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ABSTRACT   

Background: 

Severe radiation toxicity can continue years after the completion of radiotherapy for prostate cancer patients. Currently, 

it is impossible to predict before treatment which patients will experience these long-term side effects. New approaches 

based on vibrational spectroscopy have advantages over lymphocyte and genomic assays in terms of minimal sample 

preparation, speed and cost. A high throughput method has been developed to measure Raman spectra from liquid 

plasma in a cover glass bottomed 96 well plate.  However, the Raman spectra can show contributions from glass and 

water. The current study aims to optimise pre-processing steps to improve classification performance.  

 

Methods: 

Blood samples (n=32) were obtained from prostate cancer patients enrolled on the EU-funded REQUITE study 

(www.requite.eu) through a collaboration with the University of Leicester. Raman spectra were recorded from plasma 

samples using an in-house developed high throughput method. Extended multiplicative scattering correction (EMSC) 

was used for background correction. 

 

Results: 

Raman spectra of plasma were corrected individually and together for glass and water interference. It was observed that 

a good model efficiency was achieved for prostate cancer patients with no/minimal radiation toxicity (grade 0-1) and 

severe radiation toxicity (grade 2-3) after corrections with both glass and water rather than individually.  

 

Conclusions: 

It could be concluded from the study that to achieve good overall model efficiency, both glass and water corrections are 

required, when compared to no corrections, only glass corrections and only water corrections 

 

Keywords: Raman spectroscopy, prostate cancer, plasma samples, glass, water, EMSC, radiation toxicity, partial least 

squares discriminant analysis 
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1. BACKGROUND 

Prostate cancer ranks 4th worldwide as the most commonly diagnosed cancer and the 8th leading cause of cancer-related 

death worldwide [1]. In Ireland, according to the National Cancer Registry Annual Report 2022, prostate cancer makes 

up 1/3 of all invasive cancers and ranks 1st among the most common cancer in Ireland [2]. It kills ~600 Irish men per 

year and is responsible for 12% of all cancer death [2].  The risk category for an individual’s prostate cancer can be 

predicted using the combination of tumour stage, Gleason score and the level of prostate-specific antigen (PSA) in the 

blood [3,4].  The standard treatment for high-risk localized prostate cancer is androgen deprivation therapy combined 

with radiotherapy (RT) [5].  

RT is an important treatment modality for the management of cancer, with approximately 50% of all cancer patients 

receiving RT at some point in their treatment [6]. The lifetime risk of developing cancer for those born since 1960 is now 

estimated to be ~50% [7]. This means that RT will be required for 25% of the male population at some point in their 

lifetime. Despite recent significant technological advances to conform the dose of radiation to the tumour, normal tissue 

is always irradiated during radiotherapy and this can lead to the development of severe acute or late side effects for the 

patient [8]. Intrinsic radiosensitivity is a known cause of radiation toxicity and there is a large intrinsic patient-to-patient 

variability in response [9]. To date, no markers of tumour response to treatment or predictors of normal tissue toxicity 

are in clinical use; thus the present work addresses an area of urgent unmet clinical need.  

Raman spectroscopy has advantages over cellular and -omic assays for biological and clinical sample characterisation in 

terms of requiring minimal sample preparation, speed and cost. Raman spectroscopy is based on the inelastic scattering 

of light by vibrating molecules and the positions, relative intensities and shapes of the bands in a Raman spectrum carry 

detailed information about the molecular composition of the sample. Raman spectra of cells and tissues are a 

superposition of contributions from each biochemical component, such as nucleic acids, proteins, lipids and 

carbohydrates, and can provide a rapid, label-free, non-destructive measurement of the biochemical fingerprint of 

biological material. Over the past 15 years, there have been numerous studies showing the potential of Raman 

spectroscopy for disease screening, diagnosis and prognosis and very promising results have been observed using cells, 

tissues and biofluids [10]. Recent studies, including those from our own laboratory, have shown the potential of Raman 

spectroscopy to characterise the radiation response of normal and tumour cells irradiated in vitro and of tumour tissue 

irradiated in vivo [11-14]. A recent pilot study in our laboratory investigated the potential of Raman spectroscopy to 

discriminate prostate cancer patients who showed severe radiation toxicity (Grade 2+ toxicity) from those who showed 

no/minimal toxicity (Grade 0-1 toxicity) [15]. In the latter study blood samples were collected from 42 patients on a 

Cancer Trials Ireland radiotherapy trial (formerly the All-Ireland Co-operative Oncology Research Group ICORG) 08-17 

study, NCT00951535) and Raman spectra were recorded from peripheral blood lymphocytes. Classification models for 

toxicity were developed using Raman spectra of these samples together with known patient toxicity scores, with 

sensitivity and specificity rates of 90% and 85% achieved. The Raman analysis showed changes in the lipid profiles of 

the patient samples [15].  

For the current study, Raman spectra were acquired from plasma from prostate cancer patients prior to RT using a cover 

glass bottomed 96 well plate as a substrate [16]. However, the spectra from plasma have an interference from glass and 

water, thus the current study aims to develop an optimised method for background correction of Raman spectra from 

liquid plasma. 

  

2. METHOD AND MATERIALS 

1.1 Sample collection and preparation 

For the current study, the blood samples from no/minimal (grade 0 and 1) radiation toxicity (n=16) and from severe 

(grade 2 and 3) radiation toxicity (n =16) were obtained from prostate cancer patients before undergoing RT. These 

patients were enrolled on the EU-funded REQUITE study (www.requite.eu) through a collaboration with the University 

of Leicester.  The patients were followed up post-RT, at 12 months and 24 months following radiotherapy and toxicity 

levels were recorded using the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) 

v4.0 grading system. For the current study, plasma samples were isolated from these blood samples by centrifugation at 

3500 g for 5 min at 18°C. The samples were subsequently stored at −80°C prior to Raman acquisition. 
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1.2 Raman acquisition 

Raman spectra were acquired using an in-house developed high throughput (HT)-Raman spectroscopy method [16] on a 

Horiba Jobin Yvon Labram HR800 UV micro-spectroscopy system (Horiba UK Ltd, Middlesex, UK). Briefly, 20 µl of 

liquid plasma was deposited on a cover glass bottomed 96 well plate (MatTek corporation) and Raman spectra of the 

plasma samples were acquired using a 785 nm laser focused through a 10× objective (N.A. 0.25). Spectra were recorded 

using a diffraction grating ruled with 300 lines/mm giving a spectral resolution of ~2.1 cm−1. Spectra were recorded 

automatically from each well where the spectrometer was programmed using an in-house developed high throughput 

macro template. Each spectrum was acquired over the region from 400 cm−1 to 1800 cm−1. Eleven spectra were recorded 

from each sample for each patient with a 20 s × 3 integration time. Multiple wavenumber calibration spectra of 1,4-Bis 

(2-methylstyryl) benzene were recorded along with each sample acquisition and used in spectral pre-processing. 

1.3 Raman pre-processing 

All spectral processing procedures were carried out within MATLAB (R2017a; Mathworks Inc., Natick, MA), along 

with in-house developed algorithms and procedures available within the PLS Toolbox (v 8.0.2, Eigenvector Research 

Inc., Wenatchee, MA).  

The acquired Raman spectra were at first calibrated for wavenumber using an in-house standard of 1,4-Bis (2-

methylstyryl) benzene and using in-house developed calibration procedures [14]. Extended multiplicative scattering 

correction (EMSC) was used for background corrections for glass and water corrections. Earlier this method was 

successfully applied to the correction of glass interference in the Raman spectra of oral exfoliated cells on a glass slide 

[17]. A similar, methodology has been implemented here to optimise background corrections for plasma samples.  

According to the EMSC algorithm [18], a raw spectrum ‘S’ can be described as a linear superposition of the reference 

spectrum ‘R’ of a cell acquired on a substrate, a polynomial baseline signal ‘B’, and the background (interference) signal 

‘G’:  

………………………………………………………………………………………………………4.1  

The goal is to estimate the values of ‘B’ and ‘G’ such that they may be subtracted from the recorded spectrum. The 

algorithm weights the contribution of the reference background spectrum to the dataset. Then, it fits complete datasets to 

the reference spectrum to aid in accurate removal of background. EMSC also calculates a baseline signal from the 

reference spectrum of the cellular components and enforces it on the dataset. Ultimately, this leads to a baseline 

corrected dataset with background subtraction. 

Consider a reference spectrum ‘r’ is obtained in a way that ‘R’ can be approximated by the product of reference spectrum 

and a certain weight:  

..…………………………………………………………………………………………………………….4.2  
where Cr is scalar for a given spectrum  

Similarly, a spectrum from a background ‘g’ represent the spectral contribution of glass/water in the recorded plasma 

spectrum by ‘G’, as the product of the pure glass/water spectrum and a certain weight:  

………...………………………………………………………………………………………………...…4.3  
where Cg is scalar for a given spectrum, whereas, the slowly varying baseline ‘B’ can be represented using an 

appropriate ‘Nth’ order polynomial:  

.……………………………………………………………....4.4  
where ‘N’ is the order of the polynomial, and Cm for m = 0 → N represents the various coefficients in the polynomial. 

So, the raw spectrum ‘S’, the reference spectrum ‘r’, the glass spectrum ‘g’, and the order of the polynomial ‘N’, all are 

the input for the EMSC algorithm, which returns estimates for Cr, Cg, and Cm for m = 0 → N.  

......………………………………………………………....4.5 
The corrected spectrum can be expressed as,  



 

 
 

 

 

 

........……..….…………………………………............................4.6 
For carrying out EMSC, spectra from glass (n=10) and water (n=10) were acquired in a cover glass-bottomed 96 well 

plate, while as a pure biological component, spectra of plasma (n=10) were acquired on a calcium fluoride slide which 

has no interfering glass bands and so can be used as a reference spectrum. Then before subjecting it to the EMSC 

algorithm. glass, water and reference spectra were baselined and smoothed using a Savitzky–Golay filter (order = 5; 

window = 13). Then, this pre-processed background and raw patient plasma dataset were subjected to EMSC. The 

baseline corrections were part of EMSC. After carrying out EMSC, patient plasma dataset spectra were Savitzky–Golay 

filter (order = 5; window = 13) and standardised using vector normalisation before analysis. 

1.4 Raman analysis 

PLS-DA is a linear classification model based on partial least squares regression, where the y variable (the regression 

target) is encoded as the discrete spectral class (no/minimal or severe radiation toxicity) [19, 20]. PLS-DA aims to obtain 

maximum covariance between the independent and dependent variables of a multidimensional dataset by finding a linear 

subspace. This new subspace allows the prediction of dependent variables using a reduced number of factors, known as 

latent variables (LVs) [21]. The details of the PLS-DA approach used in this study are fully described previously [22]. 

 

3. RESULTS AND DISCUSSION 

It is known that glass has an interfering band in the region 1200-1400 cm-1 and water has an interfering band in the 

region 1600-1700 cm-1[17]. Due to glass interference, all the bands in the region for proteins and lipids can be masked, 

while water interference can cause broadening of the Amide I protein band as shown in Figure 1a. In order to optimise 

the background corrections, the dataset was corrected with only glass, only water and both glass and water together as 

shown in Figure 1a, with the reference spectrum for EMSC acquired from a sample deposited on CaF2. It was 

observed that in the case of only glass the broadening of 1600 -1700 cm-1 can be observed, while in the case of only 

water corrections, the background can be observed in the region 1200-1300 cm-1 (Figure 1a). Furthermore, it was 

observed with both glass and water corrections together no background effect can be observed on the mean spectrum.  
  
Further, with the aim to differentiate no/minimal (grade 0 and 1) radiation toxicity (n=16) from severe (grade 2 and 3) 

radiation toxicity (n =16) and to understand the effects of various corrections PLS-DA models were developed. As 

shown in Figure 1b and Figure 1c, the score plot and loading (LV1) respectively of PLS-DA leave-one-patient-out cross-

validation depict the effect of glass and water on the classification model. Further, background corrections were carried 

out with only glass, only water and both glass & water together. It can be seen in Table 1, with no corrections 77% 

sensitivity and 46% specificity were achieved. Good classification efficiency was achieved with no corrections mainly 

due to the background.  With only glass and only water corrections, sensitivities of 92% & 80% respectively and 

specificities of 33% and 40% respectively were achieved (Table 1). Further, it was observed that better performance was 

achieved using both glass and water corrections together, with sensitivity of 86% and specificity of 44%. From the mean 

spectrum (Figure 1a) and model efficiencies (Table 1), it can be concluded that after correcting with only glass and only 

water, the background is hampering the overall efficiency of the models, whereas, with both glass and water corrections 

no background interference was evident. Therefore, through the current study, it can be concluded that it is 

recommended to carry out both glass and water corrections before analysing the plasma samples Raman spectra acquired 

on the cover glass bottomed 96 well plate.  
 



 

 
 

 

 

 

 

Figure 1 a) mean spectrum, b) PLS-DA leave-one-patient out with no corrections score plot, and c) Latent variable 1 with no 

corrections 

 

 
Table 1: Comparative sensitivities, specificities and accuracy for various corrections 

Corrections Sensitivity (%) Specificity (%) Accuracy (%) 

No 76 68 72 

Glass 92 33 63 

Water 80 40 60 

Glass and water 86 44 65 
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