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Abstract

Modern-day firms face the predicament of blending the comparative advantages of their
two core resources: machines and humans. When forecasting demand (e.g. for a product),
extant literature documents that always permitting (or prohibiting) human revision of a ma-
chine forecast is beneficial if the humans’ private information role is larger (or smaller) than
that of machine-accessible public information. We propose and test a complementary frame-
work that shifts the focus to the regulation of each human revision; and in doing so, adjusts
for human vulnerability to systematic biases. We collaborate with a European retailer to com-
pile a large dataset (∼ 1.1 mn transactions) on machine-led demand forecasts. Humans revise
nearly 38% of these forecasts, but revisions do not always yield an improved final forecast.
Compared to the always permit or prohibit strategies, the ideal regulation of each of these re-
visions could reduce the absolute deviation of the final forecast from realized sales in close to
50%of instances. Any regulation to obtain the best of themachine and human-revised forecasts
requires an ability to predict revision quality. In addition to private information indicators, we
show that indicators of systematic bias in human judgement (e.g., indicators of cognitive load)
can improve the prediction of revision quality. In an out-of-sample analysis, our revision-level
regulation approach picks the best of available forecasts in 14% more instances, compared to
an always-permit or prohibit strategy at the product-store level. Our paper provides practi-
tioners with a novel approach to combining the machine-human output to improve demand
forecasting performance.

Keywords: Human-Algorithm Interface, Human discretion, Demand Forecasting, Sys-
tematic Biases

Introduction and Literature Review
Firms worldwide are increasingly looking for ways to strengthen their traditional human-led forecasting
operations using data-led machine output. Often, these two resources offer comparative advantages. On
the one hand, machines (henceforth interchangeably referred to as algorithm) offer consistent application
of data-led learning, but the availability of public information (codifiable features) limits this advantage. On
the other hand, humansmay possess pertinent private information to improvemachine outputs (Kesavan &
Kushwaha, 2020; van Donselaar et al., 2010), but they may apply it in an inconsistent and biased way (Caro
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Integrating Human Judgement via Classification

Figure 1. Landscape of literature on managing machine-human collaboration.

& de Tejada Cuenca, 2023; Ibrahim et al., 2021). The complementary pros and cons of these two resources
create a predicament for modern-day firms: how to leverage the comparative advantages of machines and
humans?

Extant literature on managing the machine-human potential spans multiple fields including Operations
Management, Information Systems, and Strategy. The approaches proposed in the literature can be split
into two primary streams. The first stream favors the machine-generated output and, thus, searches for
ways to increase human adherence to it. For example, Dietvorst et al. (2018) shows that firms can reduce
algorithm aversion by giving humans some control to revise an algorithm’s recommendation. In another
example, Sun et al. (2022) illustrate an approach to improve human adherence to the algorithmic recom-
mendation by modifying the initial algorithm to include the predictors of human deviations from its rec-
ommendations. The second stream explores ways to integrate machine and human recommendations to
provide an improved final recommendation (see Arvan et al. (2019) for a comprehensive review). Our paper
contributes to this second stream of work.

Within the literature stream on the integration of machine and human recommendations, there are two
popular approaches. The first focuses on obtaining and combining separate point forecasts from humans
and machines. For example, Ibrahim and Kim (2019) show that a simple OLS (Ordinary Least Squares)
regression-based combination of physicians’ direct forecasts (DF) and data-led machine forecasts outper-
forms both individual forecasts of surgery duration. In more recent work, Ibrahim et al. (2021) discuss the
disadvantage of eliciting and using human DFs. Specifically, the authors argue that since humans are prone
to inconsistent application of their private information, a better strategy is to elicit private information ad-
justment (PIA) — “how much the human thinks the algorithm should adjust its forecast to account for the
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Integrating Human Judgement via Classification

information that only the human has.” That said, in practice, eliciting PIA is a challenging task.1

The second approach grants humans discretionary control to revise an algorithm’s point forecast (e.g., see
Fildes et al. (2009)). Under this approach, the challenge is determining how to regulate human discretion
(i.e., when to permit or prohibit). Using a large field experiment, Kesavan and Kushwaha (2020) find that
the strategy of always permitting humans to revise the data-driven decisions yields better outcomes only
in growth-stage product categories (where historical data is scarce) and hurts in mature and decline-stage
product categories (where historical data is abundant). In other words, the strategy of always-permitting
human revisions was beneficial when the share of human private information seemedmore prominent than
that of machine-accessible public information. On the flip side, it is better to adopt the always-prohibiting
strategy for human revisions when the share of private information seems lower than that of public infor-
mation.

We contribute to the literature on human discretionary revision of machine-generated forecasts by propos-
ing a novel framework to regulate human discretion. These discretionary revisions are also known as judge-
mental adjustments in the demand forecasting literature (Arvan et al., 2019). This streamprovides extensive
evidence to suggest that humans may be inconsistent or biased in their application of private information
(Goodwin, 2000; Ibrahim et al., 2021; Lee et al., 2007). For example, Fildes et al. (2009) document a bias
toward optimismwhen applying upward revisions to the algorithm’s forecasts. Past studies have focused on
attenuating these biases by suggesting various interventions, including additional system support (Lee et al.,
2007) and requiring humans to explicitly request and record the reason for revision (Goodwin, 2000) (for
a recent review on such interventions see Section 12.5.4 of Chapter ‘Forecast Decisions’ in the Handbook of
Behavioral Operations, Donohue et al. (2018)). In addition, previous studies have shown that often human
biases are systematic and, thus, predictable (Kremer et al., 2011; Tversky & Kahneman, 1974). Prior work
has found that these biases are driven by factors such as cognitive limitations (Moritz et al., 2022), recent
outcomes (Schweitzer & Cachon, 2000), and the organization’s salient culture (Caro & de Tejada Cuenca,
2023).

The presence of predictable biases in human revisions (Caro & de Tejada Cuenca, 2023) motivates the first
principle of our framework. We propose utilizing the predictability in human bias to regulate revisions
and, as a result, improve the forecasting performance. This approach is largely orthogonal to the extant
intervention-based approach to de-bias judgmental adjustments for improving the final forecast perfor-
mance. Until a firm discovers interventions to eliminate all possible biases, it can leverage our approach to
utilize the predictability in the (post-intervention) remaining biases to regulate revisions.

The second principle of our framework shifts the extant focus from an always-permitting approach, where
each revision is allowed to pass without any regulation, to a revision-level regulation approach – regulate
each revision instance, by its merit, in computing the final forecast. This approach is motivated by the
possibility of humans producing biased revisions which, in turn, can lead to a poorer forecast in categories
for which the always-permitting strategy is adopted.

Building on these principles, we propose and test a framework that predicts the quality of a human revision
and subsequently uses the quality information to regulate the revision’s role in computing the final forecast.
We test this framework in collaboration with a European food retailer. We obtain a large dataset (∼1.1 mn)
with 24 weeks of data-driven machine forecasts and associated human revisions at the product-store-week
level. Human forecasters revise close to 35% of the machine-generated forecasts. Among the revised fore-
casts, 51% of instances benefited from the human revision – with a lower absolute deviation from realized
sales compared to the machine-generated forecast. In other words, in these revised forecast instances, an
oracle-like manager would make the best use of the two available forecasts by selecting the human-revised
forecast in 51% of the revisions and the machine-generated forecast in the remaining instances. This in-
dicates a substantial potential for improving final forecast performance by utilising human revisions when
they are beneficial and discarding them otherwise.

1Ibrahim et al. (2021) raise the following limitation in identifying PIA: “In our experiments, private information is easy to identify
because the researcher knows all the data that exist in the environment and what data the human can access that the algorithm
cannot. In practice, such an exercise is more difficult because information kept private from the algorithm may also be kept from the
system designer. In other words, you cannot ask for what you do not know exists.”
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To construct an ex-ante measure of a human revision’s quality, we build a classification model using ma-
chine learning algorithms. In our context, we quantify the incremental contribution of the bias-related (BR)
predictors when compared against a baseline model that includes only the private information predictors
(PI). At the product-category level, we find that the PI+BR model significantly improves the average AUC2
of the PI-only model by 6.8% and up to 16% in select categories.

The predicted quality information can be used to implement multiple strategies for combining machine and
human-revised forecasts. In an out-of-sample analysis, we study the performance of a simple threshold-
based strategy that picks a human-revised forecast over the machine-generated forecast when the predicted
quality is above an ex-ante specified threshold. Compared to an always permitting or prohibiting strategy at
the product-store level, our threshold-based strategy yields a 14% improvement in picking the best of the two
available forecasts. This improvement translates to a 7.2% reduction in the absolute deviation between the
final forecast and sales when compared to oracle-like deviation. Finally, we find that the BR predictorsmake
a significant incremental contribution to achieving these improvements. Specifically, it increases the PI-
only model performance by 6% and 2%, respectively, in picking the best forecast and reducing the absolute
deviation.

Our findings imply that the firms can leverage indicators of systematic bias in human judgement to improve
their forecasting performance. To the best of our knowledge, ours is the first study to identify and test the
usefulness of a revision-level regulation framework motivated by the rich theory on humans’ vulnerability
to systematic bias.

Study Context and Data
We collaborate with a European food retailer to compile a detailed dataset at the product (p)× store (s)×
week (w) level, covering 665 products across 110 stores during a 24-week period from June 30th, 2019, to
December 8th, 2019. The dataset includes information on algorithmic forecasts (AFs), judgmental adjust-
ments, sales (in units sold), product categories within a four-tier hierarchy3, in-store shelf life, and store
characteristics.

Our engagement with this retailer was initiated by their supply chain coordinator and head of data analytics
and motivated by a critical operational issue: the effective blending of human expertise with data-driven
forecasts to reduce the uncertainty of demand, thereby mitigating food waste. This challenge not only in-
fluenced our research question but also practically shaped the design of our study, leading to the creation
of our framework for modulating human input in forecast adjustments. While the problem stems from this
specific retailer, the implications are far-reaching, impacting a range of stakeholders from consumers to the
environment, and aligning with broader goals in corporate social responsibility and sustainability.

Demand Forecasting Process

The retailer’s in-house demand forecasting team implements a two-step process to generate demand forecast
f . As an illustration, consider the process of forecasting demand of product p at store s in week w, denoted
fpsw.

Algorithm-generated forecast, AF, fa
psw. In the first step, the forecasting team produces AFs using a

data-driven model that processes available codified features like product and store attributes, seasonality,
weather, and historical sales.4 The team initiates forecasting for a week w in the week w−3 i.e., three weeks
in advance. The forecasting model can update fa

psw at the daily frequency to reflect any learning of recent
demand trends.

Human-adjusted forecast, HF, fh
psw. In the second step, the forecasting team shares fa

psw with a human

2Area Under the Curve (AUC) is a standard metric to evaluate the performance of classification models, for details see Fawcett (2004).
3At the top-most level (level-2), the 665 products in our sample are grouped into three categories, and at the bottom-most level they
are grouped into 85 categories
4Forecasts are mapped from the week- to day-level using a set of day-of-week weights that sum up to 1. These weights can vary by
product and store but are time-invariant within a six-month selling period (Jan-June and July-Dec).
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forecaster for review. Each forecaster is responsible for a cluster of products and stores. The team affords
a forecaster complete flexibility in applying her/his judgment to AF. S/he can adjust the AF as soon as it
becomes available (i.e., three weeks in advance) and revise the adjustment until the last day of the week
w. Further, s/he can apply the adjustment at an aggregate level, such as the product p’s category- or store-
level which gets proportionally applied at the psw level, or s/he can directly adjust the fa

psw. In practice,
we observe that forecasters typically start applying adjustments two weeks in advance and adjust AF at the
product-category-store level for the week w. Forecasters revise their adjustment to fa

psw during the week w

in fewer than 2% of instances. We denote human-adjusted AF by fh
psw.

Final Demand forecast, fpsw. During our study period, the forecasting team followed the policy of set-
ting the final forecast fpsw to fh

psw whenever an adjustment is applied and to fa
psw otherwise. In the words

of the forecasting team’s head, “[the retailer] wants to take advantage of our human forecasters’ agility in
responding to evolving market trends and unanticipated events.”

Multiple teams use forecast f to make decisions ranging from placing procurement-order with suppliers to
planning fulfillment of stock to retail stores from local distribution centers. These teams face different lead
time constraints for their decisions and, thus, work with the most updated fpsw value that is available as per
their timeline. The performance of the forecasting team, however, is measured on the accuracy of produced
forecasts against the realized sales S and not on the performance of operational decisions they feed in to.

Data Sample

For a forecasting instance at the product-store-week level, the data may include multiple AFs and HFs. We
construct our analysis sample using the forecasts available on the preceding Saturday of forecasting week
w. For example, for the week commencing 8th July, 2019, only the forecasts available on Saturday 6th
July, 2019 are included in the sample. This choice has two advantages. First, it ensures that AFs in our
sample reflect the latest information available to the algorithm. Likewise, judgemental adjustments capture
humans’ up-to-date assessment of AFs. Second, it provides consistency in the store-level analysis since
many stores in our data are closed on Sundays.

Our data sample contains a few instances of low-quantity machine forecasts, where the extent of adjustment
appears unnaturally large due to scaling effects. For example, the following scaled measure of adjustment
size relative to AF, ScaledAbsRevSize = |fh

psw − fa
psw|/fa

psw × 100 can be as high as 422. We exclude such
outlier observations from the analysis sample by truncating it at ScaledAbsRevSize’s 99th percentile values.
Further, we also exclude close to 2% instances where a forecaster revised her/his adjustment to fa

psw during
the week w. Our final sample consists of 1,071,729 psw observations.

Table 1 reports the sample summary statistics. We report scaled values of salesS and fa quantities to comply
with our collaborator’s non-disclosure directives. Specifically, we show standardized sales (Ŝ) and forecasts
(fa) scaled by S. Sales vary considerably across products, stores, and time (themid-90% sales range is -0.64
to 1.60). The algorithm, on average, provides an inflated sales forecast, Avg f̂m

psw = 1.23. Human forecasters
make, on average, an adjustment of 7.64% to AF. In terms of forecast accuracy, AFs andHFs are comparable.
The scale-adjustedMean Absolute Deviation (MAD) of AF andHF is 0.36 and 0.34 respectively. For at least
half of the product-store combinations, we have the full 24 weeks of data.

In Figure 2 of the Appendix, we show characteristics of the human forecasters’ adjustment patterns. The
adjustment frequency varies considerably across the three (level-2) product categories (Panel(a)): most fre-
quent interventions occur in the Perishables category, with adjustments applied to 46%of theAFs. However,
the frequency of within-category adjustments is comparable with each category having products that receive
frequent (intervention rate≥ 80%), moderate (20% to 80%) or rare (<20%) adjustments. Humans typically
adjust algorithm forecasts by 5%, 10% or 15% (panel (b)) and aremuchmore likely to adjust it upwards (68%
times, panel (c)) than downwards.5

Next, panels (d) to (i) show evidence of human forecasters’ ability to provide beneficial adjustments. We

5The retailer shared that within the organization, the salient culture is to bemore tolerant of surplus stock in stores rather than present-
ing empty shelves to the customers. In their view, this could explain the observed predilection of forecasters’ for upward adjustments.
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Human Forecasters: Adjustment Pattern

(a) Product-Level Adjustment
Rate, by Product Categories

(b) Adjustment Size
(Product x Week x Store)

(c) Adjustment Direction
(Product-level)

Human Forecasters: Adjustment Quality (51%)
Predictors of Private Information

(d) Adjustment Quality by
Product, σ/µ = 0.16

(e) Adjustment Quality by
Store, σ/µ= 0.05

(f) Adjustment Quality by
Product’s Shelf Life

Predictors of Systematic Decision Biases

(g) Adjustment Quality by
Recent Performance

(h) Adjustment Quality by
Adjustment’s Direction

(i) Adjustment Quality by
Volatile Forecasting Period

Figure 2. Human Forecasters’ Intervention Pattern and Performance
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Integrating Human Judgement via Classification

Statistic, Unit N1 Obs Mean St. Dev. 5th 50th 95th

Sales2 Ŝ, ratio psw 1,071,729 0 1 -0.64 -0.31 1.60
Algorithm-generated forecast 2 f̂a

psw, ratio psw 1,049,415 1.23 1.09 0.57 1.04 2.38
ScaledAbsRevSize > 0, % psw 409,261 7.64 7.11 1.00 5.07 20.04

Algorithm-generated forecast M̂AD
3

AF, # ps 48,654 0.36 0.59 0.14 0.29 0.73

Human-adjusted forecast M̂AD
3

HF, # ps 46,410 0.34 0.37 0.11 0.28 0.70
Count of weeks per product-store, # ps 48,654 22.03 4.42 10 24 24

1 The retailer selectively ranges products across stores and over time to match customer preferences, resulting
in a sample with 1.1mn observations (≪ 665×110×24)

2 Standardized Sales variable, Ŝ = (S − Avg(S))/Std.Dev(S) and Scaled algorithm-generated forecast, f̂m = fm/S.
Number of observations< 1.1 mn because our sample contains product-store-weeks with zero sales.

3 Mean Absolute Deviation (MAD) is computed at the product-store level and scaled by its mean sales.

Table 1. Summary statistics

define an adjustment as beneficial (binv = 1) if I(|S−fh
psw| ≤ |S−fa

psw|), where I is the Indicator function).
Across the 409k adjustments, human judgment improved forecast accuracy 51% times. Further, forecasters’
ability tomake beneficial adjustments ismuchmore heterogenous at the product level than at the store level.
The Coefficient-of-Variation (σ/µ, CV) of the beneficial adjustment rate is 0.16 at the product level (panel
(d)) and only 0.05 at the store level (panel (e)). The beneficial adjustment rate does not vary much by a
product’s shelf-life (panel (f), between 45% to 55%).

Finally, similar to past studies, we find preliminary evidence suggesting that a forecaster’s ability to make
a beneficial adjustment (panel (g)) indicates that the beneficial adjustment rate is weakly correlated with
the past-period HF error, and panel (h) shows it is substantially higher (by 14%) when forecasters make
downward adjustments than upward adjustments. Interestingly, similar to Kremer et al. (2011), we find
forecasters exhibit amuch better ability to adjust beneficially in high-volatility instances than in low-volatile
ones, and much of this difference is observed while making upward adjustments (panel(i)).

Classification-basedSolutionApproach to IntegrateHumanAdjustments
We propose a two-module framework to classify whether a human forecaster’s adjustment to AF should be
accepted or rejected for the final forecast.

Module 1: Prediction Model for Adjustment Quality.

We build a model to predict the likelihood that an applied adjustment is beneficial (i.e., binv = 1). We then
use the model output as a measure of an adjustment’s predicted quality in improving forecast accuracy. To
build such a prediction model, we use the following two classes of predictors:

1. Private Information, PI: Past studies have documented that the ability of humans to improve data-
driven decisions is tied to their private information advantage (equivalently, local knowledge) in di-
mensions such as those related to customer behavior (impact of variety on customer demand (van
Donselaar et al., 2010)) or product’s PLC (growth-stage versus mature (Kesavan & Kushwaha, 2020)).
Motivated by these studies, we include product and store characteristics in our model to proxy for
humans’ private information advantage.

2. Bias-Related, BR: Humans are vulnerable to producing biased judgment when operating in certain
environments - for example, when forecasting under stable environments (Kremer et al., 2011), or
when swayed by the organization’s salient focus (e.g., inventory rather than revenue (Caro & de Te-
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Integrating Human Judgement via Classification

jada Cuenca, 2023)), or past errors (Fildes et al., 2009). To capture the potential of systematic biases
(Tversky & Kahneman, 1974), we include several metrics, including those related to the forecasting
week and/or past adjustments and of past forecast accuracy.

We describe the PI and BR predictors used in our prediction model in the Appendix.

Module 2: Classification of an Adjustment – Accept or Reject Integration in the Fi-
nal Forecast.

We use a threshold-based heuristic to incorporate an adjustment’s predicted quality (obtained fromModule
1) in classifying its integration into the final forecast fpsw. Specifically, we set the final forecast to the human-
adjusted forecast if the adjustment’s predicted quality, conditional on the included predictors, is above a
pre-specified threshold and to the algorithm-generated forecast otherwise. Formally,

fpsw = I
b̂invpsw≥τpsw

fh
psw + I

b̂invpsw<τpsw
fa
psw, (1)

where b̂invpsw denotes the predicted quality of the human forecaster’s adjustment to AF for forecasting-
instance psw, and τpsw ∈ (0, 1) denotes the pre-specified threshold for that instance. A manager can set the
threshold level to meet a variety of objectives. For example, different threshold levels can be set for differ-
ent product-store combinations to reflect the historical performance of the associated human forecasters.
Though there is no causal interpretation to the way we have computed an adjustment’s predicted quality,
the use of a forecaster’s historical performance as a threshold might appear fair and increase trust in the
firm’s approach to integrating the recommended adjustment in the final solution.

Results
In this section, we implement and present the results from our two-module framework described in the
previous section, in the context of our collaborating retailer.

Module 1: Evaluating an Adjustment Quality.

Weuse the xgboost (XGB) package (Chen&Guestrin, 2016) fromCRAN to train and test classificationmod-
els that can predict an adjustment’s quality, i.e., probability of binv = 1 conditional on included predictors.
We selected a gradient boosting methodology given its efficiency and interpretability. As the research ques-
tion is partly driven by our commercial partner, there was additional emphasis placed on interpretability
than in other contexts. Among the most common gradient boosting algorithms, we selected XGBoost over
LightGBM because of its longevity and community acceptance.

We train and test classification models on the subsample of forecasting instances in which humans made
an adjustment to the AF (N = 409K). For robustness, we also fit random forest models, which had similar
performance to XGBoost.

We employ a fixed-size rolling window methodology to assess our model performance, using the AUC met-
ric.6 This approach is a well-accepted method for out-of-sample testing in time-series data (Tashman,
2000). Each rolling window comprises eight weeks of training data and a single week of walk-forward
test data; these windows are consistently trained with the same hyperparameters. Specifically, the model
that predicts the quality of a judgmental adjustment in week w utilizes data from the prior eight weeks
{w − 8, . . . , w − 1}. Rolling the window forward, the model for week w + 1 is informed by data from
{w − 7, . . . , w}. Analogous to k-fold cross-validation, where one of the k folds serves as holdout data, our
methodology reserves week w for out-of-sample testing of model performance.

To study the incremental contribution of the BR predictors, we build and compare two prediction mod-
els with the same hyperparameters. The first model includes only PI predictors (PI-only model), while the
second includes both the PI and BR predictors (PI+BR model). We compare the AUC of these models us-
ing out-of-sample observations, i.e. observations from the walk-forward test weeks of our rolling window

6AUC ranges between 0 and 1, with higher values indicating better performance.
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(a) Comparison of the AUC Distributions

PI PI+BR Gain1

A. Top 5 Product Categories
Healthy Meal 0.50 0.58 16%
Traditional Meal 0.56 0.65 16%
Fish 0.52 0.58 13%
Salads 0.52 0.59 12%
Dairy 0.50 0.55 10%

B. Bottom 5 Product Categories
Desserts 0.54 0.59 8%
Bakery 0.56 0.61 8%
In-store Bakery 0.51 0.54 7%
Meat 0.58 0.62 7%
Vegetables 0.59 0.62 6%
1 Gain = (1 - PI+BR/BR)×100

(b) AUC Performance by Product-Category

Figure 3. Performance of Prediction Models.

methodology. We have 143,830 out-of-sample observations. Finally, we use bootstrapped samples for sta-
tistical inference on the incremental predictive power of the BR predictors. See the appendix for details of
our bootstrap implementation and for discussion on the relative importance of the PI and BR predictors in
the two models.

Panel (a) of Figure 3 presents the bootstrap comparison of the AUC values. Compared to the PI-only model,
we find that the PI+BR model exhibits a statistically significant increase in AUC, 6.8%∗∗∗ (95% CI: [6.6%,
7.0%]).7 Given that the out-of-sample AUC of the PI-only model is 0.565, this improvement in AUC is mate-
rial. Panel (b) of Figure 3 reports average AUC (across bootstrap iterations) by product categories. Column
1 and 2 report the AUC values of the PI-only and PI+BR models, respectively. When ranking the product
categories in descending order of relative gain in their AUCs in the PI+BR model, compared to the corre-
sponding AUC in the PI-only model, we find AUC increases by as much as 16% in select categories with the
inclusion of BR predictors.

Module 2: Classification of an Adjustment – Accept or Reject Integration in the Fi-
nal Forecast.

We analyze the performance of Module 2, which operationalizes our adjustment-level classification ap-
proach, relative to popular context-based classification rules that were studied in past work. Specifically, we
benchmark our approach against the following five easy-to-implement classification rules: (C1) always ac-
cept AF; (C2) always accept HF; (C3) two heuristicss that always-reject small-sized adjustments (Fildes et al.,
2009); (C4) an always-reject rule for adjustments made to products in low-volatility demand environments
(Kremer et al., 2010); and (C5) selective application of always-accept or -reject rule at the product-store level
based on the historical performance of human forecasters.

Compared to strategies C1 and C2 that apply blanket rules, which ignore any trade-off betweenhuman vulner-
ability to biases and their private information advantage, the other strategies take always-accept or -reject
positions based on humans’ average performance in applying beneficial adjustments. For example, Fildes
et al. (2009) find, on average, small-size adjustments do not improve HF accuracy. Likewise, Kremer et al.

7*** p< 0.01, ** p< 0.05, * p<0.1
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Level MAD RAD2OD SOI

psw ADpsw(S, f)= |Spsw-fpsw| ADpsw(S, f)

ADpsw(S, fO)
I(f = fO)

ps 1
Wps

Wps∑
w=1

ADpsw(S, f)
1

Wps

Wps∑
w=1

ADpsw(S, f)

ADpsw(S, fO)
1

Wps

Wps∑
w=1

I(f=fO)

Overall
∑
MADps/Nps

∑
RAD2ODps/Nps

∑
SOIps/Nps

1. Wps is the count of weeks in which product p was sold in the store s among the out-of-sample observations
2. ADpsw(S, f) = |Spsw − fpsw|
2. fO is the oracle’s forecast. AndAD(S, fO) is the AD of the oracle: min(S − fh

psw, S − fm
psw)

3. Nps is the number of all product-store combinations.
4. I is the Indicator function.

Table 2. Forecast Accuracy Metrics

(2010) show that human vulnerability to biases becomes prominent in stable environments and, thus, au-
tomated decision-making should be emphasized in such environments. Finally, in a recent work, Kesavan
and Kushwaha (2020) document human adjustments perform much better for growth-stage products than
for mature-stage products.

Theoretically, our adjustment-level classification approach renders greater flexibility in integrating human
adjustments and should outperform the always-accept or always-reject rules that are applied at a broader
level. However, whether our proposed two-module framework, which leverages predictability in human
biases to deliver adjustment-level classification, leads to a substantial improvement in forecast accuracy is
an open question. To answer it, we implement the following out-of-sample analysis.

We evaluate the performance of each of the strategies using the same out-of-sample observations (N =
143, 830) that were used to compare the two prediction model performances (see discussion in previous
section). Recall thatModule 2 does not involve any “model training”. Its implementation, however, requires
us to set an ex-ante (of sales) threshold for classifying an adjustment as accept or reject for integration
with the final forecast (see eq(1) on page 9). We set τps = min(binv8product-store, 0.5). Here, binv

8

product-store
is the adjustment’s beneficial rate in the immediate eight weeks before the first test week. Effectively, this
threshold definition forces our classification procedure to reject an adjustment with poor predicted quality
if a human forecaster has shown better application of her/his private information advantage in the past.

Likewise, for C5, we execute the following rule: for a product-store combination, always accept adjustments
only if its binv8 is higher than the 50th percentile (0.5), otherwise always reject adjustments for it. For C3, we
follow Fildes et al. (2009) in labeling an adjustment as a ‘small-sized’ one if it changes the AF by less than
20%. We also test an alternate version of this rule that reflects the human forecasters’ adjustment patterns
in our sample. Specifically, we alternatively label an adjustment as ‘small-sized’ if the resultant change in
AF is below the 50th percentile (5.12%). Finally, to implement C4, for a forecasting instance psw, we capture
demand volatility using the standard deviation in sales SD(S)psw and the sales rolling-average RAVG(S)psw
over the preceding four weeks (w − 1, . . . , w − 4). We classify demand volatility for forecast fpsw as low if
SD(S)psw/RAVG(S)psw is below the 50th percentile (0.23).

We evaluate forecast accuracy under a classification rule using three metrics: (i) Mean Absolute Devia-
tion (MAD), (ii) Ratio of Absolute Deviation to Oracle Deviation (RAD2OD), and (iii) Share of Oracle-like
Instances (SOI). We use the same bootstrap method, as in the previous section, to infer the statistical differ-
ence in forecast accuracy under our adjustment-level classification rule (referred to as C0) against the five
benchmark rules C1-C5. Next, we provide some intuition for these metrics. Formal definitions are shown in
Table 2.

MAD is the average of absolute deviations (AD) between the realized sales and the final forecast across
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weeks. AD-based measures are commonly used to measure and compare forecast accuracy. Theoretically,
the optimal forecast is one that attains zero AD – desirable but rarely achievable. Note that under a classifi-
cation rule that either accepts or rejects an adjustment, the best achievable AD in forecasting instance psw is
min(|Spsw−HF |, |Spsw−AF |). We refer to this best-possible AD as the absolute deviation under the oracle
forecast, AD(S, fO), where fO refers to the oracle’s forecast. Even though the lowest possible AD(S, fO)
is zero, this is not achievable unless either the HF or AF matches exactly with observed sales. To provide
a more realistic accuracy measure, we use RAD2OD and SOI to evaluate a classification rule’s success in
attaining forecast accuracy vis-à-vis that of the optimal accuracy under the oracle’s final forecast (Kremer
et al., 2011).

RAD2OD measures a classification rule C’s ability to emulate the oracle’s absolute deviation. The value of
RAD2OD ranges from 1 to∞. The higher the RAD2OD value the poorer the C′s forecast accuracy. RAD2OD
of 1 implies accuracy as good as an oracle. The metric SOI evaluates C’s success rate in achieving the oracle’s
forecast over time. SOI’s value ranges between 0 and 1, with 1 indicating perfect success in achieving the
oracle’s forecasts. In Table 2, we begin by defining each of our performance metrics for each instance of
judgemental adjustment (psw-level). These measures are then aggregated to the product-store level (ps-
level), and finally to the bootstrap iteration level for statistical comparison between the classification rules.

Table 3 provides a comparison of forecast accuracy with our adjustment-level classification approach C0
and the benchmark rules C1-C5. The top row denotes the absolute performance of C0 with the Module 1
prediction model that includes both PI and BR predictors. We find that our focal approach C0(PI+BR) out-
performs all other benchmarks to provide statistically significant improvement in forecast accuracy, asmea-
sured by the three metrics. Focussing on comparison with C5 on SOI metric, we find that C0(PI+BR) and
C0(PI) approaches improve forecast accuracy by nearly 12.5% (∼(0.57/0.51-1)×100) and 6.8% (∼(0.54/0.51-
1)×100), respectively. This, in turn, suggest that about 46% (∼(1- 6.8/12.5)×100) of the improvement seen
in C0(PI+BR) is associated with the addition of BR predictors. Further, we find that the forecast accuracy
improvement with C0(PI+BR) is not attributable to select products, stores, or time periods.

Discussion and Implications for Future Research
We showcase a novel adjustment-level classification framework for integrating judgemental adjustments in
the final forecast. It uses an algorithm to leverage the predictors of (a) human vulnerability to systematic
biases and (b) their private information advantage to predict the quality of their judgments applied to data-
driven algorithm-generated forecasts. Using data from an industry collaborator, we show that a simple
threshold-based heuristic that classifies each adjustment as accept or reject for integration into the final
forecast can substantially improve forecast accuracy compared to popular extant context-based classification
rules. Our framework expands the practitioners’ toolkit to integrate judgemental adjustments in the final
forecast.

Our exploration into human-machine collaboration opens the door to several new lines of inquiry that merit
academic attention. First, an extension of Module 1 could consider the search for behavioral response (BR)
predictors that can enhance classificationmodel performance. The current binary assessment of adjustment
quality could be further refined. For example, a continuous measure of the forecast’s deviation from actual
sales could offermore nuanced insights into the performance of the two-module framework proposed in this
study.

Second, there’s an opportunity to employ more advanced machine learning models to improve the pre-
dictability of adjustment quality. This dovetails with Module 2’s focus on developing effective strategies for
using predicted adjustment quality to enhance forecast accuracy. As we bridge these twomodules, the ques-
tion arises: Can a classification-based approach improve an ensemble of algorithmic and human-generated
direct forecasts (DFs), especially given the inconsistency in human application of private information as
indicated by Ibrahim et al. (2021)?

Additionally, as data-driven algorithms gain traction in practitioner settings (Berk et al., 2018), identifying
new contexts for their application becomes vital. Does the documented bias in demand forecasting prevail
in these new areas? If so, context-specific BR predictors could be developed, thereby further unlocking the
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# Rule MAD1 RAD2OD SOI MSE1 SMAPE Classification Rule

C0 Classification:
PI+PR

7.45 1.93 0.57 194.61 0.146 Adjustment-level classifi-
cation, PI+BR model

C0 Classification:
PI

-0.08
(-45.2)

-0.03
(-19.02)

0.03
(45.85)

-5.94
(6.35)

-0.001
(14.4)

Adjustment-level classifi-
cation, PI-only model

C1 Always AF -0.13
(-26.7)

-0.04
(-15.67)

0.04
(39.47)

-5.28
(5.80)

-
0.006
(69.9)

Always reject adjustments

C2 Always HF -0.40
(-65.7)

-0.18
(-33.16)

0.09
(58.28)

-20.0
(21.70)

-
0.003
(38.8)

Always accept adjustments

C3 Small-size
Adjustments

-0.07
(-23.6)

-0.04
(-18.2)

0.04
(42.8)

-5.54
(5.92)

-0.001
(17.3)

Reject adjustments chang-
ing AF < 20%.2

C3 Small-size
Adjustments

-0.30
(-52.0)

-0.16
(-32.8)

0.06
(49.8)

-17.9
(19.4)

-
0.003
(36.2)

Reject adjustments chang-
ing AF < 50th percentile.

C4 High-Low
Volatile

-0.07
(-20.5)

-0.05
(-28.16)

0.03
(32.42)

-1.45
(1.65)

-0.001
(11.0)

Reject in low-volatile fore-
casting

C5 Product-
Store

-0.30
(-47.1)

-0.12
(-29.9)

0.06
(47.8)

-16.3
(17.5)

-
0.002
(29.5)

Product-store combina-
tions with binv

8
> (≤)50th

percentile

1. The number in brackets provides the t-statistic of the pairwise equal-mean test. Lower values indicate larger errors. 2. Same threshold as in
Fildes et al. (2009)

Table 3. Forecast Accuracy Under Different Classification Rules

potential of human-algorithm collaboration.

Another pressing issue is human resistance tomachine errors, which is often greater than their tolerance for
their ownmistakes (Donohue et al., 2018). Could feedbackmechanisms on forecast accuracy, incorporating
BR predictors, help alleviate this algorithm aversion? Additionally, it’s worth noting that the scalability of
our current method across different geographies remains an open question. A trans-national study would
offer valuable insights into the framework’s robustness and adaptability, further validating its effectiveness
beyond the initial industrial setting.

Moreover, the manner in which humans’ private information is utilized could significantly influence the
effectiveness of our classification approach. Specifically, research could explore whether this effectiveness
varies depending on whether human information is integrated at the algorithm input stage or during the
output (Brau et al., 2023).

Lastly, two avenues of research focus on the long-term implications of our framework. One explores how
humans might adapt to adjustment regulation over time. Do they become more risk-seeking, given the
framework’s filtering of potentially harmful adjustments? The second pertains to the design of incentives
for forecasting teamswho lack full control over the final forecasts. Here, the literature on combining separate
direct forecasts from humans and machines could offer invaluable insights.

By addressing these questions, future research can make substantive contributions to the optimization of
human-machine collaboration in decision-making, thus advancing the field of Information Systems.
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Appendix

Variable Definitions

Humans are prone to a range of biases that may negatively affect the quality of their judgemental adjust-
ments. Interestingly, these biases often occur in systematically repeatable patterns (Tversky & Kahne-
man, 1974). We leverage this predictability by including bias-related (BR) predictors of intervention qual-
ity. There are many examples of systematic biases in the context of demand forecasting. We give a non-
comprehensive list below:

• Humans are known to engage in demand-chasing behavior, where they over-emphasize the previous
period’s demand realization and the error in their forecast whenmaking forecasts in the current period
(Schweitzer & Cachon, 2000).

• Humans tend to over-emphasize recent performance (i.e., recency bias – see Evans (1982))
• Humans exhibit anchoring-and-adjusting bias, where they anchor on an initial value (e.g., AF in our
case) and insufficiently adjust it to yield the final answer (Tversky & Kahneman, 1974)

• Humans erroneously avoid algorithms after seeing them make mistakes (Dietvorst et al., 2015).
• Human judgements are more biased in stable environments (Kremer et al., 2011).

Rows (1) to (11) in Table 4 list the BR predictors that we include in ourmodel to capture human vulnerability
to systematic biases. We note that the same predictors can potentially capture multiple underlying biases.
For example, using current and first-lag values of algorithm-generated forecasts and judgemental adjust-
ments (rows 1, 2, 4, 5, and 7) in conjunction with indicators of accuracy in the previous period (rows 8, 9,
and 11), we intend to capture demand chasing behavior. At the same time, the current period algorithm-
generated forecasts (row 1) and judgemental adjustments (rows 2, 4, 5, and 7) can act as indicators of bias
caused by employing the anchoring and adjusting heuristic. We include the standard deviation of sales over
a rolling window of 4 weeks (row 6) to capture “stability of environment” – which is known to influence bias
in human judgments (Kremer et al., 2011). Further, to capture humans’ relative trust in algorithms versus
their own judgment and potential for algorithm aversion, we include first-lag of accuracy metrics for hu-
mans and algorithms (rows 8, 9, 10, and 11). Finally, the first-lag variables (rows 1, 2, 3, 4, 5, 8, 9, 10, and
11) can help to capture potential recency bias. We acknowledge that the proposed list of BR predictors is
not a comprehensive list that can predict all kinds of systematic biases to which a human is vulnerable while
making a judgmental adjustment.

Rows (12) to (27) list the PI predictors included in the model to capture human forecasters’ private infor-
mation advantage. Motivated by the findings of Kesavan and Kushwaha (2020) and van Donselaar et al.
(2010), we add categorical variables that capture time-invariant product-level (rows 17 - 22) and store-level
(rows 23 - 26) characteristics. Here, we wish to highlight our use of assortment width metrics, at various
levels of product category hierarchy, as PI predictors. These metrics capture humans’ potential private in-
formation advantage in understanding customer preferences for variety and, consequently, the effects of
stockouts within a product subgroup (van Donselaar et al., 2010). As the retailer selectively ranges prod-
ucts across stores and over time to match customer preferences, these metrics are time-varying. However,
assortment width is also associated with inattention bias (Akkas et al., 2019), since the effects of customer
preferences grow exponentially with the increase in the number of products. Thus, it can be argued that
these assortment-width metrics also capture cognitive load for humans and, hence, are potential BR predic-
tors. We take a conservative approach and term these predictors as PI type. This choice could potentially
under-represent the incremental predictive power of BR-type predictors compared to PI-type predictors.

Implementation of Module 1 using XGBmodel

We use the xgboost (XGB) package from CRAN to train and test our classificationmodel (Chen et al., 2019).
At a high level, XGBmodels build upon gradient boostingmachines (GBM), combining estimates frommul-
tiple decision trees where each tree is built iteratively based on the residuals of a prior tree. The algorithm
implements approximations for wbuilding decision trees that significantly improves speed and scalability,
making it ideal for machine-learning problems with large datasets (like sales forecasting). For a detailed
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# Variable
{periods}

Unit Definition Type

1 AF, {w, w − 1} psw Algorithm-generated forecast for demand of product p in store s for
week w, current period and first lag. Intended to capture demand
chasing, anchoring bias, rece.

BR

2 HF, {w, w − 1} psw Human-adjusted forecast, current period and first lag BR
3 S, {w − 1} psw Quantity sold, only first lag BR
4 AdjDir,

{w, w − 1}
psw A categorical variable that captures an adjustment’s direction. It is

set to U if HF > AF andD if HF < AF. Current period and first lag
BR

5 AbsAdjSize,
{w, w − 1}

psw Absolute value of adjustment. Current period and first lag BR

6 StdDevS, {w} psw Standard deviation of the S over the preceding fourweeks rollingwin-
dow (i.e. periods w − 1, w − 2, w − 3, and w − 4)

BR

7 AdjScaled, {w} psw Adjustment size scaled by the preceding four weeks running average
of sales (i.e. periods w − 1, w − 2, w − 3, and w − 4).

BR

8 DevHum,
{w − 1}

psw Deviation of HF compared to sales (= HF - S). First lag only. BR

9 DevAlgo,
{w − 1}

psw Deviation of AF compared to sales (= AF - S). First lag only. BR

10 DevAligned,
{w − 1}

psw Set to 1 if (S-AF)×(S-HF) > 0 and to 0 otherwise. Captures whether
algorithm and human deviated in the same direction in weekw. First
lag only.

BR

11 binv, {w − 1} psw Set to 1 if |(S-HF)| ≤ |(S-AF)| and to 0 otherwise. Captures if HF was
a more accurate forecast than AF. First lag only.

BR

12 NP-Store, {w} psw Number of products in store PI
13 NP-L2, {w} psw Number of products for sale in a level 2 product category PI
14 NP-L3, {w} psw Number of products for sale in a level 3 product category PI
15 NP-L4, {w} psw Number of products for sale in a level 4 product category PI
16 NP-L5, {w} psw Number of products for sale in a level 5 product category PI
17 IDProd p Unique product identifier PI
18 IDL2 p Categorical variable for level 2 product category PI
19 IDL3 p Categorical variable for level 3 product category PI
20 IDL4 p Categorical variable for level 4 product category PI
21 IDL5 p Categorical variable for level 5 product category PI
22 Life p Shelf life of a product, which can range from 1 to 14 days PI
23 IDStore s Unique store identifier PI
24 StoreAttr11 s A store-level categorical variable capturing primary customer target

profile
PI

25 StoreAttr21 s A store-level categorical variable capturing primary customer target
profile

PI

26 StoreAttr31 s A store-level categorical variable capturing its format and size. PI
27 StoreAttr41 s A store-level categorical variable capturing its location type. PI

1Limited information presented on our collaborator’s request.

Table 4. Variable Definitions
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description of XGB, see Chen et al. (2019) and Chen and Guestrin (2016).

We use a fixed-size rolling window procedure (also known as fixed-size rolling sample procedure) for out-
of-sample testing of our models (Tashman, 2000). This is a popular procedure for testing out-of-sample
model performance when working with time-series data.

In line with the context of our collaborator, we set our forecasting horizon to one week. Our fixed-size
rolling training period is 8 weeks long and our test period is the subsequent walk-forward week. As the
retailer selectively ranges products across stores and over time to match customer preferences, not every
product × store is seen throughout the 8 weeks in every training period. In each training period, we drop
product-store combinations that do not have at least 5 (more than half the window size) observations. We
work with 18 weeks of overall data. Due to the selective ranging policies, each product×store features in our
test set 4.5 times on average and up to a maximum of 10 times. The total number of test period observations
is 143,830.

We train and test our models using the subsample of observations in which humans made a non-zero ad-
justment to the algorithm-generated forecast (N = 409k). We perform a grid search to tune the hyperpa-
rameters of our XGB model. Our grid search yielded the following hyperparameters for our XGB model:
depth = 9, eta rate = 0.05, number of rounds: 100, objective to binary:logistics, and default values for the
remaining model parameters.

Bootstrap Implementation Details.

Our sample consists of 27 level-4 product categories. We chose level-4 as our sampling level because human
forecasters are responsible for multiple similar products. Therefore, we sought to find a balance between
(i) groupings that are too broad such that products which are unlikely to be forecasted by the same human
end up in the same group, and (ii) groupings that are too narrow such that a human forecaster might be re-
sponsible for products across multiple groupings. Sampling at the balance of these two allows us to preserve
cross-product effects in each draw.

For each bootstrap iteration, we make random draws, with replacement, of ten level-4 product categories.
Next, we train and test both the PI-only and PI+BRmodels using all the product×store×week observations
of these ten drawn categories. We capture the corresponding AUC values. To generate an empirical distri-
bution of the performance of the two models, we repeat the iteration procedure a hundred times. Summary
statistics on the bootstrap sample, compared to the full sample, are shown in Table 5. We conduct statistical
inference using paired t-tests where performance is calculated across models based on the same individual
samples.

Sample Bootstrap
Statistic Mean St. Dev. 50th Mean St. Dev. 50th

Sales Ŝ 0 1 -0.31 0 0.98 -0.08
Algorithm-generated forecast f̂a

psw 1.23 1.09 1.04 1.22 1.16 1.03
ScaledAbsRevSize > 0 7.64 7.11 5.07 7.84 8.65 5.03

Algorithm-generated forecast M̂ADAF 0.36 0.59 0.29 0.32 0.21 0.28

Human-adjusted forecast M̂ADHF 0.34 0.37 0.28 0.32 0.19 0.28

Table 5. Summary statistics
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Note: A predictor’s importance is measured using information gain – a metric that measures how information contained in the
predictor lowers the uncertainty in the prediction task (Berrar & Dubitzky, 2013). A higher percentage means a more important
predictor. The box plot shows the redictors’ importance distribution, across the 100 iterations, using the summary-tuple of
(mean, 25th percentile and 75th percentile).

Figure 4. Predictors Relative Importance Summary

Relative importance of Features

To understand the relative importance of each predictor, we use information gain – a metric that measures
how the information contained in a particular predictor lowers the uncertainty in the prediction task (Berrar
& Dubitzky, 2013).

Figure 4 in the appendix shows the relative importance of the predictors in bothmodels. A few insights from
this analysis are noteworthy: first, while the PI predictorNP-L4, which measures the number of products in
a level-4 category, is top ranked in the PI-only model, it is replaced by a BR predictor (HFw) in the PI+BR
model. As we discuss in an earlier section within the appendix, HFw predictor could contain indicators for
multiple systematic biases when used in combination with other predictors. For instance, in combination
with last period sales (Sw−1), and other variables (see appendix) it proxies for any demand chasing behavior.
Second, eight of the top ten ranked predictors in the PI+BR model are of the BR type. Third, the PI+BR
model list includes both the current and past week BR predictors. Collectively, these insights corroborate
the relevance of BR predictors in predicting human adjustment quality.
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