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Chapter 1

Introduction
Chemical reactivity is governed by electronic motion, which occurs at an attosecond
(1 as = 10−18 s) time scale. Until the last century, it was not possible to observe
it directly, as the shortest available laser pulses had duration in the order of
femtoseconds (1 fs = 10−15 s), which is the scale of nuclear motion [1,2]. During
the last two decades, big advances in laser technology, such as X-ray free electron
lasers (XFELs) [3, 4], have led to the experimental realization of sub-femtosecond
laser pulses, making possible real-time observation and control of electron dynamics
in molecules [5–11]. This provided the potential for a deeper understanding of
chemical reactions, including some fundamental biochemical mechanisms such as
the early stages of photosynthesis [12,13] or DNA radiation damage [14]. In parallel
to these technological advancements, it is fundamental to carry on theoretical and
computational research that, apart from being interesting per se, is an important
tool to design innovative experiments to be performed at laser facilities and to
predict and interpret their outcomes.

The methods used to model the time evolution of electrons can be divided into
two macrocategories: real-time electronic structure theory and frequency-domain
response theory [15,16]. In real-time methods, the time-dependence of the system is
considered explicitly by evolving the time-dependent Schrödinger equation (TDSE)
in the time domain. Despite the methods to explicitly solve the TDSE began to
be applied in the field of nuclear physics more than half century ago [17–21], until
recently they didn’t become very popular in the electronic structure community,
mainly because of the lack of electronic correlation in the Hartree-Fock methods
and the inaccessibly high computational cost for the correlated methods [22]. This
changed with technological advancements that led to more powerful computers and
efficient algorithms, which revived the research in real-time correlated methods like
density functional theory [23, 24], multiconfigurational self-consistent-field [25–27],
configuration interaction [28–31], algebraic diagrammatic construction [32,33] and
coupled-cluster [34–44]. When conducting computational chemistry studies on a
system, it is essential to select an appropriate method in order to achieve a good
balance between accuracy and computational cost. This evaluation depends not
only on the nature of the system under study but also on the desired level of
accuracy and the available computational resources. Computational chemistry
methods are generally categorized as either ab initio or semiempirical. Unlike
semiempirical methods, ab initio methods rely solely on physical principles in their
calculations and do not incorporate experimental data. This characteristic makes
them extendable to higher orders of accuracy at the cost of increased computational
effort. On the other hand, while semiempirical methods offer the advantage of
reduced computational cost, they are limited by their system-dependent accuracy.
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Although it is impossible to declare one method as universally superior to
another, in a specific situation, we can determine which method is more accurate,
computally cost-effective, or suitable. When modeling a chemical system, it is
often crucial to consider electronic correlation as an important aspect. It can be
classified into static and dynamic correlation. Static correlation is linked to the
presence of degenerate or quasi-degenerate states and, if not negligible, makes any
description with a single determinant inadequate. On the other hand, dynamic
correlation is directly related to the electronic motion. The Hartree-Fock (HF)
method is the simplest ab initio method for electronic structure calculations. Despite
the advantage of being computationally cheap, it has the significant drawback
of neglecting completely the electronic correlation effects, except for the Pauli
correlation. To account for dynamic correlation, post-HF methods such as coupled-
cluster (CC), configuration interaction (CI), or Møller-Plesset perturbation theory
(MP) are necessary. Coupled-cluster, while having a high computational cost and
being nonvariational, has the advantage of being size-extensive at any truncation
level and can provide results of the desired accuracy with sufficient computational
resources. It recovers dynamical correlation well, but it cannot recover static
correlation in its more common formulations, making it unsuitable for systems
that cannot be effectively approximated by a single determinant wave function.
However, by employing multi-reference formulations, it is possible to overcome this
limitation and accurately capture static correlation.

In this thesis, the theoretical framework that we have chosen for the study of
attochemical phenomena is that of time-dependent coupled-cluster theory [45], as
it constitutes an accurate approach for the description of molecules in strong fields.
In this method, the time-dependence is contained in the cluster amplitudes and
multipliers. Their time evolution is described by means of first-order differential
equations, that can be resolved using integrators like Runge-Kutta and Gauss-
Legendre. As outlined in Publication I [46] of this thesis, we have successfully
implemented these methods in eT , an open source electronic structure program with
emphasis an on coupled-cluster techniques. In particular, this represented the first
released implementation of a time-dependent coupled-cluster method. After the
assessment of the accuracy of our integration procedures by comparison with results
already present in the literature, we have used our code to calculate the electronic
response to a pump-probe sequence of laser pulses, with the pump being valence-
exciting and the probe being core-exciting. As higher level coupled-cluster methods
computation cost scales rapidly with the size of the system, and quickly reaches the
limits of practicability, we have chosen lithium hydride (LiH) for the convergence
tests of parameters like the basis set, the size of the time steps, and the integration
method. Then, we observed how the transient absorption spectrum of the lithium
fluoride (LiF) molecule oscillates with the time delay between the pump pulse and
the probe one. We attributed this effect to the quantum interference of states in
the pump-induced superposition. The detailed results of our work on pump-probe
transient absorption spectra of LiH and LiF can be found in Publication II [39] of
this thesis.

We extended the aforementioned implementation to a time-dependent equation-
of-motion coupled-cluster approach with the use of a reduced basis calculated
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with an asymmetric band Lanczos algorithm, as detailed in Publication III [47]
of this thesis. By increasing the band Lanczos chain length (i.e. the number
of iterations) and including a sufficient number of relevant states, this approach
converges to the same spectral features as the aforementioned time-dependent
coupled-cluster method, but with significantly lower computational times, as we
showed for lithium fluoride. We observed the limits of core-valence separation
(CVS) approximation, showing how for the LiH molecule several peaks around
the Li K-edge were not correctly retrieved. This was because for light atoms such
as Li the energy separation between core and valence orbitals is small, so that
pure valence excitation (which would be excluded by the core-only CVS projector)
can fall within the core excitation region. Finally, we used the computational
procedure to model attosecond transient absorption by the glycine molecule, which
is a promising candidate for experimental investigations. We also modeled the
electronic Raman effect [5, 48–51], in particular the electronic impulsive stimulated
Raman scattering (ISXRS) [52] population transfer induced by an ultrashort laser
pulse described as a semiclassical external electric field in dipole approximation
by means of the time-depend equation-of-motion coupled-cluster (TD-EOM-CC)
model. As described in Publication IV [53] of this thesis, we studied it for some
small molecules, namely neon, carbon monoxide, pyrrole, and p-aminophenol, by
performing some simulations in which the frequency of the ultrashort external
electromagnetic pulse that irradiated the system corresponded to that of the lowest
allowed core excitation of the considered system. We assessed the occurrence of
the Raman effect by looking at the final population probabilities of the different
states and noticing how some valence states become populated because of the
de-excitation from core excited states. We simulated the real-time evolution of the
electronic density of p-aminophenol interacting with an external electromagnetic
field and visualized it through a movie showing isodensity surfaces of the difference
between the time-dependent electronic and the ground state density. We were
able to observe the movement of the electronic density and track its localization
over time. The significance of the research work presented in this thesis lies
in the importance of developing theoretical and computational tools aimed at
improving our understanding, ability to predict phenomena, and possibility to
design experiments in the field of attochemistry. Perhaps the most groundbreaking
potential application of this research is the possibility to steer electrons through
the use of external electric fields, thereby enabling direct control over chemical
reactions. This would represent a major advance in our ability to manipulate
chemical systems at the atomic scale and has enormous potential for driving
technological advancements in the years to come.
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Chapter 2

Standard electronic structure
methods

2.1 Second quantization
Second quantization is an alternative formulation of quantum mechanics that
differs from the traditional first quantization approach. In the first quantization,
observables are represented by operators, and states are represented by functions.
However, in second quantization, states are also represented by operators, specifi-
cally, sequences of elementary creation and annihilation operators that act on the
vacuum state. In the second quantization formulation, one of the essential concepts
is the Fock space. This is a vector space in which each element is in a one-to-one
correspondence with a Slater determinant with the orbitals in canonical order. The
vectors |k⟩ of a fermionic Fock space are defined as

|k⟩ = |k1, k2, ..., kM⟩ , kP =

{
1 ϕp occupied,
0 ϕp unoccupied,

(2.1)

where ϕp are elements of a basis of orthonormal spin orbitals. Creation and
annihilation operators in the fermionic case are defined respectively as

a†P |k⟩ = δkP 0Γ
k
P |k1, ..., 1p, ..., kM⟩ , (2.2)

aP |k⟩ = δkp1Γ
k
P |k1, ..., 0p, ..., kM⟩ , (2.3)

where Γk
P is the phase factor, defined as

Γk
P =

P−1∑

Q=1

(−1)kQ. (2.4)

The phase factor, Γk
P , is introduced to ensure the correct antisymmetry of the

fermionic wave function when applying the creation and annihilation operators.
However, in practice, the anticommutation relations between these operators
automatically take care of the phase factor, making any explicit reference to it
unnecessary. The anticommutation relations between creation and annihilation
operators are [

a†P , a
†
Q

]
+
= 0, (2.5)

[
a†P , aQ

]
+
= 0, (2.6)
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[
a†P , aQ

]
+
= δPQ. (2.7)

In second quantization, the field- and spin-free molecular electronic Hamiltonian in
nonrelativistic and Born-Oppenheimer approximation takes the following form

Ĥ =
∑

PQ

hPQa
†
PaQ +

1

2

∑

PQRS

gPQRSa
†
Pa

†
RaSaQ + hnuc, (2.8)

where

hPQ =

∫
ϕ∗
P (x)

(
−1

2
∇2 −

∑

I

ZI

rI

)
ϕQ (x) dx, (2.9)

gPQRS =

∫ ∫
ϕ∗
P (x1)ϕ

∗
R (x2)ϕQ (x1)ϕS (x2)

r12
dx1dx2, (2.10)

hnuc =
1

2

∑

I ̸=J

ZIZJ

RIJ

. (2.11)

As in the Born-Oppenheimer approximation the positions of the nuclei are fixed,
hnuc is a numerical constant for a given molecular geometry. It is interesting to
notice how the terms of the Hamiltonian contain at most two electronic excitations:
this will turn out to be useful in chapter 3.

2.2 The variational principle
The variational principle is a fundamental concept in quantum mechanics, which
states that the solution of the Schrödinger equation Ĥ |0⟩ = E0 |0⟩ is equivalent to
finding the stationary points of the energy functional

E[0̃] =

〈
0̃
∣∣Ĥ
∣∣0̃
〉

〈
0̃
∣∣0̃
〉 , (2.12)

where
∣∣0̃
〉

is a trial wave function, Ĥ is the Hamiltonian operator, and E[0̃] is the
energy associated with the trial wave function. In other words, it can be proven
that the solutions of the Schrödinger equation are in a one-to-one correspondence
with the stationary points of the energy functional E[0̃]. This principle manifests
its practical utility through what is called variational method. In this method the
wave function |C⟩ is expressed in terms of a set of parameters C. The goal is to find
which combination of parameters leads to the lowest energy possible, corresponding
to a stationary point of the function

E(C) =
⟨C|Ĥ|C⟩
⟨C|C⟩ . (2.13)

The wave function corresponding to that energy is the best approximation of
the ground state wave function that can be obtained from the variation of the
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aforementioned parameters. The obtained energy represents an upper bound to
the ground state energy.

2.3 Hellmann-Feynman theorem
The Hellmann-Feynman theorem provides a means to calculate the first-order
change in energy resulting from a perturbation αV̂ of the Hamiltonian Ĥ

Ĥ −→ Ĥ + αV̂ . (2.14)

Specifically, according to the theorem, the derivative of the energy with respect to
α evaluated at α = 0 is equal to the expectation value of V̂ with respect to the
unperturbed wave function |Ψ⟩

dE(α)

dα

∣∣∣
α=0

= ⟨Ψ|V̂ |Ψ⟩ . (2.15)

This theorem can also be generalized to transition expectation values [45], as follows

d

dα
⟨Λ(α)|Ĥ0 + αV̂ |CC(α)⟩

∣∣∣
α=0

= ⟨Λ|V̂ |CC⟩ , (2.16)

which will be explored further in section 3.2.

2.4 Hartee-Fock
The Hartree-Fock (HF) method serves as the basis for all post-HF models and is
the simplest ab initio wave function model. Its main deficiency is its inability to
describe electronic correlation except for the Fermi correlation. The basic idea
behind the method is to approximate the true wave function, which exists only in
the entire multi-electron Hilbert space, with a Slater determinant, which is the
simplest representation for which the antisymmetry holds. In this representation,
aside from Fermi correlation, each electron behaves as an independent particle.
Therefore, we can formulate an effective one-electron Schrödinger equation for each
electron in the system. The effective Hamiltonian of the one-electron Shrödinger
equation is called the Fock operator and can be written as

f̂ =
∑

pq

fpqEpq, (2.17)

where the matrix f , known as the Fock matrix, is symmetric. The eigenvalues of
the Fock matrix correspond to the orbital energies. Koopmans’ theorem states
that in the case of closed-shell HF, the negative of the orbital energy of the highest
occupied orbital corresponds to the ionization energy of the system. However, this
only holds for closed-shell HF. The Hartree-Fock method is typically solved using
an iterative technique known as the self-consistent field (SCF) method. The goal of
the SCF method is to determine the best (i.e., lowest) energy achievable by varying
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the orbital coefficients of the Slater determinant or, in second quantization, the
configuration state function (CSF) that describes the system being studied. In
second quantization, the SCF method starts with a reference occupation number
vector as an initial guess. The Fock matrix is then constructed based on this
guess and diagonalized to obtain new orbital coefficients. This process is repeated
iteratively until the energy converges within a certain chosen threshold. These
transformations are unitary so that the wave function can be written in the form

|κ⟩ = e−κ̂ |0⟩ , (2.18)

where |0⟩ represents a reference single determinant state and κ̂ is an anti-Hermitian
operator. The Hartree-Fock energy in second quantization can be expressed as

E(0) = ⟨HF|Ĥ|HF⟩ =
∑

pq

Dpqhpq +
1

2

∑

pqrs

dpqrsgpqrs + hnuc, (2.19)

where Dpq and dpqrs are respectively the one- and two- density matrix elements
and are defined as

Dpq = ⟨HF|Epq|HF⟩ , (2.20)

dpqrs = ⟨HF|epqrs|HF⟩ . (2.21)

where Epq is the singlet excitation operator, defined as

Epq = a†pαaqα + a†pβaqβ, (2.22)

and epqrs is the two-electron excitation operator, defined as

epqrs = EpqErs − δqrEps. (2.23)

For a closed shell HF, the energy becomes

E(0) = 2
∑

i

hii +
∑

ij

(2giijj − gijji) + hnuc, (2.24)

where the one-electron term represents the kinetic energy of electrons and their
interaction with the nuclei, the two-electron term represents the interactions of the
electrons among each other and hnuc is a scalar term that represents the repulsion
among the nuclei.
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Chapter 3

The coupled-cluster model
Coupled-cluster (CC) is a powerful post-HF method that is especially well-suited
for describing systems with significant dynamic correlation while it neglects static
correlation, at least in its canonical formulations. One of the key advantages of
CC is that it is size-extensive, as will be discussed in greater detail in Sec. 3.1.
Coupled-cluster is generally viewed as a great compromise between accuracy and
computational cost, to the point that its CCSD(T) (CC singles and doubles
with perturbative triples) formulation is called "the gold standard". The idea
behind coupled-cluster is to refine the HF description by adding contributions
from electronic excitations involving transitions from occupied to virtual orbitals.
By incorporating these additional contributions, the method is able to capture
electronic correlation effects. The CC wave function can be written as

|CC⟩ = eT̂ |HF⟩ , (3.1)

where T̂ is the cluster operator, which is a sum of excitation operators τ̂µ describing
excitations from occupied to virtual orbitals and their corresponding amplitudes tµ

T̂ =
∑

µ

tµτ̂µ. (3.2)

The excitation operator τ̂µ acting on the reference state |HF⟩ creates an excited state
|µ⟩ by promoting electrons from occupied to virtual orbitals, and the corresponding
amplitude tµ represents the weight of that virtual excitation in the description of
the state.

An excitation µ is referred to as "single" if it involves the excitation of a single
electron from an occupied orbital to a virtual orbital, "double" if it involves the
excitation of two electrons from two occupied orbitals to two virtual orbitals, and so
on. The operator T̂ can be decomposed as a sum of operators, each corresponding
to a specific order of excitation

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂N , (3.3)

where T̂1 contains only single excitation operators, T̂2 contains only double excitation
operators, and so on, with N being the number of electrons in the system. When
performing an actual computation, typically only excitations of selected orders are
included. For example, in CCS (coupled-cluster singles), only single excitations are
included in the cluster operator, so that we have T̂ = T̂1, in CCSD (coupled-cluster
singles and doubles) we have T̂ = T̂1 + T̂2, and so on. Unlike other methods like
HF or configuration interaction (CI), the use of variational principle in order to
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determine the CC wave function results in a highly complex set of equations. The
computational cost of solving these equations is substantial, making the variational
approach unusable for CC calculations. What is done instead is to multiply the
Schrödinger equation from the left by e−T̂ and then left project it on the ⟨HF|
state and on the excited states ⟨µ|, obtaining the following projected equations

⟨HF|Ĥ|CC⟩ = E, (3.4)

⟨µ|ĤT |HF⟩ = 0, (3.5)

where ĤT is the similarity transformed Hamiltonian defined as ĤT = e−T̂ ĤeT̂ . It’s
worth noting that ĤT is not a Hermitian operator, even though the original Hamil-
tonian Ĥ is Hermitian. This is because the similarity transformed Hamiltonian
ĤT involves the cluster operator T̂ , which is not anti-Hermitian. The projection
approach used in CC leads to a much more tractable set of equations compared
to the variational principle approach. This is because the number of terms is
limited by the bielectronic nature of the Hamiltonian operator, which causes terms
containing bra and ket that differ by more than two excitations to be equal to zero.
Equations 3.5 are solved iteratively by substituting at each iteration the value of
energy obtained from 3.4 until convergence. It is important to note that, since Ĥ
is a two-particle operator and due to the Brillouin theorem, the energy expression,
even when considering the full expansion of T̂ , is given by

E = ⟨HF|Ĥ
(
1 + T̂2 +

1

2
T̂ 2
1

)
|HF⟩ , (3.6)

meaning that amplitudes higher than double order do not contribute directly to the
energy, regardless of the applied level of truncation. Another important property of
the coupled-cluster method is the cluster-commutation condition, that states that

k > 2s−A =⇒ [[. . . [[Â, T̂n1 ] , T̂n2 ] , . . .] , T̂nk
] = 0. (3.7)

Here s−A is the down rank of the operator Â defined as

s−A =
1

2
(nc

o + na
v) , (3.8)

where nc
o is the number of creation operators in Â for the occupied spin or-

bitals, while na
v is the number of the annihilation operators in Â for the virtual

spin orbitals. When Â is the Hamiltonian Ĥ, the highest down rank is 2, so
its Baker–Campbell–Hausdorff (BCH) expansion will be at most quartic in the
amplitudes

e−T̂ ĤeT̂ = Ĥ+[Ĥ, T̂ ] +
1

2
[[Ĥ, T̂ ] , T̂ ] +

1

6
[[[Ĥ, T̂ ] , T̂ ] , T̂ ] +

1

24
[[[[Ĥ, T̂ ] , T̂ ] , T̂ ] , T̂ ] .

(3.9)
In order to determine the coupled-cluster amplitudes, several iterative methods
are available. We can view the left-hand side of Eq. 3.5 as a vector function
Ωµ (t) = ⟨µ|e−T̂ ĤeT̂ |HF⟩.We can approximate the Ωµ (t) by expanding it up to
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the linear term

Ω
(
t(n) +∆t

) ∼= Ω(0)
(
t(n)
)
+Ω(1)

(
t(n)
)
∆t, (3.10)

where
Ω(0)

µ

(
t(n)
)
= ⟨µ|e−T̂ (n)

ĤeT̂
(n)|HF⟩ , (3.11)

is the vector function at the nth iteration while

Ω(1)
µν

(
t(n)
)
= ⟨µ|e−T̂ (n)

[
Ĥ, τ̂ν

]
eT̂

(n) |HF⟩ , (3.12)

is the Jacobian matrix. We can put Ω(0)
(
t(n)
)
+Ω(1)

(
t(n)
)
∆t = 0 neglecting all

the terms that have a higher order than linear dependence on ∆t. From this, we
obtain the relation

Ω(1)
(
t(n)
)
∆t(n) = −Ω(0)

(
t(n)
)
, (3.13)

that, together with the relation

t(n+1) = t(n) +∆t(n), (3.14)

gives to equations that can be iterated until convergence in order to obtain the
coupled-cluster amplitudes. The major problem with this procedure, called Newton’s
method, is that it is very computationally demanding as it requires solving the set
of linear equations 3.13 in every iteration. For this reason, other methods that
avoid the need for solving the set of linear equations are more commonly used to
obtain the coupled-cluster amplitudes. One such example is the algorithm called
perturbation-based quasi-Newton methods, which assumes the Jacobian Ω

(1)
µν

(
t(n)
)

to be diagonally dominant, which is supported by the results of the Møller-Plesset
theory. Thus it can be approximated by putting all off-diagonal terms to zero, so
that from equation 3.13 we can write

∆t(n)µ = −ϵ−1
µ Ω(0)

µ

(
t(n)
)
, (3.15)

where the term ϵµ represents the difference between the total energy of unoccupied
orbitals and the total energy of occupied orbitals for the spin orbitals in τ̂µ. The
convergence of this method can be improved significantly by the acceleration method
known as direct inversion of the iterative subspace (DIIS). In this framework, the
amplitudes are no longer obtained as in 3.14, but through the relation

t(n) =
n−1∑

k=1

wkt
(k) + wn

(
t(n−1) +∆t(n−1)

)
, (3.16)

where the wk are the interpolation weights. The wk are determined by minimizing
the norm of the averaged error vector in a least-squares sense

∆tave =
n∑

k=1

wk∆t(k−1). (3.17)
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The interpolation weights must sum to unity

n∑

k=1

wk = 1. (3.18)

As DIIS significantly reduces the iterations needed for convergence, it is used by
default in many quantum chemistry programs, including the eT program [46].

3.1 Size-consistency and extensivity in coupled-
cluster

When assessing the validity of a computational method, one characteristic of interest
is whether or not it has good scaling properties, i.e. whether or not it provides
results of consistent quality when applied to systems of different sizes. A correct
scaling is particularly important to compare results obtained for systems with
different sizes, which is necessary for example, to compute the heat of reaction
from the heat of formation of the involved species [54]. As size-consistency and
size-extensivity are both terms related to scaling properties, there can be some
confusion between the two, to the point that they are sometimes, improperly,
used interchangeably. A method is referred to as size-consistent if, given two
non-interacting infinitely separated subsystems A and B of a system AB, the sum
of the energies calculated for each subsystem separately is equal to the global
energy calculated for the whole system AB

EAB = EA + EB. (3.19)

When equation 3.19 holds, the energy EAB is said to be additively separable. We
can choose to describe the system by means of a set of orbitals each localized
either on the subsystem A or on the subsystem B. Since the two subsystems are
non-interacting by hypothesis, the term of the Hamiltonian that accounts for the
interaction between the two subsystems A and B is zero and we can write the
Hamiltonian of the global system as

ĤAB = ĤA + ĤB. (3.20)

In this framework, amplitudes associated with orbitals localized on distinct, non-
interacting fragments are equal to zero, thereby the cluster operator can be written
as

T̂AB = T̂A + T̂B. (3.21)
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It follows that we can write the wave function of the global system as

|CCAB⟩ = eT̂AB |HFAB⟩
= eT̂A+T̂B |HFAHFB⟩
= eT̂AeT̂B |HFAHFB⟩
= eT̂A |HFA⟩ eT̂B |HFB⟩
= |CCA⟩ |CCB⟩ .

(3.22)

A wave function that can be expressed as the product of the wave functions of two
non-interacting subsystems is referred to as multiplicatively separable. From the
result in Eq. 3.22 it follows that

EAB |CCAB⟩ = ĤAB |CCAB⟩
=
(
ĤA + ĤB

)
|CCA⟩ |CCB⟩

=
(
ĤA |CCA⟩

)
|CCB⟩+ |CCA⟩

(
ĤB |CCB⟩

)

= EA |CCA⟩ |CCB⟩+ |CCA⟩EB |CCB⟩
= (EA + EB) |CCAB⟩ .

(3.23)

This implies that the energy is additively separable as defined in Eq. 3.19, and
therefore that the coupled-cluster method is size-consistent. It is worth noting
that this property holds for any truncation level of the cluster operator. To check
for size-consistency in practice, one can perform an energy calculation for the
global system and compare the result to the sum of the energies obtained for each
subsystem separately.

On the other hand, a method is considered size-extensive if its energy scales
linearly with N, where N is large and indicates the number of repeating units of
the system under investigation, such as nodes on a lattice. Note that to assess
size-extensivity it is not relevant whether or not the considered subsystems are
interacting, while when speaking on size-consistency they have to be non-interacting.
Additionally, size-consistency refers only to situations in which the two considered
subsystems are at infinite distance, while size-extensivity has well-defined meaning
for any separation between the considered N subsystems [55]. The concept of
size-extensivity is not obviously extendable to non-periodic systems [56], but it
can be shown that connected diagrams scale proportionally to N. Therefore, any
method that satisfies the Brueckner-Goldstone linked-diagram theorem [57] - as
is the case for coupled-cluster - is size-extensive [58]. As size-extensivity lacks a
natural operational definition, it is difficult to demonstrate that this property holds
for methods that do not support a diagrammatic representation, such as density
functional theory (DFT). The coupled-cluster method is both size-consistent and
size-extensive at any truncation level. This characteristic, which is missing in some
other important methods such as CI, is desirable as it allows to retain a good
scaling behavior at lower computational cost [59], which is important in many cases,
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such as for calculations regarding bigger molecules or dissociation reactions.

3.2 Lagrangian coupled-cluster
Numerous properties in quantum chemistry can be expressed in terms of energy
derivatives. When the energy is determined variationally (see Sec. 2.2), its derivative
with respect to a parameter can be expressed by means of the Hellmann-Feynman
theorem (see Sec. 2.3). Unfortunately, this is not the case for coupled-cluster
energies, that are determined by a nonvariational projection technique. However, by
paying the price of considering an additional set of parameters t̄ν called multipliers,
a variational reformulation of coupled-cluster energy can be done. In the Lagrangian
reformulation of coupled-cluster theory [60, 61], this is accomplished by writing the
coupled-cluster Lagrangian as

L (t, t̄) = ⟨Λ|ĤeT̂ |HF⟩ , (3.24)

where the dual state ⟨Λ| is

⟨Λ| = ⟨HF|+
∑

ν>0

t̄ν ⟨ν| e−T̂ . (3.25)

The amplitudes and multipliers can then be determined variationally from the
stationarity conditions for the Lagrangian

0 =
∂L

∂t̄µ
= ⟨µ|ĤT |HF⟩ , (3.26)

0 =
∂L

∂tµ
= ⟨HF|ĤT |µ⟩+

∑

ν

t̄ν ⟨ν|
[
ĤT , τµ

]
|HF⟩ . (3.27)

The second stationarity condition is often expressed as

0 = ηT + t̄A, (3.28)

where the elements of the vector η are

ηµ = ⟨HF|ĤT |µ⟩ , (3.29)

while the elements of A, called Jacobian matrix, are given by

Aµν = ⟨µ|
[
ĤT , τ̂ν

]
|HF⟩ . (3.30)

When considering a perturbed Hamiltonian Ĥ = Ĥ0 + αV̂ , we can write the
coupled-cluster Lagrangian as

L(α, t, t̄) = ⟨HF|(Ĥ + αV̂ )eT̂ |HF⟩+
∑

ν

t̄ν ⟨ν|e−T̂
(
Ĥ + αV̂ eT̂

)
|HF⟩ . (3.31)



3.3. The equation-of-motion coupled-cluster model 21

This is a variational expression that allows us to exploit the Hellmann-Feynman
theorem to obtain the first-order change in energy

dE

dα

∣∣∣
α=0

=
∂L

∂α

∣∣∣
α=0

= ⟨Λ|V̂ |CC⟩ . (3.32)

Note that this generalization of Hellmann-Feynman theorem to coupled-cluster
does not depend on the perturbed amplitudes and gives size-extensive first-order
properties.

3.3 The equation-of-motion coupled-cluster model
When dealing with excited states in the coupled-cluster framework, one might
initially consider treating each excited state separately with a calculation similar
to that done for the ground state, but with a different choice of a zero-order
determinant for each state of interest. However, this approach would be very
expensive and selecting an appropriate zero-order determinant for excited states
would often be impossible. The equation-of-motion coupled-cluster (EOM-CC)
method [62–64] is an approach that can be used to describe CC excited states. In
this framework, the right excited states are parametrized as

|Ψi⟩ = eT̂ R̂i |HF⟩ , (3.33)

while the left excited states are parametrized as

⟨Ψ̃i| = ⟨HF| L̂ie
−T̂ , (3.34)

where R̂i and L̂i are the right excitation operator and left excitation operator for
the ith state respectively. The right and left operators R̂i and L̂i can be expressed
as linear expansions in a finite set of operators τ̂κ, τ̂ †κ,

R̂i =
∑

κ

τ̂κrκi, L̂i =
∑

κ

liκτ̂
†
κ, (3.35)

where the operator with index 0 is the unit operator,

τ̂0 = τ̂ †0 = 1. (3.36)

In this model, the exponential eT̂ describes the correlation common to both the
ground state and all of the excited states, while the parameters rκi and liκ reflect
the differences between the ground state and the considered excited state. However,
this distinction is rough as the cluster operator T̂ doesn’t provide an optimal
description of the correlation of the excited states as it was optimized for the
ground state. Therefore, some of the effects of the correlation will inevitably be
contained in the expansion coefficients. We assume that the EOM-CC states are
biorthonormal, which means that

(
Ψ̃i|Ψj

)
= δij, (3.37)
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where we introduced the notation |·) = eT̂ |·⟩ and (·| = ⟨·| e−T̂ .
Additionally, the determinants that can be generated from the operators τ̂µ and

τ̂ †µ are defined to be biorthonormal

(µ|ν) = ⟨µ|ν⟩ = δij. (3.38)

The reason for using biorthonormality rather than orthonormality in the usual
sense is that the latter would lead to cumbersome calculations, as there is no
commutation between the operators contained in T̂ and those in T̂ †. After some
mathematical manipulation, we can see that the excitation energies can be obtained
as eigenvalues of the following equations

ARj = Rj∆Ej, (3.39)

LT
j A = ∆EjL

T
j , (3.40)

where A is the Jacobian matrix as defined in Eq. 3.30, ∆Ej = Ej − E0, Liµ = liµ
and Rνj = rνj for µ > 0 and ν > 0.
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Chapter 4

Electron dynamics using
coupled-cluster theory
The time evolution of quantum systems is described by the time-dependent
Schrödinger equation, which, in atomic units, can be written as

i
∂Ψ(t)

∂t
= Ĥ(t)Ψ(t). (4.1)

In order to describe time-dependent phenomena by means of the coupled-cluster
method, it is necessary to introduce time-dependence into the parametrization of
the coupled-cluster wave function. Specifically, in the real-time time-dependent
coupled-cluster (TDCC) approach, this is done by allowing the coupled-cluster
amplitudes tµ, multipliers t̄µ, and phase factor ϵ as functions of time, leading to
the following TDCC wave function [45]

|CC(t)⟩ = eT̂ (t) |HF⟩ eiϵ(t), (4.2)

where T̂ (t) =
∑

µ tµ(t)τ̂µ. Consequently, the time-dependent Schrödinger equation
(TDSE) in the coupled-cluster formulation can be written as

i
d

dt
|CC(t)⟩ = Ĥ(t) |CC(t)⟩ . (4.3)

We left-project Eq. 4.3 onto ⟨HF|, obtaining

i ⟨HF| d
dt
|CC(t)⟩ = ⟨HF|Ĥ|CC(t)⟩ , (4.4)

that can be written as

i ⟨HF|
∑

µ

ṫµ(t)τ̂µ|CC(t)⟩ − ϵ̇(t) ⟨HF|eT̂ (t)|HF⟩ eiϵ(t) = ⟨HF|ĤeT̂ (t)|HF⟩ eiϵ(t), (4.5)

from which, using that ⟨HF| τ̂µ = 0 and ⟨HF|CC⟩ = 1, we obtain the time
derivative of the phase factor ϵ(t)

ϵ̇(t) = −⟨HF|Ĥ(t)eT̂ (t)|HF⟩ . (4.6)

Note that the phase factor ϵ(t) is irrelevant for the calculation of physical observables
as eiϵ(t) cancels out, but the knowledge of the expression for ϵ̇(t) will be useful in
the following derivations. To obtain the differential equations describing the time



24 Chapter 4. Electron dynamics using coupled-cluster theory

evolution of each amplitude tµ, we can left-multiply the coupled-cluster TDSE
by e−T̂ (t) on both sides and then left-project it onto the ⟨µ| corresponding to the
amplitude of interest, obtaining

i ⟨µ|e−T̂ (t) d

dt
|CC(t)⟩ = ⟨µ|e−T̂ (t)Ĥ(t)|CC(t)⟩ , (4.7)

that can be written as

i ⟨µ|e−T̂ (t)

(∑

ν

ṫν(t)τ̂ν

)
eT̂ (t)|HF⟩ eiϵ(t) − ϵ̇(t) ⟨µ|e−T̂ (t)eT̂ (t)|HF⟩ eiϵ(t) =

⟨µ|e−T̂ (t)Ĥ(t)eT̂ (t)|HF⟩ eiϵ(t).
(4.8)

After simplifying the e−T̂ (t) operator with the eT̂ (t) factor where possible, and eliding
the eiϵ(t) factors as they are present in all of the terms of the equation, we obtain

i
∑

ν

ṫν(t) ⟨µ|ν⟩ − ϵ̇(t) ⟨µ|HF⟩ = ⟨µ|e−T̂ (t)Ĥ(t)eT̂ (t)|HF⟩ . (4.9)

Considering that ⟨µ|ν⟩ = δµν and ⟨µ|HF⟩ = 0, we obtain the time derivative of
the cluster amplitude tµ(t)

ṫµ(t) = −i ⟨µ|e−T̂ (t)Ĥ(t)eT̂ (t)|HF⟩ . (4.10)

Analogously, we can parametrize the time-dependence of the coupled-cluster dual
state as

⟨Λ(t)| =
(
⟨HF|+

∑

µ

t̄µ(t) ⟨µ| e−T̂ (t)

)
e−iϵ(t), (4.11)

and obtain the differential equations describing the time evolution of the multipliers
from the TDSE for the dual state by multiplying it by eT̂ (t) on the right and
right-projecting it on |ν⟩ obtaining

d

dt
(⟨Λ(t)|) eT̂ (t) |ν⟩ = i ⟨Λ(t)|Ĥ(t)eT̂ (t)|ν⟩ . (4.12)

We can write the left-hand side (LHS) of Eq. 4.12 as

LHS =
∑

µ

˙̄tµ(t) ⟨µ|e−T̂ (t)eT̂ (t)|ν⟩ e−iϵ(t)−

∑

µ

t̄µ(t) ⟨µ|
(∑

λ

ṫλ(t)τ̂λ

)
e−T̂ (t)eT̂ (t)|ν⟩ e−iϵ(t)−

iϵ̇(t)e−iϵ(t) ⟨HF|eT̂ (t)|ν⟩ − iϵ̇(t)
∑

µ

t̄µ(t) ⟨µ|e−T̂ (t)eT̂ (t)|ν⟩ e−iϵ(t).

(4.13)
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We simplify the e−iϵ(t) factor as it is present in every term, elide e−T̂ (t) with eT̂ (t),
and note that ⟨HF|eT̂ (t)|ν⟩ = 0 so that we obtain

˙̄tν(t)−
∑

µλ

t̄µ(t)ṫλ(t) ⟨µ|τ̂λ|ν⟩ − iϵ̇(t)t̄ν(t) = i
〈
Λ̃(t)

∣∣∣Ĥ(t)eT̂ (t)
∣∣∣ν
〉
, (4.14)

where
〈
Λ̃(t)

∣∣∣ = ⟨HF |+∑µ t̄µ(t) ⟨µ| e−T̂ (t). We substitute the time derivatives of
amplitudes and phase factor with their values obtained in Eqs. 4.6 and 4.10

˙̄tν(t) + i
∑

µλ

t̄µ(t) ⟨λ|e−T̂ (t)Ĥ(t)eT̂ (t)|HF⟩ ⟨µ|τ̂λ|ν⟩+ i ⟨HF|Ĥ(t)eT̂ (t)|HF⟩ t̄ν(t) =

= i
〈
Λ̃(t)

∣∣∣Ĥ(t)eT̂ (t)
∣∣∣ν
〉
.

(4.15)

We define
∣∣∣C̃C(t)

〉
= eT̂ (t) |HF ⟩ and introduce a commutator in the right-hand

side (RHS) of Eq. 4.15

RHS = i
〈
Λ̃(t)

∣∣∣Ĥ(t)τ̂ν

∣∣∣C̃C(t)
〉
=

i
〈
Λ̃(t)

∣∣∣
[
Ĥ(t), τ̂ν

]∣∣∣C̃C(t)
〉
+ i
〈
Λ̃(t)

∣∣∣τ̂νĤ(t)
∣∣∣C̃C(t)

〉
=

i
〈
Λ̃(t)

∣∣∣
[
Ĥ(t), τ̂ν

]∣∣∣C̃C(t)
〉
+ i
∑

µ

t̄µ(t)
〈
µ
∣∣∣τ̂νe−T̂ (t)Ĥ(t)

∣∣∣C̃C(t)
〉
,

(4.16)

so that we obtain

˙̄tν(t) = −i
∑

µλ

t̄µ(t) ⟨λ|e−T̂ (t)Ĥ(t)eT̂ (t)|HF⟩ ⟨µ|τ̂λ|ν⟩ − i ⟨HF|Ĥ(t)eT̂ (t)|HF⟩ t̄ν(t)+

i
〈
Λ̃(t)

∣∣∣
[
Ĥ(t), τ̂ν

]∣∣∣C̃C(t)
〉
+ i
∑

µ

t̄µ(t)
〈
µ
∣∣∣τ̂νe−T̂ (t)Ĥ(t)

∣∣∣C̃C(t)
〉
.

(4.17)

We insert the resolution of identity 1̂ = |HF⟩ ⟨HF| +∑η |η⟩ ⟨η| between τ̂ν and
e−T̂ (t) in the last term of the RHS of Eq. 4.17

i
∑

µ

t̄µ(t)
〈
µ
∣∣∣τ̂νe−T̂ (t)Ĥ(t)

∣∣∣C̃C(t)
〉
=

i
∑

µ

t̄µ(t) ⟨µ|ν⟩
〈
HF
∣∣∣Ĥ(t)

∣∣∣C̃C(t)
〉
+ i
∑

µη

t̄µ(t) ⟨µ|τ̂ν |η⟩
〈
η
∣∣∣e−T̂ (t)Ĥ(t)

∣∣∣C̃C(t)
〉
=

it̄ν(t)
〈
HF
∣∣∣Ĥ(t)

∣∣∣C̃C(t)
〉
+ i
∑

µη

t̄µ(t) ⟨µ|τ̂ν |η⟩
〈
η
∣∣∣e−T̂ (t)Ĥ(t)

∣∣∣C̃C(t)
〉
.

(4.18)
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So that inserting this result into Eq. 4.17 we obtain

˙̄tν(t) = −i
∑

µλ

t̄µ(t) ⟨λ|e−T̂ (t)Ĥ(t)eT̂ (t)|HF⟩ ⟨µ|τ̂λ|ν⟩ − i ⟨HF|Ĥ(t)eT̂ (t)|HF⟩ t̄ν(t)+

i
〈
Λ̃(t)

∣∣∣
[
Ĥ(t), τ̂ν

]∣∣∣C̃C(t)
〉
+ it̄ν(t)

〈
HF
∣∣∣Ĥ(t)

∣∣∣C̃C(t)
〉
+

i
∑

µη

t̄µ(t) ⟨µ|τ̂ν |η⟩
〈
η
∣∣∣e−T̂ (t)Ĥ(t)

∣∣∣C̃C(t)
〉
,

(4.19)

that, by cancelling out terms with opposite sign, leads to the equation describing
the time derivative of the multipliers, ˙̄tν(t)

˙̄tν(t) = i
〈
Λ̃(t)

∣∣∣
[
Ĥ(t), τ̂ν

]∣∣∣C̃C(t)
〉
. (4.20)

The differential equations 4.10 and 4.20 can be solved using the methods presented
in Sec. 5.1.

4.1 The time-dependent equation-of-motion coupled-
cluster model

In the time-dependent equation-of-motion coupled-cluster model (TD-EOM-CC) [30,
34,65–67], which is the time-dependent version of the equation-of-motion coupled-
cluster (EOM-CC) model described in Sec. 3.3, the time-dependence is introduced
in the coefficients of the linear expansion of the left and right wave functions

|Ψ(t)⟩ =
∑

i

|ψi⟩ si(t), (4.21)

〈
Ψ̃(t)

∣∣∣ =
∑

i

ki(t)
〈
ψ̃i

∣∣∣ . (4.22)

Here the time-independent bra and ket are the ones defined in Eqs. 3.34 and 3.33
and the index i runs over the time-independent EOM-CC states, including the
ground state, that are parametrized as in Eqs. 3.34 and 3.33. The time derivative
of the coefficients si (t) and ki (t) can be obtained by projecting the ket and bra
time-dependent Schrödinger equations respectively onto the bra and the ket of
EOM-CC state, obtaining

i
∂sm(t)

∂t
=
∑

j

Hmn(t)sn(t), (4.23)

−i∂kn(t)
∂t

=
∑

m

km(t)Hmn(t), (4.24)
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where Hij(t) = ⟨ψ̃i| Ĥ(t) |ψj⟩. Once the equations 4.23 and 4.24 are solved, they
can be used to calculate the time-dependent expectation value of an operator X̂

⟨X̂⟩(t) =
∑

ij

ki(t)Xijsj(t). (4.25)

The matrix element Xij can be rewritten as

Xij = ⟨ψ̃i|X |ψj⟩
=
∑

κλ

liκ ⟨κ| X̂T |λ⟩ rλj

=
∑

ν

li0 ⟨HF| X̂T |ν⟩ rνj +
∑

µν

liµ ⟨µ| X̂T |ν⟩ rνj +
(
li0X00 +

∑

µ

liµξ
X
µ

)
r0j

=
∑

ν

li0 ⟨HF|
[
X̂T , τ̂ν

]
|HF⟩ rνj +

∑

µν

liµ

(
LRAX

µν + ⟨µ| τ̂νX̂T |HF⟩
)
rνj

+

(
li0X00 +

∑

µ

liµξ
X
µ

)
r0j,

(4.26)

where

X̂T = e−T̂ X̂eT̂ , (4.27)
LRAX

µν = ⟨µ|
[
X̂T , τ̂ν

]
|HF⟩ , (4.28)

X00 = ⟨HF| X̂T |HF⟩ , (4.29)

ξXµ = ⟨µ| X̂T |HF⟩ . (4.30)

We can compare this expression with that for the coupled-cluster response the-
ory [68]. Let’s consider the matrix element Xij in the specific case where the left
vector corresponds to an excited state (i = m) and the right vector corresponds to
the ground state (j = 0). By applying these condition to Eq. 4.26, we obtain

Xm0 =
∑

µ

lmµξ
X
µ , (4.31)

which is linear in the excited determinant component lmµ. When, conversely, we
consider the situation in which the left vector corresponds to the ground state
(i = 0) and the right vector corresponds to an excited state (j = n), we obtain

X0n =
∑

ν

(
LRηXν +

∑

µ

t̄µ ⟨µ| τ̂νX̂T |HF⟩
)
rνn −

(
X00 +

∑

µ

t̄µξ
X
µ

)∑

ν

t̄νrνn,

(4.32)

where
LRηXν = ⟨HF|

[
X̂T , τ̂ν

]
|HF⟩+

∑

µ

t̄µ
LRAX

µν . (4.33)
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In Eq. 4.32, which is equivalent to Eq. (65) in Ref. [68], we can observe that, apart
from the term

∑
ν

LRηνrνn that is also present in the response theory [45], the other
terms are specific to the EOM-CC framework. Finally, we consider the case where
both left and right vectors correspond to excited states (i = m,j = n). We obtain

Xmn =
∑

µν

lmµ

(
LRAX

µν + ⟨µ| τ̂νX̂T |HF⟩
)
rνn −

∑

µ

lmµξ
X
µ

∑

ν

t̄νrνn

=
∑

µν

lmµ

(
LRAX

µν + ⟨µ| τ̂νX̂T |HF⟩ − ξXµ t̄ν

)
rνn

=
∑

µν

lmµ

(
EOMAX

µν + δµνX00 − ξXµ t̄ν

)
rνn,

(4.34)

where

EOMAX
µν = ⟨µ| X̂T |ν⟩ − δµνX00

= LRAX
µν + ⟨µ| τ̂νX̂T |HF⟩ − δµνX00,

(4.35)

as defined in Eq. (18) of Ref. [69].
We employed the asymmetric band Lanczos algorithm described in Sec. 5.2 to

construct a reduced basis for TD-EOM-CC. To assess the accuracy and reliability
of this approach, we compared the obtained results with those from TDCC (time-
dependent coupled-cluster) calculations, as discussed in detail in [47].

4.2 External electromagnetic field
In our studies, all the systems under investigation consisted of an atomic or
molecular system interacting with an external electromagnetic field. We assumed
that the only time-dependent term in the Hamiltonian was the one representing
the interaction with the external electromagnetic field

H (t) = H0 + V (t) . (4.36)

Here, H0 represents the time-independent part of the Hamiltonian, while V (t)
describes the semiclassical time-dependent interaction with the external electro-
magnetic field written in the dipole approximation and length gauge

V (t) = −d · E(t). (4.37)

In this expression, d is the electric dipole moment operator, which is time-
independent, and E(t) is the time-dependent external electric field. The electric
field can be written as a combination of time-dependent electric fields associated
with individual laser pulses

E(t) =
∑

n

E0n cos(ω0n(t− t0n))fn(t). (4.38)
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For each laser pulse n, E0n represents the amplitude, ω0n is the carrier frequency, t0n
is the central time of the pulse and fn(t) is the envelope function that determines
the shape of the pulse. When choosing an envelope function for the time-dependent
electric field, it is often desirable to use a shape that closely resembles the physical
pulse. One commonly employed choice is the Gaussian envelope

fn(t) =

{
e−(t−t0n)2/(2σ2

n) an ≤ t ≤ bn,

0 otherwise,
(4.39)

where an = t0n − Nσn and bn = t0n + Nσn. The energy exchanged between the
electromagnetic field and the molecule is given by

∆E = −
∫ ∞

−∞
d(t) · ∂E(t)

∂t
dt . (4.40)

This equation can be frequency resolved by taking the Fourier transforms of the
dipole moment d(t) and electric field E(t)

d̃i(ω) =
1√
2π

∫ ∞

−∞
di(t)e

−iωt dt , (4.41)

Ẽi(ω) =
1√
2π

∫ ∞

−∞
Ei(t)e−iωt dt . (4.42)

The response function S(ω) is defined through the expression

∆E =

∫ ∞

0

ωS(ω) dω . (4.43)

By combining this definition, Eq. 4.40, the Fourier transforms 4.41, and 4.42, we
can write the response function as 1

S(ω) = −2 Im
(
d̃(ω) · Ẽ∗

(ω)
)
, ω > 0. (4.44)

It represents the absorption per unit frequency at a given frequency: positive
(negative) ωS(ω) equals the amount of energy gained (lost) by the molecule per
unit frequency at ω.

1Here we followed the procedure of [70] but with a different Fourier transform convention, so
we ended up with a response function S(ω) with a different sign.





31

Chapter 5

Computational tools
This chapter serves to provide an overview of the essential computational tools
required for our calculations. We will discuss various algorithms that are instrumen-
tal in solving differential equations, Lanczos algorithm, and core-valence separation
(CVS) approximation.

5.1 Methods for the solution of ordinary differential
equations

A differential equation represents a relationship between a function, which is the
unknown, and its derivatives. In general, the unknown function can depend on
multiple independent variables. However, in the case of an ordinary differential
equation (ODE), the unknown function is dependent on only one independent
variable. Solving an ODE to obtain a closed-form expression for the unknown
function is often challenging or even impossible. However, for practical purposes,
obtaining a numerical solution given an initial condition is usually sufficient. Nu-
merical methods for ODE solving can be categorized as either explicit or implicit.
An explicit numerical method allows us to approximate the value of the unknown
function at a point t + ∆t using an expression of the form f(t + ∆t) = g(f(t)),
where f represents the unknown function and g is a function that relies on the
specific numerical method employed. In contrast, an implicit numerical method
involves solving an equation of the form g(f(t), f(t+∆t)) = 0 to determine the
value of f(t + ∆t). Here, g is a function that depends on the chosen numerical
method. The order of a numerical method is a parameter that establish how well
the method approximates the solution. An nth-order method has a local truncation
error (the error caused by one iteration) of the order of O(hn+1), while the global
truncation error (the cumulative error caused by many iterations) is of the order of
O(hn), where h is the chosen step size. An important class of numerical methods
for the solution of ODE in the form df

dt
= g(t, f) with f(t0) = f0 as initial condition,

is that of Runge-Kutta methods that in general can be schematized as

fn+1 = fn + h

s∑

i=1

biki, (5.1)

where the ki are defined as

ki = g

(
tn + cih, fn + h

m∑

j=1

aijkj

)
, (5.2)
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where m = i− 1 for explicit methods while m = s for implicit methods, h is the
step, fn is the approximation to f(tn) where tn is t0 + nh. The aij, bi, and ci
parameters are elements of the Butcher tableau, that is defined for each method
and, in general, has the following form

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
... . . . ...

cs as1 as2 . . . ass

b1 b2 . . . bs

=
c A

bT

It is worth noting that for explicit Runge-Kutta methods, the sum over j in the
computation of the ki values is limited to i − 1. Consequently, the coefficient
matrix A in the Butcher tableau for explicit methods will be lower triangular. This
characteristic ensures that the computation of ki at each stage only depends on
the previously computed stages. On the other hand, this lower triangular property
does not hold for implicit Runge-Kutta methods. In implicit methods, the sum
over j extends to s, resulting in a more general coefficient matrix A in the Butcher
tableau. The inclusion of the additional terms allows implicit methods to capture
a wider range of dynamics but at the cost of increased computational complexity
since the stages are interdependent.

The Euler method serves as the simplest form of the Runge-Kutta methods. It
is a first-order explicit method, and its Butcher tableau is given by

0 0

1

Despite its simplicity, the Euler method has a significant drawback. Being a
first-order method, it often necessitates very small step sizes to achieve sufficient
accuracy. Consequently, a large number of steps is required, resulting in a substantial
computational cost. As a result, higher-order methods are typically preferred over
the Euler method to strike a balance between accuracy and computational efficiency.

The most widely used and known Runge-Kutta method is the explicit fourth-
order method commonly referred to as the Runge-Kutta method or RK4. It is
characterized by the following Butcher tableau

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

The concepts and methods discussed previously for the one-dimensional case can
be readily extended to the multidimensional case. The procedure is analogous
regardless of the number of dimensions involved.
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Gauss-Legendre methods belong to the class of implicit Runge-Kutta methods.
The Butcher tableau of the fourth-order Gauss-Legendre (GL4) method is

1
2
− 1

6

√
3 1

4
1
4
− 1

6

√
3

1
2
+ 1

6

√
3 1

4
+ 1

6

√
3 1

4
1
2

1
2

while that of sixth-order Gauss-Legendre (GL6) method is

1
2
− 1

10

√
15 5

36
2
9
− 1

15

√
15 5

36
− 1

30

√
15

1
2

5
36

+ 1
24

√
15 2

9
5
36

− 1
24

√
15

1
2
+ 1

10

√
15 5

36
+ 1

30

√
15 2

9
+ 1

15

√
15 5

36
5
18

4
9

5
18

In contrast to explicit methods, where the values of the different ki are obtained
directly, implicit methods yield a system of m equations in which the ki serve as
the unknowns. To solve this system, various algorithms can be employed, e.g. the
iterative method called fixed point iteration. The number of iterations required to
solve these equations cannot be determined in advance, as it depends on the specific
problem and desired level of accuracy. Consequently, the number of evaluations
needed for each time step cannot be known in advance. This characteristic often
leads to a higher computational cost compared to explicit methods. However, the
use of Gauss-Legendre methods can be justified by their symplecticity, meaning
that they can reproduce many physical conservation laws (e.g. conservation of
energy) with a high degree of accuracy [41].

5.2 Lanczos algorithm
The Lanczos algorithm is an iterative projection method that enables the trans-
formation of a large Hermitian matrix A into a smaller tridiagonal form T. This
algorithm begins with the selection of a starting vector v which will be used to
represent the Hermitian matrix A in the orthogonal basis for the Krylov subspace

Kj(A,v) = span{v,Av,A2v, . . . ,Aj−1v}, (5.3)

in which it will assume a tridiagonal form T. At each step of the algorithm, apart
from scalar product and additions of a multiple of a vector to another, only one
matrix-vector multiplication is needed, and one row and column of the matrix T is
obtained. When A is a non-Hermitian matrix, the left and right eigenvectors will
be different

Ax = λx and y∗A = λy∗. (5.4)

In contrast to the case where A is Hermitian, when dealing with a non-Hermitian
matrix A the Lanczos algorithm requires the use of two starting vectors: v and
w. These vectors are chosen such that v† ·w = 1, which will lead to two Krylov
spaces, Kj(A,v) and Kj(A,w) respectively and to two sets of eigenvectors, left and
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right. The asymmetric band Lanczos algorithm [71] is a variation of the standard
asymmetric Lanczos algorithm that can be more advantageous in certain scenarios,
such as when dealing with matrices containing degenerate or closely clustered
eigenvalues. In this variation, instead of the starting left and right vectors, m right
(b1, . . . ,bm) and p left (c1, . . . , cp) starting vectors are employed. From them, the
sequences

Ki(M,b1, . . . ,bm) = span
{
b1, . . . ,bm,Mb1, . . . ,Mbm,M

2b1, . . .︸ ︷︷ ︸
i

}
, (5.5)

and

Kj(M
T , c1, . . . , cp) = span

{
c1, . . . , cp,M

Tc1, . . . ,M
Tcp, (M

T )2c1, . . .︸ ︷︷ ︸
j

}
, (5.6)

are generated, with i− n and j − n redundant vectors in the sequence respectively.
The goal of this algorithm is then to construct suitable left and right linearly
independent Lanczos vectors v1,v2, . . . ,vn and w1,w2, . . . ,wn that constitutes a
basis for the subspaces spanned by the first j vi and wi vectors respectively.

5.3 Core-valence separation approximation
Core excitation energies are internal to the spectrum of the Hamiltonian. In
general, when using exterior eigenvalue methods such as Davidson or Lanczos
algorithms, one needs to calculate all of the valence excitations before being able to
calculate the core ones. This is really computationally demanding. The core-valence
separation (CVS) approximation allows to neglect the matrix elements arising from
an interaction between valence only excited states and excited states containing
reference to core excitation. As a result, the Hamiltonian matrix can be separated
into two distinct blocks: one block corresponds to valence-only excitations, while
the other block represents interactions between excited states containing at least
one core excitation. By diagonalizing these two blocks separately, we can focus
directly on computing the core excitations of interest. This approach significantly
reduces the computational burden, as we can start the computation from the lowest
excitation involving at least one core state. By circumventing the need to calculate
all valence excitations first, a considerable amount of computational time is saved.
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Experimental generation of
attosecond pulses
The electronic motion inside molecules occurs on a subfemtosecond time scale. Due
to the technological advances of the last decades, the generation of pulses down to
a few tens of attoseconds became possible [72]. This opened up the way towards
the possibility to follow the electronic motion in real-time in atoms, molecules,
nanostructures, and solids and to steer it in order to directly control chemical reac-
tions. This is likely to have a tremendous impact in a lot of different fields [73, 74]
from material science, to biology (photosynthesis [12, 13], radiation damage and
repair [75–77], cellular respiration, electron tunneling through proteins [78]), to
physics and, of course, chemistry (from new synthetic to new spectroscopic tech-
niques). As the shortest possible pulse of a given wavelength is one cycle long,
pulses lasting exactly 1 femtosecond (fs) have a maximum wavelength of 300 nm.
Consequently, subfemtosecond pulses exhibit wavelengths that correspond to the ul-
traviolet (UV) and X-ray regions of the electromagnetic spectrum. Synchrotrons [79]
have emerged as a prominent X-ray radiation source in modern times. Over the past
three decades, this technology has played a vital role in scientific advancements,
reaching its pinnacle with the development of third-generation synchrotrons, which
rely on undulators. Undulators are devices constituted of a structure of dipole
magnets with alternating poles that create a static magnetic field that forces the
approaching electrons into a oscillating path with a period determined by the
distance between the magnets. As a consequence of this motion, the electrons emit
radiation along the undulator’s axis. Usually the distance between the centers of the
magnets constituting the undulator is in the order of centimeters but, considering
that the speed of the electrons is close to the speed of light, it is perceived by the
electrons as in the order of 10−10m because of the Lorentz contraction and of the
Doppler relativistic effect, so the emitted radiation is an X-ray one. The undulators
find application also in X-ray free electron lasers (XFELs) [80, 81], a technology
that, in the context of the generation of ultrashort laser pulses, represents a major
advancement with respect to synchrotrons, as it allows to obtain shorter pulses
with higher peak power (103 W for 3rd generation synchrotrons, 1010 W for XFELs).
In XFELs, the electrons are first accelerated to almost the speed of light by a
linear particle accelerator (linac). Then, they enter inside an undulator that makes
them oscillate in the directions transverse to that of their propagation so that
they start to emit radiation. In XFELs, when a bunch of electrons is injected
into the undulator, it has uniform density distribution. As the emitted radiation
travels faster than the electrons themselves, it interacts with them, slowing down
some of them and accelerating others depending on the phase with respect to each
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other until the electrons organize themselves converging, with longitudinal density
modulation becoming more pronounced the more the electromagnetic field grows
intense and vice versa, with the radiation power that grows exponentially with
the distance along the undulator, in the so-called electron crystals: small clusters
called microbunches regularly spaced apart by a distance corresponding to the
wavelength of the emitted radiation. When the modulation reaches saturation so
that the electron beam is completely bunched, the electrons emit quasi-coherent
radiation almost in phase. This phenomenon, which does not occur in synchrotrons
but only in XFELs, is called self-amplified spontaneous emission (SASE) [82]. It
leads to laser-like quasi-coherent quasi-monochromatic radiation without the need
for a seed radiation that, unlike that of free electron lasers working on different
wavelengths, would be difficult to obtain for XFELs due to the lack of suitable
lasers.

The ultrafast high-intensity X-ray pulses from XFELs have proven to be an
invaluable tool for the detection of ultrafast charge migration with high temporal and
spatial resolution. One example of a simple nonlinear spectroscopic technique [83]
made possible by this new technology is the impulsive stimulated X-ray Raman
scattering (ISXRS) which has already been successfully applied for the investigation
of ultrafast charge dynamics in atomic and small molecular systems [52]. This
spectroscopic technique is based on the Raman effect, which occurs when the
interaction of electromagnetic radiation with a chemical system results in a change
in the system’s state and the frequency of the radiation. When the radiation is an
X-ray one as in the case of ISXRS, the involved excited states are the electronic
ones. In particular, in ISXRS, we can observe the excitation of the ground state to
a core excited state followed by the decay of a valence electron in the core hole,
leading to a final valence excited state. These processes are initiated and driven
by the external electromagnetic field, which, due to its brief duration, possesses a
broad bandwidth encompassing both the excitation and de-excitation frequencies of
interest. As the pulse duration is short compared to the time scale of the evolution
of the system and as the core excitations targeted by the X-rays are sensitive to
the local electronic environment, this technique is well suited to follow the charge
migration throughout the molecule [84].

Due to these characteristics, ultrafast X-ray pulses can also be used as probe
pulses in pump-probe transient absorption spectroscopy. This technique allows
to obtain snapshots of the valence electrons’ dynamics in molecules induced by a
valence-exciting pulse. All of these experimental achievements rely on an interplay
with theoretical development, that provides an irreplaceable tool for the interpre-
tation of obtained data and for the prediction and design of new experimental
schemes, which are often very demanding both from an economical and practical
point of view.
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Summary of publications

7.1 Publication I - resume: eT 1.0: An open source
electronic structure program with emphasis on
coupled-cluster and multilevel methods

Sarai D. Folkestad, Eirik F. Kjønstad, Rolf H. Myhre, Josefine H. An-
dersen, Alice Balbi, Sonia Coriani, Tommaso Giovannini, Linda Goletto,
Tor S. Haugland, Anders Hutcheson, Ida-Marie Høyvik, Torsha Moitra,
Alexander C. Paul, Marco Scavino, Andreas S. Skeidsvoll, Åsmund H.
Tveten, and Henrik Koch
J. Chem. Phys. 152, 184103 (2020)

In this paper, we present eT 1.0, an electronic structure program that we de-
veloped. eT 1.0 is a software written in object oriented modern Fortran (2008
standard) language and released as an open source program licensed under the
GNU General Public Licence 3 (GPL 3.0). Its objective is to provide an electronic
structure code that is not only efficient but also readily understandable, extensi-
bility, and modification, empowering users to optimize existing code or introduce
novel functionalities.

The primary emphasis is placed on the utilization of spin adapted implementa-
tions of coupled-cluster techniques such as CCS, CC2, CCSD, CC3, and CCSD(T),
as well with the possibility to apply these methods in quantum mechanics/molecular
mechanics (QM/MM) calculations or in conjunction with the polarizable continuum
model (PCM).

For all CC methods, it is possible to compute the energy of ground and excited
singlet state, dipole and quadruple moments, and equation-of-motion (EOM)
oscillation strengths with an exception for CCSD(T) for which is possible to
compute only the ground state. Coupled-cluster equations are solved by means of:

• Davidson method for linear and eigenvalue equations,

• DIIS for nonlinear coupled-cluster equations,

• Asymmetric Lanczos for nonperturbative coupled-cluster methods.

The Hartree-Fock method is also available in different fashions: restricted (both
closed shell RHF and open shell ROHF), unrestricted (both standard UHF and
constrained CUHF), time-dependent TDHF, quantum electrodynamics Hartee-Fock
(QED-HF) and multilevel HF (MLHF) are present. Additionally, second-order
Møller-Plesset (MP2) and full configuration interaction (FCI) are implemented.
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eT 1.0 relies on the following external dependencies:

• Libint 2 [85], a library for the evaluation of molecular integrals,

• PCMSolver 1.2 [86] library for solvation modeling,

• runtest library [87] for software testing,

• CMake module from autocmake [88] to find and configure BLAS and LAPACK
libraries.

Wherever possible, the routines are parallelized by means of OpenMP [89].
The release of eT 1.0 represented the first published implementation of explicitly

time-dependent coupled-cluster (TD-CCS and TD-CCSD), multilevel HF, and
multilevel CC2, as well as the most efficient implementation (at the time it was
released) of Cholesky decomposition of electronic repulsion integrals [90] and
coupled-cluster singles, doubles and perturbative triples (CC3) [91]. In real-time
formulation of time-dependent CCS and CCSD, the time-dependence is contained
into the cluster amplitudes and multipliers, whose evolution in time is described
through differential equations that, in eT 1.0, can be solved by the following
integrators:

• Euler,

• Gauss-Legendre 2nd-, 4th- and 6th-order (GL2, GL4 and GL6),

• 4th-order explicit Runge-Kutta (RK4).

As time-dependent amplitudes and multipliers are in general complex [92], the dif-
ferential equations that need to be solved in real-time propagation are implemented
with complex variables. In eT 1.0, real-time calculation can provide as output the
time evolution of amplitudes, multipliers, density matrix, energy, electric field, and
dipole moment. It is also possible to obtain spectra by means of the fast Fourier
transform (FFT) of the time-dependent dipole moment, implemented as a modified
version of FFTPACK 5.1 [93]. Furthermore, time-dependent density can be printed
as output in .plt or .cube files that are readable by visualization software (such
as Chimera) in order to obtain a movie of the evolution of electronic density in
time. The external electromagnetic field can be specified in input as a sum of any
number of classical electromagnetic pulses within the length gauge and the dipole
approximation.
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7.2 Publication II - resume: Time-dependent coupled-
cluster theory for ultrafast transient absorption
spectroscopy

Andreas S. Skeidsvoll, Alice Balbi, and Henrik Koch
Phys. Rev. A 102, 023115 (2020)

In this paper, we use our implementation of spin-adapted TDCC model present
in the eT program [46] to simulate the response of small molecular systems to a
pump-probe sequence of ultrashort laser pulses.

As a first step, we assess the accuracy of our integration procedures by com-
parison with results already present in literature for He and Be atoms [41]. The
goal is to study the response of the lithium fluoride dimer (LiF) to a pump-probe
sequence of ultrafast laser pulses, with a valence-exciting pump and a core-exciting
probe. As higher level coupled-cluster methods computation cost scales rapidly
with the size of the system and quickly reaches the limits of practicability, we
have chosen a smaller system with an analogous structure, the lithium hydride
dimer (LiH), for the convergence tests of the absorption spectra for parameters
like the level of theory, the basis set, the size of the time steps, and the integration
method. From the performed tests we notice how, in our calculations, there is
no need for the use of computationally expensive symplectic integrators such as
Gauss-Legendre (that we test at second, fourth, and sixth-order) as the deviations
with respect to an integrator with a lower computational cost such as explicit
fourth-order Runge-Kutta are negligible. We also observe the deviations related
to the time step size, which in general doesn’t appear to have a major impact
on the results. The changes in the basis set, on the other hand, give rise to very
relevant differences. We examine how the outcomes vary as we increase the size of
the Dunning basis sets: cc-pVDZ, cc-p(C)VDZ, aug-cc-pVDZ, aug-cc-p(C)VDZ
plus the corresponding triple zeta basis sets. We observe how the inclusion of core
correlation functions affects substantially the position of probe absorption peaks
while they leave unaffected the pump absorption peaks. Also, triple zeta functions
have an impact on the position of the peaks in the probe absorption region, but
their use increases substantially the computational cost of the calculation. We
also compare the results obtained from TDCCS and TDCCSD calculation and
note the very relevant difference in position and intensity of the peaks in both
of the regions of the spectrum. Considering that the cost of the calculation in-
creases quickly with the growth of the basis set and the level of theory, while it
scales linearly with the time step, and keeping in mind that explicit Runge-Kutta
methods require fewer evaluations than the Gauss-Legendre ones while providing
comparable results, given the results obtained for the LiH dimer, we determine the
TDCCSD/aug-cc-p(C)VDZ integrated with RK4 with 0.005 a.u. time steps to be
the best compromise between accuracy and computational cost to use for the study
of the LiF dimer.

In order to determine the frequency to use for the pump and probe pulses acting
on the LiF dimer, we characterize the first eight valence excited states and the
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first eight core excited states of this system at the EOM-CCSD level of theory
combined with an aug-cc-p(C)VDZ basis set. For the calculations relative to the
core excited states, the core-valence separation approximation is applied. We use
the obtained values of energy to tune the frequency of the pump pulse to the value
corresponding to the energy difference between the first valence excited state and
the ground state, and the frequency of the probe pulse corresponding to the energy
difference between the first core excited state and the ground state. Both pulses are
polarized along the internuclear axis of the system. We repeat the calculation for
various temporal distances between the central times of the pump and probe pulses.
We obtain the reference absorption spectrum in which we observe two regions of
absorption: one corresponding to the energy range of valence excitations and one
to the core ones. We compute the normalized transient absorption as

∆S ′(ω, τ) = Nprobe∆S(ω, τ)

= Nprobe

(
S(ω, τ)− Sprobe(ω)

)
,

(7.1)

where S is the response function defined as

S(ω) = −2 Im
(
d̃(ω) · Ẽ∗

(ω)
)
, ω > 0. (7.2)

We note the presence of a peak in the core region with energy lower than the
lowest ground state core excitation energy. This peak is the result of the creation
of a valence-hole state created by the pump pulse that is in turn excited by the
core-exciting probe. We observe how the peaks of the transient probe absorption
spectrum of the lithium fluoride dimer oscillate with the time delay between the
pump pulse and the probe one. Some of the oscillations are rapidly dumped for
pump-probe delays lower than 40 a.u., which we attribute to the decreasing overlap
between pump and probe pulses. For pump-probe delays higher than 40 a.u., which
present a negligible pump-probe overlap, no dumping of the oscillations is observed.
We select the five peaks for which the biggest amplitude of oscillation is observed
and categorize the states involved in the transitions. Two of the transitions involve
the Ac

1Σ+ state, one starting from the ground state X1Σ+ and one from the
valence excite state Bv

1Σ+. We observe how the oscillation of the peaks relative to
these two transitions can be fitted, through the least-square fitting procedure, by
a sinusoidal function of the form A sin(ωAt+ ϕA) + C with ωA corresponding to
the energy difference between the ground state X1Σ+ and valence excited state
Bv

1Σ+. We interpreted this oscillation as due to the quantum interference between
these two states [94]. Also, the oscillations of the other peaks that we took into
consideration can be explained in terms of quantum interference between one of
the states involved in the excitation with other states of the system.
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7.3 Publication III - resume: Simulating weak-field
attosecond processes with a Lanczos reduced
basis approach to time-dependent equation-of-
motion coupled-cluster theory

Andreas S. Skeidsvoll, Torsha Moitra, Alice Balbi, Alexander C. Paul,
Sonia Coriani, and Henrik Koch
Phys. Rev. A 105, 023103 (2022)

In this paper, we extend the implementation of TDCC discussed in [46] and [39]
to a TD-EOM-CC approach with the use of a reduced basis calculated with an
asymmetric band Lanczos algorithm. The goal is to provide a method that, thanks
to its lower computational cost, enables the study of larger systems.

We use the asymmetric band Lanczos algorithm to generate approximate eigen-
values ω̃ and the corresponding left L̃n and right R̃n approximate eigenvectors of
the asymmetric Jacobian matrix A(0). These eigenvectors represent the coefficients
of respectively the left and right excitation operators of EOM-CC needed for ob-
taining the valence and core excited states to use in the differential equations that
need to be solved to obtain a time-dependent description of the system.

When using the Lanczos algorithm, we first calculate the valence states, using
starting vectors based on the ground state. Then, we calculate the core states,
constructing starting vectors based on the previously obtained valence states
together with the ground state. The choice of starting vectors is important as it
can simplify the calculation of operator matrix elements, it can direct the algorithm
towards states that are useful to represent the interactions and allow an affordable
calculation of the transition strengths, that in turn is used, together with the
excitation energies, to automatically select the reduced basis.

We assess the reliability of this method by a comparison of the TD-EOM-CC
absorption spectrum of lithium fluoride dimer (LiF) calculated with the Dormand-
Prince 5(4) [95] integration scheme at various Lanczos chain lengths (i.e. number
of iterations) with the results already obtained for lithium fluoride in [39]. The
core states are calculated within the CVS approximation while the valence states
are calculated in full projection space.

By increasing the band Lanczos chain length and taking a sufficient number of
relevant states into account, the TD-EOM-CC with Lanczos approach converges to
the same spectral features as TDCC but with much lower computational times. In
these calculations, only the states accessible by absorption of one photon from the
pump pulse and one photon from the probe pulse were considered. This means
that spectral features due to the absorption of two photons from the pump pulse
like the smaller peaks below 6.9 eV, as claimed by us in [39] and confirmed later on
in [43], cannot be reproduced. We show that by including in the calculation as well
the valence states accessible by the absorption of two pump protons and the core
states accessible by the interaction with a further probe photon, with sufficiently
high chain length a spectrum indistinguishable from the TDCC one is obtained,
confirming that the process is in fact due to a two pump photon absorption and
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shows how the TD-EOM-CC with reduced basis can provide accurate results even
in case of nonlinear interactions.

We show how a speedup in the convergence can be obtained by the use of the
valence-only CVS projector to calculate the valence states. Thanks to the reduction
in dimension, a smaller Lanczos chain length is sufficient to retrieve all of the
spectral features as for the case of valence states calculated in the full projections
space.

We observe the limits of CVS approximation, showing how for the LiH molecule
several peaks around the Li K-edge are not correctly retrieved. This is due to the
fact that for light atoms such as Li the energy separation between core and valence
orbitals is small so that pure valence excitation (which would be excluded by the
core-only CVS projector) can fall within the core excitation region. In the LiF
calculations, this problem is not encountered as the pulse is tuned with the F K
edge so the core and valence orbitals have a better separation.

When calculating the TD-EOM-CC spectrum of ethylene with a z dipole
operator, we notice how a peak present in the TDCC spectrum is missing in the
TD-EOM-CC one. We attribute this peak to a two photon absorption process and
we manage to obtain its presence in a TD-EOM-CC spectrum using a procedure
that emulates the physical process in play: we include a starting vector constructed
from the z2 quadrupole operator in the valence state-calculation. We capture a
two photon absorption phenomenon for ethylene using a procedure that emulates
the physical process in play.

Finally, we use the computational procedure to model attosecond transient
absorption by the glycine molecule, which is a good candidate for experimental
investigations. We get 17 converged valence excited states and 20 converged core
excited states. We note that all of the converged valence states have an energy
that is lower than double the carrier frequency, meaning that spectral features due
to two-photon absorption may be not properly represented in the obtained spectra.
We calculated different absorption spectra varying the value of the pump-probe
time delay and then subtracted from them the ground state probe absorption
spectra to obtain the difference spectra. In them, we note the presence of negative
peaks, which indicates ground state bleaching. We also note that the peaks that
are more sensitive to the variation of pump probe delay are those that are not
energetically accessible from the ground state. We numerically integrated the
probe absorption difference

∫
∆SC(ω)dω as a function of pump probe delay and

the dipole induced by the pump pulse in the direction from the center of mass
to the N atom ⟨d⟩N as a function of time. We note how the dominant period of
the integrated absorption and that of the generated dipole are very similar. This
seems to indicate a correlation between the transient absorption and the charge
migration induced by the pump, indicating that both quantities provide insight
into the dominant time scale of the coherent superposition, as has been previously
demonstrated for instantaneous pulses [96, 97].
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7.4 Publication IV - resume: Coupled-cluster sim-
ulation of impulsive X-ray Raman scattering

Alice Balbi, Andreas S. Skeidsvoll, and Henrik Koch
Submitted | arXiv: 2305.19942 [physics.chem-ph]

Raman scattering is a light-matter interaction phenomenon that consists in the
absorption of a photon by a molecular system, causing and excitation of the sys-
tem, and subsequent emission of a photon with frequency different from that of
the first one, causing a de-excitation of the system. When the involved states
are the electronic ones, we speak about electronic Raman scattering [5, 48–51].
We used the TD-EOM-CC method to simulate the electronic Raman scattering
induced by ultrashort laser pulses in small molecules. In particular, we focused on
ISXRS, which is the extension to the impulsive limit of stimulated X-ray Raman
scattering (SXRS). We directed our attention towards the scenario where the
excitation involved is a core excitation that is transformed into a valence excited
state when a valence electron decays into a core vacancy. Core excitations can be
described as confined to a particular atomic site and are highly responsive to the
nearby electronic surroundings, which makes them valuable for the local triggering
of charge migration. For the study of core excitations, we use the core-valence
separation scheme, that is detailed in section 5.3. Additionally, in our calculations,
we use pulses with pulses large enough to include both the energy differences in
play, so that a single pulse can be responsible for both the core-excitation and
the stimulated emission to a valence excited state. [98] A similar procedure was
recently performed experimentally for the first time at the Linac Coherent Light
Source [52].

In order to follow the Raman process in our simulations, we calculated the
population of an eigenstate |ψi⟩ of the field-free Hamiltonian as

Pi(t) = ⟨Ψ̃(t)|ψi⟩ ⟨ψ̃i|Ψ(t)⟩
= bi(t)ci(t).

(7.3)

To avoid the occurrence non-stationary population that would make harder the
interpretation of the TD-EOM-CC state, we diagonalize the Jacobian in the basis
of all of the CVS and non-CVS (valence) states.

At first we performed some benchmark calculations choosing Ne as the system to
investigate. This choice of the system is convenient as it is small, so the calculation
maintain an acceptable computational cost even when the employed basis set
is large, and has a spherical symmetry, so the results are independent from the
direction chosen for the external electric field. We investigated the convergence
of the final population of the Bv

1D valence-excited state, the lowest-eigenvalue
valence-excited state with a significant final population, for different choices of
Dunning basis set and different levels of theory (CCS and CCSD). We observed
how the choice of level of theory had a profound impact on the results and how
the basis set convergence was reached with the aug-cc-pV5Z basis set. We also
performed a series of calculations with different number of considered core excited



44 Chapter 7. Summary of publications

states with a fixed number of valence excited states and vice versa, to determine
the number of states to include in order to reach convergence.

We then moved on to study ISXRS in carbon monoxide, a molecular system
belonging to the C∞v symmetry point group. As it is linear, it adds a further
layer of complexity: now we expect the response of the system to depend on the
direction of the electric field. From our calculations we can see how having the field
perpendicular to the internuclear axis instead of along it, for symmetry reasons,
switches of completely off the pathways that would populate the valence state
under examination. For this system we also observe how the inclusion of about 30
core excited states is necessary to reach the convergence and how obviously the
final populations are affected depending on whether the pump pulse is tuned with
the C K-edge or with the O K-edge.

We further increased the complexity by moving on to study pyrrole, which has
a geometry belonging to the C2v symmetry point group. We can notice how when
the direction of the pulse is perpendicular to the plane of the molecule only few
states become populated as other are inaccessible due to symmetry reasons. When
changing the direction of electric field to include also other symmetries, more states
becomes accessible. We also show how the obtained final populations varies when
changing the tuning of the pump pulse from N K-edge to C K-edge.

Finally, we studied a bigger system: the p-aminophenol, belonging to the Cs

symmetry point group. We have chosen this system as we expect to observe the
core excitation to be followed by a long range charge migration from one functional
group to the other located at opposite side of the aromatic ring. This is indeed what
we obtained from our simulations, which we made visually accessible by displaying
two chosen isodensity surfaces, one positive and one negative.

These results will be submitted for publication in the near future. We believe
that the toolkit that we developed will be useful for further research about the
control of chemical reactivity by means of external electromagnetic field.
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Chapter 8

Conclusion and outlook
All chemistry, at a fundamental level, is a consequence of electronic motion. Until
recently, it wasn’t possible to observe and control electron dynamics directly on its
own time scale, as the best available temporal resolution was that of nuclear motion,
that occurs on a femtosecond time scale. This changed with the development of
ultrafast laser technology and spectroscopy, which led to the emergence of a new
research field called attochemistry: the ability to steer the electrons in a molecular
system opened up the possibility to indirectly control the force field experienced
by the nuclei and thus the chemical reactivity itself. Such control over matter
would have a tremendous impact on basically every research field linked with
molecular sciences including biology, material science, and medicine. In particular,
the most exciting perspective is to utilize these achievements to directly control
chemical reactivity inside molecules and to understand deeply phenomena like
photosynthesis or DNA electron damage, which was not possible to understand
completely with the femtosecond temporal resolution. These groundbreaking
technological achievements have stimulated the theoretical development of methods
to describe these phenomena as accurate modeling is crucial for both planning
experiments and interpreting the obtained results. Real-time simulations are now
possible by evolving the time-dependent Schrödinger equation, which was previously
impractical due to the limited computing power available for calculations involving
electronic correlation effects. The advancements in computational power have
enabled the utilization of correlated methods such as DFT, MC-SCF, CI, ADC,
and CC in attochemistry, allowing for new insights and discoveries to be made in
this field.

This thesis research focuses on implementing methods for real-time simulations
of the behavior of molecular systems. Specifically, the study examines through
time-dependent coupled-cluster theory how small- and medium-sized molecular
systems react to ultrashort laser pulses modeled as external semiclassical electro-
magnetic fields in dipole approximation. To begin this research, we implemented
in the eT program package [46] the time-dependent coupled-cluster at the CCS
and CCSD level of theory, as well as Gauss-Legendre and explicit Runge-Kutta
integrators necessary for solving the differential equations for time-evolution of
cluster amplitudes and multipliers. To validate this implementation, we compared
the results for some small systems to those already established in the existing
literature. To establish convergence, we performed calculations on the computa-
tionally inexpensive LiH system with different levels of theory, basis sets, choices of
integrator, and integration steps. Using these results, we investigated pump-probe
transient absorption [39], with a valence-exciting pump and core-exciting probe
in LiF, a system with an analogous structure but a higher computational cost.
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This calculation was performed at different pump-probe delays, enabling us to
observe how the spectral peaks oscillated with the variation of this quantity. The
oscillation frequency was found to be correlated with quantum interference among
the involved states.

We further expanded our toolkit by including into the eT program package an
implementation of TD-EOM-CC and asymmetric band Lanczos, with the purpose of
using them in combination [47]. First, we assessed the validity of this methodology
by comparing its results for LiF with that already obtained through TDCC. We then
observed how, when taking into account two-photon absorption, even the smaller
features of the TDCC spectrum were reproduced correctly. We then proceeded to
study LiH: as for light elements the energy difference between valence and core
excited states is small, some of the peaks around the Li K-edge were not retrieved
while using the core-only CVS as they were due to valence-only excitations.

We demonstrated the significance of selecting physically meaningful start vectors,
highlighting the convergence of ethylene valence excited states, that are dark to
one-photon transitions, when constructing starting vectors from both dipole and
quadrupole operators. As a final application of this protocol, we modeled the
transient absorption spectrum of the glycine molecule as a function of pump-probe
delay. Our results show a correlation between the transient absorption and the
charge migration induced by the pump pulse.

Finally, we employed TD-EOM-CC to model ISXRS. We started with an
evaluation of convergence of the final population of neon valence states with respect
to various calculation parameters such as the level of coupled-cluster theory, the
basis set, and the total number of valence excited states and core excited states. We
determined a set of satisfactory parameters and extended the analysis to two other
systems, carbon monoxide, and pyrrole, evaluating the convergence of the final
population of their states with respect to the number of included core-excited states.
We also showed that the final populations of both carbon monoxide and pyrrole
states are influenced by the polarization of the external electric field. Additionally,
the impact of tuning the external electric field to the K-edge of different atoms
was assessed. Lastly, we studied the time evolution of the electronic density of
p-aminophenol during ISXRS and observed a rapid construction of a valence
wavepacket, followed by subsequent charge migration in the molecule.

One possible improvement of our models is to facilitate calculations on bigger
systems by the use of larger and adaptive time steps. The description can also be
upgraded by including the representation of the electronic continuum in the basis
set, e.g. through B-splines as demonstrated in [99]. This would enable us to model
ionization and investigate additional phenomena that are relevant to attochemistry,
such as the Auger effect. Another natural next step would be to include the nuclear
motion in the model, which for instance can be done using the approach in [100].

In addition to the above-mentioned improvements, a crucial step would be to
create experimental data for comparison with our theoretical results. This would
help to validate our models and improve the understanding of the behavior of
molecular systems subjected to ultrashort laser pulses. Moreover, we are convinced
that the investigation of field-induced charge migration in molecular systems has
tremendous potential for advancing our understanding and control of chemical
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reactions. Consequently, future research endeavors could be directed toward
applying our methods to increasingly larger and more complex molecular systems,
exploring novel strategies for manipulating chemical reactions through external
fields, and designing materials with tailored properties. These efforts could open
up new frontiers in attochemistry, and pave the way for practical applications of
our research findings.
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ABSTRACT

The eT program is an open source electronic structure package with emphasis on coupled cluster and multilevel methods. It includes efficient
spin adapted implementations of ground and excited singlet states, as well as equation of motion oscillator strengths, for CCS, CC2, CCSD,
and CC3. Furthermore, eT provides unique capabilities such as multilevel Hartree–Fock and multilevel CC2, real-time propagation for CCS
and CCSD, and efficient CC3 oscillator strengths. With a coupled cluster code based on an efficient Cholesky decomposition algorithm for
the electronic repulsion integrals, eT has similar advantages as codes using density fitting, but with strict error control. Here, we present the
main features of the program and demonstrate its performance through example calculations. Because of its availability, performance, and
unique capabilities, we expect eT to become a valuable resource to the electronic structure community.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004713., s

I. INTRODUCTION

During the last five decades, a wide variety of models and
algorithms have been developed within the field of electronic struc-
ture theory and many program packages are now available to the
community.1 Programs with extensive coupled cluster functional-
ity include CFOUR,2 Dalton,3 GAMESS,4 Gaussian,5 Molcas,6 Mol-
pro,7 NWChem,8 ORCA,9 PSI4,10 QChem,11 and TURBOMOLE.12

Although these are all general purpose quantum chemistry pro-
grams, each code is particularly feature rich or efficient in specific
areas. For instance, a large variety of response properties13 have
been implemented in Dalton, CFOUR is particularly suited for gra-
dients14,15 and geometry optimization, and QChem is leading in
equation of motion16,17 (EOM) features. However, due to the long

history of many of these programs, it can be challenging to modify
and optimize the existing features or to integrate new methods and
algorithms.

In 2016, we began developing a coupled cluster code based on
Cholesky decomposed electron repulsion integrals.18,19 While start-
ing anew, we have drawn inspiration from Dalton3 and used it
extensively for testing purposes. Our goal is to create an efficient,
flexible, and easily extendable foundation upon which coupled clus-
ter methods and features—both established and new—can be devel-
oped. That code has now evolved beyond a coupled cluster code into
a freestanding electronic structure program. It is named eT after the
expression for the coupled cluster ground state wave function,20

∣Ψ⟩ = eT ∣R⟩, (1)

J. Chem. Phys. 152, 184103 (2020); doi: 10.1063/5.0004713 152, 184103-1
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and released as an open source program licensed under the GNU
General Public License 3 (GPL 3.0).

The first version of eT offers an optimized Hartree–Fock
(HF) code and a wide range of standard coupled cluster meth-
ods. It includes the most efficient published implementations of
Cholesky decomposition of the electron repulsion integrals21 and
of coupled cluster singles, doubles, and perturbative triples22,23

(CC3). Furthermore, eT features the first released implementa-
tions of multilevel HF24 (MLHF), multilevel coupled cluster sin-
gles and perturbative doubles25,26 (MLCC2), and explicitly time-
dependent coupled cluster singles (TD-CCS), and singles and dou-
bles (TD-CCSD) theory. All coupled cluster models can be used
in quantum mechanics/molecular mechanics27,28 (QM/MM) calcu-
lations or be combined with the polarizable continuum model29,30

(PCM).
eT is primarily written in modern Fortran using the Fortran

2008 standard. The current version of the code is interfaced to two
external libraries: Libint 231 for the atomic orbital integrals and
PCMSolver 1.232 for PCM embedding. In addition, eT applies the
runtest library33 for testing and a CMake module from autocmake34

to locate and configure BLAS and LAPACK.
With the introduction of the 2003 and 2008 standards, For-

tran has become an object oriented programming language. We have
exploited this to make eT modular, readable, and easy to extend.
Throughout the program, we use OpenMP35 to parallelize compu-
tationally intensive loops and BLAS and LAPACK routines wher-
ever possible. In order to preserve code quality, extensive code
review and enforcement of a consistent standard have been prior-
itized from the outset. While this requires extra effort from both
developers and maintainers, it pays dividends in code readability
and flexibility.

II. PROGRAM FEATURES

A. Coupled cluster methods

The eT program features all standard coupled cluster methods
up to perturbative triples: singles (CCS), singles with perturbative
doubles36 (CC2), singles and doubles37 (CCSD), singles and doubles
with non-iterative perturbative triples38 [CCSD(T)], and singles and
doubles with perturbative triples22 (CC3). At the CCSD(T) level of
theory, only ground state energies can be computed. For all other
methods, efficient spin adapted implementations of ground and
excited singlet states are available. Moreover, dipole and quadrupole
moments, as well as EOM oscillator strengths, can be calculated.
Equation of motion polarizabilities are available at the CCS, CC2,
and CCSD levels of theory.

A number of algorithms are implemented to solve the cou-
pled cluster equations. For linear and eigenvalue equations, we have
implemented the Davidson method.39 This algorithm is used to
solve the ground state multiplier equations, response equations,
and excited state equations. To handle nonlinear coupled cluster
equations, we have implemented algorithms that use direct inver-
sion of the iterative subspace40,41 (DIIS) to accelerate convergence.
The ground state amplitude equations can be solved using DIIS
combined with the standard1,42 quasi-Newton algorithm or exact
Newton–Raphson. We also use a DIIS-accelerated algorithm43 for

the nonlinear excited state equations in CC2 and CC3. Our imple-
mentation of DIIS incorporates the option to use the related con-
jugate residual with optimal trial vectors44,45 (CROP) method for
acceleration. For the nonperturbative coupled cluster methods, the
asymmetric Lanczos algorithm is also available.46,47

The time-dependent coupled cluster equations can be explic-
itly solved for CCS and CCSD48,49 using Euler, Runge–Kutta 4
(RK4), or Gauss–Legendre (GL2, GL4, and GL6) integrators. This
requires implementations of the amplitude and multiplier equations
with complex variables. Any number of classical electromagnetic
pulses can be specified in the length gauge, assuming that the dipole
approximation is valid. A modified version of the fast Fourier trans-
form library FFTPACK 5.150 is used to extract frequency domain
information.

B. Cholesky decomposition for the electronic
repulsion integrals

Cholesky decomposition is an efficient method to obtain a
compact factorization of the rank deficient electron repulsion inte-
gral matrix.18,19,51 All post-HF methods in eT rely on the Cholesky
vectors to construct the electron repulsion integrals. One advan-
tage of factorization is the reduced storage requirements; the size
of the Cholesky vectors scales as O(n3

AO), while the full integral
matrix scales as O(n4

AO). The Cholesky vectors are kept in memory
when possible but are otherwise stored on disk. Another advan-
tage is that they allow for an efficient construction and transforma-
tion of subsets of the integrals. The Cholesky decomposition in eT

is highly efficient, consisting of a two-step procedure that reduces
both storage requirements and computational cost compared to ear-
lier algorithms. For a description of the algorithm and performance
comparisons to Molcas,6 see Ref. 21.

C. Hartree–Fock

The restricted HF (RHF) and unrestricted HF (UHF) mod-
els are implemented in eT . The implementations are integral direct
and exploit Coloumb and exchange screening and permutation sym-
metry. We use a superposition of atomic densities52 (SAD) initial
guess constructed from spherically averaged UHF calculations on
the constituent atoms. The Hartree–Fock equations are solved using
a Roothan–Hall self-consistent field (SCF) algorithm accelerated by
either DIIS or CROP. To improve the screening and reduce the
number of integrals that must be evaluated, density differences are
used to construct the Fock matrix.

D. Multilevel and multiscale methods

In MLHF, a region of the molecular system is defined as active.
A set of active occupied orbitals are obtained through a restricted,
partial Cholesky decomposition of an initial idempotent AO den-
sity matrix.53 The active virtual orbitals are obtained by constructing
projected atomic orbitals54,55 (PAOs) centered on the active atoms.
The PAOs are orthonormalized through the canonical orthonor-
malization procedure.56 The MLHF equations are solved using a
DIIS accelerated, MO based, Roothan–Hall SCF algorithm. Only the
active MOs are optimized.57

The most expensive step of an MLHF calculation is the con-
struction of the inactive two-electron contribution to the Fock
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matrix. As the inactive orbitals are frozen, it is only necessary
to calculate this term once. The iterative cost in MLHF is domi-
nated by the construction of the active two-electron contribution
to the Fock matrix. An additional Coulomb and exchange screen-
ing, which targets accuracy of the matrix in the active MO basis,
reduces the cost. The active orbitals are localized, and consequently,
the elements of the AO Fock matrix that correspond to AOs dis-
tant from the active atoms will not significantly contribute to the
active MO Fock matrix. This is similar to the screening used in
MLHF specific Cholesky decomposition of the electron repulsion
integrals.21

In MLCC2,23,25,26,58 an active orbital space is treated at the CC2
level of theory, while the remaining inactive orbitals are treated at the
CCS level of theory. MLCC2 excitation energies are implemented in
eT . The active space is constructed using the approximated corre-
lated natural transition orbitals,59,60 Cholesky orbitals, or Cholesky
occupied orbitals and PAOs spanning the virtual space.

Frozen orbitals are implemented for all coupled cluster meth-
ods in eT . In addition to the standard frozen core (FC) approxima-
tion, reduced space coupled cluster calculations can be performed
using semi-localized orbitals. This type of calculation is suited to
describe localized properties. In reduced space calculations, the
occupied space is constructed from Cholesky orbitals, and PAOs are
used to generate the virtual space.

Two QM/MM approaches are available in eT : electro-
static QM/MM embedding61 and the polarizable QM/Fluctuating
Charge62 (QM/FQ) model. In the former, the QM density interacts
with a set of fixed charges placed in the MM part of the system.61

In QM/FQ, the QM and MM parts mutually polarize. Each atom in
the MM part has a charge that varies as a response to differences
in atomic electronegativities and the QM potential.62 These charges
enter the QM Hamiltonian through a term that is nonlinear in the
QM density.63

PCM embedding can be used in eT for an implicit description of
the external environment. A solute is described at the QM level and
is placed in a molecule shaped cavity. The environment is described
in terms of an infinite, homogeneous, continuum dielectric that
mutually polarizes with the QM part, as in QM/FQ.64

In the QM/PCM and QM/FQ implementations, additional
terms are only added to the Fock matrix. Additional terms at the
coupled cluster level can also be considered.65–69

E. Spectroscopic properties and response methods

Coupled cluster is one of the most accurate methods for mod-
eling spectroscopic properties, and both ultraviolet-visible (UV/vis)
and x-ray absorption spectra can be modeled in eT . Core excitations
are obtained through the core valence separation (CVS) approxi-
mation.70 CVS is implemented as a projection71,72 for CCS, CC2,
MLCC2, and CCSD. For CC3, amplitudes and excitation vector ele-
ments that do not contribute are not calculated. This reduces the
scaling of the iterative computational cost for excited states from
O(n7

MO) to O(n6
MO).

Intensities are obtained from EOM oscillator strengths,16,17

which are available for CCS, CC2, CCSD, and CC3. In addition,
linear response48 (LR) oscillator strengths can be calculated at the
CCS level of theory. The asymmetric Lanczos algorithm46,47 can be
used to directly obtain both energies and EOM oscillator strengths

for CCS, CC2, and CCSD. It can also be combined with the CVS
approximation.

Real-time propagation offers a nonperturbative approach to
model absorption spectra. Following an initial pulse that excites
the system, the dipole moment from the subsequent time evolution
can be Fourier transformed to extract the excitation energies and
intensities.

Valence ionization potentials are implemented for CCS, CC2,
and CCSD. A bath orbital that does not interact with the system is
added to the calculation. Excitation vector components not involv-
ing this orbital are projected out in an approach similar to the
projection in CVS.71,72

III. ILLUSTRATIVE APPLICATIONS AND
PERFORMANCE TESTS

In this section, we will demonstrate some of the capabilities of
eT with example calculations. Energy thresholds refer to the change
in energy from the previous iteration. The maximum norm of the
gradient vector is used in Hartree–Fock calculations. For coupled
cluster calculations in eT and Dalton, residual thresholds refer to the
L2 norm of the residual vectors. Finally, the Cholesky decomposi-
tion threshold refers to the largest absolute error on the diagonal
of the electron repulsion integral matrix. This threshold gives an
upper bound to the error of all matrix elements. Coupled cluster
calculations were performed with either Cholesky vectors or elec-
tron repulsion integrals in memory. All geometries are available
from Ref. 73.

A. Coupled cluster methods

The CC2 method is known to yield excitation energies with
errors of about 0.1–0.4 eV for valence states with single excitation
character.74–76 The iterative cost of CC2 scales as O(n5

MO), and it may
be implemented with an O(n2

MO) memory requirement. In Table I,
we report the lowest FC-CC2/aug-cc-pVDZ excitation energy of the
antibiotic rifampicin77 (chemical formula C43H58N4O12, see Fig. 1).
The calculated excitation energy is 2.58 eV, which is consistent with
the orange color of the compound. The ground state was converged
to a residual threshold of 10−6, and the excited state was converged
to residual and energy thresholds of 10−3 and 10−6, respectively. We
used a Cholesky decomposition threshold of 10−2, which is suffi-
cient to ensure accuracy of excitation energies in CC2 and CCSD
(see Table IV). The calculation was performed on two Intel Xeon
Gold 6138 processors using 40 threads and 360 GB shared mem-
ory. The average iteration time for the ground state equations was
73 min, and the average iteration time for the excited state equations
was 9 h.

TABLE I. The lowest FC-CC2/aug-cc-pVDZ excitation energy (ω) of rifampicin. nfrozen
is the number of frozen core orbitals.

nAO nMO nfrozen ω

1879 1865 59 2.579 eV
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FIG. 1. Rifampicin.

At the CCSD level of theory, we report calculations for the
amino acid tryptophan78 (chemical formula C11H12N2O2) and exci-
tation energies for the psychoactive agent lysergic acid diethylamide
(LSD)79 (chemical formula C20H25N3O). Tryptophan and LSD are
depicted in Fig. 2.

For tryptophan, we have determined the four lowest exci-
tation energies and the corresponding oscillator strengths at the
CCSD/aug-cc-pVDZ level of theory (nMO = 453). Energies and oscil-
lator strengths are reported in Table II. Timings for eT 1.0, Dalton
2018, and QChem 5.0 are given in Table III. Thresholds in eT were
set to target an energy convergence of 10−6: the residuals were con-
verged to 10−6 for the ground state and 10−3 for the excited states
(assuming quadratic errors for the energy). In QChem, thresholds
for ground and excited states were set to 10−6. We report the total
wall time for each calculation. The excited state timing includes
the time to converge ground state and excited state equations. The
oscillator strength timing also includes the time to solve the multi-
plier and the left excited state equations. eT and QChem are equally
efficient for the CCSD ground state, while Dalton is considerably
slower. For the CCSD excited state calculation, QChem reduced the
wall time by a factor of 1.6 compared to eT and a factor of 5.6 com-
pared to Dalton. For the oscillator strength calculations, QChem
reduced the wall time by a factor of 2.7 compared to eT . The supe-
rior performance of QChem for oscillator strengths is primarily due
to an efficient starting guess for the left excitation vectors, which are
restarted from the right vectors: only 27 transformations are needed
to converge all four roots. In eT 1.0, orbital differences are used as
the starting guess for both left and right states, which explains the
poorer performance for oscillator strengths.

TABLE II. CCSD/aug-cc-pVDZ excitation energies (ω) and oscillator strengths (fω)
for tryptophan.

ω (eV) f ω

S1 4.806 0.032
S2 4.821 0.001
S3 4.972 0.088
S4 5.364 0.001

TABLE III. Total calculation times for CCSD/aug-cc-pVDZ ground state (tgs), excita-
tion energy (tω), and oscillator strength (tfω ) calculations for tryptophan. ngs

calls is the
number of calculations of the residual vector for the ground state. nR

calls and nL
calls are

the number of calls to the Jacobian and Jacobian transpose transformations, respec-
tively. The calculations were performed on an Intel Xeon E5-2699 v4 using 44 threads
and 1.5 TB shared memory.

tgs (min) tω (h) tfω (h) ngs
calls nR

calls nL
calls

Dalton 2018 1409 84 . . . 18 88 . . .

eT 1.0 201 24 53 16 79 81
QChem 5.0 196 15 20 18 90 27

TABLE IV. The FC-CCSD/aug-cc-pVDZ correlation energy (Ecorr) and lowest exci-
tation energy (ω) of LSD. A set of decomposition thresholds (τ) for the Cholesky
decomposition of the electron repulsion integral matrix were used. Both the ground
and excited state equations are converged to within a residual threshold of 10−6.
Deviations in the correlation and excitation energies (ΔEcorr and Δω) are relative to
τ = 10−8.

τ Ecorr (Eh) ΔEcorr (Eh) ω (Eh) Δω (Eh)

10–2 −3.649 673 3 2.3×10−2 0.165 734 3 7.1×10−4

10–3 −3.672 021 8 2.3×10−4 0.165 037 0 7.7×10−6

10–4 −3.672 342 1 −9.2×10−5 0.165 027 9 −1.4×10−6

10–6 −3.672 254 2 −3.6×10−6 0.165 029 4 1.1×10−7

10–8 −3.672 250 6 . . . 0.165 029 3 . . .

We have performed FC-CCSD/aug-cc-pVDZ calculations on
LSD (nMO = 777, nfrozen = 24). To demonstrate the effect of inte-
gral approximation through Cholesky decomposition, we consider
a range of decomposition thresholds. The correlation energy and
the lowest excitation energy are given in Table IV. Both ground

FIG. 2. Tryptophan (left) and LSD (right).
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and excited state residual thresholds are 10−6. With a decom-
position threshold of 10−2, the error in the excitation energy
(Δω) is less than 10−3Eh, well within the expected accuracy of
FC-CCSD.74–76

The CC3 model can be used to obtain highly accurate excitation
energies. However, an iterative cost that scales as O(n4

vn3
o) severely

limits system size. To the best of our knowledge, eT 1.0 includes the
fastest available implementation of CC3. A ground and excited state
calculation on glycine (chemical formula C2H5NO2) using the aug-
cc-pVDZ basis set took 33 min with eT 1.0. Comparable numbers
for the new23 and old80 CC3 implementations in Dalton 20183 were
73 min and 1279 min, respectively.

We have calculated valence and core excitation energies and
EOM oscillator strengths for the nucleobase uracil (chemical for-
mula C4H4N2O2, see Fig. 3). The geometry was optimized at the
CCSD(T)/aug-cc-pVDZ level using CFOUR.2 One valence excita-
tion energy was calculated at the FC-CCSD/aug-cc-pVTZ and FC-
CC3/aug-cc-pVTZ levels of theory (nMO = 452). Two core excited
states were calculated for each of the oxygen atoms (O1 and O2,
see Fig. 3) at the CCSD and CC3 levels. The aug-cc-pCVTZ basis
was used on the oxygen being excited and aug-cc-pVDZ on the
remaining atoms (nMO = 256). The results are given in Table V. The
total timings for the uracil calculations are presented in Table VI. In
Table VII, we present the averaged timings from the CVS calcula-
tions. They clearly demonstrate the reduced computational cost of
the CVS implementation for CC3. The ground state calculation was
about four times more expensive per iteration than the right excited
state. Without the CVS approximation, the computational cost of
the excited states scales as 4n4

vn3
o per iteration, while the ground state

scales as 2n4
vn3

o. Using CVS, the excited state scaling is reduced to
4n4

vn2
o.
In Table VIII, we compare the timings for solving the ground

and right excited state equations of glycine with aug-cc-pVDZ for
different number of threads. All calculations were run on similar
nodes, and all 40 cores on each node were reserved for the jobs to

FIG. 3. Uracil with labels on the oxygens.

TABLE V. CC3 valence and core (oxygen edge) excitation energies (ω) and EOM
oscillator strengths (fω) for uracil. Valence excitations were calculated with the aug-
cc-pVTZ basis on all atoms and the frozen core approximation. Core excitations were
calculated using the CVS approximation with the aug-cc-pCVTZ basis on the oxygen
atom being excited and the aug-cc-pVDZ basis on the remaining atoms.

CCSD CC3

ω (eV) f ω ω (eV) f ω

Valence 5.08 2.24×10−8 4.81 2.23×10−6

Core O1 536.04 3.35×10−2 533.64 1.95×10−2

539.60 3.23×10−4 535.66 2.24×10−4

Core O2 536.98 3.13×10−2 534.64 1.32×10−2

539.44 1.47×10−4 535.75 1.34×10−4

TABLE VI. Total wall times for CC3 on uracil. The valence calculation was performed
on a node with two Intel Xeon Gold 6138 processors using 40 threads and 320 GB
shared memory. The CVS calculations were performed on a node with two Intel Xeon
Gold 6138 processors using 40 threads and 150 GB shared memory. no and nv are
the number of occupied and virtual orbitals, respectively.

Calculation Basis set t (h) no nv

Valence excitation aug-cc-pVTZ 147 21 431
CVS O1 aug-cc-pV(CT)Z 36 29 227
CVS O2 aug-cc-pV(CT)Z 38 29 227

TABLE VII. Average wall time per function call for both CC3 core excitation
calculations on uracil. ncalls is the total number of routine calls in the two calculations.

Contributions t (min) ncalls

Ground state amplitudes 14 28
Ground state multipliers 23 30
Right excited states 4 195
Left excited states 7 244

minimize variation. Increasing the number of threads results in sig-
nificant reductions in time, even for a relatively small system such as
glycine with 20 occupied and 140 virtual orbitals. Intermediates are
currently stored on disk, resulting in overhead that can be reduced
by placing them in memory when possible. In addition to more
adaptive memory usage, we are working on improving the coupled
cluster algorithms for better parallelization.

B. Cholesky decomposition

We have determined the Cholesky basis for the transmem-
brane ion channel gramicidin A (chemical formula C198H276N40O34,
see Fig. 4). The geometry is taken from the supplementary mate-
rial of Ref. 81. Decomposition times are given in Table IX
for the cc-pVDZ and aug-cc-pVDZ basis sets and a range of
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TABLE VIII. Time to solve the ground and right excited state equations of glycine for CC3 and CCSD with different numbers
of threads in seconds using a development version of eT 1.1. Factor is the improvement compared to the row above. With
perfect parallelization, the factors would be 5, 2, 2, and 2. The calculations were performed on nodes with two Intel Xeon Gold
6138 processors and 150 GB shared memory.

CC3 GS CC3 ES CCSD GS CCSD ES

Threads Time (s) Factor Time (s) Factor Time (s) Factor Time (s) Factor

1 6048 . . . 15 617 . . . 639 . . . 654 . . .
5 1681 3.60 4 418 3.53 150 4.27 238 2.75
10 923 1.82 2 308 1.91 76 1.96 126 1.89
20 675 1.37 1 482 1.56 41 1.88 72 1.76
40 532 1.27 1 252 1.18 30 1.34 53 1.34

decomposition thresholds. These are compared to the time of one
HF iteration. Except when using cc-pVDZ with the tightest thresh-
old, the decomposition time is small or negligible compared to one
Fock matrix construction.

FIG. 4. Gramicidin A. The active MLHF/cc-pVDZ density is shown.

TABLE IX. Cholesky decomposition wall times (t) for gramicidin. τ is the decomposi-
tion threshold, and nJ is the number of Cholesky vectors. For reference, we include
the time (tHF

it ) for one full Hartree–Fock iteration. All calculations were performed on
an Intel Xeon E5-2699 v4 using 44 threads and 1.5 TB shared memory.

Basis nAO τ nJ t (min) tHF
it (min)

cc-pVDZ 5188

10–2 11 574 3

3510–3 16 368 6
10–4 24 652 12
10–8 75 446 125

aug-cc-pVDZ 8740

10–2 12 813 8

119110–3 18 587 27
10–4 29 818 61
10–8 90 656 645

C. Hartree–Fock

Systems with several hundred atoms are easily modeled in eT

using Hartree–Fock. In Table X, we present the wall times for cal-
culations on gramicidin A (see Fig. 4) and an amylose chain with 16
glucose units (chemical formula C96H162O81, see Fig. 5). The amy-
lose geometry is taken from Ref. 24. We compare the results and
timings from eT 1.0 and QChem 5.0.11 This comparison is compli-
cated because the accuracy depends on several thresholds apart from
the gradient and energy thresholds, e.g., screening thresholds and
integral accuracy. Therefore, we list the energies and absolute energy
differences along with the timings in Table X. QChem 5.0 outper-
forms eT by about a factor of 2. The energies converge to slightly
different results in the two programs. In the case of amylose, we
find a 2 × 10−7 Eh energy difference using the tightest thresholds
(τSCF = 10−10). Since QChem is a closed source program, we do not
know the reason for the deviation. However, we are able to repro-
duce the eT results for amylose to all digits using tight thresholds in
LSDalton 2018.3

D. Multilevel and multiscale methods

To demonstrate the efficacy of multilevel methods for excita-
tion energies, we consider a system of sulfur dioxide with 21 water
molecules (see Fig. 6). In Table XI, we present different flavors of
multilevel calculations to approximate the two lowest FC-CC2 exci-
tation energies for this system. Three sets of active atoms are defined.
The first set contains sulfur dioxide and nine water molecules;
these atoms determine the active orbitals of the MLHF calculation.
The second set contains sulfur dioxide and five water molecules;
these atoms determine the reduced space coupled cluster calcula-
tions. The third set contains only sulfur dioxide and determines the
CC2 active space in the MLCC2 calculations. The reduced space
FC-CC2 calculations are denoted FC-CC2-in-HF and FC-CC2-in-
MLHF and similarly for the reduced space FC-MLCC2 calcula-
tions. The orbital spaces are partitioned using the Cholesky occupied
orbitals and PAOs for the virtual orbitals. In all calculations, the
deviation with respect to full FC-CC2 is within the expected error
of CC2.75,76

In order to assess the performance of the MLHF implementa-
tion, we compare full HF and MLHF for gramicidin A and amylose.
The active electron densities from the MLHF calculations are shown
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TABLE X. Hartree–Fock/cc-pVDZ calculations on amylose and gramicidin. The total wall time is denoted by t, and τSCF is the Hartree–Fock convergence threshold. We present
timings for eT and QChem along with the computed Hartree–Fock energies (E) and absolute energy differences (|ΔE|) with respect to the calculation with the tightest threshold.
Calculations were performed on two Intel Xeon E5-2699 v4 processors using 44 threads and 1.5 TB shared memory.

eT QChem

τSCF E (Eh) |ΔE| (Eh) t (min) τSCF E (Eh) |ΔE| (Eh) t (min)

Amylose

10–3 −9792.085 129 90 4 × 10−5 21 10–5 −9 792.085 350 39 2 × 10−4 9
10–4 −9792.085 178 33 5 × 10−6 31 10–6 −9 792.085 180 84 7 × 10−6 14
10–5 −9792.085 174 42 7 × 10−7 42 10–7 −9 792.085 171 19 2 × 10−6 19
10–6 −9792.085 173 77 1 × 10−8 60 10–8 −9 792.085 173 23 4 × 10−7 26
10–7 −9792.085 173 76 <1 × 10−8 78 10–9 −9 792.085 173 61 3 × 10−8 33
10–10 −9792.085 173 76 . . . 153 10–10 −9 792.085 173 58 . . . 46

Gramicidin
10–4 −12 383.458 832 54 4 × 10−6 130 10–6 −12 383.458 825 13 1 × 10−5 50
10–5 −12 383.458 836 34 7 × 10−8 198 10–7 −12 383.458 827 10 1 × 10−5 77
10–6 −12 383.458 836 27 . . . 280 10–8 −12 383.458 836 77 . . . 111

FIG. 5. Amylose chain of 16 glucose units. The active
MLHF/cc-pVDZ density is shown.

FIG. 6. SO2 and water. (Left) SO2 and 21
water molecules. (Middle) SO2 and nine
water molecules; these are the HF active
atoms in the MLHF calculations. (Right)
SO2 and five water molecules; these are
the CC active atoms. In the MLCC2 cal-
culations, only SO2 is treated at the CC2
level of theory.

TABLE XI. The two lowest excitation energies (ω1 and ω2) of SO2 with 21 water molecules, calculated with full and
reduced space FC-CC2 and FC-MLCC2 using HF and MLHF reference wave functions. The deviation from full FC-CC2 (Δωi= ωi − ωFC-CC2

i ) is given. We also list the number of occupied (no) and virtual (nv) orbitals treated at the different levels of
theory. There are a total of 121 occupied orbitals and 813 virtual orbitals in the system.

HF CCS CC2 ω1 Δω1 ω2 Δω1

Calculation no nv no nv no nv (eV) (eV) (eV) (eV)

FC-CC2 121 813 . . . . . . 93 813 3.11 . . . 3.39 . . .
FC-CC2-in-HF 121 813 . . . . . . 40 266 3.14 0.03 3.43 0.04
FC-CC2-in-MLHF 75 426 . . . . . . 40 266 3.16 0.05 3.44 0.05
FC-MLCC2 121 813 93 813 14 67 3.18 0.07 3.45 0.06
FC-MLCC2-in-HF 121 813 40 266 14 66 3.18 0.07 3.45 0.06
FC-MLCC2-in-MLHF 75 426 40 266 15 66 3.20 0.09 3.47 0.08
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TABLE XII. Multilevel Hartree–Fock wall times for amylose and gramicidin. tit is the
wall time to construct the Fock matrix. For the calculations with (aug)-cc-pVDZ, aug-
cc-pVDZ is used on the active atoms and cc-pVDZ for the rest. The total number
of AOs and the active MOs is labeled nAO and nactive

MO , respectively. Thresholds for
Coulomb and exchange are set to 10−12 and 10−10, respectively, and the integral
cutoff is set to 10−12. Calculations were performed on two Intel Xeon E5-2699 v4
processors using 44 threads and 1.5 TB shared memory.

HF MLHF

Basis nAO tit (min) nactive
MO tit (min)

Amylose cc-pVDZ 3288 8 335 1
(aug)-cc-pVDZ 3480 11 552 4

Gramicidin cc-pVDZ 5188 35 546 11
(aug)-cc-pVDZ 5506 69 942 50

in Figs. 4 and 5. The plots were generated using UCSF Chimera.82

Cholesky orbitals were used to partition the occupied space, and
PAOs were used for the virtual space. We present the timings in
Table XII. For amylose, the iteration times are reduced significantly
with MLHF: by a factor of 8 when cc-pVDZ is used on all atoms

and a factor of 3 when aug-cc-pVDZ is used on the active atoms.
In contrast, only a factor of 3 was reported by Sæther et al.24 in
the cc-pVDZ case. The iteration time is also reduced by a factor of
8 for amylose/cc-pVDZ (titeration = 1 m, nactive

MO = 318) when using
Cholesky virtuals (as in Ref. 24) instead of PAOs. The savings for
amylose reflect the small active region as well as the linear struc-
ture of the chain. Savings are less significant for the gramicidin
system, where the MLHF iteration time is a third of the HF itera-
tion time for cc-pVDZ, but only about two thirds when the active
atoms are described using aug-cc-pVDZ. The smaller savings reflect
the relatively large active region and the more compact shape of the
gramicidin system.

For systems in solution, electronic spectra can be calculated
using QM/MM or QM/PCM. Paranitroaniline (PNA) has an exper-
imental vacuum-to-water solvatochromism of about 1 eV.87 For
QM/PCM, we use two different atomic radii, UFF85 (QM/PCMc)
and Bondi86 (QM/PCMd), and the dielectric permittivity of water
was set to ε = 78.39. For QM/MM, 64 snapshots were extracted
from a classical molecular dynamics simulation88 [see Fig. 7(a) for
an example structure]. The UV/vis spectra were then computed by
treating PNA at the CC2/aug-cc-pVDZ level and modeling the water
using an FQ force field. Here, we present results using two differ-
ent FQ parameterizations: QM/FQa from Ref. 83 and QM/FQb from

FIG. 7. (a) Schematic representation of a random snap-
shot of PNA in aqueous solution. (b) and (c) UV/vis spectra
of PNA calculated at the CC2/aug-cc-pVDZ level of the-
ory with an aqueous solution described at the PCM or FQ
level of theory. (b) QM/FQ raw data (sticks) together with
their Gaussian convolution (FWHM = 0.3 eV). (c) QM/PCM
(top) and QM/FQ (bottom) spectra in aqueous solution. A
gas phase CC2/aug-cc-pVDZ reference spectrum is also
reported (black). For QM/FQa, the FQ parameterization is
from Ref. 83, and for QM/FQb, the parameterization is from
Ref. 84. In QM/FQc, the PCM cavity is constructed using
the UFF radii,85 and in QM/FQd, it is constructed using the
Bondi radii.86
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TABLE XIII. The first vertical excitation energy of PNA in vacuum (ωv) and in aque-
ous solution (ωs), as well as water-to-vacuum solvatochromatic shifts (Δω). PNA is
treated at the CC2/aug-cc-pVDZ level of theory, and the solution is described with
PCM or FQ. 68% confidence intervals for excitation energies are also reported for
QM/FQ, calculated as σ/√N, where σ is the standard deviation and N is the number
of the snapshots used to obtain the average property. Experimental data are taken
from Ref. 87.

ωv (eV) ωs (eV) Δω (eV)

CC2 4.38 . . . . . .
CC2/FQa . . . 3.88±0.01 0.50±0.01
CC2/FQb . . . 3.38±0.01 1.00±0.01
CC2/PCMc . . . 3.86 0.52
CC2/PCMd . . . 3.76 0.62
Expt.e 4.25 3.26 0.99

aFQ parameterization taken from Ref. 83.
bFQ parameterization taken from Ref. 84.
cPCM cavity constructed by exploiting UFF radii.85

dPCM cavity constructed by exploiting the Bondi radii.86

eReference 87.

Ref. 84 (see the supplementary material for additional computa-
tional details).

The spectra calculated using QM/FQ are presented in Fig. 7(b).
The results for individual snapshots are presented as sticks together
with their Gaussian convolution. As can be seen from Fig. 7,
QM/FQb results in a greater spread in the excitation energies. This

is probably due to the larger molecular dipole moments of the water
molecules in this parameterization.88,89

In Fig. 7(c), the convoluted spectra calculated using QM/PCMc

and QM/PCMd (top), and QM/FQa and QM/FQb (bottom), are pre-
sented with their vacuum counterparts. The excitation energies are
also given in Table XIII together with the experimental data from
Ref. 87. For QM/FQ, we also report 68% confidence intervals for
the calculated excitation energies. QM/FQb reproduces the experi-
mental solvatochromism, while the other approaches give errors of
40%–50%.

E. Modeling spectroscopies

The spectroscopic properties can also be modeled with the
Lanczos method or with real-time propagation of the coupled
cluster wave function. In Fig. 8, we show CCSD/aug-cc-pCVDZ
UV/vis absorption spectra of H2O,90 calculated using the Davidson
(top) and asymmetric Lanczos (bottom) algorithms. Note that we
have artificially extended the spectra beyond the ionization poten-
tial (12.3 eV IP-CCSD/aug-cc-pCVDZ) to illustrate convergence
behavior. With the Lanczos algorithm, the low energy part of the
spectrum converges with a smaller reduced space than the high
energy part.47

We have also generated oxygen edge x-ray absorption spectra
using the Davidson and Lanczos algorithms with CVS projection
(see Fig. 9. We see the same overall behavior as in Fig. 8.

Absorption spectra can also be obtained from real-time
propagation of the coupled cluster wave function (see Fig. 10
for UV/vis and oxygen edge x-ray absorption spectra; see the

FIG. 8. Water CCSD/aug-cc-pCVDZ
UV/vis absorption spectrum. Lorentzian
broadening (0.02 Eh FWHM) has been
applied to the stick spectra. The top plot
shows the spectrum obtained using the
Davidson. The spectrum in the bottom
plot is from Lanczos calculations with
chain lengths 100 (red), 200 (magenta),
and 500 (blue).
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FIG. 9. Water CCSD/CVS/aug-cc-
pCVDZ x-ray absorption spectrum.
Lorentzian broadening (0.02 Eh FWHM)
has been applied to the stick spectra.
The top plot shows the spectrum
obtained using the Davidson. The
spectrum in the bottom plot is from
Lanczos calculations with chain lengths
50 (red), 100 (magenta), and 500 (blue).

FIG. 10. Water UV and x-ray CCSD
absorption spectra obtained using David-
son (CVS/aug-cc-pCVDZ for x ray and
aug-cc-pVDZ for UV) and real-time prop-
agation (aug-cc-pCVDZ for x ray and
aug-cc-pVDZ for UV). The top and bot-
tom plots show the simulated UV and
x-ray spectra, respectively. The David-
son spectra were produced by apply-
ing Lorentzian broadening to the stick
spectra (0.0025 Eh FWHM). Intensities
from the time-dependent simulation have
been scaled so that the intensity of the
first peak matches the EOM oscillator
strength.

supplementary material for computational details). The first peak
in both plots has been scaled to match the intensity obtained
using Davidson. The position of the peaks are the same with both
approaches, but the intensities differ because we specified pulses
with frequency distributions centered on the first excitation energy.

IV. CONCLUDING REMARKS

eT 1.0 is an optimized open source electronic structure pro-
gram. Several features are worth emphasizing. To the best of our
knowledge, our CC3 implementation is the fastest for calculating
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ground and excited state energies and EOM oscillator strengths.
The low memory CC2 code has memory and disk requirements of
order O(n2

MO) and O(n3
MO), respectively, allowing us to treat sys-

tems with thousands of basis functions. At the core of our program
is the Cholesky decomposition of the electron repulsion integral
matrix; our implementation is faster and less storage intensive than
that of any other program. Exciting new developments are also part
of eT . It features the only spin adapted closed shell implementa-
tion of time-dependent coupled cluster theory. Furthermore, the
MLHF and MLCC2 methods extend the treatable system size with-
out sacrificing accuracy for intensive properties such as excitation
energies.

The eT source code is written in modern object oriented For-
tran, making it easy to expand and contribute to the program. It
is freely available on GitLab,91 and the manual can be found at
www.etprogram.org. We will continue to expand the capabilities of
eT , focusing on molecular properties and multilevel methods. We
believe that the program will be useful for the quantum chemistry
community, both as a development platform and for production
calculations.

SUPPLEMENTARY MATERIAL

See the supplementary material for details regarding QM/MM
calculations as well as specifications for the time-dependent CCSD
propagation calculations.
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We present a spin-adapted time-dependent coupled-cluster singles and doubles model for the molecular
response to a sequence of ultrashort laser pulses. The implementation is used to calculate the electronic response
to a valence-exciting pump pulse, and a subsequent core-exciting probe pulse. We assess the accuracy of the
integration procedures used in solving the dynamic coupled-cluster equations, in order to find a compromise
between computational cost and accuracy. The transient absorption spectrum of lithium fluoride is calculated for
various delays of the probe pulse with respect to the pump pulse. We observe that the transient probe absorption
oscillates with the pump-probe delay, an effect that is attributed to the interference of states in the pump-induced
superposition.
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I. INTRODUCTION

Recent advances in the field of ultrafast pulse shaping have
enabled the generation of broadband few- to subfemtosecond
laser pulses in the near-infrared to vacuum ultraviolet spectral
ranges [1–3]. These ultrashort pulses open the possibility to
study valence electron dynamics of molecules, on time scales
shorter than times characteristic for nuclear dynamics. Also,
the generation of intense isolated soft-x-ray free-electron laser
pulses with subfemtosecond temporal widths has recently
been achieved [4]. This paves the way for attosecond-resolved
core-level spectroscopy at high intensities and repetition rates.

Core excitations are typically local to specific atoms,
and are sensitive to their electronic environment [5]. The
associated attosecond-resolved transient absorption can thus
be used to observe superpositions of valence-excited states
from the point of view of a specific atomic site, provided that
the superposition is of a certain degree of coherence [6]. In
the short-pulse limit, the energy-integrated absorption of a
core-exciting pulse is indicative of the electronic hole density
in the valence region around the nucleus of the specific
atom [7,8]. For subfemtosecond pulses outside this limit,
the relationship between the pump-induced charge migration
and the resultant transient absorption of the probe pulse is
more complex. Thus more complete theoretical models are
necessary for guiding the pump-probe experiments and for
interpreting ensuing results.

Provided that the transient absorption of a probe pulse
can be modeled and understood, the valence-level pump and
subsequent core-level probe by ultrafast pulses can then be
used to investigate the valence electron response of molecules
[7,8]. A refined conceptual understanding of this response
will shed light on processes occurring in nature, such as
photosynthesis and eyesight, and be used for the advance-
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ment of technological applications, such as photovoltaics and
photocatalysis.

Nonperturbative modeling of electron dynamics for ultra-
fast laser-matter interactions offers certain advantages: the
models are applicable for a large range of field intensities [9],
and the interaction between a molecule and ultrashort pulses
resembles experimental setups in a more natural way.

Electron correlation is often important for a qualitative
and quantitative description of many-electron systems. The
full configuration interaction (FCI) model is computationally
impracticable in most situations [10], and thus we advocate
the use of coupled-cluster theory in this paper. Other meth-
ods have been used to describe electron dynamics, such as
real-time density-functional theory (DFT) [11,12]. However,
DFT methods are limited by the accuracy of the exchange-
correlation functionals, and thus could lead to misinterpre-
tations [13]. Several implementations of real-time coupled-
cluster models have been developed in the past, includ-
ing approaches based on the time-dependent coupled-cluster
(TDCC) equations derived by Koch and Jørgensen [14–17],
and approaches based on equation of motion (EOM) theory
[9,18–24]. These models offer an accurate description of
dynamic correlation, and static correlation in excited states.
Needless to say, the coupled-cluster models are also inherently
size extensive and intensive [25]. This while keeping the
polynomial scaling of the computational costs with respect to
system size.

A spin-unrestricted time-dependent coupled-cluster singles
and doubles (TDCCSD) model was recently implemented by
Pedersen and Kvaal, and used to calculate the absorption
spectra of helium and beryllium irradiated by ultrashort pulses
at various intensities [26]. Even above the perturbative limit,
the TDCCSD spectra show promising correspondence with
spectra calculated with time-dependent FCI. The authors also
noted that the Lagrangian time-dependent equations have a
Hamiltonian structure, well suited for the use of symplectic
integrators.

In this work, we will continue the discussion of TDCC
models, by presenting a spin-adapted TDCC model of
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ultrafast transient absorption spectroscopy. Applied to closed-
shell molecules interacting with laser pulses within the dipole
approximation, this model offers equivalent results as its spin-
unrestricted counterparts, with lower computational costs.
The reduced cost implies that larger molecules can be studied
within this model, making progress towards the accurate
modeling of correlated dynamics in interesting photoactive
molecules.

This paper is organized as follows. In Sec. II we present
the theory underlying the TDCC model and discuss a gener-
alization of the Ehrenfest theorem in this framework. We also
describe how absorption spectra are calculated. In Sec. III, we
optimize the different parameters used in TDCC calculations,
and illustrate this for the LiH molecule. The model is applied
to transient absorption of the LiF molecule. Final remarks are
given in Sec. IV.

II. THEORY

A. Spin-adapted coupled-cluster method

An accurate account of the electron correlation in
molecules is offered by coupled-cluster models, in which the
time-independent wave function can be written as

|CC〉 = eT |HF〉, (1)

where |HF〉 is the closed-shell Hartree-Fock reference de-
terminant and T is the spin-adapted cluster operator. The
cluster operator is defined as a linear combination of singlet
excitation operators τμ,

T =
∑
μ>0

tμτμ. (2)

The expansion coefficients tμ are referred to as the ampli-
tudes. The operator T is usually truncated at a given level
of excitation, for instance, after single excitations gives the
coupled-cluster singles (CCS) model, after double excitations
gives the coupled-cluster singles and doubles model (CCSD),
and so on.

In the Lagrangian formulation of coupled-cluster theory,
which satisfies the Hellman-Feynman theorem, the dual state
corresponding to the |CC〉 state is [27]

〈�| =
(
〈HF| +

∑
ν>0

t̄ν〈ν|
)

e−T , (3)

where the linear expansion coefficients t̄ν will be referred
to as the (Lagrange) multipliers. The level of excitations is
truncated at the same level as the excitations in the cluster
operator. We note that the |CC〉 state and its dual state 〈�| are
biorthonormal, 〈�|CC〉 = 1.

In this formulation, the expectation values of operators are
given as

〈A〉 = 〈�|A|CC〉

=
(
〈HF| +

∑
ν>0

t̄ν〈ν|
)

Ā|HF〉, (4)

where the similarity transformed operator is defined as

Ā = e−T A eT . (5)

The amplitudes and multipliers that parametrize the ground
state are determined from [28]

〈μ|H̄ |HF〉 = 0, (6)

〈�|[H, τμ]|CC〉 = 0, (7)

and the corresponding ground-state energy ECC is given by

ECC = 〈�|H |CC〉
= 〈HF|H |CC〉, (8)

where we have used Eq. (6) to eliminate the multiplier
contribution.

B. Time-dependent coupled-cluster methods

In order to allow for time dependence in the description,
the coupled-cluster state is parametrized as [14]

|CC(t )〉 = eT (t )|HF〉eiε(t ), (9)

and the corresponding dual state as

〈�(t )| =
(
〈HF| +

∑
ν>0

t̄ν (t )〈ν|
)

e−T (t )e−iε(t ). (10)

The amplitudes tμ and multipliers t̄μ now explicitly depend
on time, while the excitation operators τμ are still time inde-
pendent. An overall time-dependent phase ε(t ) has also been
introduced.

The equation describing the time evolution of the ampli-
tudes tμ(t ) is obtained from the time-dependent Schrödinger
equation for the |CC〉 state, by projecting onto the corre-
sponding excited determinant 〈μ|. This gives the differential
equation

dtμ(t )

dt
= −i〈μ|H̄ (t )|HF〉. (11)

The equation describing the time evolution of the multi-
pliers t̄μ(t ) is obtained by projecting the time-dependent
Schrödinger equation for the dual state 〈�(t )| onto the excited
determinants |ν〉, giving the differential equation

dt̄ν (t )

dt
= i

(
〈HF| +

∑
μ>0

t̄μ(t )〈μ|
)

[H̄ (t ), τν]|HF〉. (12)

The equation for the phase ε(t ) is determined by projection
onto the |HF〉 state

dε(t )

dt
= −〈HF|H̄ (t )|HF〉. (13)

Detailed derivations can be found in Ref. [14]. In this frame-
work, the time-dependent expectation value of a generic oper-
ator A(t ) is defined as

〈A(t )〉 = 〈�(t )|A(t )|CC(t )〉, (14)

where 〈�(t )|CC(t )〉 = 1.

C. Generalized Ehrenfest theorem and conserved
quantities in TDCC

For ease of notation, we suppress the explicit time de-
pendence in this section. Ideally, observables calculated in
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truncated TDCC should have the same properties as in the
untruncated case, in order to give a faithful representation of
the physical system. In this context, we derive a generalized
Ehrenfest theorem for truncated TDCC (the detailed deriva-
tion is given in Appendix A). We obtain the equation

d

dt
〈�′|A|CC〉 = i〈�′|H eT ′

Pne−T ′
A|CC〉

− i〈�′|A eT Pne−T H |CC〉 + 〈�′|∂A

∂t
|CC〉,

(15)

where the left 〈�′| state and the right |CC〉 state are indepen-
dent solutions to the projected time-dependent Schrödinger
equation. The projection operator Pn of maximum excitation
level n is defined as

Pn = |HF〉〈HF| +
n∑

μ>0

|μ〉〈μ|, (16)

and in untruncated TDCC, Pn = 1. From Eq. (15) we can see
that, in untruncated TDCC,

d

dt
〈�′|A|CC〉 = i〈�′|[H, A]|CC〉 + 〈�′|∂A

∂t
|CC〉, (17)

regardless of the initial values of the amplitudes, multipliers,
and phases.

In truncated TDCC, the projection operator cannot in gen-
eral be replaced by the identity operator, and hence Eq. (15)
cannot be simplified further. Still, some conservation laws
from untruncated TDCC apply under certain constraints: we
see from (15) that the Hamiltonian matrix element 〈�′|H |CC〉
is conserved for a time-independent Hamiltonian operator as
long as T ′ = T , regardless of the initial values of the multi-
pliers and phases. The overlap matrix element 〈�′|1|CC〉 is
also conserved for T ′ = T , since exp(T )Pn exp(−T )1|CC〉 =
|CC〉 and 〈�′|T ′=T 1 exp(T )Pn exp(−T ) = 〈�′|T ′=T . In con-
clusion, we note the energy and overlap conservation for a
time-independent Hamiltonian in untruncated TDCC, and in
truncated TDCC for T ′ = T .

D. Interaction with an external electromagnetic field

In the semiclassical approximation, the electronic Hamil-
tonian for a molecule interacting with an external electromag-
netic field can be written as

H (t ) = H0 + V (t ), (18)

where H0 is the time-independent electronic Hamiltonian
and V (t ) is the operator describing the interaction with
the external field. We choose to express the interaction in
the length gauge and dipole approximation, meaning that the
electromagnetic field is represented by an electric field,

V (t ) = −d · E (t ), (19)

where d is the electric dipole moment operator. Since this
operator is a one-electron operator, it can also be expressed in
terms of the molecular-orbital (MO) dipole moment integrals
dpq and one-electron singlet excitation operators Epq,

d =
∑

pq

dpqEpq. (20)

Since electric fields are additive, the external electric field
E (t ) can be written as a linear combination of individual laser
pulses,

E (t ) =
∑

n

E0n cos[ω0n(t − t0n)] fn(t ), (21)

where E0n is the peak electric field of pulse n in its polariza-
tion direction, ω0n the carrier (angular) frequency and t0n the
central time of the pulse, and fn(t ) an envelope function that
determines its shape. A commonly used family of envelopes
fn(t ), that resemble physical laser intensity profiles, are the
Gaussian functions. Since Gaussian functions have infinite
support, we choose to set them to zero at a finite number N
of root-mean-square (rms) widths σn outside the central time,
i.e.,

fn(t ) =
{

e−(t−t0n )2/(2σ 2
n ), an � t � bn,

0, otherwise,
(22)

where an = t0n − Nσn and bn = t0n + Nσn. In addition to
resembling physical intensity profiles, a useful feature of
Gaussian envelopes is that they give pulses with Gaussian
frequency distributions. Hence these pulses can offer a good
compromise between temporal precision and spectral nar-
rowness. This is useful for producing temporally precise
electronic transitions within the molecule, while keeping the
probability of ionization low.

E. Frequency-resolved transient absorption

Following the procedure of [29], the energy absorbed
during the interaction with the external electromagnetic field
can be given by

	E =
∫ ∞

−∞

dE (t )

dt
dt . (23)

The time derivative of the expectation value of the Hamilto-
nian in Eq. (18) can be found through Eq. (15):

dE (t )

dt
= d

dt
〈�(t )|H (t )|CC(t )〉

= 〈�(t )|∂H (t )

∂t
|CC(t ) = −d(t ) · ∂E (t )

∂t
, (24)

where the TDCC dipole moment expectation value is given by

d(t ) = 〈�(t )|d|CC(t )〉. (25)

The energy exchanged between the electromagnetic field and
the molecule is thus given by

	E = −
∫ ∞

−∞
d(t ) · ∂E (t )

∂t
dt . (26)

Equation (26) can be frequency resolved by inserting the
relations between the components di(t ) and Ei(t ) and their
Fourier transforms, d̃i(ω) and Ẽi(ω). We use the following
convention:

f (t ) = 1√
2π

∫ ∞

−∞
f̃ (ω)eiωt dω, (27)

f̃ (ω) = 1√
2π

∫ ∞

−∞
f (t )e−iωt dt . (28)
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After inserting the relations, the expression

	E =
∫ ∞

0
ωS(ω)dω (29)

is obtained, where

S(ω) = −2 Im[̃d(ω) · Ẽ∗
(ω)], ω > 0. (30)

The response function S(ω) has the opposite sign as in [29],
due to different Fourier transform conventions. It represents
the absorption per unit frequency at a given frequency, so that
positive (negative) ωS(ω) equals the amount of energy gained
(lost) by the molecule per unit frequency at ω [29].

The TDCC dipole moment d(t ) can be found from Eq. (14)

d(t ) =
∑

pq

〈�(t )|Epq|CC(t )〉dpq

=
(
〈HF| +

∑
μ>0

t̄μ(t )〈μ|
)

Ēpq(t )|HF〉dpq

=
∑

pq

Dpq(t )dpq,

(31)

where Dpq(t ) is an element of the standard coupled-cluster
one-electron density matrix, which can be calculated given the
time-dependent amplitudes and multipliers.

F. Initial value problem

In order to calculate the time-dependent amplitudes and
multipliers for the system represented by the Hamiltonian in
Eq. (18), the system is prepared in the ground state at t = −T
(before the interaction). The time-dependent amplitudes and
multipliers are then propagated by integration of Eqs. (11)
and (12), until t = T (after the interaction). This is done
using Runge-Kutta methods (a general introduction to these
methods is given in Appendix B). Once the time-dependent
amplitudes and multipliers are calculated, they can be used to
calculate evenly sampled values of the TDCC dipole moment
with Eq. (31).

The main Runge-Kutta method used for integration is the
explicit Runge-Kutta (ERK) method known as RK4, and
referred to as “the best-known fourth-order four-stage ERK
method” in [30]. In many cases, this method gives a good
compromise between accuracy and the number of evaluations
for each time step.

The performance of two methods in the family of ν-
stage 2νth-order implicit Runge-Kutta (IRK) methods, known
as Gauss-Legendre methods, is also assessed. An interest-
ing property of these methods is that they are symplec-
tic, meaning that they often perform well with regards to
preserving the energy expectation value of noninteracting
Hamiltonian systems. The application of these methods to
TDCC methods was discussed in greater detail in the work
by Pedersen and Kvaal [26]. The Gauss-Legendre methods
that will be considered here are the two-stage fourth-order
Gauss-Legendre method (GL4) and the three-stage sixth-
order Gauss-Legendre method (GL6).

G. Discrete Fourier transformation of TDCC dipole moment
and electric field

After the dipole moment and electric field have been calcu-
lated in [−T, T ], a discrete approximation of d̃i(ω) and Ẽi(ω)
can be found from doing the discrete Fourier transform of the
time series.

Assuming that the finite and discrete time series are sam-
pled from infinitely extending analytic dipole moment and
electric-field functions, the time series can equally be repre-
sented as the analytic functions modulated by the rectangular
window function,

fwR (t ) = f (t )wR(t ), (32)

sampled in [−T, T ], where the rectangular window function

wR(t ) =
{

1, |t | � T,

0, otherwise. (33)

Since the Fourier transform of a windowed function is equal to
the convolution of the Fourier transform of the function with
the Fourier transform of the window function [31],

f̃w(ω) = f̃ (ω) ∗ w̃(ω), (34)

the spectral leakage of the peaks in the finite Fourier spectrum
will be related to the Fourier transform of the rectangular
window function. In order to reduce the intensity of sidelobes
of peaks in the Fourier spectrum [31], the rectangular window
can be replaced with a Hann window, by multiplying the
sampled values with the Hann function,

wH (t ) = cos2

(
πt

T

)
, (35)

before doing the discrete Fourier transform.

III. RESULTS AND DISCUSSION

A. Convergence of LiH pump-probe absorption spectra

In the following, we investigate the convergence properties
of the spin-adapted TDCC model of molecular ultrafast pump-
probe absorption. The convergence will be assessed with
respect to the individual variation of several parameters: the
basis set, the size of the time steps, and the integration method.
The TDCC method was implemented in the recently released
eT program [32]. This program is used for all reported com-
putations. Unit conversions are done from Hartree atomic
units using the 2018 CODATA recommended values [33]. All
reported calculations are run on a two-socked node equipped
with Intel Xeon-Gold 615 22.1 GHz processors and 1.5 TB of
memory.

The higher level coupled-cluster methods scale rapidly
with the size of the system, and quickly reach the limits
of practicability. Therefore, we have chosen lithium hydride
(LiH) for the convergence studies. This serves as an ele-
mentary example of a closed-shell molecule with atoms of
different core excitation energies. The electronic charge can
migrate between the two atoms, making it an interesting case
for examination by pump-probe spectroscopy.

The lithium atom is placed at the origin, and the hydrogen
atom at −1.594 913 18 Å along the z axis, corresponding to
the experimentally measured equilibrium bond length of LiH
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TABLE I. LiH and LiF pump and probe pulse parameters. Gaus-
sian rms width σ , carrier frequency ω0, peak electric-field strength
|E0|, and the nonperturbative intensity parameter z0 = |E0|2/(4ω3

0 )
[34] for the carrier waves. A Gaussian rms width of 20 a.u. corre-
sponds to a field strength (intensity) full width at half maximum
of 1.139 fs (805.5 as) and 10 a.u to a full width at half maximum
of 569.6 as (402.8 as). From the relation S0 = |E0|2/Z0 (SI units),
where Z0 is the impedance of free space, a peak electric-field strength
of 0.01 a.u. corresponds to a peak intensity S0 of 7.019 × 1012

W/cm2, and 0.1 a.u. to a peak intensity of 7.019 × 1014 W/cm2. The
perturbation limit can be taken to be the intensity where z0 = 1 for
a given carrier frequency [34]. Note that z0 � 1 for all pulses, indi-
cating that the interactions also could be described with perturbative
approaches.

σ (a.u.) ω0 (eV) |E0| (a.u.) z0

LiH pump 20 3.552 47 0.01 1.12 × 10−2

LiH probe 10 57.6527 0.1 2.63 × 10−4

LiF pump 20 6.448 01 0.01 1.88 × 10−3

LiF probe 10 688.018 0.1 1.55 × 10−7

[35]. Gaussian envelopes are used for the pump and probe
pulses, which are polarized in the z direction. The electric
fields of each pulse are temporally truncated at eight rms
widths σ from the central time, and thus nonzero only inside
this interval [see Eq. (22)]. The carrier frequency of the pump
pulse corresponds to the first LiH valence excitation energy
and the carrier frequency of the probe pulse to the first LiH
K-edge excitation energy. These excitation energies are cal-
culated using EOM-CCSD. The core excitations are obtained
within the core-valence separation (CVS) approximation [36].
The parameters of the pulses are shown in Table I. As the
Gaussian envelopes give the pulses a frequency content dis-
tributed around the central frequencies, the pump and probe
pulses will induce excitations in the valence and core regions,
respectively.

The pump pulse is given a central time of t = −40 a.u.

and the probe a central time of t = 0 a.u. The time-dependent
dipole moment and electric field are calculated every 0.1 a.u.

in the [−5000 a.u., 5000 a.u.] interval. Since the system re-
mains in the ground state until the onset of the truncated
pump pulse—with the ground-state dipole moment—the in-
teraction with the pulses only needs to be calculated in
[−200 a.u., 5000 a.u.]. Subsequently, the Hann windowed
components of the dipole moment and electric field are
discrete Fourier transformed, and the transient absorption is
calculated using Eq. (30).

We use the correlation-consistent basis sets of Dunning
et al. (cc-pVXZ, X = D, T) [37] that are suitable for de-
scribing valence correlation effects in molecules. In some
of the calculations, the basis sets are augmented by diffuse
functions (denoted by aug-) and/or functions describing core
correlation (denoted by C) [38]. From now on, we will use a
C in round brackets to indicate that core correlation functions
are added to the basis set of the heaviest atom in the molecule.

The individual variation of the calculation parameters
is done with respect to a common reference: TDCCSD/

aug-cc-p(C)VDZ, and integrated with RK4 with 0.005 a.u.
time steps. This basis set gives two occupied and 34 virtual

FIG. 1. Normalized reference LiH pump-probe absorption,
S′(ω), as a function of energy. The time-dependent dipole moment
is calculated using TDCCSD/aug-cc-p(C)VDZ, and integrated with
RK4 with 0.005 a.u. time steps.

MOs, and hence 4828 time-dependent parameters. The re-
ported calculation uses around 1 GB of memory and 0.12 s
wall time per time step on eight cores, and 0.15 s per time step
on four cores. The unnormalized reference absorption Sref(ω)
is used to calculate the normalization factor

Nref = 1

maxω |Sref(ω)| . (36)

This factor is used to normalize all the absorption spectra of
the following LiH calculations, by means of

S′(ω) = NrefS(ω), (37)

where S(ω) is calculated with the parameters in question. The
normalized deviation of S′(ω) from a more accurate result
S′

acc(ω) is calculated as

D′(ω) = |S′(ω) − S′
acc(ω)|. (38)

The reference absorption spectrum, normalized according
to Eq. (37), is shown in Fig. 1. We observe absorption in
two energy regions: one corresponding to the valence-exciting
pump pulse and the other to the core-exciting probe pulse.

1. TDCCS and TDCCSD

In Fig. 2, the normalized reference TDCCSD spectrum
is shown together with the normalized time-dependent CCS
(TDCCS) spectrum. The two spectra display substantial dif-
ferences in intensities and positions of the peaks in both
the pump and the probe absorption regions. Since TDCCSD
includes double excitations, while TDCCS does not, this
demonstrates that higher-order excitations are needed to ob-
tain qualitatively correct results for the LiH model system.

2. Basis set

In Fig. 3, the normalized reference spectrum is shown
together with normalized spectra calculated using cc-pVDZ,
cc-p(C)VDZ, and aug-cc-pVDZ. The inclusion of diffuse
functions in the basis sets seems important for representing the
dynamics properly. Increasing the basis set from cc-pVDZ to
aug-cc-pVDZ shifts the peaks in both the pump and the probe
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FIG. 2. Normalized TDCCSD and TDCCS LiH pump and probe
absorption, S′(ω), as a function of energy. Time-dependent dipole
moments are calculated using aug-cc-p(C)VDZ, and integrated with
RK4 with 0.005 a.u. time steps.

absorption regions. This is consistent with the concept of the
pump pulse forcing electrons to the outer valence regions
of the molecule, which is better represented with diffuse
functions.

Furthermore, comparing cc-p(C)VDZ and cc-pVDZ spec-
tra in Fig. 3, we see the importance of the added core corre-
lation functions. As expected, they cause a substantial shift in
the probe absorption peaks, while they are not important for
the pump absorption.

We also performed calculations with cc-pVTZ, cc-
p(C)VTZ, aug-cc-pVTZ, and aug-cc-p(C)VTZ basis sets.
Note that, for the aug-cc-pVTZ and aug-cc-p(C)VTZ spectra,
the time-dependent dipole moments are only calculated in
the [−2500 a.u., 2500 a.u.] interval, in order to reduce com-
putational time. Thus these spectra have a lower resolution
than the others. The normalized spectra are shown together
with the normalized reference spectrum in Fig. 4. Here we
observe that triple zeta functions change the position of the
peaks in the probe absorption region. This indicates that basis
sets larger than aug-cc-p(C)VDZ should be used if precise
peak positions are required, bringing about a substantial in-
crease in the computational costs. The aug-cc-p(C)VDZ basis
set is used as the reference for the other LiH calculations,
as the larger basis sets are too computationally expensive for
practical purposes.

Note that the pulses are not strong enough to induce con-
siderable multiphoton absorption (see Table I). The electrons
should thus primarily be confined to low angular momen-
tum bound states, which are fairly well described with the
aforementioned basis sets. At higher intensities, the results
obtained with these basis sets should deviate further from
the complete basis set limit, as the representation of Rydberg

FIG. 3. Normalized aug-cc-p(C)VDZ, aug-cc-pVDZ,
cc-p(C)VDZ, and cc-pVDZ LiH pump and probe absorption,
S′(ω), as a function of energy. Time-dependent dipole moments are
calculated using TDCCSD, and integrated with RK4 with 0.005 a.u.
time steps.

states and the continuum will be more important [39]. The
results can then be improved by adding suitable functions
to the basis set, for instance, Gaussians optimized for the
representation of the continuum [39,40].

3. Integration

We calculated normalized spectra for 0.125 a.u., 0.025 a.u.,
and 0.001 a.u. time steps. The deviations from the 0.001 a.u.
time step are calculated according to Eq. (38). The results are
shown in Fig. 5. The deviations decrease with the time step
size, indicating that the spectra approach a time step limit.

We further calculated normalized spectra with GL4 and
GL6. The deviations of the RK4 (reference) and GL4 spectra
from the GL6 spectrum are shown in Fig. 6. Although the
TDCC equations have a Hamiltonian structure, the use of
symplectic integrators does not seem to be necessary to cal-
culate accurate spectra for this system, with the applied field
strength. As the three integration methods give comparable
results, we will use RK4 for the other calculations, as this
generally requires fewer evaluations of the TDCC equations
per time step.

B. LiF transient absorption

In this section, variations in molecular absorption caused
by ultrafast charge migration are modeled in the described
pump-probe framework. We consider the lithium fluoride
(LiF) molecule, where the fluorine atom is placed at the origin
and the lithium atom at −1.563 864 13 Å along the z axis. This
corresponds to the experimentally measured equilibrium bond
length of LiF [35]. In order to classify some of the transitions
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FIG. 4. Normalized aug-cc-p(C)VDZ, cc-pVTZ, cc-p(C)VTZ,
aug-cc-pVTZ, and aug-cc-p(C)VTZ LiH pump-probe absorption,
S′(ω), as a function of energy. Time-dependent dipole moments are
calculated using TDCCSD, and integrated with RK4 with 0.005 a.u.
time steps.

involved in the molecular absorption, the first eight valence-
excited and the first eight core-excited states are calculated
using EOM-CCSD/aug-cc-p(C)VDZ. The core excitations
are obtained within the CVS approximation. The molecular
term symbols and excitation energies are given in Table II.

In the TDCC calculations, all probe pulses are z polarized,
and have carrier frequencies corresponding to the first LiF
core excitation energy (see Table II). Central times are chosen
to be 0 a.u., to minimize the effect of the windowing on

FIG. 5. LiH pump-probe absorption. Normalized deviation of the
0.100 a.u., 0.025 a.u., and 0.005 a.u. time step spectra from the
0.001 a.u. time step spectrum, D′(ω), as a function of energy. Time-
dependent dipole moments are calculated using TDCCSD/aug-cc-
p(C)VDZ, and integrated with RK4.

FIG. 6. LiH pump-probe absorption. Normalized deviation of
the RK4 and GL4 spectra from the GL6 spectrum, D′(ω), as a
function of energy. Time-dependent dipole moments are calculated
using TDCCSD/aug-cc-p(C)VDZ, and integrated with 0.005 a.u.
time steps.

the probe absorption. The pump pulses are also z polarized,
and have carrier frequencies corresponding to the first LiF
valence excitation energy (see Table II). The pump pulses
have different central times with respect to the probe pulses,
corresponding to probe delays from 0 a.u. to 240 a.u., in
increments of 5 a.u. Other parameters of the pump and probe
pulses are given in Table I. As for the LiH calculations, the
electric fields of each pulse are temporally truncated at eight
rms widths σ from the central time, and thus nonzero only
inside this interval [see Eq. (22)].

The parameters used for the LiH reference calculation
offered a compromise between computational cost and accu-
racy. For pragmatic reasons, we also use the parameters for all
LiF calculations. The calculations in this section are thus done
using TDCCSD/aug-cc-p(C)VDZ, and integrated with RK4
with 0.005 a.u. time steps. The basis set gives six occupied and
44 virtual MOs, and hence 70488 time-dependent parameters.
The time-dependent dipole moments and electric fields are
calculated every 0.1 a.u. in the [−5000 a.u., 5000 a.u.] inter-
val, where the external field interactions are only calculated
after the onset of the temporally truncated pump pulses. The

TABLE II. Molecular term symbols and ground-state excitation
energies 	E of some excited states of LiF, calculated with the EOM-
CCSD method. Valence-excited states are denoted by a subscript v.
Core-excited states, calculated within the CVS approximation, are
denoted by a subscript c.

State 	E (eV) State 	E (eV)

Av
1� 6.448 01 Ac

1�+ 688.018
Bv

1�+ 6.899 82 Bc
1� 689.462

Cv
1	 8.104 63 Cc

1�+ 690.159
Dv

1�− 8.140 74 Dc
1�+ 691.039

Ev
1�+ 8.511 16 Ec

1� 691.435
Fv

1� 8.589 43 Fc
1�+ 691.625

Gv
1� 8.625 89 Gc

1� 692.917
Hv

1�+ 9.106 55 Hc
1�+ 693.154
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FIG. 7. Normalized LiF pump and probe absorption, S′
pump(ω)

(top) and S′
probe(ω) (bottom), as a function of energy. The most

dominant peaks are identified with ground-state transitions to EOM-
CCSD valence- and core-excited states. Time-dependent dipole mo-
ments are calculated with TDCCSD/aug-cc-p(C)VDZ, integrated
with RK4 with 0.005 a.u. time steps.

reported calculations use around 2 GB of memory and 0.41 s
wall time per time step on 16 cores, and 0.50 s per time step
on eight cores.

In order to assess the relative occupation of the states in the
pump-induced superposition [see Eq. (29)], the normalized
absorption of the pump pulse, centered at 0 a.u., is calculated
using

S′
pump(ω) = NpumpSpump(ω), (39)

where

Npump = 1

maxω |Spump(ω)| . (40)

An analogous procedure is used to obtain the normalized
probe spectrum S′

probe(ω).
The normalized absorption of the pump pulse and of the

probe pulse are plotted in Fig. 7, where the most dominant ab-
sorption peaks are identified using the calculated EOM-CCSD
states (see Table II). The small pump absorption peaks that
lie below the ground-state valence excitation energy gap are
presumably caused by two-photon absorption. The positions
of the other visible peaks in the two spectra fit well with
single-photon EOM-CCSD transitions allowed by symmetry.

The pump-probe absorption S(ω, τ ) is calculated as a
function of the energy, ω, and the delay of the probe pulse
with respect to the pump pulse, τ . In order to directly assess
the change in absorption caused by the interaction with the
pump pulse, the normalized transient absorption

	S′(ω, τ ) = Nprobe	S(ω, τ )

= Nprobe[S(ω, τ ) − Sprobe(ω)] (41)

is calculated for all delays, where Nprobe is the normalization
factor for the probe spectrum. The normalized transient ab-
sorption in the probe absorption region is shown in Fig. 8. The
spectrum features several constant energy peaks that oscillate
with the pump-probe delay. The five peaks that oscillate the

FIG. 8. Normalized LiF transient absorption 	S′(ω, τ ), as a function of energy and pump-probe delay. The five peaks oscillating with
the largest amplitude are identified with EOM-CCSD transitions. Time-dependent dipole moments are calculated using TDCCSD/aug-cc-
p(C)VDZ basis set, integrated with RK4 with 0.005 a.u. time steps.
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FIG. 9. Normalized LiF transient absorption 	S′(ω, τ ) (black
crosses) as a function of pump-probe delay, given at the dis-
crete Fourier transform energies closest to the energies of the
transitions shown to the right. The colored functions in the four
topmost panels are found from least-squares fitting A sin(ωAt +
φA) + C, with fixed values of ωA, to the absorption, in the do-
main [40 a.u., 240 a.u.]. The values of ωA are 6.899 82 eV (red)
8.511 16 eV (blue), 6.899 82 eV (green), and 6.899 82 eV (purple).
The orange function in the bottom panel is found from least-
squares fitting A sin(ωAt + φA) + B sin(ωBt + φB ) + C, with ωA =
6.899 82 eV and ωB = 8.511 16 eV, to the absorption, in the domain
[40 a.u., 240 a.u.].

most with respect to the pump-probe delay are identified using
the states in Table II. Note that, for pump-probe delays shorter
than about 40 a.u., the oscillations of some of the peaks are
rapidly damped as a function of increasing delays. This effect
can be attributed to the decreasing overlap between the pump
and probe pulses. For pump-probe delays longer than about
40 a.u., where the overlap of the pulses can be neglected, the
damping of the oscillations is also negligible.

We note that the excitation by the pump pulse enables
new transitions in the probe absorption region. An illustrative
example is the oscillating peak at around 681.1 eV in Fig. 8.
The energy corresponding to this peak is lower than the lowest
ground-state core excitation energy of 688.018 eV. This peak
is identified as the Ac

1�+–Bv
1�+ transition. Its occurrence

indicates that the pump has generated an electronic hole in
a previously occupied region of the molecule, allowing a
lower-energy core excitation to take place.

In Fig. 9, the normalized transient absorption of the five
peaks identified in Fig. 8 are plotted at the nearest discrete
Fourier-transform energies. Two of these peaks describe tran-
sitions involving the Ac

1�+ state. Beyond the pump-probe
overlap region, the oscillations of these peaks correlate with
the quantum interference of the two probed states, as expected
for the ultrafast high-energy probing of two states in a co-
herent superposition [6]. This since both oscillations can be
fitted with sinusoids with the frequency corresponding to the
Bv

1�+ and X 1�+ energy difference.
Three peaks in Fig. 9 correspond to transitions involving

the Hc
1�+ state. The oscillation of the Hc

1�+–Bv
1�+ peak

correlates well with the quantum interference of the Bv
1�+

and X 1�+ states, as the oscillations are well fitted with
a sinusoid with the frequency corresponding to the energy

difference of these two states. Similarly, the oscillation of the
Hc

1�+–Ev
1�+ peak correlates with the quantum interfer-

ence of the Ev
1�+ and X 1�+ states. Note that the oscilla-

tions of the two peaks are slightly phase shifted with respect
to each other, an effect that may be caused by the difference
in spectral phase of the two corresponding frequencies in the
probe pulse.

The linear combination of two sinusoids is needed to give
a good fit with the oscillation of the Hc

1�+–X 1�+ peak: one
corresponding to the Bv

1�+ and X 1�+ energy difference and
the other corresponding to the Ev

1�+ and X 1�+ energy dif-
ference. Hence the ground state X 1�+ seems to have a similar
probability of interfering with the Bv

1�+ and Ev
1�+ states.

This is reasonable, considering that most of the population
will be left in the ground state after the interaction with the
pump pulse.

IV. CONCLUSION

In this work, a time-dependent coupled-cluster model of
ultrafast pump-probe absorption spectroscopy has been pre-
sented. First, we investigated the convergence of LiH pump-
probe absorption spectra with respect to different calculation
parameters. The deviations related to the integration param-
eters (integration method and time step size) were small in
comparison to other parameter-dependent deviations. As the
computational costs scaled linearly with the time step size, we
chose a time step size that gave a small deviation, 0.005 a.u. In
future works, calculations on larger systems can be facilitated
by the use of larger and adaptive time steps, as the maxi-
mum normalized deviation of the absorption calculated with
0.025 a.u. time steps was only on the order of 1 × 10−4. The
use of symplectic integrators did not seem to be necessary;
hence RK4 was used. Changes in the basis set had a big
impact on the results. As the computational cost scales steeply
with respect to the basis set, TDCCSD/aug-cc-p(C)VDZ was
chosen as a compromise between accuracy and computational
cost.

After using the time-dependent coupled-cluster model to
assess the convergence of LiH spectra, we used the model to
calculate the ultrafast transient absorption in LiF, using the
same parameters. The transient absorption displayed peaks
that oscillate with respect to pump-probe delay, and the os-
cillation frequencies were correlated with the quantum inter-
ference of different states in the pump-induced superposition.

Note that nuclear motion, which has been neglected in the
model, will cause broadening of the spectral peaks [41]. A
natural next step would be to include the nuclear motion to
the model, which for instance can be done using the approach
in [42].
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APPENDIX A: DERIVATION OF GENERALIZED
EHRENFEST THEOREM IN TRUNCATED TDCC

For ease of notation, the time dependence is not written ex-
plicitly in this section. The derivation of Eq. (15) in truncated
TDCC is given here. It makes use of the identity resolution

1 = |HF〉〈HF| +
∑
μ>0

|μ〉〈μ|, (A1)

where the summation is over all the excited determinants.
Sums that are restricted to the excited determinants in the
projection space will be denoted by the upper summation
limit n.

Consider a generic operator A with no parametric time
dependence and two independent solutions to the projected
time-dependent Schrödinger equation, |CC〉 and 〈�′|. The
time derivative of the matrix element 〈�′|A|CC〉 is

d

dt
〈�′|A|CC〉 =

(
d

dt
〈�′|

)
A|CC〉 + 〈�′|∂A

∂t
|CC〉

+ 〈�′|A
(

d

dt
|CC〉

)
. (A2)

Equations (11) and (13) can be used to rewrite the term
containing the time derivative of the |CC〉 state,

〈�′|A
(

d

dt
|CC〉

)
=

n∑
μ>0

〈�′|Aτμ|CC〉dtμ
dt

+ i〈�′|A|CC〉dε

dt

= −i〈�′|A eT Pne−T H |CC〉. (A3)

Equations (11), (12), and (13) can be used to rewrite the
term containing the time derivative of the 〈�′| state,

(
d

dt
〈�′|

)
A|CC〉 =

n∑
μ>0

dt̄ ′
μ

dt
〈μ|e−T ′

e−iε′
A|CC〉

−
n∑

μ>0

〈�′|τμA|CC〉dt ′
μ

dt
− i〈�′|A|CC〉dε′

dt

=
n∑

μ>0

i〈�′|H eT ′ |μ〉〈μ|e−T ′
A|CC〉

−
n∑

μ>0

i〈�′|eT ′
τμH̄ ′|HF〉〈μ|e−T ′

A|CC〉

+
n∑

μ>0

i〈�′|τμA|CC〉〈μ|H̄ ′|HF〉

+ i〈�′|A|CC〉〈HF|H̄ ′|HF〉. (A4)

The right-hand side of Eq. (A1) is inserted between τμ and H̄ ′
in the second term, giving

(
d

dt
〈�′|

)
A|CC〉

=
n∑

μ>0

i〈�′|H eT ′ |μ〉〈μ|e−T ′
A|CC〉

−
n∑

μ>0

i〈�′|eT ′ |μ〉〈HF|H̄ ′|HF〉〈μ|e−T ′
A|CC〉

−
n∑

μ>0

∑
ν>0

i〈�′|eT ′
τμ|ν〉〈ν|H̄ ′|HF〉〈μ|e−T ′

A|CC〉

+
n∑

μ>0

i〈�′|τμA|CC〉〈μ|H̄ ′|HF〉

+ i〈�′|A|CC〉〈HF|H̄ ′|HF〉

=
n∑

μ>0

i〈�′|H eT ′ |μ〉〈μ|e−T ′
A|CC〉

−
∑
μ>0

i〈�′|eT ′ |μ〉〈μ|e−T ′
A|CC〉〈HF|H̄ ′|HF〉

−
n∑

ν>0

∑
μ>0

i〈�′|eT ′
τν |μ〉〈μ|e−T ′

A|CC〉〈ν|H̄ ′|HF〉

+
n∑

μ>0

i〈�′|τμA|CC〉〈μ|H̄ ′|HF〉

+ i〈�′|A|CC〉〈HF|H̄ ′|HF〉. (A5)

The factors
∑

μ>0 |μ〉〈μ| in the second and third terms are
replaced by using Eq. (A1), with |HF〉〈HF| subtracted from
both sides of the equation, giving

(
d

dt
〈�′|

)
A|CC〉

=
n∑

μ>0

i〈�′|HeT ′ |μ〉〈μ|e−T ′
A|CC〉

+ i〈�′|eT ′ |HF〉〈HF|e−T ′
A|CC〉〈HF|H̄ ′|HF〉

+
n∑

ν>0

i〈�′|eT ′ |ν〉〈HF|e−T ′
A|CC〉〈ν|H̄ ′|HF〉

=
n∑

μ>0

i〈�′|H eT ′ |μ〉〈μ|e−T ′
A|CC〉

+ i〈�′|eT ′ |HF〉〈HF|H̄ ′|HF〉〈HF|e−T ′
A|CC〉

+
∑
ν>0

i〈�′|eT ′ |ν〉〈ν|H̄ ′|HF〉〈HF|e−T ′
A|CC〉

= i〈�′|H eT ′
Pne−T ′

A|CC〉, (A6)
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where the definition of Pn is given in Eq. (16). Equations (A3)
and (A6) are inserted into Eq. (A2), giving the desired result:

d

dt
〈�′|A|CC〉 = i〈�′|H eT ′

Pne−T ′
A|CC〉

− i〈�′|A eT Pne−T H |CC〉

+ 〈�′|∂A

∂t
|CC〉. (A7)

APPENDIX B: RUNGE-KUTTA METHODS

The commonly used one-step integration methods known
as Runge-Kutta methods are introduced below in the notation
of [30].

Given the following Cauchy problem:

dy(t )

dt
= f (t, y(t )), t � t0, y(t0) = y0, (B1)

we can find a numerical approximation of the solution y(t )
by the use of a ν-stage Runge-Kutta method, which can be
written in the form

yn+1 = yn + h
ν∑

j=1

b jf (tn + c jh, ξ j ), (B2)

where

ξ j = yn + h
ν∑

i=1

a jif (tn + cih, ξi ), j = 1, . . . , ν. (B3)

Here, a ji, b j , and c j are method specific coefficients, where
a ji and c j need to satisfy the condition

ν∑
j=1

a ji = c j, j = 1, . . . , ν (B4)

to obtain nontrivial orders of integration. In explicit Runge-
Kutta (ERK) methods, the matrix A = (aji ) j,i=1,...,ν is strictly
lower triangular. In these methods, ξ j are explicitly given as a
function of ξ j−1, . . . , ξ1.

In the cases where the matrix A is not strictly lower
triangular, ξ j may also depend on ξ j, . . . , ξν , which in practice
means that a system of equations have to be solved at each
time step. These methods are known as implicit Runge-Kutta
(IRK) methods, and in many cases offer greater stability than
their explicit counterparts. Since IRK methods involve the
solution of a set of equations at each time step, it is hard to
give an a priori estimate of the number of function evaluations
needed at each time step. This number is usually higher than
for ERK methods, leading in general to higher computational
costs.
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A time-dependent equation-of-motion coupled-cluster singles and doubles (TD-EOM-CCSD) method is
implemented, which uses a reduced basis calculated with the asymmetric band Lanczos algorithm. The approach
is used to study weak-field processes in small molecules induced by ultrashort valence pump and core probe
pulses. We assess the reliability of the procedure by comparing TD-EOM-CCSD absorption spectra to spectra
obtained from the time-dependent coupled-cluster singles and doubles method, and observe that spectral features
can be reproduced for several molecules, at much lower computational times. We discuss how multiphoton
absorption and symmetry can be handled in the method, and general features of the core-valence separation
projection technique. We also model the transient absorption of an attosecond x-ray probe pulse by the glycine
molecule.

DOI: 10.1103/PhysRevA.105.023103

I. INTRODUCTION

Stimulated by the recent experimental realization of vari-
ous laser pulses with durations on the attosecond (1×10−18 s)
time scale [1–5], capable of monitoring electronic motion,
the theoretical simulation of coherent electron dynamics is
currently an active field of research [6].

Real-time electronic structure theory considers the explicit
time dependence of the electronic system by evolving the
time-dependent Schrödinger equation in the time domain [6].
Explicitly time-dependent methods can directly provide the
time-domain evolution of electronic wave functions together
with nuclear motion, representing a versatile way of tracking
ultrafast phenomena in both perturbative and nonperturbative
regimes [7,8].

The development of real-time methods commenced in the
late 1970s and early 1980s in the field of nuclear physics
[9–11]. Despite these early endeavors, real-time methods did
not become practical at that time due to the lack of electron
correlation effects at the Hartree-Fock level and the high com-
putational cost associated with propagation of correlated wave
functions. However, decades of steady advancements in com-
puting power and numerical algorithms have led to a renewed
interest in explicit time propagation in correlated methods like
density-functional theory [12,13], multiconfigurational self-
consistent-field [14–16], configuration-interaction [17–20],
algebraic diagrammatic construction [21,22], and coupled-
cluster [23–33] methods.

*These authors contributed equally to this work.
†soco@kemi.dtu.dk
‡henrik.koch@sns.it

In this paper, we present an implementation and represen-
tative case studies of the time-dependent equation-of-motion
coupled-cluster (TD-EOM-CC) model for simulating weak-
field attosecond valence pump–core probe processes. In
conjunction with a reduced-space band Lanczos algorithm for
obtaining the valence and core excited states, this model offers
results similar to its time-dependent coupled-cluster (TDCC)
counterpart in weak fields, at significantly lower computa-
tional costs. The reduction in cost enables the study of larger
systems.

The paper is organized as follows. In Sec. II we detail the
theory behind TD-EOM-CC and the asymmetric band Lanc-
zos algorithm. Here, we also discuss a strategy used in order
to guide the reduced space solver to directly obtain the tran-
sitions between excited states. The computational procedure
used is detailed in Sec. III. In Sec. IV, simulations for various
molecular systems are presented. First a benchmark study is
presented for LiF, validating our proposed method. Second,
the applicability of the core-valence separation (CVS) scheme
is tested for LiH. Then, a two-photon absorption phenomenon
has been captured using a stepwise procedure emulating the
actual physical process for C2H4. Finally, we put forward
a theoretical assessment of pump-probe absorption for the
glycine molecule, which is deemed suitable for further experi-
mental investigations. The findings are summarized in Sec. V.

II. THEORY

A. System

We model the system, composed of a molecule and its
interaction with laser pulses, with the Hamiltonian

H (t ) = H (0) + V (t ), (1)
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where the field-free Hamiltonian H (0) describes the molecule
with fixed nuclei and without interactions with the exter-
nal electromagnetic field. The semiclassical time-dependent
interaction term, written in the dipole approximation and
length gauge, is

V (t ) = −d · E (t ) (2)

and describes the interaction between the molecular elec-
trons and the external electromagnetic field. The latter is
represented by the electric field E (t ) = [Ex(t ) Ey(t ) Ez(t )]T

and electronic dipole operator vectors, d = [dx dy dz]T . We
assume that the molecule is initially in the ground state of
the field-free Hamiltonian, and take the electric field to be a
linear combination of the electric fields of any number of laser
pulses:

E (t ) =
∑

n

E0n cos[ω0n(t − t0n) + φn] fn(t ). (3)

The field of laser pulse n has an associated carrier frequency
ω0n, peak strength |E0n|, polarization E0n/|E0n|, and an 8σn-
truncated Gaussian envelope function

fn(t ) =
{

e−(t−t0n )2/(2σ 2
n ) if |t − t0n| � 8σn

0 otherwise
(4)

with duration specified by σn, the temporal rms width. It is
also specified by the central time t0n and the carrier-envelope
phase φn. We assume the carrier-envelope phase to be zero for
all pulses, meaning that the maximum values of the envelope
and cosine carrier functions belonging to pulse n coincide at
t0n.

The energy absorbed during the interaction can be given by
[28,34]

�E =
∫ ∞

0
ωS(ω)dω, (5)

where S(ω) is the response function

S(ω) = −2Im[〈̃d〉(ω) · Ẽ∗(ω)] ω > 0. (6)

The vectors 〈̃d〉(ω) and Ẽ (ω) are the Fourier transforms of the
time-dependent dipole moment expectation value and electric-
field vectors, respectively, and the asterisk denotes complex
conjugation. A positive or negative value of the function S(ω)
describes the probability of absorption or emission of light
with frequency ω, respectively [34].

B. TD-EOM-CC states

The time-dependent ket and bra of a TD-EOM-CC state
can be expressed as

|�(t )〉 =
∑

j

|ψ j〉s j (t ), 〈�̃(t )| =
∑

i

ki(t )〈ψ̃i|, (7)

where the italic indices i and j are used to denote general
equation-of-motion coupled-cluster (EOM-CC) states, includ-
ing the ground state with index zero. The time-independent
EOM-CC kets and bras are given by

|ψ j〉 = eT Rj |HF〉, 〈ψ̃i| = 〈HF|Lie
−T . (8)

We assume that the EOM-CC states are biorthonormal:

〈ψ̃i|ψ j〉 = δi j . (9)

In the following, we let the indices κ and λ denote general
determinants in the projection space, including the reference
Hartree-Fock determinant with index zero. We use the indices
μ and ν, on the other hand, to denote excited determinants.

The cluster operator T and the right and left operators
Rj and Li of Eq. (8) can be expressed as linear expansions in
a finite set of operators τλ and τ †

κ ,

T =
∑

ν

τνtν, Rj =
∑

λ

τλrλ j, Li =
∑

κ

liκτ
†
κ , (10)

where the operator with index zero is the unit operator,

τ0 = τ
†
0 = 1, (11)

and the τν and τ †
μ operators generate excited determinants

from the ket and bra reference Hartree-Fock determinants,
respectively:

τν |HF〉 = |ν〉, 〈HF|τ †
μ = 〈μ|, (12)

τ †
μ|HF〉 = 0, 〈HF|τν = 0. (13)

We assume that the determinants are biorthogonal:

〈κ|λ〉 = δκλ. (14)

If all possible electronic excitations are included in the
summations in Eq. (10), the method is equivalent to full
configuration interaction. The sum can also be restricted to
given excitation levels, giving approximate methods that scale
polynomially with the system size. This includes the coupled-
cluster singles and doubles method, where summation is only
done over single and double excitations. We do not explicitly
state the excitation levels included in the following expres-
sions, since they hold for both restricted and unrestricted
summation.

The cluster amplitudes tν in Eq. (10) can be found
from solving equations involving the similarity-transformed
field-free Hamiltonian operator H̄ (0) projected onto the right
reference and left excited determinants

〈μ|H̄ (0)|HF〉 = 0, (15)

where the similarity transformation of an operator X is de-
noted by an overbar:

X̄ = e−T XeT . (16)

After the optimal cluster amplitudes tν have been deter-
mined, the right and left vectors of EOM-CC state i, with
components rλ j and liκ , can be found as right and left eigen-
vectors of the field-free Hamiltonian matrix, with elements

H (0)
κλ = 〈κ|H̄ (0)|λ〉. (17)

The right and left eigenvectors of the matrix in Eq. (17)
with the lowest eigenvalue, specifying the ground EOM-CC
state with index zero, have the following structure:

r00 = 1, rν0 = 0, (18)

l00 = 1, l0μ = t̄μ. (19)

The multipliers t̄μ are solutions to the equations

〈HF|H̄ (0)|ν〉 +
∑

μ

t̄μA(0)
μν = 0, (20)
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where elements of the field-free coupled-cluster Jacobian ma-
trix A(0) are given by

A(0)
μν = 〈μ|[H̄ (0), τν]|HF〉. (21)

The other right and left eigenvectors of the matrix in Eq. (17)
correspond to excited EOM-CC states, denoted by the italic
indices m and n. The eigenvectors have the following refer-
ence determinant components:

r0n = −
∑

ν

t̄νrνn, (22)

lm0 = 0. (23)

These components enforce the biorthogonality between the
ground and excited states, in accordance with Eq. (9). The
vectors Rm and Lm, containing the components rνm and lmμ

of excited EOM-CC state m, are right and left eigenvectors of
A(0) with eigenvalue ωm.

C. Derivation of TD-EOM-CC equations

The time derivative of the coefficients of the TD-EOM-
CC ket can be found from projecting the ket time-dependent
Schrödinger equation (TDSE)

ι
∂

∂t
|�(t )〉 = H (t )|�(t )〉, (24)

where ι denotes the imaginary unit, onto the bra of EOM-CC
state i, giving

ι
∂si(t )

∂t
=

∑
j

Hi j (t )s j (t ), (25)

where the matrix elements of an operator X (t ) are given by

Xi j (t ) = 〈ψ̃i|X (t )|ψ j〉. (26)

Likewise, the time derivative of the coefficients of the TD-
EOM-CC bra can be found from projecting the bra TDSE,

−ι
∂

∂t
〈�̃(t )| = 〈�̃(t )|H (t ), (27)

onto the ket of EOM-CC state j, giving

−ι
∂k j (t )

∂t
=

∑
i

ki(t )Hi j (t ). (28)

The TD-EOM-CC equations (25) and (28) were to our
knowledge first presented in Ref. [18], and have also been
used in Ref. [19]. In those works, the matrix elements di j of
the dipole moment operator, entering in the time-dependent
Hamiltonian, are approximated by discarding non-Hermitian
components. This was achieved by using the Hermitian (di j +
d∗

ji )/2 instead of the di j given by Eq. (26). In the present paper,
however, the full non-Hermitian di j are used in the solution of
Eqs. (25) and (28). After the time-dependent coefficients ki(t )
and si(t ) have been obtained, the time-dependent expectation
value of a time-independent operator X can be calculated
according to

〈X 〉(t ) =
∑

i j

ki(t )Xi js j (t ). (29)

D. Asymmetric band Lanczos algorithm

We use the asymmetric band Lanczos algorithm to generate
approximate eigenvalues ω̃n and right R̃n and left L̃n eigen-
vectors of the field-free Jacobian matrix A(0). As outlined in
Sec. II F, the approximate eigenvectors are used as a reduced
basis for solving Eqs. (25) and (28).

The algorithm is a generalization of the simple asymmetric
Lanczos algorithm, employing m right (b1, . . . , bm) and p left
(c1, . . . , cp) starting vectors instead of single ones [35–37]. A
sequence of right vectors is constructed by transforming the
right starting vectors by increasing powers of a given square
asymmetric matrix M. For our purpose, M = A(0). The i first
vectors in the sequence, which can be linearly dependent, span
the n-dimensional right band Krylov subspace,

Ki(M, b1, . . . , bm)

= span{b1, . . . , bm, Mb1, . . . , Mbm, M2b1, . . .︸ ︷︷ ︸
i

}, (30)

where i − n is the number of redundant vectors in the se-
quence. Likewise, a sequence of left vectors is constructed by
transforming the left starting vectors by increasing powers of
the transpose matrix MT . The j first vectors in the sequence,
which can be linearly dependent, span the n-dimensional left
band Krylov subspace,

K j (MT , c1, . . . , cp)

= span{c1, . . . , cp, MT c1, . . . , MT cp, (MT )2c1, . . .︸ ︷︷ ︸
j

},

(31)

where j − n is the number of redundant vectors in the se-
quence. Note that the subspaces can be regarded as block
Krylov subspaces [37] whenever i and j are multiples of the
number of starting vectors. The n right (v1, . . . , vn) and left
(w1, . . . ,wn) Lanczos vectors, which form respective bases
for Ki(M, b1, . . . , bm) and K j (MT , c1, . . . , cp), are obtained
by discarding redundant vectors of the sequences in Eqs. (30)
and (31). A n × n-dimensional band Krylov subspace approx-
imation of M can then be obtained by expressing the matrix
in the Lanczos vector bases.

The right and left Lanczos vectors can be generated itera-
tively with the recurrence relations [35]

MV n = V nT n + V̂
C
n + V̂

D
n , (32)

MT W n = W nT̃ n + Ŵ
C
n + Ŵ

D
n , (33)

where the right and left Lanczos vectors form the matrices
V n = [v1 · · · vn] and W n = [w1 · · · wn], respec-
tively. The un-normalized vectors that form the nonzero
columns of V̂

C
n = [0 · · · 0 v̂n+1 · · · v̂n+mc ] and

Ŵ
C
n = [0 · · · 0 ŵn+1 · · · ŵn+pc ] serve as candi-

dates for the next right and left Lanczos vectors, respectively.
The sparse matrices V̂

D
n and Ŵ

D
n contain un-normalized can-

didates from previous iterations that have been deflated (i.e.,
discarded) due to linear dependence on already accepted right
and left Lanczos vectors, respectively. Finally, the nonzero
elements of T n and T̃ n are used to enforce the biorthogonality

023103-3



ANDREAS S. SKEIDSVOLL et al. PHYSICAL REVIEW A 105, 023103 (2022)

between the m + p + 1 vectors that can overlap in exact arith-
metic at each iteration [35].

In numerical implementations, vectors are usually deflated
when linear independence is below a given threshold, since
inexact arithmetic prevents the description of exact linear
dependence. The numbers mc and pc, initially equal to the
number of right and left starting vectors m and p, give the
current number of vectors available for deflation. We say that
the sequence in Eqs. (30) and (31) is fully exhausted when
m or p deflations have occurred, respectively. The iterative
procedure is then terminated, giving equal numbers of right
and left Lanczos vectors.

The iterative solution of Eqs. (32) and (33) is done in
accordance with Algorithm 5.1 of Ref. [37], with two excep-
tions. The following biorthogonalization step is added at the
beginning of step 1:

if n > 1 then
for k = 1 to max{1, n − pc − 1} do
v̂n ← v̂n − vk (wT

k v̂n)
end for

end if

and the following at the beginning of step 2:
if n > 1 then

for k = 1 to max{1, n − mc − 1} do
ŵn ← ŵn − (ŵT

n vk )wk

end for
end if

These additions lead to an algorithm that enforces the
biorthogonality between all Lanczos vectors in inexact arith-
metic,

W T
n V n = �n = diag(δ1, δ2, . . . , δm), (34)

and not just between the vectors that can overlap in exact
arithmetic. We observe that this modification of the algo-
rithm is important for numerical stability when the number
of iterations becomes large, but the modification also makes
the number of vector operations substantially higher. The
number of operations can potentially be reduced in future
implementations, e.g., by formulating a restarted asymmetric
band Lanczos algorithm, based on existing approaches [38].

The iterative procedure continues until a given maximum
chain length (i.e., number of iterations) n = nmax is reached,
unless the procedure is terminated at a lower n because of full
exhaustion of the sequence in Eq. (30) or (31). The algorithm
generates the n × n matrices

T P
n = �−1

n W T
n MV n

= T n + �−1
n W T

n V D
n , (35)

T̃ P
n = (

W T
n MV n�

−1
n

)T

= T̃ n + [(
W D

n

)T
V n�

−1
n

]T
, (36)

in accordance with Algorithm 5.1 of Ref. [37]. The matrices
T P

n and T̃ P
n are related by

�nT P
n = (

T̃ P
n

)T
�n, (37)

and are banded when no deflations have occurred [35].

The matrix T P
n can be viewed as the oblique projec-

tion of M onto the n-dimensional Ki(M, b1, . . . , bm) and
orthogonally to the n-dimensional K j (MT , c1, . . . , cp) [37].
Diagonalization of the matrix yields n eigenvalues, which ap-
proximate the eigenvalues of M, and associated right and left
eigenvectors. The right eigenvectors can be transformed to ap-
proximate eigenvectors of M by premultiplication by V n, and
the left eigenvectors to approximate eigenvectors of MT by
premultiplication by W T

n �−1
n [35]. Approximate eigenvectors

with dominant (low- and high-lying) eigenvalues are typically
better converged than the ones in the middle [39–41].

E. Choice of starting vectors

In Appendix A, we demonstrate that operator matrix ele-
ments involving excited state n are linear in the right and left
vector components rνn and lnμ. We assume that n is one of
the states targeted by the band Lanczos algorithm, and state
i is a previously calculated ground or excited state. Matrix
elements between n and i can thus be written as the product
of two vectors. The first vector is the right or left vector of
state n. The second vector, which we take to be the starting
vector of the algorithm, is based on state i and operator X . This
choice of starting vectors simplifies the calculation of operator
matrix elements, as will be shown in the following. Analogous
arguments have been used in previous work [42–45] to guide
the choice of start vectors for the simple Lanczos algorithm
for coupled-cluster response [42,43] and EOM-CC theories
[44,45].

The starting vectors based on the ground state i = 0, which
are similar to the starting vectors used in coupled-cluster lin-
ear response theory [42,43], are given by

bX
μ0 = ξX

μ , (38)

cX
0ν = EOMηX

ν − X00t̄ν, (39)

and the starting vectors based on excited EOM-CC state i = m
are given by [44]

bX
μm =

∑
ν

(
EOMAX

μν + δμνX00 − ξX
μ t̄ν

)
rνm, (40)

cX
mν =

∑
μ

lmμ

(
EOMAX

μν + δμνX00 − ξX
μ t̄ν

)
. (41)

The specification of ξX
μ , EOMηX

ν , X00, and EOMAX
μν is given in

Appendix A.
The starting vectors can be expressed in the Lanczos ba-

sis by inserting the resolution of identity in terms of the
biorthonormal Lanczos vectors:

bX
i =

∑
j

v j
(
wT

j bX
i

)

=
m∑

j=1

v jb
X
ji, (42)

(
cX

i

)T =
∑

j

[(
cX

i

)T
v j

]
wT

j

=
p∑

j=1

cX
i jw

T
j . (43)
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The sum in Eq. (42) is restricted since bX
i ∈ span{v1, . . . , vm}

while each (wm+1, . . .) is biorthogonal to all (v1, . . . , vm).
Likewise, the sum in Eq. (43) is restricted since cX

i ∈
span{w1, . . . ,wp} while each (vp+1, . . .) is biorthogonal to all
(w1, . . . ,wp).

Thus, the transition moments involving excited states can
be obtained by contracting the starting vectors with the vectors
of excited state n:

Xin = (
cX

i

)T
Rn

=
p∑

j=1

cX
i j

(
wT

j Rn
)

=
p∑

j=1

cX
i jR jn, (44)

Xni = LT
n bX

i

=
m∑

j=1

(
LT

n v j
)
bX

ji

=
m∑

j=1

Ln jb
X
ji. (45)

Rjn and Ln j are simply the components of the right and left
eigenvectors of T P

n , respectively, and bX
ji = wT

j bX
i and cX

i j =
(cX

i )T v j are products of starting vectors and biorthonormal
Lanczos vectors.

F. Generation of a reduced basis

The iterative process that is used to calculate sets of excited
EOM-CC states is given below. The set Jc contains the indices
of already calculated EOM-CC states. At the beginning of
the procedure, where c = 0, only the ground state has been
calculated, and J0 = {0}. The iterative procedure for the cth
EOM-CC state calculation is as follows.

(1) Choose a subset of the state indices from previous
calculations, Ic ⊆ Jc−1, and a set of operators Xc based on the
final states that can be accessed by the operators (see Sec. IV).
Also choose a maximum chain length nmax

c , and maximum
eigenvalue ωmax

c and minimum transition strength Smin
c values.

(2) Sequences of right and left starting vectors, (bX
i )i∈Ic,X∈Xc

and (cX
i )i∈Ic,X∈Xc , are constructed in accordance with

Eqs. (38)–(41).
(3) The band Lanczos algorithm described in Sec. II D is

run with the maximum chain length nmax
c , the field-free Jaco-

bian matrix A(0), and the sequences of starting vectors. The
algorithm terminates at nc � nmax

c , constructing the matrix
T P

nc
.
(4) The eigenvalues and corresponding right and left eigen-

vectors of T P
nc

are calculated. Together, these determine a set
of nc approximate EOM-CC states indexed by Nc.

(5) States n ∈ Nc with approximate eigenvalues ω̃n of A(0)

that are greater than ωmax
c are discarded.

(6) Matrix elements for all operators X ∈ Xc and combi-
nations of final n ∈ Nc and initial i ∈ Ic states are calculated
in accordance with Eqs. (44) and (45). States n ∈ Nc with

FIG. 1. Illustration of the structures of lithium fluoride (top left),
lithium hydride (top right), ethylene (bottom left), and glycine (bot-
tom right), together with the polarization of the valence-exciting
pump (orange arrow) and core-exciting probe (purple arrow) pulses.

transition strengths SX
in = XinXni that are smaller than Smin

c for
all operators and initial states are discarded.

(7) For each nondiscarded state n ∈ Nc, the right and left
eigenvectors of T P

nc
are transformed to approximate right and

left eigenvectors R̃n and L̃n of A(0) by premultiplication by V n

and W T
n �−1

n , respectively.
(8) If an assessment of the convergence of the vectors is

requested, residual norms of all approximate right and left
vectors are calculated. All states with a left or right residual
norm exceeding a given threshold are discarded.

(9) Finally, nondiscarded states with vectors linearly in-
dependent of previously calculated vectors are stored, and
indexed by N ′

c ⊆ Nc. The indices are added to the previous
index set Jc = Jc−1 ∪ N ′

c.
The iterative procedure is repeated if states of higher

excitation levels are desired. Afterwards, the excited-state Ja-
cobian and overlap matrices, with elements Ã(0)

mn = L̃T
mA(0)R̃n

and S̃mn = L̃T
mR̃n, are constructed in the reduced basis of

the approximate eigenvectors. The right and left generalized
eigenvalue problems are solved, giving new sets of right and
left eigenvectors of Ã(0). The dipole and field-free Hamil-
tonian matrices are then calculated in the basis of both the
ground and the newly generated excited states, in accordance
with Eq. (26), and used in solving the time-dependent prob-
lems defined by Eqs. (25) and (28).

III. COMPUTATIONAL DETAILS

Experimental geometries from the NIST database [46] are
used for LiH, LiF, and C2H4. An optimized geometry from
the same database is used for glycine, obtained with the MP2
method with all electrons correlated and the cc-pVTZ basis
set. The linear molecules LiH and LiF are aligned along the z
axis, as done in Ref. [28]. The ethylene molecule is placed
in the xy plane, with the C-C bond along the x axis. The
glycine molecule is of Cs symmetry for the chosen geometry,
with the xy plane as the mirror plane. An illustration of the
structures of the molecules, together with the polarizations of
the valence-exciting pump and core-exciting probe pulses, is
shown in Fig. 1.

In all following calculations, the aug-cc-pCVDZ basis set
[47,48] is used for atoms targeted by the core-exciting pulses;
the aug-cc-pVDZ [47] basis set is adopted for the remaining
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FIG. 2. LiF pump-probe absorption S(ω) as a function of frequency ω in the valence and core regions, normalized by the tallest peaks
in the spectra. The TDCC results are shown in the top left and right panels. TD-EOM-CC results, calculated at different band Lanczos chain
lengths, are shown in the lower panels. EOM-CC valence (V) states are calculated in the full projection space, while the core (C) states are
calculated within the CVS approximation. Valence states energetically inaccessible by a single pump photon γv are discarded, and so are core
states energetically inaccessible by subsequent absorption of a probe photon γv + γc. The chain lengths of the calculations are given, together
with the number of converged states (in brackets).

atoms in the molecules. Valence and core states are obtained
with the asymmetric band Lanczos algorithm with varying
chain lengths as specified in Sec. IV.

Lanczos vectors with Euclidian norms of less than 1×10−9

are deflated, but this did not occur in any of the calculations.
Final excited states that do not have a minimum transition
strength of at least 1×10−7 to any initial state, for any of the
operators used to construct the starting vectors, are discarded.
This is done to only keep states that give a non-negligible
contribution to the dynamics. Also, states with excitation en-
ergies above ωmax = ∑nγ

i Emax
γi

are discarded, where Emax
γi

=
ωi + 8σω

i is an estimate of the maximum energy of photon
i involved in the nγ -photon transition to the desired excited
states. The carrier frequency ωi and the frequency rms width
σω

i = 1/(2σ t
i ) are parameters of the pulse providing photon i

(see Sec. II A).

CVS [49–51] projectors were used to calculate core states.
A “core-only” CVS projector is applied to remove excita-
tions that originate exclusively from valence orbitals. This is
done by zeroing out all right and left vector elements that
only involve molecular orbitals with energies greater than
the energy of the lowest core molecular orbital of a given
atom. This yields a Lanczos spectrum starting at the lowest
core excitation energy of the chosen edge. A complementary
“valence-only” CVS projector is used to obtain valence ex-
cited states that are orthogonal to the core excited states.

Except for the spectra presented in Fig. 2, only sufficiently
converged valence and core band Lanczos vectors are used for
calculating stationary states and corresponding Hamiltonian
and transition moment matrices. This is done by discarding
states with either right or left residual norms greater than
1×10−2 for valence states and 1×10−1 for core states.
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In all calculations, valence states are calculated first, with
starting vectors based on the ground state. All accepted va-
lence states are, together with the ground state, used to
construct starting vectors for the core state calculations (see
Sec. II F). The energies and maximum transition strengths for
all accepted valence and core states are given in the Supple-
mental Material [52].

A fixed pump-probe delay of 40 a.u. (about 0.968 fs) is
used for lithium fluoride, lithium hydride, and ethylene. The
delay is varied for glycine, in order to calculate the transient
absorption of the molecule. In all calculations the central time
of the probe pulse is set to zero and the negative central times
of the pump pulses are set accordingly.

Unless otherwise stated, integration of the TD-EOM-CC
and TDCC equations is done using a Dormand-Prince 5(4)
integration scheme [53] with a maximum time step of 0.1
a.u., and maximum and minimum local errors of 1×10−7

and 1×10−9, respectively (see Appendix B). Each component
of the time-dependent dipole moment expectation value and
electric-field vectors is multiplied with the Hann window be-
fore Fourier transformation.

All calculations are performed using a development ver-
sion of the eT program [54].

IV. RESULTS AND DISCUSSION

A. Lithium fluoride: Convergence and nonlinear
pump interaction

When discussing the applicability of the band Lanczos
algorithm for modeling attosecond pump-probe processes, a
key question is how spectra are affected by the chain length
used. With this in mind, a single TDCC LiF pump-probe
absorption spectrum, calculated with the RK4 integrator and
fixed time steps of 5×10−3 a.u., is in Fig. 2 compared to TD-
EOM-CC spectra calculated with the Dormand-Prince 5(4)
integration scheme and various band Lanczos chain lengths.
In all calculations, the pulses have the parameters used for the
LiF spectra in Sec. III B of Ref. [28], where the F K edge is
targeted by the probe pulse. Figure 1 illustrates the polariza-
tion of the pulses relative to the orientation of the molecule.
All states with energies inaccessible by the absorption of one
photon from each pulse are discarded from the TD-EOM-CC
calculations.

For lower chain lengths, the peaks of the band Lanczos
spectra shown in Fig. 2 both shift and scale significantly
with variations in the chain length, indicating that excitation
energies and dipole matrix elements are badly converged.
The convergence generally improves with the chain length,
and low-energy high-amplitude peaks seem to converge first.
Higher chain lengths are needed for good convergence of
high-energy low-amplitude peaks, as expected from the con-
vergence behavior of Lanczos algorithms.

As demonstrated, the inclusion of badly converged states
can give spectral peaks with incorrect positions and ampli-
tudes. In addition, these states can also increase the cost
of matrix element calculation and propagation, decrease the
convergence rate of consecutive band Lanczos calculations,
and cause serious numerical instabilities during propagation.
In order to avoid these adverse effects, states with badly con-

verged right or left vector residual norms will be discarded in
the following band Lanczos calculations.

In Fig. 3, the aforementioned TDCC LiF pump-probe ab-
sorption spectrum is compared to TD-EOM-CC spectra from
converged states only. Note that the three most dominant
peaks in the TDCC spectrum are present in the green spec-
trum, which is calculated with a valence chain length of 300,
but a chain length of 400 is needed in order to converge the
short peak at around 9.9 eV. The low amplitude peaks below
and around the tall peak at around 6.9 eV are missing.

In an earlier work [28], we speculated that the smaller
peaks below 6.9 eV in the pump-only LiF spectrum could
originate from two-photon absorption. This claim was later
discussed by Pedersen et al. [32], where the TDCC state of
LiF interacting with the pump pulse was analyzed in terms of
stationary state populations. Their analysis supports the inter-
pretation that two photons are absorbed from the pump pulse.

In order to take two-photon absorption into account, spec-
tra are recalculated with the inclusion of valence states
energetically accessible by two pump photons and core states
accessible by an additional probe photon. The corresponding
results obtained with chain lengths of 300 and 400 are shown
in purple and red in Fig. 3, respectively. Note that the 300
valence chain length spectrum still lacks the smaller features
of the TDCC spectrum, but the 400 valence chain length
spectrum is practically indistinguishable from the TDCC one.
This similarity corroborates the claim that two photons are ab-
sorbed from the pump pulse. Furthermore, the results demon-
strate that reduced-basis TD-EOM-CC can faithfully repro-
duce TDCC results in particular systems, even when nonlinear
interactions are involved. The embedded Dormand-Prince
5(4) integrator is seen to perform well for TD-EOM-CC.

The bottom panel of Fig. 3 demonstrates the use of the
valence-only CVS projector to calculate the valence states.
The approximation seems to improve the rate of convergence
with respect to chain length, as a length of 300 is enough to
retrieve all the features of the TDCC spectrum while a higher
number is necessary in the nonprojected case. This improved
convergence can be explained by the reduction in dimension
from projecting out transitions from core orbitals. Moreover,
since the approximation does not seem to lead to significant
scaling or shifting of the valence peaks, it is adopted in the
following calculations.

B. Lithium hydride: Applicability of the CVS projectors

To further assess the performance of the proposed proce-
dure, as well as the applicability of the CVS projectors, we use
the TD-EOM-CC procedure to model the interaction of the
lithium hydride molecule with the pump-probe pair described
in Sec. III A of Ref. [28]. Figure 1 illustrates the polarization
of the pulses relative to the orientation of the molecule. Li
K-edge spectra are notoriously difficult to describe accurately
due to the small energy separation between the valence and
core excitation regions. This can be considered a challenging
test case for the applicability of the core-valence separation
scheme.

A comparison between TD-EOM-CC and TDCC spectra is
given in Fig. 4, where the latter is taken from Ref. [28]. In all
core state calculations a fixed band Lanczos chain length of
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FIG. 3. LiF pump-probe absorption S(ω) as a function of frequency ω in the valence and core regions, normalized by the tallest peaks
in the spectra. The TDCC results are shown in the top left and right panels. TD-EOM-CC results, calculated at different band Lanczos chain
lengths, are shown in the lower panels. EOM-CC valence (V) states are calculated in the full projection space (middle panels) or within the
CVS approximation (bottom panels), while the core (C) states are calculated within the CVS approximation only. Valence states energetically
inaccessible by a single or two pump photons, γv or 2γv, are discarded, and so are core states energetically inaccessible by subsequent
absorption of a probe photon, γv + γc or 2γv + γc. The chain lengths of the calculations are given, together with the number of converged
states (in brackets).

400 is used. However, the number of converged core states,
given in brackets, differs due to the different starting vectors
employed.

Since TD-EOM-CC with energy-limited valence and core
states successfully reproduced the TDCC spectrum of LiF in
Sec. IV A, a similar procedure is attempted for calculating
the TD-EOM-CC LiH spectrum. That is, valence states in-
accessible by two pump photons and core states inaccessible
by an additional probe photon are discarded. The results are
shown in orange in the second topmost panels of Fig. 4. The
spectrum lacks some of the weaker features in the valence
excitation energy region, and, more notably, many of the dom-
inant features in the core excitation region. In other words,
a characteristic of the LiH molecule seemingly prevents us
from reproducing the TDCC spectrum using the procedure in

the previous section. In the following, we argue that the Li K
edge in LiH involves states that cannot be obtained with the
core-only CVS projector alone, since they do not correspond
to core excitations.

TD-EOM-CC spectra calculated with states obtained with
the valence-only CVS projector, energetically accessible by
two pump and one probe photons, are shown in the three
middle rows of panels in Fig. 4. The valence chain lengths
used are 100 (green), 150 (red), and 200 (purple). The number
of converged states in the valence region increases with the
chain length. Remarkably, increasing the valence chain length
also leads to additional peaks in the core region, illustrated
in the right panels. This demonstrates that, apart from the two
intense peaks obtained at about 54.1 eV and 57.7 eV, the other
peaks are of pure valence excitation character.
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FIG. 4. LiH pump-probe absorption S(ω) as a function of frequency ω in the valence and core regions, normalized by the tallest peaks
in the spectra. The TDCC results are shown in the top left and right panels. TD-EOM-CC results, calculated at different band Lanczos chain
lengths, are shown in the lower panels. All EOM-CC valence (V) and core (C) states are calculated within the CVS approximation. For the
CVS valence calculation for the results shown in orange, states energetically inaccessible by two pump photons, 2γv are discarded. For all
other band Lanczos calculations, only the states inaccessible by two pump photons and one probe photon 2γv + γc are discarded. The results
shown in brown are calculated from CVS valence states only. The chain lengths of the calculations are given, together with the number of
converged states (in brackets).

The necessity to include high-energy states calculated with
the valence-only CVS projector is further validated by su-
perimposing a spectrum exclusively from valence-only CVS
states (brown) with the spectrum calculated from energy-
limited valence and core states (orange), shown in the bottom
panels of Fig. 4. The peaks of the composite spectrum are
in good agreement with the TDCC ones. Therefore, we as-
sert that use of both the core-only and the complementary

valence-only CVS projectors is necessary in order to accu-
rately capture the spectral features around the Li K edge
in LiH. Note that this should not be taken as a failure of
the CVS projectors, but as a consequence of the peculiar
electronic structure of LiH. In fact, the high-energy states of
pure valence character can be more easily calculated in the
dimension reduced by the valence-only CVS projector. One
may still question whether the corresponding peaks will be as
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FIG. 5. Ethylene pump-probe absorption S(ω) as a function of frequency ω in the valence and core regions, normalized by the tallest
peaks in the spectra. The TDCC results are shown in the top left and right panels, and TD-EOM-CC results are shown in the lower panels.
In the middle panels, a ground-state z dipole operator starting vector is used for calculating the valence (V) states. In the bottom panels, both
ground-state z dipole operator and z2 quadrupole operator starting vectors are used. All valence and core (C) states are calculated within the
CVS approximation. The chain lengths of the calculations are given, together with the number of converged states (in brackets).

prominent in experimental spectra, since continuum electrons
are very crudely represented in the chosen basis set.

C. Ethylene: Nonlinear pump interaction for a different
symmetry group

For ethylene, rms widths of the z-polarized pump and
x-polarized probe pulses are set to 10 a.u. and 5 a.u., corre-
sponding to intensity full width at half maximum (FWHM)
durations of about 403 as and 201 as, respectively. Figure 1
illustrates the polarization of the pulses relative to the orienta-
tion of the molecule. The carrier frequency of the pump pulse
is set to 0.294 114 89 a.u. (about 8.0 eV), and the probe pulse
is set to 10.495 830 66 a.u. (about 285.6 eV, C K edge). The
field strengths of the pump and probe pulses are set to 0.01 a.u.
and 0.1 a.u., respectively. The time-dependent state is propa-
gated with the Dormand Prince 5(4) integration scheme, from
−2500 a.u. to 2500 a.u. of time. The TDCC spectrum, shown
in the top panel Fig. 5, is characterized by four dominant peaks
in the valence excitation region. A low amplitude peak at
around 7.3 eV is present in the TDCC spectrum, but missing in
the TD-EOM-CC spectrum calculated with a z dipole operator
starting vector, shown in the middle panels. In accordance
with the interpretation of the spectrum of LiF in Sec. IV B, we
attribute the missing peak to a two-photon excitation process,

even though valence states energetically accessible by two
photons are included. Note that quadratic functions of the z
dipole operator belong to the Ag representation of D2h, the
point group of ethylene for the chosen geometry. Hence, we
should not expect the single starting vector, belonging to the
B1u representation, to facilitate the convergence of the two-
photon peaks.

In order to mimic the two pump photon absorption pro-
cess, we include a starting vector constructed from the z2

quadrupole operator in the valence-state calculation. The re-
sults, shown in the bottom panels of Fig. 5, now capture the
two-photon peak at around 7.3 eV. The amplitude yielded by
TD-EOM-CC is, however, underestimated compared to the
TDCC one, which might indicate that more secondary valence
excited states should be included in the computation. It might
also hint at differences in two-photon absorption as described
by TD-EOM-CC and TDCC.

D. Glycine: Transient absorption

As a final example, we use the computational proce-
dure to model attosecond transient absorption by the glycine
molecule. The polarization of the pump pulse is set to the
polarization of the EOM-CC transition dipole moment be-
tween the ground and first dipole allowed valence excited
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FIG. 6. Glycine. Top left: Pump pulse absorption from the ground state SV(ω), normalized by the tallest peak in the spectrum. Top right:
Probe pulse absorption from the ground state SC(ω), normalized by the tallest peak in the spectrum. Bottom left: Pump-probe absorption minus
the probe absorption from the ground state �SC(ω) = S(ω) − SC(ω), normalized by the tallest peak in the SC(ω) spectrum. The results for two
different pump-probe delays are shown. Bottom right: In blue, the numerically integrated probe absorption difference

∫
�SC(ω)dω is shown

as a function of pump-probe delay. In orange, the dipole induced by the pump pulse in the direction from the center of mass to the N atom,
〈d〉N, is shown as a function of time after the center of the pump pulse.

state, (0.490 072x + 0.871 682y), which is in the mirror plane
of the molecule (xy plane). The probe is z polarized. Figure 1
illustrates the polarization of the pulses relative to the ori-
entation of the molecule. The rms widths of the pump and
probe pulses are set to 20 a.u. and 10 a.u., corresponding
to intensity FWHM durations of about 806 as and 403 as,
respectively. The carrier frequency of the pump pulse is set
to 0.233 683 25 a.u. (about 6.4 eV), and the probe pulse is set
to 14.894 573 19 a.u. (about 405.3 eV, N K edge). The field
strengths of the pump and probe pulses are set to 0.01 a.u.
and 0.1 a.u., respectively. The time-dependent state is propa-
gated with the Dormand Prince 5(4) integration scheme, from
−5000 a.u. to 5000 a.u. of time.

A single band Lanczos calculation is used for construct-
ing the valence states, where states energetically inaccessible
by two-photon transitions are discarded. Note that we do
not need to use quadrupole operators in order to get two-
photon valence states of glycine in the reduced basis, as
otherwise done for the ethylene valence states, since both
linear and quadratic functions of x and y dipole opera-
tors belong to the A′ representation of Cs. A valence-state
calculation, with ground-state starting vectors and a chain
length of 1500, gives 17 converged states. A subsequent
core state calculation, with ground- and valence-state start-
ing vectors and a chain length of 3000, gives 20 converged
states.

As a note of caution, all the converged valence states have
energies below 10.5 eV, which is below the double frequency
of the carrier photons. This indicates that two-photon absorp-
tion is not properly accounted for by the reduced basis, and

nonlinear features involving higher-energy valence states may
be missing in the spectra.

In the top left panel of Fig. 6, the absorption of the pump
pulse is shown as a function of frequency. Even though
the glycine molecule is substantially larger than the other
molecules considered, the spectrum is still dominated by a
small number of peaks. The number of dominant peaks is
also smaller than the number of converged states in the basis
(=17). The spectrum of the absorption of the probe pulse by
the ground state, shown in the top right panel, also has fewer
dominant peaks than the number of converged states (=20).

In order to calculate the transient absorption of the probe
pulse by the glycine molecule, absorption spectra are calcu-
lated with the pump-probe setup used for the other molecules,
with pump-probe delays varying from 0 a.u. to 120 a.u. (about
2.903 fs) in intervals of 2.5 a.u. The reduced basis energies
and dipole matrix elements do not have to be recalculated be-
tween the different TD-EOM-CC calculations, since these are
independent of the pump-probe delay. Difference spectra are
then calculated by subtracting the ground-state probe absorp-
tion spectrum from the pump-probe absorption spectra, before
normalizing by the tallest peak in the ground-state probe
spectrum. In the bottom left panel, the difference spectra at
52.5 a.u. and 65 a.u. (about 1.270 fs and 1.572 fs) are shown
in blue and orange, respectively. Both spectra are dominated
by negative peaks, indicative of ground-state bleaching. In ad-
dition, the spectra vary slightly with pump-probe delay, which
is particularly visible for the peaks that are not energetically
accessible from the ground state, e.g., in the energy range from
395 eV to 405 eV shown in the inset.
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In order to quantify the delay-dependent difference in the
absorption of the full probe pulse, each of the 49 pump-probe
difference spectra are numerically integrated from 390 eV to
420 eV using the trapezoidal rule. The results are shown as
function of pump-probe delay in the bottom right panel of
Fig. 6, in blue. Note that the absorption difference is smaller
for short pump-probe delays, which can be explained by the
fact that ground-state bleaching happens gradually during the
pump pulse interaction. A shorter pump-probe delay implies
that the molecule is probed while bleaching still occurs, which
can lead to a smaller difference between the pump-probe
absorption and the ground-state probe absorption.

We have also calculated the pump-induced time-dependent
dipole moment in the direction from the center of mass to the
center of the N atom, as a way of quantifying the migration
of charge between the end containing the N atom and the
opposite end of the molecule. The dipole moment is shown
in the bottom right panel of Fig. 6, in orange.

Note that the dominant periods of both the time-dependent
dipole moment and the integrated absorption (after 1 fs),
shown in the bottom right panel of Fig. 6, fall within 0.57(4)
fs. This indicates that the pump-induced TD-EOM-CC state
is a coherent superposition dominated by states with energy
differences of 7.3(6) eV, which is in agreement with the
ground-state pump absorption spectrum (top left). It also indi-
cates that the dominant features of the time-dependent charge
migration and the delay-dependent K-edge absorption are cor-
related and can be measured with phase-controlled pulses
with finite duration, as has previously been demonstrated for
instantaneous pulses [55,56].

V. CONCLUSION

We have demonstrated the use of the asymmetric band
Lanczos algorithm to generate reduced TD-EOM-CC bases
for various molecules, taking the characteristics of pulses
suitable for probing attosecond phenomena into account. The
specific starting vectors used in the calculations direct the
band Lanczos algorithm towards states that are useful for
representing the interactions. The starting vectors also allow
for the affordable calculation of transition strengths, which are
used, together with excitation energies, to automatically select
the reduced basis. The basis is further reduced by removing
unconverged states.

In Sec. IV A, we demonstrated how lithium fluoride spec-
tral peaks can converge towards peaks calculated with TDCC
by increasing the band Lanczos chain length and taking a
sufficient number of relevant states into account. In particular,
we showed that two-photon absorption has to be taken into
account in order to reproduce the smaller features of the
TDCC spectrum, as speculated in Ref. [28].

In Sec. IV B, we demonstrated that the core-only CVS
projector eliminates several of the peaks around the K edge of
lithium in lithium hydride. The missing peaks can be captured
with the complementary valence-only CVS projector, which
enabled us to target high-energy states of pure valence charac-
ter. This observation indicates that care should be taken when
the CVS scheme is used for light elements such as lithium,
where the energy separation of the core and valence orbitals
is small, so that pure valence excitations can fall within the
region of core excitations.

In Sec. IV C, we used starting vectors constructed from
both dipole and quadrupole operators, in order to converge
ethylene valence states that are dark with respect to one-
photon transitions from the ground state.

In Sec. IV D, pump and probe pulses with varying time
delays were used to assess the transient absorption of a K-
edge probe pulse as a function of pump-probe delay. We
showed how the transient absorption seems to correlate with
the migration of charge induced by the pump, and how both
quantities seem to reveal the dominant timescale in the coher-
ent superposition.
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APPENDIX A: REWRITING EOM-CC MATRIX
ELEMENT EXPRESSIONS

The matrix element Xi j of the operator X and the left and
right vectors of EOM-CC states i and j, respectively, can be
written as

Xi j = 〈ψ̃i|X |ψ j〉
=

∑
κλ

liκ〈κ|X̄ |λ〉rλ j

=
∑

ν

li0〈HF|X̄ |ν〉rν j +
∑
μν

liμ〈μ|X̄ |ν〉rν j

+
(

li0X00 +
∑

μ

liμξX
μ

)
r0 j

=
∑

ν

li0〈HF|[X̄ , τν]|HF〉rν j
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+
∑
μν

liμ
(

LRAX
μν + 〈μ|τν X̄ |HF〉)rν j

+
(

li0X00 +
∑

μ

liμξX
μ

)
r0 j, (A1)

where

LRAX
μν = 〈μ|[X̄ , τν]|HF〉, (A2)

X00 = 〈HF|X̄ |HF〉, (A3)

ξX
μ = 〈μ|X̄ |HF〉. (A4)

1. Excited-state left and ground-state right vectors

The left vector of excited state m has the reference com-
ponent lm0 = 0 [see Eq. (23)], while the right vector of
the ground state has components r00 = 1 and rν0 = 0 [see
Eq. (18)]. Inserting this into Eq. (A1), we obtain

Xm0 =
∑

μ

lmμξX
μ , (A5)

which is also the expression appearing in CC response theory
[42]. Note that this expression is linear in the excited determi-
nant components lmμ.

2. Ground-state left and excited-state right vectors

The left vector of the ground state has the components
l00 = 1 and l0μ = t̄μ [see Eq. (19)], while the right vec-
tor of excited state n has the reference component r0n =
−∑

ν t̄νrνn [see Eq. (22)]. Inserting this into Eq. (A1), we
obtain

X0n =
∑

ν

(
LRην +

∑
μ

t̄μ〈μ|τν X̄ |HF〉
)

rνn

−
(

X00 +
∑

μ

t̄μξX
μ

) ∑
ν

t̄νrνn, (A6)

where

LRην = 〈HF[X̄ , τν]HF〉 +
∑

μ

t̄μ
LRAX

μν. (A7)

The term
∑

ν
LRηνrνn appears in CC response theory [42],

and the other terms are specific to EOM-CC. Equation (A6)
is equivalent to Eq. (65) in Ref. [57] and can also be written
as

X0n =
∑

ν

(
EOMηX

ν − X00t̄ν
)
rνn, (A8)

where

EOMηX
ν = LRηX

ν +
∑

μ

t̄μ〈μ|τν X̄ |HF〉 −
( ∑

μ

t̄μξX
μ

)
t̄ν (A9)

[see Eq. (18) of Ref. [58]]. Note that Eq. (A8) is linear in the
excited determinant components rνn.

3. Excited-state left and right vectors

The left vector of excited state m has the reference com-
ponent lm0 = 0, while the right vector of excited state n has
r0n = −∑

ν t̄νrνn [see Eqs. (22) and (23)]. Inserting this into
Eq. (A1), we obtain

Xmn =
∑
μν

lmμ

(
LRAX

μν + 〈μ|τν X̄ |HF〉)rνn

−
∑

μ

lmμξX
μ

∑
ν

t̄νrνn

=
∑
μν

lmμ

(
LRAX

μν + 〈μ|τν X̄ |HF〉 − ξX
μ t̄ν

)
rνn

=
∑
μν

lmμ

(
EOMAX

μν + δμνX00 − ξX
μ t̄ν

)
rνn, (A10)

where
EOMAX

μν = 〈μ|X̄ |ν〉 − δμνX00

= LRAX
μν + 〈μ|τν X̄ |HF〉 − δμνX00 (A11)

[see Eq. (20) in Ref. [58]].
The term

∑
μν lmμ

LRAX
μνrνn appears in CC response theory,

and the other terms are specific to EOM-CC [44,58]. Note that
all matrix elements in Eq. (A10) are linear in both lmμ and rνn.

APPENDIX B: INTEGRATION SCHEME

In order to limit the error of the time-dependent results, the
integration of the TDCC and TD-EOM-CC equations is done
with the embedded Dormand-Prince method of order 5(4)
[53]. This method yields both fourth- and fifth-order accurate
solutions at each time step, and is specified by the Butcher
tableau [53,59]

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

35
384 0 500

1113
125
192 − 2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187

2100
1

40

(B1)

where the next-to-last and last rows give the coefficients of
the fifth- and fourth-order solutions, respectively. Although
the method has seven stages, its first same as last property
assures that only six function evaluations are needed per time
step.

The Euclidean distance between the solutions gives a
fourth-order estimate of the local integration error:

εO(4) = ||yO(5) − yO(4)||2. (B2)

This local error estimate is kept below a given maximum
value by adapting the time step during the integration. The
fifth-order solution is accepted as the solution at the beginning
of the next step whenever the error estimate satisfies this
condition.
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The following adaptive time-stepping scheme was de-
signed, implemented, and used together with the Dormand-
Prince 5(4) method for the relevant calculations in Sec. IV.
At the start of the integration, the step size is set to a given
maximum value. During the integration, the variable step size
is halved, and the integration step redone, whenever the error
estimate exceeds the given maximum error. After a successful
integration step, the step size is doubled whenever the error

estimate is below a given minimum value, provided that the
doubled step size is smaller than the maximum step size and
also a submultiple of the elapsed time. This is in order to
increase the efficiency of the integration while ensuring that
the solution is evaluated at times corresponding to integer
increments of the maximum time-step size. Evaluation of
time-dependent observables is done using the solutions at
these integer increments.
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Time-dependent equation-of-motion coupled cluster (TD-EOM-CC) is used to simulate impulsive
stimulated x-ray Raman scattering (ISXRS) of ultrashort laser pulses by neon, carbon monoxide,
pyrrole, and p-aminophenol. The TD-EOM-CC equations are expressed in the basis of field-free
EOM-CC states, where the calculation of the core-excited states is simplified through the use of the
core-valence separation (CVS) approximation. The transfer of electronic population from the ground
state to the core- and valence-excited states is calculated for different numbers of included core-
and valence-excited states, as well as for electric field pulses with different polarizations and carrier
frequencies. The results indicate that Gaussian pulses can transfer significant electronic populations
to the valence states through the Raman process. The sensitivity of this population transfer to the
model parameters is analyzed. The time-dependent electronic density for p-aminophenol is also
showcased, supporting the interpretation that ISXRS involves localized core excitations and can be
used to rapidly generate valence wavepackets.

I. INTRODUCTION

The ability to experimentally generate short and in-
tense x-ray laser pulses has been a subject of significant
interest in the field of x-ray science. Recent technological
advances, specifically the realization of x-ray free electron
lasers (XFELs) [1, 2] and new approaches based on high
harmonic generation (HHG) [3, 4], have made it possible
to generate x-ray laser pulses with high intensities and
pulse durations as short as a few hundred and even tens
of attoseconds [5]. This progress has enabled the develop-
ment of new experimental techniques with unprecedented
temporal resolution, facilitating the imaging and control
of atoms and molecules on the time scale of electronic mo-
tion. [6–12] An important phenomenon in this context is
impulsive stimulated x-ray Raman scattering (ISXRS),
which is the extension of stimulated x-ray Raman scat-
tering (SXRS) to the impulsive limit, where the duration
of the external field interaction is short compared to the
time scales of the subsequent evolution of the system.

In general, Raman scattering is a light-matter interac-
tion phenomenon in which photons trigger an excitation
of an atomic or molecular system followed by a deexcita-
tion to an energy level different from the initial one. In
the context of x-ray Raman scattering, the involved tran-
sitions are electronic in character. [6, 13–16] We focus on
the situation in which the electronic excitation in play is
a core excitation, which is deexcited to a valence-excited
state through the decay of a valence electron into a core
vacancy, see Fig. 1. Core excitations are often localized
on a specific atomic site and sensitive to the surround-
ing electronic environment, making them useful for the
local initiation of charge migration. We treat the case
where both the excitation and deexcitation are stimu-
lated by an interaction with the same laser pulse. [17]

∗ These authors contributed equally to this work.
† Electronic mail: henrik.koch@sns.it

FIG. 1. Illustration of the steps in the ISXRS process. Ini-
tially, the molecule is in its ground state (left). An external
x-ray pulse excites a core electron, leading to a core-excited
state (middle). The same pulse can trigger the decay of a
valence electron into the core vacancy, leading to a valence-
excited state (right).

This is achievable by utilizing a pulse with sufficient
bandwidth to encompass the energy differences between
the ground state and the core-excited states of interest,
as well as between these core-excited states and the final
valence-excited states. The interaction with such pulses
is similar to the interactions occurring in the first exper-
imental demonstration of electronic population transfer
via ISXRS, which was made for the NO molecule at the
Linac Coherent Light Source as recently as in 2020. [18]
The progress in experimental techniques has stimu-

lated the development of methods for modeling elec-
tron dynamics based on the time-dependent Schrödinger
equation. Real-time methods, which involve solving
this equation in the real time domain, offer a particu-
larly suitable approach for analyzing ultrafast phenom-
ena. [19] Among these methods, real-time coupled cou-
pled cluster methods offer high accuracy and computa-
tional costs that scale polynomially with the system size.
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The time evolution is described by differential equations
that can be solved using standard numerical integration
techniques such as Runge-Kutta methods.

A specific subcategory of real-time coupled clus-
ter methods is the time-dependent coupled cluster
(TDCC) methods, [20–28] where the time dependence is
parametrized by cluster amplitudes and Lagrange mul-
tipliers. [29, 30] These methods offer the advantage of
size-extensivity at all levels of truncation. Another sub-
category, the time-dependent equation-of-motion cou-
pled cluster (TD-EOM-CC) methods, [31–36] provides
less potential for numerical issues compared to TDCC
methods, [37] since the time dependence is parametrized
by the linear coefficients used in EOM-CC methods
and the cluster amplitudes remain fixed at their time-
independent ground state values. [38–40]

In the basis of field-free EOM-CC states, the TD-
EOM-CC method requires the predetermination of the
excited states that are involved in the studied processes.
Computationally, the exterior eigenvalue algorithms usu-
ally employed for calculating valence-excited states are
inefficient for the calculation of the core-excited states
often involved in x-ray interactions. This is because the
core-excited states have large eigenvalues, and the states
are embedded in an ionization (pseudo-)continuum. [41]
A useful scheme for the study of core excitations is
the core valence separation (CVS) scheme, which disre-
gards all excitations that do not involve at least one core
orbital. [42, 43] This allows for the approximate core-
excited states to be calculated as the lowest energy states
within the reduced excitation space.

In this article, we use the TD-EOM-CC method to-
gether with the CVS approximation to simulate the in-
teraction of neon, carbon monoxide, pyrrole, and p-
aminophenol with ultrashort laser pulses, and calculate
the populations of the valence-excited states following
ISXRS targeting molecular K-edges. The article is or-
ganized as follows. In Section II we briefly outline the
theory behind the calculations. We provide details of the
performed computations in Section III, and present and
discuss the results in Section IV. Conclusions are pre-
sented in Section V.

II. THEORY

The time-dependent system is described by the Hamil-
tonian

H(t) = H(0) + V (t), (1)

where H(0) is the electronic Hamiltonian of the molecule
in the Born-Oppenheimer approximation. We describe
the interaction with the external laser field V (t) in the
dipole approximation and length gauge,

V (t) = −d · E(t), (2)

where d is the vector of Cartesian dipole operators, and
E(t) the Cartesian electric field vector.

The eigenstates of the field-free Hamiltonian,

|ψj⟩ =
∑

λ

eT |λ⟩ rλj (3)

⟨ψi| =
∑

κ

liκ ⟨κ| e−T (4)

can be found by first solving the ground state coupled
cluster equations

⟨µ| e−TH(0)eT |HF⟩ = 0, (5)

which determine the cluster amplitudes tµ in the cluster
operator,

T =
∑

µ

tµτµ. (6)

Thereafter, the right and left vectors can be found
as eigenvectors of the projected time-independent
Schrödinger equation,

∑

λ

⟨κ| e−TH(0)eT |λ⟩ rλj = rκjEj , (7)

∑

κ

liκ ⟨κ| e−TH(0)eT |λ⟩ = Eiliλ. (8)

These equations lead to the following eigenvalue prob-
lems [44]

ARj = Rj∆Ej , (9)

LT
i A = ∆EiL

T
i , (10)

where Aµν = ⟨µ| e−T
[
H(0), τν

]
eT |HF⟩, Liµ = liµ and

Rνj = rνj for µ > 0 and ν > 0. The excitation energy
∆Ej = Ej − E0 is given as the difference between the
excited state energy and the ground state energy

E0 = ⟨HF| e−THeT |HF⟩ . (11)

The TD-EOM-CC ket and bra states can be ex-
panded in the field-free EOM-CC kets and bras, |Ψ(t)⟩ =∑

j |ψj⟩ cj(t) and ⟨Ψ̃(t)| = ∑
i bi(t) ⟨ψ̃i|. This gives the

TD-EOM-CC equations [45]

i
dci(t)

dt
=
∑

j

Hij(t)cj(t), (12)

−idbj(t)
dt

=
∑

i

bi(t)Hij(t), (13)

where Hij(t) = ⟨ψ̃i|H(t) |ψj⟩ = δijEj + ⟨ψ̃i|V (t) |ψj⟩.
The time-dependent population of EOM-CC state i in
the TD-EOM-CC superposition state can be found as
the product of the projections onto the ket and bra of
the EOM-CC state,

Pi(t) = ⟨Ψ̃(t)|ψi⟩ ⟨ψ̃i|Ψ(t)⟩
= bi(t)ci(t).

(14)
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The eigenvalues of core-excited states are interior to
the spectrum of the molecular Hamiltonian, and often
hard to reach using exterior eigenvalue methods like
Davidson or Lanczos algorithms. The core-valence sepa-
ration (CVS) approximation [42, 46] simplifies the calcu-
lation of these states by removing the valence-core and
core-valence blocks of the Hamiltonian and has become
a vital tool for the calculation of NEXAFS spectra. [41]
Let I denote the set indexing the core orbitals. We in-
voke the CVS approximation through a projector PCVS

I
that removes all vector elements that do not reference
excitations from at least one core orbital, in each eigen-
solver iteration. [43] For the coupled cluster singles and
doubles (CCSD) truncation level, this can be expressed
in compact form as

PCVS
I rai = lai PCVS

I = 0, i /∈ I (15)

PCVS
I rabij = labij PCVS

I = 0, i /∈ I ∧ j /∈ I. (16)

This projection is effectively setting all elements of the
valence-valence block of the full-space elementary basis
EOM-CC Jacobian matrix A to zero, giving the CVS
approximated Jacobian matrix, ACVS. The core-excited
EOM-CC states obtained in the CVS approximation can
have a non-zero overlap with EOM-CC states obtained
without invoking this approximation. The CVS states
are in general also not eigenstates of the full field-free Ja-
cobian, and can lead to TD-EOM-CC populations that
are non-stationary, complicating the interpretation of the
TD-EOM-CC state. To ensure that the populations are
stationary, we diagonalize the Jacobian A in the basis of
all the CVS and non-CVS (valence) states by first con-
structing the Jacobian and overlap matrices

Aij = LiARj , Sij = LiRj . (17)

respectively in the reduced space. Assuming linear inde-
pendence of the vectors in the basis, the solution of the
generalized eigenvalue problem defined by A and S gives
a new set of right and left eigenvectors of A, which pre-
serve populations when there is no interaction with the
external field.

III. COMPUTATIONAL DETAILS

The electric field in Eq. (2) is represented as

E(t) = E0 cos(ω0(t− t0) + ϕ)f(t), (18)

where E0 is the peak electric field of the pulse in its po-
larization direction, ω0 the carrier frequency and t0 the
central time of the pulse, and ϕ is the carrier-envelope
phase. The envelope function f(t) is chosen to have the
Gaussian shape

f(t) =

{
e−(t−t0)

2/(2σ2), −c ≤ t ≤ c,

0, otherwise,
(19)

where the RMS width is selected as σ = 0.5 and the
envelope truncated at c = 8σ. In all calculations, we use
the carrier-envelope phase ϕ = 0 and the peak electric
field strength |E0| of 10 a.u., which corresponds to the
maximum intensity of 7.019 × 1018 Wcm−2, calculated
from the intensity relation S0 = |E0|2/Z0 where Z0 is the
impedance of free space.
All simulations are performed using a development ver-

sion of the eT program [47] containing the TD-EOM-CC
implementation described in Ref. [45]. The Runge-Kutta
method known as RK4 is used to integrate Eq. (12) and
Eq. (13), with time steps of 0.001 a.u. for neon, carbon
monoxide, and p-aminophenol and 0.0001 a.u. for pyrrole.

IV. RESULTS AND DISCUSSION

A. Neon

In the following, the convergence properties of the final
Raman-induced populations are investigated for the neon
atom. This system is used for benchmarking purposes, as
its small size allows for the use of larger basis sets. We
focus on the convergence of the final population of the
Bv

1D valence-excited state, the lowest valence-excited
state with a significant final population.

We first study the basis set convergence with respect
to the cardinal number X of Dunning basis sets for CCS
and CCSD levels of theory. The employed basis sets
are cc-pVDZ, aug-cc-pVXZ (with X=D,...,6) and aug-
cc-pCVXZ (with X=D,...,5). As the carrier frequency ω0

of the electric field, we choose the average of two frequen-
cies. The first frequency corresponds to the transition be-
tween the ground state X1S and the Bc

1P core-excited
state. The second frequency corresponds to the transi-
tion between the Bc

1P core-excited state and the Bv
1D

valence-excited state. The Bc
1P and Bv

1D states are
chosen as they are, respectively, the lowest core-excited
and valence excited states that get significantly popu-
lated in the Raman process, except for the cc-pVDZ basis
set, where the order of Ac

1S and Bc
1P energy levels is

inverted. In these calculations, we include 4 core-excited
states and 12 valence-excited states. The frequencies
used for the different basis sets and levels of theory are
given in the Supporting Information.

From Fig. 2, we can observe how the final populations
calculated with CCS and CCSD are considerably differ-
ent, implying that CCS is not accurate enough to provide
an adequate description of the system. The addition of
functions for describing core correlation (aug-cc-pCVXZ)
leads to slightly lower final populations compared to the
corresponding basis sets without these functions (aug-cc-
pVXZ). For CCSD, the results for 5Z and 6Z are very
similar, implying that basis-set convergence is reached
for 5Z. Continuing, the convergence of the final popula-
tion of the Bv

1D state is explored with respect to the
number of valence- and core-excited states included in
the calculation. The total of the probabilites of all de-
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FIG. 2. The left panel shows the final population of the Bv
1D states of neon for different choices of level of theory and basis

set. The blue line in the right panel shows the final population of the same Bv
1D states for different numbers of valence-excited

states included in the simulation and the number of core-excited states fixed at 4, calculated with CCSD/aug-cc-pCVTZ. The
red line in the right panel shows the final population of the same Bv

1D states for different numbers of core-excited states
included in the simulation and the number of valence-excited states fixed at 79, calculated with CCSD/aug-cc-pCVTZ.

generacies of a state is calculated, such that for instance
the probabilities for the five degenerate states of D type
are added together. We perform the calculations using
the CCSD truncation level and the aug-cc-pCVTZ basis
set. The right panel of Fig. 2 exhibits the convergence
of the final population of the Bv

1D states with respect
to the number of valence-excited states included in the
simulation, with the number of core-excited states fixed
at 4. The results indicate that more than 40 valence-
excited states are needed for convergence. An analogous
procedure is performed, this time keeping the number of
valence-excited states fixed while varying the number of
core-excited states. In the right panel of Fig. 2, we can
see how the final population of Bv

1D starts to converge
after around 15 core-excited states are included in the
calculation.

B. CO

We continue by simulating ISXRS for the carbon
monoxide molecule, which is linear and belongs to the
C∞v symmetry point group. Since the system is not
centrally symmetric, results can differ depending on the
polarization of the electric field. Theoretical and ex-
perimental studies of the core-excitation spectroscopy
and ISXRS of this molecule have previously been car-

ried out. [48] In our simulations, the distance between
the two nuclei is fixed at 1.128 Å, corresponding to the
equilibrium bond length in the NIST database. [49]. The
internuclear axis of the molecule is aligned along the z-
axis and the carbon atom is placed at the origin of the
coordinate system while the oxygen atom is placed at
1.128 Å along the z-axis. The carrier frequency of the ex-
ternal electric field is again chosen as the average between
two frequencies. The first is the transition frequency
between the ground state and the first core-excited
state, which is the lowest-energy core-excited state that
gets significantly populated during the Raman process.
The second is the frequency of transition between this
core-excited state and the third valence-excited state,
which is the lowest valence-excited state that gets sig-
nificantly populated. For CCS/aug-cc-pCVTZ, the fre-
quency is 20.029 089Eh, while for CCSD/aug-cc-pCVTZ
it is 19.504 022Eh, corresponding to the O K-edge.

To investigate transitions at the C K-edge, we choose
the lowest-energy molecular orbital localized on the car-
bon atom as the molecular orbital used in the CVS ap-
proximation. The carrier frequency of the electric field is
again chosen as average of the transition frequencies be-
tween the ground state and the lowest core-excited state
that is significantly populated, and that between that
core-excited state and the lowest valence-excited state
that is significantly populated, resulting in a carrier fre-



5

0 10 20 30 40 50
No. of considered excited states

0.005

0.010

0.015

0.020

0.025

Fi
na

l p
op

ul
at

io
n

Dv
1

Ev
1

Lv
1

0 20 40 60 80 100 120 140 160
Time [a.u.]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Po
pu

la
tio

n

CCS - x
CCSD - x
CCS - z
CCSD - z

0 20 40 60 80 100 120 140 160
Time [a.u.]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Po
pu

la
tio

n

O - x
C - x
O - z
C - z

FIG. 3. The left panel shows the final population of the Dv
1Σ, Ev

1Σ, and Lv
1Σ valence-excited state of carbon monoxide

for different numbers of core-excited states included in the calculation, with the number of valence states fixed at 20 and the
external electric field polarization in the positive z-direction. The central panel shows the time-dependent population of the
third valence-excited state of carbon monoxide, calculated with the aug-cc-pCVTZ basis set and different levels of theory and
electric field polarizations. The right panel shows the time-dependent population of the third valence-excited state for external
electric fields tuned to different K-edges and with different polarizations, calculated with CCSD/aug-cc-pCVTZ.

quency of 10.402 530Eh

In the carbon monoxide system, linearly polarized elec-
tric fields can be decomposed into two components: the
polarization component parallel to the internuclear axis
(along the z-axis) and the polarization component per-
pendicular to it (any direction in the xy-plane). As for
neon, the convergence of the final population of cer-
tain valence-excited states is assessed with respect to
the number of included core-excited states. The results
are shown for the Dv

1Σ, Ev
1Σ and Lv

1Σ valence-excited
states in the left panel of Fig. 3, demonstrating that con-
vergence is attained by increasing the number of consid-
ered core-excited states. About 30 core-excited states
are needed for convergence when the number of valence-
excited states is fixed at 20. In the central panel of the
figure, we can see how the time-dependent population of
the third valence-excited state depends on the polariza-
tion of the electric field and level of theory, and also how
the population is constant after the interaction with the
field. The final population is exactly zero when the po-
larization is along the z-axis, as expected from the sym-
metry of the molecule and field. In the right panel, we
can see how the time-dependent population of the third
valence-excited state differs when the carrier frequency
of the electric field is tuned to the K-edge of different
elements (C or O). For the different tunings, the third

valence-excited state is reached through different transi-
tion pathways, involving other transition frequencies and
transition moments. As for the results in the central
panel, the population is exactly zero when the electric
field is polarized along the z-axis, irrespective of the cho-
sen frequency, for symmetry reasons. The populations
are also constant after the interaction with the field

C. Pyrrole

We further increase the complexity of the modeled sys-
tem by considering pyrrole, which belongs to the C2v

symmetry point group. The geometry of the molecule
is obtained from the NIST database. [49], for which the
molecule lies in the yz-plane and the symmetry axis is
along the z-axis. The Supporting Information provides
the geometry of the system, along with a figure that
shows its orientation relative to the Cartesian coordinate
axes. The final populations after the Raman process are
assessed for the electric field polarization vector set equal
to (1, 0, 0) (1, 1, 0) and (1, 1, 1) in the chosen coordinate
system. The Raman process involving the N K-edge is
studied by performing calculations at the CCSD level of
theory with aug-cc-pCVDZ for the nitrogen atom and
aug-cc-pVDZ for the other atoms. The carrier frequency
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FIG. 4. The left panel displays the final populations of various excited states of pyrrole following ISXRS with different electric
field polarizations, computed at the CCSD level of theory and with the aug-cc-pCVDZ basis set for the nitrogen atom and the
aug-cc-pVDZ basis set for the other atoms. The right panel displays the final populations of different excited states of pyrrole
for electric fields tuned to different K-edges, computed at the CCSD level of theory and with the aug-cc-pCVDZ basis set for
the atom with the targeted K-edge shown in the inset and aug-cc-pVDZ basis set for the remaining atoms.

of the external electric field is chosen as the frequency
of transition from the ground state to the most pop-
ulated core-excited state, which is 14.901 363Eh. The
Raman process involving the C K-edge is studied by per-
forming calculations at the CCSD level of theory with
aug-cc-pCVDZ for the carbon atoms and aug-cc-pVDZ
for the other atoms. The core-excited states are calcu-
lated by using the CVS approximation restricted to the
molecular orbital with the second-lowest energy. The
carrier frequency of the external electric field is set to
10.949 885Eh, which is the transition frequency from the
ground state to the fifth core-excited state, the lowest-
energy core-excited state that is the most populated.

In the left panel of Fig. 4, we can see that new valence-
excited states are populated as the polarization of the
external electric field changes from (1, 0, 0), to (1, 1, 0),
and to (1, 1, 1). In particular, when the electric field is
only polarized along the x-axis, there are no excitation
to the valence-excited states. When the electric field has
components along all three axes, all considered valence-
excited states have a nonzero final population. An in-
termediate situation occurs when the electric field has
components along both the x- and y-axes but not along
the z-axis. This is since the different polarizations of the
external electric field has components in different num-
bers of irreducible representation, enabling transitions to
electronic states belonging to different irreducible repre-

sentations. In the right panel of Fig. 4, we can see how
the final population of valence-excited states differs when
the carrier frequency of the electric field is tuned to the
N K-edge and C K-edge, calculated using the CVS ap-
proximation with the lowest- and next-to-lowest-energy
molecular orbitals, respectively. In both cases, the polar-
ization vector of the field is set to (1, 1, 1). The valence-
excited states that become populated are the same for
the two K-edge frequencies, while the populations of the
states are different.

D. p-aminophenol

Finally, we consider the planar p-aminophenol
molecule. The molecule belongs to the Cs symmetry
point group, which only contains the mirror plane and
the identity as symmetry elements. This molecule is cho-
sen in order to investigate if charge migration between
the functional groups located at the opposite side of the
aromatic ring can be observed, as the electronic charge
can easily travel along the aromatic electron cloud. [50]
Compared to the systems analyzed previously, which

offer only limited potential for charge migration due
to their small sizes, the p-aminophenol molecule is a
larger system containing two strongly electron donor sub-
stituents (amino and hydroxyl) on a benzene ring. [51].
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FIG. 5. Positive (gray) and negative (red) electronic isodensity surfaces of the time-dependent density after subtracting the
ground state density of p-aminophenol, at the times specified at the top right corner of each subfigure. The structure of the
p-aminophenol molecule is also shown in each subfigure.

We can thus expect a localized excitation to be followed
by long-range charge migration.

The geometry of p-aminophenol is calculated at the
B3LYP/aug-cc-pVDZ level of theory, and the molecule
is placed in the xy-plane. The Supporting Information
includes the geometry and a figure that illustrates the
orientation of the molecule relative to the Cartesian co-
ordinate axes. For the subsequent calculations, aug-cc-
pCVDZ is used for the oxygen atom and aug-cc-pVDZ
for all other atoms. The carrier frequency is chosen
as 19.883 479Eh, which corresponds to the frequency
of transition from the ground state to the fourth core-
excited state, which is the most populated state among
the two lowest-energy core-excited states that have a non-

zero population after the Raman process.

In Fig. 5, the charge migration is illustrated through
isodensity surfaces of the time-dependent density after
subtracting the ground state density, calculated at differ-
ent points in time. After the interaction with the exter-
nal electromagnetic pulse, we can observe how the core
excitation of the oxygen atom is reflected in a positive
charge arising around that nucleus, enclosed in a nega-
tively charged region at a bigger distance from the oxy-
gen nucleus. This is followed by an alternating pattern
of regions with increased or decreased electronic charge
throughout the entire benzene ring up to the nitrogen
atom of the amino group. In particular, the atoms of
the ring gain some negative charge while the bonds be-
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come more positively charged, and the bonds are thus
expected to be weakened. Finally, we can observe how
the nitrogen atom becomes negatively charged. As pre-
dicted, we observe a localized excitation at the hydroxyl
substituent following oxygen K-edge excitation, followed
by long-range charge migration, in accordance with what
one could expect from a superposition of valence-excited
states generated by ISXRS.

In the supplemental material we have included a movie
that shows the temporal evolution of the electronic den-
sity depicted through isodensity surfaces of the time-
dependent density difference, illustrating how the density
oscillates after the interaction with the external electric
field. The generation of electronic wavepackets with ex-
ternal laser pulses is interesting from an experimental
point of view, as it represents the first step of controlling
chemical reactions with laser pulses.

V. CONCLUSION

In this work, a time-dependent equation-of-motion
coupled cluster model of ISXRS has been presented.
First, we assessed the convergence of the final popula-
tion of neon valence states with respect to different cal-
culation parameters: the level of coupled cluster theory,
the choice of basis set, and choices of the total number
of valence- and core-excited states. We observed how the
adequate description of the system required a proper rep-
resentation of correlation and a sufficiently flexible basis
set, since the CCS level of theory and basis sets without
augmentation performed poorly. We also demonstrated
that convergence of the population of a valence-excited
state of neon was achieved when increasing the number
of valence- and core-excited states for the given level of
theory and basis set. Subsequently, the final populations
of carbon monoxide states were assessed with respect to
the number of included core-excited states. The results
showed convergence for several valence-excited states for

the given level of theory and basis set.

Furthermore, we demonstrated that the final popula-
tions of states of both carbon monoxide and pyrrole are
significantly affected by the polarization of the external
electric field, as symmetry can enable and forbid the tran-
sition to some of the excited states within the bandwidth
of the pulse. We also assessed how the results were af-
fected by tuning the external electric field to the K-edge
of the different atoms, where the frequencies were cal-
culated with the CVS approximation targeting the core
molecular orbitals of the atoms. We observed how a dif-
ferent choice of K-edge led to changes in final populations
as the final states were reached through different transi-
tion pathways.

After investigating ISXRS by neon, carbon monoxide,
and pyrrole, we studied the time evolution of the elec-
tronic density of p-aminophenol. The ground-state den-
sity was subtracted from the time-dependent density, and
the density difference was visualized through isodensity
surfaces in real space. We observed the rapid formation
of a valence wavepacket and subsequent charge migration
in the molecule. Simulations of field-induced charge mi-
gration in molecular systems can be used to predict how
chemical reactions can be controlled by external electric
fields, which we believe will be a subject of further inter-
est in the near future.
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