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Abstract 
The use of interaction terms in partial least squares structural equation modeling (PLS-SEM) 
risks overfitting models to small samples and producing poor out-of-sample generalizability. But 
the added complexity of interactions in PLS-SEM is not captured by in-sample fit metrics, and we 
propose that interaction terms in PLS-SEM should be assessed by out-of-sample methods and 
metrics. However, out-of-sample predictive methods like PLSpredict do not yet account for 
interaction terms. We start by providing a formal procedure for generating out-of-sample 
predictions from such models. We then empirically demonstrate that interactions produce far 
higher Type I error than that expected by researchers, and that out-of-sample predictive metrics 
indeed offer more accurate assessment of the validity of interaction terms for PLS-SEM. We also 
show that two-stage estimation of interactions is superior to other popular methods of 
operationalizing interactions in PLS-SEM, when the generalizability of interactions is of concern. 
 
Keywords:  Interactions, Overfit, Prediction, PLS-SEM 

 

Introduction 
Research models of latent–or emergent–constructs have become a mainstay of information systems 
research, and much of the management field at large. In particular, partial least squares structural equation 
modeling (PLS-SEM) has become increasingly popular as an approachable technique that fits models 
without the strong assumptions that parametric methods often require. These models have grown in 
complexity and maturity over the past decades, without a commensurate increase in the sample sizes being 
examined. To hone and help define the boundaries of these expansive theories, researchers frequently 
model contingencies in their models using interaction terms. Interactions help specify moderated 
relationships in which one construct’s effects on an outcome is contingent on the level of another construct. 
It is operationalized by multiplying the two independent variables to create a product score. 
However, higher-order terms like interactions add considerable complexity to SEM-type models because to 
introduce non-linearities they considerably add to the parametric complexity of the models, which in turn 
require greater statistical power to resolve (Goodhue et al. 2007). PLS-SEM models are already 
demonstrated to overfit to small samples and suffer poorer out-of-sample generalizability than simpler 
modeling schemes (Danks et al. 2023), and higher-order interaction terms are particularly mentioned as a 
worrying source of overfit. Yet there is little, if any, discussion or guidance on whether interaction terms 
should be included in research models estimated by PLS-SEM or other SEM methods. Given the above 
issues, we believe it is fair to ask how to validate that higher-order terms are adding generalizable value to 
SEM models, and when and how to properly include them. 
Quantifying and resolving how the inclusion of higher-order terms in PLS-SEM models should be evaluated 
is not straightforward. Simple model fit metrics such as variance explained (R2) favor overfit models (Danks 
et al. 2023) and so might be biased towards including spurious higher-order terms. Researchers often 
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prescribe analyzing changes in model fit, sometimes operationalized as effect sizes, to determine the utility 
of higher-order terms (Henseler et al. 2012). But here again we are concerned about bias towards overfit, 
because model fit is of little value in the presence of overfit. Thus, interaction terms prove to be a blind spot 
for extant PLS-SEM fit analyses that solely emphasize model fit and statistical significance. We must look 
elsewhere to determine their utility and validity. 

We propose that the questions about the inclusion and operationalization of higher-order terms in PLS-
SEM are best addressed using out-of-sample predictive methods. Predictive methods can directly assess 
how models might perform on data they have never seen, and have been recently incorporated into PLS-
SEM models using methods such as PLSpredict (Shmueli et al. 2016). But to do so, raises a few challenges. 
We must first produce a method to generate predictions from PLS-SEM models containing interactions 
because the PLSpredict procedure does not outline how to handle multiplicative terms and thus no software 
currently implements a formally scrutinized method for doing so. Second, we must validate that out-of-
sample assessments of predictive power yield more useful information about the generalizability of 
interactions than in-sample fit based assessments like R2. And third, we must revisit the question of how 
best to operationalize interaction terms in PLS-SEM—a few options abound and we suspect some might be 
more prone to overfit than others and so more likely to yield spuriously significant interactions. In doing 
so, we hope to provide a fresh perspective on the utility and validity of PLS-SEM models with interactions. 
We do so by raising awareness of the dangers of interaction terms in SEM modeling methods like PLS-SEM, 
and contribute an initial prediction-oriented method to assess the added value of interactions. 

The Challenge of Interactions in SEM 
The use of interactions to model moderation is not a simple affair in structural equation modeling, where 
interaction terms must be modeled as multi-item constructs in their own right. In traditional covariance-
based SEM (CB-SEM) interaction terms are operationalized by taking products of all pairwise combinations 
of items of the independent and moderating constructs and using those products as items for the interaction 
term. PLS-SEM can also employ this product indicator approach, but more powerful approaches been 
developed (Henseler et al. 2012): orthogonalized product-terms approach, where item products are 
regressed over their original item pairs and the residual of the regression is used as the new product items; 
and the two-stage approach, where a model without any interaction is estimated so that the fitted construct 
scores of independent and moderator constructs can be retrieved and used to create a simpler, single 
product score. 
The rising use of interactions in scientific research models is not unique to information systems but is rather 
a cross-disciplinary trend. And it has caught the wary eye of methodologists (Altman and Matthews, 1996). 
The theory-driven, empirical research tradition of SEM demands a hypothetico-deductive approach where 
the expectations for relationships are first justified before being confirmed against data using statistical 
tests. Post hoc justification of potential relationships discovered in an exploratory mode are strongly 
discouraged because spurious correlations can exist in any sample. The chosen significance level (e.g., α = 
5%) of statistical tests dictates that a given percentage of relationships can be expected to be significant in 
a sample even if these relationships do not exist in the larger population. 
Now let us consider an SEM model with ten exogenous constructs. In such a model, there might be a 5% 
expectation that any one of the paths might be spuriously significant even if it does not exist in the 
population. In this example, however, the 5% Type I error rate corresponds to less than a single expected 
spurious path, and so parsimonious models might be robust to minor opportunism by researchers who 
over-parameterize their models. But the situation becomes riskier when interactions are also considered:  
with ten exogenous constructs there are 10C2 = 45 possible interactions, of which one or more spuriously 
significant findings are nearly guaranteed. Any opportunistic search for interactions in even such 
moderately sized models threaten the basis of empirical studies. The conventional wisdom on statistical 
testing already dictates that authors would be wise to avoid looking for interactions that were not strongly 
expected and justified in advance (Altman & Matthews, 1996). Reviewers and editors should already be 
wary of opportunism when presented with significant interactions in any regression type models. 
But models with latent or composite constructs require many more parameters than ordinary regression 
models to represent measurement theory. For example, constructs might each be measured by three 
manifest items collected from either survey questions, observable metrics, or public information such as 
market indices. In our earlier example of a model with ten exogenous constructs and an endogenous 
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construct, our measurement model requires 33 additional item weight or loading parameters to relate 
measurement items to constructs, on top of the ten path coefficients needed by the structural model to 
relate independent variables to the dependent variable. So, where an ordinary regression model might have 
only ten coefficients to estimate a model of the same structural complexity, the corresponding PLS-SEM 
model using multi-item constructs would need at least 43 estimands. CB-SEM models need to estimate 
even more parameters to represent the inter-construct and inter-item associations that are constrained in 
PLS-SEM. The added parameters that SEM models must estimate gives them more opportunities than 
regression models to overfit to the data and produce spurious findings. And our concern lies with the 
inclusion of interaction terms that require a multiplicative number of items to represent moderation 
between multi-item constructs. 
We sought to demonstrate the added dangers of overfit to detecting interactions in SEM by means of a 
comparative simulation exercise. We constructed the SEM model described earlier with 10 exogenous 
constructs that relate to a single endogenous construct. We used the survey data and the associated model 
described and made publicly available by Danks et al. (2023). To this model we iteratively added all 45 
possible interactions between the exogenous constructs. Surprisingly, 5 of the 45 interactions (11%) were 
found to be significant at α = 5%. While one or more of the significant interactions might be genuine, and 
empirical researchers might be tempted to claim multiple of them, we recall the warnings of methodologists 
who caution against any significant interactions that are not drawn from robust theorization and prior 
expectations (Altman & Matthews, 1996). 

We contrasted these results of the PLS-SEM model to an ordinary multiple regression formulation of the 
same structural complexity with ten path coefficients, but where all measurement parameters were shed by 
simply averaging the respective measurement items of each construct. We added to the regression model 
the 45 possible interactions between the ten independent variables: 

BI = β0 + β1PE + β2EE + [...] + β11PE*EE + [...] + ε.                                                   (1) 
On the contrary, when estimating the multiple regression model we find only 2 of the 45 interactions 
(4.44%) to be significant at α = 5%. The stark contrast between the results of the PLS-SEM model and its 
multiple regression counterpart provides preliminary evidence of how the extra specifications of an SEM 
model overfits to interactions, and yields excess Type I errors. This demonstration puts significance- and 
fit-based methods to detect interactions in further doubt. We even caution against construct-specific fit 
measures such as R2 and its simple derivatives such as adjusted-R2, which entail analyzing in-sample fit 
and are thus vulnerable to overfit. 

Predictions of PLS-SEM Models Involving Interactions 
A key challenge that is encountered when applying prediction to SEM is that actual (or at least estimated) 
factor scores are needed to compare against predictions (Rigdon 2012; Danks et al. 2023). Because the 
scores of latent factors in CB-SEM models are indeterminate, there is no extant approach for generating 
construct-level predictions from CB-SEM models. We thus focus on PLS-SEM, in which construct scores 
are determinable and can be derived from estimated item weights. Methodologists have already 
demonstrated how to generate predictions from PLS-SEM models using a procedure called PLSpredict 
(Shmueli et al. 2016). However, generating predictions from models containing interaction terms is not 
straightforward, and PLSpredict did not consider how to handle interaction terms. In this study, we 
contribute methods by which to generate predictions from PLS-SEM models containing interactions.  

Procedure for generating point predictions from PLS models with interactions 

Each modeling approach for interaction terms in PLS-SEM requires its own custom procedure for 
generating predictions. Procedures for generating predictions for product-indicator and orthogonalized 
approaches are available online along with examples at https://github.com/sem-in-r/moderator_predict. 
The procedure to generate predictions involving interactions modeled and estimated by the two-stage 
approach is shown below. We focus on the two-stage approach because, as we will see, it generates the most 
generalizable predictions and should be the first choice of researchers seeking predictive validation of 
interactions. The procedure below estimates training weights from a training sample and then generates 



 Predictive Validation of Interaction Terms in PLS-SEM 
  

 Forty-Second International Conference on Information Systems, Hyderabad 2023
 4 

predictions on a new sample, which can either be a holdout set for validation purposes or data from a new 
context or time for practical purposes. 

1. Identify training (𝑥!") and holdout (𝑥##") sets of cases. Holdout data can be new data or data that has 
been partitioned during cross validation. 

2. Estimate parameters of the first and second stage models using training data only. 
a. Retain initial descriptive statistics of the training data for the first stage (mean 𝑚1$ !"	and 

standard deviation 𝑠1$!"), and for the second stage (mean 𝑚2$ !"	and standard deviation 𝑠2$!") 
b. Retain estimated parameters for the first stage measurement weights (𝑤1$ !"), loadings 

(𝑙1* !"), and structural path coefficients (𝐵1$ !"), and for the second stage measurement 
weights (𝑤2$ !"), loadings (𝑙2* !"), and structural path coefficients (𝐵2$ !"). 

3. Generate the holdout indicator data for the non-linear term  
a. Standardize holdout data from step 1 using first stage model standard deviation 𝑠1$!" and 

mean 𝑚1$ !". 
b. Predict the construct scores of exogenous constructs using holdout data (𝑥##") from step 3.a 

and the first stage training measurement weights (𝑤1$ !"): 
𝑋- =	𝑥##". 𝑤1$ !". 

c. Generate the holdout non-linear term indicator score by multiplying the construct scores of 
the exogenous and moderator variables from 3.b. 

d. Append the holdout data (𝑥##") with the non-linear term indicator score calculated in 3.c.  
4. Standardize holdout data from step 3 using second stage model standard deviation 𝑠2$!" and mean 

𝑚2$ !". 
5. Predict exogenous construct scores from outer weights:  

Predict the construct scores of exogenous constructs using holdout data from step 4 and the second 
stage model measurement weights (𝑤2$ !"): 

𝑋- =	𝑥##". 𝑤2$ !". 

6. Predict the endogenous construct scores: 
Multiply the predicted construct scores (𝑋-) by second stage structural paths (𝐵2$ !"): 

       𝑌- = 	𝑋-. 𝐵2$ . 

7. Predict the indicator scores of endogenous constructs: 
Multiply the predicted construct scores (𝑌-) with the second stage measurement loadings (𝑙2* !"): 

        𝑦2 = 𝑌.* 𝑙2* !". 

8. Unstandardize predictions.  
Use the second stage standard deviation 𝑠2$!"  and mean 𝑚2$ !"	to bring the predictions back to the 
original scale. Multiply each predicted observation by its corresponding standard deviation and add its 
corresponding mean. 

 

Guidelines for creating the interaction term for non-linear effects in PLS-SEM are well described in the 
methodological literature (Becker et al. 2018; 2023, Henseler and Chin, 2010, and Henseler, Fassott, 
Djikstra, and Wilson, 2012). Henseler and Chin (2010) as well as Henseler et al. (2012) pointed out that the 
orthogonalizing and product indicator approaches explain a significantly and substantially higher 
proportion of variance in the outcome construct as compared to the two-stage approach. In addition, when 
the primary concern is minimizing estimation bias, the orthogonalizing approach should be preferred as it 
performs best in terms of point accuracy. When the goal is to achieve statistical power or to identify the 
statistical significance, the two-stage approach is preferred as opposed to the other two approaches. 
Importantly, their simulations show similar results for moderation and quadratic effects.  

Becker et al. (2018) later presented a more extensive simulation which investigated the relative efficacy of 
the three approaches in terms of parameter recovery. Their simulation study demonstrated that the two-
stage approach clearly outperforms the other approaches in terms of parameter recovery, and 
operationalizes the interaction term in a simpler way with substantially less estimated parameters. 
Importantly, the two-stage approach is the most versatile approach as it can be used regardless of whether 
the exogenous construct is measured reflectively or formatively (Becker et al., 2023).  
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However, it is important to note that these simulations emphasize only the in-sample prediction accuracy 
(explanatory power in terms of R2 without considering out-of-sample prediction accuracy. Although we 
recognise that the primary concern of researchers is the significance and magnitude of parameters that in 
turn allow for inferential conclusions on hypothesized relationships, we argue that the decision to include 
non-linear effects (or indeed which estimation approach to employ) should in part be motivated by the 
efficacy in terms of out-of-sample generalizability and a balance of fit versus prediction (overfit).  
We expect that the complexity of both the product-indicator and orthogonal approaches will likely result in 
overfitting, yielding poorer out-of-sample prediction accuracy as compared to the simpler two-stage 
approach. James et al. (2013 p. 144) note that: “The higher the ratio of parameters p to number of samples 
n, the more we expect overfitting to play a role. Both the product-indicator and orthogonalizing approaches 
require the multiplication of product indicators for each of both the exogenous and moderator constructs. 
Consider again our example mentioned above, where the direct-effects model has 43 estimands. For each 
additional non-linear term added to the model a minimum of 16 additional estimands are introduced. We 
thus propose that two-stage might yield the most robust results.  

Simulation Study 
This simulation study explores the utility of prediction metrics in generating additional evidence to support 
the validation of interaction terms in SEM. We focus our efforts on PLS-SEM as, to the best of our 
knowledge, there is no extant solution for generating predictions for CB-SEM models. We further compare 
the predictive performance of the three approaches to estimating the interaction term in order to 
understand their relative advantages and shortcomings. The two-stage approach has been shown to 
perform best at parameter recovery and demonstrates higher power in comparison to the orthogonalizing 
and product-indicator approaches (Becker et al., 2018).  
We apply the method outlined by Becker et al. (2018) in our data simulation process. In this data generation 
model (DGM), we first generate the construct scores to include the non-linear relation and then generate 
the indicator scores from the construct scores. The data generation model consists of one antecedent 
construct (X1), one moderator construct (X2), one endogenous construct (Y), and an interaction term 
construct (X1*X2; Fig 1 panel a) that produces the non-linear moderating effect.  

1.a) Data generation model 1.b) Main effects model 1.c) Moderation model 

 

 

 
We vary the B3 interaction 
coefficient across 4 levels: 0 (no 
interaction), 0.05, 0.1, and 0.2. 

When DGM interaction B3 = 0, this 
model is correctly specified, 
otherwise it is misspecified 

When DGM interaction term B3 > 0, 
this model is correctly specified, 
otherwise it is misspecified 

Figure 1: Simulation models 

 
We vary B3 in the DGM to be both zero and non-zero in order to take into account the condition where the 
interaction term is specified to have no effect. When B3=0, we consider the DGM to be a non-moderation 
condition and specify it as such in our tables and results. Having this condition allows us to compare the 
performance of the methods when no moderation is present in the DGM.  

For the data generation we use the R framework and the MASS library (R Core Team, 2014; Venables & 
Ripley, 2002). We apply the data generation process to generate a single population dataset with 100,000 
observations. In each iteration of the simulation, we then sample from that population a subsample with n 
observations. For each subsample, we conduct leave-one-out cross validation (LOO-CV) and apply each of 
the three proposed algorithms for generating predictions from moderated PLS-SEM models outlined above, 
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and a naive model with no interaction term. Then using both the in-sample (𝑌" in) and out-of-sample 
predictions (𝑌"out) we calculate and report the in-sample mean square error (MSEin), and out-of-sample MSE 
(MSEout) for the focal outcome construct (Danks et al., 2023). We estimate the PLS models using the 
SEMinR package (Ray et al., 2022) for the R Statistical environment.  
The goals of this simulation study are fourfold: 1) We first aim to quantify the predictive performance of the 
three algorithms, and generate guidelines for their application. 2.) We wish to identify whether predictive 
metrics can reliably identify when the DGM does not include an interaction effect, akin to a true negative 
in traditional statistical testing; 3) We wish to evaluate whether prediction metrics can reliably identify 
when the DGM includes an interaction effect, akin to a true positive in a traditional statistical testing. 4) 
Evaluate whether prediction power metrics can provide reliable evidence to the nature of the DGM.  
Following similar methodological work by Sharma et al. (2019, 2021) and guided by the meta-analysis of 
PLS-SEM in information systems research conducted by Hair et al. (2017), we manipulated the following 
experimental conditions, which correspond to the conditions commonly encountered in applied research 
(Nitzl, 2016; Ringle et al., 2020): 

● Replications: 50 
● Five conditions of sample size: 150, 250, 500, 1000, and 1500   
● Four conditions of interaction term effect size B3: 0, 0.05, 0.1, 0.2,  
● Three conditions of direct effects B1 and B2: 0.1 and 0.1, 0.25 and 0.25, 0.4 and 0.25 
● Three indicator loading patterns with different levels of average variance extracted (AVE): 

High AVE loadings: (0.9, 0.9, 0.9, and 0.9), Moderate AVE loadings: (0.8, 0.8, 0.8, and 0.8), and 
Low AVE loadings: (0.7, 0.7, 0.7, and 0.7). 

DGM Interaction 
Effect (β3) Metric 

Two-stage 
Interaction

Model 

PI 
Interaction 

Model 

Orthogonal 
Interaction 

Model 

Main 
Effects 
Model 

Non- 
moderation 

(β3 = 0) 

0.00 

MSEin .6997 .6953 .6940 .7013 

MSEout .7150 .7221 .7261 .7126 

Overfit% 2.2 % 3.9 % 4.6 % 1.6 % 

Moderation 
(β3 > 0) 

0.05 

MSEin .6622 .6584 .6572 .6683 

MSEout .6782 .6828 .6847 .6806 

Overfit% 2.4 % 3.7 % 4.2 % 1.8 % 

0.10 

MSEin .6191 .6157 .6153 .6417 

MSEout .6337 .6356 .6360 .6525 

Overfit% 2.4 % 3.2 % 3.4 % 1.7 % 

0.20 

MSEin .5151 .5114 .5121 .6114 

MSEout .5294 .5300 .5308 .6236 

Overfit% 2.8 % 3.6 % 3.7 % 2.0 % 

Moderation 
Mixed 

Grand 
Total 

MSEin .5988 .5952 .5949 .6405 

MSEout .6137 .6161 .6172 .6522 

Overfit%  2.5% 3.5 % 3.8 % 1.8 % 

Table 1. Simulation results by interaction effect size 
Notes: MSE averaged across all simulation conditions; ME Model: Main effects model, in: in-sample, 

out: out-of-sample, MSE: mean square error, Overfit%: overfit ratio. Bolded values indicate lowest error 
(highest prediction power). 
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Consulting Table 1, a striking result is that the moderated models yield an improved model fit (MSEin) over 
the ME model under all simulation conditions–even when the ME model is correctly specified (β3 = 0). 
When consulting only the in-sample metric a researcher might not identify potential misspecification. In 
contrast, the out-of-sample metric (MSEout) correctly identifies the ME model with the lowest MSEout in the 
non-moderation condition. This highlights the dangers of considering only in-sample metrics when 
evaluating a model’s fit to the data. When we zoom in on the moderation approaches we find that the 
orthogonal and product-indicator approaches consistently have the lowest is-mse (best model fit), but the 
worst predictive power. These approaches have a consistently higher overfit ratio–a phenomenon which is 
likely due to the high parameterization of these approaches. The two-stage approach yields the best balance 
of fit and prediction while achieving the best predictive power. Furthermore, it confirms that out-of-sample 
prediction is an effective way to identify moderation.  

Next, we consider the accuracy of the two-stage approach and the MSE metric for correctly identifying the 
true DGM – that is for identifying when the “true” model does and does not include an interaction. We 
consider this comparison in the same light as a hypothesis test – where the null hypothesis is that no 
moderation is present (HNULL: β3 = 0) and the alternative is that moderation is present (HALT: β3 ≠ 0). We 
then analyze the results from the above simulation, identifying for each DGM condition (DGM includes a 
moderator or not) whether the MSEout preferred the main effects or moderated model with lower predictive 
error.  We then calculate percentages for each and report below in the confusion matrix (Table 2).  

 Data generation model (Null hypothesis) is  

TRUE FALSE 

Decision 
about Null 
Hypothesis 

Don’t 
Reject 

Correct inference / true negative  
(1-α) 

MSEin: 25.3 % 
MSEout: 84.6% 

Type II Error / false negative  
(β) 

MSEin: 3.9 % 
MSEout: 15.6 % 

Reject Type I Error / false positive  
(α) 

MSEin: 74.7% 
MSEout: 15.4% 

 Correct Inference / true positive  
(1-β) 

MSEin: 96.1 % 
MSEout: 84.4 % 

Table 2: Alpha and Power for two-stage out-of-sample MSE 
Notes: MSE: mean square error; in: in-sample; out: out-of-sample 

 
Overall, we find that using MSEout to identify interactions across all simulation conditions yields a true 
negative rate of 84.6% (α = 0.154) and a true positive rate of 84.4% (β = 0.156) indicating that MSEout is an 
effective metric to identify interaction terms. When we consider a model and dataset with qualities more 
typical of the IS literature–with moderate AVE (0.8), sample size (500), and effect size (0.2)–the method 
is even more accurate. The true negative rate jumps to 92.5 % (α = 0.075) and the true positive rate rises to 
nearly 98% (β = 0.02). Thus, when a model meets good quality considerations, the method is very accurate 
at correctly identifying the interaction.  

Future Work 
We have thus far uncovered preliminary evidence that SEM estimation methods such as PLS-SEM are far 
more prone to finding spuriously significant interactions than ordinary linear regression. We believe that 
fit-based metrics of model utility. However, we must carry out broad simulations of varying conditions and 
metrics to demonstrate and confirm these suspicions. We have also started to resolve our question of how 
to validate interactions in PLS-SEM by examining how out-of-sample predictive metrics respond to 
nonlinearities. Our initial findings are that predictive metrics are more conservative than in-sample 
metrics, in that they are less likely to find that spurious interactions have generalizable value. However, 
here too we hope that future work expands on our initial findings in more interesting ways. There are a 
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plethora of predictive metrics and we must find a defensible subset to compare. Moreover, we hope to arrive 
at a validation framework that also allows researchers to safely examine non-hypothesized interactions with 
the hope of discovering fruitful contingencies for future research. In doing so, we hope to live up to the 
emerging vision of the information systems field, where computational methods can inform future 
discoveries and theories. Finally, interactions can be part of larger theoretical patterns, such as moderated 
mediation, that need to be re-examined in light of this study. 
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