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Abstract 

Advanced AI models are powerful in making accurate predictions for complex problems. 
However, these models often operate as black boxes. This lack of interpretability poses 
significant challenges, especially in high-stakes applications such as finance, healthcare, 
and criminal justice. Explainable AI seeks to address the challenges by developing 
methods that can provide meaningful explanations for humans to understand. When 
black box models are used for prediction, they inevitably produce errors. It is important 
to appropriately explain incorrect predictions. This problem, however, has not been 
addressed in the literature. In this study, we propose a novel method to provide 
explanations for misclassified cases made by black box models. The proposed method 
takes a counterfactual explanation approach. It builds a decision tree to find the best 
counterfactual examples for explanations. Incorrect predictions are rectified using a trust 
score measure. We validate the proposed method in an evaluation study using real-world 
data. 

Keywords: Interpretable machine learning, counterfactual explanation, decision trees, 
misclassification 

Introduction 

Artificial intelligence (AI) and machine learning (ML) have become ubiquitous technologies in the modern 
world. They offer enormous potential to revolutionize various industries and businesses. While these 
technologies have become increasingly powerful in making accurate predictions for complex problems, 
their models often operate as "black boxes," meaning that the inner workings of the models and the logic 
behind the models’ output are opaque and difficult to explain. This lack of interpretability poses significant 
challenges, especially in high-stakes applications, such as finance, healthcare, and criminal justice, where 
decisions based on these models can have significant consequences. Interpretable machine learning (IML) 
or explainable AI (XAI) seeks to address the challenges by developing methods and techniques that can 
provide meaningful explanations for humans to understand how the black box models make predictions 
(Molnar 2023). By increasing the interpretability of the models, we can build trust, transparency, and 
accountability in AI systems and make sure that their outputs are fair, ethical, and reliable. 

An increasingly popular XAI/IML method is counterfactual explanations (Verma et al. 2022; Wachter et al. 
2018). Unlike many traditional XAI and IML methods, counterfactual explanations do not directly answer 
the “why” part of a decision; instead, they provide alternative scenarios, or counterfactuals, that explore 
what would have happened if certain inputs or features had been different. In this way, they explain to the 
end-users receiving an unfavorable decision what improvements are needed in order to achieve the desired 
outcome. For example, if an ML model predicts that a loan applicant would default on the loan, a 
counterfactual explanation could advise the applicant what factors would need to change in order to have 
the loan approved. Counterfactual explanations are easy to understand, highly persuasive, and capable of 
generating actionable insights (Fernández-Loría et al. 2022). As such, these methods have gained 
increasing attention in XAI/IML research in recent years (Guidotti 2022; Stepin et al. 2021). 
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One of the important criteria for evaluating XAI/IML methods is the fidelity, which measures the extent to 
which an interpretable method can accurately approximate the predictions of the black box model. It is 
desirable for the interpretable method to have high fidelity, making predictions consistent with those of the 
black box model. However, when black box models are used for prediction or classification, they inevitably 
produce errors or misclassifications. Nevertheless, in existing XAI/IML approaches, fidelity is pursued 
entirely without considering the errors. That is, when the black box model misclassifies an instance, the 
interpretable method would, based on the fidelity criterion, treat the misclassified result as correctly 
classified and then attempt to explain the actually incorrect classification outcome as if it is correct. This 
misinterpretation clearly has a significant impact on subsequent actions. In our literature search, however, 
we have not found any study that addresses this problem. 

In this study, we explore the problem of how to rectify or reduce incorrect predictions made by AI and ML 
models and offer more suitable explanations accordingly. We focus on classification problems with two 
categorical outcomes: beneficial (or desired) and adverse (or undesired). There are two types of errors in 
this problem. The first is to misclassify a beneficial class to adverse (b2a) and the second is to misclassify 
an adverse class to beneficial (a2b). Suppose the classification model is used by an organization to support 
decision making on individual customers (e.g., loan application). It is easy to see that the first type of error 
(b2a) causes harm to the customers while the second type of error (a2b) causes harm to the organization. 
Thus, the audience of the explanations for the two types are different. And the purposes and methods of 
explanations would also be different. As a result, our research questions are two folds: (1) How can we 
rectify and explain the misclassification outcome to individuals when the black box model incorrectly 
categorizes a beneficial class to adverse? and (2) How can we rectify and explain the misclassification 
outcome to organizations when the model incorrectly categorizes an adverse class to beneficial. 

In this paper, we propose a novel and practical method to provide explanations for misclassified cases made 
by AI and ML models. The proposed method takes a counterfactual explanation approach that can be used 
no matter what model is employed for classification. In our method, we first apply a black box model to 
classify given instances. We then fit a decision tree with the classification results made by the black box 
model. This decision tree, called explanation tree, is then used to find the best counterfactual examples for 
explanations. For the two types of classification errors, we offer two different types of explanation, one to 
the individual customers and the other to the organization’s decision makers and data analysts. 

This work makes important contributions to machine learning, AI, and data science research in several 
aspects: (1) We investigate the problem of how to explain misclassified outcomes made by AI and ML 
models. This is an important and interesting research problem unexplored in literature. (2) We propose a 
novel and practical method to provide counterfactual explanations for correctly and incorrectly classified 
cases. (3) We validate the proposed method in an empirical evaluation study using real-world data. 

Related Work 

Interpretable machine learning or explainable AI methods can be classified into several categories based on 
the scope and nature of the models (Adadi and Berrada 2018; Du et al. 2020; Guidotti et al. 2018). In terms 
of the scope of interpretability, globally interpretable methods provide understanding of the entire model 
behavior and the whole logic behind the model’s predictions. Examples of these methods include decision 
trees, rule-based models, linear models, and additive models (Wang et al. 2022). Locally interpretable 
methods explain how a particular prediction is made by the model for a specific input (Kim et al. 2023). 
Explanation methods can also be classified based on whether the method is dependent on the ML model. 
Model-specific methods are designed for a specific ML model. They rely on the inner workings of the model 
to generate explanations. On the other hand, model-agnostic methods can be applied to any ML model, 
regardless of its architecture or training process. These methods rely on analyzing the inputs and outputs 
of the model to generate explanations. Model-agnostic methods are usually post hoc, meaning that 
explanations are generated after the black box model has been trained to make predictions. Counterfactual 
explanation methods are usually local, model-agnostic, and post-hoc method. 

Recent trends in the XAI/IML research tend to focus on post-hoc model-agnostic approach. A popular 
stream of this approach is the feature importance method, which explains the output of a model by 
providing the importance of individual features for the model’s prediction. A well-known example of these 
methods is LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al. 2016). LIME works by 
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generating a simple interpretable model that approximates the behavior of the black box model locally 
around the instance of interest. Given the instance, LIME first generates a set of perturbed instances and 
gets their black box model predictions. These instances are next weighted according to their proximity to 
the original instance. A simple interpretable model (e.g., a linear model) is then trained on the dataset 
including the weighted perturbed instances and their predicted labels. This model can then be used to 
explain the black box predictions based on the importance of the features in the model. 

Another well-known model-agnostic feature-importance method is SHAP (SHapley Additive exPlanations) 
(Lundberg and Lee 2017). SHAP is based on the concept of Shapley values from cooperative game theory. 
The basic idea behind SHAP is to assign an importance value, based on the Shapley value, to each feature 
in the input data that contributes to the final prediction. This is attained by evaluating the model output for 
every possible ordered subset of features to get the marginal contribution of each feature to the output. The 
SHAP values are then calculated as a weighted average of the marginal contributions over all possible 
subsets of features. The SHAP importance values can then be used to understand the importance of each 
feature and to explain the result of the model. SHAP provides a unified framework for interpreting the 
predictions of complex machine learning models. Both LIME and SHAP have been widely used in various 
applications involving structured data and unstructured text and image data. 

Counterfactual explanations represent another common strategy for post-hoc model-agnostic approach. 
Counterfactual explanations describe how a model’s output would change if some inputs were different 
(Martens and Provost 2014). Most approaches for generating counterfactual explanations are based on 
optimization techniques (Molnar 2023; Wachter et al. 2018). The basic idea is to find an instance or a small 
set of instances (counterfactuals) that are as similar to the instance of interest as possible based on feature 
values but have different (desired) prediction outcome. The objective of the optimization problem includes 
a loss function that measures the distance between the counterfactuals and the instance of interest. Desired 
prediction outcome can be specified either as a constraint or as another component of the objective 
function. An optimization method, such as a gradient-based method or a metaheuristic method, is then 
used to find the best counterfactuals. Along the line of optimization approach, Dhurandhar et al. (2018) 
introduce the contrastive explanation method (CEM). The basic idea of CEM is to identify the smallest set 
of changes to the features required to produce a different prediction, making the explanations easy to 
understand. Van Looveren and Klaise (2021) use prototypes, which are representative instances of each 
class, to guide the generation of counterfactuals. Their method, called Counterfactual Explanations Guided 
by Prototypes (CEGP), finds the smallest feature changes required to transform the input into a prototype 
of a different class to generate a counterfactual explanation. Sokol et al. (2022) implement a brute force 
approach to generate counterfactuals in their library for Fairness, Accountability and Transparency (FAT) 
algorithms. 

Counterfactual explanations can also be generated using decision trees (Fernández et al. 2019; Guidotti et 
al. 2020; van der Waa et al. 2018). Similar to LIME, decision tree based methods first generates a set of 
synthetic instances locally around the instance of interest and obtain their predictions using the black box 
model. Next, this set of instances and their predictions are used to train a decision tree, which becomes a 
local interpretable model for the black box model. This decision tree is then used to locate the instance of 
interest and its counterfactuals. The best counterfactuals are selected based on some criteria that can be 
easily represented with the decision tree structure, such as the shortest path between the instance of interest 
and the counterfactuals. 

In order to faithfully represent the behavior of a black box model, post-hoc model-agnostic approaches 
often use the predictions of the black box model to train the interpretable model, as described above. When 
the black box model makes an incorrect prediction, the interpretable model would still attempt to explain 
the incorrect prediction as if it is correct. This misinterpretation problem clearly has a significant practical 
implications. Rudin (2019) observes that recent work tends to explain only the correct predictions. In our 
literature search, we have not found any study that addresses this misinterpretation problem. There are 
some studies in XAI/IML literature addressing misclassification issue (Abid et al. 2022; Vermeire et al. 
2022). However, these studies consider identifying the reasons for the mistakes, rather than the 
misinterpretation issue, and their works tend to focus on image recognition applications. In this paper, we 
address the problem of how to correctly explain misclassified cases in business applications. 
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The Proposed Method 

This study applies a computational design science methodology to develop a new and innovative artifact, 
called explanation tree, for explaining incorrect predictions made by AI and ML models. We first use a small 
example to illustrate the misclassification problem and explain the basic idea of the explanation tree. We 
then provide a detailed description of the proposed method. 

Explanation Tree and Trust Score 

Consider an illustrative example of a dataset in Table 1. The dataset is used to train machine learning models 
to support decision making for small business loan applications. It contains information on 10 customers 
with three features: Income, requested Loan Amount, and whether the customer owns a house (House 
Owner). Suppose a black box model is built and its prediction is shown in the Predicted Outcome column 
(where ‘adverse’ or ‘beneficial’ indicates the customer incurs a loss or gain to the lender, respectively). Since 
it is training data, the actual outcome is known, as shown in the last column. It can be seen that there are 
two misclassified cases. Customer #9, who is actually beneficial, is misclassified as adverse (b2a), while 
customer #10, an adverse case, is misclassified as beneficial (a2b). 

When the model is used to classify new applications, misclassification can also occur. As a result, a beneficial 
applicant would be denied and provided with a wrong explanation, and an adverse applicant would be 
accepted. These scenarios clearly show that it is important to consider misclassification problem when 
explaining machine learning predictions. We develop a novel approach to address this problem. 

Our proposed method uses a decision tree, which we call the explanation tree, to find counterfactual 
examples for the individuals with undesired classification outcome and to explain what changes should be 
made in order to have the desired outcome. To build the explanation tree, we first remove the misclassified 
instances (i.e., #9 and #10 in the dataset in Table 1). The black-box predicted outcomes (which are also the 
actual outcomes) are used as the class label to grow the tree as large as possible so that it fits the predicted 
outcome perfectly. As such, the explanation tree has 100% fidelity to the black box model in terms of 
correctly classified cases. We should point out that the explanation tree is not intended for making 
predictions. Instead, it serves as an explanation model to explain the predictions made by the black box 
model and to find the counterfactuals that would improve the prediction outcome. Therefore, it is desirable 
that the explanation tree produces predictions as consistent with those of the black box model as possible. 
Because the explanation tree will use the training instances as the counterfactuals, it should include only 
the correctly classified instances. Otherwise, if a misclassified instance is included, the instance may be 
misused as a counterfactual for post-hoc explanation, making wrong recommendation to the audience. 

 

Customer ID 
Income 
($000) 

Loan Amount 
($000) 

House Owner 
Predicted 
Outcome 

Actual 
Outcome 

#1   94 165 yes beneficial beneficial 

#2   86 225 yes adverse adverse 

#3 112 190 yes beneficial beneficial 

#4   67   95 no beneficial beneficial 

#5   78 105 no beneficial beneficial 

#6   69 160 no adverse adverse 

#7   87 173 no adverse adverse 

#8   98 105 no beneficial beneficial 

#9   74 125 no adverse beneficial 

#10   94 149 no beneficial adverse 

Table 1. An Illustrative Example of Loan Application 

 

Figure 1 shows the explanation tree built on the data in Table 1 (after removing #9 and #10). Each internal 
node is represented by a rectangle box, inside which the splitting criterion is specified. Each leaf is 
represented by a rectangle box with rounded corners. The first row inside the leaf box shows the leaf ID, 
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followed by the IDs of the instances in the leaf. For example, leaf L1 contains customer #1, while leaf L4 
contains customers #4 and #5. Since the tree has 100% fidelity, the instances in each leaf have the same 
class. This is indicated on the second row in the leaf box. 

 

 

Figure 1. Explanation Tree for the Dataset in Table 1 

 

When a new instance is classified by a machine learning model, it does not have the actual class label to tell 
whether it is misclassified or not. Therefore, it is necessary to have a metric to decide if the model correctly 
classifies a new instance. A well-known measure, called trust score (Jiang et al. 2018), can be used for this 
purpose. Given a new instance x and its predicted class �̂� , the trust score (TS) of (𝐱, �̂�) is the ratio between 

the distance from the new instance to the nearest class different from the predicted class (�̃� ) and the 

distance from the new instance to the predicted class (d), i.e., 𝑇𝑆(𝐱, �̂�) = �̃�/𝑑. The larger the trust score, the 
closer the new instance to the predicted class, and the more trustworthy the predicted outcome. Trust score 
is computed independent of the classification model.  Jiang et al. (2018) have shown that it can effectively 
measure if a classification result is correct or not. Various empirical studies have demonstrated that the 
trust score outperforms other popular model confidence and discriminant scores (de Bie et al. 2021; 
Delaney et al. 2021; Jiang et al. 2018). Therefore, trust score is used in our method to evaluate the 
trustworthiness of a prediction. 

The Proposed Counterfactual Explanation Method 

Let 𝐷𝑁 = {[𝑥𝑖1, … , 𝑥𝑖𝑚], 𝑦𝑖}𝑖=1
𝑁 = {𝐱𝑖 , 𝑦𝑖}𝑖=1

𝑁  be the set of training and validation data for building the black box 
model. Without loss of generality, assume that 𝑦𝑖 = {0,1}, ∀𝑖 . Let �̂�𝑖   be the predicted value of 𝑦𝑖  by the 
model. To build the explanation tree, we remove misclassified instances from 𝐷𝑁 . For the remaining n 
correctly classified instances, �̂�𝑖 = 𝑦𝑖 , ∀𝑖 . In this case, we can use 𝑦𝑖  to represent both the predicted and 
actual class. So, let 𝐷𝑛 = {𝐱𝑖, 𝑦𝑖}𝑖=1

𝑛  be the dataset after removing misclassified instances from 𝐷𝑁. Given a 
new instance 𝐱′, let �̂�′ be the predicted class from the black box model. Let 𝑦′ be the true but unknown class. 
Then, if the instance is correctly classified, 𝑦′ = �̂�′; otherwise, 𝑦′ = 1 − �̂�′. 

Our proposed method first builds an explanation tree that fits the output of the black box model perfectly. 
Given a new instance and its black box prediction, we consider two scenarios, i.e., when the instance is 
correctly classified and misclassified. We compute the trust score for each scenario and find the 
counterfactual instances under each scenario. Then, we compare the two trust scores to decide if the new 
instances is misclassified or not. The counterfactual instance corresponding to the decision is provided for 
explaining the final outcome. The proposed method includes the following computational steps. 

 1. Given a new instance 𝐱′, obtain the black box prediction �̂�′. Build an explanation tree T using the 
instances in 𝐷𝑛, plus (𝐱′, �̂�′). 

 2. Find the leaf in T where the new instance 𝐱′ is located and denote the leaf by 𝐿′. 

House Owner 

Income < 100K Income < 80K 

Loan Amt < 200K Loan Amt < 120K Loan Amt < 150K 
L3 {#3} 

beneficial 

L1 {#1} 
beneficial 

L2 {#2} 
adverse 

L4 {#4, #5} 
beneficial 

L5 {#6} 
adverse 

L6 {#8} 
beneficial 

L7 {#7} 
adverse 

yes 

yes 

yes 

yes 

yes yes 

no 

no 

no 

no 

no no 
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 3. Consider the scenario when 𝐱′  is correctly classified. Set 𝑦′ = �̂�′  and compute the trust score 
𝑇𝑆(𝐱′, 𝑦′ = �̂�′). Then, find the counterfactual instance for 𝐱′ as follows: 

  a. Find the leaf in T that has the shortest path to 𝐿′ among all leaves with the opposite class to 𝑦′. 
Denote this leaf by 𝐿𝑐  and its class by 𝑦𝑐 = 1 − 𝑦′. Without loss of clarity, we also use 𝐿𝑐  to 
denote the set of instances in 𝐿𝑐 . These instances are the candidates of the counterfactual 
instances for 𝐱′. 

  b. Select the best counterfactual instance as the one having the maximum trust score among all 
candidates in 𝐿′ : 𝐱𝑐+ = max

𝐱∈𝐿𝑐
𝑇𝑆(𝐱, 𝑦𝑐), where c+ indicates that the counterfactual is for the 

correct classification scenario. 

 4. Consider the scenario when 𝐱′  is misclassified. Set 𝑦′ = 1 − �̂�′  and compute the trust score 
𝑇𝑆(𝐱′, 𝑦′ = 1 − �̂�′). Then, find the counterfactual instance for 𝐱′ by following the same procedure as 
specified in step 3. Steps 4a and 4b are the same as steps 3a and 3b, respectively, except that in step 
4b, we use 𝐱𝑐− to denote the counterfactual instance for the misclassification scenario. 

 5. If 𝑇𝑆(𝐱′, 𝑦′ = �̂�′) ≥ 𝑇𝑆(𝐱′, 𝑦′ = 1 − �̂�′) , use 𝐱𝑐+  obtained in step 3b as the counterfactual for 𝐱′; 
otherwise, use 𝐱𝑐− obtained in step 4b as the counterfactual. 

We use the illustrative example in Figure 1 to explain how the proposed method works. Consider a new 
instance of loan application, 𝐱′. Following steps 1 and 2, suppose 𝐱′ is classified as ‘adverse’ and located in 
𝐿′ = 𝐿5. In step 3, we first set 𝑦′ = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒 and compute the trust score 𝑇𝑆(𝐱′, 𝑦′ = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒). Step 3a then 
finds 𝐿𝑐 = 𝐿4 , because L4 has the shortest path to L5 among all leaves with the opposite class 𝑦𝑐 =
𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙. Suppose customer #5 in L4 is the best counterfactual found in step 3b, i.e., 𝐱𝑐+ = 𝐱5. In step 4, 
we first set 𝑦′ = 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 and compute the trust score 𝑇𝑆(𝐱′, 𝑦′ = 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙). Step 4a then finds 𝐿𝑐 = 𝐿5, 
because L5 has the shortest path to itself with the opposite class 𝑦𝑐 = 𝑎𝑑𝑣𝑒𝑟𝑠𝑒. Now, customer #6 in L5 is 
the only counterfactual found in step 4b, i.e., 𝐱𝑐− = 𝐱6. 

In step 5, if 𝑇𝑆(𝐱′, 𝑦′ = �̂�′) ≥ 𝑇𝑆(𝐱′, 𝑦′ = 1 − �̂�′), then we determine that 𝐱′ is classified correctly as ‘adverse’ 
and use 𝐱5 as the counterfactual. The explanation to the applicant 𝐱′ is: “your application is declined, but it 
will be approved if you can reduce the requested loan amount to below $120K” (“Loan Amount < 120K” is 
the splitting criterion between L4 and L5 in Figure 1). On the other hand, if 𝑇𝑆(𝐱′, 𝑦′ = �̂�′) <
𝑇𝑆(𝐱′, 𝑦′ = 1 − �̂�′) , we determine that 𝐱′  is misclassified by the model and should be reclassified as 
‘beneficial’. In this case, the counterfactual 𝐱6 will be provided to the data analyst (who built the black box 
model) to explain what causes the model to misclassify 𝐱′, providing insights for further improvement of 
the model. 

Suppose we have another new application that is classified as ‘beneficial’. We follow the same steps above 
to determine if it is correctly classified and find corresponding counterfactuals. If it is correctly classified, 
then no explanation is needed, because the model works well and the applicant is happy about getting the 
loan approved. On the other hand, if it is misclassified, then the application is reclassified to ‘adverse’. The 
counterfactual will be provided to the applicant to explain what changes should be made in order to have 
the loan approved. It will also be provided to the data analyst to explain what causes the model to misclassify 
the application. 

Experimental Evaluation 

We conducted a preliminary experiment on real-world datasets to evaluate the effectiveness of the proposed 
method against some state-of-the-art-baseline methods. 

Data and Experimental Setup 

Both datasets are publicly available and commonly used for experimental evaluation in XAI/IML literature. 
The first dataset, Diabetes, was originally collected by the National Institute of Diabetes and Digestive and 
Kidney Diseases (https://www.kaggle.com/datasets/akshaydattatraykhare/diabetes-dataset). It contains 
diabetes information on Pima Indian females of 21 years or older, including 768 patients, with eight 
numeric features and two classes (present or absent). The second dataset was provided by FICO 
(https://community.fico.com/s/explainable-machine-learning-challenge). It contains financial and credit 
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data on 10,459 consumers with 23 numeric features. The class attribute has binary values, indicating if the 
individual is of high or low risk. 

Two black box models were used for predictions: neural networks and random forest. We used the 
implementation from the scikit-learn package (Pedregosa et al. 2011), with default parameters. Each 
dataset was divided into two sections, approximately 80% for training and 20% for testing. The 
classification models were built based on training data and evaluated on the testing data. 

Three state-of-the-art XAI/IML methods are used as the baselines to evaluate our proposed method: (1) the 
CEM method from Dhurandhar et al. (2018), (2) the CEGP method from Van Looveren and Klaise (2021), 
and (3) the brute force method in FAT from Sokol et al. (2022). These baseline methods are discussed in 
the Related Work section. Guidotti (2022) conducted a set of experiments to compare more than a dozen 
counterfactual explanation methods with a number of performance measures. The results show that there 
is not a single dominant winner, but the above three methods are among the better ones. Therefore, we 
selected them as the baselines in our evaluation study. However, none of them addresses the problem of 
incorrect predictions made by black box models, as discussed in our literature review. 

Performance Measures 

We evaluate the performance of the baseline and proposed methods using three commonly used measures. 
The first measure is classification accuracy, which is a commonly used measure for classification 
performance. Classification accuracy is computed on the test data. 

The second measure is plausibility, which measures the distance between a counterfactual and the 
instances in the training dataset (Guidotti 2022). A close counterfactual to the training set is more plausible 
for explanation. So, the plausibility is calculated by the distance between a counterfactual instance and the 
nearest instance in the training dataset. 

The third measure is sparsity, which is measured by the number of features that are different between the 
new instance and its counterfactual instance divided by the total number of features (Guidotti 2022; Verma 
et al. 2022). A smaller value in sparsity is desirable because it is easier to explain the differences between 
the new instance and the counterfactual in this case. 

Experimental Results 

Table 2 shows the results of classification accuracy. The accuracy with the baseline explanation methods 
are the same as those with the classification models (i.e., neural networks and random forest models), 
because they do not make any changes to the prediction results. The proposed method produces higher 
classification accuracy. This is understandable because the proposed method is able to correct some 
misclassified instances and thus improve the classification accuracy. 

 

Dataset Classification Model Accuracy of Baselines Accuracy of Proposed Method 

Diabetes 
Neural Networks 80.08 % 82.63 % 

Random Forest 75.32 % 79.44 % 

FICO 
Neural Networks 67.06 % 69.32 % 

Random Forest 68.16 % 70.28 % 

Table 2. Results of Classification Accuracy 

 

The plausibility results are reported in Table 3. A smaller value in this measure is preferred because it 
indicates that the counterfactual explanation is more plausible. It can be seen that the proposed method 
outperforms all baseline methods in every scenario. The CEM method does not support the random forest 
model. The search-based FAT method has a weak performance as it does not utilize the reference training 
data to reach the counterfactuals. In contrast, our proposed method, which considers trust scores, ensures 
that all generated counterfactuals are located in close proximity to the training data, leading to more 
plausible explanations. 
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Dataset Classification Model CEM CEGP FAT Proposed Method 

Diabetes 
Neural Networks 0.249 0.217 0.330 0.204 

Random Forest NA 0.332 0.403 0.266 

FICO 
Neural Networks 0.262 0.245 0.278 0.215 

Random Forest NA 0.306 0.400 0.293 

Table 3. Plausibility Results 

 

Table 4 shows the results of sparsity. A smaller value in sparsity is desirable because the explanation is 
simpler in this case. The proposed method is the best performer in one case where the random forest model 
is used for the FICO data. It is the second best in the other three scenarios. CEGP is the best performer in 
two scenarios with the FICO data but is ranked the third in the other two scenarios with the Diabetes data. 
On the other hand, FAT is the best in two scenarios with the Diabetes data but ranked the third in the other 
two scenarios with the FICO data. CEM is either the worst or not applicable. In short, the proposed method 
performs very well in terms of sparsity. This suggests that the counterfactuals generated by the proposed 
method generally involve fewer changes and thus are easier to explain than the baseline methods. 

 

Dataset Classification Model CEM CEGP FAT Proposed Method 

Diabetes 
Neural Networks 0.321 0.284 0.215 0.223 

Random Forest NA 0.265 0.216 0.221 

FICO 
Neural Networks 0.092 0.058 0.087 0.071 

Random Forest NA 0.055 0.067 0.052 

Table 4. Sparsity Results 

 

Conclusion and Future Plans 

We have proposed a novel method for generating counterfactual explanations for the predictions of black 
box models. The proposed method is designed to rectify and explain incorrect predictions by these models. 
This is a preliminary and ongoing research. We plan to perform more comprehensive experimental 
evaluation with additional baselines and evaluation metrics. We also plan to compare the proposed method, 
which uses black box models, with the white-box models that are inherently interpretable. We will also 
examine the fairness issue in counterfactual explanations, ensuring that explanations and decisions are fair 
and consistent to all stakeholders. 

We have used trust score to help to determine if a new instance is misclassified or not. However, because a 
new instance does not have a true class label, there is no guarantee that the trust score can capture all actual 
misclassifications. To increase the trust score’s reliability, we plan to develop a procedure for training and 
validating trust score. There are some hyperparameters for computing trust scores (Jiang et al. 2018), which 
we have not explored in this preliminary study. We can use training data, which have the true labels, to tune 
the hyperparameters to enhance the effectiveness of the trust score for finding the ground truth. 
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