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ABSTRACT

Identifying the portions of trajectory data where movement ends

and a significant stop starts is a basic, yet fundamental task that

can affect the quality of any mobility analytics process. Most of

the many existing solutions adopted by researchers and practi-

tioners are simply based on fixed spatial and temporal thresholds

stating when the moving object remained still for a significant

amount of time, yet such thresholds remain as static parame-

ters for the user to guess. In this work we study the trajectory

segmentation from a multi-granularity perspective, looking for

a better understanding of the problem and for an automatic,

parameter-free and user-adaptive solution that flexibly adjusts

the segmentation criteria to the specific user under study. Experi-

ments over real data and comparison against simple competitors

show that the flexibility of the proposed method has a positive

impact on results.
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1 INTRODUCTION

Thanks to the wide diffusion of localization technologies and

mobile services based on the positioning of users and devices, the

availability of mobility traces is increasing fast in several applica-

tion domains. Location-based services provided through smart-

phones are nowadays extremely popular, from nearby restaurant

suggestions to travel assistants, and in the near future all cir-

culating vehicles will be equipped with localization capabilities

for their continuous monitoring. The vast amounts of data that

this trend leads to produce and collect open the door to several

opportunities of converting them into better services, economical

returns, more sustainable cities, improved living conditions, etc.

All this starts from appropriate mobility analysis operations able

to extract from raw data usable and useful information, such as

deeper domain knowledge, patterns, models and forecasts.

In mobility analytics one of the fundamental concepts ismove-
ment, meaning with that the part of mobility data that describes

a transfer from one place where the individual (or the object)

was staying, to another one were the user will stop. Identifying

movements in the raw stream of positions, for instance the con-

tinuous flow of GPS traces of a vehicle, is essential yet non-trivial.

While it is simple to define a stop in geometrical terms, it is much

less clear how to define significant stops, i.e. stops that might

have some meaning for the user (for instance, stopping to do

some activity before leaving), as opposed to stops that are simply

incidental (for instance, due to a small traffic jam).

Practitioners in the mobility analytics domain defined several

simple strategies to select stops in the mobility data stream (a

brief account of literature on this topic is provided in the next
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section), each of them apparently capturing well some specific

concept or some application-specific idea of stop. For instance,

some solutions simply identify the moments where the object

did not move, based on some thresholds, while others select the

stops that have a duration compatible with some specific task,

for instance discarding stops at a supermarket if their duration

is physically too short to be able to enter, buy and exit. However,

most existing solutions suffer from two important limitations:

(i) they are based on critical thresholds that the user needs to

choose accurately, and in most cases it is difficult to understand

what value is the best; (ii) such thresholds are global, i.e. the same

threshold value applies to all the moving individuals, irrespective

of any distinctive characteristics they might have. The reason of

the latter is that, while an overall evaluation might be performed

to guide the choice of a global threshold, doing that separately

for each individual might be impossible if their number is huge.

In this work we try to overcome the limitations highlighted

above, providing a general methodology that inspects the mobil-

ity of the individual, and identifies segmentation thresholds that

apparently match her mobility features. The process allows to

get rid of any input parameter, adapts thresholds to each single

individual and, most importantly, is completely automatic, thus

applicable to large pools of users.

The paper is organized as follows: Section 2 discusses the re-

lated works and how our proposal differs from existing solutions;

Section 3 provides some preliminary definitions; Section 4 defines

the problem we want to tackle; Section 5 introduces our proposed

method to solve the problem; Section 6 defines some evaluation

measures to quantify the quality of a segmentation; Section 7

provides empirical quantitative and qualitative evaluations of

results, also comparing against a few baselines; finally, Section

8 closes the paper with some conclusions and pointers towards

future developments.

2 RELATEDWORK

Segmentation is a technique for decomposing a given sequence

into homogeneous and possibly meaningful pieces, or segments
such that the data in each segment describe a simple event or

structure. Segmentation methods are widely used for extracting

structures from sequences, and are applied in a large variety of

contexts [22]: time series [4, 9], genomic sequences [15, 17, 18],

and text [12], to cite a few.

The segmentation of human trajectories is a very valuable task

as it enables the development of mobility data models [7, 19] and

applications like carpooling [6], or trajectory prediction [24]. Var-

ious simple approaches are currently adopted in practice. In [23]

human trajectories are extracted adopting a predefined rule based

on a pair of spatio-temporal parameters regulating the end of a

trajectory and the start of the subsequent one. Similarly, in [8]

the trajectory is divided into subsequent trips if the time inter-

val of “nonmovement” exceeds a certain threshold. In [26] it is

described a change-point-based segmentation approach for GPS



trajectories according to the transportation means adopting a uni-

versal threshold for determining whether a segment is “walk” or

“nonwalk”. The work in [3] presents a theoretical framework that

computes an optimal segmentation by using several criteria (e.g.,

speed, direction, location disk) that are satisfied in each partition,

thus making the approach local, and applied computational ge-

ometry methods. However, their methods are general and not

clearly applicable to the human trajectory context, where a trip

can be complex and not show the geometrical/movement unifor-

mity the methods look for. Finally, each criterion corresponds

to thresholds that the user must set, without clear guidelines on

how to choose them.

The authors of [25] segment the trajectories in two steps.

The first segmentation is performed by means of simple policies

with respect to temporal and/or spatial predefined constraints.

Then, the trajectories are divided into stops and moves observing
variations of the speed of the object. If the variations of the speed

is below a speed threshold and there is a sufficient number of

observations, then the portion of trajectory is annotated as a

stop. The speed threshold is not general but changes according

to the user behavior and also to the surrounding of the stop.

In [20] is defined a measure of the density of the points in the

neighbourhood of each trajectory point, the Spatio-Temporal

Kernel Window (STKW) statistics. To determine the start and end

points of segments, the algorithm looks for maximal changes in

STKW values. The focus of the approach is on capturing changes

of transportation mode, including stops, which are simply points

with low speed.

In addition to those mentioned above, several other solutions

to the trajectory segmentation problem have been proposed in

literature, yet with objectives different from ours. For example,

cost-function based strategies were presented in [11][10], while

clustering-based ones are introduced in [13] [14]. All these ap-

proaches are focused on splitting a movement into homogeneous

parts, rather than discovering significant stops, which is the pur-

pose of this paper.

In this work we provide a segmentation method that, opposed

to most of the approaches mentioned above, is not based on fixed

space and/or time thresholds to be fixed by the user – this is

the case, for instance, of [8, 23, 25, 26]. Instead, we aim to make

the segmentation parameter-free and also adaptive to the single

user’s data, giving the opportunity to have different kinds of

segmentation over different users. Also, our approach is com-

plementary to the STKW-based one [20], as the latter aims to

differentiate movements with different speed profiles, including

stops as a particular example, while we focus on stop timing

and try to understand which stops are actually significant (e.g.

not too short) for the user. A similar work was proposed in [5].

Here the authors proposed a new approach called Octal Window

Segmentation(OWS) for unsupervised trajectory segmentation.

The intuition behind their approach is that when a moving object

changes behavior, this shift may be detected using only its geolo-

cation over time. So the work focuses on finding these changes

only from the object’s coordinates using interpolation methods

to generate an error signal. This error signal is then used as a

criterion to split the trajectories into sub-trajectories.

3 SETTING THE STAGE

We start by defining trajectory segmentation based on a spatial

and a temporal threshold, in a way similar to standard approaches

in literature.

Definition 3.1 (Individual trajectory). Given a user u, her Indi-
vidual Trajectory Tu is the sequence of n pointsTu = ⟨p1, . . . ,pn⟩
that describes her position in time, where each point p ∈ Tu is

defined as a triple p = (p.x,p.y,p.t), representing its spatial co-
ordinates x and y and the corresponding timestamp t . Moreover,

points are in chronological order, i.e. ∀1 < i ≤ n.pi−1.t < pi .t .

Definition 3.2 (Pseudo-stop duration). Given an individual tra-

jectory T = ⟨p1, . . . ,pn⟩ and a spatial threshold σ , the Pseudo-
stop duration associated to point pi is defined as SD(T , i) =
min{pj .t − pi .t |i < j ≤ n ∧ d(pi ,pj ) > σ }, where d represents

the geometrical Euclidean or geographical distance.

Notice that the last point pn will have SD(T ,n) = min ∅ = ∞.

Definition 3.3 (Segmented trajectory). Given a trajectory T =
⟨p1, . . . ,pn⟩, a spatial threshold σ and a temporal threshold τ ,
we define the (σ , τ )-segmentation of T as T σ ,τ = ⟨S1, . . . , Sm⟩,

such that:

(i) ∀1 ≤ i ≤ m.∃1 ≤ s < e ≤ n : Si = ⟨ps ,ps+1, . . . ,pe ⟩
(ii)

⋃m
i=1 set(Si) = set(T )

(iii) ∀1 ≤ i ≤ m.∀1 ≤ j ≤ |Si | : SD(Si , j) > τ ⇔ j = |Si |
(iv) ∀1 ≤ i ≤ m.Si is maximal

where set(I ) = {p ∈ I }.

Conditions (i) and (ii) imply that the segments of the seg-

mented trajectory of T form a partitioning of the elements of T
in the strictly mathematical sense. Moreover, conditions (iii) and

(iv) state that all the points in a segment are movement points, i.e.

their pseudo-stop duration is smaller than the given threshold,

excepted the last point. Therefore, each point inT that has a high

pseudo-stop duration will act as a split point, and corresponds to

a distinct partition in T σ ,τ
.

4 PROBLEM FORMULATION

Existing trajectory segmentation methods assume that the same

rules and the same parameters should apply to all moving objects.

Since different objects can show very different movement char-

acteristics, the above assumption leads to make choices that on

average fit best the dataset, yet potentially making sub-optimal

choices on single individuals.

Our objective is to overcome this limitation, making the seg-

mentation process adaptive to the individual and taking into con-

sideration her overall mobility. Our problem statement extends

the traditional formulation of segmentation as a threshold-based

operation, thus the core issue is to find good parameter values

for each user.

Definition 4.1 (Individual cut threshold problem). Given an Indi-

vidual TrajectoryTu , and a global spatial thresholdσ , the problem
is to identify the temporal threshold τ that yields the optimal

segmentation T σ ,τ
.

Since the number of moving objects can be very large, the

process must be completely automatized and require no human

intervention. In Section 5 we will introduce a simple and effective

approach to solve the problem and thus find a suitable value of

τ for each user. In addition, some basic guidelines to choose a

value for the global spatial parameter will be provided.

5 PROPOSED METHOD

The proposed solution to the individual cut threshold problem

consists in fixing the spatial threshold to a global value (i.e. to be

used for all users) and then in studying the segmentations that we



would obtain by applying different temporal thresholds. We will

start describing the process for choosing the temporal threshold,

which is the central part of the solution, and later discuss how

the spatial one can be chosen.

5.1 Self-Adaptive Trajectory Segmentation

When very small values of τ are used, the segmentation obtained

will contain a huge number of very short segments, till the ex-

treme case where each point forms its own segment. As the

threshold is increased, more and more segments will merge to-

gether, since some of the former splitting points will fall below

τ . The process is expected to gradually enlarge the trajectory

segments by first including simple slowdowns (i.e. not really stop

points), then temporary stops (e.g. at traffic lights), and so on.

Our approach consists in (virtually) monitoring such progres-

sion, and detect the moment where an anomalous increase in

the number of segments is observed, which represents a sort of

change of state. This follows the same kind of idea adopted in vari-

ous unsupervised classification contexts, such as the knee method
for deciding the number k of clusters for the k-means algorithm,

or analogous solutions to choose the radius for density-based

clustering (e.g. DBScan).

In our solution, rather than relying on visual or similar heuris-

tic criteria, wewill base the threshold selection on a statistical test.

In particular, we will adopt the Modified Thompson Tau Test [2]

which, basically, checks whether a given value fits the distribu-

tion of the rest of the data or not. Since we look for anomalous

values in a sequence, we apply the test iteratively, comparing

each value n(t) (the number of segments obtained with τ = t )
against the values n(t ′) obtained for larger thresholds t ′.

This process yields a set of thresholds that have an anomalous

number of partitions as compared to the successive thresholds.

Among them, we simply choose the smallest one, thus deciding

to select the segments that emerge at the first change of state,
also representing shorter and finer granularity movements.

The procedure, named ats (self-Adaptive Trajectory Segmen-

tation) is summarized in Algorithm 1. Step 3 collects the pseudo-

stop durations SD of all the points i that make up the segment,

and step 4 computes the frequency F of each value, basically rep-

resenting the number of new segments obtained using that value

as τ w.r.t. the previous smaller thresholds. In our implementa-

tion such frequency distribution is computed through smoothed

histograms, grouping values into bins of 1-minute width. Fig-

ure 1(left) shows the frequency distribution of a sample trajectory,

the vertical line corresponding to a possible cut point. The re-

sulting set of segments obtained is described in Figure 1(right)

in terms of segments duration. Finally, step 5 selects the fre-

quency values that appear to be anomalous (based on the Modi-

fied Thompson Tau Test) w.r.t. the frequency of larger thresholds,

and step 6 returns the earliest time threshold that has an anoma-

lous frequency.

Computational complexity. The cost of Algorithm 1 is dom-

inated by step 3, since the computation of each pseudo-stop du-

ration (SD) could in principle require to scan all the remaining

points of the individual trajectory, thus yielding a O(n2) cost,
where n is the size of the individual trajectory. However, in prac-

tical applications the trajectory portion needed for each SD is

relatively small, leading to a quasi-linear cost. The remaining

parts of the algorithm can be realized a linear time, including the

Modified Thompson Tau Test which can be computed for each

points through incremental updates.

Algorithm 1: ATS(T , σ )

1 Input: Individual trajectory T , spatial threshold σ

2 Output: Cut threshold τ

3 S = ⟨ SD(T , i) | 1 ≤ i ≤ |T | ⟩;

4 F = frequency distribution of S values (F (a) = |{a ∈ S}|);

5 C = {t |t ∈ ranдe(F ) ∧TT (F (t), ⟨F (t ′)|t ′ > t⟩) = true};
//TT (a,B) = Modified Thompson Tau Test of a vs. set B

6 return minC

Figure 1: Frequency distribution of pseudo-stop durations

for a user trajetory (left), and the durations of the seg-

ments obtained using a specific threshold to cut the tra-

jectory (right). The threshold used corresponds to the ver-

tical line on the left image.

5.2 Fixing the spatial threshold

In our approach, the threshold σ represents the minimum dis-

tance between two (consecutive) points that can be considered

as a movement, and the temporal parameter is indeed measured

as the time needed to make a movement. A simple way to fix

its value is to adopt the minimum value that, according to the

accuracy of our dataset, cannot be mistaken for a positioning

error, for instance due to GPS uncertainty. In our experiments we

adopt road vehicle GPS traces that are expected to have errors not

larger than 10 meters, therefore we could fix σ = 20 (the worst

case distance between two points that have the maximal error in

opposite directions). We decided to slightly increase it to 50 in

order to stay on the safe side, also to take into account that errors

are slightly higher than average in urban centers, which is the

application context where our experiments are performed. Since

we do not have data source from other kind of transport (ships,

planes, etc.) the selected threshold seems to meet our purposes.

However, empirical results confirm that the value of the global

parameter σ is not critical, as our approach shows a low sensitiv-

ity to it. For this reason, the value we chose in our experiments

(50 meters) can be considered a good guess for generic vehicle

GPS data. Other data sources with a higher spatial uncertainty

might require larger values.

6 EVALUATION MEASURES

The reconstruction error generally used for evaluating segmen-

tation problems [1] just measures how well each segment can

be approximated with one value, and thus seems not to fit with

trajectory segmentation. Therefore, similarly to clustering evalu-

ation, we propose three internal evaluation measures [21]. Let

T be the sequence of n points and TS = ⟨S1, . . . , Sm⟩ its seg-

mentation. We denote with At = duration(T ) = pn .t − p1.t the
total elapsed time from the first point of p1 ∈ T to the last point

pn ∈ T , andAd = lenдth(T ) =
∑n−1
i=1 d(pi ,pi+1) the total distance

covered by the trajectory, computed by considering every couple

of subsequent points in T . LetMt =
∑
Si ∈TS duration(Si ) be the



Figure 2: Time threshold distributions for trajectories in

Rome and London. The peaks show the ideal thresholds

to be set to build the trajectories.

sum of the segments’ duration, i.e., the time spent driving, and

Md =
∑
Si ∈TS lenдth(Si ) be the sum of the segments’ length, i.e.,

the distance traveled. Then, we define the following measures:

• time precision: TP = 1 −Mt /At
• distance coverage: DC = Md/Ad
• mobility f-measure:MFβ = (1+β2)·TP ·DC/((β2 ·TP)+DC)

All measures range from zero to one. The higher the value the

better the result. The objective of these measures is to promote

segmentations capturing long stops (time precision) yet also cov-

ering most of the overall distance (distance coverage). These two
objectives are conflictual, since making stops longer reduces the

number of points that contribute to the distance covered. The

mobility f-measure accounts for both aspects simultaneously. In

the experiments we adopt β = 0.25, which weighs time precision
much higher than distance coverage by augmenting the relevance

of missing precision in stop detection. The reason is that i) it is
relatively easy to guarantee an high distance coverage, and ii) the
main focus of the paper is on the temporal aspects of trajectory

partitioning.

7 EXPERIMENTS

We experimented the proposed self-adaptive trajectory segmen-

tation approach (ats) described above over a real dataset of GPS

vehicle traces. The results commented in the following refer to

2000 users of the area of Rome (Italy), and London (UK). The

means and standard deviations of the sampling rate for the users

analyzed are 12194.67±22575.66 and 4385.76±9359.14, for Rome

and London respectively. The high values and their high variabil-

ity is due to the presence of several long time gaps, typically due

to parking periods.

In the following we first analyze the personal temporal thresh-

olds returned by ats, then we propose a quantitative and qual-

itative evaluation of the results for understanding the benefits

of the novel method with respect to existing ones. We compare

ats against the trajectory segmentation method with fixed pa-

rameters proposed in [23] (fts
temp-thr

). Moreover, we adopt as

baseline a random trajectory segmentation method that segments

the sequence of points T = ⟨p1, . . . ,pn⟩ intom equal-length seg-

ments (i) withm randomly extracted between 2 and n/2 (rts1),
or (ii) with m set to the number of segments returned by the

proposed ats method (rts2).

7.1 Self-Adaptive Temporal Threshold

We observe in Figure 2 the distribution of the time thresholds

selected by ats for each user (vertical axis represents value fre-

quencies in log-scale).

method MF .25 TP DC ratiosr #segms (avg ± std)

ats .951 .951 .981 0.049 837.34±854.52

fts120 .925 .996 .456 0.015 592.26 ±652.78

fts1200 .948 .947 .997 0.053 746.28 ± 733.96

rts1 .279 .268 .722 0.700 2094.85± 2472.36

rts2 .124 .118 .877 0.883 899.59 ± 926.03

Table 1: Evaluation on Rome data. The first three columns

show the measures adopted to test our new approach. The

fourth one reports the ratio between the average sampling

period of non-stop points over that of all points, and the

last column is the number of segments.

method MF25 TP DC ratiosr #segms (avg ± std)

ats .955 .953 .999 0.047 433.915±513.715

fts120 .958 .961 .944 0.040 1131.829± 1431.810

fts1200 .952 .950 .999 0.050 359.545 ± 410.606

rts1 .267 .256 .695 1.007 2833.718 ± 4203.049

rts2 .035 .033 .958 1.008 445.645 ±527.969

Table 2: Evaluation on London data. The first three

columns show the measures adopted to test our new ap-

proach. The fourth one reports the ratio between the av-

erage sampling period of non-stop points over that of all

points, and the last column is the number of trajectories.

Figure 3: Boxplots for theMF .25 results. On the Rome data

ats yields better results than the fts solutions, while in

London all three produce almost the same results. The

variability of ats results is consistently smaller than the

other methods, which is a sign of robustness.

Although every user has her own mobility behavior with its

own mix of regular and more erratic behaviours [16], we observe

two clear peaks in the distributions for both Rome and London.

This means that with respect to ats we mainly recognize two

different types of users regarding to the minimum duration of the

stops. This supports the intuition behind our approach, namely

to have a self-adaptive procedure selecting a personalized best

temporal threshold for each user. Selecting one single threshold

value for all the data might negatively affect the segmentation of

some users, partitioning their trajectories either too much or too

little. The first peak is at about 600 seconds (∼ 10 minutes), while

the second peak at 1200 seconds (∼ 20 minutes). These values

correspond to the temporal thresholds that the ats procedure

uses to cut each trajectory. There is also a minority of users

having values outside the two peeks.

7.2 Comparison of Evaluation Measures

In this section we compare the proposed self-adaptive trajectory

segmentation approach with the other methods taken into ac-

count. In Tables 1 and 2 we report the results obtained with all the



methods. The first three columns show the evaluation measures

described above. The fourth column shows the ratio between the

average sampling period of movement points (thus discarding the

stop portions of the user’s trajectory) and the average sampling

period of the full trajectory, while in the last one the average

number of segments with its standard deviation is given. In gen-

eral, we can observe that the best results were obtained with the

ats and fts methods, both for Rome and London. Analyzing the

ratio (fourth column) we can see that values are low for both

ats and the fts ones, meaning that the long stops are ignored

(i.e. they are recognized as real stops) and just the short ones are

considered. On the contrary, with the random approaches the

ratio is bigger because the algorithm function evaluates all stops

in the same way. Looking at the number of segments it is possible

to note that fts and ats methods produce different quantities,

especially the fts120 result produces less segments in the Rome

case and much more in London. About the last two approaches,

the rts1 method works with a random number of segments, so

it is normal that the final result differs from the others, while the

rts2 takes as number of segments the same of the ats approach

so we aspect to achieve similar results.

For the evaluation measures we can see that our new approach

reached the goal we expected, i.e., yielding a quality of results

which is always comparable or higher than fixed-threshold ap-

proaches and more robust. Indeed, for both Rome and London the

values obtained by ats are compatible with the fts results, even

better in the MF .25 for Rome and in the distance coverage for

London. In particular, in the Rome example, having a highMF .25
values means that also the time precision and the distance cover-

age are well correlated in a way that produce a satisfying result.

If we see the fts120 result we can note that the time precision is

high but the distance coverage is very low because the algorithm

builds short trajectories with few points. An analogous reason-

ing can be done analyzing the fts1200 method which produces

an excellent distance coverage score but a lower time precision.

Our solution reaches a good balance, thanks to its self-adaptive

characteristic that allows to control and correct the trajectory

fragmentation, and all its evaluation measures are always either

the best or the second best of the group.

To have a better understanding of the quality of our new

approach, the distribution of MF .25 values for the different ap-
proaches on the two datasets is shown in Figure 3 through a

boxplot visualization. For the Rome case we can observe that

with the ats approach the median value is the highest (closest

to 1) and the inter-quartile range is smaller than the other two,

meaning that we have a smaller variabiliy and thus more robust

results. The London case appears to be different, and the best

MF .25 values are obtained with the fts1200, with a median similar

to ats and a slightly narrower box. This leaves room for future

improvements of our methodology.

7.3 Comparison of Segmentation Statistics

In the following we analyze other statistical indicators on the

trajectory segments extracted by the various methods. The next

plots want to show other significant features for the segmentation

problem in order to compare their distribution and try to infer

somethingmore about the segmentation. In addiction discovering

some hidden correlations between trajectory features and the

segmentation approach could lead to a better understanding of

the problem and highlight other relevant aspects. In Figure 4

we report the distributions of the average number of points per

Figure 4: Distributions of average number of points per

segment in Rome (left) and London (right).

Figure 5: Distribution of the number of trajectory seg-

ments overRome (left column) andLondon (right column)

with each segmentation method (on the rows, grouped by

family).

segment for Rome and London. For all methods, the majority of

segments have less than 20 points, probably meaning that most of

the trips take place within the city. However, in the distribution

tails some long trajectories with more points emerge. We observe

that the distribution peaks of ats place somehow in between the

peaks of the two fts variants (though closer to fts1200, especially

in London) thus finding a trade-off between them. Moreover we

can see that London and Rome distributions are different: London

has a wider distribution than Rome, meaning that the variety of

trips is greater in London.

In Figure 5 are displayed the distributions of the average num-

ber of segments per user. In London most of the users have less

than 20 trajectory segments. The peak of the distribution is be-

tween 5 and 10 segments. Between 30 and 100 segments the



Figure 6: Distributions of the average length (top) and du-

ration (bottom) for the trajectory segments returned by

ats (left) and fts (right) for the area of Rome.

distribution remains stable at a small value larger than zero. In

Rome we observe a similar result with a peak between 15 and 20

trajectories. Also in this case, the peak of ats distribution tends

to stay in the middle of the fts ones.

In Figure 6 we compare the distribution of average length and

average duration of the segments returned by ats (left) and fts

(right) for the area of Rome. With the ats method the peak value

is around 10km, thus confirming that most of the trips are short,

and likely to take place around the city. With the fts methods

the peak position depends on the temporal threshold imposed:

with a threshold of 1200 seconds the average distance is similar

to ats, while with 120 seconds it becomes lower and close to 5

km. The results for the rts methods are omitted, since their plots

are very similar to the fts ones. Also, the plots in London show

exactly the same kind of behaviour observed on Rome.

In terms of segment duration, ats yields a distribution with a

peak around 1200 − 1500 seconds (∼ 20 − 25 minutes). With the

fts methods the peaks change: for fts120 the peak is around 500

seconds while for fts1200 the peak is centered in 1800 seconds.

Also in this case, the results on London are very similar and

omitted here.

7.4 Case Study

In this section we show qualitatively on a case study the effec-

tiveness of ats with respect to fts. In Figure 7 we report the

segmentation returned by fts1200 [23] (left) and by ats (right),

the user is travelling from south to north. fts1200 [23] returns

two trajectories (green and blue), while ats returns three trajecto-

ries (green, orange and blue). The second line of plots report the

inter-leaving time between consecutive GPS points. The colors

match the trajectory segments, while stops are highlighted in

red. We observe how ats identifies the short stop of less than 15

minutes at the service area similarly to the subsequent longer

stop. On the other hand, fts1200 considers the first stop as part

of the green trajectory. The map in the bottom line of Figure 7

shows the service area which is very close to the GPS points

reported on the bottom right corner of the map. This case study

highlights how various existing stops under a certain predefined

threshold can be missed with a segmentation approach like fts,

while a more data-driven and self-adaptive method like ats is

able to take into account specific user behavior and return a

better result.

Figure 7: Trajectory segmentation returned by fts1200

(left) and ats (right). The user is travelling from South

to North. Top: spatial representation showing the trajec-

tory segments. Center: temporal segmentation showing

the inter-leaving time between GPS points. Bottom: zoom

on the service area highlighted in the top maps where the

user probably stops for ∼ 15minutes. Best view in color.

8 CONCLUSION

The paper presented a user adaptive method for solving the

trajectory segmentation problem, a very common and useful

task in mobility data mining, especially in preprocessing phases.

Though preliminary, the experiments show that it is possible to

derive user-adaptive cut thresholds, improving the performances

of the segmentation over less flexible solutions. This is an ongoing

work, and several improvements are being explored. Among

them, the future lines of research will aim to derive thresholds

for trajectory segmentation which are not only user-adaptive,

but also location-adaptive, thus considering the fact that a stop at

different places might require time intervals of different duration

to be considered a significant stay – and thus a trajectory cut

point. Also, we will study the possibility of exploiting the context

around the (moving) user, such as the mobility of other users and

the geographical area surrounding the candidate stops.
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