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Abstract 

Artificial Intelligence (AI) has emerged as a crucial facet of contemporary technological 
innovation, influencing diverse domains. Consequently, understanding the diffusion and 
evolution of AI innovations is vital. Scholarly publications have commonly served as proxies for 
studying these AI innovations. However, previous studies on publication diffusion have largely 
overlooked the role of models, which is particularly integral for AI innovations as they bridge 
upstream datasets and downstream applications. Moreover, models form an interdependent 
network due to their combinational evolution. This paper addresses this gap, examining how the 
location, movement, and speed of model movement in that model network affect the dissemination 
of AI research. Using a four-layer network—author collaborations, paper citations, model 
dependencies, and keyword co-occurrences—we examine 345,383 AI papers from 2000 to 2022. 
This research aims to contribute to the diffusion of innovation literature and dynamic network 
analysis, offering several novel insights and advancements. 
 
Keywords: AI Innovations, Heterogeneous Dynamic Network, Diffusion of Innovation, 
Popularity of papers 

Introduction 

The rapid advancement of artificial intelligence (AI) has emerged as a pivotal aspect of contemporary 
technological innovation, exerting influence on diverse domains such as finance, healthcare, 
transportation, and marketing (Davenport & Ronanki, 2018; Makridakis, 2017). As the role of AI in 
organizing and promoting innovation continues to expand and evolve at an accelerated pace, it becomes 
increasingly important to understand the diffusion and evolution of AI technologies, as well as the factors 
contributing to the popularity of specific AI innovations. 

Scholarly publications – both written by academics and practitioners – play a vital role in disseminating AI 
innovations, serving as one of the most prevalent mechanisms for sharing AI research findings (Frank et 
al., 2019; Tang et al., 2020). As a result, scholars have used AI-related papers as proxies for studying AI 
innovation (Tang et al., 2020). We believe that examining the diffusion and popularity of AI publications 
can help illuminate the broader patterns of AI innovation dissemination. 

Previous studies on the citation and diffusion of scholarly publications have typically focused on the effect 
of authors' social networks and papers' characteristics on the popularity of a paper. For instance, Fleming 
et al. (2007) demonstrated that researchers who engage in collaborative brokerage in social networks and 
exhibit generative creativity will have more influential research. Uzzi et al. (2013) highlighted that papers 

mailto:aschecter@uga.edu
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with atypical combinations of existing knowledge would have a higher citation count. We believe the 
traditional models of scholarly publication citations do not capture the diffusion of AI innovations. In 
particular, focusing on relationships among authors and topics is likely to leave out a key component in AI 
innovations models.  

Models are particularly critical in the AI field, functioning as essential components that bridge the gap 
between upstream datasets and downstream applications (Bommasani et al., 2023; LeCun et al., 2015). A 
prominent example is OpenAI's GPT models, which were trained on an extensive data corpus and utilized 
in developing interactive applications such as ChatGPT (Brown et al., 2020). Moreover, older models often 
serve as building blocks for newer ones, resulting in a combinatorial evolution that creates dependency 
relationships and establishes model-model networks (Arthur, 2009). For example, BERT is originally built 
on the TensorFlow framework (Devlin et al., 2018), while TensorFlow itself relies on more fundamental 
packages, including pandas, h5py, and SciPy (Abadi et al., 2016). This dependency network reflects the 
relationship between models and their popularity, which may, in turn, influence the diffusion of AI papers 
and innovations. As such, AI papers build on previous models; models build their own sociability and 
relationality among themselves (Latour, 2007). Therefore, in this study, we emphasize the pivotal roles of 
models and the relationships among them in influencing the popularity of AI papers based on these models. 
Although this area holds significant importance, it still needs to be explored.  

In addition, most prior research on the popularity of papers has approached the subject from a static 
network perspective due to limited data availability and computational complexity. As AI innovations and 
related research exhibit high volatility, examining the popularity of papers from a single time point may not 
adequately capture the diffusion patterns and dynamic effects of models' relationships on papers' 
popularity. In particular, we explore the role of changes in the centrality of a model introduced by an AI 
paper and its changing speed (in a mathematical term, a second derivative of centrality) on the popularity 
of the AI paper.  

To address this gap, this study will investigate the role of models in the popularity of AI research from a 
dynamic network perspective. We construct a dynamic, multilayer heterogeneous network comprising a 
model dependency network, a citation network, a coauthor network, and a keyword co-occurrence network, 
specifically examining how the location, movement, and speed of model movement affect the dissemination 
of AI research. The empirical context of our study encompasses 345,383 AI papers published between 2000 
and 2022. Our research contributes to the diffusion of innovation literature by elucidating the role of 
models in the popularity of AI research. Furthermore, it also contributes to the dynamic network literature 
by being the first to explore the momentum of networks. 

Literature Review 

The Role of Models 

Traditionally, models serve as a methodical means of representing nature's realities by capturing 
relationships between abstract symbols derived from physical objects, extracting theories, and 
summarizing the rules governing the universe (Simon, 2019). For example, Kepler's laws of planetary 
motion were developed to describe and understand the rules governing planetary orbits around the sun. 
Solow’s models (Solow I and Solow II) aimed to comprehend economic growth from a macro perspective 
(Solow, 1956). However, these models typically possess fixed application fields and are based on a limited 
set of situations and assumptions. 

With the advent of the digital age, however, digital technologies have become deeply integrated into our 
daily lives, profoundly transforming human experiences and the business world (Yoo et al., 2010). This 
transformation has led to an ontological reversal (Baskerville et al., 2019),  wherein digital models precede 
physical objects and actively shape, create, and influence reality. A notable example is the construction of 
the Peter B. Lewis Building, in which Gehry first designed 3D models using computers before constructing 
the building based on the digital model (Boland Jr et al., 2007). This digital transformation and ontological 
reversal fundamentally alter the role of models in innovation development, making them essential 
components that both serve and determine innovations. However, contemporary models still exhibit 
limitations and are often confined to specific application fields. 
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In the context of artificial intelligence (AI), the role of models becomes various, and models can be seen as 
significant factors that influence AI innovations. They can function as innovations themselves (Gao et al., 
2021), form components of the innovations (Silver et al., 2016), or provide the foundation for the innovation 
design (Vaswani et al., 2017). More importantly, AI models are characterized by their generality and 
flexibility, allowing for their application across diverse domains. For instance, GPT-4 can be employed in 
question-answering, translation, writing, calendar organization, and personal assistance fields (Brown et 
al., 2020). This flexibility, generativity, and relationality of models propel AI innovation.  

While different models may receive varying levels of attention, their associated AI innovations may follow 
distinct evolutionary paths. ChatGPT, for example, has gained significant popularity due to the flexibility 
and power of Generative Pre-training Transformer 4 (GPT-4), leading to widespread adoption and the 
emergence of new research based on this model. In contrast, Bard, a chatbot tool based on the Language 
Model for Dialogue Applications (LaMDA) model, has not achieved similar success (Ali et al., 2023). 
Therefore, model characteristics might influence the popularity of AI innovations. Moreover, older models 
often serve as building blocks for new ones, with previous models being combined and integrated into the 
structure of new models (Arthur, 2009). The combinatorial evolution of models forms dependency 
relationships between models, creating a model-model network indicating the evolution patterns and 
popularity of models. This network may partially reflect researchers' attention and interests, influencing 
the popularity of papers. Furthermore, these model networks experience high volatility, largely attributed 
to shifts in models’ popularity and their combinational evolution. For example, the BERT model introduced 
in 2018 starts from an emergent technique to a foundational pillar in AI research. However, by 2022, 
emergent models such as GPT-3 began to overshadow its preeminence (Zhang & Li, 2021). According to the 
paperswithcode website, research related to BERT observed a relative decline in comparison to those 
emphasizing expansive language models. Such volatility not only governs the popularity trajectory of AI 
models but also considerably impacts the dissemination and reception of scholarly AI articles. Thus, to 
study the role of models in this process, we should take a dynamic network perspective, considering not 
only the centrality or location of a model in the network but also the change of the centrality and the 
changing speed.  

Popularity and Diffusion of Papers 

Researchers have employed academic publications to examine and track the development pace of artificial 
intelligence (AI) innovations (Tang et al., 2020). Moreover, most core AI innovations are accompanied by 
corresponding articles that introduce them to the broader academic community. For example, Thoppilan 
et al. (2022) published "LaMDA: Language Models for Dialogue Applications" to introduce Google's 
flagship large language model, capable of providing real-time information sourced from the internet. 
Similarly, OpenAI introduced their innovation GPT-3 in the paper "Language Models are Few-Shot 
Learners" (Brown et al., 2020), which serves as the foundation for ChatGPT. These publications offer 
detailed information about their respective innovations, which are then reviewed, analyzed, and built upon 
by other developers, academic researchers, and the general public, facilitating the diffusion of innovation 
(Rogers, 2010). As new innovations are developed and subsequently published, they often build upon the 
foundations laid by prior ones (Arthur, 2009). Consequently, earlier publications serve as crucial citations 
for subsequent research. Hence, monitoring the diffusion and shifts in academic AI literature can offer 
valuable insights into the dissemination and progression of AI innovations. By examining the interrelated 
nature of these publications, researchers can better understand the ongoing development and evolution of 
AI technology within the academic community. In this paper, we will use the diffusion of AI publications in 
the academic field to understand the diffusion of AI innovations. 

Researchers have been studying the diffusion and popularity of academic papers for many years, employing 
various measures to identify the impact and dissemination of scholarly work. These metrics include 
Mendeley readership (Aduku et al., 2017), the Altmetric score (Sugimoto et al., 2017), PlumX Metrics 
(Lindsay, 2016), and, most notably, the citation counts (Uzzi et al., 2013; Wang et al., 2013). While 
Mendeley readership reflects the number of researchers who save a paper to their personal libraries, 
Altmetric scores and PlumX Metrics capture a paper's broader influence through various channels, such as 
social media, news outlets, and policy documents; longitudinally tracking these metrics can be challenging 
due to the dynamic nature of the data sources. Thus, this study uses citation counts to measure a paper's 
popularity and diffusion.  
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Previous research has identified various factors that influence the popularity and diffusion of academic 
papers, which can be broadly categorized as paper-related and author-related. First, studies have shown 
that the quality of a paper, its previous popularity (Garfield, 2005), the field of study (Hargens, 2000), and 
certain characteristics such as paper type, length, and the presence of graphs can impact its popularity and 
future citations (Bornmann & Daniel, 2008). For example, Uzzi et al. (2013) found that papers with 
moderate novelty and conventionality are more likely to become popular and have a high impact. Second, 
author-related factors also play a significant role in the diffusion of papers. Factors such as the author's 
reputation, funding, and social networks have been found to influence the popularity of a paper (Bornmann 
& Daniel, 2008; Uzzi & Spiro, 2005). For instance, White (2001) found that researchers are more likely to 
cite works whose authors are within their social networks. However, these studies overlook the role of 
models in the diffusion process, which is particularly relevant in AI innovation, as models serve as bridges 
between upstream datasets and downstream applications. We will address this gap in this study. 

Moreover, previous research predominantly adopts a static perspective, comparing the popularity of papers 
at a single time point. This approach may neglect important dynamic factors, such as the speed of diffusion 
and changes in models' popularity, which could impact the diffusion pattern of AI innovations. Additionally, 
AI innovation is highly volatile. For example, according to the paperswithcode website, by the end of 2021, 
1.17% of papers used BERT, while by the end of 2022, only 0.67% of papers used BERT, and to date, only 
0.39% of papers use BERT. To account for these dynamics, this study will use a longitudinal dataset, 
including AI papers from 2000 to 2020, to investigate how the dynamic effects of models influence the 
diffusion and popularity of AI innovations. 

Theory and Hypotheses Development 

Viewing AI innovations from a network perspective, various factors such as authors, keywords, models, and 
pre-existing papers can be considered as nodes in the network. These nodes interact with each other, 
forming relationships that influence the development and diffusion of AI innovations. Furthermore,  these 
networks are not static but in continuous construction, maintenance, and modification. This dynamic is 
driven by a “translation” process in which network nodes negotiate, interpret, and redefine their 
relationships. To comprehend the influence of these factors on the popularity of AI innovations, we have 
designed a dynamic, heterogeneous network model. This model is based on longitudinal data, including AI 
publications from 2000 to 2022. Our proposed network model incorporates four distinct layers: a model-
model relationship network, a paper citation network, an author collaboration network, and a keyword co-
occurrence network. Since nodes in those four layers are different, it is a heterogeneous network (Chang et 
al., 2015). The impact of author and paper models has been extensively studied. Therefore, we mainly focus 
on the model network to explore the role of models in AI innovation popularity. 

The model-model relational network is a directed network where nodes are models, and edges are the 
dependency relationships between them. For example, if model 2 is based on model 1, a directed 
dependency relationship is formed between them. To measure a model's importance, we employ network 
centrality, a concept that quantifies the relative importance of individual nodes within a network (Freeman, 
2002). More specifically, we utilize indegree eigenvector centrality, which considers not only the number 
of connections but also the importance of nodes connected to a particular node (Bonacich, 1987). 

 
Figure 1: Process of Multilayer Heterogeneous Network Construction  
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In the network, new entities usually tend to connect to well-established entities, thereby reinforcing their 
prominence (BarabÃ¡si & PÃ3sfai, 2016). Consequently, when a model is in a central network position and 
possesses high "prestige," new papers are more likely to adopt that model and cite related papers. This 
phenomenon is also supported by the concept of cumulative advantage and the Matthew effect, whereby 
early success or recognition generates further recognition, creating a self-reinforcing cycle (Petersen et al., 
2011). Based on this theoretical framework, we propose the following hypothesis: 

Hypothesis 1: The network centrality of a model in a given time period will positively influence the 
increase of citation counts of related papers in the next time period. 

As a model moves towards a central position in the model-model network, it experiences a concomitant 
increase in its popularity. This phenomenon is further exacerbated by the contagion effect, wherein 
developers are more predisposed to imitate their peers and consequently adopt and allocate attention to 
the model in question (Meade & Islam, 2006). This cyclical interplay between centrality and attention 
amplifies the model's prominence, thereby ensuring that it continues to attract increasing levels of focus 
within the community. Within the open-source community, developers' attention is a critical resource 
(Tuomi, 2002), and models capturing this attention are more likely to evolve and develop further. As these 
models evolve, they have the potential to inspire the publication of novel research papers and the 
development of related models, a phenomenon driven by the perception that the model holds significant 
promise (Crowston et al., 2008). Conversely, a model maintaining the same centrality but moving towards 
the periphery indicates a decline in related models and research. This shift could signal that the model is 
becoming outdated, and its popularity and relevance are waning. Recognizing these trends, researchers may 
adjust their interests accordingly because of the bandwagon effect (Simon, 1954). Therefore, the following 
hypothesis is proposed: 

Hypothesis 2: A model's increase in centrality score in the model-model network will positively moderate 
the effect of centrality on the change in citation counts of related papers in the next time period. 

A fast movement to a central position indicates that the model gains popularity and recognition rapidly 
within the field (Burt, 2004). Such swift ascension might be attributed to a model's novelty, effectiveness, 
or ability to address previously unmet needs in the application domain (Crowston et al., 2008). The velocity 
of a model's movement toward centrality can enhance its visibility and impact on both the academic and 
practitioner communities. A model that quickly becomes central in a network is more likely to be discussed, 
utilized, and expanded upon by other researchers, as it garners increased attention and trust within the 
field (Valente, 1996). Consequently, this heightened visibility might result in a higher rate of citations for 
the related papers, amplifying the positive moderation effect of the model's centrality movement. Thus, the 
following hypothesis is proposed: 

Hypothesis 3: The speed of a model's increase in centrality score will positively moderate the effect of 
increasing centrality on the relationship between centrality and change in citation counts of related 
papers in the next time period. 

Data   

The dataset utilized in this study was acquired from the reputable PapersWithCode platform 
(https://paperswithcode.com), which includes 345,383 research papers and 174,253 artificial intelligence 
(AI) models. However, 74% of papers do not have any associated AI models. As such, this study endeavors 
to explore the impact of models on paper popularity by conducting two separate investigations. The first 
analysis uses the complete dataset to assess the impact of the availability of public models on paper 
popularity. Furthermore, the second analysis focuses exclusively on the subset of papers with related 
models, which accounts for 88,113 papers, to investigate the specific effects of these models on paper 
popularity. 

 
Figure 2: Conceptual Model 
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To supplement the dataset acquired from PapersWithCode, the OpenAlex website was used to gather 
citation information for the papers. The final dataset used in this study consists of paper titles, abstracts, 
keywords, authors, model details, and citations. According to Figure 3, the majority (83%) of AI models are 
associated with only one paper, while 17,857 models are linked to more than one paper. Further analysis 
reveals that 10% of models are connected to two papers, while 5900 models are associated with three or 
more papers. 

  
Figure 3: Distribution of Papers and Models  

Proposed Methodology and Future Plan  

Network Construction 

Based on our dataset, the relationship between papers and models is often characterized by a many-to-
many correspondence. This relationship can be classified in several ways: official verification, mention in 
academic papers, or mention in model readme pages. By examining these three types of relationships, we 
can identify eight distinct connections between papers and models.  

When a relationship is officially verified, it is often assumed that the paper’s author developed the model, 
as the verified model is typically created by one of the authors. In cases where the relationship is only 
mentioned in academic papers, it could indicate a variety of situations, such as using the paper for reference 
or simply mentioning it in passing. As these relationships are difficult to discern and represent a relatively 
low proportion (0.6%), they will not be included in our analysis. Conversely, when a relationship is only 
mentioned in a model's profile, it can be classified as the paper being used by the model, since it suggests 
that the model has incorporated the paper's ideas and methods for further development and adaptation. 
Any data without a discernible relationship will also be excluded from consideration. After this filtering 
process, we are left with a final dataset containing 165,079 paper-model relationships, divided into two 
categories: "paper develops model" and "paper is used by model." Using this dataset, we constructed a 
bipartite network called the paper-model network. The process is outlined in Figure 1.  

Furthermore, we employed citation relationships to establish a directed paper citation network, wherein 
nodes represent papers and edges indicate citation connections. Since this network partially mirrors the 
dependency relationships between papers and their association with models, we can combine the paper-
model network with the citation network to generate a directed model-model relationship network. In this 
network, nodes denote models, and edges symbolize "based on" relationships.  

In addition to the aforementioned networks, we also constructed: (1) a weighted author collaboration 
network, where nodes represent authors and edges indicate the number of collaborations, and (2) a 
weighted keyword co-occurrence network, with nodes as keywords and edges as the frequency of keyword 
co-occurrence. By observing annual changes in these four networks, we aim to understand how the dynamic 
interplay of network structures influences the increase in citations each year. 

Location, Movement, and Speed of Movement of Models 

We utilize eigenvector centrality to assess the position of a model within a network, as it considers not only 
the number of connections but also the significance of the connected nodes (Bonacich, 1987). This metric 
offers valuable insights into the extent to which a model's prominence is influenced by its associations with 
other influential models. Given that the model-model network is directed, indegree edges represent a 
based-on relationship. A model with a high outdegree signifies that it is built upon numerous preceding 
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models. Therefore, we utilize only the in-degree eigenvector centrality to evaluate a model's position. For 
papers associated with multiple models, we consider the official model's location if available. In the absence 
of an official model, we calculate the average in-degree eigenvector centrality of the connected models and 
use that as the representative location. To measure the location movement, we subtract the in-degree 
eigenvector centrality of a model in year t-2 from that in year t-1. For the speed of movement, we compute 
the ratio of the movement from year t-2 to year t-1 over the movement from year t-3 to year t-2. By 
examining these metrics, we can better understand the dynamic of model popularity and its influence. 

Popularity of Papers 

In this study, we use the annual increase in citations as a proxy for measuring the popularity and diffusion 
of academic papers. Additionally, we control for several potentially confounding variables, including the 
location of authors, changes in author locations over time, the speed at which a paper receives its first 
citation, and both the location and changes in the location of keywords. These factors are derived from 
various networks, such as the author network, keywords network, and citation network. 

The analytical model proposed to test our hypotheses is outlined below. For a given paper i at time t, we 
will examine the relationship between the dependent variable (annual citation increase) and the 
independent variables (model centrality, location movement, speed of movement, interaction variables, 
and control variables). This framework will allow us to assess the validity of our hypotheses and gain a 
deeper understanding of the factors influencing paper popularity and diffusion. Our hypotheses will be 
evaluated by the sign and significance of coefficients related to models; the remaining terms serve as 
controls. 

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖,𝑡
=  𝛽0 +   𝛽1 ∗ 𝑀𝑜𝑑𝑒𝑙 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1 +  𝛽2 ∗ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖,𝑡−1 +  𝛽3
∗ 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑆𝑝𝑒𝑒𝑑𝑖,𝑡−1 +  𝛽4 ∗ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖,𝑡−1 ∗ 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑆𝑝𝑒𝑒𝑑𝑖,𝑡−1 +  𝛽5
∗ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖,𝑡−1 ∗ 𝑀𝑜𝑑𝑒𝑙 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1 +  𝛽6 ∗ 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑆𝑝𝑒𝑒𝑑𝑖,𝑡−1 

∗ 𝑀𝑜𝑑𝑒𝑙 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1+𝛽7 ∗ 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑆𝑝𝑒𝑒𝑑𝑖,𝑡−1 ∗ 𝑀𝑜𝑑𝑒𝑙 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1
∗ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖,𝑡−1 + 𝛽8 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐴𝑢𝑡ℎ𝑜𝑟 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)𝑖,𝑡−1 + 𝛽9
∗ 𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐴𝑢𝑡ℎ𝑜𝑟 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)𝑖,𝑡−1 + 𝛽10 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐾𝑒𝑦𝑤𝑜𝑟𝑑 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)𝑖,𝑡−1 

+ 𝛽11 ∗ 𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐾𝑒𝑦𝑤𝑜𝑟𝑑 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)𝑖,𝑡−1 +  𝛽12 ∗ 𝑃𝑎𝑝𝑒𝑟𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1 + 𝛽13
∗ 𝑦𝑒𝑎𝑟𝑠 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑓𝑖𝑟𝑠𝑡 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝜎𝑡 + 𝜀𝑖,𝑡 

Future Plan 

In the forthcoming phases of this research, we intend to finalize our data analysis grounded in the extant 
dataset. Furthermore, we will harness the dataset extracted from OpenAlex, leveraging it to enhance and 
corroborate the information obtained from paperswithcode. It is imperative to ensure the robustness and 
integrity of our data sources. We will also explore the potential existence of cross-lagged relationships and 
investigate alternative measures that could offer additional insights. For instance, incorporating HITS 
algorithms to identify hubs and authorities of models as a supplementary measure (Kleinberg 1999), and 
employing nested model analysis to discern the overall impact of models on the distribution of academic 
papers. 

Expected Result and Contribution 

This study contributes to extant research mainly in two ways. Firstly, this study extends the discussion on 
AI innovation diffusion, being the first to analyze the impact of models and provide empirical evidence 
supporting their importance. Secondly, our research utilizes longitudinal data to track diffusion patterns of 
papers from a dynamic network perspective, particularly focusing on the momentum of model movements. 
It may provide some insights for future network analysis. We anticipate that the speed of movement will 
amplify the positive moderation effect of models moving toward centrality on the relationship between 
models’ location and popularity and dissemination of related papers. By examining the dynamic interplay 
among models’ location, movement, and movement speed, this study aims to deliver a more comprehensive 
understanding of the factors that drive the popularity and diffusion of AI innovations. 
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