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Abstract
The massive and increasing availability of mobility data enables the study and the predic-
tion of human mobility behavior and activities at various levels. In this paper, we tackle the 
problem of predicting the crash risk of a car driver in the long term. This is a very chal-
lenging task, requiring a deep knowledge of both the driver and their surroundings, yet it 
has several useful applications to public safety (e.g. by coaching high-risk drivers) and the 
insurance market (e.g. by adapting pricing to risk). We model each user with a data-driven 
approach based on a network representation of users’ mobility. In addition, we represent 
the areas in which users moves through the definition of a wide set of city indicators that 
capture different aspects of the city. These indicators are based on human mobility and 
are automatically computed from a set of different data sources, including mobility traces 
and road networks. Through these city indicators we develop a geographical transfer learn-
ing approach for the crash risk task such that we can build effective predictive models for 
another area where labeled data is not available. Empirical results over real datasets show 
the superiority of our solution.
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1 Introduction

Collecting and processing mobility data is a fundamental task of car telematics and (mod-
ern) car insurance companies. Their main objective in doing that is typically to provide 
to end-users services like pay-as-you-drive contracts, anti-theft control, and prompt 
emergency rescue in case of accidents  [1]. One of their foremost priorities, however, is 
to adapt policy pricing to customers in the best way, which mainly consists in finding a 
trade-off between profit and competitiveness. In this context, risk assessment is probably 
the most critical problem addressed. The risk from the company perspective can involve 
several aspects, yet the most impactful one is the customer’s risk of having accidents in the 
future [2] since high-risk ones are likely to cause the company a loss (paying the costs of 
her accidents), while low-risk ones are more likely to provide a plain profit. In this context, 
since the car insurance markets are quickly expanding also towards new (for the market) 
geographical areas1, there is the need to establish services in areas where very little or no 
prior knowledge at all is available, making the risk assessment task even more challenging.

Along the lines mentioned above, our research pursues two distinct objectives.
First, develop a methodology for predicting the customer’s risk score: given a car 

insurance customer, provide a risk score relative to the long-term future, e.g., the next 
month or the next year. Since this estimate is expected to depend both on how the cus-
tomer drives and on the conditions of the surrounding environment  [3–5], we adopt an 
approach based on the computation of individual driving features, describing how much 
the user drives and how much dynamically, also related to the general characteristics of 
mobility in the places that the user visits. Since the raw mobility data collected by car 
telematics and car insurance companies is typically limited to positions and events of the 
vehicle  [1], with no vision of what happens around it, our approach elaborates the data 
to infer higher-level knowledge, such as driving behaviors (frequent accelerations, average 
speed, etc.), individual mobility demand (detecting frequent trips, travel times during the 
day, etc.), habit changes, etc. [6]. That is achieved, in particular, by exploiting Individual 
Mobility Networks (IMNs)  [6–8], a network-based representation that integrates important 
locations, movements, and their temporal dimension in a succinct way. Therefore, the pro-
posed approach takes into account several different aspects: individual components of the 
driving behavior including those that can be derived from IMNs, elements considering the 
collective mobility of other users, and static contextual information such as road categories 
and the presence of points of interest.

The second objective, which is also the main focus of this paper, is to enable the geo-
graphical transfer of crash prediction models, i.e. to make the customer’s risk score pre-
diction system usable and effective also on areas where historical data about crashes is 
unavailable or too limited. Given an area where we want to asses the customers’ risk scores 
and yet there is not a local training dataset to learn from, we derive a prediction model 
through techniques for geographical transfer learning which exploit the models and data 
available in other areas, in particular those similar to the one analyzed [9]. We define an 
array of geographical transfer learning strategies based on the data and the models available 
in certain areas that can be applied to target areas individually or as an ensemble. In par-
ticular, we rely on a set of city indicators [9] that can be retrieved for every area to evaluate 
the similarity between two or more areas. The measures considered cover a wide spectrum 

1 https:// tinyu rl. com/ 32k58 9z2
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of features, thus providing a multi-perspective description of area area. They include a set 
of spatial concentration indexes of human activities; network features of intra-city traffic 
flows; mobility characteristics of the individual mobility, obtained from networks that rep-
resent the places and movement of single users; last, characteristics of road networks and 
how traffic is distributed in them. The city indicators allow to compare the different areas, 
using this similarity measure as a way to properly weight the contribution that each source 
area (i.e. areas where data are available and local models could be built) should give to the 
construction of a predictive model for the target area (i.e. the one where no data for train-
ing a model is available). The paper proposes several different strategies that exploit such 
weights in different ways, and provides an empirical comparison to find out the best one in 
terms of prediction performances. When comparing models, performances are an impor-
tant aspect to consider, but not the only one. Indeed, two models might have a similar accu-
racy, and yet implement completely different logics, for instance considering completely 
disjoint subsets of features. In the experimental section of this work we aim to understand 
in depth in what aspects the different models actually differ, and we realize that through the 
adoption of explainable AI approaches. That allows us to provide some hints about the rea-
sons why the transfer of the models trained on certain areas and applied to a certain target 
area works better than in other cases.

We evaluate the proposed methodology on three datasets of real cars moving in three 
different areas, namely two cities (Rome and London), and one region (Tuscany, Italy). In 
particular, a deep study on the models’ transferability is performed on the Tuscany data-
set working at the province level, which provided a good variability of city contexts yet 
involving areas of comparable complexity. The results show that the individual mobility-
based and context-aware modeling of the users that we propose improves the performance 
over the baselines that adopt state-of-art features. These results support the importance of 
the heavy feature engineering proposed in the paper to adequately solve the crash predic-
tion problem. Finally, we observe that the best results in geographical transfer learning are 
obtained by the solutions based on the city indicators for training the most adequate classi-
fier in a certain area. The explanation of these transferred models with SHAP reveals that 
the most important aspects for the crash prediction on the transfers are related to events 
that happens while driving towards regularly visited locations such as harsh accelerations 
or harsh cornerings.

To summarize, the novel contributions of the paper are the following:

• we expand the work in [6] on crash prediction, by studying how much the prediction 
span impacts on the performances and whether the feature engineering implemented in 
our approach can be replaced by a deep learning model over time series of basic mobil-
ity features (the answer being no);

• as follow up of the work in [9], we define the geographical transfer learning problem 
for a challenging task, namely individual, long-term crash prediction;

• we propose three multi-source geographical transfer learning strategies based on the 
city indicators introduced in [9], which are used to quantify the similarity of two geo-
graphical areas;

• we empirically evaluate our solutions against baselines and competing methods on a 
large real dataset of private vehicles. The evaluation includes a study of the features that 
characterize the different models, through explainable AI methods.

The rest of the paper is organized as follows. Section  2 summarizes the related works 
on crash prediction, transfer learning and city indicators. In Section  3 we formalize the 
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problem definition and we recall concepts involved in the models designed in Section 4. 
Section 5 presents experiments in the form of a case study. Finally, Section 6 concludes the 
paper and discusses next challenges.

2  Related work

In this section we report an overview of the most relevant works related to the three 
research areas involved in this paper: crash prediction, transfer learning and city indicators.

Crash prediction  The literature on crash prediction is relatively large, studying car acci-
dents from various perspectives, such as the risk of roads, the failure of safety devices or 
drivers’ lack of attention. Yet, at the time of writing there are no works trying to exploit 
mobility data analysis and user modeling for crash prediction and risk assessment, with 
the only exception of  [6]. A large part of the works focuses on real-time prediction of 
individual crashes, i.e., try to identify the events that lead to a crash in the next few sec-
onds, thus providing feedbacks to the user as she drives [10]. Similarly, [11] developed a 
model for real-time collision detection at road intersections by mining collision patterns, 
while [4], using different data, tries to relate crashes to both behavioral characteristics and 
physiological parameters. Other approaches (e.g.,  [3, 12, 13]) work on identifying areas 
that show characteristics usually associated with accidents, such as increased traffic den-
sity, adverse weather conditions, etc. Besides features describing areas, the work in  [14] 
also used individual vehicular data of cars (speed and time headway) passing through pre-
defined detector stations for improving the performance of a probabilistic model. In [15] 
it is presented a review of the key issues associated with crash-frequency data as well as 
strengths and weaknesses of similar methodological approaches. While extremely use-
ful, such approaches result in being not applicable to fields like car insurance, where the 
focus is in creating a general risk profile of the user, thus implicitly involving the prediction 
of her crash risk in the long run, such as few months in the future. Only a few, prelimi-
nary works are available in this direction. The most significant one is  [2], which applies 
machine learning methods to predict the users’ driving behaviors, based on movement sta-
tistics. In particular, the authors extend the standard approaches, which consisted in global 
aggregates of speed and mileage information, by separating daytime and nighttime driv-
ing statistics, and computing minimum, maximum and average aggregates. This increased 
detail of aggregation was shown to improve performances over simpler statistics. The work 
in [6], which provides the starting point of the present paper, further develops the general 
idea, and designs a data-driven model for predicting car drivers’ risk of experiencing a 
crash based on the Individual Mobility Network model of the user and on statistical fea-
tures which describe her driving characteristics. Here we extend the work and results of [6] 
with additional experimental studies and by boosting the crash prediction model with geo-
graphical transfer learning.

Geographical transfer learning Individual mobility models and crash predictors, which 
are the basis of our proposed approach, are expected to strongly dependent on the spe-
cific geographical area under study. For instance, it has been empirically verified that the 
trip purpose classifiers in  [7] work very well in the geographical area where they were 
extracted, but their performances dramatically degrade if applied to areas with different 
characteristics. Since some geographical areas could be insufficiently covered by data, due 
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to the non-homogeneous penetration of tracking devices, it would be very difficult to build 
different models for different areas from scratch. A possible approach to the problem, then, 
is given by methodologies that make it possible to adapt models built in data-rich areas to 
less rich ones, which is basically a geographical instance of the general transfer learning 
problem [16, 17]. The transfer learning research area aims to transfer the knowledge availa-
ble in one domain, called the source domain, to another one, called the target domain [18]. 
We refer to the particular case where the different domains are actually different geographi-
cal areas as geographical transfer learning. This specific topic is studied only sparsely in 
the literature, usually with objectives rather different from ours. The most common prob-
lem considered is image recognition, typically satellite image labeling, as in [19] and [20]. 
Both papers deal with deep learning classifiers that are requested to work on data-poor 
areas, and therefore the models learned in data-rich areas (usually CNN-based models) are 
adapted to the new domain. The authors of [21] focus on crime prediction and, again, try 
to exploit the knowledge available in some areas to make reliable predictions on a differ-
ent one having too little data to build a model. Finally, [22] builds shared bike demand 
prediction models over some cities (especially large ones, where more data is generally 
available) and then adapt them to other (usually smaller) ones. The work in [23] shares 
some ideas with ours since it tackles the problem of labeling road networks and shows how 
assessing the similarity of street networks improves the transfer of a model from one city 
to another one. Our work tackles a more complex prediction problem, and compares areas 
through a multi-dimensional view, yet our results confirm the general message of the cited 
paper. The methods we propose start from the paper [9], which exploited a set of descrip-
tive features of cities to assess their similarities, studying whether the transfer of models 
across cities works better among similar ones. Both the prediction problems tackled and 
the model transfer method adopted were very simple. In this work, we expand those results 
considerably, considering a complex crash prediction problem and developing several more 
sophisticated model transfer strategies, yet still, exploit city similarities.

City indicators We conclude this section by briefly reporting the most important papers 
describing methods for characterizing urban spaces and defining city indicators, which will 
be used in our work to compare geographical areas. In this area, Geographical Information 
Science introduced several innovations that helped to automatize and extend an approach 
usually driven by a domain expert, including statistical methods for geography  [24] and 
computational tools for managing large databases of information, like repositories of spa-
tial and thematic features of census units, road network geometries, geo-referenced time-
series data, etc. City indicators have an important application in defining the sustainability 
characteristics of urban areas. Various attempts have been made to design indicators for 
monitoring sustainability at various levels, such as national  [25] and city level  [26]. As 
described in the review paper  [27], the literature covers a wide range of aspects, includ-
ing mobility-related ones (e.g., mobility space usage and functional diversity). However, 
very few attempts were made to systematically exploit big data sources to estimate them. 
One example was the Air Quality Now EU project [28], which used vehicular and public 
transport data to infer some measures. Yet, that is limited to direct and simple ones, such 
as traffic, speeds, and exposure to pollution. The literature also considers mobility indica-
tors and road network properties as potential measures to adopt, which is aligned with our 
approach  [29]. Finally, exploiting big mobility data to understand the properties of geo-
graphical spaces is a very active area  [30, 31]. However, to the best of our knowledge, 
[9] is the only proposal where a wide set of complex indicators are collected in a system-
atic and reproducible way, directly aimed to make cities comparable in a computational 
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way. Therefore, in our proposal, we aim at exploiting the approach and the city indicators 
defined in [9].

3  Setting the stage

We introduce here the definitions of trajectory [32] and individual mobility network [7, 8], 
useful for understanding the rest of the paper and adapted to the approach proposed. After 
that, we formalize the car crash prediction problem in general and in the transfer learning 
setting.

Definition 1 (Trajectory) A trajectory is a sequence t = ⟨p1,… , pn⟩ of spatio-tem-
poral points, each being a tuple pi = (xi, yi, zi) that contains latitude xi , longitude yi and 
timestamp zi of the point. The points of a trajectory are chronologically ordered, i.e., 
∀1 ≤ i < n ∶ zi < zi+1.

As additional notation, we refer to the i-th point of a trajectory t (namely, pi ) as t[i], 
and to its number of points with t.n. Also, we indicate the longitude, latitude and times-
tamp components of point t[i] respectively with the notation t[i].x, t[i].y, and t[i].z. We 
name individual history the set of trajectories that a user followed in a time period. More 
formally:

Definition 2 (Individual History) Given a user u, we define the individual his-
tory of u as the set of trajectories Hu = ⟨t1,… , tn⟩ traveled by u. Also, we denote 
with H[a,b]

u
 the subset of trajectories of Hu that occur in time interval [a,  b], i.e. 

H[a,b]
u

= {t ∈ Hu | [t[1].z, t[t.n].z] ⊆ [a, b]}.

3.1  Individual mobility network

 Given a user u, their associated history Hu can be processed to extract their individual 
mobility network (IMN) Gu . An IMN describes the individual mobility of a user through a 
graph representation of her locations and movements, grasping the relevant properties and 
removing unnecessary details.

Definition 3 (Individual Mobility Network) Given a user u, we indicate with Gu = (Lu,Mu) 
her individual mobility network, where Lu is the set of nodes and Mu is the set of edges. 
Given an aggregation operator agg, for each node l ∈ Lu we define the following functions:

• �(l) = number of trips in Hu reaching location l;
• �(l) = agg({durationsÂăÂăofÂăÂăstopsÂăÂăinÂăl});
• �(l) = agg({arrival times of trips reaching l});
• �t(l) = agg({durations of trips reaching l});
• �d(l) = agg({lengths of trips reaching l});

Operator agg can return either a single value (e.g. median) or a n-ple (e.g. average and 
standard deviation, or quartiles). The same functions are also defined on edges (move-
ments) m = (li, lj) ∈ Mu in a similar way, this time considering only trips that start from li 
and reach lj.
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Nodes in Lu are locations that represent a group of stop points, and edges in Mu 
are movements that represent groups of similar trips between two locations. Given the 
individual history Hu , the IMN Gu is obtained by retrieving the locations Lu through 
a spatial clustering-based aggregation of stop points  [33], and the movements Mu by 
grouping the trips between any pair of locations [8].

3.2  Problem Formulation

 We define the crash prediction problem as the association of a user’s probability of 
having an accident in the next time period with their recent historical mobility. The 
duration of the user’s history to consider and of the next time period for which we 
make predictions are two fixed parameters. Reasonable durations for the context at 
hand will have the scale of one or more months.

Definition 4 (Crash Prediction and Risk Assessment) Given the prediction time �p , history 
depth �h and prediction span �s , we define the two time intervals z̄p = [𝜏p − 𝜏h, 𝜏p] , named 
predictors interval, and z̄t = (𝜏p, 𝜏p + 𝜏s] , named target interval. Then, the crash prediction 
problem consists in evaluating if user u will have a car crash during period z̄t and what is 
the crash probability, based on the analysis of the user’s mobility during period z̄p . More 
formally, we want to estimate:

The period z̄p is the knowledge we have about the user at the moment of assessing 
her risk, while z̄t is where/the period when the crash to predict will or will not happen.

In a geographical transfer learning context, crash prediction has the same overall 
objective, yet the available information for estimating pcrash mainly comes from areas 
that are different from that of the user.

Definition 5 (Geographically Transferred Crash Prediction) Given a set A = {A1,… ,An} 
of n geographical areas, each associated to a set Ui of users, to a function �(i) that esti-
mates pcrash within Ai ( 1 ≤ i ≤ n ), and to the training set Htrain

u
 of each user used to infer �(i) 

( u ∈ Ui, 1 ≤ i ≤ n ); the predictors and target intervals z̄p and z̄t ; and an area A∗ ∉ A , associ-
ated to a set U∗ of users; the geographically transferred crash prediction problem consists 
in computing the function �∗ estimating the crash risk probability for each user u ∈ U∗:

The definition emphasizes the fact that the crash prediction function can use both 
the training data and the locally inferred models of the geographical areas in A, while 
for the area A∗ we do not have access to a training dataset, the only information avail-
able being the data of the user in the predictors interval Hz̄p

u  ( u ∈ U∗ ). Also, while it is 
in general possible that a user u belongs to two or more different areas, in the rest of 
the paper we will assume for simplicity that ∀i.U∗ ∩ Ui = � , i.e. the users in the target 
area are completely disjoint from those in the source ones.

Pcrash(u) = P

(
u has crash in zt

||||
H

Zp

u

)

𝜋∗(u) = P
(
u has crash in z̄t

|| H
z̄p
u ,

{
𝜋(i)

}
1≤i≤n

,
{
Htrain

v

}
v∈Ui,1≤i≤n

)
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3.3  Features importance‑based explanations

Given a machine learning classifier b trained on a dataset X, a feature importance-based 
explanation method takes as input b, X, an instance x for which we want to explain the 
decision b(x) taken by b on x, and returns for each feature an importance value which rep-
resents how much that particular feature was important for the prediction of that instance. 
For understanding the contribution of each feature, the sign and the magnitude of each 
value are considered. A positive value means that a feature contributes negatively for the 
outcome; otherwise, the feature contributes positively. The magnitude, instead, represents 
how great the contribution of the feature is to the final prediction. SHAP, SHapley Addi-
tive exPlanations [34], is a local-agnostic explanation method that calculates feature impor-
tance based on the Shapley values2, a concept from cooperative game theory. In particular, 
the explanation returned SHAP are additive feature attributions and guarantee the fact that 
the sum of all the contributions corresponds with the deviation of the prediction of a cer-
tain outcome with the baseline prediction, i.e., the average prediction among the instances 
in the training set.

4  Methodology

In this section we first show how it is possible to characterize a geographical area with 
mobility data driven indicators, following the work in [9]. Then, we present the methodol-
ogy proposed in [6] for long-term crash risk prediction based on IMNs. Finally, we design 
a set of novel strategies for the geographical transfer of crash prediction models across dif-
ferent areas.

4.1  Defining city indicators

The transfer learning approaches proposed in this work revolve around the idea that highly 
similar geographical areas can share data and models more easily. Therefore, it is critical to 
define an effective way to compute similarity scores between pairs of areas. We do that by 
defining a set of descriptive features, called city indicators, for each area, and then compute 
similarities through standard metrics, such as the normalized Euclidean distance.

In this section, we briefly describe the families of city indicators we computed and 
adopted for our purposes. In this setting, we use the word “city” as a simplification, to 
generally refer to a geographical area (or geographical unit) which is not only the urban 
area of a city, but can also be a much larger one, like having the size of a municipality, a 
province or even a whole region. The city indicators are meant to provide a multilayered 
description of geographical units through quantitative measures, which have been selected 
among indexes adopted not only in traditional urban studies, but also mobility analytics 
and network science. Hence, they can provide a multifaceted view of the areas under study. 
As discussed in Section 2, such numerical descriptions of geographical units can have a 
wide spectrum of applications. In the following, we give to the reader an overview of the 
city indicators adopted. For the details of the complete list and a formalization we refer the 
reader to [9].

2 We refer the interested reader to: https:// chris tophm. github. io/ inter preta ble- ml- book/ shapl ey. html
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4.1.1  City indicators

Given a geographical unit (or city) A, we define its associated set of city indicators 
CI(A) as CI(A) =< SC(A),NC(A), IC(A),RC(A) > , where each element represents a set 
of features computed over the user mobility data and the street network of A, briefly 
defined below:

• Spatial concentration indexes of human activities ( SC ). They answer the question 
“how does the density of people and activities vary across the area”? Examples 
of this indicators are spatial entropy [35], Moran’s measure [36], and the average 
nearest neighbor distance. The extraction process exploits mobility data to infer 
stay locations, which are then used to approximate activity places and their distri-
bution. These indexes help distinguishing areas where activities are concentrated in 
a small space against those where activities are well distributed over the territory.

• Network features of intra-city traffic flows ( NC ). Each area is partitioned into a reg-
ular grid and then modeled as a network whose nodes are the grid cells, and edges 
connect cells whenever some users moved from one to the other. Nodes and edges 
are weighted according to the number of matching trips. By representing the geo-
graphical unit as a network it is possible to describe all the activities through net-
work measures such as node degrees [37], Louvain modularity [38], and interaction 
models like gravitation [39] and radiation [40, 41].

• Characteristics of the individual mobility ( IC ). Consider the mobility at the level of 
individual users. Then geographical units can be described by aggregated values of 
their inhabitants’ mobility such as average distance and duration per trip, average 
driving distance and duration per day, average amount of trips per day. Also, an 
aggregation of the features of IMN can be used in this setting. For instance we can 
consider the average size of the network, the average individual radius of gyration, 
the average individual modularity, etc.

• Characteristics of road networks and how traffic is distributed in them ( RC ). Con-
sider the mobility at the level of roads. Modeling a geographical unit as a network 
where nodes represent road intersections and edges road segments, we have indica-
tors like amount of edges and nodes, amount of intersections, average node degree; 
as well as a set of measures typical of complex network analysis such as road net-
work’s closeness centrality [42]. Moreover, through a combined analysis of mobil-
ity data and road structure, the traffic concentration is characterized by indicators of 
distribution skewness and concentration. The latter, for instance, allow to highlight 
areas where the traffic is concentrated in a small portion of the road network.

4.2  IMN‑based crash risk prediction

Our objective is to estimate the probability pcrash(u) in the crash prediction problem 
definition. In this section we do that through approximation, along two steps: (i) first, 
the knowledge contained in Hz̄p

u  is represented through a set of meaningful yet (neces-
sarily) lossy features, that will be discussed in details in the next sections; then, (ii) the 
probability function is learned through machine learning predictors.
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4.2.1  Predictive features

Each user u is represented by a vector of m features computed over her predictors interval, 
namely: xz̄pu = ⟨f1, f2,… , fm⟩ . We denote with Xz̄p = ⟨xz̄p

1
, x

z̄p

2
,… , x

z̄p
n ⟩ the matrix of n vec-

tors describing the behavior of n users. We indicate with yz̄t the vector saying if a user has 
experienced a crash in the target interval z̄t , i.e., yz̄tu = 1 if user u had a car crash in period 
z̄t , y

z̄t
u = 0 otherwise.

4.2.2  Machine learning models

The matrix of features Xz̄p and the vector of target values yz̄t are used to train a machine 
learning classifier, which yields as output a car crash predictor function pcrash(⋅) . The crash 
predictor takes as input a vector x

z̄′
p

u  , describing user u’s mobility in a given predictors inter-
val z̄′

p
 , and returns the probability she will have a crash in the corresponding target period 

z̄′t , based on the training performed on Xz̄p and yz̄t . As machine learning classifiers [43] we 
considered several possible options, including K-Nearest-Neighbors, Decision Trees, Sup-
port Vector Machines, Deep Neural Networks, Random Forests, LightGBM, etc. Indeed, 
any prediction model working on standard tabular data could be in principle applied, since 
the specificities of the data domain are already captured by the user’s features xz̄pu  . Through 
preliminary experiments, we decided to mainly focus on Random Forest (RF), Deep Neu-
ral Network (DNN), and LightGBM (LGBM), since they yielded the best and most stable 
results. The case studies in Section 5 are based on these models.

A secondary (yet very relevant) objective of our work is to find the possible factors that 
lead to a crash, whatever the nature of each factor, either causal or simply correlated. In 
order to achieve that, we adopt three ways to infer the role played by each feature in the 
classification. The first one comes as a built-in feature of RFs, namely the feature impor-
tance score, which says how much important is overall a feature, though not describing if 
that is a positive or negative factor. The second way exploits recent results in the explain-
able AI domain, in particular, the SHAP method [34], which assigns the positive/negative 
impact of each feature on every single prediction allowing to make both single-user and 
collective considerations. The third approach consists in aggregating the absolute SHAP 
values of different predictive models, in order to compare them and get a glimpse of their 
differences in terms of logics followed, in addition to performances.

4.2.3  Predictive features

A key component of the proposed approach consists in translating the raw mobility infor-
mation contained in Hz̄p

u  into a set of features ⟨f1,… , fm⟩ able to capture its significant ele-
ments, and in particular, those useful for crash prediction. The following were computed:

• Trajectory-based features. These features include position-based features, containing 
classic indicators of trajectories, i.e., number of trajectories, length, duration, speed. 
Each indicator is aggregated through four operators: counts, sums, means, and stand-
ard deviations. Moreover, aggregates are computed over several time periods: morn-
ing (6am - 12am of all days), afternoon (12am - 6pm), evening (6pm - 10pm), night 
(10pm - 6am). The same applies for event-based features, measuring characteristics of 
the acceleration- and direction-related events contained in the data.
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• IMN-based Mobility features. These features adopt IMNs (introduced in Section 3) as 
higher level of aggregation of the user’s mobility, to extract three different types of 
information: (i) the network properties of the IMN, (ii) mobility aggregates focused on 
high-frequency locations and movements, and (iii) temporal stability measures of the 
IMN. A not exhaustive list includes the number of locations, i.e., nodes in the IMN, the 
number of movements, i.e., edges, the average degree, the IMN density, etc. In addi-
tion, for every feature is reported the variation between consecutive time periods in 
which the IMN is calculated.

• Mobility Context features. These features estimate contextual indicators by extracting 
collective aggregates from the history of all users in the dataset. Information like the 
number of events, average speed, and acceleration statistics are computed on geographi-
cal sections (a partitioning of space obtained through a quadtree structure derived from 
the distribution of Points-of-Interest on the territory, ref.  [6], Section IV-E), and they 
are associated to the single user based on which sections they stopped in at least once, 
compute an average of each characteristic of the sections. A not exhaustive list includes 
indicators of other users with respect to the areas visited buy the user described in 
terms of number of starting and stopping trajectories, average speed, average accelera-
tions, number of different events, etc.

Details for each family of features are available in   [6]. The features considered can be 
inferred from the basic information that any car telematics service is expected to provide, 
and in that sense provides a minimal solution that can be very easily adapted to work in 
different geographical areas. Where available, this set can be extended with other useful 
measures about details of accidents, physical features of roads (pavement quality, size, vis-
ibility, etc.), weather, and so on. Real applications that need to be fine-tuned over a specific 
geographical area could indeed benefit from other information layers that can be easily 
integrated into our solution as additional features. Considering such extra layers and study-
ing their impact, however, goes beyond the scope of this paper, and is left as interesting 
future work. Finally, we highlight that typically, state-of-art car crash approaches used in 
the insurance practice, are only based on trajectories and do not account for all the mobility 
aspects considered by our proposal.

4.3  Geographical transfer of crash prediction models

The basic idea of transfer learning is that the phenomena we want to capture (and that 
determine the value of the target variable to predict) are inherently present in other data-
sets, although in different proportions and maybe in different shapes. Therefore, the prob-
lem is to understand which parts of the data (in our case, which geographical areas) are 
more likely to contain cues and information useful to capture relevant phenomena, and 
thus exploit them for predictions. Hence, our objective for geographical transfer learning in 
crash prediction, is to explore ways for exploiting all the knowledge available on areas dif-
ferent from the target one, i.e., the one where we need a predictive model. With respect to 
the categorization presented in Section 2, we design a geographical transfer learning which 
is homogeneous (the data and the prediction tasks in the source and target domains are of 
the same type), multi-source (in general, we have several geographical areas with data we 
can exploit in the transfer) and transductive (we assume that labeled data is available in 
meaningful quantities only in the source domains).
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The solutions proposed in this work try to overcome some of the main issues highlighted 
in [6] (and further confirmed in our experiments in Section 5). First, blindly applying a model 
from one region to another does not consider at any level the differences that the two areas 
might have. In our context, for instance, the road conditions in one area might require a dif-
ferent driving style than another one (reflected in the accelerations and contextual features), or 
the city size and traffic might impact the routine behaviors of users. Second, adopting standard 
weighting schemata based on feature distribution is possible only if rather significant data is 
available for the target domain, although unlabeled, which can be difficult in practical applica-
tions. In particular, in our reference insurance case study, the data is always associated with 
labels (crash or no-crash), the problem being instead to reach in a geographical region a suf-
ficient mass of historical data. Also, since in our experiments we study the transfer between 
areas in the same region (Tuscany), it resulted that the differences between the features distri-
butions are in most cases not significant. Third, the empirical studies in [6] focused on rather 
large areas. This leads to building models that are more generic, and therefore might not be 
able to capture local behaviors of smaller locations.

In the following, we introduce a few solutions based on the following principles:

• a good prediction model for an area can profit from the information (data or models) com-
ing from other areas, the main open question being how to account for the differences;

• while each area might have its own local factors and patterns, driving and crash risk are 
expected to follow a common (potentially large and diversified) set of rules, although 
each area might adopt them in different proportions – total absence being mainly an 
exception;

• the factors behind the events to predict, i.e., crashes, are strongly linked with the mobil-
ity context where the users move, therefore the city indicators described in Section 4.1 
should provide a good basis for understanding how much two areas share the same type 
of context.

Based on these principles, we propose three approaches of varying complexity that fol-
low them at different extents. Each solution is described in detail below, while a schematic 
summary is provided in Fig. 1.

4.3.1  Approach 1: best city transfer

This is a direct application of the lessons learned in [6], namely that the model built on a 
city (or geographical unit) can be sometimes usable as is in another one, and that compli-
ance is generally more likely to happen between cities that have similar spatial and mobil-
ity characteristics. Following this idea, Approach 1 selects among the source domains, i.e., 
the source cities where a model can be trained, the one that best matches the destination 
city in terms of city indicators, and applies its corresponding predictive model to the desti-
nation. With reference to Fig. 1, the process starts from the individual city data, represent-
ing all possible source domains, over which we build individual city models. Finally, based 
on city indicators, we identify the source city that is most similar to the destination, and 
select its model. More formally:

where pi(u) is the crash probability of user u estimated by the individual model of source 
city i, and sim (d, i) is the similarity between cities d (the destination) and i (the sources). 

(1)pbest
crash

(u) = pk(u) with k = argmax
i

sim (d, i)
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More precisely, sim (d, i) is computed from the Euclidean distance between the corre-
sponding (normalized) city indicators of d and i, i.e.:

where z − score computes the attribute-by-attribute normalization of the city indicators.
We name the model individual best city model (bottom line of Fig. 1).

4.3.2  Approach 2: weighted ensemble model

It extends the ideas used in Approach 1, considering that each individual city dataset brings 
not only information that is specific for that location, but also information of more general 
validity, that might apply to all cities or at least to a subset. That means that each individual 
city model might, in principle, highlight a pattern or rule of general validity that, for sta-
tistical reasons or noise in data, could not be spotted in other cities. The idea is, therefore, 
to combine together the knowledge brought by all the individual models in an ensemble 
fashion, i.e., a meta-model is built by combination of the single ones, and predictions are 
performed by a voting schema where every single model provides a prediction, and the col-
lection of results are combined. Since more similar cities are more likely to share common 
rules, the models in the ensemble can be associated with a weight corresponding to the city 
indicators-based similarity. Also, since our models provide a crash probability, the single 
predictions are combined through a weighted average. Formally:

As before, sim(d, i) is the similarity between the destination city d and sources i, and pi(u) 
is the crash probability of u estimated by the local model of source city i. In Fig. 1 this 
corresponds to the central arrow, which yields the weighted ensemble model (or simply 
ensemble model, if clear from the context) that is then applied to the destination city data.

(2)sim (d, i) = EuclidDist
(
z − score(CI(Ad)), (z − score(CI(Ai))

)−1

(3)pensemble
crash

(u) =

N�

i=1

wi ⋅ pi (u) with wi =
sim (d, i)∑
k sim (d, k)

Fig. 1  Schema of the three geographical transfer learning approaches explored. The input city data is used 
either to extract individual city models (downward) or create a resampled dataset (upward). In the first case, 
Approach 1 selects the best model, while Approach 2 creates an ensemble. In the second case, a new model 
is built on the resampled data

593GeoInformatica (2022) 26:581–612



1 3

4.3.3  Approach 3: weighted sampling

The ideas of the ensemble approach are applied here from a slightly different perspective. The 
ensemble model assumes that if the overall dataset contains a pattern or rule that is relevant 
for the destination city, then at least a subset of the individual models should be able to iden-
tify it, allowing the voting schema to bring it to the destination. However, this is expected to 
hold only for relatively strong rules, which can emerge from individual datasets, while that 
might not work for smaller patterns that leave many weak traces in the various datasets. Basi-
cally, the ensemble approach filters at the source weaker patterns, some of which might actu-
ally result to be significant overall. As possible counter-measure for this effect, Approach 3 
creates an ensemble of datasets rather than models, i.e., it builds a representative dataset by a 
weighted sampling of all individual datasets. This combined dataset, then, is used to build a 
predictive model. Since, again, we expect to find more useful information in source cities that 
are similar to the destination, the sampling weights are proportional to the city similarities. 
More formally:

where D is the data sample built for destination d from sources A, and is defined as:

where Ui represents the set of users described in source city i, and N is the requested size of 
the sampled dataset, i.e., N = |D| . Weights wi are computed as for Approach 2. The more 
complex form of (4) highlights the fact that this approach requires learning a model from 
scratch rather than simply combining or selecting existing local ones.

In relation to existing generic transfer learning solutions, the first two approaches pre-
sented above provide a form of relational-based transfer learning, since the models built in 
one domain are used (possibly adapted) in the other; the last approach, instead, works through 
an instance weighting strategy, which belongs to the category of instance-based transfer learn-
ing [18]. In particular, the latter is close in principle to Domain Weighting [44], yet it relies 
on a higher-level notion of city similarity, rather than a comparison of features distribution 
– which might be difficult to implement if only little (unlabeled) data is available in the target 
domain, as it is expected to happen in our application scenario. Also, as already mentioned, 
depending on the spatial granularity, in some cases the attribute distributions might not vary 
significantly across geographical units, thus making it a weak criterion. Indeed, preliminary 
tests on the datasets adopted in our experiments (see Section 5.1) showed that the feature dis-
tributions over the provinces were rather similar, being statistically not clearly distinguish-
able at the level of single features (around 58% of province-vs-province comparisons over all 
features did not pass the Kolmogorov-Smirnov rejection test  [45] with threshold 0.05), and 
obtaining PCA projections over the two largest principal components having visually almost 
identical distributions.

(4)p
resample

crash
(u) = P

(
u has crash in z̄t

|| H
z̄p
u ,

{
Htrain

v

}
v∈D

)

(5)D =
⋃

Ai∈A

Di with Di ⊆ Ui s.t. |Di| = N ⋅ wi
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5  Experiments

In this section, we present a case study on two datasets of private cars in which we employ 
the proposed methodology3. We first introduce the datasets, and then summarize the results 
obtained on the crash prediction problem with and without geographical transfer learning, 
with a comparison between our solution and some baselines. We also extract explanations 
of the predictions returned by the various models, and try to infer useful general hints for 
improving personal driving behaviors.

5.1  Dataset description

The two datasets considered in our experiments consist of GPS traces of private vehicles 
tracked by an international car telematics company and made accessible to us within the 
Track & Know project4. The first dataset, named Dataset 1, includes London in UK (Fig. 2 
left), Tuscany and Rome in Italy (Fig.  2 center), each area having about 5,000 drivers5. 
The second dataset, named Dataset 2, includes about 26,000 drivers and it is a zoom on 
the Tuscany area (highlighted in Fig. 2 in the center) by also considering its administra-
tive division into 10 provinces (Fig. 2 right). We consider the partitioning of the Tuscany 
region in subareas in order use them as source and destination domains for transfer learn-
ing experiments. Each subarea is populated with the data of users whose most frequent 
location is contained in that subarea. We decided to report results with respect to prov-
inces because they provide a good trade-off between granularity and data availability on 
each partition. While testing model transfer across very different areas as Rome and Lon-
don would be interesting, the different scale and complexity of these cities would require 
a more extensive dataset covering many other international cities, which was not possible 

Fig. 2  Geographical areas of experiments. Dataset 1 includes London in UK (left), Tuscany and Rome in 
Italy (center). Dataset 2 is a zoom on the Tuscany area (highlighted in the center) by also considering its 10 
provinces, shown on the right

3 The source code is available at: https:// github. com/ ricco tti/ Crash Predi ction. The city indicators used in 
this paper can be obtained from the Track & Know project website (see next footnote), while the mobility 
datasets are proprietary, and cannot be publicly shared.
4 https:// track andkn owpro ject. eu/
5 The drivers were sampled among those that had consistent data throughout the 12 months, and also 
ensuring to keep all those that had at least one crash in the year. This latter step was not possible on Dataset 
2, a side effect being that Dataset 1 has a higher percentage of crash events.
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in the scope of this work. In the rest of this section we will use the terms city, geographical 
unit, and province interchangeably, when there is no risk of confusion.

For both datasets, the raw mobility data consists of anonymized traces of vehicles of car 
insurance customers, containing the following information: (i) a list of GPS timestamped 
positions (latitude and longitude); (ii) a list of events in the form of timestamped position 
data enriched with labels describing events such as harsh acceleration, harsh braking and 
(possibly multiple) harsh cornering, with additional accelerometer metrics related to each 
event position. These data are collected whenever the accelerometer detects an acceleration 
exceeding predefined parameters; (iii) a list of crashes in form of timestamped position 
data related to crash events. Such events were originally detected through onboard acceler-
ometers and filtering algorithms, and later checked by human operators with customers to 
remove false positives. The dataset is collected at an average rate of one position every 1.5 
minutes, though there are some exceptions.

5.2  Experimental settings

We organize the experimentation as follows. We use Dataset 1 to analyze the performance 
of the models for the basic car crash prediction problem, focusing the attention on the 
effect of the various features described in Section 4.2 and on the temporal dimension. On 
the other hand, we rely on the greater data availability of Dataset 2 to address the geo-
graphically transferred crash prediction problem with the city indicators described in Sec-
tion 4.1 through the transfer learning methodologies illustrated in Section 4.3.

Local crash prediction In the experimental setting for Dataset 1 (D1), we consider dif-
ferent time periods, corresponding to prediction times �1

p
= end of March, … , �9

p
= end 

of November. The corresponding experiment periods z̄i are obtained by fixing the history 
depth �h to 3 months (used to compute features) and prediction span to 1 month (the period 
where crashes are checked). We run the experiments in three different experimental set-
tings, depending on how we consider the temporal and geographical components. In the 
first setting (D1.1) we keep separated each experiment period z̄i and each spatial region r 
( r ∈ {London,Rome, Tuscany} ) from all the others. In particular, for each given pair (z̄i, r) 
we train a classifier over the corresponding data of all the users in r, namely Xzi,p  and yzi,p  , 
and then use the model to make predictions one month later, i.e., it is applied over Xzi+1,p  
and the results are compared against the ground truth in yzi+1,p  . Notice that we must have 
i + 1 ≤ 9 , therefore we obtain a total of |{� i

p
}| × |{r}| = 24 sets of experimental results. In 

the second setting (D1.2), we still keep regions separated, while all experiment periods are 
considered together. Users are split into a training set and a test set, following a hold-out 
division6, all the 9 experiment periods of a user in the training set are used (as 9 separate 
records) in the model training and, similarly, all the 9 experiment periods of a user in the 
test set are used for the model testing. The main difference between the two settings is that 
in (D1.1) we check if we can predict the crash of observed users in the future using a lim-
ited amount of data, while in (D1.2) we try to predict the crash of unobserved users using a 
consistent amount of data but without a temporal reference. Finally, the third setting (D1.3) 
amplifies the effects obtained by (D1.2) by putting the users of different areas in a unique 
training dataset.

6 Cross-validation was also tested, yet results do not change in any significant way.
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Geographical transfer learning The experimental setting for Dataset 2 (D2) is organized 
similarly to (D1.2), i.e., geographical areas are kept separated, yet putting together all time 
periods. The main distinction is that now we have 10 areas corresponding to the provinces 
of Tuscany. In turn, each province will be selected as target domain, while all the others are 
used as source domains, the task being to make predictions on the former using the models 
or data from the latter. The data related to each province is partitioned into a training and 
a test set, which are used to extract a local predictive model for each province, and then to 
test it on the other ones. The transfer learning approaches proposed will either select or 
combine such local models or build a training set by resampling the local training data, and 
then test the resulting model over the test partition of the province under analysis.

5.2.1  Datasets preparation

In both experimental settings, before training the classifiers, we face two problems with 
the datasets analyzed. The first one is a class imbalance issue. Indeed there is a very low 
number of crashes compared to the number of no crashes (see Table 1). The minority class 
is over-sampled by taking minority class samples and introducing synthetic examples 
along the line joining the kSMOTE minority class nearest neighbors. Depending upon the 
amount of over-sampling required, neighbors from the kSMOTE nearest neighbors are ran-
domly chosen. We adopt kSMOTE = 5 by default as suggested in [46]. The effect of adopting 
SMOTE is to improve class balance and to reinforce the presence of the minority class in 
the decision regions where it appears. We highlight that we re-balance only the training 
datasets and not the test ones making the evaluation harder but more realistic. The second 
problem is the high dimensionality of the datasets analyzed. Indeed, the rich data engi-
neering described in the previous sections leads to the construction of more than 400 fea-
tures, some of them being highly correlated and redundant. This high dimensionality can 
cause difficulties in the learning of classification models. Thus, we adopt a dimensionality 
reduction technique based on correlation analysis. We calculated the Pearson correlation 
coefficient [47] between every pair of features for the various settings. Then, we removed 
one attribute for each couple having a correlation higher than 0.85. This operation reduced 
the dimensionality of the datasets to 162 features, with a balanced presence of trajectory-
based, event-based, IMN-based, and contextual features. Table 1 reports the per-user aver-
age values of a small sample of features.

5.2.2  Machine learning models

 Our crash prediction approach and our geographical transfer learning strategies can be in 
principle applied using any existing machine learning algorithm as an underlying predictive 

Table 1  Datasets summary as average values of some features

#users % crash #traj #traj/day #evnt #evnt/day #mov #loc degree

D1 London 5k 1.08 280.54 3.39 2967 34.81 66.84 31.23 4.31
Rome 5k 2.82 307.48 3.13 2655 25.74 82.80 41.10 4.02
Tuscany 5k 3.12 327.11 3.28 3041 29.13 81.48 41.19 4.07

D2 Tuscany 26.7k 0.84 375.41 3.92 1088 11.59 77.64 34.81 4.53
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model. In this work, we consider three modern and powerful types of classifiers: Random 
Forests (RF, basically an ensemble of several small decision trees), LightGBM (LGBM, a 
decision tree algorithm based on gradient boosting, with an emphasis on scalability) and 
Neural Networks (NN, here used in the simple form of a multi-layer perceptron).

Configuration details For LGBM we used the lightgbm library7, while for NN we experi-
mented with both the Keras8 and Scikit-Learn9 libraries. Since the latter two libraries are 
applied to the same algorithm type (NN), and the models obtained with Keras yielded 
worse performances than Scikit-Learn, in the next sections we show only results for the 
latter. For all models we used the Randomized Search Cross Validation10 to select the best 
combination of parameters. The parameters of the estimator used to apply these methods 
are optimized by cross-validated search over parameter settings. For RF, we use the Ran-
domForestClassifier that is a meta estimator that fits a number of decision tree classifiers 
on various sub-samples of the dataset and uses averaging to improve the predictive accu-
racy and control over-fitting. The sub-sample size is controlled with the “max samples” 
parameter if “bootstrap=True” (default), otherwise the whole dataset is used to build each 
tree. We try different settings to decide the number of trees in the forest (‘n estimators’: 
[8, 16, 32, 64, 128, 256, 512, 1024]),the minimum number of samples required to split 
an internal node and the minimum number of samples required to be at a leaf node (‘min 
samples split’:[2, 0.002, 0.01, 0.05, 0.1, 0.2], ‘min samples leaf’: [1, 0.001, 0.01, 0.05, 0.1, 
0.2]). Final setting we adopted is the following:

• ‘number of estimators’: 128,
• ‘min samples split’: 0.05,
• ‘min samples leaf’: 0.05,

For NN we use the MLPClassifier, a Multi-layer Perceptron classifier that optimizes the 
log-loss function using stochastic gradient descent. Also in this case we tried different 
settings in order to find the optimal hidden layer size and the learning rate. We tried the 
‘relu’, ‘tanh’ and ‘logistic’ functions as activation ones and we made experiments to try all 
configurations: ‘hidden layer sizes’: [(64, 128), (128, 256), (512, 1024), (512, 1024, 256), 
(1025, 512, 256)]. After testing, the final setting we adopted is the following:

• ‘hidden layer sizes’: (128, 256),
• ‘activation function’: ‘relu’,
• ‘learning rate’: ‘constant’,

LightGBM is a gradient boosting framework that uses tree based learning algorithms. 
It has a high training speed and low memory usage. LightGBM uses the leaf-wise tree 
growth algorithm to get good results, and requires to select a few important parameters. 
The number of leaves (num leaves) is the main parameter to control the complexity of the 
tree model. Theoretically, we can set num leaves = 2maxdepth to obtain the same number of 
leaves as a depth-wise tree. However, this simple conversion is not good in practice. We 

7 https:// light gbm. readt hedocs. io/ en/ latest/ index. html
8 https:// scikit- learn. org/ stable/
9 https:// keras. io/
10 https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. model_ selec tion. Rando mized Searc hCV. html
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tried to use num leaves = (10, 31, 50) with a maxdepth = (−1, 2, 5, 10) . The best parameters 
setting found is the following:

• ‘number of leaves’: 31,
• ‘max depth’: 5,
• ‘boosting type’: ‘gbdt’,

About the Keras experiments, we use the same configurations of MLPC Classifier with the 
only addition of the dropout parameter that is used to regularize the neurons activation and 
selection during the training phase. For our experiments we set ‘dropout rate’=0.1.

5.2.3  Evaluation measures

Given the application context around this work, our objective is to highlight future risky 
and potentially harmful events, also with the aim of raising an alarm that might help to 
prevent them. From this perspective, false positives are less critical than false negatives. 
To this aim we use as main evaluation guidelines [47] the recall of the positive class ( rec1 ), 
i.e., aiming to find as many risky drivers as possible, the f1-measure, i.e.,  the harmonic 
mean of precision and recall of the positive class weighted with respect to the number of 
crashes ( f11 ), and the area under the roc curve (auc) of the positive class that is the area 
under the curve comparing the false positive rate (FPR) and true positive rate (TPR). All 
measures range from 0 to 1, the optimum being 1.

5.3  Crash prediction evaluation

In this section, we evaluate the results for the experimental settings in D1. Among the vari-
ous classifiers, we found out that Random forests (RF) overcome those of the other algo-
rithms. Thus, in the following, we report the results obtained using RF classifiers11. We 
show the effectiveness of RF using the sophisticated IMN-based and contextual features 
described in Section 4.1 by comparing against three alternatives. The first two are base-
lines: a constant classifier (CST) always returning the positive class (crash); a random clas-
sifier (RND), predicting uniformly randomly crash or no-crash. Their purpose is to provide 
reference performance values that can help interpreting the results of the other methods. 
The third one (RFP), instead, implements the approach in [2] by adopting an RF based on 
the features suggested in the state-of-the-art of crash prediction, including both those used 
in [2] (aggregates of speed and mileage, divided by night and day) and those suggested in 
previous works (e.g. statistics about accelerations  [48], and harsh turns  [49]). We name 
RFI the RF classifier that improves over RFP by extending the classical features used in 
literature with those we designed.

Table 2 reports the result for the experimental settings in D1, showing the evaluation 
measures returned by the classifiers for Rome, Tuscany, and London. Note that for the D1.1 
case the values are averaged among the various periods. The overall results we observe in 
the various experimental settings of D1 are the following. The simultaneous analysis of 
the reported indicators shows that RFI provides the best and most reliable performances. 

11 In particular, we used RF with 100 estimators, allowing leaves with at least 1% of the training data, and 
with a cost matrix weighting a crash 100 times more than a no crash.
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Indeed, the CST baseline obviously has the highest recall but a zero precision on no 
crashes, making it useless for practical usage. On the other hand, RND easily gets a high 
f11 , thanks to the high imbalance of data, but it loses half of the real crashes, with a recall 
below 0.5. RFP gives a better trade-off than CST and RND for the f11 , but it shows an auc 
just slightly better than CST and RND, with a value around 0.6. On the other hand, RFI has 
always similar or larger f11 and recall compared to RFP, and it has systematically a higher 
auc12.

In D1.1 we observe different behaviors of RFI in the three areas considered. In Lon-
don, RFI has the highest rec1 , f11 , and auc. Notice that the other methods considered show 
much worse results. In other words, the new features introduced in this paper appear to 
make crashes easy to predict in London. Understanding the reasons for this effect is part 
of our future works. For D1.2 we observe how the increased number of available records 
for the training leads to a not negligible improvement in the performance of the classifiers 
in the Rome, Tuscany, and London areas when compared to those of D1.1. In addition, the 
setting D1.3 that puts together records from all the different areas (“All” section in Table 2) 
leads to a classifier even better than those resulting from D1.2. We highlight in Fig. 3 the 
Receiver Operating Characteristic (ROC) curve of the classifiers for the experimental set-
tings D1.2 and D1.3. These plots show that London classifiers are much more accurate 
than the others and that RFI classifiers markedly benefit from the usage of IMN-based and 
contextual features with respect to RFP, whose ROC curve is always below.

Role of the features By exploiting the feature importance indexes of the models 
extracted it was possible to evaluate which features are more heavily used in making pre-
dictions. In general, the top ones involve driving events data jointly with the annotations 
inferred from IMNs: the number of starts in IMN locations labeled as occasional, the angle 
of accelerations around the most frequent locations, the radius of gyration of regular trips, 
etc. Then, various aggregations of simple driving features (duration of cornering events, 
standard deviation of speed, average speed during nighttime, etc.) as well as purely struc-
tural features of IMNs (betweenness coefficient of regular trips, centrality of second most 
frequent locations, etc). A more detailed evaluation can be found in [6].

5.3.1  LSTM‑based approaches

The key component of our approach that makes it superior to its closest competitor 
(RFP) is its extensive set of carefully engineered features, which are the result of a long 
experience in mobility analytics and driving behavior modeling. However, recent works 
in machine learning show that deep learning solutions are able to skip the human-made 

Fig. 3  ROC curve for different areas for D1.2 and D1.3 

12 An ablation study (omitted due to space limits) showed that both IMN- and context-based features sig-
nificantly contributed to such performances.
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features construction phase in many tasks, and autonomously learn effective data represen-
tations directly from raw data, achieving exceptionally good performances. It is, therefore, 
natural to wonder if that can be the case also in the complex scenario we are considering. 
Along this line, we tested an alternative approach to our problem-based deep learning. In 
particular, we model the user’s mobility as time series of basic mobility indicators, namely: 
maximum speed, distance covered, driving time and average trip duration. Then, we apply 
an LSTM network to learn the association between such time series (containing the values 
in the 3-month predictors intervals) and the target variable (crash / no-crash, observed in 
the 1-month target intervals, as for the previous experiments). The training and test data are 
partitioned exactly as in the experiments described above, and the time series has a 1-hour 
sampling rate. Experiments have been performed on Tuscany only since it is the richest 
dataset.

The network adopted follows the most commonly used structure for LSTM and time 
series classification: one LSTM level with 1024 units, followed by a drop-out of 0.5; then 
a dense layer with 256 nodes, followed by a drop-out of 0.2; finally, another dense layer 
with 64 nodes, and a drop-out of 0.01. In particular, the drop-out was necessary for the 
unbalance of the classes. A ReLu activation function was used in the internal layers, and 
a sigmoid function for the output. The training adopted an Adam optimizer with a binary 
cross-entropy loss function, using the area under the ROC curve (auc) as evaluation met-
rics. The misclassification weights were set to 0.5 for no-crashes and 95 for crashes, again 
due to the class unbalance. The preliminary results obtained, however, show rather poor 
performances. The auc has values close to random classification ( 0.5 ± .008 ), and the f1 
measure is significantly lower than those obtained with the other methods ( 0.01 ± .005 ). 
That is mainly caused by a low precision ( 0.005 ± .003 ), whereas the recall is relatively 
good ( 0.66 ± .491 ) yet rather unstable and lower than the other methods. Our conclusions 
are, therefore, that the approach, although interesting and worth exploring, does not work 
well with the basic features and the standard setting adopted, and further investigations are 
needed. We point them out as possible future works of this paper.

5.3.2  Testing longer prediction spans

An interesting aspect to study is whether predicting crashes over a longer time horizon 
is harder or actually simpler. Indeed, on the one hand we are trying to infer events that 

Fig. 4  F1 score and auc for the RFI and RFP approaches on the Tuscany dataset by varying the prediction 
span from 1 month to 4 months
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are further in the future, and therefore harder to capture; on the other hand, since we are 
enlarging the prediction window, and not just moving the same window further, the num-
ber of positive cases we are considering in the training phase is bound to increase, mak-
ing the problem less unbalanced. In order to understand what is the resulting trade-off, we 
repeated the experiments made on the Tuscany area by changing the prediction span, now 
ranging from 1 month (the value used in the previous experiments) to 4, and measuring the 
f1 and auc scores. The results are plotted in Fig. 4, where also the values obtained by our 
main competitor RFP are given. In both cases, we can observe that longer spans are overall 
better captured by our models, meaning that the class unbalance is a stronger factor of the 
problem. We see, in particular, that while the f1 score grows at an almost constant rate, 
the auc quickly reaches a sort of plateau, meaning that the associated risk probabilities 
produced by the model form a significantly better sorting when passing from 1 month to 
2, yet no large improvement is given by further extending the window to 3 and 4 months. 
Interestingly, RFP follows exactly the same behavior, yet with much worse performances.

5.4  Geographically transferred crash prediction evaluation

In this section we evaluate the three geographical transfer learning strategies proposed in 
Section 4.3 in the experimental setting (D2).

5.4.1  Testing local models

First, we analyze the performances of local models built separately on each province, 
applying them to the test set of the same area, similarly to what was done for setting 
(D1.2). We adopt and compare the three predictive models described in Section 5.2: Ran-
dom Forests (RF, the same used in (D1)), Deep Neural Networks (NN) and LightGBM. 
The results are summarized in Table 3, reporting recall, f11 and auc for each province and 
each algorithm. We can easily see that both RF and NN have high and stable performances, 

Table 3  Crash prediction 
performance for the various 
geographical units inside 
Tuscany in D2 

Each model is trained and tested in the same area similarly to D1.2. 
The last line report the performance of a model trained and tested on 
the whole dataset similarly to D1.3

RF NN LGBM

City rec
1

f1
1

auc rec
1

f1
1

auc rec
1

f1
1

auc

Arezzo 0.15 0.08 0.84 0.27 0.14 0.81 0.00 0.00 0.50
Florence 0.91 0.09 0.92 0.31 0.11 0.84 0.00 0.00 0.90
Grosseto 0.04 0.07 0.94 0.12 0.15 0.93 0.00 0.00 0.50
Livorno 0.83 0.10 0.90 0.00 0.00 0.97 0.00 0.00 0.50
Lucca 0.98 0.07 0.89 0.32 0.16 0.85 0.04 0.00 0.43
Massa 0.89 0.11 0.88 0.32 0.15 0.89 0.95 0.09 0.80
Pisa 0.53 0.12 0.92 0.31 0.26 0.85 0.00 0.00 0.10
Pistoia 0.31 0.06 0.83 0.40 0.07 0.85 0.00 0.00 0.50
Prato 0.35 0.25 0.91 0.45 0.21 0.94 0.00 0.00 0.91
Siena 0.36 0.20 0.86 0.36 0.34 0.93 0.00 0.00 0.50
All 0.44 0.12 0.91 0.34 0.11 0.96 0.46 0.07 0.83
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especially in terms of auc, which is the most informative measure. On the contrary, LGBM 
performs poorly in most provinces (7 out of 10), and is always worse than the other meth-
ods. This led us to focus the rest of the experiments only on RF and NN. The last line 
of Table 3 reports the performances obtained merging the data of all the provinces, thus 
building a unique global model and testing it on all provinces. This is equivalent to setting 
(D1.2) on a different data sample or, from a different perspective, to setting (D1.3) at a 
smaller, regional scale. The results show performances that are perfectly aligned with the 
single provinces, suggesting that the larger training set of the global dataset is well bal-
anced by the specificities of the local models of the provinces. In particular, this means that 
the local training data of provinces is sufficient to infer reasonable models.

5.4.2  A0: Baseline approach

The straightforward approach to exploit the data available in the source domains is to 
directly build a model using all the data, and try to apply it as is to the target domain. We 
experimented this approach as a solution zero, and its results are shown in Table 5, which 
will be used in the rest of this section as a reference for evaluating our proposed approaches 
A1-A3. As expected, this baseline results to be competitive with (though generally worse 
than) the simpler approaches (A1), and in most cases, significantly worse than the more 
sophisticated ones (A2-A3).

5.4.3  A1: Best city transfer

Here we consider the first geographical transfer learning strategy we proposed, namely to 
make predictions on a target domain (i.e., the province under analysis) using a local model 
selected among the source domains (in our case, the 9 provinces left) by taking the prov-
ince which is most similar to the target one. The results are summarized in Table 4, which 
reports the performances for all the pairs “source province vs. target province“, marking in 
bold the values suggested by our first strategy. The performances are reported in terms of 
auc, and are shown for both the NN and RF algorithms. The values obtained suggest that 
the strategy works slightly better with RF, yet in general, it does not achieve satisfactory 
results, in most cases performing worse than the average. Apparently, single models do not 
provide knowledge which is directly usable, as is, in other areas, and then something more 
refined is needed.

5.4.4  A2: Weighted ensemble model

We test the second proposed approach, which consists of combining all the local (source) 
models into an ensemble, where their predictions over the target domain are aggregated. 
We compare our weighted combination, where each province votes with a weight pro-
portional to its similarity w.r.t. the target, against a baseline where the weights are per-
fectly homogeneous. The baseline is named A2.1, while the weighted solution is named 
A2.2. Table 5 reports the results obtained for the two methods over each province, taken in 
turn as target domain, compared against the corresponding results of the best city transfer 
approach, named A1. Again, the results are shown bot for NN and RF, using auc as refer-
ence metrics, and highlighting in bold the best results. We can see that both A2.1 and A2.2 
consistently improve over A1, thus confirming that combining the information of multiple 
sources is better than focusing only on one. At the same time, we can observe that A2.2 
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performs overall much better than A2.1, especially with NN, proving that in this strategy, 
the similarity information becomes much more useful than what happened with the single-
domain approach. Besides that, we can also notice that between NN and RF there is not a 
clear winner.

5.4.5  A3: Weighted sampling

With the third strategy, we combine the local information of all (source) provinces at a 
lower level, combining data rather than models. As before, each province is considered 
in turn as target domain, yet this time we build a predictive model from scratch, obtaining 
the training data by sampling the training set of each source domain, taking larger samples 
from more similar provinces. The results are shown again in Table 5, under the column A3. 
Since the method involves a random sampling, the values shown are obtained as average 
over 10 distinct runs. The values point out that the strategy works relatively well in com-
bination with NN, reaching very often performances equal or close to the best ones, yet 
providing overall slightly less convincing results (on average, there is a drop of 0.5% of auc 
w.r.t. A2.2). Also, the performances with RF are much worse since the average drop is 4% , 
and it never gets close to the best solutions.

Table 5  Geographically transferred crash prediction auc for NN and RF for the various approaches

Best results for each target area are highlighted in bold

NN auc RF auc

City A0 A1 A2.1 A2.2 A3 A0 A1 A2.1 A2.2 A3

Arezzo .546 .575 .828 .813 .813 .822 .969 .841 .841 .892
Florence .501 .636 .882 .845 .849 .921 .864 .928 .915 .848
Grosseto .645 .590 .849 .931 .931 .686 .908 .918 .938 .888
Livorno .493 .803 .775 .966 .961 .885 .834 .885 .896 .863
Lucca .451 .824 .842 .847 .808 .781 .861 .885 .890 .888
Massa .602 .811 .852 .887 .886 .678 .836 .890 .885 .865
Pisa .548 .818 .844 .854 .854 .877 .918 .898 .920 .868
Pistoia .561 .892 .763 .847 .850 .728 .872 .864 .833 .811
Prato .735 .823 .863 .937 .937 .843 .661 .905 .906 .860
Siena .522 .799 .869 .925 .920 .783 .826 .916 .856 .686
Avg .561 .756 .836 .885 .880 .800 .854 .893 .887 .847
Std .08 .11 .03  .05 .05 .08 .08  .02 .03 .06

Fig. 5  Receiver Operating Characteristic (ROC) curve for geographically transferred crash prediction with 
target areas Pisa and Florence for D2 
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An additional overall comparison of the results is provided by Fig. 5, which shows the 
ROC curves of the models obtained with all four strategies discussed above, over two sam-
ple provinces: Pisa and Florence. In the case of A3, one of the 10 models generated was 
(randomly) selected. The plots show that in both cities, despite the differences in total auc, 
all strategies provide rather steep curves, and thus reasonable results, except for A1, which 
is less stable and, indeed, in the case of the NN predictor has significantly worse perfor-
mances w.r.t. the others.

5.4.6  Conclusions on selecting the best transfer learning method

Summarizing the results seen above, we can conclude that combining the local knowledge 
of multiple sources is the key to improve performances in this transfer learning setting. 
This means, in particular, that using the baseline method A0 and the single-source method 
A1 is not recommended. In addition, the best level to perform such combination appears to 
be the weighted ensembling of local models (A2.2), rather than directly combining local 
datasets (A3), suggesting that in our data, the more detailed information that resampling 
strategies could in principle provide is outweighed by the noise that they introduce – noise 
that the local models have lost, together with other bits of (potentially useful) information. 
However, the data size and variability in different applications might change this equilib-
rium. Thus we suggest considering both approaches as reasonable candidates to test.

5.4.7  Geographically transferred crash prediction explanation

Like in [6], a parallel objective of this work is to understand which behaviors in a driver 
more likely could lead to future crashes. We realize it by adopting the SHapley Additive 
exPlanations (SHAP) method [34] to locally estimate for each prediction the expected con-
tribution of each feature. SHAP returns the shapely values: the higher is a shapely value, 
the higher is the contribution of the feature; if the shapely value is positive, it contributes 
towards the positive class (crash); otherwise it contributes towards the negative class (no 
crash). From [6] emerges that IMN-based features and collective features are fundamental 
for detecting crashes: the average maximum acceleration of break events in areas visited 
occasionally performed by other users is crucial in pushing towards the crash. Another fea-
ture having this effect is the number of acceleration and break events between the second 
and third most visited locations.

In the following, we summarize SHAP explanations by reporting the mean values of the 
absolute SHAP values for the drivers having a car crash. We focus our study on A1 and A3 
to observe the differences between an approach trained on a single geographical unit (A1), 
and an approach trained on multiple weighted areas (A3). The idea is to understand which 
features are the most important for recognizing crashes in geographical transfer learning. 
The results are reported in Fig. 6 for A1 and in Fig. 7 for A3. We report the explanations 
for the records for both NN and RF, using Pisa and Florence as target domains. The longer 
is the value bar, the higher is the contribution of the corresponding feature. We focus on 
the top five values.

In general, we observe that there is not a clear pattern among the different classifiers 
and geographical units. Similarly to the observation reported in  [6], for A1 in Fig.  6, 
we have the presence of several IMN-based features like the betweenness of the move-
ment from the first and third most important locations (l1l1_betweenness), the num-
ber of incoming edges in the second most visited location (l2_indegree), the events at 
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the most important locations (tot_events_loc1), and the acceleration for reaching them 
(avg_max_acc_loc1). Moving the observations to Fig. 7, we notice how all the classi-
fiers highly rely on features related to events. This means that, when aggregating data 
from different sources, it becomes fundamental to predict a crash to discriminate along 
dimensions involving harsh accelerations, harsh braking, and harsh cornering. In par-
ticular, besides the events happening in general (like tot_duration_Q that means the 
total duration of harsh cornering), we notice how the focus is on events happening when 
driving towards the second most visited location (like tot_events_type_Q_loc2 that 
counts the number of harsh cornerings for going to loc2). Finally, we underline again 
how IMN-based features are important. For instance, with NN over Florence using A3 
(bottom right of Fig. 7) we have that the most important feature for deriving a car crash 
is avg_reg_mov_duration, i.e., the average duration of the movements performed regu-
larly. This suggests that performing general actions to reduce the travel time for such 
a specific portion of the mobility can have a significant impact on the probability of a 
crash in the area, improving safety overall.

Fig. 6  Aggregated SHAP exlanation of the five most important features for geographically transferred crash 
prediction with target areas Pisa and Florence for D2 using A1

Fig. 7  Aggregated SHAP exlanation of the five most important features for geographically transferred crash 
prediction with target areas Pisa and Florence for D2 using A3
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6  Conclusion and future work

In this paper, we have introduced the long-term car crash prediction problem, its asso-
ciated task of risk assessment and the geographically transferred car crash prediction 
problem. For the first problem, we proposed a solution consisting in extracting sophis-
ticated features of the user’s mobility, able to capture not only basic characteristics 
of her mobility, but also higher-level information derived from a network view of her 
mobility history as well as contextual knowledge directly inferred through analysis of 
the collective data of all users. On top of such features, machine learning models can be 
trained and successfully employed. Experiments on real data showed that our solution 
outperforms basic solutions based on state-of-art features, and a preliminary inspection 
of the prediction models through explainable AI methods allowed us to identify a few 
representative features associated with crash risk. For the second problem, the solution 
proposed consists in exploiting city indicators that can be derived from mobility data 
to design geographical transfer learning solutions based on the ensemble principle and 
weighted through city similarities. The experimentation on real data demonstrated that 
solutions employing city indicators for driving the transfer overcome standard baselines 
that do not use them. Explanation techniques also revealed some of the features that are 
most important for the success of the transfer learning methodology.

The results and insights obtained with this work opened several research and practi-
cal questions that we would like to address in the future, among which we mention the 
following. First, the IMN representation adopted in the driving modeling phase appears 
to be the right tool for enriching the data with higher-level semantics, such as the pur-
pose of trips and stops, as done in  [7], the driving moods (e.g., through unsupervised 
analysis of speeds and accelerations, or driving through dangerous intersections [11]), 
or by better describing the evolution of driving habits. Also, contextual data might be 
expanded, integrating several external, public data sources, such as the presence of 
Points of Interest, the road network structure, weather conditions, etc. While the model 
explanation tools were used in this work as a means for understanding the causes of 
crashes, their application can be further extended to improve the performance of the 
models by integrating feedback from domain experts – a human in the loop approach 
that can be made possible by model explanation itself. The city indicators we adopted, 
which are at the basis of our transfer learning proposals, are just a subset of a large 
spectrum of possible choices, our current purpose being to yield a general characteriza-
tion of the urban areas involved. However, searching the optimal set of city indicators to 
reach the best model transferrability on the specific prediction problem would be indeed 
an interesting extension of the current work.

Also, while the paper was focused on crash prediction, the transfer learning meth-
ods proposed are based on rather general principles (see Section 4.3) that can apply to 
a much broader set of problems. In particular, any learning problem related to mobil-
ity in the urban context might fit the framework, from the classification of points-of-
interests to the estimate of a driver’s fuel consumption. We consider exploring some 
of these alternative application settings as an interesting line of future work. Finally, 
geographical transfer learning is a poorly explored area, and the results discussed in this 
paper represent only a first step in this direction. More sophisticated solutions could be 
obtained by an appropriate combination of standard techniques (for instance, domain 
resampling for aligning distributions) and context-aware methods (e.g., the city indica-
tors themselves or external information about the territory).
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