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Abstract 

Classic economic theory asserts that full information transparency entails information 
symmetry and, thus, market efficiency. We test if this theory still holds in a blockchain-
enabled marketplace where full information transparency is accomplished. We leverage 
the data from EnjinX, a non-fungible-token (NFT) marketplace, where the entire 
historical NFT transactions are symmetrically accessible to all buyers and sellers. We 
surprisingly observe substantial market inefficiencies. To explain this paradox that 
inefficiencies persist even in a fully information-transparent environment, we propose 
that traders’ limited analytical ability, rather than information asymmetry, ultimately 
drives market inefficiencies. We quantify analytical ability by examining whether 
traders’ performance can be augmented by machine-learning algorithms. And we find 
that having ten more historical transactions increases market efficiency by 1.10%. 
However, market efficiency could decrease by 69.02% when traders cannot effectively 
consume the available information. Our findings contribute to the literature by 
quantifying analytical ability and highlighting the analytical-ability divide phenomenon. 

Keywords: Information transparency, analytical-ability divide, market efficiency,  
blockchain-enabled marketplaces, machine learning augmentation 

Introduction 

Information asymmetry, the imbalance of information possessed by buyers and sellers, poses a constant 
challenge to two-sided markets, leading to asset mispricing, market inefficiency, or even market failure 
(Akerlof 1970; Huang et al. 2022). According to the Efficient Market Hypothesis (EMH), a perfect market, 
in which everyone receives a free and instant transmission of true and complete historical market 
information, will create equal opportunities for buyers and sellers to trade, thus rendering an efficient 
market (Fama 1970). An efficient market could improve social welfare and eventually benefit the whole 
society. Thus, improving “market efficiency” has become a common goal for platforms and policymakers 
(Subramanian and Overby 2017). 

mailto:ericz@utdallas.edu
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This paper focuses on studying the market efficiency of blockchain-enabled marketplaces. These 
marketplaces function similarly to traditional two-sided e-commerce platforms, facilitating asset trading 
and ownership transferring. However, the use of blockchain cultivates an unparalleled trading environment 
characterized by the full transparency of market trading information. This transparency in trading is 
manifested in two ways. First, the full trading history of each trader account and each asset is completely 
transparent to the public. All tick-by-tick level transaction data (i.e., who bought/sold what assets, at what 
time, and at what prices) are recorded and disclosed on the blockchain. Second, the same market 
information is distributed equally to all buyers and sellers at the same time at no additional costs, thus 
creating a fully information-symmetric environment. That is, the trading information recorded on the 
blockchain is equally accessible to all market participants. These two unique features regarding trading 
information transparency, namely completeness and symmetry, make blockchain-based marketplaces 
distinctive from traditional trading marketplaces (e.g., the NYSE stock market and Amazon.com), in that 
traders could be perfectly and uniformly informed about market trading conditions (such as 
supply/demand dynamics) and information asymmetry in trading is therefore eliminated in theory.1 

According to EMH, we would expect these blockchain-enabled marketplaces to be fully efficient due to the 
elimination of information asymmetry by blockchain. We first investigate if this is true. Toward this end, 
we examine a specific blockchain-enabled marketplace, EnjinX JumpNet, a leading non-fungible token 
(NFT) marketplace for trading digital gaming assets in the Enjin Metaverse. 

Paradoxically, we still observe excessive market inefficiencies in the EnjinX marketplace using its NFT 
transaction data from 2021 to 2022. This observation necessitates a re-investigation of EMH; it reflects a 
basic paradox that inefficiencies may persist even in information-transparent and symmetric markets, thus 
challenging the conventional EMH wisdom. Understanding why this is happening and where the 
inefficiencies come from can fundamentally contribute to the information economics literature. 

In this paper, we identify two potential inefficiency sources to explain this paradox: (1) the amount of 
transaction information on blockchain and (2) the level of traders’ analytical ability (i.e., the ability to 
analyze the available blockchain information). The latter is particularly note-worthy for blockchain-enabled 
marketplaces because these nascent markets often lack a mature infrastructure to support traders in 
analyzing trading data, compared to traditional established financial markets, such as the stock market. For 
example, traditional trading markets typically benefit from having a mature financial analysis system, 
including financial analysts’ forecasts and tools in the Institutional Brokers’ Estimate System (IBES), to 
guide investors in trading. In contrast, blockchain-based markets generally leave traders to their own 
discretion, letting traders rely on their own analytical prowess to decipher historical trading information. 

Further, we are also interested in the interaction between these two inefficiency sources, because the effect 
of transaction information itself on market efficiency also hinges on traders’ heterogeneous analytical 
ability to leverage it. We thus examine three research questions: 

RQ1 (Information Transparency Effect): How does the amount of information available on blockchain 
influence market efficiency?  

RQ2 (Trader Analytical Ability Effect): How does traders’ analytical ability impact market efficiency? 

RQ3 (Interaction Effect): Whether and how does traders’ analytical ability moderate the effect of 
information amount on market efficiency? 

To answer the three questions, we measure the two sources of inefficiency as follows. First, we 
operationalize the amount of blockchain transaction information as the cumulative number of historical 
sale transactions recorded on the blockchain. Second, for traders’ analytical ability, we propose a novel 
counterfactual-based measure to quantify it using the contraction method, which was originally proposed 
by Kleinberg et al. (2018) and further applied by Fu et al. (2021) and Shen et al. (2022) in the contexts of 
crowd lending and social trading. The gist of this method is to employ a machine learning (ML) algorithm 

 
 

1  Here, we mean the transparency and symmetry of market trading information facilitated by blockchain. We 
acknowledge that certain external information (e.g., asset consumption in the EnjinX games) might not be stored on 
the blockchain. Accessing and verifying the authenticity of such off-chain data is commonly known as the “oracle 
problem.” 
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to augment traders’ decisions by removing their suboptimal trades and then compare the performance of 
ML-augmented decisions with that of decisions made by pure human traders. The performance of the ML-
augmented decisions is then used as the counterfactual benchmark to measure traders’ analytical ability. 
Those traders whose performance cannot be further improved by the state-of-the-art ML are considered to 
have high analytical abilities. 

Our analysis reveals that an increase in the amount of historical trading information by ten units improves 
market efficiency by 1.10%. However, market efficiency may decrease by 69.02% if traders lack the 
analytical ability to fully utilize the rich blockchain information, despite its transparency to all. Moreover, 
the presence of low-ability traders may further reduce the impact of blockchain transaction information on 
market efficiency by 0.11%, indicating that analytical ability positively moderates the impact of information 
quantity. We further employed various identification strategies to address endogeneity problems and found 
these results to be robust. Overall, these three findings establish our story that high information 
transparency and information symmetry do not necessarily warrant high market efficiency. Market 
efficiency also critically hinges on who the traders are, especially their analytical ability to leverage the 
transparency of historical information for future trading. 

Notably, our paper is among the first to quantify “analytical ability” rigorously using an innovative ML 
counterfactual framework, which has never been documented in the previous literature. This approach 
allows for a more reliable measurement of analytical ability by creating a quasi-random design where ML-
augmented decisions (the treated group) are compared against human decisions (the control group), 
effectively controlling for the impacts of various confounding factors. 

This paper also presents a novel contribution to the extant literature on the digital-divide phenomenon 
(e.g., Burtch and Chan (2019); Wei et al. (2011)). While previous studies have focused on unequal access to 
digital information and technologies and their impact on individual productivity and performance, our 
study sheds light on a new type of divide: the analytical-ability divide, echoing the notion of the “capability 
divide” proposed in Wei et al. (2011). Further, this paper empirically examines the impact of the analytical-
ability divide on market efficiency, a market-level outcome that is rarely explored in the digital-divide 
literature. Our findings expand the understanding of the digital divide by suggesting that the analytical-
ability divide is a significant and new hurdle to market efficiency in the emerging blockchain era and in 
order to close this divide, platforms are expected to provide sophisticated analytical tools to help traders 
make decisions. 

Literature Review and Hypothesis Development 

In this section, we theorize each hypothesis and review relevant literature. 

Market Efficiency and Flipping Opportunity 

In this paper, we define an efficient market as one in which any flipping opportunities could be promptly 
exploited away for profit (Malkiel 2003; Subramanian and Overby 2017). Flipping, a term commonly used 
in the real-estate domain, refers to buying an asset and reselling it expeditiously to make a profit (Bayer et 
al. 2020). When there is a considerable price difference between two sales of an instrument within a short 
period, a flipping opportunity arises, which traders (flippers or arbitrageurs) could have exploited for a 
profit (Overby and Clarke 2012; Subramanian and Overby 2017). However, the “law of one price” dictates 
that flipping opportunities cannot last long in an efficient market, because traders would promptly buy, 
resell, and exploit the opportunities to realize positive returns (Ghose and Yao 2011; Overby and Forman 
2015). This process adds liquidity to the market and ensures that prices of the same asset converge. It is 
how quickly a market responds to flipping opportunities that distinguishes an efficient market from an 
inefficient one (Malkiel 2003). As such, given a certain number of flipping opportunities, a market where 
traders can exploit/redress more existing price discrepancies is regarded as more efficient. 

Information Transparency Effect 

The notion of information transparency refers to how much information is available about an asset at a 
specific point in time and is usually quantified as the amount of information available to decision-makers 
(Granados et al. 2010). In accordance with this, we operationalize the level of information transparency of 
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a digital asset in one week as its cumulative amount of blockchain transaction information before that week. 
According to this operationalization, the length of the trading history governs the level of transparency that 
traders could have into an asset. For example, longer trading histories can provide traders with greater 
insight into an asset’s bid- ask imbalance, underlying value, and mispricing. We thus establish the impact 
of the amount of transaction information on market efficiency by comparing the cases with shorter trading 
histories against those with longer trading histories. 

Lack of information transparency hampers market efficiency (Öörni 2003). Numerous studies have 
documented a positive impact of disclosing richer information on market efficiency. For example, Parker et 
al. (2016) find that providing timely price information through mobile technologies can increase market 
efficiency by reducing price dispersion of the crops geographically. In a similar vein, Overby and Forman 
(2015) find that, by increasing price visibility and reducing transaction costs, electronic commerce helps 
buyers shift their demands from high-priced places to low-priced ones, thus narrowing price gaps across 
locations and reducing the likelihood of market failure.  

However, the fundamental question of how blockchain’s full information transparency impacts market 
efficiency remains so far unanswered. We attempt to fill this literature gap by re-examining this relationship 
in the context of blockchain-based marketplaces, where the complete historical trading information is 
accessible to every trader symmetrically, accurately, instantly, and freely (while this transparency condition 
is rarely met in other settings). Drawing on the literature, we argue that, at any time point, assets with more 
historical transaction information are likely to have higher market efficiency compared to those with less 
transaction information. This is because having additional transaction information can better inform sellers 
of buyers’ potential valuations of the asset, which can rationalize sellers’ expectations on the transaction 
prices, thereby leading to more efficient and uniform asset pricing without huge price discrepancies. 
Further, from the buyers’ perspective, having additional transaction information can reduce their 
information asymmetry and uncertainty by helping them better forecast future trading prices, thus 
facilitating efficient asset searching and trading. As such, we posit that at a certain time point, assets with a 
higher amount of historical transaction information could result in increased market efficiency, as proposed 
by Hypothesis H1: 

H1: At any time point, assets with a higher amount of historical transaction information on the blockchain 
would have higher market efficiency than those with a lower amount. 

Analytical Ability Effect 

The importance of users’ ability to utilize available information has been well recognized. For example, 
Rossi and Chintagunta (2016) show that, despite policies aimed at increasing price transparency, over 90% 
of customers lacked the ability to consume the information of posted fuel price effectively, resulting in 
persistent price uncertainty and price dispersion. Similarly, Yang et al. (2015) find that full transparency of 
quote information in the prediction market does not necessarily improve trader performance, and they 
conjecture that this can be attributed to individuals’ cognitive limitations in analyzing and processing the 
transparent market information.  

Our study also closely relates to the burgeoning body of literature on the digital divide. The prior literature 
on the digital divide primarily focuses on people’s unequal access to digital information and technologies 
across different geographical regions and demographic populations (Burtch and Chan 2019; Dewan and 
Riggins 2005; Kvasny and Keil 2006). However, a small portion of extant literature has extended the 
concept of the digital divide to multiple levels, particularly the second level, which pertains to people’s 
heterogeneous ability/skills (i.e., ability divide) to utilize available information resources on the Internet 
(Wei et al. 2011). Specifically, Wei et al. (2011) propose a three-level digital-divide conceptualization, with 
the first-level divide being the inequality of access to digital technologies, the second-level being the 
inequality of the capability to exploit digital technologies and digital information (which is our focus), and 
the third-level being the inequality of outcomes, such as productivity. 

The aforementioned studies, however, primarily investigate the effect of the digital divide on individual-
level outcomes, such as individual productivity (Wei et al. 2011) and users’ campaign success (Burtch and 
Chan 2019). Unsurprisingly, few prior works focus on the analytical-ability divide, and most importantly, 
none of the prior work examines how the deficiency in analytical ability would impact a critical market-



 Information Transparency and Market Efficiency: Traders’ Analytical Ability 

 Forty-Fourth International Conference on Information Systems, Hyderabad 2023
 5 

level outcome, namely market efficiency. We thus complement the prior literature on ability divide by 
investigating the significance of “analytical ability” in affecting market efficiency. 

Also, notably, most of these extant studies only discuss user analytical ability or ability divide at a conceptual 
level without an attempt to empirically quantify this key notion using observed data (Rossi and Chintagunta 
2016; Yang et al. 2015). Even though a few papers attempt to measure it, their proposed measures are not 
fully accurate or representative of true capabilities. For example, Wei et al. (2011) use a metric of “computer 
self-efficacy” captured by the self-evaluations of survey subjects, and similarly, Corgnet et al. (2018) 
conduct a small-scale lab experiment with the theory of mind (ToM) test to infer traders’ trading ability, 
both of which do not necessarily capture a trader’s true analytical ability. In contrast, our study draws on 
the notion of “analytical ability” from Wei et al. (2011) but, for the first time, quantifies it based on observed 
historical trading data on the blockchain by leveraging a novel counterfactual-based measure. Our 
operationalization of traders’ analytical ability, to be elaborated in Section 4, critically hinges on the 
comparison with an ML-augmented counterfactual benchmark, which could effectively rule out the impacts 
of unobservables and has never been explored in the previous literature regarding analytical ability and its 
divide (Scheerder et al. 2017; Wei et al. 2011). 

According to EMH, an efficient market can only exist if “all market participants agree on the implications 
of current information for the current price and distributions of future prices of each asset” (Fama 1970). 
However, due to the heterogeneity of individuals in interpreting historical market information, stemming 
from their heterogeneous analytical abilities, market efficiency may not be attainable. In other words, even 
though blockchain-based marketplaces provide all traders with symmetric and complete market 
information, not everyone benefits equally. High-ability traders, who can better utilize the information, can 
better forecast the underlying price trend, conduct price discovery, anticipate supply-demand imbalances, 
and thus exploit more flipping opportunities once they appear. Conversely, traders with low analytical 
ability may not possess the necessary skills to analyze available data at their disposal, presumably missing 
profitable flipping opportunities and thereby inhibiting market efficiency. Hence, in a market with high-
ability traders, flipping opportunities are more likely to be quickly identified and exploited away. 
Accordingly, we postulate H2: 

H2: A market with higher trader analytical ability has a higher level of market efficiency. 

The Moderating Effect of Analytical Ability 

While having more information can generally be beneficial, the impact of information transparency on 
market efficiency may largely depend on traders’ analytical ability to utilize the information. This implies 
that traders’ analytical ability may moderate the effect of information transparency on market efficiency, as 
the potential of historical transaction information can be fully unlocked only when traders possess the 
necessary skills to effectively consume and utilize the information. For instance, this moderating effect has 
been observed in the context of IT investment in firms. Jia et al. (2020) show that firms with higher IT 
capabilities for information automation, standardization, and integration could gain a higher level of 
efficiency from the implementation of enterprise systems. Likewise, Peukert and Reimers (2022) document 
a similar moderating effect in the publishing industry. They demonstrate that major publishers who invest 
more in data-analytics jobs, compared to those investing in text-editing types of jobs, enjoy a higher market 
efficiency given the same set of publicly available information, such as consumer reviews of books. This 
finding suggests the crucial role of data analytical ability in moderating the effect of available digital 
information on market efficiency. 

In our case, similarly, higher analytical capabilities could lead to better utilization of market information 
and, thus, a stronger informational effect in blockchain-based marketplaces. Specifically, given the same 
amount of information, high-ability traders can quickly identify and exploit existing flipping opportunities 
by effectively discerning nuanced market conditions and tactfully leveraging the available information to 
spot short-lived flipping opportunities. On the other hand, low-ability traders may not benefit as much from 
the available information due to their limited cognitive capacity. Thus, the effectiveness of utilizing 
blockchain transaction information for decision-making would be restricted for low-ability traders. Taken 
together, we argue that the blockchain information amount effect would be more pronounced for high-
ability traders. We thus posit H3 as follows: H3: As traders’ analytical ability increases, the effect of 
blockchain historical transaction information amount on market efficiency becomes stronger. 
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Data and Variables 

Research Context 

We choose EnjinX, one of the earliest and leading Ethereum-based NFT marketplaces, as the empirical 
context. It is among the top ten Metaverse platforms in 2023, according to its market capitalization, with a 
$100-million investment in the Metaverse virtual space.2 Backed up by the Ethereum blockchain, EnjinX is 
a gaming marketplace with its native cryptocurrency Enjin Coin (ENJ) and decentralized ecosystem, where 
any participant can create, display, sell, and purchase blockchain-based in-game digital items, such as 
digital weapons and collectibles. 

Most importantly, all detailed market trading histories are symmetrically/equally available to everyone 
through the EnjinX website. EnjinX records and chronologically displays the complete market trading 
histories for each asset, including trading price, timestamp, as well as change of trader ownerships on its 
blockchain. The use of blockchain technology ensures that no one can tamper with the asset- or transaction-
level information recorded on the blockchain, which provides accurate, complete, and accessible 
information to all users. As a result, EnjinX traders with the necessary analytical ability should be able to 
leverage and analyze this transparent data to make informed trading decisions. 

In theory, blockchain’s symmetric and transparent information structure should lead traders to make 
similar predictions about future price changes on the same asset. However, in practice, traders may face 
insufficient transaction information or have imperfect analytical abilities, producing errors in their 
estimates of price movements. These errors in judgment can cause market inefficiencies to persist, as not 
all traders can exploit existing price discrepancies (e.g., through flipping) proficiently. If there are flipping 
opportunities that remain unexploited, the market is inefficient. 

We have chosen the JumpNet of EnjinX, a side chain of the Ethereum network, as our research setting. The 
JumpNet is particularly suitable for our study as it allows for zero Ethereum transaction fees, enabling 
denser NFT trading frequency compared to the expensive Ethereum Mainnet. This feature creates a more 
liquid market with richer historical transaction information for traders to conduct price discovery and make 
informed trades based on their analytical abilities. Further, a necessary condition to achieve market 
efficiency is minimizing transaction costs (Overby and Forman 2015). The frictionless trading network of 
JumpNet satisfies this condition better than the Mainnet. 

The EnjinX blockchain entails two kinds of information: historical transaction information and asset-
specific information. We first use the EnjinX API to collect the transaction data, which consists of the 
complete trading history of 6,872 gaming assets, including 578,055 listing records and 66,870 sale records 
made by 123,133 sellers and 1,732 buyers from April 1, 2021, to August 21, 2022, across 74 weeks.3 Each 
transaction record contains information on the seller’s and buyer’s Ethereum addresses, transaction 
quantity, unit price, timestamp, asset creator, asset name, and the unique asset ID. We also collect public 
information about each specific asset, including asset fungibility, the number of holders and supplies, 
transaction fees, and asset properties, which are time-invariant features. Please note that the EnjinX 
blockchain does not record the game-playing data stored off-chain. In the following subsections, we 
describe the constructions of our main variables. 

Dependent Variable (DV): Market Efficiency 

We operationalize market efficiency by following the percentage of exploited flipping opportunities in 
Subramanian and Overby (2017). It is worth noting that this measurement is applicable to our context by 
virtue of blockchain’s full information transparency on both the trader-level and asset-level transaction 
histories. This enables us to identify exactly who (by unique trader address) flipped a certain asset unit (by 

 
 

2 See https://coinmarketcap.com/view/metaverse/ and https://www.fxempire.com/forecasts/article/enjin-sets-up-a-
100-million-metaverse-fund-the-investments-in-metaverse-space-is-just-starting-798247 (accessed April 05, 2023). 
3 The EnjinX JumpNet was launched in April 2021. It adopts a fixed-price (a.k.a., buy-now price) sale mechanism. 
Buyers purchase listed assets at the predetermined prices that the sellers post. 

https://coinmarketcap.com/view/metaverse/
https://www.fxempire.com/forecasts/article/enjin-sets-up-a-100-million-metaverse-fund-the-investments-in-metaverse-space-is-just-starting-798247
https://www.fxempire.com/forecasts/article/enjin-sets-up-a-100-million-metaverse-fund-the-investments-in-metaverse-space-is-just-starting-798247
https://www.fxempire.com/forecasts/article/enjin-sets-up-a-100-million-metaverse-fund-the-investments-in-metaverse-space-is-just-starting-798247
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unique assetID) during a certain timeframe. In contrast, such trader account-level data is rarely available 
in traditional stock markets or e-commerce markets. 

We first identify the existence of flipping opportunities. Specifically, for each sale transaction of an asset, 
we consider its subsequent sale transactions, occurring in the next α = 24 hours (1 day)4 for the same asset 
i in week t, as valid flipping opportunities, if the sale price of the subsequent transaction is higher than that 
of the earlier transaction plus additional transfer fees. The generic mathematical representation for flipping 
opportunities is as follows: Transaction k in week t is deemed as a valid flipping opportunity for its 
preceding Transaction j within the previous α hours, if 5 

0.975 × Pricek − Pricej − TransferFeek > 0 (1) 

The above inequality implies that the buyer of Transaction j could have resold/flipped the same asset for a 
higher price by making Transaction k, indicating the presence of a flipping opportunity. It is possible that 
a user purchased an asset intending to use it in game-playing rather than flip it for trading. Such purchases 
should not count toward valid flipping opportunities, and thus, we only include those asset purchases that 
appear to have been made with the intent of flipping. Toward that end, we require that the buyer of the 
preceding transaction j should further post the asset for resale within the next 24 hours to ensure that the 
buyer does have the intent to flip/resell and that her main objective is to earn returns by trading. As a result, 
9,561 sale transactions were followed by a relisting by the same buyers within the next 24 hours. We count 
future 24-hour flipping opportunities k, only for those 9,561 sales j. Note that we only count each 
Transaction k uniquely for once to avoid overcounting flipping opportunities. Also, when there are no 
subsequent transactions within the next 24 hours, or all subsequent transactions’ prices are lower than 
Transaction j’s price, there is zero number of flipping opportunities. 

As an example, suppose there was a sale associated with a digital sword for $50. We identify three 
subsequent sales ($80, $60, $40) of the same digital sword sold within 24 hours after the $50 sale. Given 
the price differences and transfer fees, we conclude that the $80 and $60 sales represented valid flipping 
opportunities for the $50 sale (but not the $40 sale). That is, there exist two flipping opportunities for the 
buyer of the $50 sale: she could have flipped/resold the digital sword for higher prices (at $80 and $60). 
We then aggregate all such flipping opportunities for each asset i in each week t, as the total number of 
flipping opportunities, NFlippOppit. 

Next, we identify the exploitation of flipping opportunities, i.e., how many existing inefficiencies have 
actually been exploited. To do this, out of all identified flipping opportunities, we spot all pairs of 
transactions of the same asset made by the same address (account-level information is now leveraged), i.e., 
the seller of the subsequent transaction has the same Ethereum address as the buyer of the preceding 
transaction.6 Then, we take the latter reselling transaction in each pair of transactions as the exploited ones: 
by quickly buying, reselling, and making a profit on an asset, a trader address snatches, seizes, and exploits 
the existing flipping opportunities. Due to this process, the market quickly responds to the presence of 
flipping opportunities and washes away potential inefficiencies, thereby restoring market efficiency 
(Subramanian and Overby 2017). We further aggregate all such flipping transactions of asset i in week t as 
the total number of exploited flipping, NExploitedOppit. To measure the level of market efficiency, we 
calculate the percentage of exploited flipping opportunities as our dependent variable, which is computed 

by 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝑖𝑡 =
𝑁𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝑂𝑝𝑝𝑖𝑡

𝑁𝐹𝑙𝑖𝑝𝑝𝑂𝑝𝑝𝑖𝑡
× 100. 

As shown in Table 2, the average value of 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝑖𝑡 is 27.37%, suggesting that most existing price 
discrepancies and market inefficiencies remain unexploited. Hence, the EnjinX marketplace is far from 

 
 

4 Note that a large portion, about 40% of the resales, happened in 24 hours in our data. As done in Subramanian and 
Overby (2017), we later vary α for robustness, which yields consistent results. 
5 The transfer fee is designated by NFT creators during the NFT creation process and is paid by sellers to creators per 
NFT or per transfer in each sale. In addition, EnjinX charges a 2.5% commission fee to sellers from each sale 
transaction. We thus subtract 2.5% from the price of Transaction k in the first term of Equation 1. 
6 One limitation of our analysis is that we calculate the exploited flips based on individual Ethereum addresses rather 
than considering each trader’s identity. While it is possible that a trader may hold multiple addresses, the blockchain’s 
depersonalized and anonymized nature prevents us from directly observing traders’ identities within the data. 
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being fully efficient. To explain this seemingly paradoxical phenomenon that an information-transparent 
marketplace unexpectedly experiences substantial inefficiencies, this paper identifies two notable sources 
that could cause the inefficiencies. We next explain how we operationalize the two inefficiency sources. 

Independent Variable: Transaction Information Amount on blockchain 

As mentioned earlier, the first inefficiency source stems from the inadequacy in the richness of historical 
trading information on the blockchain. We capture it by counting the total number of historical sale 
transactions up to week t since the creation of asset i. This is the independent variable constructed to test 
H1. Compared to posted prices, realized transaction/sale prices could provide more reliable information on 
the true valuations of assets (Ghose and Yao 2011), representing more informative and accurate information 
for traders to utilize. We thus take asset sale history as the main variable to capture the effect of blockchain 
information transparency and take the total number of listing histories as a control variable. 

We next articulate the construction of the other independent variable, trader analytical ability, in a separate 
section as follows. 

Construction of Trader Analytical Ability 

Measuring Analytical Ability: Challenges and Our Approach 

We first explain why trading performance metrics alone (e.g., annualized return or Sharpe ratio) can not be 
used as the simple proxy for traders’ analytical ability. Analytical ability refers to a trader’s capability to 
analyze all relevant blockchain information in our context. However, without exploring any available data 
on the blockchain, a trader may still achieve a satisfactory trading performance by luck or strategies like 
copy trading, which does not necessarily reflect analytical ability. In other words, trading performance only 
accounts for trading outcomes, while disregarding the “analytics” of the available information inputs. 

Therefore, to incorporate the analytical aspect into the ability measurement, we propose setting up a 
cutting-edge ML benchmark. The ML algorithm analyzes the same blockchain information available to 
human traders, making decisions by utilizing and analyzing transparent market information instead of by 
luck. This way, in the decisions made by ML, effective analytics of the available blockchain information 
indeed play a role. 

However, it is also problematic to measure analytical ability by directly comparing traders’ performance 
against that of an independent ML algorithm. There are two reasons behind this. First, human traders may 
possess private knowledge (e.g., game popularity, trading luck) about an asset that is not recorded on the 
blockchain and cannot be leveraged by ML algorithms. Therefore, in the presence of unobservables that 
human traders can observe while ML cannot, the predictions of ML may fall behind humans’ judgments 
(Lakkaraju et al. 2017). Accordingly, due to unobservables, directly comparing an independent ML 
algorithm with human decisions may not necessarily guarantee capturing the true analytical ability of 
traders. 

Second, evaluating the performance of standalone ML models can be infeasible if the ground- truth outcome 
labels are missing for some of ML’s decisions, commonly known as the “selective labeling problem,” where 
the instances that have outcome labels are selectively determined by decision-makers (Kleinberg et al. 2018; 
Lakkaraju et al. 2017). Specifically, in our context, traders’ decision outcomes are selectively recorded and 
labeled: we can only observe future price changes (e.g., the outcome label) for assets that traders did 
purchase in reality, but not for assets that traders did not purchase. It is as if the EnjinX blockchain 
selectively records and presents the price-change outcomes. Hence, if ML makes a “non-recorded” decision 
that does not have a corresponding ground-truth label (i.e., buying an asset that traders did not buy), 
assessing the predictive performance of the ML model would be impossible. 

To address the above challenges, we argue that a counterfactual scenario is needed, where any 
unobservables such as luck or copy-trading factors should be ruled out from the measurement, and only 
humans’ analytical capability of leveraging historical market information would be truly counted for the 
measurement of analytical ability. We, therefore, establish such a counterfactual benchmark by asking, 
“What if humans had the same analytical capabilities as ML algorithms? What would have happened if 
humans improved their existing trading strategies by analyzing the blockchain public information as 
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effectively as an ML?” To answer that, we let ML augment traders’ existing decisions and examine whether 
human traders’ performance could have been augmented by an ML model with outstanding analytical 
performance. 

The “contraction” method represents one efficient way to realize the ML augmentation (Fu et al. 2021; 
Kleinberg et al. 2018; Lakkaraju et al. 2017; Shen et al. 2022). We hence adapt and apply the contraction 
approach to measure the collective analytical ability (Abilityit) for the group of traders who have purchased 
asset i during week t. The principal idea of the contraction method is using ML to augment traders’ existing 
decisions by excluding weak decisions identified by ML. Specifically, the ML algorithm first makes 
predictions on the same trading decisions that human traders have made, based on the same blockchain 
data that human traders also have access to. Subsequently, it wittingly sweeps out the suboptimal trading 
decisions from the original human decision sets based on its predictions, and by doing so, the method 
effectively improves the quality of traders’ existing decisions. This is why the method is called “contraction.” 
And the degree to which the ML contraction can improve (or hinder) traders’ performance is used as the 
barometer to gauge traders’ analytical ability. 

The contraction method is an ideal solution for us because it effectively resolves the aforementioned 
challenges. First, the contraction method is the first method that is designed to directly handle the selective 
labeling problem. It adeptly solves the “non-recorded” decisions by focusing on the “recorded” decision 
side: suggesting which “recorded” transactions are likely to yield negative returns, and human traders 
should have avoided them in the original decision sets. 

Second, the contraction method effectively addresses the potential impact of unobserved confounders by 
constructing a quasi-random experimental design. The design assigns human traders with similar trading 
transactions to the same group, called “cell” (Kleinberg et al. 2018). Within the same group, some traders 
are assigned to receive the assistance of ML analytics, which will serve as the ML-augmented counterfactual 
benchmark (i.e., ML + human,  the treated group), while the remaining traders facing similar trading 
decisions trade independently (i.e., control group). By comparing the ML counterfactual benchmark against 
pure human decisions, our measurement could effectively cancel out the impacts of unobserved factors such 
as luck or insider information because if those unobservables are really at play, their effects should be 
parallel and offset in both groups by virtue of the quasi-random design (Kleinberg et al. 2018); the only 
material difference between the two groups is that the ML algorithm analytically augments the treated 
trader group but not the control group. This way, the contraction method minimizes the potential effects of 
unobserved confounders in the formation of analytical ability. We also validate the method by ensuring that 
the quasi-random design is indeed satisfied through the random-assignment test (Kleinberg et al. 2018).  

Notably, our paper represents the first attempt to measure analytical ability in a rigorous way where 
unobserved factors are teased out, and only the analytical aspect is retained in the measurement, through 
such an ML-augmentation counterfactual benchmark. Without setting up this counterfactual for human 
ability augmentation, other measurements of analytical ability can be biased or inaccurate (Corgnet et al. 
2018). Our study thus makes a methodological contribution by quantifying analytical ability through an 
innovative approach, in which the counterfactual design of the contraction method is leveraged.  

Procedures of the Contraction Approach 

For easy reference, we summarize the key steps of the contraction method and the purpose of each step in 
Table 1, while cutting down the details of the method due to the page limitation. 

Estimated Analytical Ability 

The contraction method eventually gives rise to the result in Figure 1. The final step quantifies the analytical 
ability of trader crowds. This is done by examining whether the human quintiles (excluding the 5th quintile 
point) can outperform the ML-augmented curve in return at the same level of risk. A negative return gap 
between the human quintiles and the ML-augmented curve suggests that traders still have the potential to 
enhance their analytical ability by harnessing blockchain's transparent information as efficiently as ML 
algorithms do. That is, if traders exhibit notable improvements in their return performance through the aid 
of ML analytics, relative to the cases where they trade independently without such assistance, it signals a 
substantial opportunity for these traders to amplify their analytical capabilities through the incorporation 
of ML analytics. Given this idea, if a trader crowd who transacted asset i in week t is able to outperform the 
ML-augmented decisions given the same level of risks, Abilityit = 1. Otherwise, Abilityit = 0.  
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As shown in Figure 1, human decisions only slightly edge random decisions, whereas the addition of ML 
assistance can help generate substantially higher returns for traders in quintiles 2, 3, and 4 at the same risk 
level. Note again that Figure 1 represents an aggregation of all cells, and overall, ML augmentation exhibits 
better performance than human traders alone. However, it is possible for traders to occasionally outperform 
ML augmentation in some individual cells, which is why we also observe trader crowds with high analytical 
ability. As a result, 30% (70%) of our observations are of high (low) analytical ability.  

Steps Tasks Purposes Descriptions 
1 Define the 

problem 
Confirm the problem objective for 

traders. 
Generating positive returns by buying 
assetsis the main objective of traders. 

Calculate the actual realized return for each 
purchase decision. 

2 ML 
training 

Establish the ML analytics-based 
performance, which is generated 
completely based on information 

analytics. 

Train XGBoost as the benchmark with the 
complete historical input data; ML then 

predicts the likelihood of receiving a positive 
return by making a purchase decision. 

3 Form cells To create a quasi-random 
experimental design for the ML 

counterfactual, group similar 
trading decisions in one cell as if 

they are randomly assigned. 

Assign trading instances into different cells 
based on the combination of the top four 

most important asset-level features. 

4 Form 
trader 
crowds 

Eliminate biases, such as trading 
luck, by grouping shared decision-

making crowds who traded the 
same asset in a week. 

Within each cell, combine transactions of 
each asset in each week as the decisions of a 

trader crowd. 

5 Form 
trader 

quintiles 

Account for heterogeneous risk 
preferences of traders for the risk-

return trade-off. 

Within each cell, divide trader crowds into 
five equal quintiles. Then, calculate the total 
return and total risk of human transactions 
in each quintile, which represents the actual 
human performance (Kleinberg et al. 2018). 

6 ML 
contraction 

Let ML augment human’s existing 
decisions and thus construct the 

ML-augmented counterfactual for 
the next-step comparison with 

pure human traders. 

ML augments the 5th quintile trader crowds’ 
decisions by sequentially removing weak 

decisions from the 5th quintile, based on its 
predicted return probability, from the 
lowest to highest probability sequence. 

7 Estimate 
trader 

analytical 
ability 

See what would have happened if 
humans in quintiles 1, 2, 3, and 4 

had followed ML’s analytics-based 
trading strategies. 

Compare the total return of the ML-
augmented counterfactual curve with that of 
human decisions in quintiles 1, 2, 3, and 4, 

under the same risk level. 
Table 1. Overview of the Contraction Approach 

 

 

 

 

 

 

 

 

 

Figure 1. Contraction Result 
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Empirical Strategy and Results 

Empirical Model and Main Results 

Next, we test the main effects of transaction information amount (H1) and users’ analytical ability (H2) 
on market efficiency by adopting the following two-way fixed effects specification: 

Yit = β1AssetSaleHistoryit + β2Abilityit + β3Controlsit + vi + ut + ϵit (2) 

We estimate the above Specification 2 by ordinary least squares (OLS) (where Yit = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝑖𝑡) and 
fractional logit and probit models (where Yit = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝑖𝑡/100, as the fractional logit/probit models 
require the DV to be between 0 and 1). β1 is of main interest for testing H1, capturing the informational effect 
of blockchain sale history on market efficiency. β2 is of main interest for testing H2, capturing whether and how 
much the high analytical ability of the trader crowd who transacted asset i in week t could effectively improve 
market efficiency. We further include several asset-level control variables to mitigate the problem of omitted 
variables. As mentioned earlier, we first control for the total number of historical listings of asset i before week t. 
Second, we control for how long asset i has been created (i.e., asset tenure) up to week t to represent the maturity 
of asset i, to rule out the possibility that β1 reflects the effect of asset maturity. Third, we use the average historical 
sale price of asset i before week t to control for the potential influence of asset prices on future flips. Finally, 
because flipping opportunities and realized flips in the current week t essentially stem from the listing activities in 
week t (i.e., people have to list the asset before making a flip), we also include the total number of listings of asset 
i in week t to control for asset trading opportunities. We present the definition and descriptive statistics of the key 
variables in Table 2. 

Variables Descriptions Mean Std. Dev. 

Dependent Variable 

PercentExploitedit The percentage of exploited flipping opportunities of 
asset i in week t 

27.37 32.38 

NExploitedOppit The total number of exploited flipping opportunities of 
asset i in week t 

1.27 
 

3.08 

NFlippOppit 
 

The total number of flipping opportunities of asset i in 
week t 

6.84 16.50 

Independent Variable 

AssetSaleHistoryit The total number of sale transactions of asset i before 
week t 

162.0 327.38 

Abilityit The analytical ability of the trader crowd who 
transacted asset i in week t; Equal to 1 if the trader 

group can outperform the cutting-edge ML 

0.31 0.46 

AssetSaleHistory × 
Ability 

The interaction between information amount and 
analytical ability 

40.05 132.20 

Control Variable 

AssetListingHistory

it 
The total number of historical listings of asset i before 

week t 
2068.

11 
3858.68 

AssetTenureit The number of days since asset i’s creation till week t 26.90 61.78 

AvgSalePriceit The average historical sale price of asset i before week t 3.90 21.77 

Nlistingit The number of listings of asset i in the current week t 237.55 495.89 
Table 2. Summary Statistics 

We also add the asset fixed effects (vi) into the specification to capture the unobserved asset- level time-invariant 
characteristics (e.g., asset reserved inherent value defined by its creator, asset functionalities in game playing). ut 
controls for the week fixed effects, allowing us to better isolate common time-specific shocks, such as ENJ price 
fluctuations and the overall market dynamics. ϵit denotes the error term. Throughout the paper, we cluster the 
standard errors at the asset level. 

The results for H1 and H2 are reported in Table 3 Columns (1), (3), and (5). Both coefficients of asset sale history 
and ability are significant and positive, lending support to H1 and H2. More specifically, in OLS, given everything 
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else being equal, having ten additional historical transaction information can significantly increase market 
efficiency by 1.10% (=0.03/27.37*10*100%, where 27.37 is the average market efficiency level), and trader groups 
with high analytical ability can exploit 69.02% (=18.89/27.37*100%) more flipping opportunities compared to 
low-ability groups. 

Further, to test H3, we examine the moderation effect between the two main variables with the following 
specification: 

Yit = β1AssetSaleHistoryit + β2Abilityit + β3AssetSaleHistoryit × Abilityit + β4Controlsit + vi + ut + ϵit          (3) 

β3 is of main interest here, capturing to which degree the effect of blockchain information on market efficiency 
can be intensified (or dampened) if the information is utilized by high-ability traders. The result for the 
moderation effect is shown in Table 3 Columns (2), (4), and (6). We observe a significantly stronger impact of 
blockchain historical information (specifically an increase of 0.11% in the informational effect) when traders are 
more capable of handling transparent market information. The two main effects (H1 and H2) are consistent. We 
then use Yit = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑𝑖𝑡  for all following analyses. 

Variable OLS Fractional Logit Fractional Probit 
(1) (2) (3) (4) (5) (6) 

AssetSaleHistory 0.03**  (0.014) 0.03** 
(0.014) 

0.003** 
(0.001) 

0.003** 
(0.001) 

0.001** 
(0.0007) 

0.002** 
(0.001) 

Ability 18.89***  (3.156) 13.47*** 
(3.716) 

1.30*** 
(0.213) 

0.93*** 
(0.243) 

0.74*** 
(0.116) 

0.53*** 
(0.135) 

AssetSaleHistory 
× Ability 

- 0.03*** 
(0.009) 

- 0.002*** 
(0.0005) 

- 0.001*** 
(0.0003) 

Controls YES YES YES YES YES YES 
Asset Fixed Effects YES YES YES YES YES YES 
Week Fixed Effects YES YES YES YES YES YES 
Observations 507 507 507 507 507 507 
Adjusted R2 0.36 0.38 - - - - 
Notes. *p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors are clustered at the asset level. 

Table 3. Main Results 

Identification  

Since our study uses observational data without experimental random variation, endogeneity may be 
present. We next resolve the potential endogeneity concerns resulting from three specific problems: omitted 
variables, selection bias, and measurement error. For each problem, we offer our empirical strategy to 
strengthen the identification and show that our main results are robust and unlikely to be biased. 

Omitted Variables: FEct and IVs  

The existence of some omitted variables for our two key independent variables in the econometric 
specifications may confound the identification of the main analysis. The first approach we embrace to 
alleviate the omitted-variable issue is “fixed effects counterfactual estimator” (FEct) (Liu et al. 2022). We 
apply FEct by adding two-way fixed effects with jackknife estimates over 500 iterations. One notable 
limitation of FEct is that it cannot accommodate interaction terms currently. Thus, in an attempt to capture 
the moderating effect, we set up two subsamples where the values of AssetSaleHistory differ. Specifically, 
we select two cutoffs to construct the two subsamples: observations with at least 1 historical sale and 21 
historical sales (which constitute 86% and 70% of the full sample, respectively). We then run FEct 
separately based on the three samples, including the full sample and the two subsamples. We expect that, 
if the moderating effect really holds, the effect of analytical ability will be stronger when the number of 
historical sales goes higher. As shown in Table 4, our main findings of H1 and H2 still hold for all these 
three samples. Moreover, the coefficient magnitudes of Abilityit increase from Column (1) to (3), as the 
sample contains observations with more blockchain sale histories. This finding, therefore, aligns with the 
moderating effect of H3, lending support to our result robustness under the FEct estimation.  
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Variable Full Sample Sample with Sale 
History≥1 

Sample with Sale 
History≥21 

(1) (2) (3) 
AssetSaleHistory 0.05***  (0.018) 0.04***  (0.013) 0.05**  (0.024) 
Ability 11.00**  (5.402) 38.87***  (4.669) 45.41***  (5.077) 
Controls YES YES YES 
Asset Fixed Effects YES YES YES 
Week Fixed Effects YES YES YES 
Optimal Method IFEct, r∗ = 1 IFEct, r∗ = 1 MC 

Notes. *p < 0.1, **p < 0.05, ***p < 0.01. Jackknife standard errors are in parentheses. 
r represents the optimal number of unobserved factors (Liu et al. 2022). 

Table 4. Address the Endogeneity of Omitted Variables: FEct 

We further employ the instrument variable (IV) estimation to account for endogeneity of AssetSaleHistory. 
Particularly, there can exist unobserved information and factors (e.g., individual idiosyncratic trading 
preferences and asset popularity)  that are correlated with AssetSaleHistory and may also influence market 
efficiency but are nevertheless omitted in the specifications. In general, a valid IV should satisfy two 
presumptions: (1) IV relevance, meaning that IVs should be highly correlated with the endogenous 
variables, and (2) IV exogeneity, meaning that IVs should be uncorrelated with the error term and should 
not affect the outcome variable directly.  

We first construct one IV for AssetSaleHistory, which is the total number of melting histories of asset i 
before week t, AssetMeltHistory. Melting a piece of an asset would permanently destroy the asset and make 
it unavailable for sale. The rationale of this IV is that an asset with more melting history is likely to have 
fewer historical sales because more melting history indicates that people tend to place low valuations on 
the asset, manifested by melting and devaluing the asset. It is also possible that AssetMeltHistory can be 
positively associated with AssetSaleHistory, as higher AssetMeltHistory may indicate that the asset 
possesses excessive copies (oversupply), which further leads to more trading possibilities and thus higher 
number of sale transactions. It is, however, very unlikely that asset melting history would directly affect 
market efficiency since market efficiency is mainly driven by market sales/flips instead of those melting 
records. In other words, it can only affect market efficiency indirectly through assets’ historical sales.  

We next construct two IVs for Abilityit. The first one is MintPerSaleHistory = 
Number of Assets Minted by the Creator

Number of Assets Sold by the Creator + 1
, defined as the average number of assets minted/created by the creator of 

asset i in order to get one sold before week t, excluding the focal asset i. It essentially proxies how competent 
the focal asset’s creator was before week t, at minting assets and successfully selling them. We next elaborate 
on why this IV is valid. First, this IV is strongly and negatively related to Abilityit. If the focal asset is minted 
by an incompetent creator who needs to produce lots of different assets before eventually making a sale 
(i.e., MintPerSaleHistory is high), this asset would unlikely be transacted by high-ability traders in the first 
place (i.e., Abilityit would be low), because the asset and its creator are inherently unattractive (i.e., low-
quality creators are unlikely able to allure high-ability traders). Meanwhile, this IV can also be strongly and 
negatively correlated with AssetSaleHistory because a low-quality creator who cannot sell many of her 
creations may have fewer transaction histories for the focal asset as well. However, this IV does not directly 
influence market efficiency because market efficiency is primarily determined by the reselling/flips by 
secondary traders of the focal NFT creation, whereas the instrument only accounts for the first selling 
activity of all other creations made by the original creator, which does not contribute to the flipping and 
market efficiency of the focal asset.  

The second instrument for Abilityit is Ability-it, which represents the average analytical ability level of other 
assets (excluding focal asset i) in the same week. The rationale is that the analytical ability of the trader 
crowds who traded other assets could be highly correlated with the analytical ability of the focal trader 
crowd who traded the focal asset in the same week (they can potentially be trading partners). However, the 
analytical abilities of people trading other assets are unlikely to directly impact the focal asset ’s market 
efficiency. 

This way, we construct three IVs in total for the two endogenous independent variables. We then run 2SLS 
(two-stage least squares) for H1 and H2. The result of the second-stage estimation is displayed in Table 5 
Column (1). Table 5 also presents the Kleibergen-Paap rk Wald F-statistic, which confirms that the IVs are 
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indeed strong, and therefore the IV relevance assumption passes (F-statistic > 10% critical value). Further, 
to statistically check the validity of the IV exogeneity assumption, we perform the Hansen-J over-
identification test, where the p-value suggests that we cannot reject the null hypothesis that the three IVs 
are correctly excluded from the main specification. Thus, the IV exogeneity assumption also holds.  

For the moderating effect, we further use four IVs, which are the interactions between the three original 
IVs. We thus end up having 7 IVs in total to estimate Specification (3). The 2SLS result of H3 is displayed 
in Table 5 Column (2). The two tests still pass, and overall, 2SLS gives rise to consistent results. 

Variable (1) (2) 
AssetSaleHistory 0.06**  (0.028) 0.09***  (0.029) 
Ability 18.64***  (3.823) 13.41***  (4.122) 
AssetSaleHistory × Ability - 0.02** (0.010) 
Controls YES YES 
Asset Fixed Effects YES YES 
Week Fixed Effects YES YES 
Kleibergen-Paap rk Wald F statistic 20.85 34.09 
Stock-Yogo 10% maximal IV size 13.43 8.50 
Hansen J statistic p-value 0.12 0.95 
Observations 504 504 
Centered R2 0.15 0.16 
No. of Excluded IVs 3 7 
Notes. *p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors are clustered at the asset level. 

Table 5. 2SLS with IVs 

Selection Bias: CEM and Heckman Two-Step Correction 

The second endogeneity concern stems from the self-selection of high- vs. low-ability traders. We thus 
implement the CEM approach to make the assets traded by these two types of traders more similar to each 
other (Iacus et al. 2012). We first adopt a one-to-one matching method, where each observation transacted 
by a high-ability trader crowd (i.e., a treated unit) is matched with another similar observation transacted 
by a low-ability trader crowd (i.e., a control unit). Based on the matched sample and the CEM weights, we 
re-estimate Specifications 2 and 3 for the three hypotheses. The results presented in Table 6 Columns (1) 
and (2) are consistent with the main results. We also try one-to-multiple matching based on the same set 
of matching characteristics, and the three hypotheses and our main findings still hold. 

Variable CEM One-to-One Matching SIMEX 

(1) (2) (3) (4) 
AssetSaleHistory 0.04*** (0.015) 0.04** (0.015) 0.02**  (0.007) 0.01* (0.000) 

Ability 20.26*** (3.728) 15.14*** (4.762) 12.49***  (1.569) 10.59*** (1.732) 

AssetSaleHistory × Ability - 0.03***  (0.009) - 0.03*** (0.009) 

Controls YES YES YES YES 

Asset Fixed Effects YES YES YES YES 

Week Fixed Effects YES YES YES YES 

Observations 408 408 507 507 

Adjusted R2 0.32 0.33 - - 

Notes. *p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors are clustered at the asset level. 

Table 6. Address the Endogeneity of Self-Selection and Measurement Error: CEM, SIMEX 

Our estimation may suffer from another selection bias due to the fact that the dependent variable, 
PercentExploited, is observed only for observations where the number of flipping opportunities is positive, 
but not for those with zero flipping opportunities. It may happen that these two groups of observations are 
systematically different, rendering the outcome variable not missing at random. We thus resort to the 
Heckman two-step selection model, which is commonly used to correct the bias resulting from non-
randomly selected samples (Ayabakan et al. 2017; Heckman 1979). The results corrected by the Heckman 
two-step approach do not significantly change our main findings, further confirming that the selection bias 
does not represent a severe threat to our identification (results omitted). 
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Measurement Error: SIMEX 

The measurement error problem may also be present since no ML prediction is perfect. The analytical 
ability variable generated from the contraction method may thus suffer from measurement errors due to 
misclassification, which can bias the subsequent econometric estimations (Qiao and Huang 2021; Yang et 
al. 2018). To correct the measurement errors underlying the analytical ability variable, we adopt the 
simulation extrapolation method (SIMEX), which is documented as an effective method to tackle 
measurement errors in Yang et al. (2018). The results of SIMEX in Table 6 Columns (3) and (4), again, 
confirm that the coefficient sizes and directions are highly consistent with the main results. 

Robustness Checks 

In this subsection, we carry out several robustness checks that pertain to our outcome variable, market 
efficiency (results omitted). First, in the main analysis, we take α = 24 as the time interval for flipping. Here, 
we also vary the value of α with 12 (half days), 72 (three days), and 120 (five days) hours and recalculate the 
percentage of exploited flipping opportunities. We then rerun the specifications based on the new market-
efficiency values. The results are highly consistent with the main analysis. Another potential concern is that 
the cryptocurrency price can fluctuate a lot, even within one day. To get a more consistent comparison of 
prices for flipping and returns, we map each sale price in ENJ to its corresponding USD closing price on the 
day of sale. We then redo the analysis based on USD (including the measurement of market efficiency and 
the return metrics of analytical ability), and the results suggest the robustness of our findings. Finally, we 
ensure the robustness of our results by taking NExploitedOpp as the DV while controlling for a given 
number of existing flipping opportunities. As the DV is a count number, we also estimate Specifications 2 
and 3 using the negative binomial and Poisson models. We obtain qualitatively similar results. 

Discussion and Conclusion  

The blockchain technology is designed to provide complete, accurate, and transparent market information, 
which should ideally lead to full market efficiency as per Fama (1970) and Granados et al. (2012). However, 
we uncover and empirically demonstrate a new source of market inefficiency in the context of blockchain-
based markets, which stems from traders’ inability to analyze blockchain transparent information.  

Theoretical Implications 

First and foremost, this study contributes to the literature on information economics and market efficiency 
by challenging the conventional belief that full information transparency can ultimately eliminate market 
inefficiencies. We discover a fundamental paradox that market inefficiencies persist due to traders’ 
incompetence in their analytical ability to leverage blockchain transparency. Further, our paper contributes 
to the digital-divide literature by suggesting that the nature of the digital divide transitions to the form of 
the capability divide when information is ubiquitous and accessible to all. Now that blockchain technology 
has bridged the digital access chasm, a new type of divide, namely the analytical-ability divide, warrants 
attention. This paper answers the call of Wei et al. (2011) to investigate the second-level digital divide in the 
form of the analytical-ability divide. 

We also make a methodological contribution by adapting the contraction method to quantify traders’ 
analytical ability in a two-sided market. We present a novel use case of the contraction method in measuring 
analytical ability by creating a quasi-random design to compare traders’ actual performance against the 
ML-augmented analytical counterfactual. Although scholars have recognized the importance of consumers’ 
ability to analyze the available transparent information, none of them attempted to rigorously quantify it 
(Corgnet et al. 2018; Rossi and Chintagunta 2016; Yang et al. 2015), partially due to data limitations. For 
instance, in traditional stock trading or e-commerce settings, neither traders nor consumers have free or 
easy access to complete account-level transaction history, let alone quantify analytical ability and examine 
its impact on market efficiency. As such, our work fills the literature gap by measuring analytical ability 
using blockchain’s full transparency of history and effectively accounting for the existence of unobservables 
and the selective labeling issue through the contraction approach, which represents an efficient lever to 
reveal traders’ analytical abilities. 
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Managerial Implications 

Achieving high market efficiency is crucial for platforms because a higher percentage of flipping exploitation 
could generate higher commission revenue. Hence, from a managerial perspective, our study suggests that 
blockchain-based platforms should consider effective designs to bridge the analytical-ability divide, in order 
to subsequently help traders to identify and exploit any available flipping opportunities, and thus boost 
platform revenues. Toward that aim, blockchain-based marketplaces should provide not only transparent 
and accessible historical market information but also necessary analytical tools to assist traders’ decision-
making, e.g., ML-generated analyses for traders to better utilize the transparent information and gain 
deeper insights into the data. This implication, highlighting the necessity of effective analytics of available 
market information, echoes the findings in (Peukert and Reimers 2022), where digitization and analytics 
improve market efficiency by aiding publishers in predicting book sales and facilitating resource 
reallocation. It is not a coincidence that some NFT platforms have already taken steps to incorporate 
analytical tools for traders to use. Platforms such as OpenSea.co and Rarible.com have integrated 
preliminary solutions such as price distribution graphs and NFT scarcity indicators. In fact, there are even 
platforms specifically designed for NFT sale analytics, such as the Dune analytics dashboard and 
DappRadar.com ranking. These real-world practices lend support to our proposition of narrowing the 
“analytical-ability divide.” While digital information technology is readily available to all, the challenge lies 
in making users more proficient in their utilization of the available information. In the meantime, individual 
traders should also realize the importance of effectively utilizing transparent data to their advantage, 
preferably with the assistance of ML. Finally, our findings also shed light on the implications for regulators. 
To ameliorate market efficiency and increase overall social welfare, regulators may re-think how to regulate 
and incentivize two-sided platform owners to provide effective analytical tools to market participants. 

Concluding Remarks 

Overall, our study provides important insights into the challenges faced by blockchain-based markets. By 
shifting the focus from the traditional digital access divide to the new analytical-ability divide in an 
information-symmetric setting, our study highlights the importance of individual capabilities in affecting 
market efficiency. We argue that the analytical-ability divide is currently superseding the digital access 
divide as the new significant challenge to emerging blockchain-empowered markets. We conclude with the 
following quote. 

“The digital revolution can open doors to unseen opportunities and industries, 
but only if everyone has access to the internet and the ability to use it.” 

         - Melinda Gates, co-founder of the Bill & Melinda Gates Foundation.  
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