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Abstract

Financial distress prediction is a prominent research topic in information systems, with
two primary modelling categories: stationary and dynamic modelling. Recent station-
ary modelling works have leveraged company interactions to improve prediction per-
formance, considering the heterogeneity of interactions while ignoring the dynamicity.
However, few dynamic modelling works utilized interactions. To address the inconsis-
tency and limitation of stationary and dynamic modelling works in leveraging interac-
tions, we propose the Spatio-Temporal Financial Graph Attention Network with Meta-
learning (STFGAN-Meta). STFGAN-Meta leverages interactions’ spatial heterogeneity
via the Spatial Aggregationmodule and temporal dynamicity via the Temporal Aggrega-
tion module. STFGAN-Meta introduces the Meta-learning Optimization module to unify
stationaryanddynamicmodelling. Our experimental evaluationdemonstrates that lever-
aging dynamicity and heterogeneity of interactions outperforms leveraging dynamicity
or heterogeneity alone. Meta-learning succeeds in providing a generalized approach be-
tween stationary and dynamic modelling. STFGAN-Meta can be a promising risk assess-
ment and decision-making tool in the financial industry.

Keywords: Financial distress prediction, interactions, dynamicity andheterogeneity, spatio-
temporal aggregation, meta-learning

Introduction

Financial Distress Prediction (FDP) has been a prominent research topic in the field of information systems
for several decades (Óskarsdóttir & Bravo, 2021; Wang et al., 2021) because of the adverse impact of finan-
cial distress risk (Chen et al., 2016; Karanikolos et al., 2013) and the significant benefits of company risk
management (Wang et al., 2021). Financial distress risks of companies can lead to significant economic
losses, reduced revenues, and increased costs (Karanikolos et al., 2013), posing threats to companies, in-
vestors, and industry regulators (Lin et al., 2011). As a useful tool, FDP models can provide early warning
signals and support decision-making to mitigate potential losses. FDP research can be broadly categorized
into two types based on whether the distress data changes dynamically: stationary FDP (SFDP) modelling
and dynamic FDP (DFDP) modelling (Sun et al., 2020).

Traditional FDP research has focused on SFDPmodelling, using the distress data in a certain period. These
works havemainly focused on combining heterogeneous characteristics or constructing adaptive classifiers.
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To obtain company financial characteristics, researchers have collected comprehensive public information
about companies, such as their financial ratios (Du Jardin, 2015; Du Jardin, 2018; Geng et al., 2015; Sun
& Li, 2012; Wang et al., 2019), lexical and sentimental characteristics (Li et al., 2016; Wang et al., 2021).
Statistical andmachine learning (ML)methods have been commonly used as classifiers for SFDP tasks (Chen
et al., 2016), such as the support vector machine (SVM) (Sun & Li, 2012), artificial neural network (ANN)
(Du Jardin, 2015; Geng et al., 2015), and ensemble learning methods (Du Jardin, 2015; Du Jardin, 2018;
Wang et al., 2021). These statistical and ML methods have mainly focused on leveraging the endogenous
characteristics of companies and ignored company interactions and the accompanying risk spillover effects
among companies. With the rise of graph data, some works have emphasized the importance of leveraging
interactions and graph-based models to supplement SFDP tasks (Jiang et al., 2022; Óskarsdóttir & Bravo,
2021). However, existing SFDP works only collect heterogeneous interactions in the stationary setting as a
snapshot of company interactions.

The SFDP research relies on stationary prediction, which is ill-suited to predicting financial distress in a
dynamic economic scenariowith financial distress concept drift (Sun&Li, 2011). Motivated by this issue, the
DFDP task has been proposed as an advanced FDP task for companies’ dynamic operational environments.
The DFDP task employs historical prediction experiences to predict the financial distress risk of companies
in a specified period, leading to the financial distress concept drift between the distress data. Some work
(Sun et al., 2017; Sun & Li, 2011; Sun et al., 2013; Sun et al., 2020) has indicated the superiority of DFDP
models over SFDP models. These models tackle the issue of dynamic data distribution by incorporating
dynamic classifiers, instance selection (Sun & Li, 2011), timing-weighting (Sun et al., 2017; Sun et al., 2020),
and ensemble learning methods (Sun et al., 2017; Sun et al., 2013; Sun et al., 2020). However, existing
DFDP research has only focused on limited characteristics, such as financial ratios, which deviates from the
progress of mainstream research in SFDP tasks.

Both SFDP and DFDP tasks fail to fully acquire the company interactions due to their high costs and com-
plexity. In reality, company interactions can be intricate, heterogeneous, and dynamic. The two primary
challenges in modelling company interactions are dynamicity and heterogeneity. Additionally, there is a
synchronicity between dynamicity and heterogeneity in company interactions, which further adds to the
challenge of addressing interactions in FDP tasks. Consequently, existing DFDP and SFDP research neglect
company interactions or only collect one snapshot of dynamic and heterogeneous interactions. Existing
FDP research leads to the following problems: Firstly, one snapshot of interactions heavily relies on the
snapshot timing andmay introduce sampling bias, resulting in an incomplete usage or misuse of interaction
information. Moreover, biased interactions cause limited generalizability and compromise the performance
of the FDP tasks. Secondly, the research gap between DFDP and SFDP modelling forces users to trade off
between leveraging interaction information and historical prediction experience. The inconsistency of the
FDP model compels FDP researchers to adapt their FDP methodologies to distinct prediction scenarios re-
peatedly. This necessity amplifies themaintenance overhead and the application complexity of FDPmodels,
severely limiting the popularity and generalization of FDP tasks.

To mitigate the modelling burdens on FDP researchers, alleviate the complexities in maintaining FDP ser-
vices, and enhance the precision of FDP results for end-users, our research objective is to introduce a general
FDP framework that can leverage interaction information to get better performance in both SFDP andDFDP
tasks. This raises three research questions:

1. Do dynamicity and heterogeneity of company interactions have an effect on the predictive perfor-
mance in both SFDP and DFDP tasks?

2. How can we leverage company interactions better to improve performance in SFDP and DFDP
tasks?

3. Can a general FDP framework alleviate concerns from financial distress concept drifts?

To answer these questions, we propose a novel Spatio-Temporal Financial Graph Attention Network with
Meta-leaning ( STFGAN-Meta) method that can effectively leverage company interactions in stationary and
dynamic scenarios. Our proposed STFGAN-Meta consists of three main components: the Spatial Aggre-
gation module, which addresses heterogeneity in spatial interactions; the Temporal Aggregation module,
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which addresses dynamicity in temporal interactions; and the Meta-learning Optimization module, which
tackles potential distress concept drifts and optimize prediction services for both SFDP and DFDP tasks.
Our proposed method can effectively address the dynamicity and heterogeneity of interactions and poten-
tial distress concept drifts.

We empirically evaluate our proposedmethod using publicly accessible Chinese listed companies’ data from
January 1st 2015 to December 31st 2020. Our experimental results reveal that interaction information plays
a critical role in both SFDP and DFDP tasks, and their dynamicity and heterogeneity significantly impact
FDP tasks. Firstly, GNNs-based methods often outperform traditional ML methods, showing interactions’
effectiveness in both FDP tasks. Secondly, leveraging heterogeneity of interactions can improve predic-
tion performance in both FDP tasks. Thirdly, leveraging dynamic historical interactions helps exploit valu-
able financial distress risk information, while stacking dynamic historical interactions fails to exploit their
distress information. Fourthly, interactions exhibit synchronous dynamic and heterogeneous properties,
significantly impacting FDP tasks. Our proposed method can effectively address synchronicity between dy-
namicity and heterogeneity in SFDP and DFDP tasks. Finally, meta-learning can address the problem of
distress concept drift in DFDP tasks and applies to SFDP tasks.

Our findings carry significant implications for companies, investors, and industry regulators and contribute
to the field of FDP research in several ways. Firstly, we introduce the valuable characteristic of dynamicity
in interactions and emphasize the advantage of leveraging the synchronicity of heterogeneity and dynam-
icity in company interactions, providing insights to address sampling bias and misuse of interactions in
FDP tasks. Secondly, our study pioneers the integration of meta-learning into FDP research, demonstrating
the potential of meta-learning to design generalized FDP models in ever-changing financial scenarios. Our
study unifies the SFDP and DFDPmodels, mitigating the modelling burdens on FDP researchers and allevi-
ating the complexities in maintaining FDP services. Finally, our proposed STFGN-Metamodel outperforms
several state-of-the-art (SOTA) FDP methods on SFDP and DFDP tasks, providing a powerful tool for risk
assessment and decision-making in the financial industry.

Literature Review

FDP has garnered significant attention due to its vital implications and insights for key business decision-
makers, such as shareholders, financial institutions, investors, and regulators (Alfaro et al., 2008). FDP
research can be categorized into two types: SFDP modelling, which assumes that all distress data follows
the independent and identical distribution (IID) (Hoadley, 1971); and DFDPmodelling, which considers the
financial distress concept drift in the distress data (Sun et al., 2020).

Stationary Financial Distress Prediction (SFDP)

Traditional FDP research has mainly concentrated on the SFDP task. Researchers have extensively utilized
corporate disclosed data from public information platforms to extract financial features. Financial ratios
have been consistently verified as the dominant features in SFDP research (Du Jardin, 2015; Du Jardin,
2018; Geng et al., 2015; Sun & Li, 2012; Wang et al., 2019). In addition to accounting data, previous SFDP
research has sought to enhance performance by leveraging lexical or sentimental information from annual
reports, financial news, and other online media (Li et al., 2016; Wang et al., 2021). However, these works
have primarily focused on endogenous corporate characteristics, overlooking the potential risk spillover
effects (Lang & Stulz, 1992). Recent works (Bi et al., 2022; Kou et al., 2021; Tobback et al., 2017; Yang
et al., 2021) have addressed this issue by incorporating company interactions with heterogeneous financial
graphs. These works have employed various methods, such as network centrality (Bi et al., 2022), relational
statistics (Tobback et al., 2017), and heterogeneous interactions (Kou et al., 2021; Yang et al., 2021), to
extract financial distress risk spillovers along these interactions. However, existing SFDP research only
collects heterogeneous and stationary interactions by intercepting interactions as one snapshot.

In terms of methodology, traditional SFDP tasks have commonly used statistical and ML methods, such as
logistic regression (LR) (Du Jardin, 2015; Du Jardin, 2018), SVM (Sun & Li, 2012), and ANN (Du Jardin,
2015; Geng et al., 2015). Recently, ML methods (Chen et al., 2016; Li et al., 2016) have shown overwhelm-
ing evidence of outperforming statistical methods. Ensemble learningmethods have demonstrated superior
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performance over traditionalMLmethods, particularly for heterogeneous data (Du Jardin, 2015; Du Jardin,
2018; Wang et al., 2021). With the introduction of financial graphs, existing methods have utilized person-
alized PageRank (Óskarsdóttir & Bravo, 2021), the weighted-vote relational neighbour (wvRN) classifier
(Tobback et al., 2017), and graph neural networks (GNNs) (Bi et al., 2022; Jiang et al., 2022) to mine dis-
tress information in interactions. These methods have shown promise in capturing the heterogeneity of
financial graphs and facilitating more accurate SFDP.

However, a common drawback of SFDP research is that they all focus on stationary modelling for predic-
tion with sample data in a certain period (Sun & Li, 2011). This SFDP research keeps the assumption that
sample volume never changes in FDP and all distress data follow the IID. In the changing real world, new
financially distressed companies gradually emerge to form sample data flow, changing the company oper-
ational environment and introducing the financial distress concept drift (Schlimmer & Granger, 1986; Sun
et al., 2013; Sun et al., 2020). As time passes, stationarymodels can not effectively forecast financial distress
in the changing economic environment. Consequently, research on DFDP modelling should be conducted
regarding the financial distress concept drift to fit companies’ dynamic operational environments over time.

Dynamic Financial Distress Prediction (DFDP)

Considering the financial distress concept drift, the DFDP task has been introduced to leverage dynamic
financial distress data in a certain period. Existing DFDP works similarly focus on the adaptive data or
classifiers to address this problem. To extract adaptive data, sample selection (Sun & Li, 2011) and timing-
weighting (Sun et al., 2017; Sun et al., 2020) are proposed, such as the fixed-width time window method
(Mitchell et al., 1994), and similar data selectionmethods (Sun & Li, 2011). To construct adaptive classifiers,
ensemble learning (Sun et al., 2017; Sun et al., 2013; Sun et al., 2020) algorithms are also a critical approach
to dealing with distress concept drift. Moreover, most classifier ensemble approach combines with the data
ensemble approach, such as data selection (Almeida et al., 2018) and timing-weighting strategy (Sun et al.,
2020).

Given the remarkable performance of interaction data in SFDP tasks, exploring its applicability in DFDP
tasks is natural. However, in DFDP tasks, dynamic extraction of interactions faces significant challenges due
to the complexities, variabilities, andhigh extraction costs of interactions. Consequently,mostDFDP studies
only use financial ratio data, which deviates from the prevailing research trend in SFDP tasks. Therefore,
novel work is urgently needed to fill this research gap. With the development of dynamic prediction tasks
(Lan et al., 2010; Zhang et al., 2020), meta-learning (Vilalta & Drissi, 2002) has shown promising results in
addressing the challenge of dynamic drifts. Inspired by the success of meta-learning in addressing dynamic
tasks, meta-learning may provide a solution to the challenges associated with DFDP tasks.

Graph Representation Learning

Graph representation learning is becoming increasingly popular in FDP research due to its ability to capture
complex company interactions. There are two graph embedding techniques based onwhether the graph data
is dynamically generated: stationary graph embedding, which considers the graph data as a single snapshot,
and dynamic graph embedding, which considers the graph data as a set of multiple snapshots.

For stationary graph embedding, GNNs and advanced GNNs-based methods(Velickovic et al., 2017) have
shown promising results formodelling interaction data as a feature aggregation framework. However, tradi-
tional GNN-based methods need to be better equipped for heterogeneous graphs. To tackle this limitation,
some research (Dong et al., 2017; Perozzi et al., 2014; Wang et al., 2019) models homogeneous represen-
tations and preserves the heterogeneous structures with different semantics. These works can be catego-
rized into two categories: meta-path-based methods (Dong et al., 2017) and deep neural network methods.
Meta-path-based methods utilize the random walk strategy (Perozzi et al., 2014) along the meta-path——
the compound interactions between nodes to explore the semantics of heterogeneous graphs. Deep neural
network-based models aggregate meta-path information by neighbours’ information (Zhang et al., 2019) or
bi-molecular subgraph’s information (Wang et al., 2019) to explore the semantics of heterogeneous graphs.
Nevertheless, stationary graph models overlook temporal information and fail to capture the dynamicity of
graphs.
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Dynamic graph embedding techniques have been proposed to capture graphs’ semantic features and dy-
namicity. The mainstream of existing dynamic graph embedding methods is snapshot-based methods (Du
et al., 2018; Zhang et al., 2020), which treat the dynamic graph as a sequence of stationary graphs. These
methods provide a coarse-grained view of the graph dynamicity, emphasizing global changes and effectively
capturing long-term dynamic features. However, due to the synchronous dynamicity and heterogeneity,
the snapshot-based heterogeneous graph method is usually more complex than the heterogeneous graph
method. Some dynamic heterogeneous graph methods (Fan et al., 2022; Zhang et al., 2020) adopt spatio-
temporal aggregation mechanisms to address this synchronicity between compound spatial and temporal
interactions.

Financial systems in the real world are often characterized by a wide range of entities, interactions, and
temporal information, representing dynamic heterogeneous graphs. Mathematically, company interactions
can be represented as dynamic heterogeneous graphs with a set of nodes (companies and related entities,
such as executives and shareholders) and edges (various relationships between nodes, such as supply chains,
investment, and employment relationships). GNNs have shown great promise in financial applications,
given their ability to capture heterogeneous interactions (Bi et al., 2022) and dynamic evolution (Yang et al.,
2021). However, current GNNs-based models for FDP tasks ignore the temporal aspect of financial graphs.
Therefore, there is a pressing need to explore the role of interaction dynamicity through dynamic graph
embedding methods, which may help comprehend how financial risks propagate and lead to more accurate
and effective FDP models.

Meta-learning

Meta-learning (Vilalta & Drissi, 2002), known as ”learning to learn”, aims to enable ML algorithms to learn
from historical experience and generalize to new and unseen tasks. Meta-learning imitates the data gen-
eration method of the original task to generate multiple meta-tasks from the training set. It improves the
models’ generalization ability by learning from these meta-tasks. Consequently, meta-learning has a wide
range of generalized implications (Lan et al., 2010; Zhang et al., 2020). Someworks (Lan et al., 2010; Zhang
et al., 2020) have explored the potential of meta-learning in handling dynamic concept drift in dynamic
prediction tasks. For example, Lan et al. (2010) proposed a dynamic meta-learning framework for dynamic
failure prediction, obtaining failure patterns from a changing training set. Despite these advancements, a
research gap exists in the literature on combining meta-learning and DFDP tasks, leaving ample space for
exploration.

Methodology

This section presents a comprehensive overview of our proposed method: the Spatio-Temporal Financial
Graph Attention Network with Meta-leaning (STFGAN-Meta). Our model consists of three main compo-
nents: the Spatial Aggregation module, which addresses heterogeneity in spatial interactions; the Temporal
Aggregation module, which addresses dynamicity in temporal interactions; and the Meta-learning Opti-
mization module, which tackles potential distress concept drifts and optimizes prediction services for both
SFDP and DFDP tasks. Figure 1 provides an overview of the proposed method’s architecture.

Problem Formulation

The SFDP task contains an annual FDP task for one benchmark year. In contrast, the DFDP task contains
a set of annual FDP tasks with varying benchmark years and uses previous annual FDP tasks to predict the
latest annual FDP task. Thus, SFDP and DFDP tasks are collections of annual FDP tasks. We define the
uniform FDP task that applies to dynamic and stationary scenarios, with the benchmark year span as T
years, τ ∈ T . For the SFDP task, T = 1. Conversely, T is greater than 1 for the DFDP task. The goal of
uniform FDP task is to complete T annual FDP tasks {FDPτ}Tτ=1, specifying some annual FDP tasks from
{FDPτ}Tτ=1 as the training data. The summary of defined parameters is shown in Table 1.

For the annual FDP task FDPτ , we define the time window of feature collection as T years. The FDPτ uses
the historical data in T years since the benchmark year τ , the period [τ + 1 − T, τ ], to predict the future
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Figure 1. The overall framework of the proposed STFGAN-Meta.

Parameter Description Parameter Description
T Number of years in the benchmark

year span, τ ∈ T
Mτ

V Node-specific projection matrix
for node set V

FDPτ Annual FDP task for the bench-
mark year τ

Pθ Predictor with parameter θ

T Time windows of distress feature Fψ Feature extractor with parameter
ψ

Gτ ST-Graph for the FDPτ K Number of sub-FDP tasks
ϱtτ Snapshot of the ST-Graph at

timestamp t in FDPτ
α Learning-rate hyperparameter for

internal optimization
N S
vt Spatial neighbour set of node vt in

snapshot ϱtτ

β Learning-rate hyperparameter for
cross-task meta-optimization

Φvt Meta-paths connecting node vt to
its spatial neighbours

L Number of spatio-temporal aggre-
gation layers in the framework

Nv Temporal neighbour set of node v
in FDPτ

η
ϕµ
nvt

Weight coefficient for spatial
neighbour nvt in meta-path ϕµ

V Node set, including company and
individual nodes

wϕµ
Weight coefficient ofmeta-pathϕµ

Eτ Edge set, which contains all inter-
action snapshots ϵt at timestamp t

rvt Weight coefficient of temporal
neighbour vt

Table 1. Summary of defined parameters.
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financial distress situation for target companies. The T years historical data can be constructed as a spatio-
temporal graph (ST-Graph) Gτ = {ϱtτ}Tt=1 = {(V, Eτ ,Xτ ,Yτ )}, where t ∈ [1, T ]. Here, V represents the node
set, including both target nodes ( the listed company set C = {cn}Nn=1) and non-target nodes (the related
company set R = {rm}Mm=1 and individual set I = {ij}Jj=1). The edge set Eτ = {ϵt}Tt=1, where ϵt represents
the interaction snapshot at timestamp t. The feature setXτ = {Xv,t}Tt=1, where v ∈ V andXv,t represents the
input feature of the node v at timestamp t. The label set Yτ represents listed companies’ financial distress
risk label in the FDPτ task, Yτ = {ycn,τ}cn∈C . Here, ycn,τ = 1 denotes financial distress for the listed
company cn in the FDPτ task. In sum, each ST-graph consists of T snapshots, and each snapshot contains
the interaction set and node feature set for the corresponding observation timestamp t, ϱtτ = {(V, ϵt, Xt)}.

To describe the spatio-temporal financial graphs, we illustrate the definition from ST-Graph Gτ = {ϱtτ}Tt=1.
For the target node v, we define the temporal neighbour set of node v as Nv = {vt}Tt=1 in T snapshots
{ϱtτ}Tt=1. For each ϱ

t
τ , node vt have interactions with its spatial neighbour nvt ∈ N S

vt , whereN
S
vt is node vt ’s

spatial neighbour set in ϱtτ . The node vt can contact its spatial neighbour nvt via multiple meta-paths Φvt =
{ϕ1,…, ϕµ,…, ϕU}. For instance, take node cn as the target node, cn is the client of cm, meanwhile, cn and cm
have shared shareholder ij in ϱtτ . Thus, Φ

t
cn = {ϕ1 = (cn, ‘client’, cm), ϕ2 = (cn, ‘shareholder’, ij , ‘shareho−

lder’, cm)}, andN S
cn,t = {cn, cm, ij}.

In the general FDP task, we aim to learn a time-independent financial distress probability function Ŷ =
Pθ(Fψ(X )) for listed companies. Given the label space Ycn∈C = [Ycn,1, ...,Ycn,τ , ...,Ycn,T ] and its feature
space Xcn∈C = [Xcn,1, ...,Xcn,τ , ...,Xcn,T ], the objective is to learn the feature extractor Fψ with the parame-
ter ψ that maps the input feature vectors to their corresponding embeddings, and the predictor Pθ with the
parameter θ that maps node embeddings to the probability of financial distress risk. The general FDP task
can be divided into several annual FDP tasks, where each annual task has a shared framework to learn a
time-independent financial distress probability function.

Framework

For each annual FDP taskFDPτ , we firstly uniform the feature spaces for heterogeneous nodes. Since differ-
ent types of nodes have various features, dealing with nodes with distinct feature spaces becomes challeng-
ing. Node-specific linear transformation matrixes can project different types of nodes to a uniform feature
space. The projection process can be formulated as follows:

h0vt =M
τ
V ·Xvt , (1)

whereXvt is the feature vector of node vt at the snapshot ϱ
t
τ ,Mτ

V is the node-specific projection matrix for
the FDPτ task, and h0vt is the transformed feature vector for node vt. After this transformation, a spatio-
temporal aggregation block is applied to capture spatio-temporal dependencies among each snapshot. This
block comprises L spatio-temporal aggregation layers, each including a spatial aggregation module to ad-
dress spatial heterogeneity and a temporal aggregation module to address temporal dependence. Once the
final spatio-temporal embeddings of the listed company set are obtained, they are fed into a predictor to
perform the final binary classification task. In this work, a fully connected network (FCN) (LeCun et al.,
1998) module is used as the predictor Pθ, and the prediction result for each listed company cn is given by:

ŷcn = Pθ(
T∑
t=1

hLcn,t), cn ∈ C, (2)

where hLcn,t is the final spatio-temporal embedding of listed company cn at the timestamp t, and ŷcn is the
corresponding prediction result in the FDPτ task.

Spatial Aggregation

Spatial aggregation modules aim to depict spatial heterogeneity by aggregating node embeddings of the
target node vt’s spatial neighbours in the corresponding snapshot ϱtτ . The formalization of this process is as
follows:

hl,Svt = Aggregationspa(h
l−1
vt , ϱtτ |ψlspa), l ∈ [1, L], (3)
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where hl−1
vt is the output embedding of node vt from the l− 1 spatio-temporal aggregation layer at snapshot

ϱtτ , and ψ
l
spa represents the trainable parameters of the spatial aggregation in the l spatio-temporal aggre-

gation layer. The output hl,Svt represents the spatial embedding of node vt at snapshot ϱtτ . Considering the
heterogeneity in financial graphs, the proposed approach employs a heterogeneous graph neural network
that utilizes both a neighbour-level attentionmechanism and ameta-path level attentionmechanism. These
attention mechanisms account for spatial neighbour nodes’ varying roles and importance in the prediction
task.

The neighbour-level attention mechanism aims to learn the importance of neighbours from the same meta-
path in ϱtτ . We employ self-attention (Vaswani et al., 2017) to learn the importance of various neighbours
nv from the subset of neighbours N S,ϕµ

vt with the same meta-path ϕµ to the target node vt. Specifically,

the neighbour-level attention score eϕµ
nvt

for neighbour nvt to the target node vt is obtained by calculating
following:

eϕµ
nvt

= attentionN (hl−1
nvt

, hl−1
vt |ϕµ), nvt ∈ N

S,ϕµ
vt , (4)

where the function attentionN is a shared deep neural network responsible for performing the neighbour-
level attention for the meta-path ϕµ. Then, we apply the softmax function, also known as normalized ex-

ponential function (Bishop & Nasrabadi, 2006), to normalize the attention score eϕµ
nvt

of neighbour nvt and

obtain the corresponding weight coefficient ηϕµ
nvt

:

ηϕµ
nvt

= softmax(eϕµ
nvt

) =
e
ϕµ
nvt∑

n′
vt

∈NS,ϕµ
vt

e
ϕµ

n′
vt

. (5)

The meta-path-specific embedding of node vt for the meta-path ϕµ can be aggregated by the neighbour’s

projected features with the corresponding coefficients ηϕµ
nvt

as follows:

hlvt,ϕµ
= σ(

∑
nvt∈NS,ϕµ

vt

ηϕµ
nvt
· hl−1

nvt
). (6)

Applying a meta-path attention mechanism enables learning the importance of each meta-path in the FDP
task, accounting for their varying influence on the target node. To achieve this, all meta-path-specific em-
beddings for the target node vt, denoted by {hlvt,ϕµ

, ϕµ ∈ Φvt}, are utilized by the meta-path attention layer
to learn the importance of each meta-path wϕµ , as expressed below:

wϕµ = attentionM (hlvt,ϕ1
,…, hlvt,ϕµ

,…, hlvt,ϕU
|Φvt), (7)

where attentionM performs the meta-path attention mechanism and captures various meta-path informa-
tion. Weuse the transformer attentionmechanism (Vaswani et al., 2017) to aggregate themeta-path-specific
embeddings of target nodes. Firstly, we transform the target node’s meta-path-specific embeddings into
spatial Query vector qSvt,ϕµ

, Key vector kSvt,ϕµ
, and Value vector vSvt,ϕµ

:

qSvt,ϕµ
=WS

q · hlvt,ϕµ
, kSvt,ϕµ

=WS
k · hlvt,ϕµ

, vSvt,ϕµ
=WS

v · hlvt,ϕµ
; (8)

whereWS
q ,W

S
k ,W

S
v ∈ Rd×d are trainable transformation matrices for Query, Key, and Value, respectively.

Then, we calculate the dot product of the Query vector and Key vector, resulting in the attention coefficient
for each meta-path-specific embedding. The calculation can be expressed as follows:

wϕµ
vt =

exp([qSvt,ϕµ
] · [kSvt,ϕµ

])∑U
µ′=1 exp([q

S
vt,ϕµ′ ] · [kSvt,ϕµ′ ])

(9)

The final spatial embedding of node vt in the snapshot ϱtτ is a linear combination of its Value vector and the
calculated attention values:

hS,lvt = σ(

U∑
µ=1

[wϕµ
vt ] · [v

S
vt,ϕµ

]). (10)
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Temporal Aggregation

The Temporal aggregation module aims to capture the temporal dependencies among the target node v ’s
temporal neighbours vt from T snapshots Gτ = {ϱtτ}Tt=1. Mathematically, the Temporal aggregationmodule
in the l spatio-temporal aggregation layer can be formalized as follows:

hST,lvt = Aggregationtem(hS,lv1 ,…, h
S,l
vt ,…, h

S,l
vT |ψ

l
tem,Gτ ). (11)

For timestamp t ∈ [1, T ], hS,lvt represents the spatial embedding of the node v’s temporal neighbour vt in
set Nv = {vt}Tt=1. h

ST,l
vt is the spatial-temporal embedding of node vt, and ψltem represents the trainable

parameters of the temporal aggregation module.

Similarly, we follow the transformer attention mechanism (Vaswani et al., 2017) to aggregate the spatial
embeddings of temporal neighbours. The difference is that we additionally introduce a temporal embedding
function (Fan et al., 2022), denoted by TE(·), for hS,lvt that incorporates timestamp-related factors:

TE(hS,lvt ) =∥
d
i=1 (hS,lvt + p(t, i)), (12)

where i denotes the index of each element in the embedding of node v, which has a feature-length of d. The
function p(·) is a timestamp-dependent sinusoid:

p(t, 2i) = sin(t/100002i/d), p(t, 2i+ 1) = sin(t/10000(2i+1)/d). (13)

We introduce the TE(·) function to enable spatial embeddings to become discriminative about timestamps
t. We then transform the target node’s spatial embedding into Query vector qvt , its temporal neighbour’s
spatial embedding into Key vector kvt , and Value vector vvt :

qvt =WST
q · TE(hS,lvt ), kvt =WST

k · TE(hS,lvt ), vvt =WST
v · TE(hS,lvt ); (14)

whereWST
q ,WST

k ,WST
v ∈ Rd×d are trainable temporal transformation matrices for Query, Key, and Value,

respectively.

Then, we follow themeta-path attention andmeasure the importance of each temporal neighbour as the dot
product of the Query vector and Key vector and combine its Value vector and the calculated attention values:

rvt =
exp([qvt ] · [kvt ])∑T

t′=1 exp([qvt′ ] · [kvt′ ])
, (15)

hST,lvt = [rvt ] · [vvt ]. (16)

With the spatial-temporal embedding for each node, we design a gate mechanism for aggregating the fea-
tures of the node itself and its neighbours:

hlvt = δt · [hST,lvt ] + (1− δt) · [W · hl−1
vt ], (17)

where δt ∈ R1 andWl ∈ Rd×d are the trainable weight and transformation matrix.

Meta-learning Optimization

The learning algorithm of STFGAN-Meta is presented in Algorithm 1.

In the following, we detail the optimization process of the feature extractor Fψ and prediction classifier Pθ.
Given a general FDP task {FDPτ}Tτ=1, we manually divide it into K sub-FDP tasks {sFDPκ}Kκ=1, each sub-
task sFDPκ contains two splits, the training set sFDP trκ and test set sFDP teκ , respectively. For internal
optimization on sFDPκ, parameters ψ and θ are firstly updated from the sFDPκ-specific supervised loss L
(e.g. cross-entropy for classification):

(ψ′
κ, θ

′
κ)← (ψ, θ)− α∇(ψ,θ)L(sFDP trκ ;ψ, θ), (18)
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Input: FDP set {FDPτ}Tτ=1;
Hyperparameters α, β,K;
Maximum number of iterations I.

Output: Feature extractor Fψ;
Classifier network Cθ.

1 Randomly initialize θ, ψ;
2 Generate sub-FDP task lists: {sFDPκ = (sFDP trκ , sFDP

te
κ )}Kκ=1;

3 for i = 1 : I do
4 for κ = 1 : K do
5 (ψ′

κ, θ
′
κ)← (ψ, θ)− α∇(ψ,θ)L(sFDP trκ ;ψ, θ);

6 Compute L(sFDP teκ ;ψ′
κ, θ

′
κ);

7 end
8 (ψ, θ)← (ψ, θ)− β∇(ψ,θ)

∑K
κ=1 L(sFDP teκ ;ψ′

κ, θ
′
κ);

9 end

Algorithm 1. The Spatio-Temporal Financial Graph Attention Network with Meta-leaning (STFGAN-Meta).

where α is a learning-rate hyperparameter.

After obtaining the internally optimized parameter set, we can apply external optimization to enable the
model to obtain the attributes displayed on sFDP teκ . Specifically, based on the updated parameter (ψ′

κ, θ
′
κ),

we records the validation loss L(sFDP teκ ;ψ′
κ, θ

′
κ) of the test set sFDP

te
κ . With all the loss values for each

sFDPκ task, the cross-task meta-optimization is updated as follows:

(ψ, θ)← (ψ, θ)− β∇(ψ,θ)

K∑
κ=1

L(sFDP teκ ;ψ′
κ, θ

′
κ), (19)

where β is a learning-rate hyperparameter.

Empirical Evaluation

We collect a real-world financial graph dataset to empirically evaluate the proposed STFGAN-Meta model
for FDP tasks under both stationary and dynamic scenarios. This dataset comprises 3,469 Chinese listed
companies and their interactions from January 1st 2015 to December 31st 2020.

Data

To fair comparison, this work focuses on listed companies from China’s Shenzhen and Shanghai Stock Ex-
changes, following Wang et al. (2021) and Geng et al. (2015). The financial distress of Chinese companies
has attracted increasing attention (Geng et al., 2015; Jiang et al., 2022; Sun & Li, 2011; Wang et al., 2021)
due to China’s significance as a key market for global investors. Therefore, developing an appropriate FDP
model for Chinese companies is significant to global investors. Our dataset encompasses all listed compa-
nies fromJanuary 1st 2015 toDecember 31st 2020, ensuring the consistency and availability of their financial
distress data. Specifically, we collected 3,469 Chinese companies listed throughout this six-year timeframe
and their financial distress information. For financial distress labels, we adopted the special treatment (ST)
warning mechanism (Geng et al., 2015; Wang et al., 2021) and used the ST as the annual financial distress
label. For financial characters, we utilized the China Security Market Accounting Research (CSMAR, n.d.)
database and selected 36 financial ratios following Alfaro et al. (2008) and Wang et al. (2021). For com-
pany interactions, we got the data from a leading Chinese data services company, ChinaScope (n.d.), and
collected extensive, dynamic, and heterogeneous interactions. In total, we collected 332,611 related compa-
nies, 255,654 individuals, and 2,106,707 core interactions. Further information on the interaction data can
be found in Table 2.
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Number of Entities Number of Interactions

Year
Listed

Companies (C)
Related

Companies (R)
Individuals (I) C-C C-R C-I R-I I-I

2015 3,062 134,154 83,784 8,814 13,950
2016 4,614 183,429 107,549 11,777 12,632
2017 4,960 211,462 119,461 14,813 11,633
2018 3,469 332,611 255,654 4,361 227,003 119,770 18,222 12,261
2019 4,022 229,114 121,054 23,500 12,551
2020 4,048 236,969 123,070 32,209 12,459

Table 2. Companies’ and Individual’ Interaction Information.

To generate ST-graphs for annual FDP tasks, we use financial ratio data from three years (T = 3) prior to the
benchmark years (Geng et al., 2015; Wang et al., 2021). For instance, financial ratio data from 2018 to 2020
can be used as the hard feature of FDP2021. For interactions, we collect historical data from Γ = [0, 1, 2, 3]
years prior to the benchmark years, whereΓ = 0 indicates the use of only financial ratioswithout considering
interactions and Γ = 3 indicates the use of ST-graphs. However, due to the limited availability of interaction
information in our dataset, only benchmark year data from 2018 to 2021 is used.

Baselines

We compare our proposedmodel with four traditionalmethods to evaluate the effectiveness of our proposed
method and investigate the impact of interaction dynamicity and heterogeneity on the SFDP and DFDP
tasks. These included:

(1) ML-based methods that only utilize financial ratios:

• RandomForest (RF) (Breiman, 2001): a traditionalML technique that utilizes ensemble learning
with decision trees to provide solutions to complex problems.

• Multi-Layer Perceptron (MLP) (Marini et al., 2007): a fully connected feedforward ANNwith two
fully connected layers and one classifier.

(2) The homogeneous GNNs-based methods that utilize financial ratios and homogeneous interactions:

• Financial Graph Attention Networks (FGAN): an advanced extension of Graph Attention Net-
works (Velickovic et al., 2017) that utilizes masked self-attention layers to aggregate neighbours’
embeddings with different weights.

(3) The heterogeneous GNNs-based methods that utilize financial ratios and heterogeneous interactions:

• STFGAN without Temporal Aggregation (SFGAN): a simplified extension of our proposed model
without the Temporal Aggregation module, designed for heterogeneous graph data.

(4) The temporal homogeneous GNNs-based methods utilize financial ratios and homogeneous interac-
tions with temporal information:

• STFGAN without Spatial Aggregation (TFGAN): an advanced extension of FGAN with the Tem-
poral Aggregation module, designed for dynamic and homogeneous graph data.

Experimental Procedure

The proposed model and all baselines are implemented using official codes in PyTorch and Deep Graph
Library (DGL) in Python 3.7. The Adam optimizer (Kingma & Ba, 2015) is used with a learning rate of
α = 0.05, β = 0.005. AUC (Area Under Curve) and F1-score (Huang et al., 2015) are used as aggregate
performance measures. The feature extractor Fψ has an input dimension of 36 and an output dimension
of 18, while the financial distress predictor Pθ has an input dimension of 18 and an output dimension of
2. All methods are run for 3000 epochs, with models being updated based on improvements in both AUC
and F1-score on the training set. In sub-experiments in the SFDP task, we estimate prediction performance
using 5-fold cross-validation, with each testing fold providing one performance estimate. However, in the
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Dynamicity & Method Data Metric Benchmark Year Average
Heterogeneity Γ 2018 2019 2020 2021

RF-Meta AUC 84.20 (3.32) 85.10 (2.15) 86.30 (2.65) 77.56 (4.77) 83.29
F1 37.12 (2.69) 39.89 (5.38) 42.69 (5.70) 32.52 (6.80) 38.06

MLP-Meta 0 AUC 84.16 (2.61) 86.75 (3.52) 90.70 (1.53) 88.14 (2.89) 87.44
F1 46.46 (3.60) 48.91 (5.32) 57.07 (4.99) 56.59 (3.74) 52.26

\ AUC 79.28. (5.18) 85.23 (2.22) 88.93 (2.93) 86.36 (1.69) 84.95
1 F1 46.81 (3.66) 46.38 (6.12) 55.96 (3.01) 48.57 (5.10) 49.43

AUC 81.26 (5.10) 84.34 (5.17) 90.06 (2.15) 85.26 (2.37) 85.23
FGAN-Meta 2 F1 44.59 (6.64) 43.95 (6.01) 55.13 (3.54) 51.45 (3.40) 48.78

AUC 82.89 (5.12) 83.92 (4.30) 88.61 (1.54) 87.43 (2.30) 85.71
F1 46.42 (5.43) 47.03 (6.29) 56.79 (3.83) 50.78 (2.66) 50.26

Dynamics TFGAN-Meta 3 AUC 87.67 (2.13) 86.83 (3.99) 90.22 (1.63) 89.07 (2.64) 88.45
F1 59.25 (2.94) 47.56 (5.71) 60.10 (3.00) 52.62 (4.23) 54.88
AUC 81.36 (5.96) 84.72 (6.45) 90.13 (2.19) 86.76 (3.96) 85.74

1 F1 52.11 (5.35) 52.60 (5.82) 61.48 (3.65) 56.72 (2.32) 55.73
AUC 85.97 (4.38) 87.92 (6.54) 90.72 (2.53) 86.88 (5.52) 87.87

Heterogeneity SFGAN-Meta 2 F1 52.08 (4.37) 52.65 (5.41) 61.22 (3.21) 58.65 (3.57) 56.15
AUC 80.98 (5.59) 85.79 (5.33) 90.72 (3.47) 90.11 (2.80) 86.90
F1 51.40 (5.48) 50.67 (6.51) 60.36 (4.07) 57.36 (4.63) 54.95

Synchronicity STFGAN-Meta 3 AUC 90.23 (4.12) 87.63 (5.33) 90.34 (3.65) 89.42 (5.72) 89.41
& Dynamicity F1 57.32 (3.98) 52.78 (3.16) 62.23 (4.34) 58.53 (5.21) 57.72

Table 3. SFDP Results: Mean (Standard Deviation) of AUC (%) and F1-score (%).

DFDP task sub-experiment, we cannot apply K-fold cross-validation to ensure the generalization of results
because the training set and test set are not randomly partitioned. Therefore, we resort to conducting the
DFDP experiments in five trials and averaging the results as an alternative approach.

Our dataset contains the annual FDP task set {FDP2018, FDP2019, FDP2020, FDP2021} with benchmark
years from 2018 t0 2021. For the SFDP task, we use the annual FDP tasks from 2018 to 2021 as the
corresponding SFDP task, following the IID assumption. For the DFDP task, we choose 2020 and 2021
as the benchmark years and use the historical FDP experiences as the training set. Thus, the DFDP task
DFDP2020 has the training set {FDP2018, FDP2019}, and the test set {FDP2020}. We set K = 2, where
(sFDP tr2020, sFDP

te
2020) = {(FDP2018, FDP2019), (FDP2019, FDP2018)}. The DFDP task DFDP2021 has the

training set {FDP2018, FDP2019, FDP2020}, and the test set {FDP2021}. We set K = 6 inDFDP2021, where
(sFDP tr2021, sFDP

te
2021) = {(FDP2018, FDP2019), (FDP2019, FDP2018), (FDP2019, FDP2020), (FDP2020, FD

P2019), (FDP2018, FDP2020), (FDP2020, FDP2018)}.

Results

In this section, we conduct a series of experiments to evaluate the effectiveness of our proposed method.

Evaluation in SFDP task

Weconducted a sub-experiment to validate the effectiveness of our proposedmethod in the SFDP task. Table
3 presents the experimental results, highlighting the best results for each annual SFDP task. Our findings
suggest that interactions significantly impact the SFDP task, and it is necessary to handle the heterogeneity
and dynamicity of interactions carefully.

Firstly, we found that graph-basedmethods generally outperformML-basedmethodswhen they address the
dynamicity or heterogeneity of interactions. STFGAN-Meta achieves the highest average F1-score (57.72%),
10.45% higher than the SOTAMLP-Meta model, and the highest AUC (89.41%), which is 2.25% higher than
theMLP-Metamodel. This result shows that interactions significantly impact improving the performance of
the SFDP task. Only the FGAN-Meta method performs worse than MLP-Meta, indicating that ignoring the
dynamicity and heterogeneity of interactions can lead to misuse and harm the performance of graph-based
models. Secondly, the SFGAN-Meta models generally outperform the FGAN-Meta methods, indicating the
significant role of heterogeneity of interactions in the SFDP task. Adding historical interactions to SFGAN-
Meta and FGAN-Metamethods does not lead to a significant performance gain for the SFDP task, indicating
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Dynamicity & Method Data Metric Benchmark Year Average
Heterogeneity Γ 2020 2021

RF-Meta AUC 88.85 (1.58) 87.39 (1.32) 88.12
F1 39.84 (2.27) 43.58 (1.06) 41.71

MLP-Meta 0 AUC 86.84 (2.26) 89.30 (1.10) 88.07
F1 50.29 (1.84) 50.44 (2.40) 50.37

\ AUC 83.43 (3.68) 86.53 (1.25) 84.98
1 F1 40.37 (3.56) 44.16 (1.83) 42.27

AUC 86.72 (2.45) 87.24 (5.38) 86.98
FGAN-Meta 2 F1 42.03 (5.27) 44.78 (3.25) 43.41

AUC 84.32 (4.59) 85.36 (2.30) 84.84
F1 41.68 (4.18) 42.84 (4.37) 42.26

Dynamicity TFGAN-Meta 3 AUC 86.38 (4.73) 88.14 (5.36) 87.26
F1 50.88 (5.28) 50.96 (3.43) 50.92
AUC 89.12 (1.00) 88.52 (3.01) 88.82

1 F1 52.61 (2.26) 51.77 (3.83) 52.19
AUC 88.38 (4.24) 86.26 (5.32) 87.32

Heterogeneity SFGAN-Meta 2 F1 51.52 (5.12) 53.06 (3.62) 52.29
AUC 86.85 (4.57) 86.89 (1.35) 86.87
F1 51.82 (5.21) 51.58 (3.29) 51.70

Heterogeneity STFGAN-Meta 3 AUC 88.79 (3.27) 89.26 (1.80) 89.03
& Dynamicity F1 52.73 (4.68) 52.65 (4.68) 52.69

Table 4. DFDP Results: Mean (Standard Deviation) of AUC (%) and F1-score (%).

that simply stacking historical interactions does not provide noticeable benefits. Thirdly, the TFGAN-Meta
method outperforms all FGAN-Meta methods, demonstrating the importance of the dynamicity of interac-
tions for the SFDP task. Leveraging information from historical interactions requires temporal aggregation
rather than simple stacking. Finally, our proposed method outperforms all other graph-based methods,
demonstrating the importance of synchronously addressing the heterogeneity and dynamicity of interac-
tions.

Evaluations in DFDP task

The experimental results of the DFDP task are presented in Table 4. Our study on the DFDP task produced
results similar to those observed in the SFDP task. Although interaction information remains beneficial for
the DFDP task, addressing the heterogeneity and dynamicity of interactions is crucial for leveraging com-
plicated interactions. The results demonstrate that graph-based methods outperform ML-based methods
in the DFDP task when capturing the dynamics or heterogeneity of interactions. However, the performance
gain from interactions information in the DFDP task is lower than in the SFDP task. The best-performing
graph model, STFGAN-Meta, outperforms the best-performing ML-based model, MLP-Meta, by 4.61% in
F1-score. In contrast, the top-performing graph model, STFGAN-Meta, in the SFDP task outperforms the
top-performing ML-based model, MLP-Meta, by 10.45% in F1-score. Furthermore, the SFGAN-Meta and
TFGAN-Metamodels outperform the FGAN-Metamodel, indicating the significance of interactions’ hetero-
geneity and dynamics in the DFDP task. Our proposedmethod outperforms existingmethods, achieving the
best average performance, with an AUC of 89.03% and an F1-score of 52.69%. It demonstrates the superi-
ority of our model in handling interaction information in the DFDP task.

Both results in the SFDP and DFDP tasks suggest that our model effectively captures the heterogeneous and
dynamic interactions in the DFDP and SFDP tasks and can serve as a promising solution to the challenges
associated with interaction modelling in financial domains.
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Task Method Metric Benchmark Year Average
2017 2018 2019 2020

STFGAN-Meta AUC 90.23 (4.12) 87.63 (5.33) 90.34 (3.65) 89.42 (5.72) 89.41
F1 57.32 (3.98) 52.78 (3.16) 62.23 (4.34) 58.53 (5.21) 57.72

SFDP STFGAN AUC 89.71 (4.63) 86.52 (4.27) 88.48 (3.13) 87.23 (5.10) 87.99
F1 56.34 (4.18) 51.87 (4.65) 61.75 (3.85) 57.34 (3.32) 56.83

STFGAN-Meta AUC \ \ 88.79 (3.27) 89.26 (1.80) 89.03
F1 \ \ 52.73 (4.68) 52.65 (4.68) 52.69

DFDP STFGAN AUC \ \ 81.34 (5.24) 83.59 (3.72) 82.47
F1 \ \ 42.24 (6.73) 44.23 (5.35) 43.24

Table 5. Ablation Experiments to Validate Meta-learning Optimization.

Ablation Experiments

We conducted ablation experiments to verify the effectiveness of our proposed module, Meta-learning Op-
timization. Specifically, we compared our proposed method, STFGAN-Meta, with the STFGAN method
without the Meta-learning Optimization module on both SFDP and DFDP tasks. The experimental results
are presented in Table 5. Our experiments show that usingmeta-optimization can improve the performance
of models in both DFDP and SFDP tasks. In the SFDP task, applying meta-optimization to STFGAN leads
to a significant performance gain, increasing its AUC from 87.99% to 89.41% and its F1-score from 56.83%
to 57.72%. In the DFDP task, the performance gain from meta-optimization is even more pronounced. Ap-
plying meta-optimization increases the AUC value from 82.47% to 89.03% and the F1-score from 43.24%
to 52.69%. Our findings indicate that Meta-learning Optimization can improve performance for both tasks
and is particularly noticeable in DFDP tasks that involve distress concept shift.

Discussion

Contributions and Implications

This study makes several significant contributions to the field of FDP.

Firstly, our work contributes to the FDP study by introducing the second valuable characteristic of interac-
tions, dynamicity, and emphasizing the advantage of leveraging the synchronicity of heterogeneity and dy-
namicity in company interactions. Traditional FDP methods have often ignored the interactions (Sun & Li,
2012; Sun et al., 2013; Wang et al., 2021) or focused solely on their heterogeneity (Kou et al., 2021; Tobback
et al., 2017; Yang et al., 2021), which can introduce sampling bias and lead to misuse of interaction informa-
tion. In contrast, our work introduces dynamicity and emphasizes the synchronicity of heterogeneity and
dynamicity in company interactions. Our findings demonstrate the advantage of leveraging the synchronic-
ity of dynamicity and heterogeneity of interactions in the FDP study. It provides valuable insights for future
FDP tasks by addressing sampling bias or misuse of interactions.

Secondly, our study represents a pioneering attempt to bridge the gap between SFDP and DFDP studies and
unify both approaches by linking FDP studies with meta-learning literature. Previous work has to trade-off
between leveraging interaction information or historical prediction experience due to the inconsistency of
the SFDP andDFDPmodels (Kou et al., 2021; Sun et al., 2018;Wang et al., 2021), which limits the popularity
and generalization of FDP tasks. In contrast, our work complements existing methods by providing a meta-
learningmechanism to adapt FDPmodels to varying FDP scenarios. To the best of our knowledge, this is the
first attempt to introducemeta-learning into the FDP study. We demonstrate the potential of meta-learning
on FDP tasks, making FDP models more generalizable in ever-changing financial scenarios. Furthermore,
our study resolves the inconsistency of the SFDP and DFDPmodels, which mitigates the modelling burdens
on FDP researchers and alleviates the complexities in maintaining FDP services.

Finally, our study contributes to the design science paradigm of IS by proposing a novel FDP method, the
STFGN-Meta, which effectively leverages interactions in both SFDP and DFDP tasks. Our proposed model
utilizes a Spatial Aggregation module and a Temporal Aggregation module to handle interaction hetero-
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geneity and dynamicity, allowing for more accurate predictions. Moreover, the proposed Meta-learning
Optimization module helps to optimize the prediction services by imitating the prediction experience and
enduring simulated distress concept drifts. With promising prediction performance, our proposed method
can be a powerful tool for risk assessment and decision-making in the financial industry.

Limitations and Future Research

While our work provides valuable contributions, it is essential to acknowledge its limitations. Firstly, our
dataset restricts the time frame from January 2015 to December 2020, covering 5 SFDP tasks and 2 DFDP
tasks. Only 2 DFDP tasks limit our exploration of the model’s generalization ability on DFDP tasks. Future
research can consider expanding the dataset to a broader time frame. Secondly, our study only collected
single-source financial characteristics and interactions to support FDP tasks. While our work primarily fo-
cuses on the heterogeneity of interactions, it overlooks the heterogeneity of financial characteristics (Wang
et al., 2021). Future research can explore leveraging multi-source heterogeneous financial characteristics in
general FDP research. Thirdly, the ST-warning mechanism limits the availability of real-time FDP studies.
In future work, we can replace the annually updated labels with a practical and real-time index of financial
distress risks for companies, providing stakeholders with more timely distress warnings. Finally, our exper-
iments fully compared the performance of GNNs-based models using company interactions considering the
promising performance of GNNs on graph data. However, some non-GNNs-based methods, such as wvRN,
can be included for comparison. Future workwill further explore the effectiveness of non-GNNs-basedwork
in leveraging company interactions.

Conclusions

This work proposes a novel approach that unifies FDP tasks in stationary and dynamic scenarios by lever-
aging interaction information. Specifically, we address the synchronicity of heterogeneity and dynamicity
in interactions by integrating the Spatial Aggregation and Temporal Aggregation modules. Moreover, the
Meta-learning Optimization module enables our model to learn from historical prediction experiences and
tackle potential distress concept drifts. We empirically evaluate our proposed method using publicly acces-
sible Chinese listed companies’ interaction data in 2015-2020. Experimental evaluation demonstrates that
our approach not only outperforms several FDP methods but also provides a comprehensive and accurate
understanding of the role of interactions in FDP tasks. Our study will significantly impact future works in
FDP research, providing suggestions to make better use of interaction information and design more gener-
alizable FDP models in ever-changing financial scenarios.
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