
of ⇡ electrons involved in the cycle. Moreover, Proxima capabilities were extended
in order to describe the conformational space associated with ring flexibility. The
widely employed ring puckering coordinates [105–107] were added to the tools
box, allowing the classification and the ring reconstruction upon modification of
the ring coordinates. Cremer Pople coordinates allow for a complete description
of ring puckering motions in flexible ring molecules with a set of Nring�3 coordi-
nates, where Nring is the number of atoms belonging to the ring structure (e.g.,
in the case of the cyclopentane molecule only the five carbon atoms, therefore
Nring = 5). After rotating and translating the Cartesian framework in which the
coordinates of the molecular system under investigation are given according to
the following prescriptions:

NringX

j=1

rj = 0

r0 =

NringX

j=1

rjsin

✓
2⇡(j � 1)

Nring

◆

r00 =

NringX

j=1

rjcos

✓
2⇡(j � 1)

Nring

◆

ẑ =
r0 ⇥ r00

|r0 ⇥ r00|

(4.37)

where the position vectors rj specify the positions of the atoms involved in
the ring structure, the Cremer Pople coordinates are defined as follows:
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(4.38)
The main advantage of ring coordinates is that a cycle can be described with

only two coordinates: qm, ✓m. Thus, a reduced dimensionality PES suitable for
analysis in an IVR environment can be obtained by plotting the energy as a
function of the two polar coordinates minimized with respect to all the remaining
coordinates. This application is shown in Chap. 8.

4.5 Tautomers

Tautomers play an important role in chemistry and biology; the general properties
of a compound are the result of the equilibrium between these di↵erent structures.
Thus, tools that allow the detection of all possible tautomers are much needed
especially in computational chemistry and drug discovery [108]. The perception
of tautomers in Proxima is focused on keto-enol and imin-amin equilibria, given
a specific geometry. This is possible thanks to our perception of electron pairs
located on the atoms. In particular, these types of tautomerisms are of the 1,3
type, which means that the atoms involved are the atoms at distances 1,2, and 3
with respect to the hydrogen atom (distances in number of bonds). Proxima is
capable of detecting the weight of a given tautomeric form (in a given input ge-
ometry) by checking the relative distance between the virtual site (the Lone Pair)
of the acceptor atom (the atom that is forming a bond with the hydrogen during
the tautomeric equilibrium) and the hydrogen atom. The maximum number of
tautomers for such equilibria can be computed by:

✓
n

k

◆
=

n!

k!(n� k)!
(4.39)

With n the number of hydrogens that can be shifted and k the number of Lone
Pairs that are available. This number gets reduced once Proxima has assigned
the weight to each tautomer. Moreover, Proxima also distinguishes between a
neutral tautomeric form and one with charge separation presenting the second
one only if the molecule is considered in solvent and not in the gas phase. In Fig.
4.13, the tautomers of cycloserine detected by proxima are shown both for the
gas phase and for the bulk (with charge separation).
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Figure 4.13: The tautomers of cycloserine detected in vacuum and in solvent with
charge separation.

Proxima, by detecting the ring in these tautomeric forms, can also be inte-
grated with one of our tools for the automatic assignment of ring coordinates.

4.6 Chiral centers

Chiral atoms are detected automatically by an approach reminiscent of the Mo-
lassembler model [109], which is based on IUPAC rules and involves three main
steps, namely score assignment to the substituents of the investigated atom, or-
dering of those substituents and determination of the chirality.

4.6.1 Score assignment

Traditional priority rules are based on atomic numbers. An atom with a high
atomic number has a higher priority. However, in comparing two atoms with the
same atomic number, we have to look for the atoms bonded for di↵erences in
atomic numbers. In fact, the procedure is iterated until a di↵erence between two
substituents is found. The first step is to perform a BFS (Breadth-First Search)
[93] on each substituent so as to subdivide it into levels and assign a score to each
level. As an example, in Fig. 4.14, a molecule is shown with its subdivision in
levels.
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Figure 4.14: The subdivision in levels through the BFS on an example molecule.
The starting point of the BFS is the atom pointed by the red arrow.

The BFS has a natural tendency to subdivide graphs into levels since is a
”child-first” exploration of the molecular graph. The score of each level is a
weighted sum of the atomic numbers involved with weights corresponding to the
products of the bond orders of the bonds traveled from the origin atom to each
of the atoms. This is coherent with the standard priority rules. In fact, an atom
in a double bond should be considered twice and an atom in a triple bond should
instead be considered three times. As mentioned above, continuous bond orders
are employed in place of discrete ones, but the logic of the assignments remains
the same. The score is assigned up to level 3 of each substituent, the maximum
number of levels to consider for scoring can also be given as input by the user.

4.6.2 Order assignment

At the end of the previous step, we are left with a set of scores for each level of
each substituent. In order to ”sort” substituents, we start by looking at the score
of the first level of all the substituents (that is the atomic number of the atom
directly bonded to the chiral center). The substituents are sorted on the basis of
this score. If there are subsets of substituents that have the same score, at the
current level, the same procedure is repeated on each subset but using the scores
of the subsequent level. In fact, this is repeated, going down on levels, up until
there are substituents with equal scores (or we have reached the last level). If we
reach the last level and there are still substituents with equal scores, we consider
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the atom achiral. If not, an R/S assignment is done in the next step.

4.6.3 Chirality assignment

Once substituents are ordered, it is possible to verify the three-dimensional dis-
position so as to assign an R/S chiral state. In Fig. 4.15, a general chiral atom
(C) bonded to its four substituents is shown with two configurations: R, S. Each
substituent is identified by a label Gi, where i is the relative ordering of the
substituent as determined in the previous step on the basis of the level scores.

Figure 4.15: A central chiral atom (C) bonded to four substituents
(G1, G2, G3, G4) in an R configuration (on the left) and an S configuration (on
the right).

In this example, the ordering is the following: G1 > G2 > G3 > G4. Thus, G4

is the substituent with the lowest score and G1 is the substituent with the highest
score. In the following, each substituent is identified by the position of the atom
directly bonded to the central chiral atom. Thus, the ~G1 vector points towards
the atom of the G1 group bonded to the central C atom. The central C atom, of
course, has its own ~C position. The assignment is performed as described below:

• R is assigned if:
(( ~G4 � ~C)⇥ ( ~G1 � ~C)) · ( ~G2 � ~C) � 0 AND
(( ~G4 � ~C)⇥ ( ~G1 � ~C)) · ( ~G3 � ~C)  0

• S is assigned if:
(( ~G4 � ~C)⇥ ( ~G1 � ~C)) · ( ~G2 � ~C)  0 AND
(( ~G4 � ~C)⇥ ( ~G1 � ~C)) · ( ~G3 � ~C) � 0

In other words, the G2 group should be on the same side of the vector prod-
uct between G4 and G1 in an R configuration, and on the other side in an S
configuration.
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4.6.4 Alkene and Allene Stereochemistry

The perception of alkene stereochemistry follows the same priority rules high-
lighted before on the four substituents of the alkene (two for each sp2 atom).
In this case, we check whether the two substituents on each atom that has the
higher weight are on the same or opposite sides of the bond. In the first case,
we assign a Z stereochemistry, E otherwise. The same approach is applied to the
imine bond where the E/Z stereochemistry can also be interpreted as syn/anti
stereochemistry. The perception of allene stereochemistry follows the same rules,
but in this case, the traditional R/S geometric criterion is applied to the four
substituents of the external bond of the allene.

4.7 Solvation procedures

The Proxima Molecular Perception library [77] is employed for the automatic
solvation of molecular structures. The motivation for developing a new solvation
tool, despite the presence of many others in the field (e.g. gromacs [110]), is that
we needed a more custom option. Indeed, many solvation procedures have their
own internal database of solvent structures. In our case, the solvent is loaded
from a file explicitly given by the user and there are no limits on the type of
structure required. In fact, it is also possible to use solid-state crystal structures
as ”solvent” (e.g. in studying the intercalation of a molecule in a periodic solid).
The only requirement is to use PDB files containing the solvent structure in a
cell. Moreover, the biggest advantage of having solvation procedures in Proxima
is that are easily portable in di↵erent tools since Proxima is a multilanguage
library (C++, Python). In the following, the procedure is illustrated both in
theory and code.

4.7.1 Periodic Solvation

The general solvation procedure is available in the C++ version of Proxima and
also in the Python version of Proxima (PyProxima). The starting point of these
procedures is to instantiate a new SolventGenerator object and load a solute
molecular system from a file. The code for these two steps is illustrated below:

C++
SolventGeneratorSP sgen(new SolventGenerator());
MolecularSystemSP solute = Parser::readPDB("solute.pdb");

PyProxima
sgen = pyproxima.PySolventGenerator()
solute = pyproxima.PyParser().readPDB(b"solute.pdb")

Only C++ code will be shown from this point. To load the solvent molecular
structure (currently, only PDB files are supported) and add the solute to the
SolventGenerator object, the addCustomSolvent and the addSolute methods
have to be invoked.

sgen->setCustomSolvent("solvent.pdb");
sgen->addSolute(solute);
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At this point, it is possible to replicate the solvent molecules so as to cover
the space surrounding the solute up to a maximum distance rmax. The method
is the following:

sgen->generateSolvent(r_max);

The operations this method performs are described in the next two subsec-
tions.

4.7.2 Sphere Generation

The portion of space that is required to be solvated is defined by a sphere with
a radius of rmax surrounding the solute in the center of its bounding box. The
center of the bounding box is preferred over the geometric center since it is not
a↵ected by the internal disposition of atoms but it rather accounts only for the
overall shape of the molecule.

4.7.3 Cell Generation

Once this sphere is computed, we need to find an extension of the solvent cell that
circumscribes the solute sphere. The solvent cell is defined by an origin vector
and three generally non-orthogonal vectors oriented along the sides of the cell
(see Fig. 4.16).

Figure 4.16: The ~a, ~b, ~c vectors define together the solvent cell. These are
generally non orthogonal and their relative angles are ↵ =

~b·~c
||~b||·||~c||

, � = ~a·~c
||~a||·||~c|| ,

� = ~a·~b
||~a||·||~b||

It is possible to replicate the solvent system along its three cell axis vectors.
Thus, there are two problems to solve:

• Finding the origin of the new cell that surrounds the sphere.

• Finding the number of replicas of the unit cell, along the axis vectors, so as
to cover the entire sphere.
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The first problem is solved by considering the three planes defined by the
couples of vectors (a, b), (b, c), (c, a) respectively (see Fig. 4.16 for the naming of
the axes). Each one of these planes defines two other tangent planes to the sphere
by simple translation (See Fig. 4.17).

Figure 4.17: One plane defines two tangent planes to a sphere by simple trans-
lation. In the figure, ~n is the orthogonal vector to the plane that defines its ori-
entation, ~Rsph is the center of the sphere, The tangent points are ~Rsph ± rsph · ~n,
where rsph is the radius of the sphere.

To describe a plane, a vector perpendicular to the plane and an application
point is needed. The perpendicular vectors are obtained by performing cross
product between the cell vectors (so ~a ⇥~b,~b ⇥ ~c,~c ⇥ ~a). The application points
are instead obtained by summing together the center of the sphere with a vector
having the radius of the sphere as length and oriented as the plane vector (see
Fig. 4.17). Thus, since there are three cell planes and one sphere, there is a total
of 3 ·2 = 6 tangent planes to the sphere. The interest is in finding the origin point
of the new cell, this is obtained by the intersection of the three planes having the
following application points: ~Rsph� ~a⇥~b

||~a⇥~b||
rsph, ~Rsph�

~b⇥~c

||~b⇥~c||
rsph, ~Rsph� ~c⇥~a

||~c⇥~a||rsphere.

This origin point is the ~O vector in Fig. 4.18.
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Figure 4.18: The ~O point is the origin of the new cell, the ~F point instead is the
furthest away point from the origin of the cell. These points are obtained by the
simple intersection of the tangent planes to the sphere.

To solve the second problem instead, we first need to determine the point of
the new cell that is the furthest away from the origin (the ~F point in Fig. 4.18).
It has been already said that each plane defines two tangent planes to the sphere
by simple translation. In order to find ~F , we need to find the intersection between
the planes with the following application points: ~Rsph+

~a⇥~b
||~a⇥~b||

rsph, ~Rsph+
~b⇥~c

||~b⇥~c||
rsph,

~Rsph +
~c⇥~a

||~c⇥~a||rsph. The problem of finding the number of replicas of the cell along

each axis so as to include the ~F point, in an orthogonal cell, would be simply
solved by dividing the distance of the point from the origin by the length of
each side of the cell. The extension to nonorthogonal reference axes requires the
definition of a matrix having the cell vector axes as columns:

M =

2

4
ax bx cx
ay by cy
az bz cz

3

5 (4.40)

Then we define the ~r vector as ~F � ~O. To find the number of replicas of the
cell along each axis (l,m, n) all that is required is to multiply the inverse matrix
of M by ~r.

2

4
l
m
n

3

5 = M
�1~r (4.41)

Once a solvent molecular system is loaded, all the atoms are translated so as
to match the origin of the coordinates with the origin of the new cell ( ~O). Then,
each solvent atom is duplicated l ·m · n times so as to cover all the space around
the solute.

4.7.4 Ellipsoid Cell

It is also possible to solvate the solute in a non-spherical manner, by rotating the
solute along its inertia axes. Then, the bounding box and the whole procedure are
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the same as before (just that now we are in a rotated system along the principal
axes of inertia). At this point, the last di↵erence is the criterium used for selecting
solvent molecules using the analytical expression for the ellipsoid instead of the
sphere for the check of the centroid.

4.7.5 Further Refiniments

At this point, the solute is solvated with the solvent but there are still some
refinements that have to be performed:

• Since the solvent cell does not have spherical symmetry, there are extra
solvent molecules not required.

• Some solvent molecules might collide, or be too close, to the solute.

The first problem is easy to solve, since all is required is to erase solvent
molecules whose centroid lies above a given threshold from the solute. In this
way, we are spherically symmetrizing the added solvent. In code, this is done by
calling the following method:

sgen->removeExtraSolvent(d);

d is the distance threshold in Angstrom above which solvent molecules are
removed. The second problem is solved in a similar way. In this case, we check
that each solvent molecule is not ”too close” (below a given threshold) to the
solute. However, we are not using the centroid of each molecule to test this
condition but rather using each atom’s position since we have to be really sure
there are no atomic collisions in the system. This operation is performed with
the following method:

sgen->removeSolventCloseToSolute(d);

d is the distance threshold in Angstrom below which solvent molecules are
removed. To retrieve the final solvated molecular system we can finally call the
getMolecularSystem method:

MolecularSystemSP ms = sgen->getMolecularSystem();
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Chapter 5

The Chemical Feature Space

In previous chapters, we stressed the importance of computing main topological
features such as bond orders (both � and ⇡) and charges, and we already antic-
ipated how such quantities can be employed in defining custom Feature Spaces
such as the one for defining an atom type. The atom type is a classic example of
an entity that a chemist innately knows, which is hard to define formally. In fact,
very many definitions of atom types have been given depending on the choice of
the Force Field [42, 44, 45, 111]. There is a general consensus to identify the
atom type with the ”local environment” of a given atom in a molecule, assigning
the same type to di↵erent atoms placed in the same local environment. However,
a clear definition of what is this ”local environment” is far from reached. Some
Force Fields hugely rely on the hybridization status of the atom in a molecule (e.g.
UFF [44]), while others rely on its presence in functional groups (e.g. AMBER
[45]). It was of our interest to find a unique global definition of continuous atom
types; the advantage of finding a more general definition is not only in simplify-
ing the discussions around the theme but it also opens the possibility of applying
Machine-Learning techniques to automate complex tasks that would otherwise
be done by hand [10]. In building a continuous atom-type definition, we wanted
to make sure to describe all possible variations of what is known as the ”local
environment” for an atom. The reason is that we don’t want to introduce a new
extra layer of chaos by adding a new definition of atom type, but instead, we want
to generalize the already existing atom types to a single continuous definition. In
other words, our continuous atom types should also be capable of describing old
discrete atom types, as will be validated in Chap. 8.

5.1 The Atom Type

The definition of a ”local environment” for an atom clearly has to do with its
connections in a molecule. Given a set of atoms described by atomic numbers and
charges ({Zi, qi}), and a bond order matrix defining the relative interactions be-
tween couples of atoms (BOij), we can then define the atom type as a continuous
4-dimensional quantity:
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~AT i =

2

664

Q
j
(1 +BOij)P

j

p
ZiZjBOij

qiP
j,k

BOijBOikBOjk

3

775 (5.1)

The Bond Order matrix can be derived both from electronic structure com-
putations or by Proxima and, in general, the ”locality” of the environment comes
from the fact that a well-behaved bond order goes to 0 as two atoms are not in-
teracting. Each element of this continuous atom type is called a feature, namely:

• The delocalization feature

• The coordination feature

• The charge feature

• The rigidity feature

5.1.1 The delocalization feature

The first element ~AT i1 is called the delocalization feature and is defined as follows:

Y

j

(1 +BOij) (5.2)

The product contains the bond orders with each other atom j in the system
scaled by 1 so that when two atoms are not interacting it doesn’t vanishes, thus
avoiding singularity problems in the product (it would always be 0). The reason
for its name is related to its strong correlation with the hybridization of the atom
and in particular with its delocalization. In order to show some properties of
such delocalization feature, and the origin of its name, let’s consider the sim-
plified molecular graph G(V,E) obtained by Proxima after performing topology
perception, where each node in the graph is an atom and each edge is a bond.
As a consequence, instead of having to compute BOij for every pair of atoms, we
just need the value for those couples which are connected in the molecular graph
after performing perception. It is important to notice how the relations we are
going to show are formally valid only in the case of acyclic graphs, so if we use a
continuous BOij matrix issued from quantum chemical methods these relations
do not hold because if we represent each vertex of the graph with an atom, it
has a connection with all the others thus creating a cyclic graph by definition.
However, such properties are still useful to discuss so as to motivate the reasoning
behind its name ”delocalization”. An interesting mathematical property is that
in principle this feature depends on the overall connectivity of the graph. In fact,
it is possible to express the feature of a given vertex as a function of the features
of all the others (thus only N-1 features are required to be known).

Theorem 5.1.1. Given a connected acyclic graph G(V,E),

~AT i1 =
Y

j2B(i)

(1 +BOij), 8i 2 V =) ~AT i1 =
Y

j

~AT
(�1)dij+1

j1 (5.3)
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Here, dij is the minimum distance from vertices i and j in number of edges,
and B(i) is the set of vertices directly connected to i.

Proof. Knowing that ~AT i1 =
Q

j2B(i)(1+BOij), 8i 2 V we can express each edge
value 1 +BOij as dependent from the values of the connected vertices

1 +BOij =
~AT j1Q

i0 6=i
(1 +BOi0j)

(5.4)

By iterating such relation for each i’ vertex, moving along the graph we obtain:

1 +BOij =
~AT j1

Q
i02{Cj(i)}

~AT
(�1)

dji0+1

i01

(5.5)

Where Cj(i) is the set of vertices that are reachable from j by moving through
the molecular graph obtained by disconnecting the i atom from j, and dji0 is the
minimum distance between the j and the i’ vertices measured in number of edges.
By substituting this relation for each 1 +BOij in the definition of ~AT i1 we have
proven such relation.

In fact, it is also possible to prove an explicit relation between the features of
connected atoms:

Corollary 5.1.1.1. Given a connected acyclic graph G(V,E),

~AT i1 =
Y

j2B(i)

(1+BOij), 8i 2 V =)
~AT i1

~AT j1

=

Q
j02{Ci(j)}

~AT
(�1)

dij0+1

j01

Q
i02{Cj(i)}

~AT
(�1)

dji0+1

i01

, 8{i, j} 2 E

(5.6)

Proof. By isolating the edge value of the edge connecting the i and j vertices we
get:

8
>><

>>:

~AT i1 = (1 + BOij)
Y

j0!=j

(1 +BOij0)

~AT j1 = (1 + BOij)
Y

i0!=i

(1 +BOji0)
(5.7)

By equating 1 + BOij from both equations and rearranging we have proven
the relation.

We have thus shown how to move from an edge function space {1+BOij} to a
vertex function space { ~AT i1}, however, it is interesting to notice how in principle
it is also possible to move from the Feature Space to the bond orders if some
criteria are respected by the vertex features. In particular:

Theorem 5.1.2. Given a connected acyclic graph G(V,E) and a vertex function
~AT i1, 8i 2 V ,

~AT i1 =
Y

j

~AT
(�1)dij+1

j1 , 8i =) ~AT i1 =
Y

j2B(i)

(1 +BOij) (5.8)

Where 1+BOij is an edge function ({i, j} 2 E) and B(i) is the set of vertices
directly connected to i by some edge.
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Proof. Knowing that ~AT i1 =
Q

j
~AT

(�1)dij+1

j1 we can separate the product by
separating the features of the vertices directly connected to the central i vertex
(that we can define as the B(i) set of vertices) as follows:

~AT i1 =
Y

j2B(i)

~AT j1

Y

j02B(j)\i

~AT
(�1)

djj0+1

j01 (5.9)

Notice how ~AT j1

Q
j02B(j)i

~AT
(�1)

djj0+1

j01 only depends on j and i (since the space
of j’ is B(j) \ i) thus can be expressed as an edge function proofing the above
relation.

Moreover, it is also possible to prove that if the relation above is valid for
just one vertex of the graph, then it is valid for all of them for positive defined
features (such as the ones used in molecular graphs).

Theorem 5.1.3. Given a connected acyclic graph G(V,E) and a vertex function
~AT i1| ~AT i1 > 0, 8i 2 V ,

9i 2 V | ~AT i1 =
Y

j

~AT
(�1)dij+1

j1 =) ~AT i1 =
Y

j

~AT
(�1)dij+1

j1 , 8i 2 V (5.10)

Proof. If exists at least one vertex i 2 V so that ~AT i1 =
Q

j
~AT

(�1)dij+1

j1 , we can

use this expression to isolate the ~AT k1 value for a general vertex k 2 V , so that
dij = dik + djk, as follows:

~AT i1 = ~AT
(�1)dik+1

k1

Y

j 6=i,k

~AT
(�1)dij+1

j1 (5.11)

By inverting such a relation we get:

~AT
(�1)dik+1

k1 =
~AT i1

Q
j 6=i,k

~AT
(�1)dij+1

j1

= ~AT i1

Y

j 6=k,i

~AT
(�1)dij

j1 (5.12)

Since dii = 0, we can include back ~AT i1 in the product:

~AT
(�1)dik+1

k1 =
Y

j 6=k

~AT
(�1)dij

j1 (5.13)

Since we have a positively defined vertex function, we can take the root of the
relation above by isolating ~AT k1:

~AT k1 =
Y

j 6=k

~AT
(�1)dij�dik+1

j1 (5.14)

Since dij = dik + djk, we get the following relation for a generic k 2 V which
proves the thesis.

~AT k1 =
Y

j 6=k

~AT
(�1)djk+1

j1 (5.15)
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In Fig. 5.1, an example is shown with a simplified graph.

Figure 5.1: An example of the delocalization feature for a central node connected
to other two nodes in a graph given an edge function BOij.

In that case, a valence constraint to the central atom is introduced (Vi =P
j
BOij), proving that the delocalization feature actually represents the delocal-

ization around the atom.

5.1.2 The Coordination Feature

The second component in the continuous atom type definition is the coordination
feature defined as:

X

j

p
ZiZjBOij (5.16)

This feature can be thought of as the coordination around the atom scaled
by atomic numbers, a sort of average of the square di↵erence in atomic numbers,
so as to distinguish the same atom that is connected to di↵erent numbers of
heteroatoms.

5.1.3 The Charge Feature

The charge can be written as the summation of a partial charge (q�
i
) and the

formal charge (q+
i
):

qi = q�
i
+ q+

i
(5.17)

In this way, the same atom but in di↵erent ionic or polarization states can
be distinguished. The partial charge employed in our applications is the one of
Proxima discussed in the previous chapter.

5.1.4 The Rigidity Feature

The rigidity feature is defined as:
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X

j,k

BOijBOikBOjk (5.18)

The idea behind the rigidity feature is to distinguish atoms placed in very
rigid structures such as the short cycles cyclopropane or cyclobutane. In Fig.
5.2, the formation of cyclopropane from propane is shown so as to emphasize the
increase in strength in the BOAC intensity.

Figure 5.2: The rigidity feature.

In computing the feature, all possible triplets of atoms must be considered,
but in the case of a simplified molecular graph such as the one computed by
Proxima through perception, it is possible to impose that j and k are geminal
atoms which are atoms connected to the same atom after perception occurred.

5.2 The synthon

The Feature Space introduced in describing atom types can be extended to ensem-
bles of atoms. In fact, the simplest set of atoms coupled together is the covalent
bond. In order to describe the covalent bond as a single vector in a Feature Space,
4 features per atom are required plus an additional feature that can be the bond
order between the atoms connected. It is important, however, to define an order-
ing between the atoms so as to avoid ambiguities in defining such a vector. The
natural way is to apply traditional stereochemistry rules to determine a priority
between the atoms involved in a bond, following such nomenclature we can then
define the synthon as the bond type vector in the Feature Space between atom I
and J as:
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~S =

2

6666666666664

DI

CI

QI

RI

DJ

CJ

QJ
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BOIJ

3

7777777777775

(5.19)

The same treatment can be easily extended to multiples ensembles of atoms,
following the same logic of defining a common ordering of the atoms within the
group and using their features, together with some geometrical descriptors of the
ensemble if explicitly needed by the task studied, to get the best description of
the system. In the case of the valence angle, the bond order between the geminal
atoms (the BOjk) can be taken as an explicit feature in the synthon definition.
The advantage of our features is that, in principle, they can be used in excited
or transition states since such a relation must be conveyed to the descriptors by
the input bond order matrix and charges. In this thesis, the goal is to work on
fixed-topology structures but these descriptors were designed to be as flexible as
possible for future studies. In the next chapter, the analytical equations of some
energy profiles are discussed to provide the foundation for the development of a
future Force Field.
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Chapter 6

The Energy Profiles

The definition of an atom type in the previous chapter prompted us to think
about a possible application in the Molecular Mechanics field by prototyping a
tool that automatically creates a custom Force Field for a given molecule or set
of molecules. Once these molecules are provided by the user, the Proxima library
should be able to cluster atoms that are similar to the others by means of the
atom type as defined in the previous chapter. The same applies to bond and
angle types. Then, by computing hessian and gradients by Quantum Chemistry
methods, we can subtract the non-bond van der Waals and electrostatic energies
(computed with the Molecular Perception algorithms shown in previous chapters)
from the QM values obtaining the relevant energy profiles for the desired variable.
In principle, if the molecule is small enough, it is not necessary to cluster atoms
and bonds and the hessian and gradient can be computed for the overall molecule.
If the molecule is big, however, the Proxima library should extract a subset of
fragments of interest for each characteristic bond and angle so as to compute
derivatives on those smaller fragments thus reducing the computational cost. In
choosing the functional form of energy, our guess is that it is possible to express
most energy contributions with the same formal expression. In particular, the
idea is to shift from the physical space of cartesian coordinates (ri = [xi, yi, zi]) to
our Feature Space of bond orders and charges. In fact, by performing a suitable
coordinate mapping between cartesian coordinates and bond orders it is possible
to move from one space to the other. This bond order mapping is motivated by the
correct asymptotic behavior of bond orders that go to zero as distances increase.
Although Proxima [77] computes bond orders as a combination of a � and a ⇡
component, because of the imprecise nature of the input geometries in perception
procedures that might not be a trustworthy, most common mapping between
these two spaces rely on the radial distances between atoms. Most commons
have an exponential form such as the one originally proposed by Pauling [112]:

BOk = e�↵(rk�re) (6.1)

This expression is well-behaved in the case of asymmetric potential expres-
sions. However, we can expand this definition of the bond order by defining a
custom mapping as:

BOk = e�↵(rk�re)n (6.2)

With n = 1 we obtain the traditional bond order but with n = 2 we obtain
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a Gaussian, thus accounting for symmetric environments. In general, the energy
profile of a coordinate can be expressed as a polynomial of the bond order:

Ek = f(BOk) = Pm

⇣
(rk � re)

l � BOk

⌘
= Pm

⇣
(rk � re)

l � e�↵(rk�re)n
⌘

(6.3)

In this case, with l = 0, n = 2, and m = 1 we obtain a Gaussian-like equation
that is well-suited for symmetric potentials. In the case of l = 0, n = 1, and
m = 2, instead, we obtain the traditional Morse equation that is well suited for
asymmetric potentials. The explicit inclusion of radial coordinates rk is necessary
to correctly describe dispersions, such as in the case of non-covalent interactions
(e.g. hydrogen bond), and double well potentials, such as in tautomerism. In
general, the n degree is related to the symmetry state of the energy profile and it
is possible to expand the polynomial Pm to higher degrees. However, in the fol-
lowing, we are going to focus on simple energy profiles, and further developments
of this bond order mapping are left for future works.

6.1 Single Well Potential

The single well potential is the typical potential for stretchings and bendings
around 180° such as in the case of the HCN molecule. It is also the case of
van der Waals and hydrogen bond interactions where the known 6-12 and 10-12
expressions are taken as a reference. Here we are going to discuss the functional
form in the case of a symmetric and asymmetric potential.

6.1.1 Symmetric

In the case of a symmetric single well potential, a simple formula is employed
using a Gaussian (l = 0, n = 2, m = 1):

Ek = ✏
⇣
1� e↵(xk�xm)2

⌘
(6.4)

In this case, the use of a Gaussian correctly describes the behavior around the
minimum xm by forcing the third derivative to go to zero. In order to determine
the two parameters ↵ and ✏, two di↵erent strategies can be employed:

• Computing the second and fourth derivative values in the minimum forcing
the energy profile to assume the same values.

• Computing the second derivative around the minimum while also forcing
the functional form to pass through a chosen point ((E(xi) = Eref )).

In general, two conditions are required to compute the two parameters. For
completeness, we report the required derivatives:
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@x3
k

= �12✏↵2(xk � xm)e
↵(xk�xm)2 � 8✏↵3(xk � xm)

3e↵(xk�xm)2

@4Ek

@x4
k

= �12✏↵2e↵(xk�xm)2 � 48✏↵3(xk � xm)
2e↵(xk�xm)2 � 16✏↵4(xk � xm)

4e↵(xk�xm)2

(6.5)
The third and the first derivative around xm go to zero as intended, while the

second derivative goes to �2✏↵ and the fourth goes to �12✏↵2.

6.1.2 Asymmetric

In the case of an asymmetric single well potential, the expression is taken with l
= 0, n = 1 and m = 2, obtaining the traditional Morse equation:

Ek = ✏
⇣
e↵(1�

xk
xm ) � 2e

↵
2 (1�

xk
xm )
⌘

(6.6)

In a recent work about van der Waals molecular energies it has been proven
that a more general expression of the Morse equation including a polynomial pro-
vides better results [99]. The motivation for introducing a polynomial multiplying
the exponential is the presence of long-range interactions due to dispersion forces
that scale as r�6 and r�8:

Ek = ✏

 
e↵(1�

xk
xm ) �

"✓
xk

xm

◆2n

� 2

✓
xk

xm

◆n

+ 3

#
e

↵
2 (1�

xk
xm )

!
(6.7)

Although the expression seems far more complicated than the simple Gaussian-
like for the symmetric potential, it is worth noting that the only parameter to be
determined is the ↵ exponential parameter since the depth of the well ✏ is known
given the asymptotic behavior of the energy that goes to zero as the variable
approaches infinity. The only condition worth applying is imposing the correct
second derivative around the minimum xm, here for simplicity we just show the
second-order derivatives around the minimum:

8
>>><

>>>:

✓
@2Ek

@x2
k

◆n=2

xm

= ↵2 ✏

2x2
m

� 8✏

x2
m

✓
@2Ek

@x2
k

◆n=0

xm

= 2✏↵2

(6.8)

6.2 Double Well Potential

The double well potential is typical of bending interactions where the reference
angle is not 180° (e.g. H2O). However, even some proton transfer phenomena
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show such double-well behaviors [113, 114]. The reference angle is not the mini-
mum energy angle, but the angle at which we have the energy barrier going from
one well to the other. As an example, taking the H2O molecule, the reference
angle (if we consider the H-O-H angle) is at 180° with one well located at (180°
- 104.7° = 75.3°) and the other at (180° + 75.3° = 255.3°). The behavior of the
third derivative of the potential around the reference angle determines the asym-
metry of the potential. In general, as we show, the logic is to use the summation
of the power of the variable xk with a Gaussian, creating the asymmetry by shift-
ing the two expressions one with respect to the other. In principle, a double well
potential can still be described in terms of Morse equations summed together and
the choice of which expression to use relies on the shape of the potential as shown
in the next section.

6.2.1 Symmetric

Taking the reference angle as the origin of our coordinate system, we can define
a symmetric double well potential as [115]:

Ek = ax2n
k

+ be�↵x
2
k � b (6.9)

The nice property of centering both power and Gaussian in the reference angle
is that the third derivatives of both the power and the Gaussian go to zero. In
this case, the number of parameters to be determined is equal to three (a, b,↵).
As a consequence, three conditions are imposed:

8
>>>>><

>>>>>:

E(xe) = ✏
✓
@E

@xk

◆

xe

= 0

✓
@2E

@x2
k

◆

xe

= K

(6.10)

Thanks to the symmetry of the problem, we only have to worry about one of
the two wells (xe with respect to the location of the barrier) to get the correct
behavior. It is important to remember that the depth of the well, ✏ is a negative
number since the zero of the energy is taken as the barrier. The nice consequence
of this is that we can get a global profile of the potential only considering the
local properties around the minimum. By imposing the three conditions above
we arrive at the following transcendental equation:

✏e�↵x
2
e


2n(2n� 2)

n
↵ + 4↵2x2

e

�
= K


e�↵x

2
e +

↵x2
e

n
e�↵x

2
e � 1

�
(6.11)

Solving numerically such an equation gives us the ↵ value for the given second
derivative K. Once ↵ is determined, it is possible to obtain back the b parameter
as:

b =
✏

e�↵x2
e + ↵x2

e
n
e�↵x2

e � 1
(6.12)

And the a parameter as:
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a =
↵x2�2n

e

n
be�↵x

2
e (6.13)

Transcendental equations might not always have a solution, and in order to
find the conditions in which they can be solved it is convenient to rewrite the
transcendental equation isolating the ↵ variable on the left side [115]:

↵ =
K

✏

n

2n(2n� 2)
e↵x

2
e


↵x2

e

n
e�↵x

2
e + e�↵x

2
e � 1

�
� 2↵2x2

e

2n� 2
(6.14)

The left side is a straight line with an angular coe�cient equal to 1 (y = ↵).
The right side, for ↵ ! 1 diverges and goes to infinite positive (remember that
the depth of the well ✏ is a negative number). Moreover, for ↵ ! 0, the right side
of the equation goes to zero. Thus, in order for the transcendental equation to
have a solution, the right side should intersect with the left side and to do so its
first derivative for ↵ ! 0 must be below 1 (the first derivative of the left side).
In case n = 1, this equation has a solution if the following condition is satisfied:

K

32|✏|D
2 < 1 (6.15)

In the general case, for n > 1, this other condition must be satisfied:

K

16|✏|
D2

n
< 1 (6.16)

Where D is the inter-minima distance (D = 2xe). The presence of the degree
of the polynomial n in these conditions allows us to employ this equation for
many di↵erent types of wells since it is just necessary to change the degree of
the polynomial to find a suitable potential. In fact, given a well-defined by its
xe, ✏, K values, it is always possible to find a degree n for which this potential has
a solution since this condition changes as 1/n which tends to 0 (which is below 1)
for n ! 1. In cases this equation has no solutions for the desired n, in addition
to changing the n itself, it is also possible to express a double-well potential with
the summation of two Morse equations [116]:

E(⇣) = ⌫0 � [2⌫0e
�⇣0 ]cosh(⇣) + [⌫0e

�2⇣0 ]cosh(2⇣) (6.17)

where ⇣ = �x and ⇣0 = �x0. The parameters ⌫0, �, x0 can be uniquely deter-
mined from ✏, D,K. The equations are:

cosh(⇣k) =
1

2
e⇣0

⇣k = ±�D/2

✏ =
1

2
⌫0[1� 2e�⇣0 ]2

K = �2⌫0[1� 4e�2⇣0 ]

(6.18)

From these equations, we obtain a transcendental equation in �:

� =

✓
K

2✏

◆ 1
2
✓
1� 2e�⇣0

1 + 2e�⇣0

◆ 1
2

(6.19)
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The limit of such an approach though is that it admits real solutions if, and
only if,

1

4
D

r
K

2✏
> 1 (6.20)

Which is a strict condition on the shape of the well, thus not flexible enough.

6.2.2 Asymmetric

In case asymmetry is introduced, it is still possible to use the same expression by
shifting the Gaussian with respect to the center of the parabola, so as to create
an asymmetry by changing the location of the energy barrier and the depths of
the two wells. As an example, we can center the power at S and the Gaussian at
C:

Ek = a(xk � S)2n + be�↵(xk�C)2 (6.21)

The problem with such an expression is that we lose every nice symmetry
property and the energy barrier does not coincide either with S or C, in order
to determine the energy barrier the first derivative must be computed and set
to zero. Having now 5 parameters to select (a, S, b,↵, C), it becomes harder to
decouple the problem as done before by obtaining a global energy profile just
from local derivatives around the minimum (obtaining at least 6 conditions, 3
for well, for 5 parameters). As a consequence, a more general fitting procedure
is employed by means of di↵erential evolution algorithms that try to mimic the
profile of the energy going from one well to the other. This is the only case where
a scan of the energy profile is required to compute the correct parameters. The
di↵erential evolution algorithms work in an iterative fashion by shifting power
and Gaussian, while changing the other parameters, until it does not converge
minimizing the absolute value of the maximum di↵erence between the energy and
the predicted value in the scan region.

6.3 Electrostatic

The electrostatic energy term, together with the van der Waals, comes directly
from Molecular Perception algorithms, and new QM computations are not re-
quired to compute this term when building the force field for a molecule.

E(r) = 332.0636
QiQj

rij
(kcal/mol) (6.22)

rij is the Angstrom distance between the pair of atoms considered and Qi

are the partial charges derived from the perception algorithms. The electrostatic
energy does not have a well and is only considered for atoms that are more than
three covalent bonds away from each other (as for van der Waals).
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6.4 Cartesian Gradient and Hessian

It is worth noticing that all of the radial potential expressions we have employed
are of the form:

X

j>i

V (rij) (6.23)

It is of general interest to build tools that automatically compute Gradient and
Hessian in cartesian coordinates based on a general radial pair function V (rij).
Thus, in the following, we are going to show such mathematical equations for
completeness. These will be employed in the test case of the glycine dipeptide
analog in the relative chapter. To start, let’s take the main expression that relates
radial coordinates (rij) to cartesian coordinates (x, y, z):

rij =
q

(xi � xj)2 + (yi � yj)2 + (zi � zj)2 (6.24)

The first important equation to derive that will be useful later is the first
derivative of rij with respect to a generic variable x, y, or z of atom i or j:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

@rij
@xi

=
(xi � xj)

rij
@rij
@xj

=
(xj � xi)

rij
@rij
@yi

=
(yi � yj)

rij
@rij
@yj

=
(yj � yi)

rij
@rij
@zi

=
(zi � zj)

rij
@rij
@zj

=
(zj � zi)

rij

(6.25)

The first derivative is easy to compute, in the case of the second derivative
instead we need to distinguish whether the two derivatives act on the same atom,
just on di↵erent XYZ variables, or on di↵erent atoms. In the case the second
derivative acts on two di↵erent atoms we get the following second derivatives:
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(6.26)

In case the derivatives act on the same atom we obtain the following second
derivatives:
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ij
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ij

@2rij
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r3
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(6.27)

Thanks to these derivatives, we can now compute the Gradient and the Hes-
sian of any radial function of the form of Eq. 6.23 as a function of the first and
second derivatives of the radial component V (rij):

8
>>><

>>>:

G(rij) =
@V (rij)

@rij

H(rij) =
@2V (rij)

@r2
ij

(6.28)

6.4.1 The Gradient

In the case of the gradient, we want to compute a vector of the form:
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(6.29)

let’s compute the single element derivative with respect to xk:

@
P

j>i
V (rij)

@xk

=
X

j>i

@

@xk

V (rij) =
X

j 6=k

@

@xk

V (rkj) =
X

j 6=k

G(rkj)
@rkj
@xk

(6.30)

As can be seen, each entry in the vector can be expressed as a summation over
the radial gradients G multiplied by the radial derivatives in cartesian coordinates
that we have derived previously. The trick was to express the partial derivative
with respect to xk in terms of radial partial derivatives thanks to the chain rule:

@

@xk

=
@rki
@xk

@

@rkj
(6.31)

6.4.2 The Hessian

The Hessian is a R3N⇥3N matrix defined as:
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3

75 (6.32)

The number of rows and columns is 3N since we have x, y, and z for each
atom. In this case, we are going to compute the second derivative with respect
to two variables x and y:

@
P

j>i
V (rij)

@xl@yk
=

@

@xl

X

j 6=k

G(rkj)
@rkj
@yk

=
X

j 6=k

@G(rkj)

@xl

@rkj
@yk

+G(rkj)
@

@xl

@

@yk
rkj

(6.33)
In this case, in order to proceed forward, we need to employ the same equations

derived before about the second-order derivatives of rij. As a consequence, we
have to make the same distinction whether the second derivative applies to the
same atom of the first derivative or not. In case it is the second derivative on the
same atom (l = k), we can write:

@2
P

j>i
V (rij)

@xl@yl
=
X

j 6=l

@G(rlj)

@xl

@rlj
@yl

+G(rlj)
@

@xl

@

@yl
rlj (6.34)
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By remembering the chain rule and the definition of H(rij) we can finally
write:

@2
P

j>i
V (rij)

@xl@yl
=
X

j 6=l

H(rlj)
@rlj
@xl

@rlj
@yl

+G(rlj)
@2rlj
@xl@yl

(6.35)

In the case the atoms are di↵erent (l 6= k), instead, the summation disappears
since the only term that survives is the one involving the r distance between the
two atoms:

@2
P

j>i
V (rij)

@xl@yk
=
@G(rkl)

@xl

@rkl
@yk

+G(rkl)
@2rkl
@xl@yk

(6.36)

Again, remembering the chain rule and the definition of H we finally get:

@2
P

j>i
V (rij)

@xl@yk
= H(rkl)

@rkl
@xl

@rkl
@yk

+G(rkl)
@2rkl
@xl@yk

(6.37)

6.5 From Cartesian to Internal coordinates

In this chapter, the focus shifted to energy expressions that are functions of a
single variable. However, the energy of a polyatomic molecule composed of Na

atoms is dependent on all internal degrees of freedom, whose number is 3Na � 6
for non-linear systems and 3Na � 5 for linear systems. While most of the QM
computations are based on a Cartesian description of nuclear motions, internal
curvilinear coordinates present di↵erent advantages in treating molecular vibra-
tions. First of all, they are curvilinear as nuclear motions. Secondly, internal
coordinates present a versatility such that they can in principle reproduce any
kind of vibration and are independent of the overall translations and rotations.
Finally, the use of this kind of coordinates leads to a better decoupling of di↵erent
vibrational degrees of freedom, this last aspect being of fundamental relevance
in the parametrization of Force Fields, as well as in spectroscopic and kinetic
studies. In the next sections, the main sets of internal coordinates will be shortly
addressed, followed by a discussion of the harmonic theory of vibrations both in
terms of Cartesian and internal coordinates.

6.5.1 Definition of Internal Coordinates

The simplest set of internal coordinates is represented by the so-called prim-
itive internal coordinates (PICs), represented by the full list of bond lengths,
bond angles and dihedrals. Let us consider a set of M internal coordinates
s = {s1, ..., sM}, which can be expanded through a Taylor series around the
equilibrium geometry,

si � seq
i
=

3NX

j=1

✓
@si
@xj

◆

eq

�
xj � xeq

j

�

+
1

2

3NX

j=1
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✓
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@xj@xk

◆�
xj � xeq

j

�
(xk � xeq

k
) +O

�
|x|2
�

(6.38)
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where x = {x1, ..., x3Na} is the vector collecting all nuclear Cartesian coor-
dinates, Bij is an element of the Wilson B matrix [117] and B

0 is the tensor
representing its Cartesian derivative:

Bij =

✓
@si
@xj

◆

eq

(6.39)

B0
ijk

=

✓
@2si

@xj@xk

◆

eq

(6.40)

In general, internal coordinates can be classified as redundant or non-redundant
depending on their number. Redundant coordinates are characterized by a set
of coordinates larger than the number of normal modes, so linear dependencies
exist among the internal coordinates. Conversely, non-redundant internal coordi-
nates are deprived of such dependencies. Non-redundant internal coordinates can
be obtained through a linear transformation from the Primitive Internal Coordi-
nates or any redundant set. It is noteworthy that PICs can be further extended
based on the so-called Generalized Internal Coordinates (GICs), which augment
the redundant set with particular coordinates like ring puckering, to build coordi-
nates able to properly describe the vibrations associated with the most important
structural deformations. The conversion from internal coordinates to Cartesian
coordinates is not straightforward and is non-linear so many algorithms and pro-
cedures have been developed and discussed in the literature, generally employing
an iterative procedure [118–120].

6.5.2 Harmonic theory of molecular vibrations

The calculation of harmonic frequencies and normal coordinates can be strongly
a↵ected by the choice of reference coordinates. In the cartesian-based framework,
the first step is calculating the mass-weighted force constants matrix Hm, defined
as:

Hm = M
�1/2

HxM
�1/2 (6.41)

where M is the diagonal matrix of nuclear masses, while Hx is the Cartesian
Hessian matrix.

Hij =

✓
@2V

@xi@xj

◆

eq

(6.42)

The Hm matrix is then diagonalized,

HmL = L⇤ (6.43)

Where ⇤ is the diagonal matrix of the squared harmonic frequencies, while L
collects the eigenvectors. The eigenvectors corresponding to non-null eigenvalues
are used to build the normal coordinates Q:

Q = L
T
M

1/2�X (6.44)

where �xi = xi � xeq

i
. When the formulation is based on a generic set of

internal coordinates s, the kinetic energy operator [121, 122]
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@

@sj
det(G)1/4 (6.45)

is not diagonalized anymore. In the above expression, the Wilson G matrix
has been introduced.

G = BM
�1
B

T (6.46)

At the harmonic level, the G matrix can be approximated with its reference
geometry value and its dependence on the coordinates can be neglected:

T = � h̄2

2

NX

i=1

NX
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Geq

ij

@2

@si@sj
(6.47)

Moreover, the potential energy term of the Hamiltonian can be automatically
written in terms of internal coordinates as a Taylor-series expansion around the
equilibrium value:

V = V eq +
NX

i=1

✓
@V

@si

◆

eq

+
1

2

NX

i=1

NX

j=1

✓
@2V

@si@sj

◆

eq

sisj +O(|s|2) (6.48)

By assuming the condition of stationary point and shifting the origin of the
Potential Energy Surface (PES) to zero, the above equation truncated to the
second order can be written as

V =
1

2

NX

i=1

NX

j=1

Fijsisj (6.49)

where F is the Hessian matrix of the potential energy with respect to the
internal coordinates. The F matrix can be calculated from the Cartesian Hessian
matrix (Hx) [120] as

F = {B†}T [Hx � g
s
B

0]B† (6.50)

This expression is generally valid for non-equilibrium geometries also because
of the inclusion of the gradient gs with respect to the internal coordinates. To
compute such a gradient starting from the one in cartesian coordinates we can
write

gs = {B†}Tgx (6.51)

In this equations B† is the Moore-Penrose pseudo-inverse of B [123] defined
as

B
† = (BUB

T )�1
B

T
U (6.52)

Where U is a general (3M⇥3M) arbitrary matrix. In general, the contribution
of translations and rotations can be factored out through the application of a
projection matrix P̄ = B

†
B. More specifically, the gradient and the Hessian in

internal coordinates can be obtained as:
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gs = {B†}T P̄ gx (6.53)

F = {B†}T P̄ [Hx � gsB
0]P̄B

† (6.54)

These are the general expressions for moving from the space of Cartesian
Coordinates to the space of Internal Coordinates. Once this procedure has been
carried out, the harmonic vibrational Hamiltonian can be defined as

H(0) =
1

2

MX

i=1

MX

j=1

�
GijP

s

i
P s

j
+ Fijsisj

�
(6.55)

Where P s

i
= �ih̄@/@si. As previously anticipated, the kinetic energy is not

diagonal, with the di↵erent coordinates being coupled by the G matrix. As a
result, a set of coordinates that leads to the diagonalization of not only F but
also G, must be defined. For this purpose, a set of normal coordinates Q can be
introduced:

s = LQ (6.56)

By applying this new change of coordinates, it is possible to rewrite the Hamil-
tonian in the following form:

H(0) =
1

2

⇥
P

T
L

�1
G(L�1)TP +Q

T
L

T
FLQ

⇤
(6.57)

L is defined so that in this basis the F matrix is diagonal while G is equal to
the identity matrix. This corresponds to the resolution of the following equation
[117]:

GFL = L⇤ (6.58)

In other words, the harmonic frequencies and Internal-based Normal Coordi-
nates (INCs) can be calculated through the diagonalization of the GF matrix
product. It should be noted that, di↵erently from the Cartesian-based formu-
lation, the matrix to be diagonalized is not symmetric, implying that the nor-
mal coordinates do not form an orthogonal basis. However, as demonstrated by
Myazawa [124] the equation above can be recast in a symmetric form character-
ized by the same eigenvalues

(G1/2
FG

1/2)(G�1/2
L) = (G�1/2

L)⇤ (6.59)

where the columns of the matrixG
�1/2

L are the eigenvectors of the symmetric
matrix G

1/2
FG

1/2, and thus are orthogonal.
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Chapter 7

Current state-of-the-art
applications

For flexible molecules such as those of interest to our studies, a significant chal-
lenge is related to a large number of conformers and the fast relaxation of some
of them to more stable counterparts due to the presence of low interconversion
energy barriers. An inaccurate account of the relaxation processes can bias any
direct thermochemical interpretation of the results provided by rotational spec-
troscopy experiments [125, 126]. Quantum-chemical (QC) computations can help
to tackle this challenge, especially because the gas phase is their most natural
playground [127, 128]. Unfortunately, for medium-sized systems, the usual di-
chotomy between accuracy and feasibility, which is the quest for accurate yet
feasible predictions, comes into place [129]. State-of-the-art QC approaches can
rival the experimental counterparts for small semi-rigid systems in the gas phase
[129–131], but they are characterized by a very unfavorable scaling with the di-
mension of the system to be investigated. This already prevents their brute-force
application to biomolecule building blocks containing more than a dozen of atoms
and characterized by several low-energy minima. Furthermore, the powerful lo-
cal optimization techniques developed for semi-rigid systems are ine↵ective for
flexible systems, which require exploring rugged potential energy surfaces (PESs)
[132, 133].

For the reasons mentioned above, the accurate characterization needed by
high-resolution spectroscopy requires an integrated computational approach that
employs QC models of increasing accuracy in the di↵erent steps of an explo-
ration/exploitation strategy guided by machine learning (ML) tools. As already
mentioned in the introduction of this thesis, the main steps of this strategy [73,
132] can be summarized as follows:

1. Unsupervised perception of the molecular system to identify hard and soft
degrees of freedom [77].

2. Knowledge-based selection and constrained geometry optimizations of a lim-
ited number of conformers employing a fast semi-empirical method [133].

3. Exploration of the PES governed by soft degrees of freedom using the same
semi-empirical method of the previous step, guided by a purposely tailored
evolutionary algorithm with the aim of finding other low-lying minima [132].
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4. Refinement of the most stable structures by hybrid and then double-hybrid
density functionals [73].

5. Analysis of relaxation paths between pairs of adjacent energy minima [134].

6. Evaluation of accurate electronic energies for the final panel of low-energy
minima [135].

7. Computation of Zero Point Energy (ZPE) and thermal contributions to
enthalpies and entropies [6, 134, 136].

8. Computation of spectroscopic parameters for the energy minima with non-
negligible populations [134].

The present thesis’s main aim is to improve some key steps of that approach
further. However, in parallel, several challenging studies have been performed
employing a stable version of the tool [137]. For example, the systematic study
of prototypical amino acids was completed recently (Ref. [138]) and here re-
ported. These compounds represent a particularly appealing playground because
their rich conformational landscape is tuned by the competition among di↵er-
ent types of intra-molecular non-covalent interactions involving, together with
the amino and carboxylic acid moieties of the backbone, also side-chain groups.
At the same time, results from Microwave (MW) experiments are available for
several conformers of most natural ↵-amino acids, and provide accurate data for
benchmarking theory.

110



Benchmark Structures and Conformational Landscapes of Amino
Acids in the Gas Phase: A Joint Venture of Machine Learning,
Quantum Chemistry, and Rotational Spectroscopy
Vincenzo Barone,* Marco Fuse �, Federico Lazzari, and Giordano Mancini

Cite This: J. Chem. Theory Comput. 2023, 19, 1243−1260 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The accurate characterization of prototypical bricks of life can
strongly benefit from the integration of high resolution spectroscopy and
quantum mechanical computations. We have selected a number of
representative amino acids (glycine, alanine, serine, cysteine, threonine,
aspartic acid and asparagine) to validate a new computational setup rooted in
quantum-chemical computations of increasing accuracy guided by machine
learning tools. Together with low-lying energy minima, the barriers ruling their
interconversion are evaluated in order to unravel possible fast relaxation paths.
Vibrational and thermal e!ects are also included in order to estimate relative
free energies at the temperature of interest in the experiment. The
spectroscopic parameters of all the most stable conformers predicted by this
computational strategy, which do not have low-energy relaxation paths available, closely match those of the species detected in
microwave experiments. Together with their intrinsic interest, these accurate results represent ideal benchmarks for more
approximate methods.

1. INTRODUCTION
Thanks to its high resolution and noninvasivity, gas-phase
molecular spectroscopy has become the method of choice to
investigate the role of intrinsic stereoelectronic e!ects in
tuning the physical-chemical properties of biomolecule
building blocks.1,2 In particular, the supersonic-jet expansion
technique3 coupled to laser ablation4 is allowing the recording
of gas-phase microwave (MW) spectra for these thermolabile
compounds, which are usually characterized by high melting
points.5 However, the fast relaxation of some structures to
more stable counterparts in the presence of low energy barriers
can bias any direct thermochemical interpretation of the results
provided by this technique.6,7
Accurate quantum chemical (QC) computations can help to

solve this kind of problem,8,9 but the e!ective exploration of
flat potential energy surfaces (PESs) and the characterization
of their stationary points for medium- to large-size flexible
systems are still challenging for at least two di!erent reasons.
From the one side, the size of the systems prevents a brute
force approach employing very accurate but very expensive
state-of-the-art QC methodologies.10�12 From the other side,
the very powerful local optimization techniques developed for
semirigid systems are not e!ective for the exploration of
rugged potential energy surfaces (PES) characterized by a huge
number of energy minima possibly separated by low-energy
barriers.13,14
This situation calls for an integrated computational approach

employing QC models of increasing accuracy in the di!erent

steps of an exploration/exploitation strategy guided by
machine learning (ML) tools.13,15�17 The e!ective strategy
of this kind we have been developing in the past few years
starts from a knowledge-based selection and constrained
geometry optimizations of a limited number of conformers
employing a fast semiempirical method.14,18 Next, an e!ective
exploration of the whole conformational PES is performed by
the same semiempirical method guided by a purposely tailored
evolutionary algorithm with the aim of finding other low-lying
minima.13 The results of this step are refined by hybrid and
then double-hybrid density functionals,19,20 and possible
relaxation paths between pairs of adjacent energy minima are
identified.16 Once a panel of low-energy minima has been
defined, accurate relative energies are computed by reduced-
scaling composite methods.21�26 These results are integrated
by zero point energies (ZPE) and thermal contributions to
enthalpies and entropies employing anharmonic approaches
rooted in the second order vibrational perturbation theory
(VPT2)27�34 and proper treatment of hindered rotations.35,36
Finally, accurate spectroscopic parameters of the energy
minima with nonnegligible populations under the experimental
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conditions of interest are computed.37 In the specific case of
rotational spectroscopy, improved equilibrium rotational
constants are obtained by refining the optimized geometries
by a linear regression approach.20,38
Among the main biomolecule building blocks, natural �-

amino acids, which exist exclusively in neutral form in the gas
phase, represent a particularly appealing playground because
their rich conformational landscape is tuned by the
competition among di!erent kinds of intramolecular hydrogen
bonds. At the same time, MW results are available for several
conformers of most natural �-amino acids,39�50 which
represent very demanding benchmarks for the a priori
prediction of structural and spectroscopic parameters. We
have therefore selected the glycine and alanine prototypes
together with a panel of �-amino acids with polar side chains
(serine, threonine, cysteine, aspartic acid, and asparagine) with
the aim of providing benchmark results allowing unbiased
comparisons with experimental results. In fact, the current
standards for the computation of MW parameters of
biomolecule building blocks in the gas phase (see, e.g., refs
1, 6, 7, 39, and 51) employ QC methods of limited accuracy,
pay marginal attention to the geometrical parameters, and
neglect vibrational corrections. However, these limitations
hamper any a priori prediction of the spectroscopic outcome,
allowing at most its a posteriori interpretation in terms of the
agreement between experimental and computed spectroscopic
parameters for a predefined number of conformers.
Based on these premises, the goal of the present study is to

improve and validate a general strategy able to find all the
conformers detectable in supersonic jet expansions taking also
into account fast relaxation processes possibly leading to the
disappearance of some low-lying species. Unbiased comparison
with spectroscopic results is made possible by the accuracy of
the computational results, which will be shown to provide
mean unsigned errors (MUEs) within 20 MHz for rotational
constants and 10 cm�1 for both relative energies and
vibrational frequencies (entering zero point energies and
thermal contributions to thermodynamic functions). Together
with their intrinsic interest of the studied molecules, these
results will provide also a reference set for more approximate
methods and/or search techniques.

2. PES EXPLORATION
The general strategy for the exploration of conformational
PESs is based on a continuous perception of molecular
structures performed by the PROXIMA software,52 which is
able to detect characteristic structural motifs and to separate
soft (in the present context dihedral angles) and hard degrees
of freedom. Then, a knowledge-based systematic search of soft
degrees of freedom14 can be optionally performed, which
produces a panel of guess structures (e.g., the 3n staggered
conformers generated by rotations around n nonterminal single
bonds, which are not a part of cycles). The geometries of these
candidates are next optimized using the fast GFN2-XTB
semiempirical method,18 which has been selected because it
tends to underestimate energy di!erences (i.e., to produce a
too large set of candidates), which allows a safer use of energy
thresholds for further processing. Next, a custom implementa-
tion of the island model evolutionary algorithm (IM-EA)53 is
employed to produce other candidates starting from an initial
population (P0) generated by the so-called Latin Hypercube
stratified sampling54 in order to maximize the diversity of soft
degrees of freedom. The chemical descriptor (fitness) of each
structure is the relative electronic energy obtained by GFN2-
XTB geometry optimizations of the sti! degrees of freedom.
Improved populations are then built iteratively for a given
number of cycles by applying, with predetermined probability,
di!erent genetic operators, namely, crossover (interpolation of
the features of di!erent related structures for creating new
ones), mutation (change of one or more soft degrees of
freedom with some stochastic rule), and selection (high chance
for high fitness structures of propagating their features in the
next cycles). In the IM-EA, the di!erent operators act
separately on disjoint regions of the conformational landscape
(islands), which are mixed only at predefined intervals by a
dedicated operator (migration). Furthermore, some of the best
structures found in each cycle are directly transferred to the
next cycle (the so-called Hall of Fame).55 All those choices are
dictated by the high cost of evaluating the fitness of a new
structure by constrained geometry optimizations. As a
consequence, high fitness structures are worth being preserved
in the population until some significantly improved structure is
found. Typical values of the initial population, maximum

Figure 1. Flowchart of PES exploration. See main text for further details.
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number of cycles, and number of islands are 100, 50, and 4,
which result in about 1000 constrained geometry optimizations
for each run of the algorithm. In order to further increase the
coverage of the conformational space, 4 runs with di!erent
initial populations are performed for each molecular system.
The full set of parameters employed in the IM-EA algorithm is
given in Table S1 of the Supporting Information (SI), while
further details are given in refs 13 and 17. Figure 1 shows a
schematic flowchart of the current version of the whole
algorithm, which is available under the GPL3 license at
https://github.com/tuthmose/IM_EA.
At the end of the whole exploration, low-energy conformers

within a predefined energy range are selected from the panel of
structures issued from IM-EA and, possibly, knowledge-based
steps by eliminating too similar structures (in terms of
rotational constants and root-mean-square deviations of
heavy atom positions) and then performing single point
energy evaluations at the B3LYP/jun-cc-pVDZ level,56,57 also
including Grimme’s D3BJ dispersion corrections.58 In the
following, this computational model will be referred to simply
as B3. The choice of the specific functional is not critical in this
step because it is used only for the selection of an initial panel
of structures to be next refined at higher levels. The B3 model
has been selected because it is routinely employed in the
interpretation of MW studies and, more importantly, provides
reasonable anharmonic corrections (vide infra).
In the next step, structures lying within a smaller energy

range are optimized at the same level, and the surviving ones
define the panel of candidates for the final structural
refinement, which is performed employing the revDSD-
PBEP86-D3BJ/jun-cc-pv(T+d)Z model59�61 (hereafter
rDSD) for both geometry optimization and evaluation of
harmonic force fields.62 The rDSD functional has been selected
because several studies have shown that it provides excellent
geometrical structures,38 dipole moments,63 spectroscopic
parameters,37 noncovalent intermolecular interactions,23,64
and conformational landscapes.10,65,66
This composite strategy allows for strongly reducing the

number of expensive geometry optimizations by hybrid and,
especially, double-hybrid functionals without any loss of
accuracy in the final results. The di!erent energy thresholds
depend on the system and the spectroscopic technique of
interest. For the specific case of rotational spectroscopy, a
conservative limit for the relative stability of detectable
conformers is around 900 cm�1 (which corresponds to a
relative population of about 1% at room temperature, where
kT/hc = 207 cm�1).1,16 As a consequence, the typical
thresholds for the acceptance of semiempirical structures, B3
geometry optimizations, and final rDSD refinement are 2500,
1500, and 1000 cm�1, respectively. These choices lead to about
100 B3 computations (including both single point and
geometry optimizations) and no more than 20 rDSD geometry
optimizations for each molecular system.
As mentioned in the Introduction, conformational relaxation

can take place under the experimental conditions whenever the
energy barriers ruling the interconversion are su"ciently low,
with an upper limit of about 400 cm�1 being usually employed
for discriminating in rotational spectroscopy of amino acids
and related compounds.6,7,67 With the aim of unraveling fast
conformational relaxations, we always perform relaxed tor-
sional scans at the rDSD level in order to obtain preliminary
information on low-energy interconversion paths. Next, after
precise location of transition states (TSs) by full geometry

optimizations, their nature is checked by computing Hessian
matrices.

3. RELATIVE STABILITIES AND SPECTROSCOPIC
PARAMETERS

The typical MUEs of rDSD bond lengths (0.003 Å) and
valence angles (0.003 radians, i.e., 0.15°) observed in the large
SE100 database38 are largely su"cient to obtain accurate
relative electronic energies of di!erent conformers by single-
point energy evaluations using composite methods rooted in
the coupled cluster (CC) ansatz.68 In particular, the CC model
including single, double, and perturbative estimate of triple
excitations (CCSD(T))69 is considered the gold standard for
this kind of computations provided that complete basis set
(CBS) extrapolation and core valence (CV) correlation are
taken into the proper account. The key idea of the reduced
cost Cheap scheme (ChS) is that, starting from frozen core
(fc) CCSD(T) computations in conjunction with the cc-pVTZ
basis set,57 CBS and CV terms can be computed with good
accuracy and negligible additional cost employing second order
Møller�Plesset perturbation theory (MP2).70 Several bench-
marks22,23 have shown that improved noncovalent interactions
can be obtained employing partially augmented (jun-cc-pV(n
+d)Z) basis sets,61,71 and the corresponding model is labeled
junChS. Replacement of conventional methods with the
explicitly correlated (F12) variants leads to the junChSF12
model, which is even more accurate without any excessive
additional cost. In detail, the starting point is the frozen-core
(fc) CCSD(T)-F12b(3C/FIX) method72�74 again in con-
junction with the jun-cc-pV(T+d)Z basis set.61,75 The
corresponding auxiliary basis sets are also employed for
resolution of the identity and density fitting, and the geminal
exponent (�) was fixed to 1.0 a0�1.75,76 CBS extrapolation is
carried out with the standard n�3 two-point formula77
employing MP2F12/jun-cc-pV(X+d)Z energies with X = T
and Q. The CV contribution is then incorporated as the
di!erence between all-electron (ae) and fc MP2F12 calcu-
lations, both with the cc-pCVW(T+d)Z basis set.78 A
systematic study of noncovalent intermolecular interactions23
showed that the junChSF12 approach is a!ected by small basis
set superposition errors (BSSE), which would be di"cult to
take into account for intramolecular interactions. Furthermore,
comparison with the most accurate results available for a panel
of representative noncovalent complexes provided an average
absolute error smaller than 10 cm�1.22,23
To determine the relative stability of di!erent low-energy

minima, one has to move from electronic energy di!erences to
the corresponding relative enthalpies at 0K (�H0°) or free
energies (�G°) at a temperature depending on the
experimental conditions. The vibrational contributions to
thermodynamic functions are usually computed by the
harmonic oscillator (HO) model, which shows the largest
errors in the high frequency (overestimated contributions to
zero point energies) and low frequency (overestimated
contributions to entropies) regions.
The first issue is solved in the present work by estimating

anharmonic contributions in the framework of second order
vibrational perturbation theory (VPT2), which provides
analytical and resonance free expressions for the ZPEs.79
Harmonic (rDSD) and anharmonic (B3) contributions are
employed in this connection, since a recent benchmark study
has shown that for semirigid molecules the average absolute
error of zero point energies with respect to accurate
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experimental results is reduced from 53 to 17 cm�1 when going
from the HO to the VPT2 anharmonic model.80
The treatment of low frequency contributions (typically less

than 100 cm�1) is more involved because di!erent modes (e.g.,
torsions, inversions, etc.) need be identified, characterized, and
treated by proper variational anharmonic computations.36,81 In
the same benchmark study mentioned above in connection
with anharmonic ZPEs,80 it has been shown that the simple
one-dimensional hindered rotor model proposed by Ayala82 in
conjunction with the VPT2 model for the other vibrational
modes leads to remarkably accurate vibrational entropies for
both semirigid and flexible molecules for which accurate
experimental results are available. In particular, an average
absolute error of 3 cm�1 is obtained for the T�S contribution
to free energies at room temperature. In the present context,
test computations showed that the unbiased detection of
hindered rotations becomes ambiguous for some conformers,
so that we prefer to resort to the much simpler and black-box
quasi-harmonic (QH) approximation.35,83 In the QH ap-
proach, below a given cuto! value, entropic terms are obtained
from the free-rotor model, and a damping function is used to
interpolate between free-rotor and harmonic oscillator
expressions close to the cuto! frequency.
The leading terms of MW spectra are the rotational

constants of the vibrational ground-state (B0
i , where i refers

to the inertial axes a, b, c), which include vibrational
corrections (�Bvib

i ) in addition to equilibrium rotational
constants (Be

i).84 In the framework of the VPT2 approx-
imation,85 the ground-state rotational constants can be
expressed as

(1)

where the �r’s are the vibration�rotation interaction constants
and the sum runs over all r vibrational modes. Noted is that the
evaluation of the �r’s implies anharmonic force field
calculations and that the sum appearing in eq 1 (contrary to
individual terms) does not involve any resonance issue at the
VPT2 level (for details, see, e.g., refs 11, 86, 87). �Bvib

i being a

small fraction of the corresponding Be
i (typically 0.5%),88 it can

be determined at an a!ordable level of theory (B3 in the
present context) without significantly a!ecting the accuracy of
the resulting vibrational ground-state rotational constant.11,89
At the same time, inclusion of vibrational corrections is not
warranted if the errors on the computed rotational constants
are not much lower than 1% (50 MHz for a constant of 5000
MHz). Therefore, equilibrium rotational constants require very
accurate geometrical parameters, which can be obtained only
with state-of-the-art composite methods incorporating high
excitation orders in the correlation treatment. These methods
are able to deliver errors on equilibrium rotational constants as
low as 0.1% (5 MHz for a rotational constant of 5000 MHz).90
The reduced cost junChSF12 composite method delivers
typical relative errors of 0.2%,11,80,91 which are still su"cient
for the unequivocal prediction and assignment of di!erent
conformers in the MW spectra of flexible molecules. Higher
relative errors (typically 0.4�0.5%) are obtained at the rDSD
level. However, the systematic nature of the errors permits
geometrical parameters to be obtained and, thus, equilibrium
rotational constants, rivaling the accuracy of the jun-ChSF12
counterparts by the linear regression approach (LRA). In this
model, the computed geometrical parameters (rcomp) are
corrected for systematic errors by means of scaling factors
(a) and o!set values (b) depending on the nature of the
involved atoms and determined once for ever from a large
database of accurate semiexperimental (SE) equilibrium
geometries:38,92

(2)

The a and b values for di!erent bonds and valence angles are
taken from ref 38. Noted is that the intrinsic accuracy of the
rDSD model leads in most case to b = 0.0 together with very
small a values for bond lengths and that, among valence angles,
only OCO and HCH need be corrected. Several studies have
confirmed that very accurate molecular structures can be
obtained employing this approach (referred to in the following
as rDSD-LRA).16,38,92,93

Figure 2. Structures of low-lying backbone conformers of �-amino acids.
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Additional parameters of particular relevance for MW
spectroscopy are the nuclear quadrupole coupling constants
(�ii, i referring to the inertia axis a, b, or c).94 Nuclear
quadrupole coupling is the interaction between the quadrupole
moment of a nucleus with nuclear spin I � 1) and the electric
gradient at the nucleus itself.86 Since at least one 14N
quadrupolar nucleus is present in all amino acids, nuclear
quadrupole coupling constants are important for accurate
predictions of rotational spectra because they determine a
splitting of the rotational transitions, which generates the so-
called hypefine structure. Since a systematic study of rDSD
quadrupole coupling constants has not yet been performed, the
comparison with the experimental values for several con-
formers of di!erent amino acids represents per se an
interesting benchmark. We anticipate that vibrational e!ects
on nuclear quadrupole coupling constants are usually smaller
than the uncertainty a!ecting the computed equilibrium
values, and thus they have not been considered in this work.
Finally, the components of dipole moments determine the

intensities of rotational transitions and, as already mentioned,
rDSD is expected to provide reliable values.63
Concerning technical details, the Gaussian package95 has

been used for all calculations except the junChSF12 and QH
ones, which have been performed with the help of the
Molpro76 and GoodVibes83 software, respectively.

4. STRUCTURE AND SOFT DEGREES OF FREEDOM
The conformation of isolated amino acids is determined by
both backbone (� = H�N�C��C�, � = N�C��C��O(H),
and � = C��C��O�H) and side chain (�, defined more
precisely in the following) torsional angles, as shown in the
central panel of Figure 2. However, the nonplanarity of the
NH2 moiety suggests replacing the customary � dihedral angle
(H�N�C��C�) with �� = LP�N�C��C� = � + 120°, where
LP is the nitrogen lone-pair perpendicular to the plane defined
by the two aminic hydrogens and the C� atom.
The most stable backbone structures involve the formation

of hydrogen bonds (see Figure 2), which can be classified as I
(bifurcated NH2···OC, �� � 180°, � � 180°, � � 180°), II
(N···HO, �� � 0°, � � 0°, � � 0°), or III (bifurcated NH2···
OH, �� � 180°, � � 0°, � � 180°).4 Higher energy minima
can be classified as type I� (single HNH···OC hydrogen
bond, �� � 90°, � � 180°, � � 180°) or type III� (single
HNH···OH hydrogen bond, �� � 180°, � � 90°, � � 180°).
Furthermore, conformers of type I, I�, and III have higher
energy counterparts for � � 0°, labeled in the following as Ic,
I�c, and IIIc, respectively. The customary c, g, s, and t labels are

used to indicate the cis, gauche, skew, and trans conformations
for each dihedral angle in the order ��,�, �/�1, ..., �n.
For purposes of consistency with the original experimental

studies, capital letters L, M, N, ... are used in some cases to
label conformers of amino acids with polar side chains in order
of decreasing relative populations estimated from MW
spectra.39,45,46,96

5. RESULTS AND DISCUSSION
5.1. The Smallest Prototypes: Glycine and Alanine.

Glycine has been extensively characterized from both
experimental and computational points of view (see refs
97�101 and references therein). Its limited size allowed the
exploitation of state-of-the-art composite schemes including,
together with CBS and CV contributions evaluated at the
CCSD(T) level, also full account of triple excitations,
perturbative inclusion of quadruple excitations, and relativistic
contributions (CBS+CV+fT+pQ+rel).101 All the eight con-
formers mentioned above (I, II, III, I�, III�, Ic, IIIc, and I�c)
have been characterized with four of them (I, III, Ic, and IIIc)
having a planar backbone (Cs point group) and the other four
(labeled with an asterisk to signal the presence of two
equivalent nonplanar backbones) lacking any symmetry98,99
(see Table S2 of the SI). Concerning relative stabilities, the
junChSF12 model performs remarkably well with an average
absolute error of 6 cm�1 from the most accurate available
results101 (see Table 1). The largest discrepancy (13 cm�1) is
observed for the II conformer, which is slightly stabilized by
triple and quadruple excitations. Also the accuracy of the rDSD
model (maximum error (MAX) and MUE of 29 and 15 cm�1

with respect to the most accurate available results) is largely
su"cient for most purposes and gives further support to the
use of this computational level for geometry optimizations and
harmonic frequency evaluations.
Zero point and thermal contributions have a nonnegligible

e!ect, leading to a significant destabilization of structure II and
a strong stabilization of structure III (see Table 1). Inclusion of
anharmonic contributions in ZPEs is needed for obtaining
quantitative results but does not alter the stability order of the
di!erent conformers. Finally, the main e!ect of the QH
corrections is to reduce the overstabilization of structure III
produced by the harmonic oscillator model (see Table 1).
A shorter N···O distance in the II form with respect to I

parallels the greater strength of the OH···N hydrogen bond
with respect to its NH···O counterpart. Despite these relative
hydrogen-bond strengths, the I conformer is more stable than
II by about 230 cm�1 due to the more favorable (� = 180°

Table 1. Relative Electronic Energies (�E), Enthalpies at 0 K (�H0° = �(E+ZPE)), and Free Energies at Room Temperature
(�G°) (all in cm�1; 1 kJ/mol = 83.59 cm�1) for the Glycine Conformers

Conformer Label �Ebesta �EChS
b �ErDSD �H0H° c �GH°d �ZPEe �(T�S)f �G°g

ttt I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ccc II* 223.8 236.5 214.8 345.9 468.8 �38.5 �29.4 400.9
gtt I�* 433.7 431.5 447.8 406.6 482.6 �23.2 �39.5 419.9
tct III 605.1 605.8 583.5 630.1 239.6 6.7 215.3 461.6
gct III�* 926.8 935.5 918.9 937.5 969.4 �9.2 1.8 962.0
ttc Ic 1678.8 1688.7 1675.4 1616.5 1659.6 1.9 �20.4 1641.1
tcc IIIc 2042.5 2051.5 2071.3 2131.9 2027.3 �10.8 �15.2 2001.3
gtc I�c* 2119.4 2118.9 2140.6 2012.3 2085.7 �28.8 �35.6 2021.3

aCBS+CV+ft+fq+rel. from ref 101. bJunChSF12 at rDSD geometries. cJunChSF12 electronic energies with rDSD harmonic ZPE. dJunChSF12
electronic energies with rDSD harmonic ZPE and thermal contributions. eDi!erence between anharmonic and harmonic ZPEs at the B3 level.
fDi!erence between quasi-harmonic and harmonic T�S (see text for details). gSum of columns 7, 8, and 9.
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versus � = 0°) arrangement of the carboxylic group in the I
form. The role of the arrangement of the carboxylic group is
confirmed by the nearly constant destabilization of the Ic and
I�c forms with respect to their I and I� counterparts (1690
cm�1 for Ic vs I and 1687 cm�1 for I�c vs I�). At the same time,
the reduced stability of the III form with respect to I (about
600 cm�1) is related to the lower strength of the bifurcated
NH2···O(H) hydrogen bond with respect to its NH2···O(C)
counterpart for identical arrangements of the carboxylic
moiety. Finally conformers I� and III� are less stable than
their I and III counterparts (by 430 and 330 cm�1,
respectively) because a bifurcated hydrogen bond is replaced
by a more conventional single hydrogen bond. This trend
could change in the presence of polar side chains because it
allows the formation of additional backbone (side chain)
hydrogen bonds (vide infra).
Computation of energy barriers ruling the interconversion

between pairs of adjacent conformers shows that structures III
and I� relax easily to structure I (with energy barriers of about
250 and 70 cm�1, respectively), whereas structure I�c relaxes to
structure Ic (with an energy barrier of about 25 cm�1).
Furthermore, the relative stability of structures III� (927 cm�1),
Ic (1679 cm�1), and IIIc (2043 cm�1) are too low to permit
their unequivocal characterization by MW spectroscopy. We
are thus left with only two conformers (I and II), which could
be (and have actually been) detected in MW experiments.40

The availability of the experimental rotational constants for
several isotopic species allowed the determination of very
accurate semiexperimental equilibrium structures.102 For the I
conformer, the MAX and MUE of rDSD geometrical
parameters with respect to their semiexperimental counterparts
are 0.0049 and 0.0019 Å for bond lengths and 0.46 and 0.15°
for valence angles. The rDSD-LRA model does not change the
situation for valence angles but reduces the errors of bond
lengths by about five times (0.0008 and 0.0004), reaching the
accuracy of state-of-the-art composite methods.11,102 More
generally, all the computed spectroscopic parameters of the I
and II conformers are in remarkable agreement with their
experimental counterparts40 (see Table 2), with MAX and
MUE of 30.2 and 13.6 MHz for rotational constants, 0.23 and
0.13 MHz for quadrupole coupling constants, and 0.1 and 0.05
D for dipole moment components. The errors for rotational
constants and quadrupole coupling constants are close to those
delivered by the ChS composite method (MAX and MUE of
and 60.8 and 16.5 MHz for rotational constants 0.19 and 0.10
for quadrupole coupling constants).99 These results confirm
that junChSF12 relative energies, rDSD-LRA structural
parameters, and rDSD spectroscopic parameters can be
confidently used for the comparison with experiments and
represent reliable benchmarks for less refined quantum
chemical methods.

Table 2. Rotational Constants (MHz), Quadrupole Coupling Constants (� in MHz), and Dipole Moment Components (� in
debye) of the Detected Conformers of Glycine

Parameter Iexpa Icalcb IIexpa II calcb

A0 10341.5279(49) 10311.35 10130.1521(57) 10144.00
B0 3876.1806(23) 3865.70 4071.5120(17) 4059.68
C0 2912.3518(16) 2904.74 3007.4852(14) 2999.51
�aa �1.208(9) �1.336 1.773(2) 1.922
�bb �0.343(8) �0.448 �3.194(4) �3.344
�cc 1.551(9) 1.785 1.421(4) 1.422
�a 0.911(3) 1.01 5.372(34) 5.39
�b 0.607(5) 0.66 0.93(1) 0.83
�c 0.0 0.0 0.0 0.03

aFrom ref 40. Standard errors are given in parenthesis in units of the last digit. brDSD-LRA equilibrium geometries, rDSD equilibrium properties,
and B3 vibrational corrections (only for rotational constants).

Table 3. Relative Electronic Energies (�E), Enthalpies at 0 K (�H0° = �(E+ZPE)), and Free Energies at Room Temperature
(�G°) for the Alanine Conformersa

Conformer Label �EChSb �ErDSD �H0H° c �GH°d �ZPEe �(T�S)f �G°g
ttt I 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cg�c II� 35.6 29.5 172.5 316.5 �28.1 �46.8 241.6
cgc II 103.1 106.4 215.6 321.4 �26.7 �20.4 274.3
tg�t III� 432.6 412.8 443.0 386.4 �12.5 42.1 416.0
tgt III 436.0 410.1 452.1 329.9 h �81.0 h
ga�t I� 396.5 406.7 389.7 448.0 6.5 �25.7 428.8
gat I�� 446.6 480.5 425.9 490.4 �8.1 �19.8 462.5
ggt III� 613.5 655.6 592.4 631.7 4.0 �0.8 634.9
gg�t III�� 789.7 782.7 774.3 804.6 1.3 �5.7 800.2
tsc Ic 1736.0 1730.3 1681.6 1696.1 �0.7 �16.0 1679.4
ts�c III�c 1980.5 1968.5 1928.2 2006.6 �54.3 �12.5 1839.8
g�tc I�c 2116.5 2123.5 2052.8 2105.8 �28.1 �24.8 2052.9
gtc I��c 2154.9 2165.3 2043.0 1983.5 27.3 25.2 2036.0

aAll the data are in cm�1. bJunChSF12 at rDSD geometries. cJunChSF12 electronic energies with rDSD harmonic ZPE. dJunChSF12 electronic
energies with rDSD harmonic ZPE and thermal contributions. eDi!erence between anharmonic and harmonic ZPE at the B3 level. fDi!erence
between quasi-harmonic and harmonic T�S (see text for details). gSum of columns 6, 7, and 8. hNo minimum at the B3 level.
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Moving to alanine,41,103�108 the two sides of the average
backbone plane are no longer equivalent, with two nearly iso-
energetic minima (corresponding to positive or negative values
of the � dihedral angle) being expected at least for structures
of II, I�, III�, and I�c type. The number of conformers thus
increases to 12, but unconstrained geometry optimizations lead
also to a splitting of structure III into III and III�, although the
energy di!erence is so tiny that an e!ective planar structure is
expected. In all the energy minima the methyl group is found
in a staggered position with respect to the substituents at C�

with rotational barriers of about 1200 cm�1, close to the value
of 1140 cm�1 obtained for ethane at a comparable computa-
tional level.109
The MAX and MUE of rDSD computations with respect to

the junChSF12 reference (42.1 and 15.7 cm�1) are more than
five times smaller than the corresponding B3 values (222.2 and
91.6 cm�1) and less than half the corresponding MP2 values
(96.5 and 28.8 cm�1). What is even more important,
junChSF12 and rDSD provide the same stability order,
whereas B3 and MP2 computations overestimate the stability
of type II conformers (see Table S3 of the SI).
As already mentioned, the comparison with experiment

requires the computation of the relative free energies for the
di!erent conformers at the temperature of the carrier gas (in
order to evaluate their population) and of transition states
ruling their interconversion. The results collected in Table 3
show that all the conformers involving � values around 0° (Ic,
III�c, I��c, and I�c) are too unstable to permit their
unequivocal detection in MW experiments. Furthermore,
relaxation of I� and III� conformers to their more stable I
and III counterparts is ruled by low energy barriers, which are
easily overcome in the typical conditions of supersonic-jet
expansion. Low energy barriers govern also the relaxation of III
to I and II to II� conformers. As a consequence, only the I and
II� conformers could be detected in MW studies, with the
former collecting the populations of I, III�, III, I�, I��, III�, and
III�� conformers and the latter those of the II and II�
conformers. It is remarkable that the relative population of
conformer I computed at room temperature from the free
energies collected in Table 1 (76%) is in good agreement with
the experimental estimate (80%),41 whereas a significantly
lower relative population (54%) would have been predicted
neglecting zero point and thermal e!ects.
Table 4 collects the experimental and computed rotational

parameters for the I and II� conformers. A remarkable
agreement is noted with the MAX and MUE of rDSD-LRA/
B3 rotational constants (36.1 and 10.5 MHz) being even better

than those (50.5 and 12.2 MHz) obtained at the much more
expensive CCSD(T)/cc-pVTZ level.106 It is noteworthy that
for both conformers of alanine the error on the B0 rotational
constant is much higher than those a!ecting the other two
rotational constants, whereas in both the observed conformers
of glycine the largest error was found for A0.
The geometrical parameter most sensitive to conformational

changes is the NC�C� valence angle, which decreases by about
3.5° when going from the I to the II� conformer, consistent
with the trans-angle rule of hyperconjugative and steric
e!ects.110 At the same time, the CO bond length shows
the expected lengthening by about 0.002�0.003 Å when going
from free (structure II�) to hydrogen-bonded (structure I)
forms.
The only significant di!erences between the geometrical

parameters of glycine and those of alanine concerns the C��C�
bond length (shorter in glycine by about 0.007 Å for both
conformers) and the NC�C� valence angle (narrower in glycine
by about 2° for both conformers). Therefore, the main
structural di!erences between glycine and alanine are highly
localized at the C�. As already mentioned, the � torsional angle
characterizes the backbone deviation from planarity (see
Tables S2 and S3 of the SI). For I conformers, it is exactly
equal to 180° in glycine, whereas the lack of any symmetry
induces a change of more than 15° in alanine. On the other
hand, comparable � values are observed for the II forms of
glycine and alanine (12° and 15°, respectively).

5.2. Amino Acids with Polar Side Chains. Systematic
investigations have revealed that, in analogy with alanine, the
natural amino acids containing simple nonpolar side chains
(valine,42 isoleucine,43 and leucine44) present two dominant
conformers of types I and II, respectively. On the other hand,
the conformational landscape of natural amino acids with polar
side chains is much richer due to the synergy or competition
between intrabackbone and backbone (side chain) hydrogen
bonds.
Let us start our discussion from serine (Ser), which has two

soft degrees of freedom in its CH2OH side chain (�1 = N�
C��C��O and �2 = C��C��O�H), with the OH moiety able
to act either as donor or acceptor in quite strong intra-
molecular hydrogen bonds.111 The increased number of soft
degrees of freedom (from 3 to 5) makes this system suitable
for applying the PES exploration strategy introduced in the
previous sections, which produces 12 low-energy conformers
(see Table 5).
However, the IIg�g� conformer relaxes to the more stable

IIg�t form through rotation around �2; IIIg�g relaxes to Ig�g
through rotation around �; the less stable IIg�t conformer
relaxes to its more stable counterpart through a planar
structure (invert ��, �, and �); Igt relaxes to I�gg� through
rotation around �2, and Igg relaxes to III�gg through rotation
around �. We are thus left with seven conformers possibly
detectable in MW experiments: three of type II, two of type
III�, and one each for types I and I� (see Figure 3).
All the most stable conformers are stabilized by both

intrabackbone and backbone (side chain) hydrogen bonds (see
Figure 3). Furthermore, contrary to III conformers, III�
structures are locked in su"ciently deep wells to become
detectable by one HNH···OH (III�gg) or OH···OC (III�tg�)
hydrogen bond between the backbone and the side chain in
addition to the intrabackbone HNH···OH hydrogen bond.
ZPEs and thermal contributions alter the ordering of the

four most stable conformers stabilizing, as usual, structures of

Table 4. Rotational Constants and Quadrupole Coupling
Constants (�) in MHz of the Detected Conformers of
Alanine

Parameter Iexpa Icalcb IIAexpa IIAcalcb

A0 5066.1455(7) 5061.61 4973.0546(35) 4972.03
B0 3100.9507(5) 3070.85 3228.3375(56) 3192.26
C0 2264.0131(4) 2273.39 2307.8090(42) 2326.00
�aa �3.2567(11) �3.4864 0.4515(17) 0.8298
�bb 2.0093(16) 1.9918 0.3267(21) 0.4207
�cc 1.2474(16) 1.4946 �0.7782(21) �1.2505

aFrom ref 41. Standard errors are given in parenthesis in units of the
last digit. brDSD-LRA equilibrium geometries, rDSD properties, and
B3 vibrational corrections.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01143
J. Chem. Theory Comput. 2023, 19, 1243�1260

1249

117



Table 5. rDSD Relative Electronic Energies, Harmonic Zero Point Energies, Thermal Contributions, and Quasi-harmonic
Corrections, together with Di!erence with JunChSF12 Electronic Energies and B3 Anharmonic Corrections (all in cm�1) for
the Low-Lying Conformers of Serinea

Label �ErDSD �ChS �ZPEH �ThH �ZPE(anh�H) T�S(QH�H) �G°b �� � � �1 �2
IIgg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 �33.7 21.9 �6.2 59.4 79.3
Ig�g 161.8 11.2 �121.8 �113.1 21.3 7.7 �32.9 159.3 166.5 177.3 �55.9 44.1
IItg� 222.2 11.4 24.3 54.7 �10.0 �39.7 262.9 �31.5 19.2 �4.5 �171.9 �54.2
I�gg� 337.7 �43.1 �122.4 �34.9 9.3 �11.4 135.2 95.1 �173.4 �180.0 57.1 �46.9
III�gg 531.9 �0.4 �60.7 �54.6 10.9 9.6 436.7 �168.9 67.2 �177.1 59.4 68.6
IIg�t 602.4 32.2 �71.9 �28.3 15.9 �39.5 510.8 30.3 �14.2 2.4 �60.0 178.3
III�tg� 792.7 8.2 �32.6 �192.3 �2.7 11.4 584.7 178.0 64.9 �178.3 �178.4 �70.6
IIg�g�c 607.9 43.0 �46.5 �9.6 �12.6 �11.0 571.2 29.8 �15.7 3.4 �58.6 �76.9
III�g�gd 731.9 34.1 �120.7 �197.7 5.3 61.9 514.8 165.8 �27.4 �176.7 �56.4 43.0
IIg�te 759.4 35.0 �129.3 �81.6 5.0 �14.0 574.5 �34.9 18.5 �3.6 �58.9 �174.3
Igtf 853.1 4.5 �225.8 �131.5 6.5 5.3 512.1 �169.6 �179.6 �179.1 65.1 �175.6
Iggg 869.3 �6.9 �188.3 �185.0 9.6 11.4 510.1 �164.3 �165.8 �176.5 66.4 83.3

aBest estimates of relative free energies at room temperature (�G° in cm�1) and dihedral angles optimized at the rDSD level (��, �, �, �1 = N�
C��C��O and �2 = �C��C��O�H in degrees) are also given. See main text for details. bSum of columns 2, 3, 4, 5, 6, and 7. cRelaxes to IIg�t.
dRelaxes to Ig�g. eRelaxes to the other IIg�t form. fRelaxes to Igg�. gRelaxes to III�gg.

Figure 3. Representations of the seven serine conformers detected in MW spectra with the computed relative free energies at room temperature (in
cm�1) given in parentheses. H-bonds are highlighted by dashed lines.

Table 6. Ground-State Rotational Constants (A0, B0, and C0 in MHz), 14N-Nuclear Quadrupole Coupling Constants (� in
MHz), and Electric Dipole Moment Components (� in debye) of the Seven Most Stable Serine Conformersa

Calc.b Ig�g IIgg I�gg� IItg� III�gg IIg�t III�tg�

A0
c 4461.34 3549.33 3505.74 3630.86 3950.32 4508.13 3464.84

B0
c 1823.01 2372.38 2305.21 2382.52 2222.91 1843.00 2304.68

C0
c 1441.95 1734.67 1803.62 1515.28 1657.03 1462.05 1604.74

�aa �4.5535 �3.6696 �0.9235 �3.8114 �0.6094 �0.3660 �1.0975
�bb 2.8681 2.1341 2.5528 2.1268 �0.6702 2.0569 �0.6582
�cc 1.6854 1.5355 �1.6293 1.6847 1.2796 �1.6909 1.7557
�a 1.8574 2.1328 �0.4050 �0.7709 �2.5568 4.0962 �2.8253
�b �0.2255 �3.1566 �0.7361 4.8433 �0.2893 �1.7795 �0.5939
�c 0.7853 �1.4660 �2.7540 �0.1467 �0.5279 0.2594 0.5548
�G0 0.0 32.9 168.1 295.8 469.2 543.7 617.6

Exp.c L M N O P R Q
A0 4479.0320(12) 3557.20088(35) 3524.38806(41) 3638.05784(38) 3931.7548(76) 4517.473(17) 3510.4015(35)
B0 830.16170(25) 2380.37208(40) 2307.76826(70) 2387.89651(99) 2242.76701(70) 1846.99360(30) 2321.90829(24)
C0 1443.79545(28) 1740.92458(10) 1805.20788(60) 1519.18716(36) 1664.53012(57) 1463.79646(31) 1584.38608(32)
�aa �4.3023(27) �3.4616(19) �1.1343(35) �3.6257(57) �0.6733(67) �0.6066(55) �1.0486(55)
�bb 2.82359(63) 2.07974(93) 2.5043(50) 2.06213(26) �0.456(16) 2.0723(82) �0.5637(53)
�cc 1.4788(46) 1.3819(47) �1.3701(50) 1 0.5906(50) 1.129(16) �1.466(30) 1.612(21)

aRelative free energies at room temperature (�G0 in cm�1) are also reported. bComputed data are at the rDSD level (including LRA corrections
for equilibrium rotational constants) except for electronic energies (junChSF12) and vibrational corrections to equilibrium rotational constants
(B3). cStandard errors are shown in parentheses in units of the last digits.
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type I with respect to their type II counterparts. The stability
order provided by the computed free energies at room
temperature matches perfectly the estimate based on the
relative intensities of the MW signals.45 According to both
theory and experiments, the first four conformers (one of type
I, one of type I�, and two of type II) are significantly more
stable than the two conformers of type III� and a further
conformer of type II, which have, in turn, comparable stability
(see Table 6).
The rotational constants of the two most stable conformers

have been recently computed by geometry optimizations at the
ChS level, reaching MAX and MUE of 28.7 and 10.6 MHz,
respectively.23,112 It is noteworthy that even smaller MAX and
MUE (17.7 and 8.1 MHz, respectively) are obtained at the
rDSD-LRA level, whose strongly reduced cost has allowed us
to compute the spectroscopic parameters of all the other low-
energy conformers. The remarkable agreement between
computed and experimental results for all the detected
conformers of serine confirms the accuracy of our computa-
tional strategy.
The next studied system is threonine (Thr),113 in which a

methyl group replaces one of the hydrogen atoms bonded to
C�, leading to the CHCH3OH side chain which has again two
soft degrees of freedom (�1 = N�C��C��O and �2 = C��C��
O�H) since the terminal methyl group is frozen in a staggered
conformation with an estimated rotation barrier of 1400 cm�1.
There is now a second chiral center in addition to the C� atom,
with the natural amino acid being 2S,3R-threonine. The
conformational landscape of threonine has been investigated in
two di!erent studies,113,114 which obtained 71 and 56
conformers, respectively, in a range of about 4000 cm�1, but
the final set of conformers was the same up to a relative energy
of 1600 cm�1. The knowledge-based step of our conforma-
tional exploration started from the 12 low-energy conformers
of serine collected in Table 5, each of them being then split
into two nonequivalent structures. Next, the IM-EA algorithm
was used to generate additional low-energy minima. At the end
of these two steps and the subsequent filtering/refinement we
are left with the 10 low-energy conformers (within an energy
range of 1000 cm�1) collected in Table 7. It is noteworthy that
this finding is in full agreement with ref 114.
The predicted population of conformer IIg�g� is too low to

allow its detection in MW experiments, and conformers IIgt
and Igt relax easily to conformers IIgg and Ig�g, respectively.

We are thus left with the same number (seven) and backbone
conformation (three conformers of type II, two of type III�,
and one each for types I and I�) of the structures discussed
above for serine, which should be (and have actually been46)
detected in MW experiments. However, the presence of the �
methyl group increases the energy barrier governing relaxation
of the III�g�g conformer to its Ig�g counterpart from about
200 to about 800 cm�1 when going from serine to threonine.
As a consequence, the III�g�g conformer is observed in
threonine in place of the less stable III�tg� conformer observed
in serine (see Figure 4). At the same time, a general
destabilization of all conformers with respect to IIgg
accompanies the substitution of a � hydrogen atom with a
methyl group (see Figure 5).

The two most stable (IIgg and Ig�g) and the three least
stable (III�g�g, III�gg, and IIg�t) conformers are the same in
terms of electronic energies, enthalpies, or free energies. The
relative ordering of the two intermediate conformers is,
instead, altered by both ZPE and thermal contributions.
All the spectroscopic parameters of the seven low-energy

conformers of threonine detected in a recent microwave
study46 show a remarkable agreement with those computed for
the most stable conformers predicted by our computations
(see Table 8). The relative stability order estimated from the
experimental results is Ig�g > IIgg > I�gg� > IIg�t � III�g�g �
IItg� � III�gg, which is in general agreement with the
computed relative free energies except for the inversion
between Ig�g and IIgg conformers and the position of the
IIg�t structure.
Replacement of the oxygen atom in the side chain of serine

by a sulfur produces cysteine (Cys), whose CH2SH side chain
has again two soft degrees of freedom (�1 = N�C��C��S and
�2 = C��C��S�H). One might think that the same

Table 7. rDSD Relative Electronic Energies, Harmonic Zero Point Energies, Thermal Contributions, and Quasi-harmonic
Corrections, together with Di!erence with JunChSF12 Electronic Energies and B3 Anharmonic Corrections (all in cm�1) for
the Low-Lying Conformers of Threoninea

Label �ErDSD �ChS �ZPEH �ThH �ZPE(anh�H) T�S(QH�H) �G°b �� � � �1 �2
IIgg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 �33.7 21.8 �6.1 60.0 77.1
Ig�g 218.5 34.5 �85.9 �83.0 27.7 20.4 132.2 162.5 143.7 177.8 �55.4 42.4
IItg� 371.5 2.8 24.4 58.6 20.1 �30.5 446.9 �25.4 13.1 �2.3 �168.8 �53.7
I�gg� 459.8 �36.4 �93.7 13.4 21.3 �14.7 349.7 99.6 �175.8 �179.2 56.9 �47.3
III�g�g 574.6 45.8 �119.6 �135.4 44.4 45.4 455.2 168.2 �51.1 �179.4 �56.1 42.1
III�gg 624.2 10.8 �76.8 �62.6 �37.4 4.4 462.6 �170.6 72.6 �176.4 57.8 65.8
IIg�t 711.2 9.2 �68.8 �25.5 7.5 �8.1 625.5 35.1 �21.0 5.4 �54.6 �177.8
IIgtc 586.1 6.9 �137.1 �104.9 �48.5 9.5 312.0 �26.2 11.5 �2.6 50.1 161.2
IIg�g� 725.9 24.4 �5.8 �9.0 0.1 �7.5 728.1 34.1 �21.8 6.1 �51.8 �84.1
Igtd 962.3 8.8 �242.2 �137.4 4.0 8.4 603.9 �172.7 178.6 �179.4 64.0 179.4

aBest estimates of relative free energies at room temperature (�G° in cm�1) and dihedral angles optimized at the rDSD level (��, �, �, �1 = N�
C��C��O, and �2 = C��C��O�H in degrees) are also given. See main text for details. bSum of columns 2, 3, 4, 5, 6, and 7. cRelaxes to IIgg.
dRelaxes to Ig�g.

Figure 4. Absolute energy minimum and low-lying III� conformers of
threonine. The H-bonds are highlighted by dashed lines.
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conformers should be detected for cysteine and serine.
However, the strengths of the H-bonds possibly formed by
the thiol group are weaker than those of its alcohol
counterpart. Therefore, it is expected that the barriers
separating low-lying conformers decrease and in some
instances may even disappear. In ref 115, a systematic scan
of the conformational PES at the MP2/cc-pVTZ level led to
the identification of 71 unique conformers, thus defining a
reference data set. The knowledge-based step of our PES
exploration involved the 12 low-energy conformers found for
serine and integration of these structures with those issued
from the IM-EA exploration employing su"ciently high energy
thresholds allowed us to retrieve all the structures of the
reference data set.115 Then, refinement of the results by the
usual energy tresholds led to the 9 conformers collected in
Table 9. The rDSD results are once again in very good
agreement with their junChSF12 counterparts (MAX and
MUE of 44 and 24 cm�1, respectively).
Among those nine conformers, the two least stable ones

have too low populations to allow their unequivocal
experimental characterization and the conformer I�gg� relaxes
easily to its Ig�g counterpart, which has a similar shape.
Therefore, the number of detectable conformers reduces to 6:
two each for types I, II, and III� (see Figure 6). The backbone
structure of the most stable conformer and the general trends
are similar to those discussed above for serine and threonine
(see Figure 5), but the conformers Igg and IIg�g� replace the
I�gg� and IIg�t counterparts observed in both serine and
threonine.
The spectroscopic parameters computed at the rDSD level

are in remarkable agreement with their experimental counter-
parts39 with MUEs of 11.7, 5.7, and 3.1 MHz for the A0, B0,
and C0 rotational constants, respectively (Table 10). The
errors on B0 and C0 are quite low already at the rDSD level
(see Table S9 of the SI), whereas errors as large as 40 MHz are
obtained for the A0 rotational constant. For most conformers,

Figure 5. Observed conformers of threonine, serine, and cysteine.
The relative free energies at room temperature (�G in cm�1, see text
for details) are given for each amino acid with respect to its IIgg
conformer. The relations between the observed conformers of the
three amino acids are highlighted with dashed lines. The conformer
I�gg� of cysteine, which has not been detected in MW studies, is
reported with orange labels.

Table 8. Ground-State Rotational Constants (A0, B0, and C0 in MHz), 14N-Nuclear Quadrupole Coupling Constants (� in
MHz), and Electric Dipole Moment Components (� in debye) of the Seven Most Stable Conformers of Threoninea

IIgg Ig�g I�gg� IItg� III�g�g III�gg IIg�t
Computedb

A0 3223.67 2864.48 3141.58 2671.88 2885.67 3375.76 2907.62
B0 1528.34 1602.22 1501.39 1774.76 1564.86 1474.72 1656.40
C0 1265.11 1214.77 1313.14 1376.76 1243.85 1234.69 1187.62
�aa �3.5846 �4.3527 �0.2035 �4.1467 �4.2988 �2.2144 �0.3702
�bb 1.7308 2.6918 2.9006 2.4728 2.5948 �0.2748 2.6214
�cc 1.8538 1.6609 �2.6971 1.6739 1.7040 2.4892 �2.2513
�a 2.85 �2.06 �0.19 0.04 �1.86 �2.23 3.78
�b 2.95 0.01 �0.34 4.91 1.58 0.98 2.00
�c �0.94 0.97 �2.90 �0.16 1.33 �0.87 0.19
�G0 0.0 132.2 349.7 446.9 455.2 462.6 625.5

Experimentalc

A0 3232.4827(12) 2872.77049(48) 3148.59247(32) 2670.72096(53) 2889.93352(45) 3379.841(14) 2912.6227(20)
B0 1533.71801(32) 1608.95699(26) 1506.27679(37) 1784.66894(60) 1572.32152(50) 1482.04984(21) 1660.21807(34)
C0 1267.88615(34) 1211.39762(38) 1316.33575(44) 1383.75384(51) 1241.83423(47) 1237.59121(22) 1189.31443(34)
�aa �3.4971(21) �4.1859(25) �0.7403(21) �3.7652(73) �4.1529(32) �2.201(14) �0.544(11)
�bb 1.7519(27) 2.661(42) 2.8781(28) 2.4258(75) 2.5682(46) �0.157(50) 2.582(16)
�cc 1.7452(60) 1.5248(17) �2.1378(70) 1.3394(20) 1.5846(46) 2.358(64) �2.038(50)

aThe computed relative free energies at room temperature (�G0 in cm�1) are also reported. bComputed data are at the rDSD level (including LRA
corrections for equilibrium rotational constants) except for electronic energies (junChSF12) and vibrational corrections to equilibrium rotational
constants (B3). cStandard errors are shown in parentheses in units of the last digits.
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the C�S bond is nearly perpendicular to the average backbone
direction (see Figure 6) and is, in turn, roughly aligned with

the a axis. As a consequence, any overestimation of the C�S
bond length results in a nonnegligible underestimation of the
A0 rotational constant. In this connection, the LRA correction
brings the computed values in remarkable agreement with
experiment (the maximum error is obtained for the Ig�g
conformer and amounts to 18 MHz, i.e., 0.4%).
Let us now analyze aspartic acid, the simplest amino acid

containing two carboxylic groups. The CH2COOH side chain
has three dihedral angles (�1 = N�C��C��C�, �2 = C��C��
C��O(H) and �3 = C��C��O�H). However, �3 is frozen in
trans (favored and not explicitly labeled in the following) or cis
(labeled by c in the following) conformations. A recent
systematic analysis of the conformational landscape116
identified 19 energy minima in a range of 3500 cm�1, and
we were able to locate all those minima by our general
exploration strategy with enlarged energy thresholds. Within
this panel of candidates, only 9 conformers have electronic
energies lying within 1000 cm�1 above the absolute energy
minimum (see Table 11). Once again, a good quantitative
agreement is observed between junChSF12 and rDSD results

Table 9. rDSD Relative Electronic Energies, Harmonic Zero Point Energies, Thermal Contributions, and Quasi-harmonic
Corrections, together with Di!erence with JunChSF12 Electronic Energies and B3 Anharmonic Corrections (all in cm�1) for
the Low-Lying Conformers of Cysteinea

Label �ErDSD �ChS �ZPEH �ThH �ZPE(anh�H) T�S(QH�H) �G°b �� � � �1 �2
IIgg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 �32.7 18.6 �4.8 57.1 71.8
IIg�g� 501.1 36.3 �24.6 �53.3 �7.6 �19.8 432.1 34.4 �18.0 4.0 �60.9 �65.4
Igg 571.1 �9.3 �177.6 �196.9 47.8 63.4 298.5 �171.3 �175.8 �177.4 63.7 74.7
Ig�g 630.7 8.9 �180.6 �198.4 10.0 28.8 299.4 162.9 162.6 177.5 �65.2 51.0
III�gg 706.7 �18.5 �123.9 �168.2 1.6 65.4 463.1 �172.3 34.5 177.4 61.6 76.1
III�tg� 873.8 39.0 �153.0 �185.5 �22.5 39.7 591.5 175.6 85.6 �175.8 �175.4 �75.8
I�gg�c 722.3 �44.1 �201.0 �85.4 1.2 �4.2 388.8 98.9 �173.0 179.8 64.3 �52.5
III�gg� 950.0 41.2 �79.1 �164.4 �15.2 19.3 751.8 114.0 79.9 �65.7 88.3 16.7
IIgt 1056.5 �0.4 �38.8 �24.8 17.0 �13.8 995.7 152.9 1.8 �27.2 100.7 27.0

aBest estimates of relative free energies at room temperature (�G° in cm�1) and dihedral angles optimized at the rDSD level (��, �, �, �1 = N�
C��C��S, and �2 = C��C��S�H in degrees) are also given. See main text for details. bSum of columns 2, 3, 4, 5, 6, and 7. cRelaxes to Ig�g.

Figure 6. Cysteine conformers detected in MW experiments with the
computed relative free energies at room temperature (in cm�1) given
in parentheses. H-bonds are highlighted by dashed lines.

Table 10. Ground-State Rotational Constants (A0, B0, and C0 in MHz), 14N-Nuclear Quadrupole Coupling Constants (� in
MHz), and Electric Dipole Moment Components (� in debye) of the Six Most Stable Energy Minima of Cysteinea

Calc.b IIgg Igg Ig�g III�gg IIg�g� III�tg�

A0 3063.27 2874.44 4217.57 3223.13 4352.34 2989.53
B0 1600.59 1615.60 1181.79 1563.71 1173.71 1524.30
C0 1327.34 1366.95 1000.82 1267.50 1012.74 1210.12
�aa �3.3302 �0.0280 �4.5456 0.0509 �0.1942 0.5818
�bb 2.5198 0.3553 2.8019 �0.5218 2.2497 �2.1507
�cc 0.8104 �0.3273 1.7437 0.4708 �2.0555 1.5689
�a 1.40 �1.02 �1.81 2.86 2.33 �2.12
�b 3.98 �1.43 0.37 �2.42 �0.18 0.31
�c �1.53 �1.39 0.57 1.36 �0.20 �0.02
�G0 0.0 187.3 260.6 396.1 459.5 574.3

Exp.c O N L P M Q
A0 3071.1437(15) 2889.44652(93) 4235.63210(58) 3216.218(26) 4359.22320(77) 3004.1689(90)
B0 1606.53664(36) 1622.99829(32) 1187.27897(20) 1572.74943(63) 1178.27610(13) 1527.40718(53)
C0 1331.80185(34) 1367.83448(26) 1003.10663(23) 1276.79135(55) 1015.27433(13) 1210.70722(46)
�aa �3.1200(53) �0.1465(36) �4.263(11) 0.0 �0.4060(9) 0.505(10)
�bb 2.4418(61) 0.4419(43) 2.776(11) �0.449(25) 2.2314(43) �1.991(20)
�cc 0.6782(61) �0.2954(43) 1.488(11) 0.449(25) �1.8254(43) 1.486(20)

aThe computed relative free energies at room temperature (�G0 in cm�1) are also reported. bComputed data are at the rDSD level (including LRA
corrections for equilibrium rotational constants) except for electronic energies (junChSF12) and vibrational corrections to equilibrium rotational
constants (B3). cStandard errors are shown in parentheses in units of the last digits.
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with the MAX and MUE between the two methods being 83.5
and 30.2 cm�1 without any inversion in the relative stability
order. Inclusion of zero point and thermal e!ects produces
significant changes in the trend issued from relative electronic
energies with the most striking e!ect being, as usual, the
destabilization of all the conformers showing type II hydrogen
bridges (see Table 11). The six most populated conformers
shown in Figure 7 are significantly more stable than the next 3
ones, and exactly six species were detected in MW experi-
ments.96

Both the I�g�t and III�gt conformers are more stable than
their I and III counterparts due to the replacement of an
intrabackbone bifurcated NH2···OC or NH2···OH hydrogen
bond by a single HNH···OC or HNH···OH hydrogen bond
plus a single HNH···OC backbone (side chain) hydrogen
bond. The increased stability explains also the absence of low-
barrier relaxation paths from these conformers to I structures.
The spectroscopic parameters collected in Table 12 show a

remarkable agreement between theory and experiment. It is
noteworthy that previous MP2/6-311++G(d,p)96 computa-
tions forecasted that one or two di!erent conformers should be
experimentally detected and that the spectroscopic constants
obtained at that level show MAX and MUE with respect to
experiment (29.2 and 10.6 MHz) more than three times larger
than their rDSD-LRA counterparts (8.2 and 3.1 MHz). The

rDSD MUE (smaller than 0.2%) approaches again the
accuracy of state-of-the-art composite methods for small
semirigid molecules117 and permits the unbiased assignment
of MW spectra.118 The stability order of the six most
populated conformers is, however, quite di!erent between
theory and experimental estimates with the strongest
discrepancy concerning the inversion of the relative stability
of I and II species. Although the experimental populations take
into account also possible relaxation of higher-energy
structures to the most stable conformers, according to the
computed free energies the initial populations of all the species
outside the six most stable ones are too low to alter the
computed relative populations. From another point of view,
the experimental estimates are based on a number of
assumptions, which might not be fulfilled in the present case.
Also taking these considerations in mind, the agreement
between theory and experiment concerning the nature and
spectroscopic parameters of all the observable species remains
remarkable.
The last system considered in this study is asparagine, which

is the only proteinogenic �-amino acid, together with
glutamine,119 containing an amide group. The soft degrees of
freedom of the asparagine side chain (CH2CONH2) include
two dihedral angles (�1 = N�C��C��C�, �2 = C��C��C��N)
because the coupled rotation/inversion displacements of the
NH2 amide moiety from the planar reference structure can be
safely added to the panel of sti! degrees of freedom. The
amide moiety can act either as a proton donor or as a proton
acceptor, with this increasing the number of possible backbone
(side chain) intramolecular hydrogen bonds. Asparagine in the
gas-phase has been widely studied by both computational47,120
and experimental47,121 points of view, but a comprehensive
characterization of its structure and conformational landscape
has not yet been performed by state-of-the-art quantum
chemical methods.
The usual exploration/refinement strategy provides 5

conformers with rDSD electronic energies within a little
more than 1000 cm�1 above the absolute energy minimum
(see Table 13). At this level only the most stable IIgg
conformer (see Figure 8) should be detectable in MW
experiments. The situation is thus very di!erent from that
found in the case of aspartic acid because the presence of the
NH2 amidic moiety in the side chain permits the compensation
of the weak hydrogen bond in the carboxylic moiety (lacking in
II structures of aspartic acid with respect to their I

Table 11. rDSD Relative Electronic Energies, Harmonic Zero Point Energies, Thermal Contributions and Quasi-harmonic
Corrections, together with Di!erence with JunChSF12 Electronic Energies and B3 Anharmonic Corrections (all in cm�1) for
the Low-Lying Conformers of Aspartic Acida

Label �ErDSD �ChS �ZPEH �ThH �ZPE(anh�H) T�S(QH�H) �G°b �� � � �1 �2
IIgt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3 20.7 �6.3 61.7 168.8
IIg�t 133.5 7.5 �57.1 �60.8 �13.1 �9.7 0.3 �35.7 20.0 �4.3 �65.5 174.7
Igt 288.7 �4.3 �143.6 �80.1 �17.3 7.0 50.4 179.6 �164.5 �177.8 67.8 �177.2
Ig�gc 341.0 �4.1 7.3 �27.4 �38.8 �30.9 247.1 164.6 162.4 177.2 �63.0 38.8
III�gt 350.5 83.5 �114.2 �99.3 �13.7 27.3 234.1 177.0 24.4 178.1 65.9 �179.7
I�g�t 478.9 �40.6 �178.2 �121.6 �24.5 9.1 123.1 86.6 �167.5 �177.0 �63.9 169.8
I�gg�c 682.8 74.2 �4.4 18.0 �21.9 3.0 751.7 85.9 �179.1 �165.3 62.5 �36.9
IIItt 777.4 9.7 �86.0 �25.3 �12.7 �65.0 598.1 169.6 5.1 167.2 �158.3 171.1
I�tt 1136.3 �17.7 �202.4 �193.0 �17.3 51.1 757.0 62.7 �179.5 58.6 �173.7 �160.1

bSum of columns 2, 3, 4, 5, 6, and 7. aBest estimates of relative free energies at room temperature (�G° in cm�1) and dihedral angles optimized at
the rDSD level (��, �, �, �1 = N�C��C��C�, and �2 = C��C��C��O(H) in degrees) are also given. The �3 angle (C��C��O�H) is always close
to 180° (not explicitly indicated) or 0° (evidenced by the last “c” in the conformer label). See main text for details.

Figure 7. Conformers of aspartic acid detected in MW experiments
with the computed relative free energies at room temperature (in
cm�1) given in parentheses. H-bonds are highlighted by dashed lines.
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counterparts) by a backbone/side chain OH···NH2 hydrogen
bond without reducing the local stability of the amide moiety.
In fact, an analogous situation would involve a 180° rotation of
the OH moiety in the carboxylic group of the side chain in
aspartic acid away from its most stable arrangement.
ZPE and thermal contributions strongly stabilize all

conformers with respect to the most stable IIgg strucure, so
that the IIg�t form (see Figure 8) might become accessible to
experimental characterization. As a matter of fact, several
searches of transition states connecting IIg�t and IIgg
conformers gave quite high energy barriers preventing any
e!ective relaxation path. As a consequence, there is a

disagreement between theory and experiment47 about the
number of low-lying conformers of asparagine. However,
comparison between computed and experimental spectro-
scopic parameters for the single conformer detected in the
MW study of ref 47 shows the usual remarkable agreement
(see Table 14) with MAX and MUE as low as 12.6 and 4.7
MHz for rotational constants and 0.19 and 0.08 MHz for
quadrupole coupling constants.

5.3. Trends of Intramolecular Interactions. The
accurate results obtained for several amino acids permit the
strengths of the main interactions governing the conforma-
tional landscapes of these flexible systems to be estimated. In
particular, approximate values for the strengths of di!erent
hydrogen bonds can be computed from prototypical systems
and used to rationalize energy di!erences among the
conformers of di!erent amino acids in terms of sums of
stabilizations from near-atom interactions. Based on the energy
di!erence between Ic and I or I�c and I� conformers of glycine,
for each carboxyl group � = 180° is more stable than � = 0°
by about 1700 cm�1 and the same applies to �3 in the case of
aspartic acid. Concerning other situations, the hydrogen bond
donors can be ranked in the order O�H > N�H > S�H, and
the hydrogen bond acceptors in the order N > O > S. As a

Table 12. Ground-State Rotational Constants (A0, B0, and C0 in MHz), 14N-Nuclear Quadrupole Coupling Constants (� in
MHz), and Electric Dipole Moment Components (� in debye) of the Six Most Stable Energy Minima of Aspartic Acida

Conformer IIgt IIg�t Igt I�g�t III�gt Ig�gc
Computedb

A0 2607.9 3412.3 2546.8 3372.8 2643.8 3192.2
B0 1188.9 900.4 1202.1 904.2 1182.9 943.8
C0 1057.1 762.5 1067.2 778.1 1055.9 781.4
�aa �3.7322 �3.4040 �0.2050 1.1611 �0.2629 �4.1388
�bb 2.7326 1.4552 �0.2987 2.7491 �0.3570 2.5722
�cc 0.9996 1.9488 0.5037 �3.9102 0.6199 1.5665
�a 2.3532 3.6076 1.0967 0.5375 0.3702 �5.2042
�b 4.1392 2.1025 1.2332 �1.8804 0.5037 1.1751
�c �2.1974 1.4410 1.7069 �0.7507 0.2090 �0.6972
�G0 0.0 0.3 50.4 123.1 234.1 247.1

Expc P N M L Q O
A0 2612.20878(26) 3416.43489(66) 2553.85523(70) 3378.20873(26) 2651.953(31) 3198.861(19)
B0 1191.01132(17) 902.904474(79) 1205.08478(10) 907.373507(28) 1183.51697(30) 945.84803(7)
C0 1057.33169(16) 764.631177(96) 1069.14318(10) 780.042139(32) 1054.98929(34) 781.75139(18)
�aa �3.5601(63) �3.3602(87) �0.2774(35) 0.9560(35) �0.295(27) �3.995(19)
�bb 2.6538(54) 1.4823(73) �0.2640(35) 2.7296(23) �0.350(45) 2.524(32)
�cc 0.9064(54) 1.8778(73) 0.5414(35) �3.6856(23) 0.645(45) 1.470(32)

aThe computed relative free energies at room temperature (�G0 in cm�1) are also reported. bComputed data are at the rDSD level (including LRA
corrections for equilibrium rotational constants) except for electronic energies (junChSF12) and vibrational corrections to equilibrium rotational
constants (B3). cStandard errors are shown in parentheses in units of the last digits.

Table 13. rDSD Relative Electronic Energies, Harmonic Zero Point Energies, Thermal Contributions, and Quasi-harmonic
Corrections, together with Di!erence with JunChSF12 Electronic Energies and B3 Anharmonic Corrections (all in cm�1) for
the Low-Lying Conformers of Asparaginea

Label �ErDSD �ChS �ZPEH �ThH �ZPE(anh�H) T�S(QH�H) �G°b �� � � �1 �2
IIgg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 �23.3 15.4 �4.9 58.5 101.0
IIg�t 727.6 �24.2 �222.8 �193.4 16.6 44.8 348.6 �36.9 20.5 �4.3 �65.6 177.0
Ig�g 826.9 27.3 �212.0 �260.1 81.8 82.5 546.4 172.4 161.0 177.3 �69.6 34.9
I�gg� 1016.6 8.8 �198.6 �62.1 61.6 24.1 850.4 80.6 �164.8 �178.6 69.8 �29.5
Igt 1072.6 �36.1 �367.2 �271.5 154.4 66.3 568.5 �179.7 �164.6 �178.0 67.1 �173.1

aBest estimates of Gibbs free energies (�G° in cm�1) and dihedral angles optimized at the rDSD level (��, �, �, �1 = N�C��C��C�, and �2 = C��
C��C��N in degrees) are also given. The �3 angle (C��C��N�H) is always close to 0°. See main text for details. bSum of columns 2, 3, 4, 5, 6,
and 7.

Figure 8. Most stable conformers of asparagine. The computed
relative free energies at room temperature (in cm�1) are given in
parentheses. H-bonds are highlighted by dashed lines.
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consequence, the strongest hydrogen bond is H2N···H�O
(with an estimated strength of 3200 cm�1), which involves the
best donor and the best acceptor, followed by H2�N···HNH
(with an estimated strength of 2400 cm�1). Those values,
together with the energy di!erences among conformers I, II,
and III of glycine, permit strengths of about of 1700 and 1100
cm�1 to be estimated for the bifurcated NH2···OC and
NH2···O�H hydrogen bonds. Furthermore, the di!erence
between the pairs I, I� and III, III� leads to hydrogen bond
strengths of about 1300 and 800 cm�1 for the more
conventional single H�N�H···OC and HNH···O�H
hydrogen bonds. Finally, a comparable strength of about 800
cm�1 is estimated for the H2N···H�S, H�S···H�N�H, and
S�H···OC hydrogen bonds. It is then quite straightforward
to understand why conformer I is more stable than its II
counterpart in the absence of backbone (side chain) hydrogen
bonds (e.g., in alanine): in fact, the sum of NH2···OC and
favorable carboxyl conformation exceeds by about 200 cm�1

the stronger H2N···H�O hydrogen bond but with an
unfavorable conformation of the carboxylic moiety. On the
other hand, in serine and threonine, conformer II becomes
more stable due to the extra stabilization related to an O�H···
OC hydrogen bond involving the backbone and the side
chain. The same occurs in cysteine, where the 800 cm�1 gained
from the S�H···OC hydrogen bond makes the IIgg
conformer more stable than the Igg counterpart by about
600 cm�1. An analogous situation is found in aspartic acid,
where the amine moiety is involved at the same time in an
OH···N hydrogen bond within the backbone and a HNH···
OC hydrogen bond with the side chain. Finally, IIgg is by far
the most stable conformer in asparagine because the presence
of an amide group allows the formation of two additional
backbone (side chain) hydrogen bonds. Type III conformers
are intrinsically less stable than their I counterparts (due to the
lower strength of NH2···O�H with respect to NH2···OC
hydrogen bond), and moreover, they can easily relax to I forms
through rotation around � when not locked by additional
interactions. However, III� conformers featuring a single H�
N�H···O�H hydrogen bond can be stabilized and locked into
su"ciently deep energy wells upon involvement of the released
N�H bond into additional hydrogen bonds with the side
chain. This is the case, for instance, of the III�gg conformer in
serine, threonine (H�O···H�N�H···O�H), and cysteine
(H�O···H�N�H···S�H).
Hydrogen bonding is surely the driving force ruling the

general trends of structures and relative stabilities, but the
detailed geometry and energy changes between conformers
depend strongly on other stereoelectronic e!ects like, e.g.,
hyperconjugation or steric repulsion. For instance, any additive
picture based on individual hydrogen bond strengths is tuned

by the preference of bulky vicinal substituents for trans or
gauche conformations, which, in turn, depends on the balance
between electrostatic, steric, and hyperconjugative e!ects.
Furthermore, vibrational e!ects (a!ecting both ZPEs and
entropic contributions) alter the stability order provided by
relative electronic energies and must be taken into the proper
account.
While the reader is referred to studies of specific systems for

more detailed analyses along these lines,46,47,96,111,115 we point
out that only the availability of accurate results including all the
stereoelectronic and vibrational e!ects (like those reported in
the present paper) can provide an unbiased reference for
building more realistic models (e.g., force fields including non
additive terms) for the study of flexible biomolecules.

6. CONCLUDING REMARKS
In this paper, a general strategy aimed at the unbiased
disentanglement of the conformational bath of flexible
biomolecule building blocks in the gas phase has been further
improved and validated for the specific case of representative
natural �-amino acids. The use of curvilinear internal
coordinates permits the separation between sti! and soft
degrees of freedom. Then, e!ective exploration of the soft
variables can be performed by purposely tailored evolutionary
algorithms, whose fitness scores are obtained by constrained
geometry optimizations of the sti! degrees of freedom
employing a fast semiempirical method. Refinement of the
energies and structures by a hybrid and then a last-generation
double-hybrid functional allows very reliable results to be
obtained minimizing the number of expensive computations.
Application of the procedure to supersonic jet experiments
requires also the location of transition states ruling the
interconversion between pairs of adjacent energy minima and
the identification of fast relaxation processes. Improved
structures and relative energies are obtained by the rDSD-
LRA approach and the junChSF12 composite method,
respectively. Finally, the spectroscopic parameters of su"-
ciently populated conformers can be safely computed at the
rDSD level.
The results obtained for glycine, alanine, and, especially,

di!erent natural �-amino acids with polar side chains are in full
agreement with the available spectroscopic data and permit
their unbiased interpretation in terms of the cooperation or
competition between intrabackbone and backbone (side
chain) hydrogen bonds.
Together with the intrinsic interest of the studied molecules,

the results of the present investigation show that highly reliable
analysis of the conformational landscape is today possible for
flexible building blocks of biomolecules in the gas phase.
Furthermore, we provide benchmark results for the validation

Table 14. Experimental47 and Computed Ground State Rotational Constants (A0, B0, C0 in MHz) and Quadrupole Coupling
Constants (� in MHz) for the IIgg Conformer of Asparaginea

Experimental Computed

A0 B0 C0 A0 B0 C0

2270.85145(85) 1387.80238(41) 1102.63540(41) 2258.22 1387.0 1101.81
Experimental Computed

�aa �bb �cc �aa �bb �cc
N� �2.0313(50) 2.5720(57) �0.5408(57) �2.2164 2.6624 �0.4459
N� �1.4649(63) 1.5518(76) �0.0870(76) �1.5141 1.5607 �0.0466

aThe values in parentheses are the experimental standard errors in units of the last digit.
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of cheaper quantum chemical methods, which become
unavoidable for large biomolecules.
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Chapter 8

Validation and applications of
new features

This chapter aims to validate the Proxima Molecular Perception software and
the accompanying definition of the Chemical Feature Space before applying them
systematically to relevant chemical problems. The chapter is subdivided as fol-
lows: The first section, Chemical Conditions, presents some validation examples
of chemical descriptors for the ”classification” and ”clustering” of atom types
and the application of the synthon approach to the TMA scheme. The sec-
ond section, Physical Conditions, proves the e↵ectiveness of some new potential
energy functions for describing bendings and stretchings, finally discussing the
couplings between these di↵erent energy contributions taking the Ip conformer of
the glycine molecule as an example. Finally, the exploration of Potential Energy
Surfaces with the help of ML algorithms and Virtual Reality tools is discussed in
the last section.

8.1 Chemical Conditions

A continuous description of atom types permits the application of many of the
di↵erent Machine-Learning techniques already discussed in previous chapters.
There are three main paths that we can follow; the first choice is trying to repli-
cate known discrete atom types from continuous atom types, the second is trying
to create new sets of atom types that depend on the molecular system investi-
gated and lastly, the third possibility is of keeping the atom type as a continuous
quantity while obtaining geometrical parameters from the continuous description
of atoms in molecules.

8.1.1 Atom type classification

In order to validate the e↵ectiveness of describing atom types of traditional Force
Field from continuous features, we took as a reference the Carbon atom types
from the General AMBER Force Field Force Field [111] shown in Tab. 8.1.
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Atom Type Description
c sp2 in C––O, C––S
c1 sp
c2 sp2 aliphatic
c3 sp3

ca sp2 aromatic
cc inner sp2 in conjugated ring systems
ce inner sp2 C in conjugated chain systems
cp bridge aromatic
cu sp2 in three-membered rings
cv sp2 in four-membered rings
cx sp2 in three-membered rings
cy sp3 in four-membered rings

Table 8.1: The General AMBER Force Field [111] carbon atom types.

A small training set of just 147 atoms and a test set of 50 atoms have been
employed. A simple Decision Tree algorithm (see Chap. 3), optimized with the
scikit-learn python library [81], reached an accuracy of 94% on this small dataset
obtaining the tree of Fig. 8.1.

Figure 8.1: The Decision Tree for General AMBER Force Field atom types.

The measured importance in the decision for each feature is:

• Delocalization: 16.29%

• Coordination: 14.88%

• Charge: 19.00%
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• Rigidity: 49.83%

See Chap. 3 to get details on the way each importance is measured. The high
importance of the rigidity shows the good design of the Feature Space since many
atom types of Tab. 8.1 are distinguished mostly on the basis of their presence in
small rings and the size of the ring itself. Of course, the data set is really small,
and more data points would be necessary to better train the model. Moreover,
the Decision Tree is not the most common classification algorithm used because
of its fluctuations. However, other algorithms such as the random forest do not
provide a simple Decision Tree to be shown graphically and the goal of this section
was just to prove the good design of the features in representing traditional atom
types.

8.1.2 Discrete dynamic atom types

The second application of the Feature Space is to find a discrete set of ”dy-
namic atom types” that are specific to the molecules considered. To do so, the
4-dimensional Feature Space is computed, normalized so that each feature is cen-
tered on its average value with a standard deviation equal to one, and a PCA
(Principal Component Analysis, see Chap. 3) is performed to reduce the number
of dimensions to 3 since there might be dependencies between features that we
try to remove. The Silhouette coe�cient is then computed on this new Feature
Space for an increasing number of clusters determined with the K-Means algo-
rithm. The optimal number of clusters is then automatically assigned in the first
maximum of the Silhouette. By performing clustering operations with the scikit-
learn python library [81], we are building a new set of discrete atom types that
are specific to the molecule considered. In Fig. 8.2, these dynamic atom types
are shown for three di↵erent molecules.
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Figure 8.2: The clustering procedure applied to three di↵erent molecular systems.

In this case, the bond orders and the charges of Proxima have been used in
a molecular graph computed with the topology perception algorithms discussed
in the previous chapter. It is important to notice, however, that in principle we
could use a bond order matrix derived from Quantum Chemistry computations
in computing the same feature and applying the same clustering method, thus
allowing us to study the formation of atom types in less obvious situations such as
in the presence of metal complexes. Notice how the clustering correctly accounts
for the rigidity of the atom in the molecule (e.g. the cyclopropane and cyclobutane
rings of the first molecule), for the di↵erent delocalization states of the atom (such
as the double bond CSP2-CSP2 and the aromatic CSP2 in rings), and for the
presence of heteroatoms. It is important to notice that this type of clustering
depends on the percentage with which an atom appears in the dataset, areas of
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the Feature Space that are more dense tend to form more clusters than sparse
areas.

8.1.3 The synthon and the Fragment Databases

The synthon was introduced as the evolution of the continuous atom type to the
description of covalent bonds. The last application we are showing is the detection
of sub-fragments in molecules. The need for partitioning a molecule into smaller
fragments comes from the need to speed up computations on larger molecules. In
a recent work [139], a new tool has been developed for the accurate refinement
of molecular structures. The Nano-Lego tool, as the name implies, is designed to
be a user-friendly tool to assemble fragments of molecules into bigger molecules
and to refine geometries by awareness of sub-fragments. These two operations,
assembly and refinement, are the Templating Molecules Approach (TMA) and
the Linear Regression Analysis approach (LRA) respectively. In the following,
we are going to illustrate the LRA approach, its recent evolution in the LPCS
approach, the TMA scheme, and the use of synthons in automatically performing
TMA.

LRA

The general idea of the Linear Regression Analysis (LRA) is to compute quan-
tities at two di↵erent levels of theory (X and Y) performing a linear regression
between the two to correct new X values as close as possible to the ones com-
puted with Y. In general, the linear assumption works well when dealing with
properties computed with two methods that are similar in accuracy. An exam-
ple has been the application of LRA to the determination of Semi-Experimental
molecular structures. The analysis of high-resolution spectra (with rotational
spectroscopy being the technique of reference in the present context) provides
the spectroscopic parameters for the vibrationally averaged structure of one or
more vibrational states. The direct experimental outcomes are the rotational
constants, which are proportional to the inverse of the inertia moments in the
Eckart frame [139]. Since they depend on both the coordinates and the masses
of the atoms in the molecule, measurements performed for a su�cient number
of isotopologues provide the information needed for determining all the averaged
geometrical parameters of the corresponding vibrational states. To move to the
equilibrium configuration, however, vibrational contributions need to be consid-
ered and the rotational constants of the equilibrium geometry have to be employed
in the fitting procedure. In the majority of cases, therefore, a pure experimen-
tal route is not practicable. In this connection, the so-called Semi-Experimental
(SE) approach represents the best method for obtaining accurate equilibrium
structures for all but the smallest (two, or three atoms) molecules. To exploit
this method for semi-rigid molecules, second-order vibrational perturbation the-
ory (VPT2) [6–8] comes into play, providing explicit expressions of the vibrational
corrections to the rotational constants in terms of second and semi-diagonal third-
order derivatives of the potential energy with respect to normal modes. The sit-
uation is particularly favorable because the sum of the corrections issuing from
the di↵erent normal modes (contrary to the individual terms) is devoid of any
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possible resonance and, thanks to a fortuitous but very general error compensa-
tion, can be computed with remarkable accuracy by not too-sophisticated QM
approaches (e.g., MP2, hybrid, or double-hybrid density functionals). Additional
electronic contributions can also be taken into account, but their role is negligible
except in very peculiar cases. In a recent work [140], it has been shown that last-
generation hybrid (PW6B95) and double-hybrid (rev-DSD-PBEP86-D3(BJ) [1–3]
[1]) functionals in conjunction with partially augmented basis sets (jul-cc-pVDZ
and jun-cc-pVTZ [5], respectively) provide improved results for several spectro-
scopic properties with respect to the B3LYP [27] and B2PLYP [30] models used
in the previous compilation. The general approach is to subtract vibrational
contributions (obtained by VPT2 applied to semi-diagonal cubic force constants
evaluated at the rev-DSD-PBEP86-D3(BJ) [1–3]/jun-cc-pV(T+d)Z/jul-cc-pVDZ
level of theory [1, 4, 5]) from the corresponding ground-state rotational constants
measured experimentally:

BSE

↵
= B0

↵
��Bvib

↵
(8.1)

The MSR software [141] has been developed to find the geometrical structure,
considering all isotopologues, that best fit such Semi-Experimental rotational
constant. Thus, this geometry is called the Semi-Experimental structure. In
the LRA approach, the di↵erence between geometrical parameters obtained from
Semi-Experimental structures (re) and the ones computed through geometry op-
timization of the X level of theory (rX) are fitted through a linear equation of
the type:

re = (1 + A)rX + B (8.2)

As discussed at the beginning, the problem with such linear behavior is that it
requires the two geometries (in this case X= rev-DSD-PBEP86-D3(BJ) [1–3] and
Y=SE) to be in the same range of accuracy. In general, when we use lower-level
computations as our X method we observe a loss in linearity and much noise in
the relation between geometrical parameters. The bond parameters are shown in
Tab. 8.2.

A B
CC -0.00184 0
CH -0.00239 0
CO -0.00297 0
CN -0.00234 0
CS -0.01222 0.01672
CF -0.00307 0
CCl -0.0043 0
NH -0.00216 0
OH 0.24674 -0.24091

Table 8.2: The LRA parameters for correcting revDSD geometries for the original
Nano-Lego tool [139].

The next evolution of the LRA approach might be to employ intrinsically
non-linear engines (such as Neural Networks) to correlate geometrical parameters
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computed with many di↵erent levels of theory, thus providing accurate geometries
starting from low-resolution structures.

LPCS

A variant of the LRA approach that we are recently developing is the LPCS (Low-
cost Pisa Composite Scheme). The idea is to start from a geometry optimized at
the rev-DSD-PBEP86-D3(BJ) [1–3]/cc-pVTZ-F12 (revDSD/3F12 from now on)
[9], which is already a high-quality structure obtained employing an F12 basis set.
To obtain the LPCS structure, an additional contribution must be taken into ac-
count, namely the Core Valence (CV) correlation. To quantify such contribution,
the di↵erence between an all-electron and a frozen core MP2 computation can
be added requiring three di↵erent computations to be performed. However, we
have noticed that by employing an LRA-like approach, we can then quantify such
CV contribution directly onto the geometrical parameters. The key observation
is that the e↵ect of CV correlation on covalent bonds is almost constant and
shrinks the bond. In particular, by writing the corrected bond length as:

r = (1� a)rrevDSD/3F12 � b (8.3)

we can then express the CV correlation contribution as:

(
a = 0

b = 0.0012(ni + nj � 2)
(8.4)

In this equation, units are Angstroms, and ni, nj are the principal quantum
numbers for the atoms considered (1 for first-row atoms, 2 for second-row atoms,
etc.). This corresponds to saying that the e↵ect of CV is a constant shrinking
of the bond lengths, with a perfectly linear dependency with a coe�cient of 1
between the revDSD /3F12 [9] distances and the LPCS ones. Another alternative
formulation might be setting the b parameter to 0 while changing the angular
coe�cient of the line obtaining:

(
a = 0.0011

p
ninj � 1

b = 0
(8.5)

This should give almost the same contribution to distances with the advantage
of allowing us to employ such a formulation, in future works, to correct force
constants in a similar fashion. However, in the following, we are going to employ
the formulation with the constant b since the latter is still requiring much more
testing.

TMA

The TMA strategy is not in contrast to the LRA or LPCS ones but can instead
be integrated with these other methods to refine geometries. The TMA can
be thought of as a trick to scale the refinement to bigger molecules for which
multiple fragments can be processed in parallel. The idea is quite simple and is
to detect sub-fragments of a given molecule for which higher resolution structures
are already available thus using that information to correct the overall geometry.
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In particular, let us assume that for a given molecule computed at the X level
of theory, a given sub-fragment is already available with both the geometry at
the X level of theory and the best high-res structure. Then, the TMA model
assumes that the geometry variation between X and high-res remains the same
independent of whether or not we are talking about the sub-fragment or the
overall molecule. Thus, we can correct each geometrical parameter with:

re
mol

= rX
mol

+ rbest
frag

� rX
frag

(8.6)

It is important to remember that the same assumption of the LRA method is
still in place: there is a linear scaling between geometrical parameters computed
at the X level of theory and the ones of the best structure available. In the current
context, we are going to assume such behavior for geometries computed at the
revDSD level but non-linearities will be taken into account in future works. The
TMA approach requires:

• A fragment-detection strategy

• A correction strategy of geometrical parameters for which sub-fragments
are not available

In general, the ”best” structure we can have is the Semi-Experimental one.
However, SE structures are hard to obtain. Thus, when SE structures are missing
from our internal database we can rely on a second database of LPCS geometries,
which are easier to obtain. To detect sub-fragments, the synthon approach has
been employed for bonds and angles. We observed that a good detection strat-
egy employing synthons consists in checking whether the computed synthon for
X-level geometrical parameter (bond or angle) is within 50 units of Euclidean
distance from the X-level synthon of the sub-fragment bond in Feature Space
units. If so, the sub-fragment synthon is assigned to the molecule synthon and
the correction is performed with the equation written above. At the junction
between fragments, a correction strategy must be employed. The simplest one
is to keep the parameter at the X level of theory, which has been proven good
enough for revDSD geometries. Otherwise, a common LRA strategy can still be
employed for correcting such geometrical parameters. In the following, several
examples of molecules computed with the revDSD/jun-cc-pVTZ [5] method and
corrected with several strategies are shown. In Fig. 8.3, the rotational constants
for the imidazole molecule are reported.
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MHz A B C
EXP a) 9725.32600 9374.01100 4771.92800
�vib b) -79.86500 -77.22700 -40.98200
�el c) 0.52400 0.55900 -0.15800
SE (EXP - �vib - �el) 9804.66700 9450.67900 4813.06800
REV 9755.64061 9406.72360 4789.00274
LRA 9801.42460 9447.50460 4810.60550
LPCS 9805.00090 9455.17980 4813.45670
SE/TMA 9805.65773 9452.08673 4812.81323
ERR % (REV) -0.50003 -0.46510 -0.50000
ERR % (LRA) -0.03307 -0.03359 -0.05116
ERR % (LPCS) 0.00341 0.04762 0.00808
ERR % (SE/TMA) 0.01010 0.01490 -0.00529

Figure 8.3: The imidazole rotational constants. a) Values are taken from Ref.
[142] b) Values computed at the revDSD/jun-cc-pVTZ [2, 3] level of theory c)
Values are taken from Ref. [143] and are computed at the B3LYP/aug-cc-pVTZ.

In this case, the Semi-Experimental structure is available from the SE23 [139]
database, and the TMA is employed just to validate the use of the synthon in
detecting fragments (thus not distinguishing the TMA from the SE structure).
As can be seen, the percentage relative error on the rotational constants of the
revDSD structure is higher than any other. The LRA improves the accuracy
by reducing the error, but the Semi-Experimental structure is, of course, the
highest quality structure although the LPCS method comes very close with an
order of magnitude improvement over the A rotational constant (although slightly
worsening the B and C rotational constants). In this case, the TMA is identical to
its SE counterpart since the synthon correctly assigned the entire molecule to the
imidazole fragment as a validation. To employ the TMA, fragments are required.
In the following, we are going to study four amino acids: tyrosine, phenylalanine,
tryptophan, and histidine. To apply the TMA, a fragment for the backbone is
required. To start, we are going to use the II conformer of the alanine molecule
as shown in Fig. 8.4.
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MHz A B C
EXP a) 4973.0558 3228.3379 2307.8090
�vib b) -52.0713 -16.5586 -27.4565
SE (EXP - �vib) 5025.1271 3244.8965 2335.2655
REV 5005.8975 3205.3552 2334.2973
LPCS 5032.1071 3223.9208 2343.5498
LRA 5030.1472 3219.2802 2344.8370
SE 5026.18306 3246.90140 2335.95969
ERR % (REV) -0.3827 -1.2186 -0.0415
ERR % (LPCS) 0.1389 -0.6464 0.3548
ERR % (LRA) 0.0999 -0.7894 0.4099
ERR % (SE) 0.02101 0.06179 0.02973

Figure 8.4: The rotational constants for the II conformer of the alanine molecule
using di↵erent strategies. a) Values are taken from Ref. [144] b) Values are ob-
tained from Ref. [144] computed at the MP2/6-31G(d) [145–152] level of theory.

Here, we show the di↵erence in accuracy using the LRA structure and the
LPCS structure. In this case, the LPCS is in the same range of accuracy as the
LRA which is a common trend observed. Having the imidazole and the alanine
fragments, it is possible to validate the application of LRA at the junction between
the two. Starting from the parent histidine molecule, shown in Fig. 8.5, we
computed rotational constants employing two di↵erent strategies at the junction
between fragments.
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MHz A B C
EXP a) 1847.53472 831.71551 745.94445
�vib b) -14.7198 -2.2784 -2.6382
SE (EXP - �vib) 1862.2545 833.9939 748.5827
REV 1846.3236 833.9905 748.0919
LRA 1854.7568 837.4040 751.1480
TMA (TMA with REV at junction) 1861.9812 833.2180 748.6539
TMA (TMA with LRA at junction) 1862.1523 834.0210 749.2956
ERR % (REV) -0.8555 -0.0004 -0.0656
ERR % (LRA) -0.4026 0.4089 0.3427
ERR % (TMA with REV at junction) -0.0147 -0.0930 0.0095
ERR % (TMA with LRA at junction) -0.0055 0.0033 0.0952

Figure 8.5: The rotational constants for the parent histidine molecule using dif-
ferent strategies. a) Values are taken from Ref. [153] b) Values computed using
the framework of VPT2 at the B3LYP–D3(BJ)/jul-cc-pVDZ [2, 3, 5, 27, 28] level
of theory.

In this case, we are going to omit the LPCS structure since SE structures are
available for every fragment involved. The first validation is that the software
correctly employs the synthons to detect the fragments to unite: the imidazole and
alanine fragments. The TMA approaches outperform the simple LRA strategy
if enough fragments are provided as reference SE molecules, by going below 1%
relative error in the rotational constant. Employing the LRA correction at the
junction between fragments shows a small improvement over the pure-revDSD
strategy (that is keeping non-available parameters as the revDSD geometry).
Still, the advantage of the pure-revDSD strategy is that there is no need for pre-
compute LRA parameters to correct the geometry, thus being a parameter-free
model. In future examples, the pure-revDSD strategy is employed unless it is
specified otherwise. The success of such a strategy can be further observed with
the IIgg conformer of the phenylalanine molecule shown in Fig. 8.6.

139



MHz A B C
EXP a) 1666.0436 638.5631 568.7684
�vib b) -14.5240 -3.3160 -2.6140
SE (EXP - �vib) 1680.5676 641.8791 571.3824
REV 1665.6639 642.0987 571.5029
LRA 1672.8395 644.5957 573.6966
TMA 1677.7566 641.3864 571.6095
ERR % (REV) -0.8868 0.0342 0.0211
ERR % (LRA) -0.4599 0.4232 0.4050
ERR % (TMA) -0.1673 -0.0768 0.0397

Figure 8.6: The rotational constants for the IIgg conformer of the phenylalanine
molecule using di↵erent strategies. a) Values are taken from Ref. [154] b) Values
computed at the B3LYP -D3(BJ)/jun-cc-pVDZ [2, 3, 27, 28] level of theory.

In this case, the benzene fragment required to perform TMA is taken from the
SE23 [139] database. The advantage of our synthon approach is that when a new
molecule is provided by the user, the software can automatically detect which
portions of the molecule are missing from the internal database thus warning the
user to provide new fragments. The user can then decide to provide the best
structure he has for the fragment requested (by performing LPCS). In this case,
the TMA structure has a rotational constant that is considerably better than the
LRA one (from -0.5% error on the A rotational constant computed from LRA
geometry, to -0.2% of the TMA geometry). The same improvement can also be
seen in the B and C rotational constants. Up to this point, we validated the
use of SE fragments in performing TMA. To further validate the use of LPCS
geometries, we took the IICgg conformer of tyrosine for which the phenol and
alanine-IIg fragments are both available from the SE23 [139] database. We also
took the Phenol geometry computed with the LPCS scheme (as shown in Fig.
8.7) and we compared the results of the TMA using both types of fragments as
shown in Fig. 8.8.
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MHz A B C
EXP a) 5650.46 2619.20 1789.84
�vib b) -41.4 -17.1 -12.1
SE (EXP - �vib) 5691.86 2636.3 1801.94
SE 5693.33 2637.30 1802.39
LPCS 5699.72 2637.59 1803.16
ERR % (SE) 0.0258 0.0381 0.0249
ERR % (LPCS) 0.1382 0.0488 0.0678

Figure 8.7: The rotational constants for the phenol fragment obtained from LPCS
and the SE structure. a) Values are taken from Ref. [155] b) Values computed
at the B3LYP -D3(BJ)/jun-cc-pVDZ [2, 3, 27, 28] level of theory.
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MHz A B C
EXP a) 1525.25430 465.48173 427.31023
�vib b) -13.74000 -1.86000 -1.55000
SE (EXP - �vib) 1538.99430 467.34173 428.86023
REV 1524.69038 467.69054 429.28287
TMA from SE fragment 1535.59640 467.55780 429.57850
TMA from LPCS fragment 1535.52620 468.13810 430.08630
ERR % (REV) -0.92943 0.07464 0.09855
ERR % (TMA from SE fragment) -0.22079 0.04623 0.16748
ERR % (TMA from LPCS fragment) -0.22535 0.17040 0.28589

Figure 8.8: The rotational constants for the IICgg tyrosine conformer using dif-
ferent strategies. a) Values are taken from [154] b) Values computed at the
B3LYP-D3(BJ)/jun-cc-pVDZ [3, 27, 28] level of theory.

It is apparent that the relative percentage error of the TMA/SE approach is
comparable to the TMA/LPCS approach thus allowing us to employ LPCS struc-
tures in those cases where the SE fragment structure is missing. The advantage
of the LPCS scheme is that it is relatively easy to obtain accurate geometries of
molecules without having to rely on the availability of experimental data as in the
case of SE structures. The last example is the tryptophane molecule for which
the Semi-Experimental structure is not available. In this case, we computed the
LPCS molecule starting from the revDSD geometry as shown in Fig. 8.9. Here,
the indole LPCS molecule is taken as the fragment for the side chain. In Fig.
8.10, the results are summarized.
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MHz A B C
EXP a) 3877.8396 1636.0462 1150.9006
�vib b) -29.9 -10 -7.3
SE (EXP - �vib) 3907.7396 1646.0462 1158.2006
REV 3890.9041 1639.0569 1153.2474
LPCS 3908.9439 1646.6559 1158.5942
ERR % (REV) -0.4308 -0.4246 -0.4277
ERR % (LPCS) 0.0308 0.0370 0.0340

Figure 8.9: The rotational constants for the indole molecule using LPCS. a)
Values are taken from Ref. [156] b) Values computed at the B3LYP-D3(BJ)/jun-
cc-pVDZ [2, 3, 27, 28] level of theory.
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MHz A B C
EXP a) 1243.5844 392.4841 346.8847
�vib b) -9.2 -2.1 -1.7
SE (EXP - �vib) 1252.7844 394.58409 348.58467
REV 1240.9716 394.9716 348.8415
LRA 1246.1897 396.5053 350.1888
TMA 1245.8874 394.4764 348.6075
ERR % (REV) -0.9429 0.0982 0.0737
ERR % (LRA) -0.5264 0.4869 0.4602
ERR % (TMA) -0.5505 -0.0273 0.0065

Figure 8.10: The rotational constants for the IIb+ conformer of the tryptophane
molecule using the SE fragment for alanine and the LPCS for indole. a) Values
are taken from Ref. [157] b) Values computed at the B2PLYP-D3(BJ)/jul-cc-
pVDZ [2, 3, 5, 158] level of theory.

It is worth noticing that the TMA approach outperforms the LRA by drasti-
cally reducing the relative percentage error on the B and C rotational constants
while being comparable to LRA in the A rotational constant. This proves the
TMA approach’s e�cacy even when non-SE fragments are employed. However,
the interesting aspect of the tryptophane molecule is that it confirms a trend
that we already saw with the tyrosine molecule. The A rotational constant has
a relative percentage error of 0.5% for tryptophane and 0.2% for tyrosine, which
are worse than the previous errors obtained for the initial molecules reported
(phenylalanine and histidine). A possible explanation for this is the formation
of a non-covalent interaction between the amine group of the alanine fragment
and the ⇡ system of the lateral chains of histidine and tryptophane. In fact, in
this TMA implementation torsions are not considered and are kept fixed at their
revDSD [5] values (the pure-revDSD strategy). In future works, it will be inter-
esting to study and quantify the e↵ect of correcting torsion angles on the overall
rotational constant.
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In order to summarize the entire procedure, the TMA workflow relies on two
databases (SE23 and LPCS23) and can be summarized as follows:

• Perception of synthons (bonds and angles) on the input geometry

• Detection of fragments from the SE23 database

• In cases SE fragments are missing, detection of LPCS structure from the
LPCS23 database (or generation of input files to compute the required
LPCS geometries).

• Correction of the input molecular geometry (with a given junction strategy)

At the current stage of development, the correction of the geometry is per-
formed by employing the Generalized Internal Coordinates (GIC) syntax of the
Gaussian software [118] (see Chap. 6 for details). Still, the future goal is to work
with Cartesian coordinates for the geometry correction step directly. To get a
better insight into the synthon detection mechanism for the TMA, which auto-
matically detects sub-fragments in molecules, we plotted the 2-component PCA
representation of the Feature Space in Fig. 8.11 for the C-C bonds of the frag-
ments considered in the previous computations (alanine IIg, imidazole, indole,
benzene, and phenol).
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Figure 8.11: The Feature Space of the C-C synthons for the fragments considered.
Each point is the 2-component PCA representation of the relative synthon which
is a bond in the dataset of fragments employed. Blue: alanine-IIg conformer,
Green: phenol, Light Orange: indole, Dark Orange: imidazole, Red: benzene.

Each color identifies a di↵erent molecule, while each point is an individual
bond (the synthon of the bond) projected in PCA space. Each time the software
has to search for a synthon representing a bond in the dataset, it checks the
Euclidean distances between the point to detect and each point in the synthon
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Feature Space. The assignment is performed with the closest one whether the
Euclidean distance is below 50 units (in the non-normalized full Feature Space).
In the case of the C-C synthons, the benzene has 6 di↵erent C-C bonds that
perfectly overlap in Feature Space because of symmetry (the red points in Fig.
8.11). The imidazole only contains a single C-C bond thus giving rise to a single
point in the plot (the dark orange one). The phenol has two bonds that are
significantly di↵erent from the other four; the ones directly connected to the
carbon atom bonded to the OH group. This can be seen in Feature Space, by
looking at the green points of phenol and observing that two of them are fairly
distant from the others (the two ones higher in the PCA plot). The alanine
molecule contains two chemically di↵erent C-C bonds: the first is the one with
the residue, while the second is with the carbon atom of the carboxyl group. The
indole is a complex fragment, and each bond is extremely di↵erent from all the
others so in the PCA representation is hard to get a qualitative interpretation
of the way points are scattered. It is interesting to notice, however, how there
are two couples of points similar to each other in the light orange portion of
the Feature Space. The first couple on the left portion of the plot is the almost-
symmetric bonds of the hexagonal ring (the one on top and the one on the bottom
of the hexagonal ring), while a second couple of fairly similar bonds is placed in
the top region of the indole Feature Space and represents two C-C bonds that
are connected to the bridge bond with the pentagonal portion of the molecule.
In Fig. 8.12, we plotted the Feature Space for the C-N synthons instead.
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Figure 8.12: The Feature Space of the C-N synthons for the fragments considered.
Each point is the 2-component PCA representation of the relative synthon which
is a bond in the dataset of fragments employed. Blue: alanine-IIg conformer,
Red: imidazole, Orange: indole.

In this case, the benzene and phenol fragments are not appearing since they
don’t contain C-N bonds. The alanine molecule contains a single C-N bond
involving the amine group which is the blue point in the plot. The imidazole
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molecule, instead, contains 4 di↵erent C-N bonds each one of which is di↵erent
from the others because of the complete lack of symmetry in the molecule (due to
the presence of an -(NH)- atom on one side, and a -N- atom on the other side of
the planar ring). Moving from the top to the bottom of the plot, the first red dot
is the C-N bond on the top right of the molecule shown in Fig. 8.3. Then, there
is the one on the top left of the molecule, we then encounter the central bottom
C-C(H)-N-C bond, and lastly, there is the N-C(H)-N-C bond on the bottom left.
The indole contributes with only two bonds which are in the right portion of the
Feature Space.

In this first section, we just showed three basic examples of the application of
synthons and Feature Space to relevant chemical problems. The potential such
Feature Space unlocks is huge since it allows an easy-to-interpret way to apply
a vast majority of ML algorithms in solving chemical problems. In the case of
TMA structures, we already underlined how the assumption of linearity is at the
foundation of the current strategy and is reasonable for high-quality structures
such as the revDSD ones. In future developments of the TMA, our goal will
be to test the non-linear behavior of the geometrical parameters computed at
lower levels of theory (e.g. XTB [159], B3LYP [27], etc.) with the SE/LPCS
parameters and to use intrinsically non-linear engines (e.g. Neural Networks
(NN)) to perform the regression. The Feature Space is a key ingredient in using
NN since it provides information that the network can use in determining the
non-linear behavior of the geometrical parameters and that we can interpret to
understand what patterns arise in such regressions, in a similar fashion to how
we interpreted the rigidity relevance of the atoms in the Decision Tree example
at the beginning of the section.

8.2 Physical Conditions

If atom types are based on chemical intuition and heuristics, physics describes
the energy of molecular systems. In this section, we will validate the shape of
the single/double well symmetric/asymmetric potentials introduced in Chap. 6,
and we will discuss the mixing of QM and MM energy contributions in the case
of the Ip conformer of the glycine molecule. These validations should act as a
foundation on top of which we will be able to build, in the future, our workflow
to automatically parametrize Force Fields for generic molecules around energy
minima (fixed topology) as described at the end of this section.

8.2.1 Van der Waals

To start, we are going to discuss the treatment of non-covalent interactions in
particular van der Waals interactions. The reference expression used is the Amber
[45] formulation of the 6-12 Lennard-Jones (LJ) potential:

LJ i,j(r) = ✏i,j

✓⇣rm
r

⌘12
� 2

⇣rm
r

⌘6◆
(8.7)

In our context, this function behaves like an asymmetric single well potential.
To derive the correct set of parameters, we need to impose the condition that the
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second derivative of our potential should be equal to the second derivative of the
Lennard-Jones potential at equilibrium distance rm:

✓
@2U(r)

@r2

◆

r=rm

=

✓
@2LJ6�12

@r2

◆

r=rm

(8.8)

The second derivative of the asymmetric single well potential in r = rm (for
n = 2 as discussed in Chap. 6) is equal to:
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� 8✏
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m

(8.9)

While the second derivative of the Lennard-Jones potential in r = rm is equal
to:

✓
@2LJ6�12

@r2

◆

r=rm

=
72✏

r2
m

(8.10)

Thus we get:

↵ =
p
160 (8.11)

Which is interestingly independent of the couple of atoms considered. In
Fig. 8.13, three examples show the superposition of the two energy curves the
Lennard-Jones 6-12 and the modified morse. It is interesting to notice that at
short distances, the modified Morse potential is softer than its Lennard-Jones
counterpart, whereas there is a very good agreement in the neighborhood of the
rm equilibrium distance.
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Figure 8.13: The di↵erence between the Lennard-jones 6-12 potential (green line)
and the asymmetric single well potential (red line) is given for three di↵erent
couples of AMBER [45] atom types: CT - CT, N3 - OH, CT - N3. Parameters
were taken from the parm99 file of AmberTools [160].

8.2.2 The Hydrogen Bond

In the case of the Hydrogen Bond interaction, we take the 10-12 formulation of
the energy as a reference:

Ehbond =
Cij

R12
ij

� Dij

R10
ij

(8.12)

This formulation is the one usually employed within Force Fields [46] and is
another example of an asymmetric single well potential. The reference distance
for the well and the depth of the well itself can be computed as follows:

8
>><

>>:

rm =

r
12C

10D

✏ = [(
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12
)6 � (

10

12
)5]

D6

C5

(8.13)

The second derivative of such an equation around the distance rm is the fol-
lowing:
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By imposing the equivalence with the second-order derivative of our potential,
we get the ↵ parameter desired as:
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(8.15)

In Fig. 8.14, three examples of hydrogen bond energy profiles are shown using
parameters from parm91X data of AmberTools [160]. These curves are extremely
similar proving the e↵ectiveness of our model.
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10

R (Å)
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Figure 8.14: The di↵erence between the 10-12 potential (green line) and the
asymmetric single well potential (red line) for three di↵erent couples of AMBER
[45] atom types: HO - NC, HO - OW, HO - SH. Parameters were taken from the
Parm91X file of AmberTools [160].

8.2.3 The Stretching

In a recent contribution [94], Morse bonding potentials have been extensively pa-
rameterized for the atom types in the MM3 Force Field using high-level CCSD(T)
(F12*) energies. To show the flexibility of the asymmetric single well potential,
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we decided to use these dissociation energies as the ✏ energy and the second-order
derivative of the energy as the harmonic force constant from the AMBER [45]
Force Field (parm99). In the case,of n = 2 and m = 0 (see Chap. 6), we obtain
the following condition for the ↵ parameter:

↵ =

r
2kr2

m

✏
(8.16)

In Fig. 8.15, three examples are shown where the harmonic AMBER potential
is shown together with our potential.
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Figure 8.15: The di↵erence between the harmonic AMBER potential (green line)
and the asymmetric single well potential (red line) is given for di↵erent couples
of AMBER atom types: CT - CT, CT - HC, and HO - OH. Second derivatives
were taken from the Parm91X file of AmberTools [160], and energies from MM3
work [94].

8.2.4 The Bending

In the case of Bending interactions, we performed some scans at the B3LYP/aug-
cc-pVDZ level of theory. The first case we are going to treat is the symmetric
single well bending around 180° of the HCN molecule shown in Fig. 8.16.
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Figure 8.16: The bending profile for the H-C-N angle. The blue line represents
the B3LYP/aug-cc-pVDZ scan and the green line is the Gaussian symmetric
potential. Energies are kcal/mol and angles are radians.

Here, the analytical expression employed is the Gaussian:

Ek = ✏
⇣
1� e↵(xk�xm)2

⌘
(8.17)

and, by imposing the equivalence of the second derivative between the two
profiles, we obtained the following values for the ↵ and ✏ parameters:

(
↵ = 0.148 [1/rad2]

✏ = �128.734 [kcal/mol]
(8.18)

It is interesting to notice how the pure Gaussian profile tends to rise more
than the QM profile moving to the extremes, but interpreting the interaction as
”pure bending”, at that point, is quite hard since there is an overlap between
the atoms at the extreme (H and N). The behavior around the minimum ✓e is
instead well replicated. Another example of a symmetric bending is the double
well profile of the H-O-H angle with an equilibrium angle of 104.5�in the water
molecule as shown in Fig. 8.17.
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Figure 8.17: The bending profile for the H-O-N angle. The blue line represents
the B3LYP/aug-cc-pVDZ scan and the green line is the summation of a Gaussian
with a power of x2n with n = 1, the orange line is with n = 2, and the red line
is with n = 3. Energies are kcal/mol and angles are in radians

In this case, we had to solve the equation in n as described in Chap. 6 when
talking about double well symmetric potentials.
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We solved it for two di↵erent n powers; the harmonic-like and a fourth-order
power of x. As shown in the picture, the asymptotic behavior outside of the
well region gets increasingly better represented as n increases. The parameters
obtained for n = 1 are the following:

8
><

>:

↵ = 0.609 [1/rad2]

b = 109.97 [kcal/mol]

a = 23.39 [kcal/(mol · rad2)]

(8.20)

In the case of n = 2, instead, the parameters are the following:
8
><

>:

↵ = 0.878 [1/rad2]

b = 50.73 [kcal/mol]

a = 2.83 [kcal/(mol · rad4)]

(8.21)

In the case of a symmetric double well potential, such as the inversion of
ammonia where the angle considered is in common with the three hydrogens and
involves the lone pair directed towards the central axis passing between the three
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hydrogens, as shown in Fig. 8.18, the expression to use is the sum of a polynomial
and a Gaussian.

Ek = ax2n
k

+ be�↵x
2
k � b (8.22)
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Figure 8.18: The bending profile for the LP-N-H angle. The blue line represents
the B3LYP/aug-cc-pVDZ scan, the orange line is the summation of a Gaussian
with a power of x2n with n = 2 and the red one withn = 3.

In this case, the parameters were obtained directly for then = 2 potential
form:

8
><

>:

↵ = 15.31 [1/rad2]

b = 6.55 [kcal/mol]

a = 33.95 [kcal/(mol · rad4)]

(8.23)

For n = 3 instead:
8
><

>:

↵ = 18.09 [1/rad2]

b = 5.87 [kcal/mol]

a = 105.78 [kcal/(mol · rad6)]

(8.24)

Again, the region between the two wells involves a barrier and gets represented
correctly by our potential. In this case, a transcendental equation must be solved
to find the correct profile. The resolution of the transcendental equation is the
limiting step in finding such energy profiles but can be easily automated through
Python scripts that search for numerical solutions of such equation (the fsolve
function of the scipy python package [82]).
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8.2.5 Large amplitude motions

In the following, the two molecules of Fig. 8.19 are studied.

Figure 8.19: The C-C-H angle.

These two radicals have a double well potential when describing the proton
moving from one side of the molecule to the other, exchanging the proton with
the unpaired electron (in an sp2-like geometry). The angle considered is the C-
C-H angle in both cases, the presence of the fluorine atom (the blue one) in the
second case creates a small asymmetry in the energy profile allowing us to show
both the symmetric and asymmetric double well curves. In Fig. 8.20, the energy
profile for the CH2CH

• molecule is shown to have a symmetric double well profile.
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Figure 8.20: The energy profile for the CH2CH
• molecule with a variation of the

C-C-H angle. The blue line represents the B3LYP/aug-cc-pVDZ scan and the
green line is the summation of a Gaussian with a power of x2n with n = 1. The
orange line uses n = 2, and the red line is n = 3.

In this case, the well is located around 138.37° with a depth of -4.735 kcal/mol.
The parameters describing the energy profiles are the following, forn = 1:
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>:

↵ = 2.755 [1/rad2]

b = 11.03 [kcal/mol]

a = 7.05 [kcal/(mol · rad2)]

(8.25)

forn = 2:
8
><

>:

↵ = 3.617 [1/rad2]

b = 6.65 [kcal/mol]

a = 3.33 [kcal/(mol · rad4)]

(8.26)

And forn = 3:
8
><

>:

↵ = 4.495 [1/rad2]

b = 5.67 [kcal/mol]

a = 2.78 [kcal/(mol · rad6)]

(8.27)

The situation is di↵erent when asymmetry is introduced through the Fluorine
atom, as shown in Fig. 8.21.
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Figure 8.21: The energy profile for the CH2CF
• molecule with a variation of the

C-C-H angle. The blue line represents the B3LYP/aug-cc-pVDZ scan and the
green line is the summation of a Gaussian with a power of x2n with n = 1, the
orange line withn = 2 instead.

In this case, we have a slight asymmetry with two wells located at 138.87° and
around 217° respectively. The first well has a depth of -2.836 kcal/mol and the
second of -2.711 kcal/mol. The barrier between the two wells is not located at
180° anymore due to the asymmetry but is shifted towards the left at around 178°.
It is a small asymmetry but enough to force us to find the energy profile through
a di↵erential evolution algorithm (implemented in the scipy python package [82]).
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The Gaussian and the parabola (here we solved just forn = 1) will be shifted one
concerning the other and will have di↵erent centers.

Ek = a(xk � S)2n + be�↵(xk�C)2 (8.28)

Thus, getting the following five parameters after optimization forn = 1:
8
>>>>>><

>>>>>>:

↵ = 2.016 [1/rad2]

b = 10.994 [kcal/mol]

C = 178.11�/3.109 rad

a = 8.396 [kcal/(mol · rad2)]

S = 177.85�/3.104 rad

(8.29)

Here, S is the center of the parabola and C is the center of the Gaussian and
it can be easily seen that they are both shifted towards the first well concerning
180°. In the case ofn = 2, the following parameters instead:

8
>>>>>><

>>>>>>:

↵ = 2.654 [1/rad2]

b = 0.00825 [kcal/mol]

C = 178.27�/3.111rad

a = 0.0065 [kcal/(mol · rad4)]

S = 177.644�/3.100 rad

(8.30)

8.2.6 The mixing of QM and Perception

Until now, we performed individual B3LYP scans along the coordinates of interest
to obtain the desired energy profiles. However, as we already emphasize at the
end of Chap. 6, the energy is a function of all internal coordinates. The general
assumption is that non-covalent energy terms can be decoupled from the covalent
ones (stretching, bending, torsions, etc.). However, the mixing of non-covalent
energy terms derived from Molecular Perception with energy terms derived from
QM computations must be validated. The final application would be a tool able
to automatically parametrize custom Force Fields for molecules, whose overall
workflow has the following logic:

• Geometry Assembly. Building a tool to automatically generate initial ge-
ometries and structures in an immersive virtual environment starting from
scratch or assembling fragments (TMA). More information is provided in
the next section when discussing the Virtual Laboratory.

• synthon detection. Automatically detecting, using ML, the relevant ”atom
types” and parameters required to describe the energy of the molecules
given as input.

• Molecular Perception. Computing Electrostatic and van der Waals non-
covalent interactions based on the previous synthon detection stage.

• QM computation. Performing the minimum amount of QM computations
needed to obtain the energy profiles for covalent energy terms (for the com-
puted set of atom types), removing non-covalent contributions from the QM
energy.
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• MM computation. Perform MD/MM simulations on the molecule by com-
bining the energy profiles computed at the previous step together with the
non-covalent perceived interactions.

This workflow is still a work in progress, but the main ingredients are already
developed and validated. In this context, we already tested the atom and bond
Feature Space, developed perception algorithms to compute charges and non-
covalent interactions, and derived conditions and equations to get energy profiles
depending on the energy minima and their derivatives (for de-coupled variables).
In order to prove our workflow, a discussion of the mixing energy terms deriving
from Molecular Perception (the non-covalent interactions) and the energy profiles
obtained from QM computations is required. Moreover, it is of relevance to
discuss the presence of couplings between di↵erent coordinates and the eventual
error introduced when dealing with only a diagonal Force Field. To do so, an
example system is going to be taken into account which is the Ip conformer of
the glycine molecule (Fig. 8.22) [161, 162].

Figure 8.22: The Ip conformer of glycine.

In Fig. 8.23, the plot of the normalized F̄ matrix computed at the rev-DSD-
PBEP86-D3(BJ) [1–3]/jun-cc-pVTZ [5] level of theory is shown in grayscale with
respect to the 36 redundant coordinates of the molecule.

Figure 8.23: The normalized QM F̄ matrix plot in grayscale. The F̄ is computed
with respect to the 36 redundant coordinates.
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The normalized F̄ is defined from F (see Chap. 6 for details on the compu-
tation of such matrix) as:

F̄ij =
Fijp
FiiFjj

(8.31)

From now on we are going to assume that the F matrix is normalized. This
plot allows for simple detection of the critical feature of the relation between
di↵erent energy profiles. In particular, the first 9 entries in the matrix are the
stretching energy terms reasonably decoupled from the remaining coordinates
being nearly diagonal. To quantify the e↵ect of the non-covalent components of
the energy, we computed the cartesian Hessian HNonBond

x
as described in Chap. 6.

The energy contributions considered are the electrostatic energy computed using
the charges perceived by the Proxima software, and the van der Waals amber
contribution. We then subtracted such Hessian from the total QM Hessian HQM

x

in cartesian coordinates, and we converted the resulting hybrid Hessian in internal
coordinates through the application of the B matrix as described in Eq. 6.54 in
Chap. 6. Then, by diagonalization of the GF matrix, as described in Chap.6, we
obtained the frequencies of vibration by taking the square roots of the resulting
eigenvalues (!si =

p
⇤ii). In Fig. 8.24, the frequencies of vibration are shown

for each normal mode both the one resulting from the QM F
QM matrix and the

hybrid F
hybr matrix.

Figure 8.24: The distribution in normal modes of the QM harmonic frequencies
(cm�1) (dark gray) and the hybrid = QM - NonBond harmonic frequencies (light
gray). The red error bar represents the di↵erence between the QM and hybrid
values. These frequencies are computed using the full F̄ matrix.

It can be observed that the removal of non-covalent interactions from the QM
Hessian does not alter the frequencies of vibration. The biggest variation is for
the lowest frequencies which are associated with large amplitude motions, the
first one having the highest deviation from the QM value of 34 cm�1. However,
the average di↵erence between the QM and the hybrid frequencies is -0.51 cm�1,
which is extremely reasonable. It is interesting to notice how these di↵erences
become minimal (the red error bar in the plot) as we reach the stretching region
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at around 3000 cm�1 (the normal modes at the end of the plot). The other
interesting aspect to study is whether reducing the number of terms considered in
the F̄ matrix without significantly impacting the harmonic frequencies is possible.
To do so, we tried two di↵erent strategies:

• Completely removing non-diagonal terms from the normalized F̄ matrix
remaining with only the diagonal terms.

• Only removing those non-diagonal terms in the normalized F̄ matrix whose
values are below 2% of the maximum.

The e↵ect of removing all non-diagonal terms can be observed in Fig. 8.25.
Here, the situation is drastically di↵erent since these new frequencies (the ones

Figure 8.25: The distribution in normal modes of the QM harmonic frequencies
(cm�1) (dark gray) and the QM-MM harmonic frequencies (light gray). The red
error bar represents the di↵erence between the QM and QM-Hybrid values. These
frequencies are computed using only the diagonal elements of the normalized F̄

matrix.

computed with such hybrid normalized F̄ matrix) di↵er substantially from the
pure QM ones. Here the average di↵erence is 48.383 cm�1 which is not acceptable.
In the high-frequency region of the spectrum, we can observe that stretching
vibrations are the least a↵ected by such deviations. This is compatible with
what we already observed with the plot of the normalized F̄ matrix in Fig. 8.23
where stretching terms are almost fully diagonal. It is clear that to find a balance
between accuracy and a reduced number of terms to consider a threshold-based
strategy must be employed when evaluating how many terms of the normalized
F̄ to retain. In this context, we found that a general threshold of around 2% is
good enough as shown in Fig.8.26.
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Figure 8.26: The distribution in normal modes of the QM harmonic frequencies
(cm�1) (dark gray) and the QM-MM harmonic frequencies (light gray). The red
error bar represents the di↵erence between the QM and QM-MM values. These
frequencies are computed using the diagonal elements of the F matrix while
keeping the o↵-diagonal terms that are below 2%.

The total number of internal coordinates is 36, thus giving rise to a total of
36 · 35

2 = 630 couplings (the o↵-diagonal terms of the F̄ matrix). By removing
those terms whose value is below 0.02 of the normalized F̄ (the 2% threshold) we
removed a total of 273 terms which is almost half the total number of couplings.
This is a significant reduction in the number of terms to consider, and it does
not substantially a↵ect the frequencies as shown in Fig. 8.26. Here the average
di↵erence between the QM frequencies and such Hybrid (2%) frequencies is about
-1.174 cm�1. This is slightly bigger than the average di↵erence obtained with
the pure QM F̄ matrix but much better than the simple diagonal approach of
removing every coupling between normal modes. These 273 couplings removed
are also shown in Fig. 8.27.

Figure 8.27: The 273 coupling terms removed, these are separated in couplings
between stretching (R), bending (A), and dihedral terms (D).

Here, it is possible to observe how the vast majority of couplings involve
stretching with torsions and angles. It is interesting to notice how dihedrals
are fairly decoupled between themselves and the same applies to stretching and

161



angles. The threshold for cutting non-diagonal terms in the F̄ matrix has been
taken as a rule of thumb but to get a better sense of how such threshold impacts
the number of couplings removed we performed a scan from the 2% threshold up
to a 20% threshold showing the results in Fig. 8.28.

Figure 8.28: The number of couplings removed depending on the cuto↵ threshold
(%).

Here it is possible to observe that the number of couplings increases, although
the biggest e↵ect is seen after the aforementioned 2% threshold. In addition to
the number of couplings removed, in Fig. 8.29 we show the RMSD between the
frequencies computed with the cuto↵ couplings and the original ones depending
on the threshold value.

Figure 8.29: The RMSD of the frequencies in cm�1 depending on the cuto↵
threshold (%).

Here, it is possible to observe that after a threshold of 12% the RMSD dras-
tically increases. The combination of the two plots allows us to validate the use
of a 2% threshold in the removal of the coupling interaction terms, obtaining the
new normalized F̄ shown in Fig. 8.30.
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Figure 8.30: The normalized QM F̄ matrix plot in grayscale removing the cou-
plings below 20%. The F̄ is computed with respect to the 36 redundant coordi-
nates.

This test case on the Ip conformer of glycine helps us understand the condi-
tions through which we can decouple di↵erent energy terms to obtain individual
energy profiles for each contribution. In the case of diagonal contributions to the
energy (stretching and bending), we already proved the e�cacy of our analytical
expressions for single/double symmetric/asymmetric wells. The next step in the
development of such workflow is to derive flexible analytical expressions for the
description of torsions and the needed coupling terms (the ones above 2%) to
describe the total energy of the system. The goal will be to build an automatic
tool that automatically performs all these steps.

8.3 Exploration

Having combined chemical intuition, with the development of a good Feature
Space, together with physical calculations, and having defined a workflow to
sample energy profiles and compute energies quickly and e�ciently, we now have
the tools to explore the chemical space of multiple species. This final dynamic
exploration step can either be driven by human intuition, through the develop-
ment of proper Graphical User Interfaces or Virtual Reality experiences, or by
software by means of dedicated Machine-Learning algorithms. In this chapter we
already discussed the structure of our pipeline: (perception ! chemical descrip-
tors ! Feature Space ! physical computations ! dynamic exploration). Here,
the dynamic exploration step is further analyzed by showing some use of Genetic
Algorithms for the problem of the search of conformers, and some Virtual Reality
applications for the editing of structures and PES exploration.

8.3.1 Conformer Search

The exploration of the conformational space for molecules of medium size is a
tricky problem that can be tackled by means of both empirical research grounded
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in chemical intuition, both automatic tools that employ some algorithm to explore
in the most e�cient way such space (e.g. CONFAB [163], CONFLEX [164],
CREST [165], etc.). In the development of automatic tools that perform the
exploration, the idea was to employ Genetic Algorithms to help the search for
stable conformers. More details on the theory behind Genetic Algorithms are
shown in Chap. 3. The software that drives the exploration was developed with
user experience in mind, building a Graphical User Interface (GUI) to help the
user prepare the inputs (Fig. 8.31).

Figure 8.31: The Graphical User Interface (GUI) for the conformer search soft-
ware.

In this context, a specimen in a GA is a molecular structure whose genes are
the set of coordinates being used in the search and the alleles are the specific
values of those coordinates, which identify a structure in the PES together with
its fitness (here its Semi-Empirical or DFT energy). Hence, crossover implies
mixing the coordinates of two-parent structures to generate new ones, while mu-
tation changes the value of one coordinate moving the structure to a new region
of the PES. The best specimens are those with the lowest absolute energy. Obvi-
ously, the manipulation of structures must avoid the generation of atomic clashes
or unphysical structures. For intra-molecular conformational searches crossover
works in the following way: (i) starting from the first gene (a dihedral angle
value) the mean value of the parent’s alleles is calculated; (ii) a stepwise rota-
tion is performed around the selected dihedral angle towards each parent (since
two o↵spring are generated) until no clashes are present (up to using the parent
allele); the step size depends on the number of allowed attempts (default = 20).
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Mutation works similarly: after a gene and new allele have been generated, the
dihedral angle is rotated from the new value towards the old value until clashes
are solved. Proxima has been employed during the search to preserve the stereo-
chemistry of the molecules investigated and avoid the clashing of atoms. In order
to generate the initial population, alleles are generated from a Latin Hypercube
Sampling [166] (LHS hereafter), which is a form of stratified sampling used to
generate controlled random ensembles. In a one-dimensional LHS if we have to
extract N samples from a distribution we divide it into N evenly spaced regions
and then pick a value from each region with uniform probability; in other words,
we get one ensemble of N points. Scaling to two variables we divide the space
of each variable into N intervals and thus we get an N by N squared grid from
which we can get one set of N points (with the requirement that they will not
be neighbors or touch at a vertex). With m variables the procedure is similar
and there will be just one sampling point for each m-dimensional interval. This
procedure is repeated for each specimen that must be generated in the initial
population

Aspartic Acid

The first case study is the gas phase conformational landscape of aspartic acid
[73] (Fig. 8.32), which is the smallest proteinogenic ↵-amino acid involving a
carboxylic group in the side chain.

Figure 8.32: The dihedral angles of the aspartic acid with its main conformers.

Its conformational behavior is ruled by the six dihedral angles shown in Fig.
8.32. Three of them belong to the backbone (�,  and !) and the other three to
the side-chain (�i, i = 1...3). The conventional i labels c, g�, g and t are used
to indicate cis, gauche, or trans conformations of each dihedral angle, whereas
the non-planarity of the NH2 moiety suggests replacing the customary � dihedral
angle (HNCC) by �0 = LP � C � C � C = � + 120� (LP is the nitrogen lone-
pair). The only conformers observed experimentally for amino acids are stabilized
by hydrogen bonds between the amine and carboxyl moieties of the backbone,
which can be either bifurcated (e.g., type I, NH2···O––C, �0 = 180�, = 180�

and ! = 180�), or conventional (e.g., type II, N···H(O), �0 = 0�, = 0� and
! = 0�). Additional conformers are observed when polar side chains are present,
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which involve both intra-backbone and backbone-side chain hydrogen bonds. In
particular, starting from type I structures, rotation of the NH2 moiety by about
90� allows its involvement in two di↵erent H-bonds (I’ conformer, �0 = 90�, =
180� and ! = 180�). Conformers involving the backbone OH oxygen as the
acceptor and the NH2 moiety as the donor (type III, bifurcated �0 = 180�, = 0�

and ! = 180�, or type III’, single, �0 = 180�, = 90� and ! = 180�) have also
been observed in some cases, but they are always the least populated. The IM-
EA software has been employed using the GFN2-xTB [159] Force Field. To this
end, starting from the 4000 candidates found in each replica, a first reduction
to about 1000 structures is obtained by applying a threshold of 25 kJ/mol with
respect to the absolute energy minimum. These candidates were compared with
each other in terms of the root-mean-square deviations of heavy atom positions
and the rotational constant. The 300 structures remaining after this selection
are further reduced to about 30 by clustering procedures and subsequent full
geometry optimization at the B3LYP/6-311G++(d,p) level leads to 12 conformers
lying within 16 kJ/mol. The structures of this final panel of candidates were
finally refined at the rev-DSD-PBEP86-D3(BJ) [1–3]/jun-cc-pVTZ level [1, 5].
This composite strategy allows the number of costly geometry optimizations by
using hybrid and, especially, double-hybrid functionals to be strongly reduced
and to end up with 10 conformers lying within 12 kJ/mol above the absolute
energy minimum. In Fig. 8.33, the rotational constants for the six most stable
conformers of aspartic acid resulting from such exploration are shown.

Figure 8.33: Rotational constants (MHz) of the six most stable conformers
of aspartic acid issued from the experiment [167] or rev-DSD-PBEP86-D3(BJ)
[1–3]/jun-cc-pVTZ [1, 5] computations. Vibrational corrections to rev-DSD-
PBEP86-D3(BJ) [1–3]/jun-cc-pVTZ [1, 5] equilibrium rotational constants have
been computed at the B3LYP/6-311G++(d,p) [27, 28, 168, 169] level. [73]

Threonine

In the second case, we studied the Threonine molecule [132]. Initial searches
were performed in gas-phase using a population of 28 chromosomes either with
a single population or using the island model. These runs produced 1394 and
532 structures, respectively, before stalling or reaching the programmed maxi-
mum number of generations. Comparison of the sampled structures against the
reference dataset [170] using RMSD (cuto↵ of 0.2 Å) shows that both evolu-
tionary algorithms missed 8 structures out of 56 but with significantly di↵erent
convergence rates: while the single population runs had similar behavior, slowly
improving until the last few generations, the run performed with the island model
was able to converge in just 25 generations or about 550 QC calculations. Any-
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way, even the worst outcome represents a significant improvement with respect to
stochastic methods like Monte Carlo (less than 1400 calculations vs 3000). After
the extensive exploration of threonine in the gas phase, we proceeded to char-
acterize its charged forms in solution, employing the Conductor-Like Polarizable
Continuum Model (CPCM) [171] to take into account bulk solvent e↵ects. In
this case, run-time topology checks are critical since proton transfers may take
place during the search. As is well known, in aqueous solutions at neutral pH, the
zwitterionic form of amino acids is more stable than its neutral counterpart. PH
changes then lead to either protonation of the carboxylate group or deprotonation
of the NH3 moiety. Thus, an extensive exploration of the charged forms of thre-
onine is pivotal to analyzing the relationships among the low-lying conformers of
the di↵erently charged species and identifying the preferred paths for protonation
or deprotonation. In Fig. 8.34, the geometries and relative free energies of the
low-energy conformers (within 12 kJ/mol above the global energy minimum of
each form) for anionic, zwitterionic, and cationic forms of threonine are reported,
with orange lines connecting closely related structures.

Figure 8.34: The most stable conformer of L-threonine [132].

The most stable conformer of the cationic form (the blue energy level in the
figure) is characterized by hydrogen bonds of the positively charged NH3 group
with both the carboxylic and hydroxylic oxygens. This structure is closely related
to the second low-energy conformer of the zwitterionic form, which is only 1.5
kJ/mol above the global energy minimum of this form. Interconversion between
the two conformers is ruled by the rotation of the hydroxyl hydrogen atom. Only
slight structural rearrangements occur during the deprotonation of the carboxylic
group. In the case of the anionic form, after deprotonation of the ammonium
group, the strongest hydrogen bond is formed between one carboxylic oxygen
and the hydrogen of the hydroxyl group (rather than with aminic hydrogen).
The interaction between the NH2 and OH groups is retained in the less stable
T-A-3 and T-A-4 conformers, which represent the possible connections between
the zwitterionic and the anionic forms upon NH3 deprotonation.
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8.3.2 The Virtual Laboratory

Figure 8.35: The Virtual Laboratory [172] is a virtual collaborative environment
connected to data sources to quickly analyze and elaborate data, acting as a
bridge between the macroscopic and the microscopic world.

The steps of a computational workflow (pre - processing, computation, post - pro-
cessing) are traditionally handled separately in di↵erent software and platforms.
The idea of the Virtual Laboratory is to build a unified environment where it
is possible to perform all these di↵erent tasks with a focus on collaboration and
data sharing between institutions. At the present moment, the Virtual Labora-
tory is an in-development prototype that uses advanced VR and AR technologies
together with traditional desktop environments to link together di↵erent applica-
tions (e.g. Gaussian for computation, Proxima for Molecular Perception, python
ML frameworks for the analysis of data, etc.). However, the long-term goal is
to build a unified platform that easily integrates multiple databases, such as the
aforementioned ones (SE23, LPCS23). In other words: the goal is to explore the
chemical space through human intuition. This idea of building an environment
that encompasses both the physical and digital world is a concept that gets pro-
posed frequently in many di↵erent technology fields (e.g. gaming, social media,
etc.) and that in recent years has been often mentioned as the metaverse.

The term ”metaverse” originated in 1992 from a science-fiction novel called
Snow Crash by Neal Stephenson [173]. Recently, the term has been widely used
to indicate advancements in web technologies (e.g. Web3 [174], NFT [175], etc.)
and the concept of a decentralized structure for digital identities. In other words,
the idea of the metaverse is to have a unique protocol to associate each physical
individual to a digital identity (similar to how protocols of TCP/IP were estab-
lished as the foundation for the internet, together with internet domains) so that
each person is uniquely identified on the web. The decentralized nature of the
metaverse is so that each ”digital good” is not linked to a specific application (e.g.
a game) but instead is linked to a specific identity that can be theoretically shared
across applications. A common example is a digital avatar that can be custom
created and used in the same way in multiple applications since it is linked to
our identity. Moreover, the metaverse enthusiasts hope to build complete digital
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markets where users can buy digital goods and use them in every application,
as much as you can buy a physical good from the web today. The idea of the
metaverse is so deeply linked to Virtual Reality and Augmented Reality since
it allows the ability to use these digital goods also in real-life experiences thus
blending even more the barrier between the digital and the physical world.

There is, however, a general sense of skepticism towards the concept of the
metaverse: The first problem arises from the nature of the metaverse itself and
its concept of unique digital identity which poses not few privacy problems. Even
with current technologies, there are a lot of issues and discussions about who
should be in charge of detaining information about the users of a service (the
government, the company that builds the service, etc.) and although encryption
is a common strategy employed, there is a lack of clear international policy that
ensures that something like the metaverse can be completely safe as an environ-
ment. Most importantly, there is the general question of whether something like
the metaverse is even needed. Although we tend to get excited when it comes
to new technologies, it is important to develop the attitude of distinguishing
whether it’s a problem in search of a technology to solve it, or it’s a technology
in search of a problem to solve. Moreover, the metaverse is slowly becoming a
”buzzword” used by companies to boost credibility among investors and the gen-
eral audience. In a sort of analogy, the ”Metaverse” is related to Virtual Reality
as much as ”Artificial Intelligence” is related to Machine-Learning, the latter are
technologies whereas the first are philosophies. In the Machine-Learning chapter
we discussed the underlying mathematics and algorithmic nature of most com-
mon ML practices, the ”Artificial Intelligence ” philosophy is to employ them to
create generative digital assistance tools that are indistinguishable from humans
in behavior, thus surpassing the Turing test. The algorithms themselves, how-
ever, can have much wider ranges of applications. In the case of Mixed Reality,
the usefulness comes from just the ease of visualization and representation, as a
technology, without necessarily using it to build an entirely digital world parallel
to ours (the metaverse). It is as if we would look at the Internet (the technology)
just as a synonym for social platforms (a philosophy on how to use the web).

Independently of whether the metaverse concept will be successful or not,
there is a huge opportunity to take inspiration from it in scientific collaboration.
As discussed previously, data repositories of scientific information are fundamen-
tal to modern research, and often these databases are freely accessed by the
scientific community (e.g. the protein data bank [85]). In a sort of way, we are
already living in a scientific metaverse, where all scientists are identified in their
field by their publications and academic research. However, there is a disconnec-
tion between the discovery phase, which is based on dialog, meetings, and human
interactions, and the research phase which requires using advanced coding to do
even some simple analysis on repositories of data. Simple tests and on-the-fly
analysis can provide good insights to then later employ more advanced coding for
accurate measurements. Repositories can be accessed directly every time, even
during a meeting, and with advanced visualization techniques (e.g. AR, VR, etc.)
can be easily processed on the fly in a collaborative environment. This is the idea
of the Virtual Laboratory, to become a useful practical tool where new data can
be produced on-the-fly starting from stored data, and shared between scientists
in a connected environment.
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In the next sections, we are going to illustrate the two main applications we
developed following the philosophy of the Virtual Laboratory.

The molecular editor

The first application we developed is a molecular viewer that can be used with
the Meta Quest 2 [176] hardware. The viewer is a module that can be loaded in
a generic Unity [177] project to visualize molecular data in di↵erent macroscopic
environments as shown in Fig. 8.36.

Figure 8.36: The Proxima spherical solvent generation procedure implemented in
Virtual Reality [178].

Moreover, the software allows for the editing of molecular structures. In par-
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ticular, the user can employ their physical hands to place atoms in space and,
with a dedicated button, optimize the geometry. The optimization step is re-
quired since the placement of atoms by hand is far from precise but still far more
immediate to build molecules faster. The optimization is performed by connecting
the headset to a server running the XTB [159] software. The geometry can then
be further refined utilizing the TMA tools described in previous sections. The
resulting geometry is, as a consequence, accurate enough although being built
literally by hand. This application employs all of the Proxima molecular percep-
tion algorithms. As a consequence, atomic charges can be directly computed on
the headset and the electrostatic potential can be easily visualized employing a
custom plane shown in Fig. 8.37.

Figure 8.37: The shader developed to visualize the electrostatic potential on a
moveable plane.

Here, the plane can be moved in space, and through a custom shader it colors
itself depending on the value of the electrostatic potential in that point. An-
other feature of proxima employed in the software is the automatic generation
of spherically solvated environments (see Chap 4). In Fig. 8.36, two spherically
solvated systems are shown in two di↵erent macroscopic environments (an as-
teroid and the model of Sala Stemmi, from Scuola Normale Superiore, obtained
from photogrammetry). The possibility to move from macroscopic environments
such as the ones of Fig. 8.36 and the microscopic world of molecules is one of
the advantages of these Mixed Reality applications and allows for the easy imple-
mentation of advanced algorithms in simple applications making them available
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to non-experts in the education field or to experimentalists.

The PES explorer

Figure 8.38: The Potential Energy Surface (PES) exploration in Virtual Reality.

As already stressed in the introduction to this chapter, the exploration step can
either be driven by automatic tools (machine intelligence) or by human intuition.
In this context, the exploration of a Potential Energy Surface (PES ) is a complex
task that can be extremely simplified by Mixed Reality (MR) technologies. The
PES of an N -atom molecular system is an inherently multidimensional function,
or hypersurface, depending on the related 3N -6 generalized coordinates. In the
context of human exploration, the software should help the user (the scientist)
to physically explore the PES searching for points of interest. The goal is to
map the multidimensional PES to a three-dimensional representation that can be
explored in Virtual Reality while retaining the amount of chemical information
needed to describe the phenomenon investigated. In order to achieve such a
goal, we have developed AVATAR (Advanced Virtual Approach to Topological
Analysis of Reactivity) [179], an IVR application based on head-mounted displays
and handheld controllers that take advantage of IVR for the specific task of
immersive visual analysis of PES s based on the following two key concepts: (a)
the reduction of the dimensionality of the PES to two process-tailored, physically
meaningful generalized coordinates, and (b) the analogy between the evolution of
a chemical process and a pathway through valleys (potential wells) and mountain
passes (saddle points) of the associated potential energy landscape. As mentioned
earlier, the description of the relative assembly of an N -atom system is achieved
by using 3N -6 independent geometrical coordinates. In order to represent these
PES s in 3D IVR environments, this number has to be opportunely reduced to two
dimensions (given the obvious limitation of human perception). In fact, unless
a nongeometric encoding is used for the energy, in three-dimensional space there
are only two dimensions available for describing the geometry of the system, as
the third dimension has then to be used to represent the potential energy values.
In these studies, Principal Component Analysis (PCA), the most widespread
feature extraction technique, is used to reduce the dimensionality of the problem.
However, PCA-based approaches su↵er from many drawbacks, including their
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inability to capture any nonlinear nature of data and also to characterize strong
overlapping data. While all these techniques can be used in the preprocessing
stage, a useful alternative approach is that of adopting specialized sets of ad
hoc defined coordinates. In particular, the recipe that we exploit in AVATAR
is as follows: (a) perform a change of coordinates by opportunely combining
the generalized coordinates thus obtaining a new set of coordinates, two of which
have a high descriptive value for the process under investigation (so-called process
coordinates); (b) for each combination of the values of these two coordinates,
relax the potential energy with respect to all other coordinates to get a so-called
relaxed 3D representation of the energy landscape as a function of the two process
coordinates. In this context, it is useful to remember the definition of the ring’s
coordinates as discussed in Chap. 4. In this case, it is possible to define an entire
five-membered ring conformation by means of two variables, by relaxing the other
degrees of freedom. In this context, the relaxation paths are shown in Fig. 8.39
for five-membered rings.

Figure 8.39: Circular relaxed plots of the PES for ring-puckering in five-term rings
by means of the puckering amplitude q and the pseudorotation angle ✓ [179].

The first example shown is the interconversion between conformers in ring-
puckering motions of silacyclopentane, a molecule for which experimental far-
infrared [180, 181], microwave [182] and Raman [183] spectra are available in
the literature. A new bidimensional PES for this system has been calculated
explicitly with density-functional theory (DFT) by employing B2PLYP [30] as
an exchange-correlation functional combined with Grimme’s D3(BJ) dispersion
[2, 3, 184] and aug-cc-pVTZ basis set introduced by Truhlar and coworkers [185,
186]. For the sampling of the bi-dimensional PES a 70X70 uniformly spaced
rectangular grid in qcos✓ and qsin✓ was used. The number of calculations to be
performed was reduced by exploiting symmetry relations between portions of the
circular domain. Each sampled point of the bi-dimensional PES was calculated
independently through constrained optimization. Each input was constructed
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using both Cartesian and primitive internal coordinates in the same Z-matrix.
The PES for the silacyclopentane that can be explored in Virtual Reality is
shown in Fig. 8.40.

Figure 8.40: Circular relaxed plot of silacyclopentane as a function of ring-
puckering coordinates q and ✓ (energy values are in cm�1) [179].

In the IVR session with AVATAR, the user starts on the mountain peak at the
origin (second-order saddle point), corresponding to the ring planar conformation
and being higher in the energy of 2193 cm�1 with respect to the most stable con-
former. This is reached by descending the peak either along the � = 90 line or
along the � = 270 line, leading to two symmetric and energetically identical wells
corresponding to a twisted structure of C2 symmetry (q = 0.436). These equiv-
alent minima are associated with two enantiomeric structures and are connected
by two equivalent transition states of Cs symmetry along a circular path with q
comprised between 0.4 and 0.5, and accordingly featuring two mountain passes.
Such qualitative description is confirmed by experimental results [180–183]. The
barrier to the pseudorotation (the height of the mountain passes above the two
potential wells) calculated in this work is 1403 cm�1, which can be compared
with the extrapolations of the barrier obtained from experimental results: the
values available in the literature are 3.89 kcal/mol (about 1360 cm�1) [180] and
1414 cm�1 [183], both in good agreement with the calculated value reported here.
The calculated energy of the second-order saddle point associated with the planar
conformation of the silacyclopentane ring molecule is 2193 cm�1, to be compared
with a lower value of 1559 cm�1 already available in the literature [183]. Another
example studied in the context of the VR exploration of potential energy surfaces
has been the case of Atom-Diatom reactions (A + BC ��! AB + C). Though
the simplicity of such a process makes it look like a mere abstract model far from
the complexity of the real world, these kinds of reactive collisions can be experi-
mentally reproduced and characterized through so-called crossed-molecular-beam
experiments [187] and are of prominent relevance in astrochemistry due to the
extreme conditions of low temperatures and pressure of the interstellar medium
[188]. This kind of reaction involves three atoms (N = 3), and the associated
PES depends on 3N -6 = 3 generalized coordinates. A set of generalized coordi-
nates commonly adopted for the description of the process is shown on top of Fig.
8.41, consisting of two internuclear distances (those of the breaking and forming
bonds) and the angle between them.
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Figure 8.41: Rectangular relaxed plot of the PES for A + BC! AB + C reactions
by means of the “reaction-progress” and “reaction-mechanism” coordinates [179].

Useful two-dimensional PES representations may be obtained by retaining
the two distances and either fixing the angle or minimizing the energy with re-
spect to it. While these plots are widely adopted and provide a useful descrip-
tion of fixed-angle or minimum-energy reaction paths, information on possible
competing reaction mechanisms involving di↵erent atom–diatom approaching or
scattering angles is undoubtedly lost. A more informative representation is the so-
called rectangular relaxed plot [189, 190] where the PES for a given atom–diatom
exchange reaction is represented as a function of a “reaction-progress” and a
“reaction-mechanism” coordinate based on the following coordinate change:

8
>><

>>:

⌘ = arctan(rBC/rAB)

� = ˆABC

⇢ =
q

r2
AB

+ r2
BC

(8.32)

The first of these coordinates, ⌘, is a reaction-progress coordinate in that it
measures the ratio between the breaking over the forming bond distance. The
second coordinate accounts for the detailed mechanism by which the reaction
occurs, as it relates to the approaching angle of A toward BC and the scatter-
ing angle of C from the newly formed AB diatom. The third coordinate is an
“overall-size” coordinate with less informative content. A rectangular relaxed
plot (see Figure 8.41) is obtained by plotting for each couple (⌘,�) the value
of the potential energy minimized with respect to ⇢, that is: min⇢V (⌘,�). The
name is rectangular and derives from the shape of the domain of points usually
adopted in such representation, where reaction progress is emphasized by using
the long side of the rectangle for coordinate ⌘ and the short side for coordinate
�. Moving along the horizontal axis of the rectangle in Figure 8.41, the � an-
gle changes providing information about the detailed mechanism of the reaction,
while moving along the vertical axis the ⌘ angle changes quantifying the progress
of the reaction. In Fig. 8.42 the potential energy surface obtained for a chemical
reaction of astrochemical interest [191] (C + CH+ ��! C2

+ +H) is shown.
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Figure 8.42: Left-hand side: rectangular relaxed representation of the PES for
the C+CH+ ��! C2

++H (energy values are in eV). Right-hand side: competing
reaction mechanisms superimposed to the PES representation [179].

The energy zero is usually set at the reactants channel. In a typical IVR
session, the user starts in the reactants region (bottom edge of the rectangle)
and faces a deep well approximately mid-way on the route to products, which are
located at the top edge of the rectangle. Such a potential well, as deep as 6.71
eV, corresponds to the barrierless formation of a collinear reaction intermediate
C2H

+ with the C-H bond shorter than the C-C bond. As the user moves toward
the well, he/she will see (floating above the right-hand controller) the CA atom
approaching the CBH

+ diatom from the carbon side (where labels A and B have
been adopted to distinguish between the two carbon atoms), the angle of approach
depending on his/her position along the � axis. Once the CACBH

+ intermediate
is reached, the user will realize that among the infinite alternative paths leading
to products, there are two that are more interesting than others. The user can
either move on toward products by staying in the middle of the � axis (red path
in Figure 8.42: dissociation into products with the H atom leaving C2

+ from
the CB side in a collinear fashion) or explore a second, identical potential well
due to rotation of the hydrogen atom about the carbon–carbon bond (blue path
in Figure 8.42). This last path involves overcoming a mountain pass between
the two potential valleys (rotational barrier of 1.04 eV) before forming the linear
triatomic CACBH

+ and further proceeding to products by the departure of H
from the CA side. Once in the product region, by looking at the color and at the
energy display or simply looking back to the (higher) reactant region, the user
will realize that the reaction is exoergic by 1.64 eV.
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Chapter 9

Conclusions

The present thesis aimed to develop and validate a new set of Chemical De-
scriptors derived from Molecular Perception to represent the feature space of
atoms and bonds (the synthon). In the first chapter, we discussed the problem
of Representation in Chemistry and how it is deeply linked to the problem of
Computation. Then, in the second chapter, we noticed how the paradigm of
Computation has recently shifted due to the advent of Machine-Learning and
how such a shift required deep thought into the way chemical data are repre-
sented numerically. We highlighted how the application of ML algorithms to
chemical problems requires the creation of dedicated Feature Spaces. To build
such Feature Spaces, basic descriptors for the molecular properties must be pro-
vided. Thus, in the third chapter, we discussed the importance of Molecular
Perception as the field that tries to compute molecular properties (e.g. covalent
bonds, charges, etc.) starting from the minimum amount of information possible
(e.g. XYZ coordinates). The Molecular Perception algorithms are all developed
in a C++ library with Python bindings called Proxima. The fourth chapter was
specifically dedicated to the definition of a new chemical feature space for atoms
and bonds based on the bond order and charge matrix computed by Proxima.
Then, we discussed how a possible use of our feature space could be the auto-
matic assignment of atom types and the automatic parameterization of energy
profiles with correct boundaries for force fields. Thus, in Chapter 6, we discussed
the analytical expressions for single/double well symmetric/asymmetric poten-
tials, how to compute the gradient and the hessian for radial energies in cartesian
coordinates, and how to move from cartesian coordinates to a generic set of in-
ternal coordinates. Finally, in the last chapter, we presented applications of our
feature space to the problem of assigning traditional atom types, clustering sim-
ilar atoms, and performing fragment detection on a database to refine structures
(the TMA approach). We also showed the e↵ectiveness of the single/double well
analytical expressions in describing common non-covalent, stretching, and bend-
ing energy terms. We concluded the thesis by discussing the Virtual Laboratory
as the final outcome of all these di↵erent areas (traditional QM computations,
Machine-Learning, Molecular Perception, etc.) in building a collaborative envi-
ronment with shared access to structural databases. The overall workflow of this
thesis has already been summarized in Fig. 1, where the flow of data is shown in
the pre-processing phase from our databases up to the computational step that
exploits and explores chemical spaces up to the immersive visualization of the
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computational outcomes.
The next step will be to better consolidate the Virtual Laboratory work-

flow by building user interfaces to access our SE/23 and PCS/23 databases with
the ability to automatically perform TMA. The application of synthons and the
atomic feature space has been limited to simple ML procedures since the main
goal was to validate and test the e�cacy of our definition. However, the next
step will be to employ the feature space in treating intrinsically nonlinear prob-
lems through advanced ML algorithms. An example is the same TMA approach
where we assumed linearity when studying change in geometrical parameters of
the refined fragment structures (SE or LPCS) with respect to the original ones
(in this case revDSD). In general, such an assumption might fail when dealing
with lower levels of theory and intrinsically non-linear models might be employed
(e.g. Neural Networks). Moreover, up to this point, the refinement has been
performed on geometrical parameters but the same refinement approach could
be applied to other physical-chemical properties (e.g. dipole moments, nuclear
quadrupole couplings, force constants, etc.). It is important to remember that
the computation of energy profiles, as described in Chapter 6 and validated in the
final application chapter, can also be extended to use ML models to predict the
well parameters. As an example, by extending the synthon to the treatment of
angles, it could be possible to train a network to automatically detect the depth
and position of the bending energy wells. The other possible path for future
research is to employ our feature space not only as a tool for analysis and refine-
ment but as a mean to generate new data thanks to the recent advancements in
generative AI models. In particular, by having a numerical interpretable descrip-
tion of atoms and bonds, we could study the application of generative models in
building molecules that respect certain atomic, bond, or fragment requirements.
This could in principle help in the automatic generation of molecular candidates
that satisfy certain needs (e.g. drug discovery, conformational analysis, etc.) not
just based on randomness (such as in the case of Genetic Algorithm) or pure
database patterns (e.g. TMA), but using guided Artificial Intelligence.

It is important to remark how much human expertise is still at the core of
scientific research and it is now more important than ever to build user interfaces
and graphical tools that allow the expert to guide and understand such black-
box engines. Command lines and spreadsheets work very well when dealing with
tabular numerical data computed with pre-defined deterministic methods, and
they speed up research by processing a lot of data with short text prompts such
as single terminal commands. Black-box methods, however, still require to be
monitored and their behavior must be interpreted. We already saw an example
in the application chapter when visualizing the Decision Tree or the clustering
results for atom types or even the feature space of TMA fragments. I would
like to conclude this thesis by quoting the words of the famous scientist August
Kekulé that claimed that he had visions helping him understand the structure of
benzene. We now know that Loschmidt anticipated Kekulé in determining the
structure of benzene. However, scientific credit is also given to a large degree
based on how well the claim becomes known, and how widely it is communicated
and disseminated:

I was sitting and writing my textbook, but the work did not progress;
my thoughts were elsewhere. I turned my chair to the fire and dozed.
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Again the atoms were gamboling before my eyes. This time the
smaller groups kept modestly in the background. My mental eye, ren-
dered more acute by the repeated visions of the kind, could now distin-
guish larger structures of manifold conformation; long rows sometimes
more closely fitted together all twining and twisting in snake-like mo-
tion. But look! What was that? One of the snakes had seized hold
of its own tail, and the form whirled mockingly before my eyes. As
if by a flash of lightning I awoke; and this time also I spent the rest
of the night working out the consequences of the hypothesis. Let us
learn to dream, gentlemen, and then perhaps we shall learn the truth
... but let us beware of publishing our dreams before they have been
put to the proof by the waking understanding.

Kekulé famous dream of the benzene structure, as quoted in A Life of Magic
Chemistry: Autobiographical Reflections of a Nobel Prize Winner (2001) by
George A. Olah, p. 54 [192]
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