
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

Rising like a Phoenix: Emerging from the
Pandemic and Reshaping Human Endeavors
with Digital Technologies ICIS 2023

Digital Learning and IS Curricula

Dec 11th, 12:00 AM

Bringing Light into the Dark - Improving Students’ Black-Box Bringing Light into the Dark - Improving Students’ Black-Box

Testing Competencies using Game-Design Elements Testing Competencies using Game-Design Elements

Christine Jokisch
University of Goettingen, christine.jokisch@uni-goettingen.de

Sebastian Hobert
University of Goettingen, sebastian.hobert@th-luebeck.de

Matthias Schumann
University of Goettingen, mschuma1@uni-goettingen.de

Follow this and additional works at: https://aisel.aisnet.org/icis2023

Recommended Citation Recommended Citation
Jokisch, Christine; Hobert, Sebastian; and Schumann, Matthias, "Bringing Light into the Dark - Improving
Students’ Black-Box Testing Competencies using Game-Design Elements" (2023). Rising like a Phoenix:
Emerging from the Pandemic and Reshaping Human Endeavors with Digital Technologies ICIS 2023. 7.
https://aisel.aisnet.org/icis2023/learnandiscurricula/learnandiscurricula/7

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in Rising like a Phoenix: Emerging from the Pandemic and
Reshaping Human Endeavors with Digital Technologies ICIS 2023 by an authorized administrator of AIS Electronic
Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/icis2023
https://aisel.aisnet.org/icis2023
https://aisel.aisnet.org/icis2023
https://aisel.aisnet.org/icis2023/learnandiscurricula
https://aisel.aisnet.org/icis2023?utm_source=aisel.aisnet.org%2Ficis2023%2Flearnandiscurricula%2Flearnandiscurricula%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/icis2023/learnandiscurricula/learnandiscurricula/7?utm_source=aisel.aisnet.org%2Ficis2023%2Flearnandiscurricula%2Flearnandiscurricula%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 1

Bringing Light into the Dark - Improving
Students’ Black-Box Testing Competencies

using Game-Design Elements
Completed Research Paper

Christine Jokisch
University of Goettingen

Platz der Goettinger Sieben 5
37073 Goettingen, Germany

christine.jokisch@uni-goettingen.de

Sebastian Hobert
University of Goettingen

Platz der Goettinger Sieben 5
37073 Goettingen, Germany

sebastian.hobert@uni-goettingen.de

Matthias Schumann
Platz der Goettinger Sieben 5
37073 Goettingen, Germany

mschuma1@uni-goettingen.de

Abstract

As software becomes increasingly complex, there is a growing need to enhance quality
assurance in software engineering. However, the lack of qualified human resources is a
barrier to performing software testing activities in software companies. At the same time,
software testing can be considered a tedious task and is often not done at the necessary
level of detail, e.g., designing test cases. However, it is crucial for novice programmers
and testers to acquire and improve their testing competencies, and to utilize testing
techniques, e.g., black-box testing. Teaching software testing is often based on theoretical
instructions, resulting in limited practical experience. As a result, students may not
develop the necessary testing mindset, highlighting the need for more extensive software
testing education. To address this issue, this paper utilizes a design science research
approach to implement a gamified learning system that promotes black-box testing
competencies with empirical insights from a field test.

Keywords: Software Testing Education, Design Science Research, Testing Competencies

Introduction

As information systems become complex, there is a growing need to prioritize quality assurance in software
engineering (Costa & Oliveira, 2019). An essential part of ensuring product quality is adequate testing. By
running programs or models with specific inputs, software testing verifies that the software behaves as
expected, thus, enhancing the software quality (Valle et al., 2020). Identifying and addressing existing
defects before the customer receives the product can increase its reliability (Valle et al., 2020).

Although software testing is recognized as a crucial activity in assuring the quality of software products, the
industry has reported a shortage of specialized and qualified professionals in this field. Indeed, both senior
developers and novice programmers have difficulties applying test techniques, criteria, and testing tools to
entire programs or functionalities (Scatalon et al., 2017; Valle et al., 2020). The lack of competencies may
be linked to a deficiency in software testing education and a lack of motivation in the workplace (Valle et
al., 2020). Even though, software testing and quality assurance are considered essential parts of software

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 2

engineering processes, it does not intake an equal part of software testing education (Hynninen et al., 2019),
i.e., software testing often occupies a less significant role in industry and academia (Krutz et al., 2014). This
highlights the need for academia to prepare novice programmers and engineers for future careers in this
field (Costa & Oliveira, 2019; Sánchez-Gordón & Moreno, 2014).

To enhance student's ability to perform testing activities, institutions are taking steps to promote and
provide training opportunities (Paschoal et al., 2019). However, some institutions or testing courses only
provide theoretical instructions on testing concepts, with little or no practical experience, resulting in
students not developing the habit or awareness of testing (Hynninen et al., 2019). Thus, there is a need to
use educational strategies to teach software testing practically, beyond the traditional and theoretical
instructions (Paschoal et al., 2019).

There is a wide range of techniques within software testing. One testing technique that received less
attention is called black-box testing. As the black-box testing does not reveal the internal source code of the
software under test, students need to design test cases based on the software component specifications
(Sharif & Hemmati, 2018). Those test cases can be designed both manually and automatically (Sharif &
Hemmati, 2018). Although automated testing has become popular with the development of scripting
languages and testing tools, manual testing remains necessary for a significant number of tests, e.g., end-
to-end data checks of data transfer and values (Sharif & Hemmati, 2018). For this, critical thinking and
practical knowledge are required, e.g., to discover flaky tests, oracle problems, or edge cases. However,
manual testing is often perceived as tedious and monotonous by developers or test engineers and is rarely
done at the required granularity, resulting in poor project quality (Garousi et al., 2020). As a result, software
testing is considered an unmotivating task, which is time-, cost-, and effort-consuming (Jesus et al., 2018).

For this reason, motivation and discipline have become crucial elements of software testing education
(Garousi et al., 2020). The use of game-design elements aims to increase motivation and engagement for
improving education and training processes (Valle et al., 2020). In this study, we will address the problem
of inadequate training in functional testing and provide a practical solution that supports students’ learning
process by using game-design elements. Finally, this paper will present a software testing learning system
to enhance the functional testing competencies of novice programmers. To achieve our goal, we follow a
design science research approach based on Hevner (2007) to answer the following research question:

RQ: How should a motivational information system be designed in order to teach students

black-box testing competencies?

First, we will provide a brief overview of the fundamentals of software testing and gamification. Then we
will outline the research methodology. Following this, we will present two design iterations, which were
developed through six consecutive steps. In the final stage, we will present the results of a field test,
consisting of pre- and post-tests conducted with undergraduate students in an information systems course.
Upon the completion of the evaluation and a field test, we will present design principles. Finally, we will
conclude by highlighting the limitations of the study and future research directions.

Theoretical Background and Related Research

Software Testing in Software Engineering

Software testing is an integral part of software engineering processes since it examines whether the software
works accurately according to the system specifications and fulfills user requirements (Hynninen et al.,
2019; Thakur & Sharma, 2018). In particular, software testing is the process of running a program or system
and aims to find errors by enabling to analyze of whether such software behaves as expected (Thakur &
Sharma, 2018). However, a detailed analysis of the system can detect errors and defects which can be fixed
by debugging (Valle et al., 2020).

Moreover, within the software development life cycle, validation and verification are two processes used
to test the software (Kaprocki et al., 2015; Thakur & Sharma, 2018). Firstly, software validation refers to
checking software functionality to determine if it meets the customer's requirements. It ensures the
completion of the software based on the user requirements and checks if the right product is built (Thakur
& Sharma, 2018). However, software verification is a process of ensuring that the software product meets

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 3

Test Cases

Prepare
Test Data

Input Data

Test Case
Design

Run
SUT

Actual Result

Test
Execution

Compare
Results

Test
Report

Expected Result

Design Execution Evaluation and Report 1 2 3

all the necessary business requirements. The verification checks if the product is built right. The verification
process focuses on the design and system specifications (Thakur & Sharma, 2018).

Figure 1 illustrates the testing activities within the testing process based on Alhroob et al. (2012). These
activities also encompass the fundamental core competencies of the black-box software testing process: test
design, test execution and test analysis. Firstly, the testing process starts with the design process by
designing test cases that contain conditions for inputs and likely output of a system (mark 1). The test cases
are then prepared based on the testing strategy, e.g., techniques such as black-box or white-box techniques
(Alhroob et al., 2012). Afterward, each test case and its test data are executed on the software under test
(SUT) in the execution phase. After the test case execution, the process will deliver an actual result as output
(mark 2) and be used to compare and analyze the expected result from the test case design (mark 3). A
software or test case bug may be detected when the actual result does not coincide with the expected result.
Thus, the test engineer needs to report the result (Jain & Kaluri, 2015).

Figure 1. Software Testing Process based on Alhroob et al. (2012)

In summary, there are three different tests: black-box testing, white-box testing, and grey-box testing
(Hooda & Chhillar, 2015). While grey- and white-box testing depend and varies on the internal source code
of a software, black-box testing is independent of technical understanding and programming language.
Therefore, it is more appropriate for novice developers. For this reason, we focus on black-box testing.

Software testing principles have been identified as one of the areas in software engineering, that should be
integrated early in the curriculum. In this regard, approaches for teaching black-box competencies have
been developed in prior research: Elbaum et al. (2007) introduced as one of the first, a web-based gamified
learning environment Bug Hunt, interactive and engaging methods to teach software testing principles,
specifically both white-box and black-box testing lessons. Yujian and Clarke (2016) proposed WReSTT-
CyLE (Web-Based Repository of Software Testing Tutorials - a Cyberlearning Environment), which
includes social features and testing objects to enhance students’ conceptual understanding and practical
skills in software testing by providing tutorials and testing objects. However, no detailed description of the
testing (Paschoal et al., 2019) objects in the WReSTT-CyLE was given. Yet, these learning environments are
limited to 1) creating simple test cases with few numerical values instead of considering multi-step test cases
with non-numerical inputs, and 2) focusing on one aspect within the software testing process (design).
Thus, competencies, e.g., during the execution of test cases are not promoted. This study aims to develop a
learning environment that promotes the holistic understanding and application of black-box testing
competencies using different testing techniques. Thus, we aim to overcome limitations of existing
approaches in terms of the test case complexity and scope.

Gamification

In recent years gamification has been increasingly used for innovative teaching approaches by utilizing a
gameful design for inducing experiences from games to support activities to increase students’ motivation
and engagement (Deterding et al., 2011). However, according to Kapp (2012), “Gamification is using game-
based mechanics, aesthetics, and game-thinking to engage people, motivate action, promote learning,
and solve problems.“ Thus, the positive outcomes and behavior are the results of the process of
gamification. However, by creating a motivational learning environment, we aim to improve the user
experience and make the learning process more enjoyable. Moreover, depending on the choice of game
mechanics, qualitative and quantitative performance results can be influenced (Sailer, 2016). Thus, we
believe that gamification can improve the quality of designed test cases.

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 4

Based on this, game-design elements can be derived using the mechanics, dynamics, and aesthetics (MDA)
framework (Hunicke et al., 2004). The MDA Framework enables a user-centered game-design model to
ground the design process of a gamified learning system (Hunicke et al., 2004). Thus, it provides a specific
user-centered focus on the user’s needs and learning objectives. The mechanics describe the components
of a game at the level of data representations and algorithms, e.g., points, badges, or leaderboards. However,
the dynamics focus on the run-time behavior and the input and interactions by users, e.g., progression,
collection, or cooperation. Lastly, aesthetics are emotions that reflect the feelings evoked by the mechanics
and dynamics. In addition, a variety of elements could help address different psychological needs, e.g.,
autonomy, competence, and social relatedness based on the self-determination theory (Deci & Ryan, 2012).
Thus, in this paper, we will use the MDA framework to address the three psychological needs of the self-
determination theory (SDT).

Research Design

To address our research goal of designing a gamified learning platform to improve students' testing
competencies of black-box testing, we use the design science research approach based on Hevner (2007).

As illustrated in Figure 2, we used the design science research approach by Hevner (2007) and applied six
sequential research steps based on the relevance, rigor, and the design cycles. The first step of the design
science research process started by specifying the problem and presenting the objective of a solution based
on current research (step 1). Afterward, we conducted a literature review following the methodology by
Webster and Watson (2002). Based on the literature review, we identified functional and game-based
requirements for testing factual concepts (step 2). Subsequently, the requirements form the fundamentals
for the conceptual artifact (step 3). Finally, we evaluated the concept through semi-structured interviews
conducted with 21 experts, including developers, test engineers, or quality assurance engineers, who
possess a minimum of two years' experience in software testing (step 4). The subsequent design phase
consists of revising the concept based on the derived feedback from the experts and implementing the
concept into a software system (step 5). The design cycle ends with an evaluation of the implemented
gamified learning platform of black-box testing followed by the documentation of the design knowledge
based on Gregor et al. (2020) formulation of design principles (step 6).

Designing and Evaluating Gamified Black-box Testing System

In the following section, we will summarize the results of the two design iterations based on six consecutive
steps and present the design of the learning application called iTest app. During the design process, we
adopt the Anchored Instruction Design approach (Cognition and Technology Group, 1993) and Bloom’s

Figure 2. Design Science Research Model

Application Domain

Academic teaching in Software
Engineering Courses

People

Students
Developer

QA Engineers

Problem

Teaching Principles of Black-
Box Testing

Environment Design Science

Evaluation
Conceptual Artifact and

Implementation

Foundations

Scientific Literature, MDA
Framework, Anchored
 Instructions Design,

Bloom’s Taxonomy

Results

Design Requirements
Design Product

Design Processes
Design Principles

Knowledge Base

D
e

s
ig

n
 S

c
ie

n
c

e
 M

o
d

e
l

 S

te
p

s
 Deriving Requirements from

Scientific Literature
 Problem Identification and

Objective of a Solution 1 2 3
Designing a Conceptual Artifact

of a Learning Platform

 Evaluating the Conceptual
Artifact by Experts

 5 Evaluating the Artifact and
Documenting the Results

6 4

Design
Designing Conceptual Artifact

and Implementation

Rigor

Cycle

Design

Cycle

Relevance

Cycle

Revising the Conceptual
Artifact and Implementing

1 2 3

4 5

6

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 5

revised taxonomy (Anderson & Krathwohl, 2001; Bloom, 1956). It provides an educational solution, e.g.,
information systems (IS) courses, to teach the principles of black-box testing competencies and make
students aware of their actions and related black-box testing concepts.

Problem Identification and Objective of a Solution

The foundation of our problem identification is based on the low attention derived from both the
educational context and current research regarding learning-based approaches to improve black-box
competencies (Ottfutt et al., 2011). First, the manual design and execution of test cases play a subordinate
role in current research. Instead, due to an increasing number of test cases and execution frequency, the
automation of test cases is coming to the fore (Haas et al. 2021). Thus, significant research efforts have been
made toward optimizing automated testing, e.g., regression test optimization. However, only a few research
efforts attempt to transfer test techniques, e.g., the boundary value analysis to manual black-box testing
(Porto et al., 2021). Nevertheless, there is still a considerable need for manual design and execution of test
cases as both techniques complement each other (Haas et al., 2021). Thus, there is a need for prospective
software testers or testers to develop a wide range of knowledge in using different testing techniques.

However, in most cases, students in information technology, software engineering, computer science, or
information systems are either not introduced to testing concepts or are often lectured about testing
theoretically (Santos et al., 2021). Focusing only on factual knowledge limits the learning outcome, which
are the basic cognitive levels of educational learning objectives according to Bloom’s taxonomy (Bloom,
1956). According to the taxonomy, the cognitive levels are remembering, understanding, applying,
analyzing, evaluating, and creating. Though remembering, understanding, and applying are the basic
cognitive levels, analyzing, evaluating, and creating refer to the higher level of the cognitive level. However,
learning factual knowledge is insufficient to fulfill employees’ tasks, e.g., as a test engineer in a company.
Indeed, students get little practical training in designing test cases based on functionalities or requirements
specifications which are the foundations of black-box testing. Consequently, it may lead to detrimental
habits that are difficult to change (Sharif & Hemmati, 2018).

One of the drawbacks of traditional learning environments is that they often fail to engage students
sufficiently as software testing tends to be less captivating. Furthermore, the latest research conducted by
Blanco et al. (2023) concluded that students who participated in the gamified course outperformed the
control group. In addition, they noted that the key to success is the gamified experience design. This can be
transposed onto the scenario of black-box testing. As gamification promotes interactivity, it aligns with the
need for hands-on exploration in the realm of software systems, especially in black-box testing scenarios.

Thus, this paper aims to provide a comprehensive educational experience on the design, execution,
evaluation, and reporting of test cases. By using an accessible web application as a supplementary learning
tool, lecturers can facilitate knowledge transfer and students by enabling them to acquire practical insights
into software testing methods compared to non-system based approaches. The primary novelty of our
approach lies in the investigation of the impact of gamification on the teaching of functional software
testing, as well as the introduction of practical testing objects to facilitate the learning of black-box testing.

In general, the main objectives of the design science research process is to:

(1) Enhance the quality of written test cases by integrating game-design elements.
(2) Encourage students to manually execute and review test cases.
(3) Foster reflection on test cases created by other students.
(4) Enhance knowledge of black-box testing by integrating practical-oriented testing objects.

By incorporating the concept of black-box testing into educational programs, the goal is to elevate the
understanding and importance of software testing, as well as stimulate interest and motivation towards this
area. Therefore, early exposure and education in software testing can potentially contribute to the success
of software projects in the workplace.

Deriving Requirements from Scientific Literature

Based on scientific literature and the software testing process, we identified the key requirements necessary
for designing a conceptual artifact during the first iteration of our study. We applied a selective literature
analysis based on Webster and Watson (2002) using the search term: (“Gami*”) AND (“Black*box Testing”

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 6

OR “Functional Testing”) AND (“Manual”). We identified requirements for designing a conceptual artifact
on seven databases (e.g., ACM Digital Library or IEEE) and differentiated the requirements between (1)
core functional requirements of the learning system, and (2) gamification-based requirements.

Core Functional Requirements (𝑹𝑭)

Finally, we identified five functional requirements forming the base of the learning system (See Table 1).

To differentiate between exercises, we utilized Bloom's Taxonomy (Bloom, 1956), which offers various
options for determining the tasks on the learning platform. The platform provides students with the
opportunity to (1) remember fundamental facts about functional testing, (2) understand the use of
functional testing, (3) apply knowledge on various realistic objects, (4) analyze, and (5) evaluate test cases.

To avoid passive and decontextualized knowledge transfer, we adopted the anchored instruction design
approach based on video material (Paschoal et al., 2019). This approach requires designing a
technologically-supported learning environment that demands and encourages active, problem-oriented
learning (Cognition and Technology Group, 1993). Thus, the learning application provides video-based
learning materials (→RF1) as anchors and offers independent and explorative problem recognition,
definition, and solving. Moreover, the learning platform includes also an aligned quiz (→RF2) consisting of
questions about functional testing to strengthen the knowledge about testing (Jesus et al., 2019; Valle et al.,
2020; Yujian & Clarke, 2016). Additionally, a pivotal element of the proposed learning platform is the
utilization of testing objects (→RF3), which serve as compact representations of various functionalities. The
integration of testing objects, e.g., real functional objects, facilitates the transition from theoretical concepts
to practical applications, thus, enabling a more profound level of learning (Yujian & Clarke, 2016). As a
result, the execution of test cases (→RF4) becomes a straightforward task, in which students are expected to
apply the test cases to the associated testing object and analyze the actual results with the expected results.
As a last identified requirement, the test cases need to be evaluated (→RF5) based on the manually executed
tests. This involves critical reflection on the designed test cases, evaluating their quality, providing feedback,
and taking appropriate actions, e.g., submitting a report if the test case is insufficiently designed.

Gamification-based Requirements (𝑹𝑮)

By incorporating game-design elements into the gamified learning system, we aim to positively impact the
learning process as it can address different psychological needs based on the self-determination theory
(Deci & Ryan, 2012). For this, we identified eight game-design elements.

Profile. Using a social profile (→RG1) that summarizes and records all associated mechanics data can draw
attention to individual testing activities and values (Costa & Oliveira, 2019; Kris & Heider, 2020). As
software testing consists of different tasks (design, execution, evaluation) the data can be published on the
profile, leading to the dynamic expression and the need for competence and social relatedness.

Points. By collecting points (→RG2), e.g., experience points or after completing exercises, one’s current
progress can be represented (Clarke et al., 2014). Moreover, according to Valle et al. (2020), points maintain
users’ attention for conducting tasks proposed since it promotes competition among the students. As a
result, points can increase the user’s engagement and generate peer pressure to keep playing (Kris & Heider,
2020), thus supporting the need for competence according to the Self-Determination Theory.

Requirements Bloom’s Taxonomy Exemplary References

RF1
Providing video-based learning material to gain theoretical
knowledge about functional testing.

Remember
Cognition and Technology

Group (1993); Paschoal et al.
(2019); Elbaum et al. (2007)

RF2 Testing theoretical knowledge on functional testing by a quiz. Understand
Valle et al. (2020); Jesus et al.

(2019); Yujian and Clarke (2016)

RF3
Designing test cases considering different input combinations
based on different feasible testing objects and requirements.

Apply
Valle et al. (2020); Clarke et al.

(2014); Elbaum et al. (2007)

RF4
Run tests manually and analyze results with the expected
results.

Analyze Scatalon et al. (2017)

RF5
Evaluating and reporting created test cases with options to
take appropriate actions if necessary.

Evaluate Scatalon et al. (2017)

Table 1. Core Functional Requirements

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 7

Level. Based on collected points, a user’s level (→RG3) represents the visual progression of one’s current
knowledge state (Jesus et al., 2019). Moreover, the level system can cause a peer-pressure which represents
the level of testing skills (Parizi, 2016). However, it can also enhance the user's sense of achievement upon
completing tasks and reaching a higher level (Valle et al. 2020), thus promoting the need for competence.

Progress bars. Using progress bars (→RG4) for exercises, students are given control over their learning
process and monitor their testing activities, leading to the dynamic progression (Yujian & Clarke, 2016).
Moreover, it provides individual feedback and encourages students to set their own goals and develop
effective learning strategies (Yujian & Clarke, 2016), thereby fostering the need for autonomy.

Quests. Quests (→RG5) are tasks that serve as a real-time feedback mechanism, providing students with
updates on their progress toward achieving learning objectives (Jesus et al., 2019). Moreover, quests are
designed to represent a journey of obstacles that students must overcome (Garcia et al., 2017; Jesus et al.,
2018), e.g., the difficulty of designing test cases based on testing objects can increase, which could lead to
the feeling of competence when students overcome these obstacles.

Badges. Badges (→RG6) are a visual representation of achievements or milestones that can trigger the
dynamic collection. They are obtained for completing specific activities, e.g., discovering edge cases. The
representation can foster the need for competence by reflecting the user's performance (Garcia et al., 2017).
Thus, badges act as a feedback mechanism, showing the user's progress and accomplishments.

Leaderboard. The leaderboard (→RG7) is a feedback mechanism that enables users to monitor their
ranking compared to others in the learning environment (Garcia et al., 2017), e.g., based on cumulated
experience points (Yujian & Clarke, 2016). While leaderboards provide motivational feedback, they can also
promote dynamic competition as users strive to outperform each other (Jesus et al., 2019). To address the
need for autonomy, it is advisable to provide an opt-in option for leaderboards (Jesus et al., 2019).

Social Rating. For ensuring the quality of activities, social ratings (→RG8), e.g., star rating can be used
on designed test cases, thus, give them more freedom to assess test cases (Porto et al., 2021). Based on Kapil
Singi (2020), a star taking (0-5 stars scale) can be used to foster the dynamic competition among students
since the rating is an indicator of one’s performance and thus, address the psychological needs for
autonomy and competence.

First Iteration: Designing the Conceptual Artifact

According to the third step of the design science research approach, we designed a conceptual artifact based
on the derived requirements from the knowledge base. Figure 3 illustrates the overall concept.

The proposed concept comprises five integrated components that are designed as exercises within the
learning application, which are aligned with the core functional requirements. To comprehend the concept,
we developed visual mockups that illustrate the functional requirements and incorporate game-design
elements, as outlined before. The mockups depict an overview of learning sessions that guide the user
through the main components of functional requirements in a sequential manner. These components

Test Case
Design

Test Case
Execution

Test Case
Evaluation

1.
 R

em
em

b
er

2
.

U
n

d
er

st
a

n
d

3
.

A
p

p
ly

4
.

A
n

a
ly

ze

5
.

E
v

a
lu

a
te

Learning Exercises

Aim: Students’
are able to
define, recall and
recognize testing
techniques

Build up knowledge Practice knowledge Demonstrate knowledge

Aim: Students’
are able to classify,
recognize,
distinguishing
testing
techniques

Aim: Students’
are able to apply
black-box
technique on
authentic
objects

Aim: Students’
are able to
evaluate and
report peers’
test cases

Video-based
material

Theoretical
Quiz

Figure 3. Overall Concept of the Learning System

Aim: Students’
are able to execute
peers’ test cases
and analyze
content and inter-
relationships

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 8

include: acquiring knowledge through the video-based learning material, completing a quiz, and designing,
executing, and evaluating test cases.

Figure 4. The Conception of Test Design and Execution Process

To enhance students' learning experience, the motivational information system is designed with several
exercises. The first exercise refers to video-based learning (→RF1) aimed at building knowledge through
observation. The student's progress in each exercise is supported by a horizontal progress bar (→RG4) and
associated quests (→RG5) as feedback mechanisms to track and show the current achieved goals. Moreover,
the student will receive points (→RG2) and badges (→RG6) if an exercise is completed. The points are part
of a level system (→RG3) that indicates the student's level of knowledge. Additionally, students can share
their opinions and rate the exercise using a rating system.

In the subsequent exercise, the students' theoretical knowledge is evaluated through a quiz (→RF2) about
functional testing. Upon answering all questions correctly, the exercise leads to practical exercises. The
practical exercises consist of designing a test case (→RF3) based on a predefined form and a testing object,
e.g., a login system. The predefined form consists of input fields about the overall test suite, a short
description of the test case, the technique used, and dynamically expandable test steps. The test steps are
composed of a category, description, and input data. Subsequently, an expected result is also to be specified.
After designing test cases, students can execute a test case (→RF4) created by another student. During the
manual execution, the underlying testing object or functionality is displayed, allowing all steps to be run
through consecutively. If any conspicuousness is found, the test cases can be reported which is accompanied
by an evaluation of a test case (→RF5) using a star rating system (→RG8). Additionally, qualitative feedback
can be given. Finally, the user profile summarizes the achievements, progress, and results, e.g., a
leaderboard (→RG7) and a level system (→RG3) based on received points.

First Iteration: Evaluating the Conceptual Artifact by Experts

After designing a conceptual artifact based on the requirements from scientific literature, we conducted 22
guided interviews with experts, including developers, test engineers, and test managers with knowledge
about functional testing to gather feedback on the conceptual artifact. The interviews were structured in
three blocks: The first block consisted of an introduction to the project's motivation. Then, in the second
block, challenges and solutions were questioned. In the third block, the mockups were presented
successively. For each mockup, the following questions were asked:

(1) missing functionalities,
(2) improvements to existing functionalities,
(3) missing clarity or traceability on functionalities,
(4) missing motivational elements, and lastly,
(5) improvements of motivational elements.

An excerpt of the result is shown in Table 2. We considered results where the experts' feedback showed
agreement.

2. Test Execution Process 1. Test Design Process

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 9

Function Description Interview Reference

Introduction Introduce functions by using an onboarding system. Expert 1, 4, 12

Test Case Design
Adding Preconditions to the test case design. Expert 8, 3, 5

Reduce Information fields on test case design. Expert 7, 9, 14

Test Case Execution Possibility to report each step. Expert 2, 14

Test Case Evaluation
Comment function when completing the test execution. Expert 3, 4, 5, 9, 11, 13

Add attachments when completing the execution. Expert 10, 2, 20

Profile Adding an option about publishing profile information. Expert 5, 18

Leaderboard
Reset the leaderboard based on recently created test cases. Expert 8, 19

Adding unranked status when reaching a lower rank. Expert 3, 4, 5, 8

Points
Allocation of points based on test case complexity, e.g., steps, received
evaluations, and when executing test cases manually.

Expert 2, 3, 6, 7, 10, 14

Table 2. Summarized Feedback on the Conceptual Artifact

General Feedback. As an additional function, three experts suggested the implementation of an
onboarding system for first-time usage to provide users with a step-by-step guide, “We should guide people
and say, ‘Once you've done this, write it down here.’” (Exp-4) Moreover, regarding the test case design
process, three experts claim a notable need to add preconditions, which are understood as a series of steps
that must be completed before adding new steps to a test case. Further, three experts suggested reducing
the number of information fields, e.g., ID or browser type, to prevent an information overload.

Process-related Feedback. Regarding the test case execution process, two experts suggested
implementing a feedback function when executing each step of a test case, “This 'passed' or 'failed' must be
possible for each step, so one can say, 'Okay, it works up to that point, and then it doesn 't anymore.’”
(Exp-14). Similarly, six experts suggested a comment function when evaluating test cases, enabling
communication between the designer and the executioner. In addition, three experts emphasized the need
for attachments to display actual results.

Gamification Feedback. The three game-design elements that received the most feedback in the
interviews were the profile, leaderboard, and point system. For the profile, experts suggested making the
visibility and accessibility optional, “It's nice to have the option to decide that I don't want people to see
that I only have 2 points when all my friends have a hundred." (Exp-5). However, the leaderboard received
different feedback from the experts. Two experts proposed expanding the leaderboard by adding more
parameters, e.g., renewing at regular intervals. Additionally, four experts suggested adding an unranked
status when reaching a certain lower rank. Regarding the game-design element points, several experts
recommended widening the allocation of points, e.g., allocating points based on the test case complexity.

Second Iteration: Revising the Conceptual Artifact

The objective of the second design iteration is to refine the concept based on the feedback received from the
first evaluation and develop a prototypical implementation. Consequently, after the first design iteration,
the core processes for test case design, execution, and evaluation were thoroughly optimized.

The following changes were made based on the interviews:

The initial step involves integrating an onboarding system to assist users in navigating the learning platform
for the first time. In this onboarding system, we introduce contextual knowledge, and provide step-by-step
instructions during the initial interaction, thereby it intakes an informative role and keeps the users
engaged with the system. Thus, we add the onboarding system (→RG9) as an motivational requirement.

Regarding the test case design (→RF3), we agreed there is a need to add preconditions to a test case to verify
the procedural validity of the test case. Moreover, we also agreed that during the test case execution (→RF4),
there is a need for a stepwise comment function, which will improve the traceability of feedback and
encourage students to reflect on individual test case steps. However, a significant part of the modifications
involves the activities on the test case evaluation (→RF5). As several experts emphasized the significance of

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 10

a comment and an attachment function, we aim to incorporate them in the next design process. This
approach will promote interaction and peer feedback among the students.

As part of the game-design elements, we included an option to configure profiles (→RG1) as visible or
invisible. Using the freedom of choice, we aim to support the needs of the users based on the self-
determination theory (Deci & Ryan, 2012). However, the most significant changes were made in how and
when the system allocates points (→RG5). In the conception, points for manually executing test cases were
allocated only marginally. We plan to change this by implementing events that reward users for completing
certain tasks for the first time, such as creating or executing a test case. This is intended to encourage
participation and foster a sense of competence among the students. Additionally, the test case designer will
receive points based on the evaluation. Regarding the leaderboard (→RG7), we agree that users who have
been using the learning application for a long time can potentially create more test cases. However, as the
application is only used within a course group per semester, the leaderboard remains unchanged. This
ensures that each student has an equal chance to improve their rank on the leaderboard.

Second Iteration: Implementing the Black-Box Learning System

Based on the presented results, we implemented the conceptual artifact into a usable web-based learning
system based on the overall concept as shown in Figure 3. To facilitate access to the learning application,
regardless of time and location, we opted for a client-server architecture, whereby students can access the
application via a web browser. We used Debian 11 as an Unix operating system with nginx (version 1.18.0-
6) as a web server. The PHP scripting language version 7.4 displays the web content processed by the web
server. The web application is built on a multi-layer Model-View-Controller (MVC) architectural pattern
and employs Laravel as a web application framework (Laravel, 2023). To ensure a responsive front end for
accessing the application across diverse mobile devices, we utilized the Bootstrap framework version 4.6.x
(Bootstrap, 2023). Additionally, we used the icon framework Iconify, which provides a collection of icons
(Iconify, 2023). To guide users through the application during their initial usage, we employed the
JavaScript library ShepherdJS as an onboarding system (ShepherdJS, 2023).

After the students login into the learning platform, they get an overview of available exercises and their
progress on a dashboard. During the initial use, the students are guided through the learning platform using
an onboarding system (→RF1) and get stepwise introduced to each exercise. In addition, each exercise is
accompanied by quests (→RG5) providing additional challenges and opportunities for interactions.
Moreover, the quests are based on points (→RG2), serving as orientation for the level of difficulty of a task.

As shown in Figure 5, the first exercise starts with a video-based learning material (→RF1) based on the
Anchored Instructions Design (Cognition and Technology Group, 1993), consisting of a scenario that
learners can relate to (Figure 5, mark 1). Thus, the first exercise refers to Bloom’s taxonomy remember as
the users are supposed to recall the facts and concept of functional testing. The second exercise consists of
a quiz (→RF2) to test the theoretical knowledge (Figure 5, mark 2). By implementing a quiz, we aim to foster
cognitive understanding, as a quiz requires the student to recall the information presented.

The third exercise addresses the design of test cases (→RF3) based on testing objects as shown in Figure 6.
For this reason, a series of three testing objects were deployed: (1) Registration form, (2) login system, (3)

Figure 5. Screenshot of the Two Exercises

 1 2

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 11

order system to validate the accuracy of orders, which were assigned a different amount of points (→RG2),
depending on the difficulty. The black-box techniques boundary value analysis or equivalence partitioning
testing are primarily applicable. We added the testing object (mark 1) above a dynamic expanding test case
design form (mark 2). The student is supposed to create test cases using the test case design template, thus,
the theoretical knowledge is applied to a real testing object, which corresponds to the level apply according
to Bloom's taxonomy. Moreover, once edge cases were identified, students received specific badges (→RG6).

In the third exercise, students are provided with an overview of all the designed test cases. The overview
includes details such as the designer and date of creation for each test case, as well as its rating (→RG8) and
the possibility to manually execute the test cases. To avoid the misuse of receiving points by designing test
cases, students were allocated a score. The better their test cases were rated, the higher the score became.
If the score becomes negative, they fall behind on the leaderboard (→RG6) and receive fewer points (→RG1).

Figure 7 displays the execution of a test case (→RF4). The student can complete each step (mark 1) and apply
the input instruction directly to the testing object (mark 2). The test case execution aims to analyze the test
case design and check the correctness of the test case based on the testing objects. If there is an incorrect
step, a report can be submitted (mark 3). Moreover, by analyzing the results, we aim to enhance the
cognitive level of analyze according to Bloom's Taxonomy. After executing a test case, it is possible to
provide a rating (→RG8) using a five-star rating system, along with adding attachments and feedback.
Evaluating the test case (→RF5) and appropriate action-taking, such as categorizing a test case as failed,
corresponds to the cognitive level of evaluation according to Bloom's Taxonomy.

In addition, the application provides a profile. The profile (→RG1) of each student contains key data, contact
details, and an individual user description. However, the profile also serves as an overview of the student’s
performance. Accordingly, achieved points (→RG2), the level (→RG3), badges (→RG6), and a leaderboard
(→RG8) are displayed. However, it is possible to configure the profile, e.g., to deactivate participation on the
leaderboard, anonymize involvement in the learning system, or deactivate the profile for public access.

Figure 6. Screenshot of the Test Case Design Process

Figure 7. Screenshot of the Test Case Execution Process

 1 Testing Object

 2 Test Case Design

 2 Testing Object

 1 Test Case Data

 3 Stepwise Report

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 12

1
2
3
4
5
6

Learning Testing Techniques Learning Functional Testing
Increase Expertise Understanding Interrelationships
Practical Applicability

Second Iteration: Evaluation of the Implementation

To evaluate students’ perceptions regarding the concept of the teaching of black-box testing competencies
and game-design elements, we conducted a quantitative analysis using a questionnaire. The questionnaire
consisted of an introduction to black-box testing technique and three scenarios, which the students had to
perform before answering the questionnaire: (1) designing a test case, (2) executing a test case manually,
and (3) checking on reports and ratings. The respondents also could provide feedback by open text fields.

In summary, 31 information systems students completed the questionnaire, consisting of three blocks:

1. The first block addressed students’ testing experience and their affinity for IT systems based on a
6-point Likert scale (strongly disagree [1] - strongly agree [6]) (ATI Scale, 2022).

2. In the second block, we assessed students’ perceived usefulness of features and game-design
elements as well as their intention of use and perceived learning success based on a 6-point Likert
scale (strongly disagree [1] - strongly agree [6]), which provides a granular range of responses.

3. Lastly, the fourth block consisted of the user experience questionnaire (UEQ+ Online, 2022) based
on a 7-point semantic differential scale (from [-3] to [+3]).

To gain insight into the dataset, we applied descriptive statistics and a 2-tailed Spearman’s correlation
analysis. In the first block, the results showed that the respondents had an average affinity for technology
(M = 4.06). Moreover, we were able to confirm that students predominantly have a low level of experience
in testing, as the result shows that the students indicated low experience with testing techniques and testing
tools (M = 3.1). Similarly, students had little experience with automated testing (M = 3.0) or manual testing
(M = 3.0). In contrast, the students are aware that testing is crucial in software development (M = 5.5).

Furthermore, Figure 8 summarizes the results of the second block regarding the usefulness of the individual
functionalities and game-design elements and lastly, the perceived usability of individual functionalities.

In general, each functionality was perceived positively in terms of its usefulness and usability. The highest
usefulness perceived was the video-based learning material (M = 5.23), grounding the basis for gaining
theoretical knowledge in a realistic scenario. While the three processes of design (M = 4.90), execution (M
= 4.90), and evaluation (M = 5.06) were considered useful, they indicate lower perceived usability. In
comparison, the perceived usability of the test case design (M = 4.42), execution (M = 4.27), and evaluation
(M = 4.67) were lower than the video-based learning material (M = 5.29). This can be due to students’
inexperience in terms of testing procedures and techniques. Moreover, one student commented that the
quiz was designed to be too simple, resulting in being underchallenging. The usefulness of the game-design
elements, e.g., the onboarding system (M = 4.93), point system (M = 4.84), level system (M = 4.38), and
quests (M = 5.13) have been perceived as useful. Whereas badges (M = 3.71), and the profile (M = 3.77)
were perceived as less useful.

The results of the UEQ+ are calculated based on the average scale (Figure 9). In general, the achieved score
of the UEQ+ aspects are positive but differ noticeably. Among the eight aspects, usefulness (M = 1.68),

Figure 8. Overview of the Evaluation Results 1

Figure 9. Overview of the Evaluation Results 2

1

2

3

4

5

6

Usability of Functionalities

Video Material Theoretical Quiz
Test Case Design Test Case Execution
Test Evaluation

5.29
5.16 4.27

4.67

4.42

1

2

3

4

5

6

Usefulness of Game-Design Elements

Onboarding Progress bars Points
Badges Levels Quests
Leaderboard Profile Rating

4.93 5.03
4.84

3.71

4.38

5.13

4.01 3.77
4.42

1

2

3

4

5

6

Usefulness of Functionalities

Video Material Theoretical Quiz
Test Case Design Test Case Execution
Test Evaluation

5.23

4.65

4.90

4.90

5.06

0

1

2

Attractiveness Efficiency Clarity Perspicuity
Dependability Stimulation Novelty Usefulness

1.58 1.18
1.45

1.23
1.52

1.48 1.15
1.68 5.14 5.03 5.07 4.96 4.71

Usability of Functionalities Usefulness of Functionalities Usefulness of Game-Design Elements

User Experience Questionnaire Usage in Education

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 13

attractiveness (M = 1.58), dependability (M = 1.52), clarity (M = 1.45), and stimulation (M = 1.48) received
the highest score. However, the aspects perspicuity (M = 1.23), efficiency (M = 1.18), and novelty (M = 1.15)
achieved the lowest score. According to this, the students perceived the learning system as less transparent,
efficient, and innovative but attractive and interesting way of teaching black-box testing. Thereby, it should
be noted that a large proportion of the students perceived the application as an effective approach for
learning testing techniques, e.g., boundary-value analysis (M = 5.14). The students also see the potential for
improving the understanding of interrelationships between test processes (M = 4.71). In addition,
respondents stated, they strongly envisioned using this application in a course or lecture to increase the
expertise (M = 5.14) in black-box testing, indicating the utility of the design implementation.

Additionally, the correlation analysis shows that there is a correlation between technical affinity and
perceived usefulness of the video material (ρ = .384, p < 0.05) and test execution (ρ = .487, p < 0.01).
Therefore, we assume that technical understanding is required to comprehend the realistic scenario in
videos. In this context, it is also evident that the perceived usefulness of the video correlates with test design
(ρ = .499, p < 0.05), execution (ρ = .523, p < 0.05), and evaluation (ρ = .523, p < 0.05). This could mean
that the video is an essential component for conveying fundamental knowledge. Regarding game-design
elements, the onboarding seems significant for the test case design (ρ = .499, p < 0.05) and test case
execution processes (ρ = .583, p < 0.05). It is also interesting to note that although the respondents found
badges less useful, there was a positive correlation between badges and test case design (ρ = .401, p < 0.05)
and execution (ρ = .412, p < 0.05), indicating that badges for discovering edge-cases or errors in test cases
through the execution process can have a positive impact. Moreover, between the rating system and the
execution process (ρ = .449, p < 0.05) exists a positive correlation. The correlation analysis also indicates a
correlation between the use of the application in educational settings for imparting practical knowledge
and the exercises test case design (ρ = .484, p < 0.01) and test case execution (ρ = .442, p < 0.01) processes.

Overall, the evaluation results indicate that the learning system has the potential to support students in
acquiring knowledge about functional testing, despite students’ limited prior experience in testing.

Field Test – Data Analysis and Results

Since we could not identify any significant changes to the software testing process, the design process was
completed. Therefore, we decided to conduct a field test at a German university. The field test is aimed at
utilizing the system in a real teaching environment to measure its practical usefulness as well as
effectiveness.

For this, the field test consisted of three parts:

1. We gathered information about students’ level of knowledge in software testing, technical affinity,
and perceived competence in software testing.

2. In addition, the students could participate in a pre-test optionally.
3. Students could interact freely with the application for at least 30 minutes (max. 60 minutes).
4. Students had to participate in a post-test to measure learning outcomes.

To measure the overall experience of the application, we included the Cognitive Load Theory (CLT) by
Klepsch (2020), consisting of 8 items based on a 7-point-Likert scale (absolutely wrong [1] – absolutely
right [7]). The CLT is an educational framework that describes the amount of mental effort required to
understand and perform a task. Sweller's (2010) CLT postulates that the human working memory has a
limited capacity, and when this capacity is exceeded, learning becomes less efficient and less effective. For
this, the CLT consists of three types of loads: Intrinsic, extraneous, and germane. First, the component
intrinsic cognitive load (ICL) describes the complexity of the learning task. Second, the extraneous
cognitive load (ECL) refers to any additional cognitive demands caused by suboptimal instructional design.
Third, the germane cognitive load (GCL) refers to the mental effort required to actively engage with the
task and arises from the learner’s understanding of the learning material (Klepsch, 2020). Last, to
determine the interrelationship in fostering a learning process, we used the Intrinsic Motivation Inventory
based on Deci and Ryan (2011) with a 5-point-Likert scale (strongly disagree [1] – strongly agree [5]).

In summary, 59 undergraduate students with IS background participated in the field test. To analyze
the results of the field test, we first conducted a t-test to compare the results of the pre- and post-tests.
Moreover, we conducted a Spearman's correlation analysis to uncover interrelationships.

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 14

Results in Pre- and Post-tests

Before we started the pre-test, we asked the students to self-esteem their developing and testing skills. The
results indicated that they had a modest level of understanding regarding the fundamentals of software
development (M=2.80) and software testing (M = 2.52). Furthermore, their self-reported level of
expertise in more specialized domains such as test case design (M = 1.85), as well as manual (M = 2.0),
and automatic (M = 1.76) testing, was limited, which was in line with the expected limited experience.

The pre-test and post-test consisted of eight multiple-choice questions and two practical tasks, with a
maximum score of 14 points. In addition, 16 students participated in the optional pre-test. The results of
the pre-test and post-test show that the participating students scored lower on the pre-test (M = 7.44, S =
2.73) than on the post-test (M = 10.50, S = 2.36). Comparing both results, the t-test yielded a t-value of
t(15) = -2.75 and a p-value of .009. At a significance level of 0.05, we can conclude that there is a significant
difference between the mean scores of the pre-test and the post-test. The effect size, as indicated by the
correlation value (|r| = .704) is considered as medium according to Cohen (2013), indicating that the use
of the learning application led to a significant increase in scores compared to before using the learning
platform iTest.

Results of Cognitive Load Theory

The study found that the learning application was easy to use and understand for students, reducing the
ICL with a mean value of 3.48. This suggests that the application was designed in a way that minimized the
inherent complexity of the task, making it more accessible for students. However, the GCL (M = 4.88)
indicates that students required more time and effort to understand important aspects of the task. This
suggests that the instructional design may not be optimized, as students experienced a higher cognitive load
related to constructing knowledge and problem-solving. On the other hand, the ECL (M = 3.31) is indicating
that distractions were minimal. This suggests that the instructional design was effective in minimizing
irrelevant information or design elements that could have contributed to a higher cognitive load. The focus
remained on the relevant aspects of black-box testing. Overall, the cognitive load experienced by students
was moderate but could be improved by maximizing GCL and providing necessary information while
minimizing ECL to avoid distractions.

Results of Intrinsic Motivation Inventory

Based on the results, students showed positive enjoyment/interest (M = 4.02) in performing the test
activities. Moreover, regarding the perceived competence (M = 3.43) and perceived choice (M =
3.55), students had a moderate perception of their abilities during the testing activities and the freedom to
make their own decisions. The perceived effort/importance (M = 3.41) indicates that the testing activities
were not particularly balanced, while the pressure/tension (M = 2.88) was rather low during the testing
activities. Lastly, the results indicate a moderate perception of relatedness (M = 3.20).

Moreover, the correlation analysis revealed possible factors that could have an impact on the motivation
dimensions. First, the results indicate a positive correlation between the perceived knowledge about
software testing and the perceived interest/enjoyment (ρ = .299, p < 0.05). Second, the results also
indicate a positive correlation between interest/enjoyment and knowledge in practice (ρ =.505, p < 0.01).
This implies that as students' knowledge about software testing increases, their level of interest and
enjoyment in the subject also tends to increase. Overall, this result is also supported as there is a positive
correlation between the GCL and students' perceived interest/enjoyment of the learning experience (ρ =
.378, p < 0.01). Accordingly, the results may indicate that a higher GCL, i.e., mental effort, leads to greater
students' interest, which can have a positive impact on motivation. Additionally, we also found a negative
correlation between ECL and the perceived interest for the application (ρ = -.370, p < 0.05), indicating that
the learning platform is not optimized in minimizing distracting elements.

Regarding the perceived competence, correlation analysis reveals that there is a correlation between the
perceived competence and general knowledge about software testing (ρ = .627, p < 0.05). Accordingly, an
increase in knowledge through the learning platform can lead to a higher experience of competence.

In summary, the learning platform contributes to the knowledge of black-box testing. Based on the cognitive
load theory it was found that the application was easy to understand but contained minimal distractions.

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 15

Discussion and Conclusion

The study aimed to design a learning platform for teaching black-box testing by using practical testing
objects. Thus, we provide an approach to shift from a theory-based approach to a practice-based approach.
Especially, by using game-design elements we aimed to improve the quality of designed test cases and
encourage students to execute the test cases manually. Thus, by presenting a situated artifact in a learning
context that contributes to the knowledge base, our design provides a level 1 DSR contribution. Based on
the evaluation results regarding the core functional requirements and game-design elements, we derived
six design principles according to Gregor et al. (2020) as shown in Table 3.

Description RQ

DP1

For developers designing a gamified learning platform to foster students’ black-box competencies, provide a
function for lecturing fundamentals of black-box testing theoretically, so students can acquire knowledge about
black-box testing by first learning and memorizing the basics, as per Bloom's taxonomy.

RF1

RF2

DP2
For developers designing a learning platform to foster students’ black-box competencies, provide a function for
designing a test case based on a given object, thereby applying theoretical knowledge.

RF3

DP3
For developers designing a learning platform to foster students’ black-box competencies, implement a function to
execute and evaluate test cases and thus, improve students’ black-box competencies by reflecting and judging.

RF4

RF5

DP4
For developers designing a learning platform to foster students’ black-box competencies, implement a function for
providing feedback to report errors, ambiguities, or bugs.

RF5

DP5

For developers designing a learning platform to foster students’ black-box competencies, implement a function to
visualize the current progress, promote activity, and foster self-control and self-monitoring in the system, thus
providing immediate feedback.

RG2

RG3

RG4

DP6

For developers designing a learning platform to foster students’ black-box competencies, implement a function to
get introduced to the core functionalities and possibilities in the system to assist with first-time usage thus, ensuring
a structured introduction.

RG9

Table 3. Derived Design Principles

Our results indicate that the application creates a foundation for increasing black-box testing skills through
exercises. Realistic instructional videos should be used as a foundation to establish practical relevance
(DP1). Moreover, based on practical knowledge, there should be an opportunity to practically design (DP2)
and execute tests (DP3) using testing objects, thereby utilizing the gained knowledge. In addition, the
reflection competencies are to be promoted by a reporting system (DP4). Moreover, improving the
student's sense of competence, motivational elements (DP5), e.g., progress bars, points, and performance
graphs indicate students’ progress throughout the course. However, to avoid difficulties during the first use
and information overload, the process should be supported by an onboarding (DP6).

From theoretical to practical testing objects. The present approach intends to reduce the deficiency
in the education of software testing knowledge as testing processes are rarely taught in IS courses. However,
teaching test competencies is essential in software development. This learning application offers an
approach that combines theory-based teaching with practice-oriented testing objects. Starting with the
video-based learning material, which was particularly positively evaluated, up to the use of theoretical
knowledge on practical objects. In addition, with the transition from theory to practice, the learning
platform can increase students’ awareness regarding testing when test techniques are used on real objects.

Coverage of an entire testing process. The results show that especially the functionalities for test
design, execution, and evaluation were considered useful. Interrelationships can be better understood by
working through the processes one after another. As a result, students should not just learn one process
unilaterally, but also learn how the processes work together.

Software testing training. Despite the need to foster software testing education in an instructional
context, there is a high demand for software testing training in the industry (Aniche et al., 2019). The
provided solution and design principles are applicable to the educational as well as the industrial context
(Garousi et al., 2020). Thus, the present research also provides an approach for industrial use.

Nevertheless, we acknowledge that making software testing courses practical and industry-aligned is
important but challenging (Aniche et al. 2019). The presented application covers basic functionalities and
may not sufficiently demonstrate significant industry benefits. Possibly, students were overchallenged by
the test case design, execution, and evaluation or the novelty phenomenon of gamification. Dividing
students into multiple groups may also provide additional insights into the efficiency of gamification.

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 16

References

Alhroob, A., Dahal, K., & Hossain, M. (2012). Software test case generation from system models and
specification. Use of the UML diagrams and High Level Petri Nets models for developing software test
cases [Dissertation, University of Bradford]. RIS. https://hdl.handle.net/10454/5453

Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching, and Assessing: A
revision of Bloom's taxonomy of educational objectives. Longman.

Aniche, M., Hermans, F., & van Deursen, A. (2019). Pragmatic software testing education. In SIGCSE ’19,
Proceedings of the 50th ACM Technical Symposium on Computer Science Education. Association for
Computing Machinery. https://doi.org/10.1145/3287324.3287461

ATI Scale. (2022). Affinity for Technology Interaction Scale. https://ati-scale.org/
Blanco, R., Trinidad, M., Suárez-Cabal, M. J., Calderón, A., Ruiz, M., & Tuya, J. (2023). Can gamification

help in software testing education? Findings from an empirical study. Journal of Systems and
Software, 200, 111647. https://doi.org/10.1016/j.jss.2023.111647

Bloom, B. S. (1956). Taxonomy of Educational Objectives: The Classification of Educational Goals.
Taxonomy of Educational Objectives: The Classification of Educational Goals. Longman.

Bootstrap. (2023). Build fast, responsive sites with Bootstrap. https://getbootstrap.com/
Clarke, P. J., Davis, D., King, T. M., Pava, J., & Jones, E. L. (2014). Integrating testing into software

engineering courses supported by a collaborative learning environment. ACM Transactions on
Computing Education (TOCE), 14(3), 1–33. https://doi.org/10.1145/2648787

Cognition and Technology Group (1993). Anchored instruction and situated cognition revisited.
Educational Technology(33), Article 3, 52–70. https://www.jstor.org/stable/44427992

Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Elsevier Science.
https://doi.org/10.4324/9780203771587

Costa, I., & Oliveira, S. (2019). A Systematic Strategy to Teaching of Exploratory Testing using
Gamification. In Proceedings of the 14th International Conference on Evaluation of Novel Approaches
to Software Engineering (pp. 307–314). Science and Technology Publications.

Deci, E. L., & Ryan, R. M. (2011). Levels of analysis, regnant causes of behavior and well-being: The role of
psychological needs. Psychological Inquiry(1), 17–22.
https://doi.org/10.1080/1047840X.2011.545978

Deci, E. L., & Ryan, R. M. (2012). Self-determination theory. In Handbook of theories of social psychology,
Vol. 1 (pp. 416–436). sage publications ltd. https://doi.org/10.4135/9781446249215.n21

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness:
defining" gamification". In MindTrek ’11, Proceedings of the 15th International Academic MindTrek
Conference: Envisioning Future Media Environments. Association for Computing Machinery.

Elbaum, S., Person, S., Dokulil, J., & Jorde, M. (2007). Bug hunt: Making early software testing lessons
engaging and affordable. In 29th International Conference on Software Engineering (ICSE'07).

Garcia, F., Pedreira, O., Piattini, M., Cerdeira-Pena, A., & Penabad, M. (2017). A framework for
gamification in software engineering. Journal of Systems and Software, 132, 21–40.

Garousi, V., Rainer, A., Lauvås Jr, P., & Arcuri, A. (2020). Software-testing education: A systematic
literature mapping. Journal of Systems and Software, 165. https://doi.org/10.1016/j.jss.2020.110570

Gregor, S., Chandra Kruse, L., & Seidel, S. (2020). Research perspectives: the anatomy of a design principle.
Journal of the Association for Information Systems, 21(6), 2. https://doi.org/10.17705/1jais.00649

Haas, R., Elsner, D., Juergens, E., Pretschner, A., & Apel, S. (2021). How can manual testing processes be
optimized? developer survey, optimization guidelines, and case studies. In D. Spinellis, G. Gousios, M.
Chechik, & M. Di Penta (Eds.), Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (pp. 1281–
1291). ACM. https://doi.org/10.1145/3468264.3473922

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian Journal of Information
Systems, 19(2), 4. https://aisel.aisnet.org/sjis/vol19/iss2/4

Hooda, I., & Chhillar, R. S. (2015). Software test process, testing types and techniques. International
Journal of Computer Applications(111), Article 13. https://doi.org/10.5120/19597-1433

Hunicke, R., Leblanc, M., & Zubek, R. (Eds.) (2004). MDA: A formal approach to game design and game
research. : Vol. 1. San Jose, CA.

Hynninen, T., Knutas, A., & Kasurinen, J. (Eds.) (2019). Designing Early Testing Course Curricula with
Activities Matching the V-Model Phases. IEEE. https://doi.org/10.23919/MIPRO.2019.8757033

 Fostering Black-Box Testing Competencies

 Forty-Fourth International Conference on Information Systems, Hyderabad, India 2023
 17

Iconify. (2023). Freedom to choose icons. https://iconify.design/
Jain, C. R., & Kaluri, R. (2015). Design of automation scripts execution application for selenium webdriver

and test NG framework. ARPN J Eng Appl Sci, 10(6), 2440–2445.
Jesus, G. M. de, Ferrari, F. C., & Porto, D. d. P. (2018). Gamification in software testing: A characterization

study. In Proceedings of the III Brazilian Symposium on Systematic and Automated Software Testing.
https://doi.org/10.1145/3266003.3266007

Jesus, G. M. de, Paschoal, L. N., Ferrari, F. C., & Souza R. S. Simone (Eds.) (2019). Is it worth using
gamification on software testing education? an experience report.

Kapil Singi (Ed.) (2020). Are software engineers incentivized enough? An outcome based incentive
framework using tokens. IEEE. https://doi.org/10.1109/IWBOSE50093.2020.9050262

Kapp, K. M. (2012). The gamification of learning and instruction: game-based methods and strategies for
training and education. John Wiley & Sons.

Kaprocki, Z., Pekovic, V., & Velikic, G. (Eds.) (2015). Combined testing approach: Increased efficiency of
black box testing. IEEE. https://doi.org/10.1109/CEWS.2015.7867160

Klepsch, M. (2020). Differenzierte Messung kognitiver Belastung beim Lernen im Rahmen von
Instruktionsdesignfragestellungen [Doctoral Dissertation]. Universität Ulm.

Kris, H., & Heider, J. (Eds.) (2020). Raising Security Awareness on Mobile Systems through Gamification.
https://doi.org/10.1145/3424954.3424958

Krutz, D. E., Samuel A. Malachowsky, & Thomas Reichlmayr. (2014). Using a Real World Project in a
Software Testing Cours: Proceedings of the 45th ACM Technical Symposium on Computer Science
Education ; March 5 - 8, 2014, Atlanta, Georgia, USA. ACM.

Laravel. (2023). The PHP Framework for Web Artisans. https://laravel.com/
Ottfutt, J., Li, Nan, Ammann, Paul, & Xum Wuzhi (Eds.) (2011). Using abstraction and Web applications

to teach criteria-based test design. IEEE. https://doi.org/10.1145/2538862.2538955
Parizi, R. M. (Ed.) (2016). On the gamification of human-centric traceability tasks in software testing and

coding. IEEE. https://doi.org/10.1109/SERA.2016.7516146
Paschoal, L. N., Oliveira, B. R. N., Nakagawa, E. Y., & Souza, S. R. S. (2019). Can we use the Flipped

Classroom Model to teach Black-box Testing to Computer Students? In A. B. Albuquerque & A. L. B. de
Paula Barros (Eds.), Proceedings of the XVIII Brazilian Symposium on Software Quality (pp. 158–
167). ACM. https://doi.org/10.1145/3364641.3364659

Porto, D. d. P., Jesus, G. M. de, Ferrari Fabiano, C., Fabbri, Camargo, Sandra, & Ferraz, P. (2021).
Initiatives and challenges of using gamification in software engineering: A Systematic Mapping.
Journal of Systems and Software, 173. https://doi.org/10.1016/j.jss.2020.110870

Sailer, M. (2016). Wirkung von Gamification auf Motivation. In Die Wirkung von Gamification auf
Motivation und Leistung (pp. 97–126). Springer. https://doi.org/10.1007/978-3-658-14309-1

Sánchez-Gordón, M.‑L., & Moreno, L. (2014). Toward an Integration of Web Accessibility into Testing
Processes. Procedia Computer Science, 27, 281–291. https://doi.org/10.1016/j.procs.2014.02.031

Santos, I., Mori, A., & Souza R. S. Simone (Eds.) (2021). Using an Incremental Testing Strategy to Improve
Students’ Perception of Software Quality. SBC. https://doi.org/10.5753/wei.2021.15909

Scatalon, L. P., Prates, J. M., Souza, D. M. de, Barbosa, E. F., & Garcia, R. E. (2017). Towards the Role of
Test Design in Programming Assignments. In 2017 IEEE 30th Conference on Software Engineering
Education and Training (CSEE T). https://doi.org/10.1109/CSEET.2017.34

Sharif, F., & Hemmati, H. (Eds.) (2018). Investigating nlp-based approaches for predicting manual test
case failure. IEEE. https://doi.org/10.1109/ICST.2018.00038

ShepherdJS. (2023). Guide your users through a tour of your app. https://shepherdjs.dev/
Sweller, J. (2010). Cognitive load theory: Recent theoretical advances. Cognitive Load Theory, 9–47.

https://doi.org/10.1017/CBO9780511844744.004
Thakur, A., & Sharma, G. (Eds.) (2018). Neural Network Based Test Case Prioritization in Software

Engineering. Springer. https://doi.org/10.1007/978-981-13-3143-5_28
UEQ+ Online. (2022). https://www.ueq-online.org/
Valle, P. H. D., Ricardo Ferreira, V., & Hernandes, E. C. M. (Eds.) (2020). Does Gamification Improve the

Training of Software Testers? A Preliminary Study from the Industry Perspective✱.

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature
review. MIS Quarterly, xiii–xxiii. https://www.jstor.org/stable/4132319

Yujian, F., & Clarke, P. J. (Eds.) (2016). Gamification-based cyber-enabled learning environment of
software testing. https://doi.org/10.18260/p.27000

	Bringing Light into the Dark - Improving Students’ Black-Box Testing Competencies using Game-Design Elements
	Recommended Citation

	tmp.1700107922.pdf.AVs61

