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Abstract 

Bug Bounty Programs (BBPs) reward external hackers for reporting software 
vulnerabilities. As the number of security issues caused by third-party applications has 
been significantly increased recently, many digital platforms are considering launching 
BBPs to help improve the reliability of third-party software. In this paper, we present an 
analytical model to examine the strategic decisions of launching and participating in a 
BBP for the platform and the third-party vendor, respectively. We find that the platform’s 
(the vendor’s) BBP launching (participation) decisions depend on two key factors: the 
expected loss due to security breaches and the vendor’s reliability investment efficiency. 
We show that the incentive of using BBP, for the platform and vendor, sometimes is 
inconsistent. Meanwhile, we find that using the BBP is not always socially optimal. Under 
certain conditions, it reduces the overall software reliability, instead of improving it, 
makes the platform marketplace less secure, and thus hurts end users. 

Keywords:  bug bounty program, third-party software, digital platform, software reliability 

 
 

Introduction 

Nowadays, third-party software plays a critical role on digital platforms. For example, the Apple Store 
contains approximately 2 million pieces of software, with only about 60 of them developed by Apple itself 
while more than 99.99% being third-party applications (Caminade & Wartburg, 2022). Third-party 
software adds significant value to digital platforms. Their amount and services keep expanding, so are the 
breaches and losses caused due to their vulnerability. According to Gartner (O’driscoll, 2023), 
cybercriminals are increasingly using third parties to attack crucial targets. For instance, because of 
vulnerabilities in third-party software, 540 million records on Facebook were exposed in 2019 (Lapowsky, 
2019). 

Digital platforms, therefore, are actively looking for ways to improve the reliability of third-party software 
to mitigate security breach loss. Many platforms have launched Bug Bounty Programs (BBPs) for third-
parties: Platforms offer financial rewards to external ethical hackers for testing third-party software and 
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reporting valid vulnerabilities. Facebook, for example, pays hackers for reporting security bugs in third-
party software (Kumar, 2019). Google, similarly, throws bug bounty bucks at mega-popular third-party 
applications in its Play Store (Vaas, 2019).  

Platforms are expecting several benefits of using BBPs. First, under BBPs, external hackers are motivated 
to legally report bugs and vulnerabilities, instead of using them to launch attacks maliciously, leading to 
threat reduction (Zhou & Hui, 2021). In addition, with BBPs, software vendors will verify and fix valid bugs 
reported by external hackers and thus further improve the reliability of their software, which makes the 
platform a more secure marketplace and thus obtain higher profits.  

Not all platforms, however, launch BBPs for third-parties. TikTok, a leading social media platform, is one 
example. In its bug bounty guidelines, it stipulates that ethical hackers’ research should not involve 
applications, products, or services of a third party (TikTok, 2023).For the platform, there are also some 
concerns about launching BBPs. One obvious reason is the costs associated with BBPs that the platform 
must pay bug bounty rewards. Besides, the platform also needs to take the third-party vendors’ reaction 
into considerations.  Knowing there will be ethical hackers in the later stage who help to discover 
vulnerability of their products, will the third-party vendor choose to reduce the initial investment in the 
software reliability investment? If so, what will be the ultimate software reliability level? This is an unclear 
issue. Thus, the platform must find out under what conditions it is profitable to launch a BPP for the third-
party software and understand how would its launching decision impact the vendor’s behavior. This is the 
first research question we will address in this work.  

Only being authorized and verified by the third-party vendor, external hackers can earn the rewards 
provided by the platform (Google, 2023; Facebook, 2022). The third-party vendor, however, could choose 
not to participate in BBPs launched by the platform if it finds not worthwhile to do so. It must evaluate and 
tradeoff the expected benefits and costs. On the positive side, if the vendor participates in the BBP, it enjoys 
the threat reduction and potential revenue increase as the platform does. Meanwhile, the vendor incurs 
BBP related costs of processing bug reports and fixing valid bugs raised by external hackers. In practice, it 
has been turned out that the rate of valid bug reports is quite low, suggesting that the vendor ends up paying 
great efforts for identifying invalid bug reports. For instance, in 2022, Facebook estimates that the validity 
rate of bug reports of its BBP was only 7.5% (Oren, 2022). In addition, with the help of external hackers, 
the vendor shall adjust its software reliability investment level accordingly. Hence, the second research 
question of our work is related to the software vendor’s optimal decisions: When should the third-party 
vendor participate in a BBP launched by the platform? And if so, what is the vendor’s optimal level of initial 
software reliability investment?  

Ultimately, we hope to provide answers to this question: Does the BBP serve as an effective and 
economically efficient way to improve software reliability, so that end users are better off by using a more 
reliable product and the total social welfare is improved as well? 

We develop an analytical model that includes a platform, a third-party vendor, and multiple external 
hackers. We structure the BBP-associated costs and benefits for both the platform and the vendor, and 
model external hackers’ behavior when BBP is provided. We study optimal decisions and interactions 
among these parties and obtain the following major results. First, we identify two key factors in the 
platform’s (the vendor’s) BBP launching (adoption) decision-making: the potential loss if a security breach 
happens and the vendor’s initial reliability investment efficiency. For example, the vendor should only 
participate in the BBP if its expected potential loss is high and reliability investment efficiency is low. 
Second, we find that the platform’s and the vendor’s decisions might be inconsistent. For example, under 
certain conditions, the platform may prefer to have the BBP even if the potential loss is not high. The vendor, 
however, would not participate the BBP in such scenarios because the vendor’s report-processing and bug-
fixing costs cannot be fully offset by the BBP benefits. Therefore, the platform is over-incentivized compared 
to the vendor. We derived the conditions for this to happen. In addition, the conditions for the opposite – 
namely, the vendor is over-incentivized in BBP use, compared to the platform – are also presented in the 
paper. Third, the BBP, if adopted by both the vendor and platform, shall always bring higher utilities to 
them. It, however, might not always benefit end users of the software. We show different cases: (1) The BBP 
leads to an overall lower software reliability (and thus hurt end users) and consequently a lower total social 
welfare; (2) The BBP improves total social welfare –both the platform and vendor are better off, but it comes 
at the cost of decreased utility of end users (i.e., an overall reduced software reliability); And (3) the BBP is 
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not only socially optimal, but also a Pareto improvement for all parties. For each case, we derive the 
conditions for it to happen and provide in-depth analysis of the underlying rationale. 

The remainder of this paper is organized as follows. Section 2 provides a review of the related literature. 
Section 3 presents our model that captures the costs and benefits associated with BBPs for a software vendor 
and a platform, respectively. Section 4 analyzes the optimal BBP launching/participation strategies for the 
vendor and platform and examines the impact of BBP on the overall software reliability and social welfare. 
Finally, we conclude the paper by discussing its theoretical contributions and practical implications, and 
offer some future research directions in Section 5. 

Literature Review 

Our work relates to three streams of research. The first one is the BBP literature. Recent studies on BBPs 
mostly focus on its performance (e.g., Subramanian & Malladi, 2020; Walshe & Simpson, 2020; Aaltonen 
& Gao, 2021; Zhou & Hui, 2021; Zhou & Hui, 2022). For example, Zhou and Hui (2021) show that, under 
certain conditions, BBPs are economically beneficial to launch and can enhance the overall security. In 
addition, some research focuses on the BBP’s optimal management policies. In this respect, Zhao et al. 
(2017) develop and investigate strategies that assign hackers to various BBPs and incentivize hackers to 
evaluate bug reports before submitting them. Different from all these works in BBP, ours is the first one to 
examine the optimal BBP adoption decisions for both the platform and the third-party software vendor. 

In addition, other earlier works in this stream have mainly focused on examining the effects of in-house 
testing on software reliability (e.g., Ji et al., 2005; Jiang et al., 2012). More recently, researchers have started 
to look at external public testing methods (Jiang and Sarkar (2009)), which are closely related to this study. 
For instance, August and Marius (2013) analyze the impact of user error reporting on software reliability 
and investigate the optimal timing of software releases. Jiang et al.,(2017) focus on how beta testing 
improve software reliability. They develop models that help determine the optimal number of public beta 
testers and the ideal duration of testing, taking into account both reliability-related and market-related 
benefits, such as accelerating software diffusion and boosting user valuation of a product. Mehra and Saha 
(2018) discover that implementing public beta testing does not always result in a higher-quality product. 
Unlike other studies, we investigate the contributions of external professional hackers, particularly those 
who transit from malicious to ethical hacking, to the enhancement of software reliability, together with 
third-party vendor’s software reliability investments.  

The literature that studies on how digital platforms manage third-party software in order to maximize profit 
is also relevant to us. Previous research has primarily focused on whether platforms should be corporate 
with third parties (Boudreau, 2010; Parker et al., 2017; Karhu et al., 2018), as well as how to provide 
integration tools such as APIs and SDKs to third-party vendors (Tan et al., 2020; Xue et al., 2019). 
Furthermore, Huang et al. (2022) compare three regulatory strategies for digital platforms to manage third-
party qualities: prohibiting access to low-quality complementors, subsidizing high-quality complementors, 
and developing its own third-party applications. Our paper differs from the existing literature in that we 
investigate when the platform shall adopt the BBP to prevent security incidents caused by third-party 
software. 

Model Setup 

Consider a digital platform (PF) on which the third-party vendor (VD) develops, lists, and sells its own 
software applications. The platform (PF) is considering launching a Bug Bounty Program (BBP) to improve 
the third-party software reliability. Under the BBP, individual external hackers are encouraged to report 
bugs that they find in the third-party software applications. After the vendor (VD) pays efforts to screen the 
reports, identify valid ones, and fix the bugs accordingly, the platform (PF) will give the external hacker 
monetary rewards. Leveraging the hacker community to enhance security, the BBP has the potential of 
benefiting the platform and the vendor. It, however, imposes extra costs on both, and might have an impact 
on the vendor’s incentive of initial reliability investment in the software development stage. As a result, 
whether to offer a BBP (for the platform) and whether to participate in the BBP (for the vendor) are 
complicated strategic decisions. Throughout this paper, we denote L and NL as the platform’s strategy of 
launching and not-launching BBP, and P and NP as the vendor’s strategy of participating and not-
participating BBP (in the case that BBP is launched by the platform). We then have two types of outcomes: 
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BBP when the strategies adopted by the platform and vendor are (L, P), and NBBP when the strategy 
combinations are (L, NP), (NL, P), or (NL, NP). We use BBP and NBBP as lower subscripts to indicate the 
two different outcomes.  

External Hackers: We normalize the total number of initial external malicious hackers to be 1. Malicious 
hackers look for vulnerabilities and bugs in the third-party software applications; and once discovered, they 
launch attack, cause security breaches, and hurt both the platform and vendor. When there is BBP, some 
malicious hackers will convert to be ethical hackers. After discovering bugs in the software, ethical hackers 
will report to the platform for monetary rewards, instead of launching an attack. The platform will pay the 
reward 𝑟 to the ethical hacker for each valid bug (i.e., after being verified by the vendor). It is intuitive that 
when this reward amount 𝑟 is higher, more will turn to be ethical hackers. Previous empirical study (Zhao 
et al., 2015) demonstrates a significant positive linear correlation between the expected reward and the 
number of ethical hackers involved. Following it, we assume the number of existing hackers who convert 
from malicious to ethical as 𝛼1𝑟, where 𝛼1 is malicious hackers’ reward sensitivity coefficient, 0 < 𝛼1𝑟 < 1. 
Furthermore, the bug bounty program could potentially expand the pool of ethical hackers (i.e., attract new 
ethical hackers). Namely, the financial reward encourages participation from advanced users and security 
research institutions who otherwise would not. We denote the number of newly-attracted non-malicious 
hackers as 𝛼2𝑟, where 𝛼2 is the reward sensitivity coefficient of these hackers. Denote 𝑛𝑒  and 𝑛𝑚  as the 
number of ethical and malicious hackers respectively. In the NBBP outcome, 𝑛𝑒 = 0 and 𝑛𝑚 = 1; and in the 
BBP outcome, 𝑛𝑒 = (𝛼1 + 𝛼2)𝑟, 𝑛𝑚 = 1 − 𝛼1𝑟.  

The Vendor (VD): The reliability level of third-party software is denoted as 𝑆. Let 1 be the highest possible 
reliability level, 𝑆 < 1. This assumption reflects the fact that there is no completely bug-free software in 
practice. Further, we define the vulnerability of the third-party software as 𝑝 = 1 − 𝑆. Here, 𝑝 also could be 
interpreted as the probability that external hackers discover valid bugs in the software. 

The reliability of software, 𝑆, consists of three components. First, the software has an intrinsic reliability 
level 𝑆0. It depends on the quality of the software itself, lies in the interior design of the application, and 
varies in terms of software types, programming languages and skills. For example, an online payment 
software product developed by a highly skilled developer team using a memory safe programming language 
usually has a high intrinsic reliability. In contrast, a reading software application designed by an individual 
developer and a loose programming language may naturally have a relatively low intrinsic reliability.  

Second, to further improve reliability, the software vendor usually will make additional investments (such 
as ongoing software testing), which is referred as vendor’s reliability investment in this study. We denote 
the vendor’s reliability investment efforts as 𝛽𝑧2, where 𝑧 is the resulted reliability improvement level, 𝛽 is 
the investment cost coefficient that indicates the vendor’s efficiency level in reliability investment, and the 
quadratic form represents the diminishing investment return. In the case of NBBP - either the platform 
does not launch a BBP or the vendor chooses not to participate, the software reliability level is the sum of 
these two components: 𝑆𝑁𝐵𝐵𝑃 = 𝑆0 + 𝑧𝑁𝐵𝐵𝑃, where the lower subscript NBBP indicates it is under the case 
that BBP is not in use. 

In the case of BBP - when the platform launches BBPs and the vendor decides to participate, ethical hackers 
will discover and report bugs to the platform to gain rewards. After the vendor verifies valid bugs and fixes 
them, the software reliability level could be further improved. We recognize that it might take a while for 
the bugs to be identified and fixed, but this period should be transient. Therefore, we use upper superscripts 
𝐵 and 𝐴 to indicate the software reliability level before and after such a transient period. As a result, the 
reliability level before the transient period (i.e., before bugs are reported and fixed) can be written as 𝑆𝐵𝐵𝑃

𝐵 =
𝑆0 + 𝑧𝐵𝐵𝑃 , where the lower subscript BBP indicates it is under the case that BBP is in use. During the 
transient period, there are 𝑝𝐵𝐵𝑃

𝐵 𝑛𝑒  valid bugs to be fixed by the vendor, where 𝑝𝐵𝐵𝑃
𝐵 = 1 − 𝑆𝐵𝐵𝑃

𝐵  is the 
probability that a hacker identifies a valid bug and 𝑛𝑒 = (𝛼1 + 𝛼2)𝑟 is the total number of ethical hackers 
under the BBP reward amount 𝑟. Hence, after the transient period (i.e., after bugs have been fixed), the 
software reliability is improved and reaches to 𝑆𝐵𝐵𝑃

𝐴 = 𝑆𝐵𝐵𝑃
𝐵 + 𝑝𝐵𝐵𝑃

𝐵 𝑛𝑒𝑓 , where 𝑓  is the reliability level 
improvement due to the fix of each valid bug. We can also view 𝑓 as the efficiency of BBP since it represents 
the unit reliability level improvement due to the BBP use. Consequently, the vulnerability of the third-party 
software reduces to 𝑝𝐵𝐵𝑃

𝐴 = 1 − 𝑆𝐵𝐵𝑃
𝐴 .  

In reality, enhanced software reliability results in increased user satisfaction, which in turn attracts more 
customers to purchase the product and expands the user base (McDermott, 2023). In line with practice and 
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previous literature (e.g., Garcia and Barry, 2007), we denote that the expected revenue generated from the 
third-party software as 𝑆𝑅, where 𝑅 is the highest possible revenue when the software is completely free of 
bugs (i.e., when 𝑆 = 1). The expected revenue is shared by both the vendor and the platform: the vendor 
obtains 𝜃 percent and the platform 1 − 𝜃 percent of it. In addition, if a malicious hacker discovers a valid 
bug, launches the attack, and results in security breaches, the software vendor and platform incur utility 
losses 𝜆𝑉𝐷 and 𝜆𝑃𝐹 respectively. 

When BBP is offered by the platform, the vendor has two strategies to consider: 

Not participate (NP): If the vendor chooses not to participate, then the outcome is NBBP. The vendor 
derives expected revenues 𝜃𝑆𝑁𝐵𝐵𝑃𝑅  from the third-party software, pays the reliability investment cost 
𝛽𝑧𝑁𝐵𝐵𝑃

2 , and incurs the expected loss 𝑝𝑁𝐵𝐵𝑃𝑛𝑚𝜆𝑉𝐷  caused by software breaches. The total payoff of the 
vendor is given by  

 𝛱𝑁𝑃
𝑉𝐷 = 𝜃𝑆𝑁𝐵𝐵𝑃𝑅 − (𝛽𝑧𝑁𝐵𝐵𝑃

2 + 𝑝𝑁𝐵𝐵𝑃𝑛𝑚𝜆𝑉𝐷). (1) 

Participate (P): If the vendor chooses to participate, then the outcome is BBP. The vendor derives expected 
revenues 𝜃𝑆𝐵𝐵𝑃

𝐴 𝑅  from the third-party software, 1 pays the reliability investment cost 𝛽𝑧𝐵𝐵𝑃
2 , and incurs 

potential loss 𝑝𝐵𝐵𝑃
𝐴 𝑛𝑚𝜆𝑉𝐷 caused by software breaches. Let 𝑐𝑝 and 𝑐𝑓 represent the vendor’s unit processing 

and fixing cost, respectively. Thus, the vendor bears the total processing costs 𝑛𝑒𝑐𝑝 for all bug reports, as 

well as the total fixing costs 𝑝𝐵𝐵𝑃
𝐵 𝑛𝑒𝑐𝑓 for all valid bug reports. The total payoff of the software vendor is 

given by  

 𝛱𝑃
𝑉𝐷 = 𝜃𝑆𝐵𝐵𝑃

𝐴 𝑅 − (𝛽𝑧𝐵𝐵𝑃
2 + 𝑝𝐵𝐵𝑃

𝐴 𝑛𝑚𝜆𝑉𝐷 + 𝑛𝑒𝑐𝑝 + 𝑝𝐵𝐵𝑃
𝐵 𝑛𝑒𝑐𝑓). (2) 

The Platform (PF): Similarly, the platform can choose one of two options: 

Not Launch (NL): If the platform does not launch the BBP, then the outcome is NBBP. In this case, the 
platform derives expected revenues (1 − 𝜃)𝑆𝑁𝐵𝐵𝑃𝑅 from the third-party software and incurs the expected 
loss 𝑝𝑁𝐵𝐵𝑃𝑛𝑚𝜆𝑃𝐹 caused by potential software breaches. The total payoff of the platform is  

 𝛱𝑁𝐿
𝑃𝐹 = (1 − 𝜃)𝑆𝑁𝐵𝐵𝑃𝑅 − 𝑝𝑁𝐵𝐵𝑃𝑛𝑚𝜆𝑃𝐹 . (3) 

Launch (L): If the platform launches the BBP, the outcome then depends on the vendor’s choice. If the 
vendor chooses NP, the platform’s payoff is the same as the above NL case, given in Equation (3). If the 
vendor chooses P, the platform derives expected revenues (1 − 𝜃)𝑆𝐵𝐵𝑃

𝐴 𝑅  from the third-party software, 
incurs the expected loss 𝑝𝐵𝐵𝑃

𝐴 𝑛𝑚𝜆𝑃𝐹, and pays hackers who reported valid bugs the BBP rewards 𝑝𝐵𝐵𝑃
𝐵 𝑛𝑒𝑟. 

As a result, the total payoff of the platform can be written as 

 𝛱𝐿
𝑃𝐹 = (1 − 𝜃)𝑆𝐵𝐵𝑃

𝐴 𝑅 − (𝑝𝐵𝐵𝑃
𝐴 𝑛𝑚𝜆𝑃𝐹 + 𝑝𝐵𝐵𝑃

𝐵 𝑛𝑒𝑟). (4) 

Appendix A provides a summary of our model notations and explanations. 

Analysis and Results 

Consider a digital platform (PF) on which the third-party vendor (VD) develops, lists, and sells its own 
software applications. The platform (PF) is considering launching a Bug Bounty Program (BBP) to improve 
the third-party. In this section, we first examine the optimal strategies of the software vendor in Section 4.1 
and of the platform in Section 4.2. We then derive the conditions for BBP equilibrium and compare the 
software reliability level as well as social welfare under different equilibrium outcomes in Section 4.3.  

Optimal Participation Strategy of the Vendor 

After the software vendor decides to whether to participate the BBP program, it should determine the 
optimal investment level 𝑧𝑖  in software reliability accordingly. The vendor maximizes its payoff:  

 𝑚𝑎𝑥
𝑧𝑖

𝛱𝑗
𝑉𝐷(𝑧𝑖) (5) 

 
1 We only consider the expected revenue after the transient period, in which the software reliability level has 
been improved to 𝑆𝐵𝐵𝑃

𝐴 .  
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 𝑠. 𝑡. 𝑧𝑖 ≥ 0      
where 𝑖 = 𝐵𝐵𝑃 𝑜𝑟 𝑁𝐵𝐵𝑃, 𝑗 = 𝑃 𝑜𝑟 𝑁𝑃.    

Solving Problem (5), we obtain the optimal reliability investment level of the vendor and present it in 
Proposition 1.  

Proposition 1. (Optimal Reliability Investment Level) 

a. If the vendor participates in the BBP launched by the platform, the optimal reliability investment level 

is 𝑧𝐵𝐵𝑃
∗ =

𝑐𝑓𝑟(𝛼1+𝛼2)+(1−𝑓𝑟(𝛼1+𝛼2))(𝑅𝜃+λ𝑉𝐷(1−𝑟𝛼1))

2𝛽
; if it does not participate, the optimal reliability 

investment level is 𝑧𝑁𝐵𝐵𝑃
∗ =

𝑅𝜃+λ𝑉

2𝛽
.  

b. If the BBP-related bug-fixing cost is low, 𝑐𝑓 < 𝜆𝑉𝐷 + 𝑓(𝑅𝜃 + 𝜆𝑉𝐷(1 − 𝑟𝛼1)), 𝑧𝐵𝐵𝑃
∗  < 𝑧𝑁𝐵𝐵𝑃

∗ ; otherwise, 

𝑧𝐵𝐵𝑃
∗ ≥ 𝑧𝑁𝐵𝐵𝑃

∗ . 

Proposition 1 shows that when the third-party vendor chooses to participate in the BBP, its initial software 
reliability investment increases with the bug-fixing cost. It is because both the BBP and the vendor’s initial 
investment serve to enhance the software reliability and thus help reduce the potential breach loss. If the 
BBP is “expensive,” i.e., incurring in relatively high bug-fixing costs on the vendor, the vendor will instead 
increase its initial investment to improve the software’s reliability level more. When the bug-fixing cost 
continues to increase and reach a certain threshold 𝑐𝑓, the vendor’s optimal reliability investment level 

under participation becomes even higher than that under non-participation. 

We also examine how malicious hackers’ reward sensitivity level would affect the vendor’s optimal 
reliability investment, as summarized in Corollary 1.  

Corollary 1. (Impact of 𝜶𝟏 on Optimal Reliability Investment Level) 

If malicious hackers are sensitive to BBP rewards, 𝛼1 > 𝛼1
∗ =

𝜆𝑉𝐷+𝑓(𝑅𝜃+𝜆𝑉𝐷(1−𝛼2))−𝑐𝑓

2𝑓𝑟𝜆𝑉𝐷
, the vendor’s optimal 

reliability investment level 𝑧𝐵𝐵𝑃
∗  increases with 𝛼1; otherwise, 𝑧𝐵𝐵𝑃

∗  decreases with 𝛼1. 

 

 

Figure 1. Impact of 𝜶𝟏 on Optimal Reliability Investment Level 

 

We find that when the vendor participates in the BBP, the impact of malicious hackers’ reward sensitivity 
𝛼1  on the optimal reliability investment level is non-monotonic, as illustrated in Figure 1. There is a 
threshold value 𝛼1

∗. When the malicious hackers’ reward sensitivity 𝛼1 is relatively low, 𝛼1 < 𝛼1
∗, the vendor 

should decrease the reliability investment level as more hackers convert to be ethical. In this case, malicious 
hackers are not responsive to BBP rewards actively and thus are difficult to be converted. As a result, the 
marginal benefits of having more ethical hackers are high, which could benefit the vendor more significantly 
than the initial reliability investment. However, if the malicious hackers’ reward sensitivity exceeds the 
certain threshold 𝛼1

∗ , the number of participating ethical hackers has grown excessively large and the 
marginal benefits of converting more ethical hackers become low. Therefore, if 𝛼1

∗ increases further, the 

𝛼1
∗ 

𝛼1 
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vendor should increase its software reliability level so that participating hackers will discover fewer valid 
bugs, allowing the vendor to save enough money on BBP-related costs (i.e., report-processing and bug-
fixing costs). 

Next, we substitute the optimal reliability investment (𝑧𝐵𝐵𝑃
∗  and 𝑧𝑁𝐵𝐵𝑃

∗ ) into the vendor’s profit function 
(Equations (1) and (2)), to obtain the vendor’s total payoff under the BBP and NBBP outcomes. Comparing 
the vendor’s payoffs, we obtain its BBP participation condition in Proposition 2.  

Proposition 2. (Software Vendor’s Participation Decision) 

The third-party software vendor will participate in the BBP if and only if: (1)its potential loss due to 
security breaches is high, 𝜆𝑉𝐷 > 𝜆𝑉𝐷1 AND (2) its reliability investment efficiency is low, 𝛽 > 𝑚𝑎𝑥 {𝛽𝑉𝐷 , 𝛽1}. 

All threshold values in Propositions are presented in the Appendix B. 

Proposition 2 reveals the fundamental economic rationale of the third-party software vendor’s BBP 
participation decision. Intuitively, when the potential loss of security breach is significant, the vendor needs 
to actively search ways to improve the software reliability. For the vendor, there are two viable ways: 
increasing its initial reliability investment or leveraging hacker community through participating BBP. If 
the vendor’s reliability investment efficiency is high, it will opt for the first way only (i.e., not participating 
in the BBP) because its reliability investment alone is sufficient to reduce potential loss, which also avoids 
the BBP-related costs. But if the vendor’s reliability investment is inefficient, the BBP needs to adopt the 
BBP as a way to complement its own reliability investment. 

Corollary 2 below presents an interesting finding.   

Corollary 2. (Reliability Investment Level Comparison) 

When the vendor decides to participate the BBP, it will always decrease the initial reliability investment. 

Recall that Proposition 1 states that when the bug-fixing cost is high, the level of vendor’s reliability 
investment can be higher in the BBP outcome than NBBP outcome. Proposition 2, however, suggests that 
under such a scenario, the vendor then should choose not to participate in the BBP because participation 
will also result in lower profit for it. By integrating Propositions 1 and 2, we derive Corollary 2. This indicates 
that whenever the vendor chooses to participate in the BBP (thus to gain higher total payoffs), it shall reduce 
its own initial investment in the software reliability because now it could leverage BBP to enhance the 
software later.  

Optimal Launch Strategy of the Platform 

BBP imposes additional costs on the digital platform. We analyze when it is profitable for the platform to 
launch the BBP for the third-party vendor. We have the following findings.  

Proposition 3. (Platform’s Launch Decision) 

The platform will choose to launch the BBP:  

a. when the platform’s potential loss is high, 𝜆𝑃𝐹 ≥ 𝜆𝑃𝐹1 , and the vendor’s reliability investment 

efficiency is low, 𝛽 >  𝛽′  where 𝛽′ = {
𝛽1    𝑖𝑓  𝜆𝑉𝐷 < 𝜆𝑉𝐷1 
𝛽𝑃𝐹    𝑖𝑓 𝜆𝑉𝐷 ≥ 𝜆𝑉𝐷1 

. 

b. when the platform’s potential loss is low, 𝜆𝑃𝐹 < 𝜆𝑃𝐹1, and the vendor’s potential loss is low 𝜆𝑉𝐷 < 𝜆𝑉𝐷1 
and reliability investment efficiency is moderate 𝛽 ∈ [𝛽1, 𝛽𝑃𝐹]. 
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Figure 2. The Platform’s Launch Strategies of the BBP 

 

Proposition 3 describes two scenarios under which the platform should launch the BBP to gain higher 
payoffs. We illustrate them in Figure 2, and provide explanations as follows.  

Intuitively, the platform is more willing to launch BBP if it expects a high potential breach loss and 
meanwhile when the third-party vendor is not efficient in making software reliability investment. This is 
the case described by Proposition 3a. Although the platform needs to pay monetary rewards to ethical 
hackers, the benefits from the threat reduction and decreased potential loss make it worthwhile. This is the 
region I in Figure 2(a). 

The second case when the platform should opt for launching BBP is described by Proposition 3b and 
demonstrated in region III in Figure 2(b). Note that in this case, the platform expects a small loss even if a 
breach happens. Then what motivates the platform to launch BBP, given there are additional costs of doing 
so? This is a less intuitive but more interesting case. To understand the platform’s choices in 𝜆𝑃𝐹 < 𝜆𝑃𝐹1, we 
must take the vendor’s reaction into considerations as well. Recall the software vendor’s optimal reliability 

investment level, 𝑧𝐵𝐵𝑃
∗ =

𝑐𝑓𝑟(𝛼1+𝛼2)+(1−𝑓𝑟(𝛼1+𝛼2))(𝑅𝜃+λ𝑉𝐷(1−𝑟𝛼1))

2𝛽
 (Proposition 1). Note that 𝑧𝐵𝐵𝑃

∗  increases in 

𝜆𝑉𝐷 , the vendor’s potential loss due to security breaches. Hence, when 𝜆𝑉𝐷 > 𝜆𝑉𝐷1, the vendor’s initial 
reliability investment is sufficiently high so that the platform will not have interest in launching BBP to 
further improving software reliability, which is the region I of Figure 2(b). 

Next, we analyze the case of 𝜆𝑉𝐷 ≤ 𝜆𝑉𝐷1 . Note that 𝑧𝐵𝐵𝑃
∗  decreases in 𝛽 , vendor’s reliability investment 

efficiency. 𝜆𝑉𝐷 and 𝛽 thus have opposite effects on the optimal reliability investment level 𝑧𝐵𝐵𝑃
∗ .2 As a result, 

when both 𝜆𝑉𝐷  and 𝛽  are small, namely, 𝜆𝑉𝐷 < 𝜆𝑉𝐷1  and 𝛽 < 𝛽1 , vendor chooses to invest in software 
reliability at a moderate level. For the platform, the benefits of launching BBP are from reducing the 
potential loss caused by the security breaches. Since the platform’s loss is low when a breach happens, it is 
likely that the platform would consider the vendor’s initial reliability investment as sufficient. Thus, the 
platform will not have interest in launching BBP, as shown in the region II of Figure 2(b). 

When 𝛽  increases to a moderate level, 𝛽 ∈ [𝛽1, 𝛽𝑃𝐹] , the optimal reliability investment of the vendor 
decreases accordingly and becomes insufficient for the platform in the sense that the low software reliability 
induces too many software vulnerabilities and meanwhile generates too little revenue. Therefore, the 
platform now is willing to invest in the BBP to increase software reliability, expecting that it will obtain 
more revenues from end users and thus become more profitable. This is what happens in the region III in 
Figure 2(b).  

Finally, if the vendor’s reliability investment efficiency 𝛽 becomes very low, 𝛽 > 𝛽𝑃𝐹 , the third-party vendor 
will choose a very low reliability level in the first place. If the platform launches the BBP for the vendor 

 
2 Based on constraints illustrated in our model setup, 1 − 𝑓𝑟(𝛼1 + 𝛼2) > 0 and 1 − 𝑟𝛼1 ≥ 0. 
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under such a situation, it must pay significant rewards for many reported bugs because of the poor initial 
software reliability. The cost of launching a BBP exceeds the revenue gains and breach loss savings, the 
platform again loses interest in launching BBP, as shown in region IV in Figure 2(b).  

Combining the findings from Propositions 2 and 3, we conclude the equilibrium outcome conditions in 
Proposition 4.  

Proposition 4. (Equilibrium Outcome) 

When the potential loss of both the vendor and platform are high, 𝜆𝑉𝐷 ≥ 𝜆𝑉𝐷1 and 𝜆𝑃𝐹 ≥ 𝜆𝑃𝐹1, and when 
the vendor’s reliability investment efficiency is low, 𝛽 > 𝛽𝐵𝐵𝑃 = 𝑚𝑎𝑥 {𝛽𝑉𝐷 , 𝛽𝑃𝐹}, the equilibrium outcome 
is BBP; Otherwise, it is NBBP. 

 

 

Figure 3. Conditions for BBP and NBBP Outcome 

 

Figure 3 depicts the regions of two equilibrium outcomes (BBP and NBBP), as well as various strategy 
combinations of the platform and vendor that lead to the respective equilibrium outcome –the strategy pair 
of (L, P) that results in BBP, and (L, NP), (NL, P), and (NL, NP) that result in NBBP.  

The BBP equilibrium appears only in the upper-right region of Figure 3(a), which is when security breach 
will cause significant loss for both the vendor and platform and when the vendor cannot efficiently invest 
in software reliability alone. As a result, both the platform and vendor are willing to pay extra efforts to 
leverage external hackers’ capability to improve software security. This finding validates Google’s policy of 
launching the BBP primarily for third-party software with more than 100 million installs (Vaas, 2019), 
which could potentially result in huge financial loss if a breach happens on such large-installation-base 
applications. 

In regions of NBBP as the equilibrium, some are because the platform’s and the vendor’s incentives are not 
well aligned. For example, in the region (L, NP) in Figure 3(a), the platform has an incentive to launch a 
BBP given the vendor’s low reliability investment efficiency, but the vendor chooses not to participate the 
BBP because its potential loss due to security breach is estimated to be low. We have seen such cases in 
practice. For example, SlimSocial (Facebook, 2023), a third-party Facebook software that helps users to 
launch Facebook quickly, decided not to participate the BBP offered by Facebook, because the expected loss 
on the vendor’s side, even if an attack happens and succeeds, won’t be significant.  

Similarly, we also observe that sometimes the vendor has a stronger incentive than the platform to use BBP, 
such as the (NL, P) region in Figure 3(b), in which the vendor is facing large breach loss and low reliability 
investment efficiency and thus would like to adopt BBP, while the platform is not willing to launch BBP due 
to its expected low breach loss. 
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 Software Reliability Level and Social Welfare Analysis 

Although BBP relies on external hackers to improve the software reliability and reduce the chance of 
software breach loss, it also has an impact on the vendor’s behavior. We have shown that the vendor will 
always reduce its initial software reliability investment once the BBP is in use. As a result, it is unclear 
whether the overall software reliability in the BBP outcome gets improved, compared to the NBBP outcome. 
Consequently, it is also unclear whether end users are enjoying a more secure environment, and whether 
the total social welfare is enhanced. In this subsection, we examine and compare the software reliability 
level and social welfare under BBP and NBBP outcomes.  

We present the software reliability comparison finding in Proposition 5.  

Proposition 5. (Reliability Level Comparison) 

Only when the vendor’s reliability investment efficiency is low, 𝛽 > 𝛽𝑅𝐿, the use of BBP helps to increase 
the overall software reliability; otherwise, it decreases the overall software reliability. 

This is an important finding. It shows that the use of BBP, even though it decreases the number of malicious 
hackers and imposes additional costs for bug-searching-and-fixing, might reduce the third-party software 
reliability and result in a more vulnerable marketplace. It is because after adopting BBP, the vendor will 
always reduce its own investment in software reliability. Investing less in the initial software design stage, 
the vendor expects to leverage more on ethical hackers to discover software vulnerabilities in the later stage. 
This, however, only works if the vendor’s reliability investment efficiency  is low, so that BBP is more 
economical and effective in improving the software reliability level. Otherwise, the reduction in vendor’s 
initial reliability investment cannot be fully offset by the reliability improvement due to the BBP use, which 
hence results in a decreased in overall software reliability.   

Proposition 5 reports the comparison of reliability levels without taking into account the platform or 
vendor’s decisions. In Corollary 3, we further specify the parameter conditions under which BBP is adopted 
by both the platform and vendor but results in a lower overall software reliability.  

Corollary 3. (Conditions when BBP Reduces the Overall Reliability Level) 

When the bug processing cost under BBP is low, 𝑐𝑝 < 𝑐𝑝𝑟𝑙, and the platform’s potential loss due to breaches 

is high, 𝜆𝑃𝐹 > 𝜆𝑃𝐹𝑟𝑙, in the region of 𝛽𝐵𝐵𝑃 < 𝛽 < 𝛽𝑅𝐿 , both the platform and vendor will choose to use BBP, 
which however results in a lower overall software reliability level than the NBBP outcome. 

 

 

Figure 4. Software Reliability Level 

 

A low processing cost of bug reports motivates the software vendor to participate in the BBP and reap the 
benefits of threat reduction at a low cost. Meanwhile, a large potential loss caused by security breaches 
makes the BBP attractive to the platform. In such a situation, the platform and vendor are more likely to 
launch and participate in the BBP.3 We can prove that there exists a non-empty region of (𝛽𝐵𝐵𝑃 , 𝛽𝑅𝐿), as 
shown in Figure 4, such that the BBP is the equilibrium outcome and it results in lower overall software 
reliability than NBBP. 

 
3 The threshold value 𝛽𝐵𝐵𝑃  becomes smaller and thus leads to a higher chance of BBP equilibrium outcome.  
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Next, we study the social welfare change after using BBP. Total social welfare is the sum of software end 
users’ surplus, the third-party vendor’s payoff and the platform’s payoff. Let 𝑣𝑆𝑖

  denote the value derived 
by software end users gain from consuming the software product, where 𝑖 = 𝐵𝐵𝑃 𝑜𝑟 𝑁𝐵𝐵𝑃. The total social 
welfare can be written as 

 𝑊𝑁𝐵𝐵𝑃 = 𝛱𝑁𝑃
𝑉𝐷 + 𝛱𝑁𝐿

𝑃𝐹 + (𝑣 − 𝑅)𝑆𝑁𝐵𝐵𝑃
  (6) 

and 

 𝑊𝐵𝐵𝑃 = 𝛱𝑃
𝑉𝐷 + 𝛱𝐿

𝑃𝐹 + (𝑣 − 𝑅)𝑆𝐵𝐵𝑃
𝐴   (7) 

in the NBBP and BBP outcome respectively.  

Proposition 6 reports our comparison result. 

Proposition 6. (Social Welfare Comparison)  

Only when the vendor’s reliability investment efficiency is low, 𝛽 > 𝛽𝑆𝑊, the use of BBP increases total 
social welfare; otherwise, it decreases the total social welfare.   

When the vendor’s reliability investment is inefficient, BBP becomes economically attractive. We find that 
as 𝛽 is sufficiently large, 𝛽 > 𝛽𝑆𝑊, it is socially optimal to use BBP. BBP will lead to higher end user surplus, 
and higher payoffs for the vendor and platform compared to the NBBP outcome.  

Proposition 6 also suggests that if 𝛽 does not exceed the threshold value 𝛽𝑆𝑊 , BBP will decrease the total 
social welfare. Corollary 4 below highlights the scenarios under which that the platform and the vendor will 
choose to launch and participate BBP but the use of BBP indeed is not socially optimal. 

Corollary 4. (Conditions when BBP Reduces the Social Welfare) 

When the bug processing cost under BBP is low, 𝑐𝑝 < 𝑐𝑝𝑠𝑤, the platform’s potential loss due to breaches is 

high, 𝜆𝑃𝐹 > 𝜆𝑃𝐹𝑠𝑤, and end user’s value of consuming the software is high, 𝑣 > 𝑣𝑠𝑤, in the region of 𝛽𝐵𝐵𝑃 <
𝛽 < 𝛽𝑆𝑊, both the platform and vendor will choose to use BBP, which however results in a lower total 
social welfare than the NBBP outcome. 

 

 

Figure 5. Social Welfare 

 

The intuition here is similar to that for Corollary 3. As explained, a lower bug processing cost and a higher 
potential loss due to security breaches result in a lower threshold value 𝛽𝐵𝐵𝑃, which means that the BBP is 
more likely to be the equilibrium outcome while also more likely to result in lower overall software 
reliability. Low software reliability hurts end users. In particular, end users’ surplus (𝑣𝑆𝐵𝐵𝑃

𝐴 ) will get a large 
reduction if the parameter 𝑣 value is big.4 In such a case, we can prove there exists an non-empty region of 
(𝛽𝐵𝐵𝑃 , 𝛽𝑆𝑊), as shown in Figure 5, such that BBP is the equilibrium outcome in this region and it results in 
lower social welfare than NBBP. Note that in this region, both the platform and vendor are better off by 
using BBP, but end users are worse off.  

 
4  As cp  decreases while λPF  and v increase, the threshold value βBBP  becomes smaller and βSW  becomes 

larger, and eventually βBBP< βSW holds.  
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Finally, we combine all above findings to offer a comprehensive view of how the BBP use would affect 
software reliability and social welfare.  

 

Proposition 7. (Reliability Level and Social Welfare) 

When the bug processing cost is low, 𝑐𝑝 < 𝑚𝑖𝑛 {𝑐𝑝𝑠𝑙
, 𝑐𝑝𝑠𝑤

}, the platform’s potential loss due to security 

breaches is high, 𝜆𝑃𝐹 > 𝑚𝑎𝑥 {𝜆𝑃𝐹_𝑠𝑤 , 𝜆𝑃𝐹_𝑠𝑤}, and users’ value of consuming the software is high,  𝑣 > 𝑣𝑠𝑤, 
the BBP  

a. reduces both software reliability and social welfare if 𝛽 < 𝛽𝑆𝑊; 

b. reduces software reliability level but increases social welfare if 𝛽𝑆𝑊 < 𝛽 < 𝛽𝑅𝐿;  

c. increases both software reliability and social welfare if 𝛽 > 𝛽𝑅𝐿 . 

 

 

Figure 6. The Impact of BBP on Social Welfare and Reliability Level 

 

We use Figure 6 to illustrate Proposition 7. When the third-party vendor is very efficient in reliability 
investment, 𝛽 < 𝛽𝐵𝐵𝑃, either the platform or the vendor, or both will find that the benefits brought on by 
BBP cannot offset the extra costs imposed on them. Hence, the outcome is NBBP. When the vendor’s 
reliability investment efficiency decreases, 𝛽 ∈ [𝛽𝐵𝐵𝑃 , 𝛽𝑆𝑊] , both the vendor and platform will find it 
profitable to use BBP. But in this region, because the vendor decreases initial investment, end users are 
worse off and total social welfare turns out to be lower. This is the worst-case scenario that the suppliers 
(both the vendor and platform) are over-incentivized. The adoption of a reliability-improving strategy 
(BBP) in fact results in a less secure environment. This finding implies that software vendors with a strong 
and skilled security team may not need BBP. The use of BBP will make these vendors under-invest in their 
software reliability at the first place, eventually hurting end users’ utility and leading to a lower social 
welfare.  

If the vendor’s reliability investment efficiency keeps reducing, in the region of 𝛽 ∈ [𝛽𝑆𝑊 , 𝛽𝑅𝐿], users are still 
worse off for using a lower reliability product but the total social welfare is higher compared to the NBBP 
outcome; and when 𝛽 increases further, beyond 𝛽𝑅𝐿 , BBP leads to both higher software reliability and 
higher social welfare. This is because the software vendor’s initial reliability investment is not sufficient. 
BBP now serves as an effective and economically efficient way to improve the overall reliability of the 
software. End users now are better off as well. 

Conclusion 

Consider a digital platform (PF) on which the third-party vendor (VD) develops, lists, and sells its own 
software applications. In this paper, we model the interactions between a platform and a third-party 
software vendor in considering using BBP to improve software reliability. Expecting that the BBP could 
reduce security threat, increase software revenue, but also incur additional costs, the platform must make 
the decision of whether and when to launch the BBP. Similarly, the vendor must consider whether to 
participate in the BBP and if so, how should it adjust the initial reliability investment level.  
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Our findings show that not all vendors prefer to participate the BBP, and when they do, they will reduce 
their initial reliability investment level as a response. Meanwhile, we find that that even when the potential 
loss of the vendor and the platform are relatively low, the platform may still have an incentive to launch a 
BBP for those vendors who have moderate reliability investment efficiency. However, vendors could refuse 
to participate in such a BBP. We conclude that the BBP is profitable for both the vendor and platform only 
when the vendor is inefficient in the software reliability investment and when the potential loss for both are 
high.  

While a common belief is that BBP could leverage external hackers’ efforts to deliver high software 
reliability, this paper provides some counter-intuitive but reasonable findings. We show that software 
reliability might be lower with the BBP than the without, especially when the vendor’s own reliability 
investment efficiency is sufficiently high. In such a case, although both the platform and the vendor greatly 
benefit from the threat reduction due to BBP use, software end users are worse off because BBP reduces the 
vendor’s software reliability investment incentive in the first place. As a result, users are using a less reliable 
product and their surpluses decrease, which consequently could even lead to a lower social welfare. This 
finding suggests that the regulator should pay extra attention to such BBPs that are used by software 
vendors with relatively professional security teams.  

Our study can be extended in several ways. First, we investigate the optimal BBP adoption strategies for 
one platform and one vendor. A possible future direction is to employ the optimal BBP launch strategies for 
one platform and multiple vendors. Further, in this study, we assume bug bounty reward amounts are 
exogenously given. An extension to our work is to incorporate bug bounty reward as the platform’s 
endogenous decision. 
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Appendix 

Appendix A. Model Notations and Definitions 

Notations Definitions 

𝑟 Bug bounty reward for each valid bug reported by ethical hackers 

𝛼1(𝛼2) Malicious (Non-malicious) hackers’ reward sensitivity coefficient   

𝑛𝑒(𝑛𝑚) 
The number of ethical (malicious) hackers in BBP and NBBP scenario; 

In NBBP: 𝑛𝑒
 = 0, 𝑛𝑚 = 1; In BBP: 𝑛𝑒 

 = (𝛼1 + 𝛼2)𝑟, 𝑛𝑚 = 1 − 𝛼1𝑟 

𝑆0 Intrinsic reliability level of the third-party software 

𝛽 Vendor’s reliability investment cost per unit reliability level squared 

BBP, NBBP Lower scripts to indicate the outcome (with or without BBP). 

𝑆𝑖 

Reliability level of software in case 𝑖 = 𝐵𝐵𝑃 or 𝑁𝐵𝐵𝑃, 𝑆𝑖 < 1. 

In the 𝐵𝐵𝑃 outcome, 𝑆𝐵𝑃𝑃
𝐵 (𝑆𝐵𝐵𝑃

𝐴 ) denotes the reliability level of software 
before (after) the transient stage. 

𝑝𝑖 Vulnerability of software in case 𝑖 = 𝐵𝐵𝑃 or 𝑁𝐵𝐵𝑃; 𝑝𝑖 = 1 − 𝑆𝑖. 

𝑓 
Reliability level improvement due to fixing per valid bug. It measures the 
BBP’s efficiency.  

𝑧𝑖 

Reliability level improvement due to the vendor’s reliability investment, 

under cases 𝑖 = 𝐵𝐵𝑃 or 𝑁𝐵𝐵𝑃. It measures the efficiency of vendor’s 
reliability investment. 

𝑐𝑝 Vendor’s (unit) cost of processing and verifying one bug report 

𝑐𝑓 Vendor’s (unit) cost of fixing one valid bug  

𝜆𝑃𝐹(𝜆𝑉𝐷) Potential loss of the platform (vendor) caused by software breaches 

𝑅 
Maximum revenue earned from the third-party software (under the 

hypothetical situation of 𝑆 = 1) 

𝜃 
Percentage of revenue obtained by the software vendor; 1 − 𝜃 represents 
percentage of revenue obtained by the platform 

Table 1. Model Notations and Definitions 
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Appendix B. Threshold Values 

1. 𝛽1 = 𝑚𝑎𝑥 {
𝑅𝜃+𝜆𝑉𝐷

2(1−𝑆0)
,

𝑟(𝛼1+𝛼2)𝑐𝑓+(1−𝑓𝑟(𝛼1+𝛼2))(𝑅𝜃+𝜆𝑉𝐷(1−𝑟𝛼1))

2(1−𝑆0)
} 

2. 𝛽𝑉𝐷 =
𝑟𝑐𝑓

2(𝛼1+𝛼2)2+2𝑐𝑓(𝛼1+𝛼2)(1−𝑓𝑟(𝛼1+𝛼2))(𝑅𝜃+(1−𝑟𝛼1)𝜆𝑉𝐷)−(𝑅𝜃(2−𝑓𝑟(𝛼1+𝛼2))+(2+𝑓𝑟2𝛼1(𝛼1+𝛼2)−𝑟(𝛼1+𝑓𝛼1+𝑓𝛼2))𝜆𝑉𝐷)(𝛼1𝜆𝑉𝐷+𝑓(𝛼1+𝛼2)(𝑅𝜃+(1−𝑟𝛼1)𝜆𝑉𝐷))

4(1−𝑆0)(𝛼1+𝛼2)𝑐𝑓+4(𝑐𝑝(𝛼1+𝛼2)−(1−𝑆0)(𝜆𝑉𝐷+𝑓(𝛼1+𝛼2)(𝑅𝜃+𝜆𝑉𝐷−𝑟𝛼1𝜆𝑉𝐷))) 
 

3. 𝛽𝑃𝐹 =
1

2(1−𝑆0)(𝑓(𝛼1+𝛼2)(𝑅(1−𝜃)+𝜆𝑃𝐹)+𝛼1𝜆𝑃𝐹−𝑟(𝛼1+𝛼2)(1+𝑓𝛼1𝜆𝑃𝐹))
(𝑅𝜃(2𝑓(𝛼1 + 𝛼2)(𝑅(1 − 𝜃) + 𝜆𝑃𝐹) + 𝛼1𝜆𝑃𝐹) −

𝑟𝑅𝜃(𝛼1 + 𝛼2)(1 + 𝑓2(𝛼1 + 𝛼2)(𝑅(1 − 𝜃) + 𝜆𝑃𝐹) − 2𝑓𝛼1𝜆𝑃𝐹) + 𝑐𝑓(𝛼1 + 𝛼2)(−𝑟2(𝛼1 + 𝛼2) + 𝑅(1 −

𝜃)(𝑓𝑟(𝛼1 + 𝛼2) − 1) − (1 − 𝑟𝛼1)(1 − 𝑓𝑟(𝛼1 + 𝛼2))𝜆𝑃𝐹) − 𝑓𝑟3𝛼1(𝛼1 + 𝛼2)2(1 + 𝑓𝛼1𝜆𝑃𝐹)𝜆𝑉𝐷 + (𝑅(1 −

𝜃)(𝛼1 + 2𝑓𝛼1 + 2𝑓𝛼2) + 2(𝛼1 + 𝑓𝛼1 + 𝑓𝛼2)𝜆𝑃𝐹)𝜆𝑉𝐷 − 𝑟((𝛼1 + 𝛼2)(1 − 𝑓𝑅(1 − 𝜃)((2 + 𝑓)𝛼1 + 𝑓𝛼2)) −
((1 + 𝑓(4 + 𝑓))𝛼1

2 + 2𝑓(2 + 𝑓)𝛼1𝛼2 + 𝑓2𝛼2
2)𝜆𝑃𝐹)𝜆𝑉𝐷 + 𝑟2(𝛼1 + 𝛼2)(𝑓𝑅𝜃(𝛼1 + 𝛼2) + 𝛼1𝜆𝑉𝐷 + 𝑓(𝛼1 +

𝛼2 + 2𝛼1
2𝜆𝑃𝐹)𝜆𝑉𝐷 + 𝑓2𝛼1(𝛼1 + 𝛼2)(2𝜆𝑃𝐹𝜆𝑉𝐷 + 𝑅(𝜃𝜆𝑃𝐹 + 𝜆𝑉𝐷 − 𝜃𝜆𝑉𝐷))))  

4. 𝛽𝑅𝐿 =
𝑐𝑓(𝛼1+𝛼2)(𝑓𝑟(𝛼1+𝛼2)−1)+𝛼1𝜆VD+(2𝑓(𝛼1+𝛼2)−𝑓2𝑟(𝛼1+𝛼2)2)(𝑅𝜃+𝜆VD−𝑟𝛼1𝜆VD)

2𝑓(1−𝑆0)(𝛼1+𝛼2)
 

5. 𝛽𝑆𝑊 =
1

4((1−𝑆0)(𝛼1(𝜆𝑃𝐹+𝜆𝑉𝐷)+𝑓(𝛼1+𝛼2)(𝑣+𝜆𝑃𝐹+𝜆𝑉𝐷)−𝑟(𝛼1+𝛼2)(1+𝑓𝛼1(𝜆𝑃𝐹+𝜆𝑉𝐷)))−𝑐𝑝(𝛼1+𝛼2)−𝑐𝑓(1−𝑆0)(𝛼1+𝛼2))
[−𝑟𝑐𝑓

2(𝛼1 + 𝛼2)2 −

𝑓𝑟3𝛼1(𝛼1 + 𝛼2)2𝜆𝑉𝐷(2 + 𝑓𝛼1(2𝜆𝑃𝐹 + 𝜆𝑉𝐷)) + 2(𝑅𝜃𝛼1𝜆𝑃𝐹 + 𝛼1𝜆𝑉𝐷(𝑣 + 2𝜆𝑃𝐹 + 𝜆𝑉𝐷) + 𝑓(𝛼1 + 𝛼2)(𝑅𝜃 + 𝜆𝑉𝐷)(2𝑣 −

𝑅𝜃 + 2𝜆𝑃𝐹 + 𝜆𝑉𝐷)) − 2𝑐𝑓(𝛼1 + 𝛼2)(𝑣 − 𝑓𝑟𝑣(𝛼1 + 𝛼2) + 𝜆𝑃𝐹 + 𝜆𝑉𝐷 − 𝑟(𝛼1 + 𝑓𝛼1 + 𝑓𝛼2)(𝜆𝑃𝐹 + 𝜆𝑉𝐷) + 𝑟2(𝛼1 +

𝛼2)(1 + 𝑓𝛼1(𝜆𝑃𝐹 + 𝜆𝑉𝐷))) + 2𝑟2(𝛼1 + 𝛼2)(𝛼1𝜆𝑉𝐷 + 𝑓2𝛼1(𝛼1 + 𝛼2)(𝑅𝜃𝜆𝑃𝐹 + 𝜆𝑉𝐷(𝑣 + 2𝜆𝑃𝐹 + 𝜆𝑉𝐷)) + 𝑓(𝑅𝜃(𝛼1 +

𝛼2) + 𝜆𝑉𝐷(𝛼1 + 𝛼2 + 𝛼1
2(2𝜆𝑃𝐹 + 𝜆𝑉𝐷)))) + 𝑟(𝑓2𝑅2𝜃2(𝛼1 + 𝛼2)2 − 2𝑅𝜃(𝛼1 + 𝛼2)(1 + 2𝑓𝛼1𝜆𝑃𝐹 + 𝑓2(𝛼1 + 𝛼2)(𝑣 +

𝜆𝑃𝐹)) − 𝜆𝑉𝐷(𝛼1
2(2𝑓(2 + 𝑓)𝑣 + 2𝜆𝑃𝐹 + 𝜆𝑉𝐷 + 𝑓(4 + 𝑓)(2𝜆𝑃𝐹 + 𝜆𝑉𝐷)) + 𝛼2(2 + 𝑓2𝛼2(2(𝑣 + 𝜆𝑃𝐹) + 𝜆𝑉𝐷)) + 2𝛼1(1 +

𝑓𝛼2(2(1 + 𝑓)𝑣 + (2 + 𝑓)(2𝜆𝑃𝐹 + 𝜆𝑉𝐷)))))] 

6. 𝜆𝑉𝐷1 =
(𝑐𝑓−𝑓𝑅𝜃)(𝛼1+𝛼2)

𝛼1(1+𝑓(1−𝑟𝛼1))+𝑓(1−𝑟𝛼1)𝛼2
 

7. 𝜆𝑃𝐹1 =
(𝑟−𝑓𝑅(1−𝜃))(𝛼1+𝛼2)

𝛼1(1+𝑓−𝑓𝑟𝛼1)+𝑓(1−𝑟𝛼1)𝛼2
  

8. 𝜆𝑃𝐹𝑟𝑙 =
𝑟(𝛼1+𝛼2)

𝛼1(1−𝑓𝑟(𝛼1+𝛼2))
  

9. 𝜆𝑃𝐹𝑠𝑤 =
1

2(1−𝑆0)𝛼1(1−𝑓𝑟(𝛼1+𝛼2))(𝑐𝑓(𝛼1+𝛼2)−𝛼1𝜆VD−𝑓(𝛼1+𝛼2)(𝑅𝜃+𝜆VD−𝑟𝛼1𝜆VD))
(𝑐𝑓

2(1 − 𝑆0)(𝛼1 + 𝛼2)2(2 − 𝑓𝑟(𝛼1 + 𝛼2)) − (1 − 𝑆0)((𝛼1 +

𝛼2)(2𝑟 + 𝑓𝑅𝜃(𝑓𝑟(𝛼1 + 𝛼2) − 2)) + (𝛼1(1 + 𝑓(1 − 𝑟𝛼1)) + 𝑓(1 − 𝑟𝛼1)𝛼2)(𝑓𝑟(𝛼1 + 𝛼2) − 2)𝜆VD)(𝛼1𝜆VD + 𝑓(𝛼1 + 𝛼2)(𝑅𝜃 + 𝜆VD −

𝑟𝛼1𝜆VD)) − 2𝑐𝑝(𝛼1 + 𝛼2)(𝛼1𝜆VD + (2𝑓(𝛼1 + 𝛼2) − 𝑓2𝑟(𝛼1 + 𝛼2)2)(𝑅𝜃 + 𝜆VD − 𝑟𝛼1𝜆VD)) + 2𝑐𝑓(𝛼1 + 𝛼2)(𝑐𝑝(𝛼1 + 𝛼2)(1 −

𝑓𝑟(𝛼1 + 𝛼2)) + (1 − 𝑆0)(𝛼1 + 𝛼2)(𝑟 − 𝑓𝑅(2 − 𝑓𝑟(𝛼1 + 𝛼2)) + (𝛼1(1 + 𝑓 − 𝑓𝑟𝛼1) + 𝑓(1 − 𝑟𝛼1)𝛼2)(−2 + 𝑓𝑟(𝛼1 + 𝛼2))𝜆VD))) 

10. 𝑐𝑝𝑟𝑙 =
(1−𝑆0)(2−𝑓𝑟(𝛼1+𝛼2))(𝛼1𝜆𝑉𝐷−𝑐𝑓(𝛼1+𝛼2)+𝑓(𝛼1+𝛼2)(𝑅𝜃+𝜆𝑉𝐷−𝑟𝛼1𝜆𝑉𝐷))2

2(𝛼1+𝛼2)(𝑐𝑓(𝛼1+𝛼2)(𝑓𝑟(𝛼1+𝛼2)−1)+𝛼1𝜆𝑉𝐷+(2𝑓(𝛼1+𝛼2)−𝑓2𝑟(𝛼1+𝛼2)2)(𝑅𝜃+𝜆𝑉𝐷−𝑟𝛼1𝜆𝑉𝐷))
 

11. 𝑐𝑝𝑠𝑤 =
1

2(𝛼1+𝛼2)(𝑐𝑓(𝛼1+𝛼2)(1−𝑓𝑟(𝛼1+𝛼2))−𝛼1𝜆VD+(𝑓2𝑟(𝛼1+𝛼2)2−2𝑓(𝛼1+𝛼2))(𝑅𝜃+𝜆VD−𝑟𝛼1𝜆VD))
𝑐𝑓

2(1 − 𝑆0)(𝛼1 + 𝛼2)2(2 − 𝑓𝑟(𝛼1 + 𝛼2)) +

2𝑐𝑝(𝛼1 + 𝛼2)(𝛼1𝜆VD + (2𝑓(𝛼1 + 𝛼2) − 𝑓2𝑟(𝛼1 + 𝛼2)2)(𝑅𝜃 + 𝜆VD − 𝑟𝛼1𝜆VD)) + (1 − 𝑆0)(𝛼1𝜆VD + 𝑓(𝛼1 + 𝛼2)(𝑅𝜃 + 𝜆VD −

𝑟𝛼1𝜆VD))(𝛼1(𝜆PF + 𝜆VD)) − 𝑓2𝑟2𝛼1(𝛼1 + 𝛼2)2𝜆VD − 2(𝑓(𝛼1 + 𝛼2)(𝑅𝜃 + 𝜆VD) + 𝑟(𝛼1 + 𝛼2)(2 + 𝑓2(𝛼1 + 𝛼2)(𝑅𝜃 + 𝜆VD) +

𝑓𝛼1(2𝜆PF + 3𝜆VD))) + 2𝑐𝑓(𝛼1 + 𝛼2)(𝑐𝑝(𝛼1 + 𝛼2)(1 − 𝑓𝑟(𝛼1 + 𝛼2)) − (1 − 𝑆0)(𝑓2𝑟2𝛼1(𝛼1 + 𝛼2)2𝜆VD + 2𝑓(𝛼1 + 𝛼2)(𝑅𝜃 + 𝜆VD) +

𝛼1(𝜆PF + 2𝜆VD) − 𝑟(𝛼1 + 𝛼2)(1 + 𝑓2(𝛼1 + 𝛼2)(𝑅𝜃 + 𝜆VD) + 𝑓𝛼1(𝜆PF + 3𝜆VD)))) 

12. 𝑣𝑠𝑤 = 𝑚𝑎𝑥 {𝑣𝑉𝐷 , 𝑣𝑃𝐹}, where  

𝑣𝑉𝐷 =
1

(1−𝑆0)(2−𝑓𝑟(𝛼1+𝛼2))(𝑐𝑓
2(𝛼1+𝛼2)2+(𝛼1𝜆VD+𝑓(𝛼1+𝛼2)(𝑅𝜃+(1−𝑟𝛼1)𝜆VD))2)+2(𝛼1+𝛼2)(𝑐𝑝((𝑓2𝑟(𝛼1+𝛼2)2 −2𝑓(𝛼1+𝛼2))(𝑅𝜃+(1−𝑟𝛼1)𝜆VD)−𝛼1𝜆VD)+𝑐𝑓(𝑐𝑝(𝛼1+𝛼2)(1−𝑓𝑟(𝛼1+𝛼2))−(1−𝑆0)(2−𝑓𝑟(𝛼1+𝛼2))(𝛼1𝜆VD+𝑓(𝛼1+𝛼2)(𝑅𝜃+(1−𝑟𝛼1)𝜆VD))))

((1 − 𝑆0)(2𝑅𝜃 −

2𝜆𝑃𝐹 − 𝑟(𝑓(𝛼1 + 𝛼2 )(𝑅𝜃 − 𝜆𝑃𝐹) − 𝛼1𝜆𝑃𝐹 + 𝑟(𝛼1 + 𝛼2)(1 + 𝑓𝛼1𝜆𝑃𝐹)))(𝑐𝑓

2
(𝛼1 + 𝛼2)

2
+ (𝛼1𝜆𝑉𝐷 + 𝑓(𝛼1 + 𝛼2)(𝑅𝜃 + 𝜆𝑉𝐷 − 𝑟𝛼1𝜆𝑉𝐷))

2
− 2𝑐𝑓 (𝛼1 + 𝛼2)(𝛼1𝜆𝑉𝐷 + 𝑓(𝛼1 + 𝛼2)(𝑅𝜃 + 𝜆𝑉𝐷 − 𝑟𝛼1𝜆𝑉𝐷))) − 𝑐𝑝(𝛼1 +

𝛼2)(𝜆𝑃𝐹 − 𝑅𝜃 + 𝑟(𝑓(𝛼1 + 𝛼2)(𝑅𝜃 − 𝜆𝑃𝐹) − 𝛼1 𝜆𝑃𝐹 + 𝑟(𝛼1 + 𝛼2)(1 + 𝑓𝛼1𝜆𝑃𝐹))) − 2𝑐𝑝(𝛼1 + 𝛼2)(𝑟𝑅𝜃(𝛼1 + 𝛼2)(1 − 𝑓
2

(𝛼1 + 𝛼2)(𝑅𝜃 − 𝜆𝑃𝐹) + 2𝑓𝛼1𝜆𝑃𝐹) − 2𝛼1𝜆𝑃𝐹𝜆𝑉𝐷 + 𝑓𝑟
3

𝛼1(𝛼1 + 𝛼2)
2

(1 + 𝑓𝛼1𝜆𝑃𝐹)𝜆𝑉𝐷 +

𝑟((𝛼1 + 𝛼2)(1 − 𝑓𝑅𝜃((2 + 𝑓)𝛼1 + 𝑓𝛼2)) + ((1 + 𝑓(4 + 𝑓))𝛼1

2
+ 2𝑓(2 + 𝑓)𝛼1𝛼2 + 𝑓

2
𝛼2

2
)𝜆𝑃𝐹)𝜆𝑉𝐷 + 2𝑓(𝛼1 + 𝛼2 )(𝑅𝜃 − 𝜆𝑃𝐹)(𝑅𝜃 + 𝜆𝑉𝐷) + 𝑅𝜃𝛼1(𝜆𝑉𝐷 − 𝜆𝑃𝐹) − 𝑟

2
(𝛼1 + 𝛼2)(𝑓𝑅𝜃(𝛼1 + 𝛼2) + 𝛼1 𝜆𝑉𝐷 + 𝑓(𝛼1 +

𝛼
2

+ 2𝛼
1

2
𝜆

𝑃𝐹
)𝜆

𝑉𝐷
+ 𝑓

2
𝛼

1
(𝛼

1
+ 𝛼

2
)(𝑅𝜃(𝜆

𝑃𝐹
− 𝜆

𝑉𝐷
) + 2𝜆

𝑃𝐹
𝜆

𝑉𝐷
))))  
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𝑣𝑃𝐹 =
1

2(1 − 𝑆0
)(𝛼1𝜆PF − 𝑟(𝛼1 + 𝛼2

)(1 + 𝑓𝛼1𝜆PF
)) (𝑐𝑓

(𝛼1 + 𝛼2
) − 𝛼1 𝜆VD − 𝑓(𝛼1 + 𝛼2

)(𝑅𝜃 + 𝜆VD − 𝑟𝛼1𝜆VD
))

(𝑐𝑓

2
(1 − 𝑆0)(𝛼1 + 𝛼2)

2
(𝑅(1 − 𝜃)(𝑓𝑟(𝛼1 + 𝛼2) − 2) − 2𝜆PF + 𝑟(𝛼1 + 𝑓𝛼1

+ 𝑓𝛼2)𝜆PF − 𝑟
2

(𝛼1 + 𝛼2)(1 + 𝑓𝛼1𝜆PF)) − 2𝑐𝑝(𝛼1 + 𝛼2)(𝑟𝑅𝜃(𝛼1 + 𝛼2)(1 − 𝑓
2

(𝛼1 + 𝛼2)(𝑅(𝜃 − 1) − 𝜆PF) + 2𝑓𝛼1𝜆PF) + 𝑓𝑟
3

𝛼1(𝛼1 + 𝛼2)
2

(1 + 𝑓𝛼1𝜆PF )𝜆VD + 𝑟((𝛼1 + 𝛼2)(1

+ 𝑓𝑅(1 − 𝜃)((2 + 𝑓)𝛼1 + 𝑓𝛼2 )) + ((1 + 𝑓(4 + 𝑓))𝛼1

2
+ 2𝑓(2 + 𝑓)𝛼1 𝛼2 + 𝑓

2
𝛼2

2
)𝜆PF)𝜆VD + 2𝑓(𝛼1 + 𝛼2)(𝑅(𝜃 − 1) − 𝜆PF )(𝑅𝜃 + 𝜆VD ) − 𝛼1(2𝜆PF𝜆VD + 𝑅(𝜃𝜆PF + 𝜆VD

− 𝜃𝜆VD)) − 𝑟
2

(𝛼1 + 𝛼2)(𝑓𝑅𝜃(𝛼1 + 𝛼2) + 𝛼1𝜆VD + 𝑓(𝛼1 + 𝛼2 + 2𝛼1

2
𝜆PF)𝜆VD + 𝑓

2
𝛼1(𝛼1 + 𝛼2)(2𝜆PF𝜆VD + 𝑅(𝜃𝜆PF + 𝜆VD − 𝜃𝜆VD)))) − (1 − 𝑆0)(𝛼1𝜆VD + 𝑓(𝛼1 + 𝛼2)(𝑅𝜃

+ 𝜆VD − 𝑟𝛼1𝜆VD))(−𝑓𝑟
3

𝛼1(𝛼1 + 𝛼2)
2

(1 + 𝑓𝛼1𝜆PF)𝜆VD + 2𝑓(𝛼1 + 𝛼2)(𝑅(1 − 𝜃) + 𝜆PF)(𝑅𝜃 + 𝜆VD) + 𝑟(𝑅(𝛼1 + 𝛼2)(𝑓
2

𝜃(𝛼1 + 𝛼2)(𝑅(−1 + 𝜃) − 𝜆PF) − 2 − 𝑓(2 + 𝜃)𝛼1𝜆PF)

+ (𝑓𝛼1(𝛼1 + 𝛼2)(3𝑅(−1 + 𝜃) − 4𝜆PF) + 𝑓
2

(𝛼1 + 𝛼2)
2

(𝑅(−1 + 𝜃) − 𝜆PF) − 𝛼1

2
𝜆PF)𝜆VD) + 2𝛼1(𝜆PF𝜆VD + 𝑅(𝜆PF + 𝜆VD − 𝜃𝜆VD )) + 𝑟

2
(𝛼1 + 𝛼2 )(𝑓𝑅𝜃(𝛼1 + 𝛼2) + 𝛼1𝜆VD

+ 𝑓(𝛼1 + 𝛼2 + 2𝛼1

2
𝜆PF)𝜆VD + 𝑓

2
𝛼1(𝛼1 + 𝛼2)(2𝜆PF𝜆VD + 𝑅(𝜃𝜆PF + 𝜆VD − 𝜃𝜆VD)))) − 2𝑐𝑓(𝛼1 + 𝛼2)(𝑐𝑝(𝛼1 + 𝛼2)(𝑟

2
(𝛼1 + 𝛼2) + 𝑅(1 − 𝜃)(1 − 𝑓𝑟(𝛼1 + 𝛼2)) + (1 − 𝑟𝛼1)(1

− 𝑓𝑟(𝛼1 + 𝛼2))𝜆PF) + (1 − 𝑆0)(𝑓𝑟
3

𝛼1(𝛼1 + 𝛼2)
2

(1 + 𝑓𝛼1𝜆PF)𝜆VD + 2𝑓(𝛼1 + 𝛼2)(𝑅(−1 + 𝜃) − 𝜆PF)(𝑅𝜃 + 𝜆VD) − 𝛼1(𝑅𝜆PF + 2(𝑅 − 𝑅𝜃 + 𝜆PF)𝜆VD) + 𝑟(𝑅(𝛼1 + 𝛼2)(1

− 𝑓
2

𝜃(𝛼1 + 𝛼2)(𝑅(𝜃 − 1) − 𝜆PF) + 𝑓(1 + 𝜃)𝛼1𝜆PF) + (𝑓𝛼1(𝛼1 + 𝛼2)(3𝑅(1 − 𝜃) + 4𝜆PF) − 𝑓
2

(𝛼1 + 𝛼2)
2

(𝑅(𝜃 − 1) − 𝜆PF) + 𝛼1

2
𝜆PF)𝜆VD) − 𝑟

2
(𝛼1 + 𝛼2)(𝑓𝑅𝜃(𝛼1 + 𝛼2)

+ 𝛼1𝜆VD + 𝑓(𝛼1 + 𝛼2 + 2𝛼1

2
𝜆PF)𝜆VD + 𝑓

2
𝛼1(𝛼1 + 𝛼2)(2𝜆PF𝜆VD + 𝑅(𝜃𝜆PF + 𝜆VD − 𝜃𝜆VD )))))) 
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