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Chapter

Simulation and Analysis of
Synthetic Aperture Radar Images
Jonathan Blackledge

Abstract

The principal model for an image, generated by the interaction of an incident wave
field with an inhomogeneous medium, is based on the ‘weak scattering approxima-
tion’. This approximation forms the basis for image processing, analysis and image
understanding associated with applications over a broad range of frequencies. The
physical limitations of such a model are typically overcome by introducing an addi-
tional stochastic field term that takes into account those effects that do not conform to
the weak scattering approximation, coupled with background ‘system noise’. In this
chapter, a solution to the scattering problem is presented, which is based on an exact
scattering solution. An application of this solution is then considered which focuses on
developing a model for a Synthetic Aperture Radar (SAR) image of the earth’s surface.
By assuming that the surface is a fractal (a Mandelbrot surface), it is shown how an
overhead optical image of the surface may be used to simulate a SAR image. The
purpose of this is to generate training data for developing computer vision solutions
using machine learning for autonomous navigation using SAR and for target detection
in cases where only optical image data are available.

Keywords: synthetic aperture radar, strong scattering, mathematical models,
simulations from optical images, target detection

1. Introduction

Aperture synthesis is used in a wide range of applications including radar, sonar,
diagnostic ultrasound and radio astronomy. The basic principle is very simple. In one
form or another, the resolution of an image is determined by the size of the aperture
that is used for observation. To improve the resolution, the size of the aperture must
be increased. In some cases, to achieve a given resolution, an aperture must be used
which is impractical either to build or utilise effectively. However, if a smaller aper-
ture (a real aperture) is used, and its position changed while observations are being
made, then, in effect, a much larger aperture can be synthesised.

Although the basic principles of aperture synthesis is the same, the details vary
accord to the application. Radar (radio detection and ranging) has been used for many
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years (since the early 1940’s) to detect airborne objects using ground based antennas
and to image the Earth’s surface using airbourne platforms.

Developments in the 1960s paved the way for a new generation of high resolution
Radar systems which helped lead to the development of synthetic aperture radar
(SAR) in the mid 1970s, although it had been used covertly for military and some
space programmes well before that time (e.g. [1, 2]).

SAR was developed to study the surface of the Earth (and other planets) from
both spacebourne and airborne platforms. Both systems attempt to classify the inho-
mogeneous nature of the Earth’s surface by repeatedly emitting a frequency modu-
lated (chirped) pulse of microwave (GHz) radiation [3] and recording the back-
scattered field. SAR systems essentially provide ‘microwave photographs’ of the
Earth’s surface and are normally classified in terms of the wavelength that is used.
Typical operational modes include X-band, with a wavelength of 2.8 cm, and L-band,
with a wavelength of 24 cm. In addition to different wavelengths, different
polarisations are used.

1.1 SAR imaging

A SAR image has a pixel resolution of the order of a metre or less, but the microwave
scattering takes place on the scale of a centimetre. The return signals in range at each
position of the moving real aperture are demodulated to base-band. Demodulation is
coupled with quadrature detection, which provides the imaginary component of the
real signal that is recorded, thereby generating the analytic signal [4].

The return (back-scattered) signals, which are generated by emitting a linear
frequency modulated or chirped pulse of microwave radiation, are correlated with
an identical chirp. This yields an Impulse Response Function (IRF) for the
demodulated range signals given by a sinc function (sinc xð Þ � sin xð Þ=x).
However, the range at which the system operates is designed to exploit a model of the
back-scattered microwave field that is in the Fresnel zone. Thus, the cross range
(the direction at right angles to the range) response, is also a chirp function (both a
down-chirp, in which the instantaneous frequency decreases, and an up-chirp,
meaning that the instantaneous frequency increases). Hence, by correlating the com-
bined return signals in cross range with the appropriate chirp function, the cross range
data also becomes characterised by a sinc IRF. In this way, the two-dimensional
(complex) data associated with a SAR image is classified by a point spread function
(PSF) given by a separable sinc function. A grey scale image is then usually
constructed by displaying the Amplitude Modulations associated with the processed
data field.

1.2 Original contributions and structure

The principal focus of this work is concerned with the application of an exact
scattering solution [5] and its implementation for modelling a SAR. In this respect, the
material provide a ‘road map’ which starts with Maxwell’s equations for an Electro-
magnetic (EM) field and develops a solution that can be cast in terms of a standard
model for a SAR image. This ‘standard’ involves the convolution of a characteristic
Point Spread Function with an Object Function whose properties are determined by
the scattering associated with the incidence of an EM wave field upon the ground
surface.
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The structure of the material is as follows: Section 2 provide a review of the EM
field equations, casting them in a form that is suitable for generating a model for SAR.
Section 3 introduces a scaler field model and the fundamental solution for the electric
field. This is coupled with Section 4, which briefly discusses the differences between
volume and surface scattering effects, followed by Section 5 which introduces the
conventional weak scattering model. In this context, Sections 6 and 7 introduce the
exact and strong scattering solutions, respectively; these sections are main
components in regard to the most original themes of the material. Section 8 shows
how the strong scattering solution can be used to develop a model for SAR and is
followed with the introduction of another complementary idea which is concerns
the use of a self-affine model for the scattering function. This is provided in Section 9,
and is pivotal in the development of the approach presented in Section 10 which
explores the basis for the numerical simulation of a SAR image using an optical
image. The final components of the work are given in Sections 11 which
investigate a vector field model, thereby introducing the effects of polarisation. It is
shown how, a cross polarised field can be used to generate quantitative SAR images
that differentiate between the dielectric and conductive properties of the ground
surface. An Appendix is provided with a MATLAB function deigned to help
readers appreciate the relative simplicity of the numerical simulations considered, to
repeat the results presented, and provided the basis for further investigations and
developments.

2. Electromagnetic field equations

Electromagnetic imaging systems require models to be constructed that are based
on the field equations for electric and magnetic fields. These field equations are
known as Maxwell’s equation, and in this section, we briefly introduce the macro-
scopic form of these equations for the case of an inhomogeneous conductive dielectric
material. This provides a basis for the derivation of an inhomogeneous wave equation
in regard to the electric field which forms the basis for the development of an EM
imaging systems model.

For a linear, isotropic but inhomogeneous three-dimensional continuum with

r∈ℝ
3, r � ∣r∣, the macroscopic Maxwell’s equations are given by (for the Interna-

tional System of Units).

∇ � εE ¼ ρ (1)

∇ � μH ¼ 0 (2)

∇� E ¼ �μ
∂H

∂t
(3)

∇�H ¼ Jþ ε
∂E

∂t
(4)

where E r, tð Þ is the electric field measured in Volts/metre, H r, tð Þ is the magnetic
field in Amperes/metre, J r, tð Þ is the Current Density (Amperes/metre2), and ρ r, tð Þ is
the Charge Density (Coulombs/metre3). These fields are functions of space vector r
and time t and are related to the inhomogeneous (space varying) material parameters
quantified by the electrical permittivity ε rð Þ (Farads/metre) and the magnetic
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permeability μ rð Þ (Henries/metre). Eqs. (1)–(4) represent (respectively) the differ-
ential forms of Coulombs law, the law of no magnetic monopoles, Faraday’s law of
induction (electricity from magnetism) and Amperes law (magnetism from electric-
ity) coupled with Maxwell’s additive displacement current term—the rate of change
of an electric field.

The values of ε and μ in a vacuum (denoted by ε0 and μ0, respectively) are ε0 ¼
8:854� 10�12 Farads/metre and μ0 ¼ 4π � 10�7 Henries/metre. In electromagnetic
imaging problems there are two important physical models to consider, based on
whether a material is conductive or non-conductive.

For a non-conductive material J ¼ 0. In regard to a conductive material, the
induced current depends on the magnitude of the electric field and the conductivity σ

(Siemens/metre) of the material. The relationship between the electric field and the
current density is given by Ohm’s law which can be written in the form

J ¼ σE (5)

Here, the current density is linearly related to the electric field alone, where for a
good conductor, σ > > 1. However, note that Eq. (5) is strictly only applicable to
‘Ohmic materials’ such as metals and some relatively poor conductors under specific
circumstances. It is not applicable for semi-conductors, a moving Ohmic material in
the presence of a magnetic field or for a plasma, for example, where, in the latter case,
the generalised Ohm’s law for a plasma is required. Nevertheless, for the applications
considered in this paper, Eq. (5) is sufficient for near-stationary conductive materials
interacting with an EM field.

By taking the divergence of Eq. (4) and noting that

∇ � ∇�Hð Þ ¼ 0

then, given Eq. (1) for a constant ε, and Eq. (5) for a constant σ, we can write

∂ρ

∂t
þ σ

ε
ρ ¼ 0 ) ρ tð Þ ¼ ρ0 exp �σt=εð Þ, ρ0 � ρ t ¼ 0ð Þ

This solution for the charge density shows that it decays exponentially with time.

For typical values of ε � 10�12 � 10�10 Farads/metre, then, provided σ is not too
small, the dissipation of charge is very rapid. It is therefore physically reasonable to set
the charge density to zero and, for problems involving the interaction of EM waves
with good conductors, Eq. (1) can be approximated by

∇ � εE ¼ 0 (6)

with Eq. (4) becoming

∇�H ¼ ε
∂E

∂t
þ σE

Note, that in EM imaging systems, the material may not necessarily be conductive
throughout, but may be a varying dielectric with distributed conductive elements. For
example, when imaging the Earth’s surface using microwave radiation, the EM scat-
tering model can be based on a ‘ground truth’ that is predominantly a dielectric
surface with localised conductors, e.g. metallic objects.
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2.1 Wave equation

In electromagnetic imaging systems, a primary measurable field is the electric
field, which induces a change in the voltage of the field detector. It is therefore
appropriate to use a wave equation which describes the behaviour of the electric field.
This can be obtained by decoupling Maxwell’s equations for the electric field E. In
regard to Eq. (3), dividing through by μ and taking the curl of the resulting equation
yields

∇� 1

μ
∇� E

� �

¼ � ∂

∂t
∇�H:

By taking the derivative with respect to time of Eq. (4) and using Ohm’s law—

Eq. (5)—we obtain

∂

∂t
∇�Hð Þ ¼ ε

∂
2E

∂t2
þ σ

∂E

∂t
:

From the previous equation we can then write

∇� 1

μ
∇� E

� �

¼ �ε
∂
2E

∂t2
� σ

∂E

∂t
(7)

Expanding the first term, multiplying through by μ and noting that

μ∇
1

μ

� �

¼ �∇ ln μ

we obtain

∇� ∇� Eþ εμ
∂
2E

∂t2
þ σμ

∂E

∂t
¼ ∇ ln μð Þ � ∇� E

Further, expanding Eq. (6), we have

ε∇ � Eþ E � ∇ε ¼ 0 ) ∇ � E ¼ �E � ∇ ln ε

and hence, using the vector identity

∇� ∇� E ¼ �∇2Eþ ∇ ∇ � Eð Þ

we obtain the following wave equation for the electric field

∇2E� εμ
∂
2E

∂t2
� σμ

∂E

∂t
¼ �∇ E � ∇ ln εð Þ � ∇ ln μð Þ � ∇� E (8)

This equation is inhomogeneous in ε, μ and σ. Solutions to this equation provide
information on the behaviour of the electric field in an inhomogeneous conductive
dielectric environment. In electromagnetic imaging problems, interest focuses on the
behaviour of the scattered EM field generated by variations in the material parameters
ε, μ and σ. The problem is to reconstruct, or to at least interpret these parameters by
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measuring certain properties of the scattered electric field. This is a three parameter
inverse problem which requires us to solve for the electric field E given ε, μ and σ. In
the context of the model considered, a similar type of analysis can be implemented to
generate an inhomogeneous wave equation for the magnetic field which is given by

∇2H� εμ
∂
2H

∂t2
� σμ

∂H

∂t
¼ �∇ H � ∇ ln μð Þ � ∇ ln εð Þ � ∇�H� εE� ∇

σ

ε

� �

Note, that in this case, the equation for H is coupled to E through the last term on
the right hand side. It is for this reason that the wave equation for the electric field
given by Eq. (8) is considered. Moreover, Eq. (8) is consistent with the development
of a ‘systems model’ where the imaging data is based on the detection of the electric
wave field; this includes Real and Synthetic Aperture Radar’s.

2.2 Inhomogeneous wave equation

In order to solve the wave equation (focusing on the electric field) derived in the
last section using the most appropriate analytical methods for imaging science (i.e. the
fundamental Green function solution, as discussed later), it is typically re-cast in the
form of the (time-independent) Langevin equation

∇2 þ k2
� �

E ¼ �L̂E

where L̂ is an inhomogeneous differential operator, ∇2 þ k2
� �

is the Helmholtz
operator, and k ¼ 2π=λ is the wavenumber associated with the wavelength λ.

To achieved this, we first modify the time dependent equation, starting by adding
the term

ε0
∂
2E

∂t2
� 1

μ0
∇� ∇� E

to both sides of Eq. (7), so that, upon re-arranging, we can write

∇� ∇� Eþ ε0μ0
∂
2E

∂t2
¼ �ε0μ0γε

∂
2E

∂t2
� μ0σ

∂E

∂t
þ ∇� γμ∇� E

� �

(9)

where

γε ¼
ε� ε0

ε0
¼ εr � 1 and γμ ¼

μ� μ0

μ
¼ 1� 1

μr

Here, εr ≥ 1 and μr ≥ 1 are dimensionless variables—the relative permittivity and
the relative permeability, respectively. We can then use the result (which is valid for
ρ � 0 in Eq. (1), when σ > > 1)

∇� ∇� E ¼ �∇2Eþ ∇ ∇ � Eð Þ ¼ �∇2E� ∇ E � ∇ ln εð Þ

so that Eq. (9) can now be written as

∇2E� ε0μ0
∂
2E

∂t2
¼ μ0ε0γε

∂
2E

∂t2
þ μ0σ

∂E

∂t
� ∇ E � ∇ ln εð Þ � ∇� γμ∇� E

� �

(10)
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2.3 Time independent wave equation

Construction of a time-independent wave equation can be undertaken by consid-
ering the time dependence of the electric field to be harmonic when E r, tð Þ �
E r,ωð Þ exp iωtð Þ where ω is a constant angular frequency, thereby allowing Eq. (10) to
be cast in the form of the following inhomogeneous Helmholtz equation [6] for a
vector field:

∇2 þ k2
� �

E ¼ �k2γεEþ ikZ0σE� ∇ E � ∇ ln εð Þ � ∇� γμ∇� E
� �

(11)

where

k ¼ 2πλ ¼ ωc0, c0 ¼ 1
ffiffiffiffiffiffiffiffiffiffi

ε0μ0
p and Z0 ¼ μ0c0:

The parameter Z0 is the free space wave impedance and is approximately equal to
377 Ohms. The constant c0 is the velocity at which EM waves propagate in a perfect

vacuum—the speed of light≃ 3� 108 ms�1. In electromagnetic imaging, images are
characterised by the spatial variations of the parameters γε, γμ and the conductivity σ.

Eq. (11) also applies to the case when the time-dependence of the electric field can
be described in terms of a spectrum of frequencies when E r, tð Þ is related to the
temporal frequency spectrum E r,ωð Þ through the Fourier transform, i.e.

E r, tð Þ $ E r,ωð Þ, E r, tð Þ ¼ 1

2π

ð

∞

�∞

E r,ωð Þ exp iωtð Þdω

where $ denotes the Fourier transform pair.
Eq. (11) is the wave field model upon which all of the material that follows in this

article is based. This material is concerned with two distinct models for a Synthetic
Aperture Radar system in association with Eq. (11). The first is a scalar field model
when the last two terms on the right hand side of Eq. (11) are neglected. The second
model considers a solution to Eq. (11) based on neglecting the last term on the right
hand side which is consistent with imposing the condition that μr ¼ 1.

3. Scalar field model

In regard to Eq. (11), a scalar wave field model is compounded in the equation

∇2 þ k2
� �

E r, kð Þ ¼ γ r, kð ÞE r, kð Þ (12)

where

γ r, kð Þ ¼ �k2γε rð Þ þ ikZ0σ rð Þ (13)

The field E r, kð Þ denotes any component of the electric field vector E r, kð Þ ¼
x̂Ex r, kð Þ þ ŷEy r, kð Þ þ ẑEz r, kð Þ where (x̂, ŷ, ẑ) are unit vectors in a Euclidean space

and Ex,Ey,Ez

�

) are the scalar components of the field in that space.
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This equation has the fundamental Green’s function solution [7].

E r, kð Þ ¼ Ei r, kð Þ þ Es r, kð Þ (14)

where Ei r, kð Þ is the incident wave function, taken to be a solution of the homog-
enous Helmholtz equation

∇2 þ k2
� �

Ei r, kð Þ ¼ 0 (15)

and Es r, kð Þ is the scattered field given by

Es r, kð Þ ¼ g r, kð Þ⊗ rγ r, kð ÞE r, kð Þ where g r, kð Þ ¼ exp ikrð Þ
4πr

(16)

The function g r, kð Þ is the ‘out-going free-space Green’s function’ which is the
solution of [7].

∇2 þ k2
� �

g r, kð Þ ¼ δ3 rð Þ (17)

for the three-dimensional delta function δ3 rð Þ and the operator ⊗ r denotes the
convolution integral, i.e.

g rð Þ⊗ rf rð Þ �
ð

∞

�∞

g r� sð Þf sð Þdns

where g rð Þ, f rð Þ½ �∈L2
ℝ

3
� �

: ℂ ! ℂ. Thus, we note that

g r, kð Þ⊗ rγ r, kð ÞE r, kð Þ �
ð

∞

�∞

g rjs, kð Þγ s, kð ÞE s, kð Þd3s

where, for notational convenience and clarity, g rjs, kð Þ � g jr� sj, kð Þ.
A simple proof of the fundamental solution given by Eq. (16) is obtained by noting

that

∇2E r, kð Þ ¼ ∇2Ei r, kð Þ þ ∇2 g r, kð Þ⊗ rγ r, kð ÞE r, kð Þ½ �
¼ ∇2Ei r, kð Þ þ ∇2 g r, kð Þ½ �⊗ rγ r, kð ÞE r, kð Þ
¼ ∇2Ei r, kð Þ þ δ3 rð Þ � k2g r, kð Þ

	 


⊗ rγ r, kð ÞE r, kð Þ
¼ ∇2Ei r, kð Þ þ γ r, kð ÞE r, kð Þ � k2 E r, kð Þ � Ei r, kð Þ½ �
¼ �k2E r, kð Þ þ γ r, kð ÞE r, kð Þ

(18)

given Eqs. (15) and (17), and that

δ3 rð Þ⊗ rγ r, kð ÞE r, kð Þ ¼ γ r, kð ÞE r, kð Þ

In the context of Eq. (16), the forward scattering problem is ‘Given γ r, kð Þ evaluate
Es r, kð Þ’. The corresponding inverse scattering problem is ‘Given Es r, kð Þ evaluate
γ r, kð Þ’. Both problems ideally require unconditional and exact solutions. If the
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‘scattering function’ γ r, kð Þ is taken to be a piecewise continuous function over all
space, approaching zero at infinity say, then there are no boundary conditions that
need to be taken into account. However, Eq. (14) also applies to the case of a scatter-
ing function of compact support with a defined surface for which boundary condi-
tions apply. This is discussed in the following section.

4. Volume and surface scattering effects

Eq. (14) is valid for for γ r, kð Þ ! 0 as r ! ∞. In the case when γ r, kð Þ is a function
of compact support such that r∈V where V is a finite volume of space, the funda-
mental solution is [7].

E r, kð Þ ¼
ð

s∈V

g rjsð Þγ s, kð ÞE s, kð Þd3sþ ∮
s∈ S

g rjs:kð Þ∇E s, kð Þ � E s, kð Þ∇g rjs, kð Þ½ � � n̂d2s

where S defines the surface of the scattering function and n̂ is the outward unit
normal at each point on S.

If the field does not penetrate into the volume of the scatterer, then the solution is
given by the surface integral alone. The solution then depends explicitly on the values
of the field (and its gradient) on the boundary of the surface alone, from which the
surface integral may then be evaluated. This is a boundary value problem whose
solutions describe surface scattering effects and applies to scattering problems when
there is no propagation of the incident field into the interior of the scatterer.

When the incident field penetrates into the interior of the scatterer, both volume
and surface scattering effects must be taken into account. This is the case when the
scatterer is composed on (non-conductive) dielectric materials, for example. Thus,
suppose that the field Ei r, kð Þ, which is a solution to Eq. (15), is incident upon the
surface of the scatterer. At the point of incidence, the boundary field and its gradient
will be Ei s, kð Þ and ∇Ei s, kð Þ, respectively. Using these boundary conditions and
Green’s theorem [7], we have

∮
s∈ S

g rjs, kð Þ∇Ei s, kð Þ � Ei s, kð Þ∇g rjs, kð Þ½ � � n̂d2s

¼
ð

s∈V

g rjs, kð Þ∇2Ei s, kð Þ � Ei s, kð Þ∇2g rjs, kð Þ
	 


d3s ¼
ð

s∈V

δ3 r� sð ÞEi s, kð Þd3s ¼ Ei r, kð Þ

having noted that

∇2Ei r, kð Þ ¼ �k2Ei r, kð Þ and ∇2g rjs, kð Þ ¼ �δ3 r� sð Þ � k2g rjs, kð Þ

Hence, we obtain the same solution as given by Eq. (14) for a scattering function of
compact support (or otherwise) with a defined surface upon which the electric field
and its gradient are taken to be that of an incident field conforming to Eq. (15). It may
be argued that this is also valid for conductive scatterers unless the skin depth, given

by δ ¼ 2=kZ0σð Þ1=2, is taken to be zero (implying that the conductivity is infinite!). In
practice, however, the skin depth is finite and thus, Eq. (14) may be applied for a
volume that is determined by the surface and the skin depth of the scatterer where,
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beyond the skin depth, the field is taken to be zero. In this way, a volume scattering
model can be applied for cases involving field attenuating scatterers such conductors
where σ > >0.

5. Weak scattering model: The born approximation

Eq. (14) is an integral equation obtained through application of the fundamental
Green’s function solution. However, it is not a solution. This is because the E r, kð Þ field
is on both the left and right hand sides of the equation. The simplest, and most
common solution to this problem, is obtained by applying what is commonly referred
to as the Born approximation [8]. This is where it is assumed that the convolution
integral for the scattered field can be approximated using the result

Es r, kð Þ ¼ g r, kð Þ⊗ rγ r, kð ÞEi r, kð Þ (19)

Application of this approximation requires that

∥Es r, kð Þ∥2
∥Ei r, kð Þ∥2

< < 1 (20)

where ∥•∥2 denotes the Euclidean norm. Essentially, Condition (20) means that the
intensity of the field Es r, kð Þ (the scattering cross-section) is small compared to that of
Ei r, kð Þ. The condition implies that the scattering is a ‘weak effect’, i.e., the scattered
field is a small perturbation of the incident field. In physical terms, this means that
there are no multiple scattering effects taken to be present. Thus, the Born scattered
field is a model for single scattering events alone.

Multiple scattering events can be taken into account through iteration of Eq. (14)
which requires that the series converges. This is a formal solution to the (multiple)
scattering problem, and is quantified in terms of the series solution to Eq. (14),
given by

E r, kð Þ ¼ Ei r, kð Þ þ g r, kð Þ⊗ rγ r, kð ÞEi r, kð Þ þ g r, kð Þ⊗ rγ r, kð Þ g r, kð Þ⊗ rγ r, kð ÞEi r, kð Þ½ � þ …

The Born approximation is then observed to be the first iteration of a series
solution, each higher order term of the series representing the second, third, fourth
etc. order scattering effects. In this context, we can analyse the physical limitations
that the Born approximation exhibits. To do this, Condition (20) must be investigated
further.

The Born approximation requires that Es r, kð Þ is ‘small’ compared to Ei r, kð Þ for all
r∈ℝ

3 and k. To quantify this statement, we use Young’s convolution inequality and
then Hölder’s inequality, respectively. For a Euclidean, this yields the result:

∥Es r, kð Þ∥2 ¼ ∥g r, kð Þ⊗ rγ r, kð ÞEi r, kð Þ∥2 ≤ ∥g r, kð Þ∥2∥γ r, kð ÞEi r, kð Þ∥2
≤ ∥Ei r, kð Þ∥2∥g r, kð Þ∥2∥γ r, kð Þ∥2

It is then clear that the condition for the Born approximation to hold can be
written as

∥g r, kð Þ∥2∥γ r, kð Þ∥2 < < 1
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For a scatterer that is taken to be a sphere of radius R say, we can write the
condition as

γ r, kð Þh i< < 1R2 where γ r, kð Þh i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

γ r, kð Þj j2d3r
ð

d3r

v

u

u

u

u

u

t

Thus, for a dielectric material when γ r, kð Þ ¼ �k2γε rð Þ (and σ ¼ 0), we can write
the condition in terms of the wavelength λ as

λ> >R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ r, kð Þh i
p

This ‘distillation’ of the condition for the Born approximation to be applicable,
demonstrates that, for arbitrary values of γ r, kð Þh i, Condition (20) holds, provided the
physical scale length L say, of the scattering function is small compared to the wave-
length. Else, for scale lengths where L � λ, the condition for the Born approximation
to apply is γ r, kð Þh i< < 1. This is the condition required for the scatterer to be classi-
fied as being ‘weak’.

The main point here, is that unless the scattering is taken to be weak, the Born
approximation can only be satisfied if λ> >L. However, this condition is entirely
incompatible with a fundamental reality concerning the structural information asso-
ciated with any and all images formed from a scattering interaction. This is that
information on the structure of a material is determined by the interactions that take
place on the scale of a wavelength. It is this dichotomy, at least, for scattering effects
that cannot be classified as being ‘weak’ which is the more common physical reality,
that lies at the heart of the problem in using a Born scattering model to processes and
analyse images obtained from the scattering of an EM field. For this reason, the
approach considered in the following section is now presented.

6. Exact scattering model

For a scalar field, an exact scattering solution to Eq. (12) can be formulated which
is compounded in the result [5].

E r, kð Þ ¼ g r, kð Þ⊗ rγ r, kð ÞEi r, kð Þ (21)

where, for spatial frequency vector u,

E r, kð Þ $
~Ei u, kð Þ~Es u, kð Þ

~Ei u, kð Þ þ ~Es u, kð Þ
,

~Ei u, kð Þ $ Ei r, kð Þ, ~Es u, kð Þ $ Es r, kð Þ and ~E u, kð Þ ¼
ð

∞

�∞

E r, kð Þ exp �iu � rð Þd3r

(22)

Equation (21) facilitates an exact (near-field) inverse scattering solution given that
we can write
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γ r, kð Þ ¼ E ∗
i r, kð Þ

Ei r, kð Þj j2
h r, kð Þ⊗ rE r, kð Þ where h r, kð Þ⊗ rg r, kð Þ ¼ δ3 rð Þ

However, Eq. (21) is subject to Eq. (15), and, more critically, a further ‘condition-
ing equation’ given by [5].

∇2 þ k2
� �

γ r, kð ÞEi r, kð Þ ¼ 0 (23)

This is a non-standard condition that requires quantification in terms of the class of
scattering functions that are applicable. In this respect, expanding Eq. (23), we can
write it in the form

∇2γ r, kð Þ þ 2∇γ r, kð Þ � ∇ lnEi r, kð Þ ¼ 0

and thus, for an incident unit plane wave field given by Ei r, kð Þ ¼ exp �ik � r=2ð Þ
say, which is a solution to Eq. (15), we can write Eq. (23) as

∇2γ r, kð Þ � ik � ∇γ r, kð Þ ¼ 0 (24)

Eq. (24) has a solution (for arbitrary constants a and b) given by

γ r, kð Þ ¼ aþ b exp ik � rð Þ

However under the condition that k � u� u2 ¼ 0, Eq. (24) has the general solution

γ r, kð Þ ¼ 1

2πð Þ3
ð

∞

�∞

~γ u, kð Þ exp iu � rð Þd3u

Therefore, Eq. (23) allows Eq. (21) to hold for any scattering function for which a
definable frequency spectrum ~γ u, kð Þ exists, subject to the condition
u � ∣u∣ ¼ k cos θ. An interpretation of this condition can be formulated for the case
when θ � 0 (i.e. u � k) or k=u � 1 as follows: Suppose that the temporal frequency is
a constant k0 where k0 > > 1. Further, let the spatial frequency spectrum of γ r, k0ð Þ,
over which spectral information is attainable, have a bandwidth K, such that (for the
positive frequency half space) u∈ k0 � K½ � where K=k0 < < 1. Then, k0=u � 1. This
condition is compatible with the use of a narrow side-band imaging system such as a
SAR, and, in this respect, the exact scattering solution is applicable for modelling such
a system. This analysis applies to the case when Ei r, kð Þ ¼ P kð Þ exp �ik � rð Þ for any
amplitude spectrum P kð Þ. In this context, given Eq. (23), we can write Eq. (21) as

E r, kð Þ ¼ �1k2g r, kð Þ⊗ r∇2 γ r, kð ÞEi r, kð Þ½ � (25)

where k � k0 > > 1.
In terms of Eq. (21), it is noted that, subject to the condition,

∥~Es u, kð Þ∥2 < < ∥~Ei u, kð Þ∥2 (26)

then

~Ei u, kð Þ~Es u, kð Þ
~Ei u, kð Þ þ ~Es u, kð Þ

¼
~Es u, kð Þ

1þ ~Es u, kð Þ=~Ei u, kð Þ
≃ ~Es u, kð Þ
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In this case, we may consider the approximate relationship

E r, kð Þ $ ~Es u, kð Þ

and Eq. (21) reduces to

Es r, kð Þ ¼ g r, kð Þ⊗ rγ r, kð ÞEi r, kð Þ (27)

This result is equivalent to the Born approximation discussed in Section 5. The
exact scattering solution given by Eq. (21) [subject to the condition compounded in
Eq. (23)] therefore reduces to the Born approximation under the condition that the
spectrum of the scattered field is weaker than the spectrum of the incident field.
Note, that Condition (26) is equivalent to Condition (20), given Rayleigh’s energy
theorem, i.e.

∥E r, kð Þ∥22 ¼
1

2πð Þ3
∥~E u, kð Þ∥22

7. Strong scattering model

While Eq. (21) provides an exact scattering solution, subject to Condition (23), it
does not provide an expression for the scattered field itself. To achieve this, we
consider the following approach: Using a binomial expansion, the scattered field
spectrum can be written as

~Es u, kð Þ ¼
~Ei u, kð Þ~E u, kð Þ

~Ei u, kð Þ � ~E u, kð Þ
¼ ~E u, kð Þ 1þ

~E u, kð Þ
~Ei u, kð Þ

þ …

 !

,
~E u, kð Þ
~Ei u, kð Þ

�

�

�

�

�

�

�

�

< 1

Given Eq. (25), we observe that the nth term of this binomial series scales as k�2n,
and for this reason, we can write

~Es u, kð Þ ¼ ~E u, kð Þ, ∣k∣ ! ∞

Thus, we obtain an expression for a high frequency scattered field, given by

Es r, kð Þ ¼ � 1

k2
g r, kð Þ⊗ r∇2 γ r, kð ÞEi r, kð Þ½ �, ∣k∣> > 1 (28)

Apart from a scaling factor by k�2, the major difference between the weak scatter-
ing solution given by Eq. (27) and Eq. (28) is compounded in the Laplacian operator

∇2. In this context, the scattered field given by Eq. (28) is referred to as a ‘strong
scattering solution’.

Unlike the Born approximation, this solution is exact and subject only to Eq. (23)
for ∣k∣> > 1. The high frequency condition means that Eq. (28) is not suitable for base-
band imaging systems where k∈ �K,K½ � for bandwidth K. However, it is appropriate
for sideband systems where (for the positive frequency half-space) k∈ k0 � K½ � when
k0 > > 1 and K=k0 < < 1.
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A further modification to Eq. (28) can be made by noting that, for a unit plane
wave, when Ei r, kð Þ ¼ exp ik � rð Þ say, which is a solution to Eq. (15), then

∇2 γ r, kð ÞEi r, kð Þ½ � ¼ exp ik � rð Þ ∇2γ r, kð Þ þ 2ik � ∇γ r, kð Þ � k2γ rð Þ
	 


� exp ik � rð Þ∇2γ r, kð Þ
(29)

This result is based on a further condition which is that the second order gradient
of the scattering function dominates (in amplitude) the first order gradient and the
scattering function itself, given that the wavelength is taken to be relatively large
compared to the scale length over which a gradient occurs. Note, that this is not the
same as applying the Born approximation, which is predicated on the wavelength
being large compared to the scale length of the scatterer itself (and not its first and
second order gradients).

8. Model for a SAR image

As briefly discussed in the introduction, a SAR is based on repeatedly emitting a
frequency modulated pulse in range as the radar platform moves cross range, usually
at a fixed height. The pulse forms part of an emitted beam that, in regard to the
scattering events that take place, has a range that is ‘engineered’ to be in the Fresnel
zone. Thus, the Green’s function given in Eq. (28) must be modified to reflect this
reality. In terms of the convolution integral given in Eq. (28), and, with a slight change
of notation, we consider the following expression for the Green’s function as a convo-
lution kernel:

g rjr0, kð Þ � 1

4π∣r� r0∣
exp ikjr� r0jð Þ, r∣r0 � ∣r� r0∣

For a SAR, the vector r0 denotes the location in space where the incident field is
emitted and where the back-scattered field detected. Application of the ‘Fresnel zone
condition’ r2=r20 < < 1, coupled with a binomial expansion of ∣r� r0∣ yields

∣r� r0∣ ≃ r0 1� r0 � r
r20

þ r2

2r20

� �

¼ 1

2r0
r0 � rj j2 þ r0

2

Thus, the Green’s function in the Fresnel zone is reduced to the form

g rjr0, kð Þ � 1

4πr0
exp ikr0=2ð Þ exp½ik∣r0 � r∣2=2r0�

which allows the scattered electric field to be written as

Es r0, kð Þ ¼ � 1

k2
1

4πr0
exp ikr0=2ð ÞAs r0, kð Þ

where

As r0, kð Þ ¼
ð

∞

�∞

exp ik r0 � rj j2=2r0
h i

Ei r, kð Þ∇2γ r, kð Þd3r (30)
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is the ‘scattering amplitude’. This model for the scattering amplitude is based on
the convolution with a quadratic phase function, where r0 is the position at which the
back-scattering amplitude is recorded.

8.1 Data model

In order to produce a model for SAR, Eq. (30) must be cast in terms of the
‘engineering’ of a SAR system. This involves having to make some conditional state-
ments relating to the geometry of the system, the characteristics of the incident field
that is used and those of the scattering function itself. As with the development of any
applied mathematical model, such conditions can be ‘challenged’. In the analysis that
follows, a governing issue has been to produce a model that is simple enough to be
‘mapped’ to the processing that is actually undertaken in SAR, while maintaining
consistency with, and reference to Eq. (30). In this context, and, using a Euclidean
coordinate system we consider the following:

i. The coordinates x0, y0 and z0 are taken to denote the range, cross range and
height, respectively.

ii. The range is such that we can consider r0 � x0, implying that x=x0 < < 1 and
z=x0 < < 1.

iii. The incident field (taken to propagate in range alone) is given by

Ei r, kð Þ ¼ P k� k0ð Þ exp �i k� k0ð Þx½ � (31)

where P k� k0ð Þ is the spectrum of the (range) pulse and k0 is the carrier
frequency of the system (determined by the operational wavelength).
Eq. (31) is a solution to Eq. (15) for the one-dimensional (range) case, which
has the more general solution Ei r, kð Þ ¼ P k� k0ð Þ exp �i k� k0ð Þx½ �. Eq. (31) is
chosen for the case of a wave travelling from left to right in the
electromagnetism convention [9].

iv. All functions of k given in Eq. (30), except for the incident field, are taken to
be functions of k0, given that the carrier frequency is the dominant frequency
component.

v. The scattering function represents a relatively flat surface, whose spatial
extent (in range and cross range) is much larger than the ‘depth’ of the
scatterer in terms of relevance to the scattering model. The purpose of this is
to introduce a separable scattering function where γ r, k0ð Þ ¼ γ x, y, k0ð Þγ z, k0ð Þ
thereby facilitating the result

∇2γ r, k0ð Þ ¼ γ z, k0ð Þ∇2γ x, y, k0ð Þ þ γ x, y, k0ð Þ ∂
2

∂z2
γ z, k0ð Þ

In regard to points (ii) and (iv), we can now write the convolution kernel in
Eq. (30) as
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exp ik r0 � rj j2=2r0
h i

¼ exp ik0 x0 � xð Þ2=2x0
h i

exp ik0 y0 � y
� �2

=2x0
h i

exp ik0 z0 � zð Þ2=2x0
h i

≃ exp ik0x0=2ð Þ exp ik0z
2
0=2x0

� �

exp �ik0xð Þ exp ik0 y� y0
� �2

=2x0
h i

exp �ik0z0z=x0ð Þ

Thus, in regard to points (i)-(v), the scattering amplitude is given by

As x0, y0, z0, k
� �

¼ exp ik0x0=2ð Þ exp ik0z
2
0=2x0

� �

P k� k0ð Þ

�
ð

∞

�∞

ð

∞

�∞

ð

∞

�∞

exp �ik0xð Þ exp ik0 y� y0
� �2

=2x0
h i

exp �ik0z0z=x0ð Þ exp �i k� k0ð Þx½ � γ z, k0ð Þ∇2γ x, y, k0ð Þ þ γ x, y, k0ð Þ∂2∂z2γ z, k0ð Þ
	 


dxdydz

¼ exp ik0x0=2ð Þ exp ik0z
2
0=2x0

� �

P k� k0ð Þ

�
ð

∞

�∞

ð

∞

�∞

exp �ikxð Þ exp ik0 y� y0
� �2

=2x0
h i

C1∇2γ x, y, k0ð Þ þ C2γ x, y, k0ð Þ
	 


dxdy

where

C1 ¼
ð

∞

�∞

γ z, k0ð Þ exp �ik0z0z=x0ð Þdz (32)

and

C2 ¼
ð

∞

�∞

∂
2

∂z2
γ z, k0ð Þ½ � exp �ik0z0z=x0ð Þdz ¼ � k20z

2
0

x20

ð

∞

�∞

γ z, k0ð Þ exp �ik0z0z=x0ð Þdz

(33)

Since we have considered the case where, z0 < < x0, we can further simplify this
result, by letting

C1∇2γ x, y, k0ð Þ þ C2γ x, y, k0ð Þ � C1∇2γ x, y, k0ð Þ

thereby reducing the scattering amplitude to the form

As x0, y0, z0, k
� �

¼ exp ik0x0=2ð Þ exp ik0z
2
0=2x0

� �

P k� k0ð Þ

�
ð

∞

�∞

ð

∞

�∞

exp �ikxð Þ exp ik0 y� y0
� �2

=2x0
h i

C1∇2γ x, y, k0ð Þdxdy

Application of the inverse Fourier transform, coupled with the convolution theo-
rem and the shift theorem for the frequency domain, then allows us to construct the
following result:

As x0, z0, x, y, k0ð Þ ¼ exp ik0x0=2ð Þ exp ik0z
2
0=2x0

� �

S x, yð Þ

where is the SAR signal given by

S x, yð Þ ¼ exp ik0y
2=2x0

� �

⊗ yp xð Þ exp ik0xð Þ⊗ xC1∇2γ x, y, k0ð Þ
¼ exp ik0xð Þ p xð Þ⊗ xq yð Þ⊗ y exp �ik0xð ÞC1∇2γ x, y, k0ð Þ

	 
 (34)
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and

q yð Þ ¼ exp iβy2
� �

, β ¼ k0=2x0

Here, ⊗ x and ⊗ y denote the convolution integrals over x and y, respectively, and
p xð Þ $ P kð Þ.

In order to complete the model compounded in Eq. (34), the range pulse p xð Þ
needs to be specified and the ‘width’ of the cross-range response defined. In the latter
case, we consider the beam width to be given by Y, so that the cross range response is
taken to be specified for y∈ �Y=2,Y=2½ �. In both real and synthetic aperture systems,
the range pulse is typically given by a linear frequency modulated ‘chirp’, i.e. for a
unit amplitude pulse, with a ‘length’ of X,

p xð Þ ¼ exp iαx2
� �

, x∈ �X=2,X=2½ �

where α is the ‘chirp rate’. It is then clear that the characteristics of a SAR are the
same in both range and cross range, i.e. a linear frequency modulation. This is because
the instantaneous frequency is defined as the derivative of the instantaneous phase,
which varies linearly with the independent variables x and y—the frequency modula-
tions being defined by the modulus of the instantaneous frequency [4].

8.2 Data processing model

The processing of a SAR signal now being modelled by Eq. (34), is based on three
principal steps, namely:

i. Demodulation with quadrature detection in range, which yields complex data
—the ‘analytic signal’—obtained from the detection of a real signal.

ii. Correlation in range with the complex conjugate of the range pulse p xð Þ.

iii. Correlation in cross range with the complex conjugate of the cross range
response q yð Þ.

Demodulation essentially eliminates the factor exp ik0xð Þ from Eq. (34). In regard
to the correlation processes, we note that

p ∗ xð Þ⊙xp xð Þ ¼
ð

X=2

�X=2

exp �iαy2
� �

exp iα xþ yð Þ2
h i

dy ¼ exp iαx2
� �

ð

X=2

�X=2

exp 2iαxyð Þdy

¼ exp iαx2
� �

Xsinc αXxð Þ≃Xsinc αXxð Þ, X > > 1

Similarly,

q ∗ yð Þ⊙yq yð Þ≃Ysinc αYyð Þ, Y > > 1

Thus, following demodulation, the processed data s x, yð Þ can be modelled as

s x, yð Þ ¼ q ∗ yð Þ⊙yp
∗ xð Þ⊙xS x, yð Þ ¼ p x, yð Þ⊗ x ⊗ y exp �ik0xð ÞC1∇2γ x, y, k0ð Þ
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where, after ignoring the scaling factor XY, and with α � αX and β � βY,

p x, yð Þ ¼ sinc αxð Þsinc βyð Þ

The function p x, yð Þ is the Point Spread Function (PSF) for the SAR data. A
SAR image is typically a display (a grey level image) of the Amplitude Modulations,
given by

ISAR x, yð Þ ¼ ∣p x, yð Þ⊗ x ⊗ y exp �ik0xð ÞC1∇2γ x, y, k0ð Þ∣ (35)

whose characteristics will depend on the operational wavelength of the system, i.e.
λ0 ¼ 2π=k0. Note, that Eq. (35) is a strong scattering model for a SAR image and that
the equivalent weak scattering model is obtained by replacing the Laplacian of the
scattering function with the scattering function alone.

The values of α and β depend on a specific SAR system but typically, a SAR image
is based on α � β so that the range and cross range resolutions are compatible. The
coherent nature of such an image (real or simulated) yields a texture that is dominated
by a ‘speckle pattern’. However, it should be noted, that the model compounded in
Eq. (35) does not take into account issues such as the three-dimensional nature of the
ground surface and hence, ‘shadow effects’, for example. It is a scalar field model for
the two-dimensional scattering function γ x, y, k0ð Þ, designed specifically to provide
dimensional compatibility with SAR data.

9. Fractal scattering functions

The evaluation of Eq. (35) is determined by the scattering function

∇2γ r, k0ð Þ, r∈ℝ
2. This function has a spatial frequency spectrum �u2~γ u, k0ð Þ where

~γ u, k0ð Þ $ γ r, k0ð Þ and u ¼ x̂ux þ ŷuy. The component of the range spectrum that
characterises the scale length over which scattering occurs, is determined by the
carrier frequency of the incident field k0, i.e. the scale of the wavelength. This is
because

exp �ik0xð Þ∇2γ r, k0ð Þ $ � ux þ k0ð Þ2 þ u2y

h i

~γ ux þ k0, uy, k0
� �

In the approach to simulating a SAR image (subject to any scattering model), the
variations in space of a scattering function (on the scale of a wavelength) may not
necessary be known quantitatively. This is of course, precisely why solutions to the
inverse scattering problem are important; in order to estimate the spatial characteris-
tics of the scattering function from measurements of the scattered field.

In the case of a remote sensing system such as SAR, the wavelength scale variations
of the scatterer may be required over very large regions of space compared to the
wavelength. This is not a practical proposition, i.e. to know relatively precisely the
variation in values of the relative permittivity and/or conductivity for a wide variety
of surface features on a centimetric scale over an area covering tens of kilometres.

The surface of the earth has of course a wide variety of naturally occurring (and
man-made) features. Consequently, we can argue that such features confirm to the
‘Fractal Geometry of Nature’ [10]. This idea allows us to consider the case when

γ r, k0ð Þ, r∈ℝ
2 is a fractal surface—a Mandelbrot surface [11].
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In this case, the surface features are taken to have the same distribution of ampli-
tudes at all scales. Consequently, the Laplacian of a Mandelbrot surface will also be a
self-affine function (at least within a finite level of detail) and therefore exhibit the
same distributional characteristics at all scales. In this context, we can consider a
random fractal model where

exp �ik0xð Þ∇2γ r, k0ð Þ � ∇2γ r, k0ð Þ

given that for any scale length λ (the wavelength of an incident wave field)

Pr γ λr, k0ð Þ½ � ¼ λαPr γ r, k0ð Þ½ �

where Pr denotes the Probability Density Function (PDF) and α is related to the

Fractal Dimension D (for r∈ℝ
2) by D ¼ 4� α [11]. The ‘signature spectrum’ for such

a self-affine surface is compounded in the result [11].

γ r, k0ð Þ $ S uð Þ
uj jα

where S uð Þ is the spectrum of a ‘white’ stochastic field s rð Þ with a constant Power
Spectral Density Function (PSDF). We may therefore consider a strong self-affine
scattering function to be characterised by

∇2γ r, k0ð Þ $ � uj jD�2S uð Þ

which, forD∈ 2, 3ð Þ, is a fractional Laplacian according to the Riesz definition [12].
Thus, with reference to Eq. (13) and Eq. (35), by ignoring the scaling factor associated

with the coefficient k20C1, this self-affine model for a SAR image yields the equation

ISAR x, yð Þ ¼ ∣p x, yð Þ⊗ x ⊗ y∇2γ x, yð Þ∣ (36)

where, we redefine γ x, yð Þ as

γ x, yð Þ ¼ γε x, yð Þ � i
Z0

k0
σ x, yð Þ (37)

This model presupposes that the analytical signal (in range x) has been obtained.
This is because a SAR image is formed from complex data generated by the demodu-
lation and quadrature detection of each (range) signal.

There is an interesting similarity between Eq. (36) and the Marr-Hildreth model
for second order edge detection where the PSF p x, yð Þ is a Gaussian function [13]. This
is because, in addition to the algorithm being an edge detector, it is the result of one of
the first approaches in pattern recognition to be based on a model for the human
visual system where edges associated with different frequency bands are taken to be
the basis for object recognition over different scales.

10. SAR image simulation using aerial optical images of the ground

Excepting the limitations associated with the model compounded in Eq. (36),
coupled with the scattering function being a self-affine function, let us consider the
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non-conductive case (so that σ ¼ 0), where the function γε x, yð Þ is a fractal surface.
The question then remains as to how we can quantify such a surface. One way is
through simulation using techniques developed in [11], for example, and references
therein, including the applications of stochastic field theory for modelling the sea
surface, for example [14]. However, this approach requires significant attention to
detail in terms of quantifying variations in the permittivity associated with the
‘ground truth’. Instead, suppose we consider an overhead aerial optical (grey level)
image of the ground to be a model representation of the function γε x, yð Þ; crucially, in
respect of the function being a fractal surface. A SAR image simulation can then very
easily be generated on the basis that

γε x, yð Þ � IOptical x, yð Þ

The optical image is taken to be an aerial image of the region over which a SAR
simulation is required. The idea associated with this phenomenology, is that the
‘ground truth’ tends to be composed of self-affine dielectric structures such a trees,
grasslands and other natural features that contribute to the fractal geometry of the
surface as a whole. Thus, in the context of the fractal model described in Section 9, the
scattering characteristics are taken to be invariant of wavelength and an optical image
is taken to be a self-affine characterisation for the ground surface.

Assuming that a (grey level) optical image is a scale invariant representation of the
ground truth based on dielectric properties of the surface alone is of course not
entirely compatible with physical reality. However, given the practical issues associ-
ated with obtaining detailed knowledge on the scattering function over the scale of a
wavelength, then, in terms of generating a simulation that is texturally compatible
with a SAR image, the approach may have value. This ‘value’ is especially relevant in
regard to using optical images to generate training data required for applications in
pattern recognition for SAR when SAR data is unavailable a priori. In this context, the
simulation considered is compounded in a model that is quantified by the simple
equation

ISAR x, yð Þ ¼ ∣p x, yð Þ⊗ x ⊗ y∇2IOptical x, yð Þ∣ (38)

The inclusion of variations in the conductivity in such a model, means that the
scattering function becomes a complex function and an optical image is a real only
function. In this regard, using a conductive dielectric model is incompatible with a
simulation compounded in Eq. (38), even though it can be expected that conductive
elements will contribute to features in an optical image of the ground surface. We
shall return to this issue later on in the paper.

Figure 1 provides an example simulation of a SAR image using Eq. (38) and the
MATLAB code provided in Appendix A. In this example, the optical image is a
1175�1173 (i.e. width�hight) 8-bit grey level image of a predominantly urban
area. The PSF is evaluated for sinc functions computed using an array consisting of

103 elements with α ¼ β ¼ 1=3. The Laplacian is computed using the convolution
kernel

0 1 0
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0 1 1

0
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The optical image is normalised before application of the convolution operations with
the Laplacian and PSF (using the MATLAB function conv2). The analytic signals are then
computed using a Hilbert Transform (with MATLAB function hilbert) to simulate the
quadrature detection process which occurs in range alone (in practice, this is coupled with
demodulation). For a real function f xð Þ, the analytic signal is given by [4].

s xð Þ ¼ f xð Þ þ iπx⊗ xf xð Þ (39)

where the imaginary component is, by definition, the Hilbert transform of f xð Þ.
However, the MATLAB function hilbert actually computes the analytic signal and not
just the Hilbert transform (which is then given by the imaginary component of the
function’s output).

The range and cross range directions given in Figure 1 are the vertical and hori-
zontal components of the image, respectively. The simulated SAR image given in
Figure 1 is normalised and histogram equalised [15] (using MATLAB function histeq)
in order to enhance the dark field image features (which is a relatively standard
practice in SAR image analysis).

The prototype MATLAB function used to generate this simulation—SARSIM—as
given in the Appendix A is presented to allow interested readers to repeat the simula-
tion for different input (8-bit grey level) images and control parameters, specifically
the array length and the width of the sinc IRF. It provides the basis for further
modifications associated with interrogating the processes used, and, as an aid to
further improving the simulation based on refinements to the model conceived. This
is discussed further in Section 12.1.

Figure 2 shows the IRF in range (and cross range), and a 256-bin histogram of the
grey-levels for ISAR x, yð Þ—Eq. (38)—as given in Figure 1. The histogram is character-
istic of a Rayleigh distribution which is the ‘signature distribution’ of a SAR image
(and coherent images in general). The fact that the distribution of grey levels for
ISAR x, yð Þ is Rayleigh distributed can be quantified using the MATLAB function fitdist,
for example, which returns the parameter value B ¼ 0:0047 for an assumed (and
normalised) Rayleigh distribution given by

Pr ISAR x, yð Þ½ � ¼ xB2 exp � x2

2B2

� �

Figure 1.
A montage providing an example simulation of a SAR image (the amplitude modulations) before (centre) and
after (right) histogram equalisation. The simulation is based on the application of an optical image (left) using the
.m code provided in Appendix A for size = 1000 and width = 3. The result is predicated on Eq. (38), where the
optical image is interpreted to be a map of the self-affine variations in the dielectric properties of the ground
surface.
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The simulation produces a result that is statistically compatible with a SAR image
but with ‘structural features’ determined by those associated with the optical image. A
simulation of this type must not be expected to provide a detailed resemblance of a
real SAR image on a pixel-by-pixel basis. However, the structural and textural prop-
erties of the simulation may have similarities with a genuine SAR image, given that the
ground surface is taken to be a Mandelbrot surface.

10.1 Texture simulation

A genuine SAR image is the product of a multitude of highly complex three-
dimensional interactions (including polarisation effects), that transcend the model
given by Eq. (38) based on the application of an areal optical image. However, in the
context of assuming a fractal model for the ground surface, the approach considered
provides a simulation that is at least texturally compatible with a real SAR image. In
this respect, there are a range of texture comparators that can be used to assess the
simulated image with respect to genuine data such as those given in [11], for example.
It is a ‘solution’ to the problem of simulating SAR images that goes beyond the
conventional approach of generating speckle patterns based on a weak point scatter-
ing model, for example [16]. Further, it may also provide value in terms of target
detection (e.g. [17, 18]).

10.2 Target detection

Target detection is typically concerned with the interpretation of features in a SAR
image that are isolated, but a with high intensities due to increased microwave back-
scattering from objects that are conductors, for example, with a high Radar Cross
Sections (RCS) [19]. In the context of the scalar EM field model considered here, to

Figure 2.
The sinc IRF used to generate the SAR image simulation given in Figure 1 (left) and a 256-bin histogram of the
amplitude modulations (normalised to values between 0 and 1) as shown in Figure 1 (right).
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take into account back-scattering from conductive objects, we are required to consider
a conductive dielectric model, and, more specifically, a scattering function where
σ x, yð Þ �¼ 0 for specific locations. In this case, the scattered intensity (the RCS) can be
expected to be significantly larger than that generated by variations is the relative
permittivity alone [20]. This can be appreciated using an order of magnitude calcula-
tion as follows.

Consider a SAR with a wavelength of 1 cm, a relative permittivity for surface
features with a Root Mean Square (RMS) value of � 10 say, and, an electrical con-
ductivity for isolated metalic objects composed of steel, for example, with a RMS of

� 106 Siemens/metre. With reference to the definition of the scattering function
given in Eq. (37), then, for a unit area of 1 square metre say, we can write (using the
Minkowski inequality for a Euclidean norm)

∥γ x, y, k0ð Þ∥2 ≤∥γε x, yð Þ∥2 þ
Z0

k0
∥σ x, yð Þ∥2 ≃ 10þ 0:6� 106 ¼ 600010

which should be compared with � 10 for the case of a non-conductive dielectric
and the same wavelength for the same unit area. In this respect, the simulation of a
SAR image based on Eq. (38), may be used as a texture comparator with a genuine
SAR image of the same area (for which an overhead aerial optical image is available)
in order to identify conductive agents, should they exist in the a genuine SAR image.

In order to make such a comparator effective, the optical image can be median
filtered to eradicate any form of salt-and-pepper noise (impulse noise), that may
generate what appears to be isolated back-scattering events from conductive agents.
This approach is most relevant to terrain that is relatively flat where conductive agents
(such tanks and other military vehicles, for example) may be most likely to operate.
Nevertheless, it should be noted that specular reflections from non-conductive
dielectric features are capable of generating ‘false targets’. In the following section an
approach to eradicating false targets is considered using a cross polarisation effect.

11. SAR image modelling with cross polarisation effects

Polarisation effects are compounded in solutions to Eq. (11). In regard to modelling
a SAR image, we consider an approach where variations in the permittivity contribute
significantly more to the cross polarisation effects of the electric field than do varia-
tions in the magnetic permeability. The purpose of this, is that it allows us to consider
a reduced model based on the wave equation

∇2 þ k2
� �

E r, kð Þ ¼ γ r, kð ÞE r, kð Þ � ∇ E r, kð Þ � ∇ ln ε rð Þ½ �

where it is assumed that μr rð Þ � 1, ∀r. To implement the strong scattering solution
to this equation, we note that Eq. (23) is also applicable for a vector field. i.e.

∇2 þ k2
� �

γ r, kð ÞEi r, kð Þ ¼ 0

given that this equation is valid for any scalar field component of the electric
vector. Thus, we consider an equation for the strong scattering vector field Es r, kð Þ in
terms of the incident field Ei r, kð Þ given by
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∇2 þ k2
� �

Es r, kð Þ ¼ �1k2∇2 γ r, kð ÞEi r, kð Þ½ � � ∇ Ei r, kð Þ � ∇ ln ε rð Þ½ � (40)

This equation only takes into account polarisation effects in the context of the Born
approximation, which is, in effect, taken to be a second order effect compounded in
the second term on the right hand side of Eq. (40). In this sense, Eq. (40) is a hybrid
model for polarisation effects, although it is still possible to consider a solution for
Es r, kð Þ with strong polarisation, given that we can write

∇ Ei r, kð Þ � ∇ ln εr rð Þ½ � ¼ � 1

k2
∇

∇2 γ r, kð ÞEi r, kð Þ½ �γ
r, kð Þ � ∇ ln ε rð Þ

� 

Nevertheless, the analysis that follows is predicated on the hybrid model given by
Eq. (40).

Using the same coordinate geometry considered in Section 8.1, we consider an
incident vector field given by

Ei r, kð Þ ¼ ẑ cosϕEz r, kð Þ þ x̂ sinϕEx r, kð Þ � ẑEi x, kð Þ

where Ei x, kð Þ is given by Eq. (31) and ϕ � 0 is the ‘Depression Angle’. The
condition on the Depression Angle means that the approach that follows is only valid
for relatively low Depression Angles which typically occur on military SAR platforms
operating at a low altitudes and a long ranges. Moreover, the condition significantly
helps to simplify the model in preparation for the analysis that follows, given that,
Eq. (40), can now be written in the form

∇2 þ k2
� �

Es r, kð Þ ¼ �ẑ
1

k2
∇2 γ r, kð ÞEi x, kð Þ½ � � ∇ Ei x, kð Þ ∂

∂z
ln ε rð Þ

� 

In this case, the scattered field that is measured in the same direction of
polarisation as the incident field, denoted Esz r, kð Þ, is given by the solution of

∇2 þ k2
� �

Esz r, kð Þ ¼ � 1

k2
∇2 γ r, kð ÞEi x, kð Þ½ � � ∂∂z Ei x, kð Þ ∂

∂z
ln ε rð Þ

� 

(41)

This field are referred to as the VV (Vertical-Vertical) mode field. In addition to
this, there is a cross-polarised scattered field, denoted by Esy r, kð Þ, which is given by
the solution of

∇2 þ k2
� �

Esy r, kð Þ ¼ � ∂

∂y
Ei x, kð Þ ∂

∂z
ln ε rð Þ

� 

(42)

and is referred to as the VH (Vertical-Horizontal) mode field.

11.1 Conditional solution

A condition which is of particular value in solving Eq. (41) and Eq. (42) using the
methods presented in Section 8.1 is to consider the case when ln ε rð Þ � ε rð Þ � 1 ¼
γε rð Þwhich is actually only valid for values of ε rð Þ � 1, ∀r. Nevertheless, by repeating
the analysis given in Section 8.1 (including application of exactly the same condi-
tions), it can be shown that the equivalent solutions to Eq. (41) and Eq. (42) yield the
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following models for the real component of the processed SAR data (subject to appli-
cation of a self-affine surface model as discussed in Section 9):

sVV x, yð Þ ¼ p x, yð Þ⊗ x ⊗ yC1∇2γ x, yð Þ

and

sVH x, yð Þ ¼ p x, yð Þ⊗ x ⊗ yC3
∂

∂y
γε x, yð Þ

where

C3 ¼ �k20

ð

∞

�∞

∂

∂z
γε zð Þ½ � exp �ik0z0z=x0ð Þdz ¼ iz0k

3
0

x0

ð

∞

�∞

γε zð Þ exp �ik0z0z=x0ð Þdz

(43)

Scaling both equations for sVV x, yð Þ and sVH x, yð Þ by C1k
2
0, and redefining the

conductivity as σ � Z0σ=k0, we derived the data models

sVV x, yð Þ ¼ p x, yð Þ⊗ x ⊗ y∇2 �γε x, yð Þ þ iσ x, yð Þ½ � (44)

and

sVH x, yð Þ ¼ p x, yð Þ⊗ x ⊗ yik0
z0
x0

∂

∂y
γε x, yð Þ (45)

The SAR images associated with these equation are given by

IVV x, yð Þ ¼ ∣sVV x, yð Þ∣ and IVH x, yð Þ ¼ ∣sVH x, yð Þ∣

respectively, where, it is again presupposed, that the analytic signals have been
generated in range for sVV x, yð Þ and sVH x, yð Þ before computation of the SAR images,
thereby, providing display’s of the Amplitude Modulations.

11.2 Quantitative imaging

For a conductive dielectric, the scattering function is composed of two indepen-
dent variables, namely γε x, yð Þ and σ x, yð Þ. Consequently, a single VV SAR image is not
able to quantitatively differentiate between these variables and can only rely on the
expected increase in the RCS associated with a localised conductor in an other non-
conductive dielectric environment to identify such a ‘target’. However, the VH data
model given by Eq. (45) does not include the function σ x, yð Þ. In other words,
according the model proposed, a SAR image based on the VH mode provides a
measure of the variation in permittivity alone. Moreover, the models compounded in
Eqs. (44) and (45), provide an option for quantitatively imaging the conductivity of
the ground surface. This is important in the military applications of SAR, because
isolated targets tend to be conductive agents due to the materials from which they are
composed (assuming that stealth technologies have not been implemented).

From Eq. (45), we note that
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s0VH x, yð Þ ¼ ∂
2

∂x2
þ ∂

∂y

� �

sVH x, yð Þ ¼ p x, yð Þ⊗ x ⊗ yik0z0x0∇2γε x, yð Þ

Thus, using Eq. (44), we can write

IσSAR x, yð Þ ¼ ik0
z0
x0

sVV x, yð Þ þ s0VH xð , yÞ
�

�

�

�

�

�

�

�

¼ ∣p x, yð Þ⊗ x ⊗ y∇2σ x, yð Þ∣ (46)

where σ � k0z0σ=x0. It should be noted that, for the case when the functions
sVV x, yð Þ and sVH x, yð Þ are taken to be analytic (i.e. analytic signals in range x), then,
using Eq. (39), Eq. (46) has the modified form

IσSAR x, yð Þ ¼ p x, yð Þ⊗ x ⊗ y
1

πx
⊗ x∇2σ x, yð Þ

� �

�

�

�

�

�

�

�

A simulation using Eqs. (44) and (45) and the data processing required to yield an
image given by Eq. (46) is provided in Figure 3 for k0z0=x0 ¼ 1. For this example, an
optical image of a port city has been chosen with a defined coastline. The simulated
VV image IVV x, yð Þ is based on using Eq. (44) where

γε x, yð Þ ¼ IOptical x, yð Þ þ iσ x, yð Þ

for IOptical ∈ 0, 1½ � and σ ∈ 0, 1½ �. In the latter case, the function is taken to be zero

except for some random and sparsely located ‘targets’ (when σ ¼ 1 for a small cluster
of pixels). The simulated VH image IVH x, yð Þ is based on the application of Eq. (45)

Figure 3.
Simulation of SAR images using the optical image (top left). The VV SAR image IVV x, yð Þ (top right) includes the
effect of scattering from isolated targets. The VH SAR image IVH x, yð Þ (lower left) is based on the application of
Eq. (45). Application of the Eq. (46) then yields the lower right hand image, which provides a quantitative image
of the targets.
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with k0z0=x0 ¼ 1. Application of the Eq. (46) then yields an image showing the
location of the targets alone.

The simulations provided in Figure 3 are based on a modification of the code given
in Appendix A. The cross range gradient given in Eq. (45) is computed using forward
differencing through application of the MATLAB conv2 function; specifically, for
image array I say, we apply I = conv2([1 -1], [1], I, ’same’). Thus, for compatibility
with this process, the Laplacian is computed by applying the convolution process
I = conv2([1 -1], [1 -1], I, ’same’) two-fold.

Any application of this quantitative imaging ‘solution’ using real SAR data requires
Eq. (45) to be scaled by the (system specific) value of z0k0=x0. For a 1 cm wavelength

SAR, assuming that z0=x0 ¼ k�1
0 , as used for the simulation of sVH x, yð Þ, implies a vary

shallow depression angle of � 2o. An investigation into the use of different digital
filters (using Finite Impulse Response and/or Fast Fourier Transform based filters) for
computing the (digital) gradients is also necessary to determine an optimum data
processing algorithm; research that lies beyond the scope of this work.

12. Summary and conclusions

The main contribution reported in this work is an application of the exact scatter-
ing solution developed in [5] to SAR image modelling. This solution cannot be used
directly (in a generic sense) for modelling imaging systems (based on recording a
scattered field) directly, but must be modified accordingly in relation to the physical
configuration of the system, primarily the geometry and frequency of operation. In
this regard, the strong scattering solution developed in Section 7 and then
implemented for a SAR system in Section 8, provides a very simplified expression for
modelling side band systems. In this case, the essential difference between a strong
and weak scattering solution is quantified in terms of the use or otherwise of the
Laplacian operator, respectively.

A fractal model for the scattering function has been introduced in Section 9. This
allows a base band model to be considered, compounded in Eq. (36). An application of
this solution has been considered whose aim is to provide a texturally compatible
simulation of a SAR image for which a corresponding overhead aerial optical image is
available. In this regard, some demonstratives examples have been provided based on
the MATLAB code provided in Appendix A. The code is provide as a basis for the
reader to repeat the simulations provided, and to further modify, improve and extend
the code, subject to further developments of the model as considered in the following
section.

12.1 Further developments

The reader will have observed that in evolving the model quantified by Eq. (36), a
number of simplifications have been implemented. These are based on conditions that
are reasonably compatible with a SAR system, at least, under certain operational
conditions. They include, for example, a condition whereby the range is taken to be
significantly larger than the operational height of the radar platform (i.e. z0=x0 < < 1).
This is the basis for quantifying the relative contributions of terms whose scale is
determined by the coefficients C1, C2 and C3 given by Eqs. (32), (33) and (43),
respectively. These coefficients are a result of introducing a separation of variables in
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regard to the scattering function γ x, y, z, k0ð Þ as a function of height. It is key to
generating a two-dimensional solution that is designed to be compatible with a SAR
data, and relies on a model where γ z, k0ð Þ∈ �∞,∞ð Þ. However, this model can be
modified in order to introduce the effect of height variations, for example. Thus,
suppose we consider the case where γ z, k0ð Þ ¼ γ0 ∈ 0, h x, yð Þ½ � where γ0 is a constant
and h x, yð Þ describes the variations in height of the surface at a point x, yð Þ above a
common based line z ¼ 0 say. Suppose h x, yð Þ∈ 0, 1½ � ∀ x, yð Þ, then the integral over
γ z, k0ð Þ that is common to Eqs. (32), (33) and (43) is given by

ð

h x, yð Þ

0

exp �ik0z0z=x0ð Þdz ¼ h x, yð Þ � i
k0z0
2x0

h2 x, yð Þ þ … � h x, yð Þ

Consequently, the strong scattering function ∇2γ x, y, k0ð Þ can be replaced with

h x, yð Þ∇2γ x, y, k0ð Þ. The incorporation of height variations in this way may be served
in cases where a stereo optical image of the surface is available, for example.

This is just one example of other developments that can be considered to make the
model increasingly more realistic, but necessarily more complicated, e.g. the inclusion
of depression angles where ϕ∈ 0, π=2ð Þ radians, the inclusion of the second and third
terms in Eq. (29), and using an incident field that includes the beam profile. In this
respect, and, in addition to further developments of the model as discussed above, the
relative simplicity of the result quantified in Eq. (38) can be further investigate
through the introduction of additive stochastic fields [21] which are taken to account
for the physical limitations of the model as well as ‘system noise’.

12.2 Final statement

The goal of attempting to simulate one imaging modality from another is becoming
a common theme in imaging science, especially for applications in computer vision.
This includes the simulation of one image from another whose physical formation and
characteristics are entirely different.

Solutions to this problem can be used to help in the training of deep learning systems,
for example [22]. In this context, the strong scattering solution developed in this paper,
coupled with a fractal model for the scattering function, may provide an additional tool in
the analysis and interpretation of SAR images. More generally, the solution may comple-
ment the processing of images formed from strong scattering interactions whose inter-
pretation is undertaken using statistical modelling techniques alone (e.g. [23, 24]).
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Nomenclature

EM electromagnetic
IRF impulse response function
PDF probability density function
PSDF power spectral density function
PSF point spread function
RCS radar cross section
RMS root mean square
SAR synthetic aperture radar
VV vertical-vertical (polarisation)
VH vertical-horizontal (polarisation)

Appendix: MATLAB function for SAR image simulation

function SARSIM(size,width)

%FUNCTION: SAR image simulation using optical images.

%INPUTS: size - array length for computing the IRF.

%width (>1) - width of IRF (sinc function).

%OUTPUT: Display’s of three images in Figures 1-3.

%Read optical image (default: 8-bit grey level image),

I = imread(’filename’); %covert to double, normalise and show.

I=double(im2gray(I)); I=I./max(max(I)); figure(1), imshow(I);

%Define Laplacian filter and convolve it with the image.

Laplace=[0 1 0; 1 -4 1; 0 1 0]; I=conv2(I, Laplace,’same’);

%Compute the sinc function for inputs ’size’ and ’width’.

x=round(size/2)-size:round(size/2); p=sinc(x/width);

%Convolve data with the sinc function in range and

%cross range, compute the analytic signals (columns)

%with function hilbert and display Amplitude Modulations.

s = conv2(p,p,I,’same’); s=hilbert(s); I = abs(s);

I=I./max(max(I)); figure(2), imshow(I);

%Display result.figure(3), imshow(histeq(I));%Apply histogram equalisation.
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