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Abstract 
Artificial intelligence (AI) has an impact on business and society at large while posing 
challenges and risks. For AI adoption, trustworthiness is paramount, yet there appears 
to be a gap between theory and practice. Organizations need guidance in quantitatively 
assessing and improving the trustworthiness of AI systems. To address such challenges, 
maturity models have shown to be a valuable instrument. However, recent AI maturity 
models address trustworthiness only at the maturest level. As a response, we propose a 
model to integrate the concept of trustworthiness across the AI lifecycle management. In 
doing so, we follow Design Science Research to develop a holistic model highlighting the 
importance of trustworthiness throughout the AI adoption journey to realize the real 
value potential. This research-in-progress contributes to the emerging research on 
human-AI systems and managing AI. Our objective is to use the model for assessing, 
evaluating, and improving trustworthy AI on an organizational level.  

Keywords:  Trustworthy AI, AI maturity, AI adoption, managing AI, trustworthiness 
 

Introduction 
Trustworthiness and ethics of artificial intelligence (AI) are widely and controversially discussed in public, 
politics, and organizations (Hevner and Storey 2022; Robert Jr et al. 2020). While there are various 
frameworks that offer guidance for managing AI in organizations (Sadiq et al. 2021), the knowledge of risks 
and prevention of potential harm of AI systems is far from conclusive. For most organizations, concerns 
about the potential harm of AI systems are a barrier to its adoption in production (Someh et al. 2020). 
Empirical investigations show that relatively few AI pilot projects go to production and, thus, unfold low 
return on investment and business value (Benbya et al. 2020). Additionally, upcoming AI regulations, such 
as the EU AI ACT, will play an important role for organizations active in the EU to address compliance and 
trustworthiness in AI. Organizations have to act, at least for AI systems classified as high risk (Smuha 2019). 
Today's managers must deal with both the possibilities and risks accompanying AI. 

The majority of organizations recognize the importance of trustworthy AI (TAI), but only a few 
organizations have taken action (IBM Corporation 2022). The need for TAI guidance becomes apparent as 
there exists a significant knowledge gap in managing TAI in practice (Morley et al. 2020; Robert Jr et al. 
2020). In order to close this intention-action gap, organizations, in particular managers, need support to 
assess, evaluate and improve TAI (Jantunen et al. 2021; Robert Jr et al. 2020). Additionally, the adoption 
of TAI practices demands organizations to be prepared. Maturity models are action-oriented tools that 
contain discrete levels of organizational maturity along different organizational capability dimensions. 
Beyond representing the levels, maturity models address the management issues that arise on the adoption 
journey (Uren and Edwards 2023). This helps managers to evaluate and progress in defined focus areas. 
Accordingly, maturity models serve as a high-level roadmap for navigating forward in the endeavor.  
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Existing AI maturity models (AI-MM) indicate TAI only at the maturest level or neglect it (e.g., Alsheiabni 
et al. 2019; Fukas et al. 2021). Since most AI maturity models focus on the technical aspects of designing 
AI systems (Sadiq et al. 2021), a trade-off arises between implementing a model to demonstrate value or 
complicating the technical requirements with ethical considerations (Jantunen et al. 2021). However, we 
see the need to inform managers about the necessary steps towards trustworthy AI system design and aim 
to advance the understanding of the organizational journey towards AI adoption that includes TAI 
capabilities from early on.  
So far, principles and value-based guidelines have been the primary focus in academia to provide guidance 
for organizations (Fischer and Beimborn 2022; Mayer et al. 2021; Rothenberger et al. 2019; Shneiderman 
2020). Guidelines alone will not provide sufficient support for managers of organizations to adopt and use 
a TAI system. Managers require knowledge on the organizational capabilities needed to thrive on the 
adoption journey  (Uren and Edwards 2023). In practice, it could pave the way to TAI systems by defining 
the vital organizational capabilities that are required while remaining aware of the technical specifics of AI. 
From these objectives, the following research questions (RQ) arise: 

RQ1: How can a trustworthy AI maturity model be designed? 
RQ2: What are the key organizational capabilities for building trustworthy AI? 
In this research-in-progress paper, we apply Design Science Research (DSR) methodology to propose a 
preliminary trustworthy AI maturity model (TAI-MM) that meets guidelines and principles for TAI to 
support managers on their way to becoming a trustworthy AI-enabled organization. In doing so, we aim to 
create a model that helps to benchmark and promote proper AI capabilities and integrates TAI 
requirements across the AI lifecycle. With the design and evaluation of the preliminary TAI-MM, we 
significantly contribute to the information systems (IS) research community, filling a research gap and 
providing actionable guidance for bridging theory and practice. In particular, we contribute to the discourse 
on managing AI in organizations (Berente et al. 2021) and on human-AI interaction (Amershi et al. 2019; 
Hevner and Storey 2022). 

Our paper structures as follows: In Section 2, we describe the theoretical background and related work. 
Then, section 3 covers the status quo of the TAI-MM design and evaluation strategy. Finally, we present 
preliminary results in Section 4 and finish this research-in-progress paper with a conclusion in Section 5. 

Theoretical Background and Related Work 

Towards Trustworthy Artificial Intelligence Systems 

For the purpose of this paper, we consider Wang’s definition of AI because it fits well for AI systems in the 
workplace (Wang 2019): “Intelligence is the capacity of an information-processing system to adapt to its 
environment while operating with insufficient knowledge and resources.” We emphasize the characteristics 
of AI systems to process (often a high amount of) information and learn over time, aiming to solve complex 
real-world problems that have not been possible with traditional rule-based approaches. With acceleration, 
AI systems are permeating the daily lives of society.  
In response to ethical questions raised by applying AI in real-world scenarios, the European Union (EU) 
defined TAI systems as AI systems that fulfill the following requirements: respect for human autonomy, 
prevention of harm, fairness, and explicability (Smuha 2019). Starting from this, AI researchers and 
practitioners developed and proposed various TAI definitions, dimensions, guidelines, and interrelations 
(Thiebes et al. 2021). Despite the differences in terminology and content, the idea of TAI systems builds on 
the complex phenomenon of trustworthiness. It aims at advancing the arbitrary AI frontier to maximize its 
benefits while mitigating potential harm (Lockey et al. 2021). The concept of trust involves two sides: the 
party to be trusted (trustee) and the trusting party (trustor). We consider the notion of trustworthiness as 
the attribute of an AI system (as trustee) that the end-user (as trustor) must trust as an antecedent of the 
adoption and use of AI-enabled tools (Zhu et al. 2021).  

Who is the actual user of trustworthy AI? The user can be the end customer, but in an organizational 
context, there are different possible types of users, e.g., engineers who are responsible for developing and 
adjusting performance, domain experts who get augmented or even replaced in their work (Hafermalz and 
Huysman 2021), auditors or regulators who assess and control AI systems, and managers who are held 
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accountable for AI systems adoption and possible failures. However, guidance towards TAI systems 
primarily addresses AI system developers or end-users (Meske et al. 2020) while neglecting the 
organizational perspective. An organizational perspective on AI trustworthiness is necessary to advance 
TAI system design. Consequently, with our TAI-MM, we target primarily managers and explore 
organizational capabilities needed to create value from AI trustworthiness.  

The Role of Organizational Culture in Adopting AI Systems 

In discussing AI adoption, many studies mention the importance of organizational level and resort to the 
well-known theories Technology Organization Environment (TOE) and Socio-Technical Systems Theory 
(STS) (Jeyaraj et al. 2006; Alsheiabni et al. 2019; Uren and Edwards 2023; Yu et al. 2023). These theories 
help organizations in better understanding different factors that influence technology adoption and 
emphasize that the development and adoption of AI systems are intertwined with organizations’ context 
and environment, including culture and processes. To analyze and systematize the organizational 
capabilities, we consider those theories as kernel theories to guide our maturity model design. 

In the context of AI system adoption, the interdisciplinary concept of trustworthiness plays an important 
role that is well-explored in IS research (Mcknight et al. 2011; McKnight et al. 2002; Rousseau et al. 1998). 
Even though, previous research on trustworthiness and adoption of AI systems hardly covers the 
organizational context. Trustworthiness of AI systems was mainly investigated on a technology and 
application level (Thiebes et al. 2021, Shneiderman 2020, Lockey et al. 2021). And the currently discussed 
draft for EU regulation for AI systems demands organizations to act and motivates research ambitions. Our 
research-in-progress article wants to fill this gap and provides guidance for managing AI on an 
organizational scope. Thereon, we base on well-established approaches for technology adoption and 
trustworthiness. 

Current (AI) Maturity Models in Information Systems Research 
Now, how to shed light on organizational aspects of trustworthy AI and help managers navigate? Maturity 
models guide managers in balancing divergent objectives while assessing an organization's current 
capabilities. Over the years, a plethora of maturity models have been developed and applied in the field of 
IS research to assist in continuous improvement initiatives or to help organizations in terms of developing 
the organization by self-assessment, benchmarking and guidance. Maturity models originate from software 
engineering, where one of the most well-known models have been invented - the capability maturity model 
(Paulk et al. 1993). Due to the plethora of proposed maturity models, researchers investigated their 
characteristics and developed a classification system for IS maturity models (Mettler et al. 2010). The 
common feature of maturity models is that a certain number of dimensions are described at different 
maturity levels. Thereby, "maturity" is defined as "the state of being complete, perfect or ready" (Weiner 
and Simpson 1989). The need for maturity models has not yet abated, and models have been developed to 
capture the organizational perspective on technology-driven change (Felch et al. 2019).  

Different maturity models have already been proposed in the context of AI system development. Two 
general directions can be distinguished in AI-MM research: the development of maturity models to assess 
the readiness level of AI systems in organizations in general and the development of a maturity model for 
specific domains. Examples are the AI-RFX Procurement Framework,  AI Management Framework 
(Lichtenthaler 2020), or the AI-MM Framework (Ellefsen et al. 2019). Due to the multifaceted effects of AI 
systems on organizations, various perspectives on maturity span the field of AI system development. 
Thereby, the AI-MMs generally focus on the organizations' perspective and do not consider the specifics of 
ethical concerns and demand for TAI. Only on the most mature level the concept of trustworthiness is 
integrated. With this in mind, first attempts in research have been made towards assessing ethics-related 
AI systems development maturity (Jantunen et al. 2021).  
As we aim to understand what are the capabilities needed for building TAI in organizations, we focus on 
AI-MM models that extend their focus on the ethical principles related to AI systems. In total, we identified 
only one research paper that targets AI-MM and ethical principles. Summarizing our findings, research 
investigating how organizations assess and benchmark AI maturity concerning the socio-technical concept 
of trustworthiness is still relatively nascent and insufficiently investigated. We will advance existing AI-
MMs by introducing TAI on all maturity levels. 
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Research Design 

Methodology Overview 

DSR serves as the overarching methodology for the iterative model development process. Our research in 
progress adapts DSR (Hevner et al. 2004) and investigates the gap between the current and target state of 
TAI adoption. We propose the following research process to design a viable artifact for TAI adoption. Figure 
1 illustrates the current research-in-progress activities and highlights our planned upcoming research 
design (grey background).  

Following the DSR methodology by Peffers et al. (2007), our research process includes problem 
identification and motivation, objectives of a solution, design and development, demonstration, evaluation, 
and communication. At the present stage, we completed our anticipated artifact's first DSR process 
iteration. Thus, we are transitioning to phase demonstration after communicating our recent research-in-
progress results. 

 

Figure 1.  Our research design in accordance with Peffers et al., (2007) 

Within the first DSR process iteration, we developed an initial design of our artifact, the TAI-MM. Our 
envisioned artifact aims to effectively solve the problem of AI adoption in organizations by providing 
guidance with our TAI-MM model. In the wake of our initial artifact design, we conducted a structured 
literature review (Brocke et al. 2009) regarding TAI capabilities and AI-MMs. Then, we drew on the 
descriptive and prescriptive knowledge of maturity model development and advances in TAI research, 
following vom Brocke et al. (2020). After defining the solution objectives and requirements to infer viable 
artifacts, we entered the design and development phase and created an initial artifactual solution following 
the iterative maturity model development process by Becker et al. (2009). 

Literature Review 

To identify the state-of-the-art AI-MMs and literature on TAI, we conducted an interdisciplinary and 
structured literature review following the guidance of vom Brocke et al. (2009). First, we identified the most 
relevant databases related to our research focus: Web of Science, IEEExplore, ACM, EBSCOhost, and 
AISeL. Second, we organized our review by focusing on central concepts related to TAI adoption in 
organizations. For the search, we used the keywords: (Artificial Intelligence, AI) AND (trust*, trustworthy 
AI, TAI) OR (matur*, maturity model). The complete literature search process is depicted in Figure 2, and 
the main findings that informed our initial artifact design are summarized in Section Theoretical 
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Background and Related Work. Finally, we identified a total of n=33 relevant publications, including a 
forward and backward search. 

 

Figure 2.  Our literature search process following vom Brocke et al. (2009) 

Towards a Trustworthy AI Maturity Model 

During the design and development of the initial maturity model for TAI, we used a grounded theory 
approach based on a structured literature review to qualitatively identify useful concepts for model building 
(Wolfswinkel et al. 2013). In doing so, we leveraged the codes identified in the structured literature and 
synthesized them into elements and model dimensions, see Figure 3. The elements of our maturity model 
are the TAI capabilities. Model dimensions build the columns. Rows are defining the maturity levels 
towards adoption of TAI. In a third step, the identified capabilities are assigned to the organizational 
maturity level.  

Trustworthy AI Capabilities and Dimensions 

Conforming to grounded theory, our procedure was guided by three coding stages: (1) open coding, (2) axial 
coding, and (3) selective coding (Glaser and Strauss 2017; Strauss and Corbin 1994). Figure 3 shows the 
coding scheme, including exemplary extracts from the coding. During open coding, we reread the core 
literature defined through the structured literature review and identified organizational capabilities for 
building trustworthiness of AI systems and adopting AI. Following axial coding, we grouped the identified 
codes into categories of capabilities for TAI systems. In the third step, we conducted selective coding, 
connected categories, and derived at TAI dimensions. After selective coding we matched our TAI 
dimensions to the socio-technical AI dimensions that demonstrated valuable for AI adoption. These 
dimensions are grounded on the TOE (Uren and Edwards (2023) and STS theories, which function as kernel 
theories for our artifact design proposal. 

 

Figure 3.  Coding scheme for trustworthy AI capabilities and dimensions incl. examples 

Trustworthy AI Maturity Levels 

Maturity levels represent discrete stages of TAI adoption. Given the design of the TAI-MM, identified TAI 
capabilities were brought into a logical, incremental order, interdependencies made transparent, and 
assigned to various maturity levels. The selection of the five levels (1-5) followed existing AI maturity models 
(e.g., Jantunen et al. 2021; Lichtenthaler 2020; Sadiq et al. 2021). In the first iteration, the assignment 
followed observations from real-world experience (vom Brocke et al. 2020). 
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Evaluation Strategy 
The FEDS framework informs our artifact design to demonstrate its proof of utility (Venable et al. 2016). 
Due to the social context of our artifact, we decided to follow a two-staged human risk & effectiveness 
evaluation strategy (Venable et al. 2016) with the primary evaluation goal of rigorously validating the 
artifact's utility in real-world situations. By evaluating, we ultimately seek to demonstrate that the 
trustworthiness maturity assessment reflects the TAI-MM levels. During the first design cycle, we 
conducted a formative evaluation to reduce uncertainty in the model design. In this research-in-progress 
paper, we performed an ex-ante formative artificial evaluation by discussing the model against competing 
artifacts (Siau and Rossi 1998) and compared it with selected existing methods (see Section 2). 

Upcoming Research: Second and Third Design Cycle 

In upcoming research, we plan to perform ex-ante formative naturalistic evaluation activities, including 
semi-structured expert interviews and focus group workshops in the context of a real-world case study. To 
further validate whether our artifact design provides utility, effectiveness, and comprehensibility in 
different organizational contexts, we plan to conduct a multi-case study as ex-post naturalistic evaluation.  

Case Study Design 
Moving forward, we conduct a multiple case study to demonstrate the proof of utility of our developed 
model and extend the model with practical insights. In particular, a case study allows qualitative in-depth, 
multi-faceted explorations in complex real-world organizational settings. We follow Yin (2003) for the case 
study design. For the first case study, we have chosen a reputable global technology (incl. AI) company and 
will recruit at least eight experts. Professionals, who hold accountability for AI systems and have 
professional experience in developing TAI systems or managing AI, are considered TAI experts, e.g., Chief 
Privacy Officers, AI Ethics Board Members, and AI Model Owners. To gather feedback on the model's 
utility, TAI capabilities, and their assignment to maturity levels, we plan to conduct semi-structured 
interviews with named experts; and record and transcript interviews for data collection. 
In general, multiple case studies are a fruitful methodological approach to deepen the understanding of AI 
trustworthiness across organizations. Thus, we plan to gain holistic and contextualized insights into 
adopting AI systems over various organizational ecosystems, stakeholders, and maturity levels. This is likely 
to help us systematize and generalize the understanding of how organizations cope with our developed TAI-
MM. Specifically, we plan to present the TAI-MM at a TAI Summit where multiple (more than 20) 
managerial stakeholders from different organizations and industries attend. Experts are asked to self-assess 
their organizations' TAI maturity level based on the presented TAI-MM. Based on the assessed level of 
maturity, we plan moderated discussions in smaller groups about needed capabilities for their organization 
against the TAI capabilities proposed in the TAI-MM. 

Preliminary Trustworthy AI Maturity Model 
After completing the first iteration of the TAI-MM development, we derived four AI dimensions and defined 
five progressive maturity levels. Figure 4 displays the preliminary TAI-MM. With this, we answer RQ1 by 
providing extensive and detailed information on how a TAI-MM can be designed. Every maturity level has 
been assigned based on real-world observations and our extensive literature review on TAI capabilities.  

While coding our TAI dimensions, we found a match to the socio-technical AI dimensions proposed by Uren 
and Edwards (2023). This allows us to extend existing AI-MMs with our identified TAI capabilities without 
introducing new dimensions. The preliminary TAI dimensions are Data, Technology, People & Culture, and 
Processes. Data builds a solid foundation for AI, and organizations need capabilities for trustworthy data 
collection, processing, and generation. Data quality assessment, bias mitigation, data policy, data 
governance, data strategy are key capabilities. The second dimension is technology, where capabilities 
around metrics for the trustworthiness of AI products and services, architecture, tools, and the AI lifecycle 
are important. Third, people and culture elaborate on organizational capabilities in education, staffing, 
resources, top management support, advocacy network, team setup, communication, and ways of working. 
The fourth dimension covers the processes and structures in an organization, incl. principles, guidelines, 
policies, roles, and responsibilities. 
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Organizations that just get started are aware of AI systems’ potentials, limitations, and risks. In level 2, 
initial steps are taken to build skills and explore and define principles and accountability. Moving to the 
third level, organizations now approach AI systems strategically, know about their weak points and address 
them holistically. Next, level 4 is indicated by operationalization and the ability to scale the organization's 
processes, data & technology practices, and infrastructure and live up to their values across the 
organization. Finally, the maturest level is characterized by an infusion of trustworthy and ethical standards 
throughout business strategy, leadership, culture, ecosystem, data & technology practices, and 
infrastructure underpinning trustworthiness and performance. This is answering RQ2 by providing this 
first research-in-progress version. Further investigations, evaluation, and refinement are the scope of 
further research. 

 

Conclusion 
This research-in-progress paper presents the first steps towards developing a TAI-MM. We demonstrate 
preliminary results on vital organizational capabilities needed to create TAI systems. In doing so, our initial 
model proposes a holistic perspective on maturity levels across data, technology, people & culture, and 
processes. It highlights the importance of trustworthiness throughout the AI adoption journey. The 
superordinary benefit of our maturity model is the assessment, evaluation, and improvement of TAI on an 
organizational level. At the same time, we are aware of some limitations. The preliminary results mainly 
ground on literature data and observations from practice. Thus, future research needs to qualitatively 
evaluate whether the model design holds across organizations. To showcase the utility of the TAI-MM, we 
have spoken to managers and professional experts in the field of AI governance. These validated the need 
for such guidance and inspired further research endeavors. Next, we will follow our evaluation strategy and 
conduct multiple case studies to enhance our preliminary model design. In this vein, we contribute to the 
emerging research on human-AI systems and managing AI. 

 

Figure 4.  Preliminary trustworthy AI maturity model 
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