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ABSTRACT One of the leading causes of mortality worldwide is cardiovascular disease (CVD).
Electrocardiography (ECG) is a noninvasive and cost-effective tool to diagnose the heart’s health. This
study presents a multi-class classifier for the prediction of four different types of Cardiovascular Diseases,
i.e., Myocardial Infarction, Hypertrophy, Conduction Disturbances, and ST-T abnormality using 12-lead
ECG. There are four key steps involved in the presented work: data preprocessing, feature extraction, data
preparation, and augmentation, and modelling for multi-class CVD classification. The sixteen-time domain
augmented features are used to train the classifier. The work is divided into three parts: extracting the features
from raw 12-lead ECG signals, data preparation and augmentation, and training, testing, and validating the
classifier. A comparative study of the performance of five different classifiers (i.e., Random Forest (RF),
KNearest Neighbors (KNN), Gradient Boost, Adda Boost, and XGBoost has also been presented. Accuracy,
precision, recall, and F1 scores are used for performance evaluation. Further, the Receiver Operating Curve
(ROC) is traced, and the Area Under the Curve (AUC) is calculated to ensure the unbiased performance of
the classifier. The application of the proposed classifier in the Smart Healthcare framework has also been
discussed.

INDEX TERMS Cardiovascular disease (CVD), PTB-XL data, machine learning, smart healthcare, ECG,
heart failure, XG boost (XGB), random forest (RF), cat boost, K nearest neighbor (KNN), gradient
boost (GB).

I. INTRODUCTION
According to the World Health Organisation, cardiovas-
cular disease is the leading cause of premature mortality
worldwide. It is estimated to be 31% of global deaths,
which is around 17 million every year due to CVD [1]. In
2021, cardiovascular disease (CVD) was the largest cause of
death globally, with low- and middle-income (LMIC) nations
accounting for 4/5 of all CVD fatalities. According to a
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report by the World Heart Federation (WHF) published on
May 20, 2023, deaths due to Cardiovascular Disease leaped
from 12.1million in 1990 to 20.5million in 2021 [2]. In India,
cardiovascular problems are very common, especially in
those who are only slightly older than 45 [3].

Detection of Cardiovascular Disease (CVD) at an early
stage is challenging due to the indistinguishable symptoms
[4], [5]. The Electrocardiogram, often known as an ECG
or EKG, is a unique graph showing the electrical activity
of the heart from one moment to the next. The ECG
specifically offers a time-voltage chart of the heartbeat. Due
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to the crucial information it offers, the ECG is an important
part of clinical diagnosis and treatment. Electrocardiogram
(ECG) or its feature features are proven to be an effective
method for early-stage prediction of CVD [6]. It is the
non-invasive clinical standard method to analyze the proper
functioning or dysfunction of the human heart [7]. It also
is a biomarker for predicting cardiovascular abnormalities
[8]. ECG can be captured by various methods, such as
using single-lead, three-lead, five-lead, six-lead, and 12-lead.
Among these 12 leads, ECG recording remains the gold
standard for clinical practices. The 12-lead ECG is preferred
in conventional clinical practice, as it gives a detailed idea
about the heart, with the help of which not only dysfunction of
the heart can be spotted, but the location of the point where the
problem is occurring can also be identified [9]. It further helps
the cardiologist to navigate further diagnosis or treatment.

Noncommunicable disease (NCD) is primarily described
as a noninfectious disorder that develops gradually over
time and is referred to as a chronic disease [10]. CVD also
comes under the category of NCD, where timely diagnosis
would certainly help in taking preventive measurements
[11]. In a smart healthcare system, constant monitoring and
telemedicine are vital in controlling such NCDs. People must
intentionally try to manage themselves daily by employing
various self-care devices [12]. The noninvasive technique is
useful in smart healthcare since it eliminates the pricking
procedure in the body, which aids in continuous health
monitoring. Consumer electronics have greatly improved the
quality of life in smart healthcare, but precision and reliability
are critical aspects for many applications.

Apart from the ECG, there are other methods like Pho-
toplethesographgy (PPG), Electronic Heart Record (EHR)
data, demographic features like age, sex, and weight, and
behavioral features like smoking and alcohol consumption
that can also be used in CVD prediction. Albeit sometimes it
is seen that to improve the quality or accuracy of prediction,
sometimes ECG is combined with other features like age, sex,
weight, BMI, etc. The proposed CVD detection work is very
important in the Smart Healthcare and Intelligent Devices
era. This can be incorporated into an Internet of Things (IoT)
or Internet of Medical Things (IoMT) using cloud services,
where all the signal preprocessing and feature extraction will
be done within the Python environment. It would contribute
a lot to improving Quality of Life (QoL) and life expectancy.

The same idea is shown in Figure 1. The recorded ECG
signal can be evaluated at the node device to make a
prediction, or it can be sent over the cloud for evaluation, and
the prediction can be transmitted directly to the health service
provider or to the patients and caretakers.

II. RELATED WORK
There is abundant work available in CVD detection using
artificial intelligence, including machine learning and deep
learning models. Usually, a supervised machine learning
approach using ECG or its features, along with some
demographic or laboratory features, is preferred for CVD

FIGURE 1. Smart healthcare framework for proposed model.

classification. There is a significant amount of work in
the field of unsupervised machine learning [13], [14], [15]
that can be later utilized for CVD detection using different
biomarkers. Gupta presented the performance of various
supervised machine learning (ML) models like Decision Tree
(DT), Random Forest (RF), K-Nearest Neighbor (KNN),
and Support Vector Machine (SVM) to predict CVD [16].
Yang et al. [17] designed a Random Forest-based model for
CVD prediction for the eastern China population. Chen et al.
[18] presented the effect of consecutive moderately cold
days on CVD Mortality in Shenzhen, China. Whereas
Al-Absi et al. [19] have proposed a study to reveal the
risk and co-morbidity associated with CVD for the Qatar
population using machine learning algorithms that utilize
the case-control study data. Molloy et al. [20] explored
the challenges and scope of Implantable Medical Devices
(IMD) and their potential for self-reporting innovative CVD
healthcare technology. They also talked about the associated
risk and required regulatory framework in commercialization.
In addition to that, they have also listed all the IMD
products that are recently approved, along with those in the
pipeline. Many researchers used Cleveland data to predict the
presence of CVDwith different machine learning techniques,
which include Logistic Regression, Random Forest, Naive
Bayes, Bayes Net, Decision Tree, Support Vector Machine,
K-Nearest Neighbor, and weighted KNN [21], [22], [23],
[24]. Apart from the above traditional machine learn-
ing classifiers, ensemble machine learning methods were
also proposed, i.e., the Hard voting ensemble method by
Atallah et al. [25]. Miao et al. [26] described an Adaptive
Boosting classifier to predict CVD with the help of the UCI
repository heart disease database. While Basir et al. [27]
has utilized memory-based learner DT-IG ( Decision Tree
Induction Based onGini Index) and Ensemble of Naive Bayes
and SVM to predict CVD using UCI repository data and
Ricco database. Recently, Sarah et al. [28] utilized Cleveland
data to compare the performance of different classifiers to
predict the presence of CVD and proved that LR is best with
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an accuracy of 85.25 %. Since ECG is a gold standard for
level one diagnosis of CVD, PPG can be acquired easily.
WH Ho et al. [29] proposed a novel method to transform the
PPG signal into an ECG signal. Here the previously available
research work was classified into two categories: ECG-based
and Non-ECG-based. These have been discussed separately
in the upcoming section and tabularized in Table 1.

A. ECG-BASED CVD DETECTION
ECG is an electrical impulse the heart’s muscles produce
during rhythmic contraction and relaxation. It reflects
the dysfunction of the heart, like conduction disturbance,
ischemia, or cardiovascular disease like arrhythmia, hyper-
trophy, stenosis, etc. It is an efficient and cost-effective
method to evaluate the heart’s health. It is also a crucial
indicator for the early detection of cardiovascular disease.
Considering the importance of ECG, many researchers have
presented different studies related to the prediction CVDs
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40].
Sadasivuni et al. [41] presented an ECG and Electronic Med-
ical Record-based reservoir-computing and fusion model to
predict ischemic heart disease, which is basically obstructed
blood to different parts of the heart. Obayya et al. [42]
designed a neural network-based DNN classifier to predict
CVD, which utilizes Honey Badger Optimization for feature
selection and Bayesian optimization for hyperparameter
tuning. Guo et al. [43] identified the critical features in
Coronary Artery Disease (CAD) and also predicted the CAD
using Recursion Enhanced Random Forest with an Improved
Linear Model (RERF-ILM). Mohan et al. [44] proposed a
hybrid model (HRFLM), which utilizes the RF and linear
methods to predict heart disease using the UCI Heart Disease
dataset. Ghosh et al. [45] used the same data to extract
features using LASSO and Relief techniques and then used
those features to predict CVD.

B. NON-ECG BASED CVD DETECTION
In addition to the ECG, additional techniques are used
to predict CVD, including photoplethysmography (PPG),
data from electronic heart records (EHR), demographic
factors, and behavioral variables [46], [47]. The frequency-
aware Frequency attention LSTM (FA-Attn-LSTM) model
is proposed by Park et al. [48] to predict CVD, which
uses the frequency of the features present in Electronic
Health Recor (EHR). Whereas body Mass Index (BMI) is
identified as one of the important features for CVD prediction
by Nikam et al. [49]. Spectral analysis-based features of
Photoplethosography (PPG) signals like power density of
low-frequency, high frequency, and their ratio are used to
predict CVD at an early age by Simonyan et al. [50].
Qian et al. [51] has done a cohort study to predict CVD
using routine physical examination indicators with the help
of machine learning algorithms. Rahim et al. [52] has applied
an ensemble ML Classifier of LR and KNN algorithms
along with the SMOTE for data balancing to predict CVD
accurately using the Framingham dataset. While Yang et al.

[53] utilized the same data to an Optuna hyper-parameter
tuned LightGBM classifier to predict coronary heart disease.
Ghorashi et al. [54] utilized convenience sampling on UAE
hospital data from 2621 entries and predicted the risk of
acquiring CVD using PCA feature selection and LSTM
model. They used SPSS to perform Simple LR and multiple
LR for further analysis. Chicco et al. [55] used the EMR of
491 patients to analyze the CKD patients for the risk of CVD
and also identified the variables that contribute most to CKD.
Joo et al. [56] compared the performance of LR, DNN, Light
GBM, and RF classifiers to estimate the risk of CVD in the
cohort in 2 years and 10 years. They also performed the SHAP
feature importance to look at which features contribute more
to the risk of CVD development. Shuvo et al. [57] used a
Phonocardiogram, i.e., heart sounds, to predict five different
types of CVD with the help of CRNN while utilizing CNN
and bi-LSTM to extract features.

C. NOVEL CONTRIBUTION
The presented work utilizes ECG-based features to predict
CVD, and the following are the contributions of the proposed
work:

• The proposed machine learning-based classifier utilizes
only time-series features of twelve lead raw ECG signals
for CVD classification.

• It is a reliable, accurate, and robust CVD detection
method for real-time.

• The proposed classifier is lightweight and suitable for
integration with any Internet of Things (IoT) based
Smart Healthcare framework.

• The proposed model has an excellent recall, i.e. True
Positive Rate (TPR) in ten-fold cross-validation, which
indicates that it can effectively distinguish the four main
kinds of CVD from the control group.

III. METHODS
The proposed method is a highly accurate CVD prediction
model which includes five classes. Figure 2 shows the
breakdowns of the functioning of the proposed model. Each
step is explained in the subsections below.

A. DATA
In this study, Physionet’s PTB-XL public electrocardiogra-
phy data set is utilized [58], [59]. It contains 12 lead ECG
recordings (i.e. (V1, V2, V3, V4, V5, V6, I, II, III, aVL,
aVR, and aVF) of 21837 records that have been taken from
18885 subjects, and each recording is ten second long. The
ECG data is a multi-label data set as up to two cardiologists
annotated it. Later, it was aggregated as diagnostic super and
subclass. The five superclasses are Conduction Disturbances
(CD), ST/T change (STTC), myocardial infarction (MI),
hypertrophy (HYP), and normal ECG (NORM). A brief
description of each of the four different kinds of CVD is
as follows: Conduction Disturbances (CD): A conduction
disturbance (CD) or disorder is a condition of the heart with a
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TABLE 1. Existing work related to CVD prediction.

block in conduction pathways. Conduction disorders lead to
chronic heart failure. Hypertrophy (HYP): It is a condition in
which the heart’s muscles thicken, which reduces the heart’s
pumping capability. ST/T Change (STTC): A deviation in the
pattern of the ST/T wave indicates different abnormalities,
such as ischemia, i.e., reduced blood flow, hence reduced
oxygen. This class includes ischemia in anterior and inferior
leads and specific and non-specific ST changes. Myocardial
Infarction (MI): It is commonly known as a heart attack or
extreme medical emergency. It happens when blood in the
coronary artery tends to cease. This class includes anterior,
inferior, lateral, and posterior myocardial infarctions. Each
superclass has some subclass (total 24) except NORM, listed
in Table 2.

The raw ECG signal of the database was recorded between
1989 to 1996 using a device by Schiller AG. Furthermore,
Physikalisch Technische Bundesanstalt (PTB) curates and
transforms this information into an organized database. The

dataset has 52% recording of males and 48% of a female
whose age lies in the range 0 to 95 years. The distribution
of data within the superclasses is shown in Table 3.

B. DATA PREPROCESSING
The original ECG recording was converted to binary with
1 V/LSB resolution and 16-bit precision. Using an on-and-
off technique, the signal’s starting and end spikes were elimi-
nated and are available for download at a 100 Hz sampling
rate. The data is available in two different portfolios. One
folder has a raw 10-second ECG recording of each subject,
while the other file has a scp statement. The scp statements
have information on patient demography, i.e. age, sex, height,
weight, etc., and diagnostic class and diagnostic superclass.
Each ECG record is linked to a Python diagnostic superclass
that is considered a label. The data is downloaded from
physionet.org [60] in .mat format. They are loaded in a Python
environment with the help of the WFDB toolbox [61] and
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FIGURE 2. Overall process flow of the work.

TABLE 2. Diagnostic superclass and subclass of PTB-XL data.

TABLE 3. Distribution of diagnostic superclasses.

scipy. One random sample of raw ECG signal is given in
Figure 3.

Later, it is converted into a three-dimensional array of
size (21837,1000,12) using Numpy, which is later flattened
to (21837,12000) for further processing. Label encoding is
applied to the Diagnostic superclass to convert the string data
type to numeric. The samples with more than one label are
eliminated from the presented study, as they fall into more
than one class at a time. At the same time, data with no labels

FIGURE 3. Sample of raw ECG signal.

TABLE 4. List of features.

are also dropped. Missing values in the data are filled using
the forward fill (‘fill’) technique.

C. FEATURE EXTRACTION
The raw ECG signal has 21000 dimensions, and predicting
the different cardiovascular diseases with the help of that
would be complicated. Hence, time-series features are
extracted to predict different CVDs. The time series features
of the ECG signal are extracted using the neurokit2 toolbox
[62], which can broadly be classified into three groups:

• Peak Location : P wave, Q-R-S complex, T wave
• Peak Amplitudes : P wave,Q,R,S waves,T wave
• Time intervals: PQ, ST, QT, PR, RR, QRS intervals

The explicit list of features is provided in Table 4.
The particular set of time-series features is selected as

they are the basic features of the ECG and represent the
electrical activity of the heart, hence the abnormality or
disorder of the heart [6].

VOLUME 11, 2023 117647



N. Sinha et al.: DASMcC: Data Augmented SMOTE Multi-Class Classifier for Prediction of CVD

TABLE 5. Label encoding of different classes.

To find the peak location indices, first, we need to find
the R peak location; by using that R peak location, all the
other peaks, i.e., P, Q, S, T, are found. Neurokit is used to
delineate the ECG peaks in Python. The ecg peaks() function
returns a dictionary that contains the samples where peaks are
found. Further, to segment the QRS complex ecg delineate ()
is used. One of the samples of peak detection is shown
in Figure 4. After extracting the peak locations and peak
amplitudes, time intervals between the peaks are extracted
using the locations of the respective peaks. The graph for all
the extracted intervals is shown in Figure 5.

D. DATA PREPARATION
Each subject’s sixteen features are extracted as a list within
the Pandas data frame. Later on, these features are expanded
in the form of a three-dimensional Numpy array. For further
processing, that array was flattened. The resulting array is
used as input for the CVD classifier(s), where training data
has 80 %of the total data while testing data has 20 %. The
compilation of the data presented two significant difficulties:
first, at some points, all the features for the particular subjects
are NaN; second, the length of extracted features for all
the ECGs is not the same, which means all the recorded
signals did not have equal no. of peaks. To deal with the
missing values in the extracted feature, the Forward Fill (ffill)
method has been implemented at this stage. Next, the length
of extracted features for each ECG signal is equated. Finally,
the set of all the n features for each subject is combined with
respective labels with the help of subject IDs. The labels or
target variables were in string format; hence, it is converted to
the numeric data type by applying label encoding. The same
is given in Table 5. In the upcoming sections, the process of
data augmentation and modeling are explained.

E. DATA AUGMENTATION
After preparing the data, it was observed that the number of
samples in each of the five categories was different. As the
ML algorithms do not address the class distribution, this
class-imbalance data will adversely affect the classifier’s
performance. Standard machine learning approaches tend
to predict merely the majority class, favoring the majority
class and ignoring the minority, and miss-classifying the
minority significantly compared to the hugemajority. Inmore
technical language, if our dataset’s data distribution is
imbalanced, the model seems more susceptible to situations
where theminority class has little or no recall. Hence, to avoid
this imbalance, data augmentation is performed to avoid this.
The process of data augmentation includes the oversampling

of the minority class in the training data. To up-sample the
minority class, SMOTE (Synthetic Minority Over-sampling
Technique) is used here. It is an oversampling approach for
balancing the distribution of classes in the dataset. It chooses
minority instances that are near the feature space. Then,
it creates a line in the features space between the examples
and draws a new sample at a location along that line. Simply
put, the method chooses a random example from the minority
class and a random neighbor using K Nearest Neighbours,
and in the feature space, a synthetic example is formed by
combining two instances. The process of data augmentation
and feature scaling is done only on 80 % of training data,
which are selected randomly in each fold of the 10-fold cross-
validation process.

F. MODELING
There are plenty of machine learning algorithms for clas-
sification purposes. Although here in this presented work,
five machine learning algorithms have used, which are KNN
[63], RF [64], XG-Boost [65], Gradient Boost [66], and
Cat-Boost [67]. These five classifiers are chosen according
to the previous literature review. The reason behind using
more than One ML algorithm is to achieve better and
more reliable prediction results. The core difference in the
algorithm of the different classifiers is discussed below.
KNN calculates the distances between the data point and
different classes in an n-dimensional plane where n is the
number of features and assigns the data to the category that
is closest to the existing categories; here, in this case, it is
five. RF is an ensemble machine learning method that uses
the concept of Bagging, i.e., aggregation of bootstraps to
perform classification. RF is a collection of decision trees
that train on the random selection of original data, and
the decision is made on the majority voting. In contrast,
all the other three algorithms, i.e., XG Boost, Gradient
Boost, and Cat Boost, work on the concept of boosting.
The idea of boosting is to improve the poor learner instead
of focusing on the best. However, they are also ensemble
machine learning methods. It uses the sequencing approach,
which means at any moment t, the model results are weighted
depending on the results of the preceding instant (i.e., t-1).
The correctly predicted outcomes are given less weight,
while those incorrectly classified are given more. In order
to increase prediction accuracy, it assembles a group of
weak learners. The prediction results for each classifier are
discussed in section IV. The specific performance metrics
used to evaluate the classifiers are precision, recall, F1 score,
and accuracy. Further, the ROC-AUC score is calculated to
ensure the unbiased performance of the classifier.

G. PROPOSED SMART HEALTHCARE FRAMEWORK FOR
CVD PREDICTION
The proposed machine learning model for CVD prediction
can be deployed on a central cloud server or at the
edge of a network. It can also be deployed as a mobile
application hosted through any of the cloud services like IaaS
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FIGURE 4. (a), (b), (c), (d) and (e) are showing the location of P, Q, R, T and S peaks respectively in a random sample of ECG
signal.

(Infrastructure as a Service), PaaS (Platforms as a Service)
o, or SaaS (Software a Service). A virtual computer can be
launched using any cloud services, and a user can set up the
Python environment and install Neurokit there in a similar
manner as we do on our usual computers. Deploying the
model on the edge is only recommendedwhen the data stream
size is large or very low latency is required. Various cloud
platforms offer edge deployment, such as Oracle Cloud [68].
Models deployed at the edge usually have the ONNX format,
which gets updated through the central cloud management
server. All the packages needed to preprocess the data, like
Neurokit, are installed within the Python virtual environment
hosted by selected cloud services. The above-discussed
framework is displayed in Figure 6. It’s important to mention
that the main implication of implementing such a smart
healthcare framework is maintaining user data privacy as it
holds personal health information.

IV. RESULT AND DISCUSSION
Each of the five classification models is trained with 80 %
of the training data and tested with the remaining 20 %.
Following is the list of performance measures that are used
for the assessment of the classifier’s performance:

TABLE 6. Performance metrics of KNN.

TABLE 7. Performance metrics of RF.

• Confusion Matrix: It is a n x n tabular representation of
all the classified instances. It includes four entries: TP
(True Positives): Correctly predicted CVD instance TN
(True Negative): Correctly identified Normal subjects
or instances FP (False Positive): Normal instances
classified as any one of the CVD classes FN (False
Negative): CVD instances classified as Normal
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FIGURE 5. (a), (b), (c), (d), and (e) are showing the RR, PQ, PR, QRS, and QT intervals respectively in the random sample of
ECG signal.

FIGURE 6. Proposed smart healthcare framework.

• Accuracy: it gives us the ratio of total correct prediction
to total predictions made [69]. The formula to calculate
accuracy is given in Equation 1.

Acc =
(TP+ TN )

(TP+ TN + FP+ FN )
× 100 (1)

• Precision: It provides the ratio of True Positives to total
Positive predictions, as given in equation 2.

Precision =
TP

(TP+ FP)
(2)

• Recall: It provides the ratio of accurately predicted CVD
class cases to real CVD occurrences, and the same is
written in equation 3.

Recall =
TP

TP+ FN
(3)

• F1 Score: It correctly assesses precision and recall
by considering their conflicting characteristics. It is
calculated as; twice as much of a difference between the
accuracy and recall products and their aggregate as given
in equation 4.

F1 − Score =
2 ∗ Precision ∗ Recall
(Precision+ Recall)

(4)

• ROC-AUC score stands for Receiver Operating Char-
acteristics (ROC) and Area Under Curve (AUC). False
Positive Rate (FPR) and True Positive Rate (TPR) are
represented by this curve. The score ranges between
0 and 1. Where one indicates the best case, and
0 demonstrates the worst. If its value lies between 0.5 to
1.0, the classifier will likely distinguish between Positive
(i.e., all instances of CVD) and Negative classes (i.e.,
Normal means no CVD or healthy).
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TABLE 8. Five-class classification matrix.

TABLE 9. Performance metrics of XG boost.

TABLE 10. Performance metrics of gradient boost.

TABLE 11. Performance metrics of cat-boost.

The confusion matrix for the multi-class classification
differs from the binary classification’s confusionmatrix as we
do not get the TP, TN, FP, and FN directly from it. A dummy
Confusion Matrix for five class classifications is shown in
Table 8.

The matrix diagonal represents the TP, e.g. cell 1, 7, 13,
19, and 25. Each cell represents the TP of the corresponding
class (i.e. column). For example, cell 7 represents the TP
for class 1. Although, FN is the sum of all the values of
the corresponding row except the TP. For example, FN for
class 1 will be the sum of cell 6, cell 8, cell 9, and 10.
Similarly, FP is the sum of all the values of the corresponding
column except the TP, i.e., FP for class 1 will be the sum of
cell 2, cell 12, cell 17, and cell 22. Whereas TN for a specific
class is the sum of all the cell values except the row and
column associated with that particular class, i.e. if we want
to calculate the TN for class 0, then it will be the sum of
cells 2,3,4,5,7,8,9,10,12,13,14,15,17,18,19,20,22,23,24 and
25, or in other words sum of all the cell corresponding to
raw 0 and column 0 i.e, cell 1-5 and cell 6, 11, 16, and 21.
The Confusion Matrices for all the five classifiers with 20 %
of testing data are given in Figure 7.

Table 12 lists the performance for all five classifiers. The
performance of XG boost is best in terms of overall accuracy,
precision, and F1 score, while RF is best regarding Recall.

Looking at the performancemeasures of all five classifiers,
it is evident that in terms of accuracy, XG Boost is best,

TABLE 12. Comparison of classifiers’ Performance.

TABLE 13. Overall comparison of performance with existing work.

While if we look at the Recall Random Forest, it is the
best. It indicates that the Boosting-based technique works
best in terms of overall accuracy. However, for recall, the
bagging technique works best. Ten-fold cross-validation is
used here for validation purposes. The mean of 10-fold cross-
validation for all five classifiers’ performance is listed in
Table 6, 7, 9, 10, and 11. Apart from the accuracy, precision,
and recall, ROC-AUC is also a crucial parameter that
indicates the classifier’s unbiased. In other words, it is also
known as a degree or measure of separability. It tells how
much the model is capable of distinguishing between classes
The class-wise ROC-AUC for XG Boost is given in Figure 8.
The value of the ROC-AUC score lies between 0.0 to 1.0

[70]. A value between 0.5 to 1.0 is supposed to be good
for the classifier. Here, as we can see, the AUC-ROC score
is above 0.90. It is the best for ‘Hypertrophy,’ i.e., 1.00,
followed by ‘Conduction Disturbance,’ for which it is 0.99.
For Myocardial Infarction, ST-T abnormality, and Normal
class, it is 0.98.

Further, the comparison between the presented work and a
few of the existing literature in terms of overall accuracy in
this field is made in Table 13.
It is evident from the table that the presented classifier

is better not only in terms of accuracy but also in terms
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FIGURE 7. Confusion Matrices of all the five classifiers.

FIGURE 8. ROC and AUC score for XG boost.

of ROC-AUC score and F1 score. The higher value of the
ROC-AUC score validates the unbiased classification of the
classifier. Although the comparison is not made in terms of
Recall, as the value of Recall was not available for most of the
previous work, the presented classifier has an excellent value
of Recall which is 0.90.

V. CONCLUSION AND FUTURE SCOPE
The paper presented a 12-lead ECG-based multi-class CVD
classifier that predicts four main types of CVD (i.e.,

conduction disorders, hypertrophy, myocardial infarction,
and ST/T change. It utilizes time-series features extracted
from raw ECG signals. The proposed classifier is accurate,
robust, and efficient. It utilizes only 16 Time domain features
to classify all five categories. Since the raw signal was of
1000*12 dimensions are reduced to sixteen, the proposed
classifier is very light and fast. Further, data augmentation
followed by 10-fold cross-validation is performed to ensure
that the classifier’s performance is not biased. The ROC-AUC
score indicates that the proposed classifier can distinguish
between all five classes, including four main kinds of
CVDs (i.e., Myocardial Infarction, Hypertrophy, Conduction
Disturbances, and ST-T abnormality), against the control
group. Here, a comparative analysis of all five classifiers’
performances has also been done, and it is concluded that
ensemble classifier XG Boost is the best in terms of overall
performance. The proposed classifier’s accuracy, precision,
recall, and F1 score are 93.0%, 92.0%, 90.0%, and 93.0%,
respectively. The paper also describes the role of the proposed
classifier in smart Healthcare. The lightweight, accurate,
and robust technology is crucial for an effective IoT-based
Smart Healthcare framework. The potential limitation of
the proposed work is that the subject or user needs to
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wear a device like a Holter monitor to record the 12-lead
ECG for continuous monitoring of CVD. In the future,
the usability of single-lead [75] and three-lead for CVD
prediction can be explored. The machine learning models
or framework to predict CVD with the help of 1-lead or
3-lead ECG instead of 12-lead ECG can be developed [76],
[77]. Several wearable devices in the market capture either
3-lead or 1-lead ECG, which can be useful for designing
CVD prediction systems with machine learning models. It is
also required to design a CVD protection system through raw
signals. If we can achieve comparable performance, then this
technology will be more accessible to common people and
can bring change in CVDmanagement and improve quality of
life.

The main abbreviations used in this manuscript are given
below:

• AUC: Area Under Curve
• BMI: Body Mass Index
• CAD: Coronary Artery Disease
• CKD: Chronic Kidney Disease
• CVD: Cardiovascular Diseases
• CD: Conduction Disturbances
• CNN: Convolutional Neural Network
• CRNN: Convolutional Recurrent Neural Network
• LSTM: Long short-term memory
• DNN: Deep Neural Network
• ECG: Electrocardiogram
• EMR: Electronic Medical Record
• GBDT: Gradient Boosted Decision Tree
• HYP: Hypertrophy
• IMD: Implantable Medical Device
• KNHSC: Korean Health Insurance Service national
health Sample Cohort data

• MI:Myocardial Infarction
• ML:Machine Learning
• MLP:Multi-Layer Perceptron
• NB: Naive Bayes
• PCA: Principal Component Analysis
• ROC: Receiver Operating Curve
• SMOTE: Synthetic Minority Over-Sampling
• SPSS: Statistical Package for Social Sciences
• STTC: ST-T Changes
• WHO:World Health Organisation
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