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Abstract — This paper describes a simple two stage algorithm for 

finding emergent sub-shapes in shapes, in the context of shape 

grammar systems. Matching the shape in the left side of a rule of 

a shape grammar with parts of a shape in a design in process to 

decide if the rule is applicable, is its main purpose. Shape 

grammars have been used to represent the knowledge behind the 

creative work of architects, designers and artists and allow the 

implementation of computational mechanisms to analyze and 

synthesize designs of visual languages, with obvious applications 

to design, including for marketing. Their computational 

mechanisms can include the detection of emergent sub-shapes. 

The algorithm we propose performs this task and is a core 

component of a system, described in our past work, that allows 

users to build their own shape grammars and use them. 

Keywords - Shape Grammars; Artificial Intelligence; Design. 

I. INTRODUCTION 

The shape grammar formalism can be used to synthesize, as 
well as, to analyze, designs of design languages. Shape 
grammars are related to design and, as well as the 
symbolic/text phrase grammars, they can be considered a 
member of the “family” of grammars. Both can be considered 
production systems, where replacement rules are used to 
recursively generate phrases of a language. But the similarities 
end up here. Firstly, shape grammars are inherently visual. 
And, secondly, they accommodate aspects of emergency, i.e., 
the possibility of generating shapes not explicitly introduced by 
the application of the rules. Maybe the differences are not 
restricted to these two features, but these two are very 
important in the field of arts, especially in design. 

Not infrequently, an artist stops in the middle of a creative 
work to look to, and appreciate, or assess, the work done so far, 
and it happens to discover some emergent detail, or shape, that 
wasn’t there before. And that particular detail comes to be 
inspiration for him/her for the next step of the creative work. 
Many other activities, visual or not, involve discovering 
emergent patterns too, from the most noble scientific research 
to the most commonplace activities, including entertainment 
ones1. Emergency is important in creativity, in creating new 
(and useful) ideas, designs, realizations, artifacts2. 

 
1 Yes, those! For instance, see the puzzles to discover “how many” triangles, 

or squares, or whatever “are in the picture?” 
2 Emergency is everywhere. It is present in the Nature too, so that’s probably 

why it is the nature of Nature to be so creative! 

This paper approaches the problem of discovering emergent 
shapes within given shapes. The human brain and eye seem 
efficient in solving it, although prone to failures and mistakes 
too, but the problem seems to be defying from a computational 
perspective. Extending the path other researchers followed, we 
propose an approach to the problem in the form of an 
algorithm, applicable in the context of shape grammars with 
shapes composed of some basic geometric elements. The 
internal computational infrastructure used by this algorithm is 
described in another paper, twin to the present one [1]. 

In the following, we summarize: what shape grammars are 
and a brief state of the art (section II); the short and relevant 
history of the proposed approaches to the problem, including 
why the problem is important for the application of rules 
(section III); our previous work in the area and our goals 
(section IV); then we expose the algorithm proposed, show 
some data from examples using it and compare it with 
alternatives from other researchers (section V). Finally, we 
draw conclusions and show intended future work (section VI). 

II. THE SHAPE GRAMMAR FORMALISM  

Shape grammars were introduced by George Stiny and 
James Gips in the 1970s, and the focus of the related research 
is in representing and applying knowledge about languages of 
design basically through the use of concepts from formal 
grammars and rule-based/production systems [2] [3]. A shape 
grammar is composed of (1) a set of basic shapes, the shape 
alphabet, (2) a set of rules, and (3) a special shape, the initial 
shape, used to trigger rule application. 

The mechanics of rule application and shape generation is 

as follows. In a rule, A→B, the left side, or antecedent, A, and 

the right side, or consequent, B, are shapes. A rule, when 
applied, substitutes the shape on the right side for the shape on 
the left side, in the original shape, or design, or composition, as 
described further. Applicable rules may recursively be applied 
to a shape, until there are no more rules to apply, or some 
termination condition holds. A shape computation, or shape 
derivation, is a sequence of shapes in which each shape, except 
for the initial shape, is generated from the previous by the 

application of a rule of the shape grammar. A rule A→B is 

applicable to a shape, C, if there is a similarity geometric 
transformation (a translation, a rotation, an uniform scaling or a 
combination of these) T, which, when applied to shape A 
makes A equal to a part of C, i.e., a geometric transformation T 



such that T(A) ≤ C, where ≤ denotes a sub-shape relation3. 
Application of the rule results in a new shape, C’, that is 
computed subtracting from C the result of applying the 
transformation T to A, and then adding to C the result of 
applying T to B, i.e., the resultant design will be C’ = (C – 
T(A)) + T(B), where + and – denote the shape sum and shape 
difference (or subtraction) operations. It can easily be seen that 
≤ is a cornerstone for our sub-shape problem. 

In very brief words, the research area of shape grammars 
has been focused in conceptual and theoretical aspects, as the 
ones exposed in [3], in analysis, i.e., the development of 
specific shape grammars of languages of design extracted from 
corpuses of designs in architecture, product design or painting, 
see [4] [5] [6], for instance, and in synthesis, i.e., building 
specific shape grammars to define original languages of 
designs, as in [7] [8] [9]. More research include the 
development of algorithms for shape manipulation and rule 
matching and application processes, which are very interesting 
for us in the present paper, as in [10] [11] [12] [13] [14] [15] 
[16] [17] [18], where some of this papers focus also on 
appropriate interfaces and generic and reusable shape grammar 
interpreters, including for didactical purposes. 

III. AN INTERESTING PROBLEM AND THE PAST RESEARCH 

A classic example of emergence in shape grammars is 
shown in Figure 2. The rule says: if a square is found in the 
composition, add an equal square with its top and left sides 
intersecting the right and bottom sides of the one in the 
composition by its middle points. The shape after step 1 has 
two squares explicitly introduced, one is the initial shape, the 
other is the result of the first step. But there is also a third 
emergent square, which was detected and was the focus of 
application of the rule in step 2. 

No object-oriented method4, nor any classical CAD tool5, 
just by themselves, can help to computationally implement 
such a detection mechanism. As found by Stiny and other 
researchers following the same research path, see [2] [3] [10] 
[11] [12] [13], the correct approach to this kind of problem lies 
on using operations (+, – and ≤) on, and representations of, 
shapes according to a special kind of algebras called algebras 
of maximal shapes. Then, the computational mechanism used 
to match the left side of a rule with the composition can be 
made to detect embedded emergent shapes. 

 
3 From now on, we will treat ≤ as an operation, more specifically, a predicate 

that tests if the first operand is in the sub-shape relation with the second. 
4 If two objects are programmatically created, it’s two objects, and no more. 
5 As said in [13], Computer-aided Design, or CAD, systems are often no more 

than systems that serve as repositories for already designed information. 

Classical CAD systems are helpful, but don’t have the ability to accommodate 

the notion of change and rely only on a set of predefined shape static primitive 

elements, limited to no more than the combination decisions of the designer. 

The +,–and ≤  operations are part of algebras usually 

classified as Uij algebras, as its basic elements are points, lines, 
planes and solids that are defined in dimensions i = 0, 1, 2 or 3 
and combined and manipulated in dimension j ≥ i, see [3]. For i 
> 0 these basic elements have finite non zero content (either 
length, area or volume) and boundaries that are shapes in the 
algebra Ui-1,j. A maximal shape is a shape that is composed by 
a finite set of basic elements, which are maximal in 
combination, each one being independent of the others (i.e., 
with no overlap among them). This means that, except for 
points, any maximal element of a maximal shape is the 
representation of an infinite number of (non-maximal) 
elements, of the same dimension, contained in it. For instance, 
a maximal line represents an infinite number of line segments 
limited by any pair of non-coincident points on the maximal 
line. 

Figure 1 shows examples of operations in a U12 maximal 
algebra (1 dimension max for shape elements in a 
2-dimensional space), with lines only, in these example cases. 
Only cases with colinear lines are shown because it is the only 
situation in which operations can interfere with and modify the 
components and so be relevant for illustration6. 

The problem of sub-shape detection is, in the general case, 
a computationally hard one, see [18], and is equivalent in 
hardness to the subgraph isomorphism problem. In the compact 
summary research following, all papers address the problem 
we are interested in, of the recognition of emergent shapes. 
Papers [10] and [11] paved a research path to the appropriate 
computational representation of shapes in 2 dimensions and 
how shape operations should work on them. In [12], more 
precise definitions suggest computational representations for 
maximal shapes, including for more than 2 dimensions. In [13] 
the “formula” C’ = (C – T(A)) + T(B) is analyzed, as well as 
the recognition of emergent shapes and the cases that occur in 
the determination of T. The following research papers we refer 
seem to assume and use always maximal representations. In 
[14], the first implementation of a shape grammar system able 
to detect emergent shapes, for rectangular shapes, is proposed. 
In [16] an algorithm is proposed for detecting emergent shapes 
which considers each, and every, intersection (concrete or 

 
6 Note as there can be some surprising cases. For instance, in the bottom 

example for the – operation, it happens that subtracting a line from another 

present in the target shape leaves the shape with more lines than before. And 

the first case for + sums a line but leaves the shape with less lines than before. 

 
Figure 1- Some examples of maximal shape sum and subtraction and the 
sub-shape relation in a U12 algebra. The dashed line is a component line in a 

shape to sum to, subtract from, or test for sub-shape relation with, other lines 

component of another, target, shape. 

 
1  2 

Figure 2- A shape grammar rule and results of 2 steps of a derivation. 



virtual/projected) between pairs of lines in the shape. In [17] an 
approach is proposed that uses graphs, more specifically, graph 
grammars, to represent shapes and shape grammars, relegating 
the problem to another of graph representation and 
manipulation. The computational complexity of the algorithms 
involved in different kinds of shape grammars, including in sub 
shape detection is analyzed in [18]. 

IV. THE GSG SYSTEM AND PAST WORK 

Our relevant past work includes GeoWin, a multi-agent 
system to build creative drawing compositions, where each 
agent has its own shape grammar defining its composition style 
and participates in a composition process [19]. The 
participation occurs with different coordination strategies, 
ranging from a totally cooperative and orderly way to an 
extreme competitive/antagonistic/egocentric way in a purely 
emergent manner. This system was supported by a primitive 
shape grammar interpreter built on top of an ad hoc, logic-like, 
forward-chaining rule language to express simple computations 
with shape grammar rules with predefined shapes and a small 
set of logic and arithmetic operators. This is still unfinished 
work as, in the meantime, more work needed to be done in 
refining the idea of a universal shape grammar interpreter in 
the realization of its fundamental mechanics of rule application 
including with less restricted kinds of shapes. 

In the path to improve in the direction mentioned above, we 
then embarked on a ‘fundamental’ approach on a project to 
build a prototype of a computational system centered around a 
“Generic Shape Grammar” interpreter, the GSG project, see the 
main initial work in [20] [21] [22]. This interpreter intends to 
be a core tool, a kind of an expert system shell, for shape 
grammar systems tasks for the use of students, artists, designers 
and architects, specifically allowing the definition of, and 
experimentation with, shape grammars, and is internally 
supported by an appropriate computational representation for 
shapes, shape rules and shape operations using the algebras of 
maximal shapes. This is ongoing work. 

The GSG system computational architecture is depicted in 
Figure 3. The main components are a two-part interface, and 
two core sub-systems, a rule-based component, the rbs, 
centered around rules, sub-shape detection and rule application, 
and a computational geometry related one, the geom, centered 
in computational geometry methods. The visual interface is a 
part of the interface layer of the system, together with the 
symbolic/API (programmatic) interface and was appropriately 

described with examples in [23]. A third kind of interface, the 
textual/file interface, not shown, is also available. As described 
in [23], a notable point in GSG is that all shape grammar 
objects, i.e., shapes, rules, and grammars, that come to 
existence in the system environment may have an independent 
(interface) representation in three possible formats: the 
symbolic (through programmatic objects), the visual (through 
graphical windows) and the textual (with an appropriate 
text/file external representation) format. 

Sideway to the GSG system, work on the application of 
shape grammars to architectural project is shown in [24] [25] 
and work about the usability of interfaces of implemented 
shape grammar systems of different authors is shown in [26] 
[27]. In the latter, we have devised a set of requirements (see a 
summary of these in [23]) that can be used either to evaluate 
interfaces of existing shape grammar systems, or as a set of 
good rules to follow in the implementation of new ones for 
specific users (either students/beginners in the field of shape 
grammars, or architects, or designers, or artist specialists, or 
even users with additional programming expertise). Also, in 
another, twin, paper, the internal computational infrastructure 
needed by the algorithm presented here is described [1]. 

V. FINDING SHAPES IN SHAPES: AN ALGORITHM 

We now turn to the algorithm that is the subject of the 
present paper. We recall that the task of the algorithm to detect 
if a given shape, typically one in the left side of a rule, 
matches, or is contained, according to each and any similarity 
transformation to be determined, in another, target, shape, 
typically a shape of a composition, or design, be it the initial 
shape or a shape produced in the middle of a derivation process 
by the rules of a given shape grammar. The algorithm must 
identify all the sub-shapes in the target shape that match with 
the given shape, if there is any, and the corresponding 
similarity transformation associated to each matching case. 

First, the limitations of the algorithm. In sub-shape 
detection and rule application, the similarity transformation T 
is the only kind of transformation applied to shapes7. Also, 
although a U12 algebra of maximal shapes is used, lines are the 
only type of shape component considered (points are not 
considered8). Additionally, component lines must bear, in the 
shape they belong to, at least two intersections, concrete or 
virtual/projected. Now, we present some definitions with 
illustrations to help clarify the structures used by the algorithm 
and the language used in its explanation. Respecting to internal 
representations used by the algorithm our options follow 
closely the proposals in [10] and [11]. As an illustration 
example, we show a shape, with seven lines, labelled line 1 to 
7, in Figure 4-a). 

In GSG, a shape is a collection of maximal lines9. These are 
defined by its limiting points (a point is represented by its pair 
(x,y) of coordinates) and its slope and they are kept in a 
collection, sorted by its slope and coordinates of the limit 
points. As the algorithm deals with similarity, intersection 

 
7 This excludes the so-called parametric shape grammars (see [2]). 
8 Allowing points would, in fact, render the problem tackled simpler. 
9 There can be points too but, as said earlier, these are not considered here, as 

the algorithm works only with lines, at least for now. 

 

Figure 3- The GSG computational architecture. 

 

 

 



angles and length proportions are very important, as their 
magnitudes are maintained through similarity transformations. 
So, at the time a shape is constructed, besides the data 
structures for representation of its maximal lines, certain 
additional data structures, described with more detail in [1], are 
internally created which are the appropriate representation 
infrastructure to support the algorithm, not only in sub-shape 
detection, but also further, in rule application. For a short 
illustration of the importance of the structures in the operation 
of the algorithm we depict them in Figure 4-b) for the shape in 

Figure 4-a). 

The structures are the straight-lines of support of (i.e., 
containing) the lines of the shape and the straight-line 
intersections. The first are labelled r1, to r5 (there are five 
straight-lines) together with a descriptor indicating the slope 
and y-intercept of each one (for vertical lines, the x-intercept is 
used, instead). Intersections are pairs of straight-lines with an 
intersection point10. In the figure, intersections are labelled i1 
to i9 (there are nine intersections) together with a descriptor 
indicating the primary angle of intersection, the slope of the 
straight-line with the smallest slope in the intersection and the 
pair (x,y) of the intersection point. Straight-lines and 
intersections are kept in specific sorted collections in the shape. 

Suppose that we have a target shape, similar to the one in 
Figure 4-a), but translated and/or rotated and/or scaled, 
possibly containing more than one similar instance of it, and 
with more lines, and we want to determine if the shape in 
Figure 4-a) is a sub-shape of that target shape. How do we find 
if the first is contained in the second and what is the associated 
transformation, i.e., the angle of rotation, scale factor and 
(Δx,Δy) translation? We have developed a two-stage approach 
where the first stage tests for similarity of the infrastructural 
elements, intersections of the straight-lines and then, only in 
the positive case, a second stage tests for containment of lines 
of the shape to match in the target shape. What we propose is 
first to try to match pairs of straight-line intersections, one pair 
in the shape to match and another in the target shape, instead of 
trying to match pairs of lines, as its done in [16], which would 
potentially increase the number of steps of the algorithm 

 
10 There will be more than one intersection when more than two straight-lines 

intersect at the same point.  

uselessly 11 . We consider this an advantage, as there will 
potentially be less intersections of straight-lines to consider 
than intersections (concrete or virtual/projected) for lines, at 
least in complex shapes12 , so the approach makes sense in 
terms of reduction of the number of steps of the algorithm. 
Moreover, our algorithm uses structures related directly with 
the shape elements (lines, in our case) and not any kind of 
additional intermediate data structure, like graphs, as used in 
[17] which (besides some advantage is terms of abstraction and 
some flexibility) can bring the disadvantage of precluding an 
easy use of domain heuristics in the search of possible 
sub-shapes13. 

As an example, in Figure 5-a), we show an intersection pair 
that is part of the shape in Figure 4-a) (with intersections i1 and 
i5) and another of a target shape, in Figure 5-b) (with 
intersections j1 and j5). An additional advantage of the 
algorithm is that of obtaining hints on the possible angles of 
rotation for T. Two intersections match if one has an angle of 

intersection, or its supplementary, that is equal to the angle of 
intersection, or its supplementary, of the other, apart an angle 
of rotation. This last angle is a hint. Still another advantage is 
having hints on the possible scale factors for T. A pair of 
intersections will match with another pair if each angle in the 
first is equal to another, different, in the other pair, apart from 
some angle of rotation of one pair. A pair of intersections has a 
shared segment of a shared straight-line, which has a length 
and, by matching two intersection pairs of different shapes, the 
ratio between the two lengths is a hint for a scale factor. For the 
translation, we can obtain a hint if, in the first place, we assume 
(Δx,Δy) displacements in a way to make an intersection point 
of one intersection pair coincident with an intersection point of 
the other intersection pair and, only after, determine the 
appropriate angle and scale factor hints. In the case shown in 
Figure 5, a match will be found with a translation from point (-
60,65) to point (-10,5), followed by a rotation with a 50º angle, 

 
11 As correctly mentioned by [18] (section 6.1). 
12 If there are many colinear lines in a shape, considering intersections of lines 
(concrete or virtual/projected) leads to consider more times intersections than 

with straight-lines, although the total number of intersections in the shape is 

the same. 
13 If you use graphs to represent shapes the heuristics more easily usable are 

those of the graph domain, but not of the shape grammar domain. 
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and a scaling with a 101/67 factor, both centered in point (-
10,5). In this case both intersection pairs are symmetrical (each 
have both their intersection angles equal, of 50º), so, there is a 
second match with a translation from point (-60,65) to point 
(8,104), followed by a rotation with a 230º (i.e., 180+50) angle, 
and a scaling with the same scale factor. 

This, of course in only a small step, as the algorithm must 
try to match all the intersection pairs of the given shape with 
those of the target shape and see for which hints for the 

parameters for T 
consistency is maintained 
throughout all the 
process. One subtlety is 
worth to mention here. In 
order to find all possible 
matches, i.e., all possible 
sub-shapes in the target 
shape, the concept of 
intersection pair has to 
be refined in a way as to 
consider, in the case of 
the target shape, 
intersection pairs with 
any pair of intersection 
points in each same 
straight line, but, in the 
case of the given shape, 
the shape to match, the 

concept must be restricted only to intersection pairs with 
adjacent intersection points in the same straight line. This is 
because any two points of intersection in the same straight line 
in the target shape can give a hint to a scale factor. In the case 
of the example in Figure 5, this would involve going on trying 
to match intersection pair in a) also with other possible 
additional intersection pairs in b) composed of intersection j1 

and other intersections beyond and up the j5 intersection on the 
common straight line There are some other additional subtleties 
involved in the algorithm but, for the sake of simplicity and use 
of space, we will stick to the essentials and mention only this 
one. 

The algorithm structural-match of the first stage for sub-shape 
detection is the first shown in Figure 6. With the results of this 
algorithm (the set tRstage1) we then can apply sub-shape?, the 
second stage algorithm, the second shown in Figure 6. The 
containment operation ≤ is according to [10] [11]. 

We will now present some example test cases of 
application of the process of these two algorithms. The first test 
case involves rectangular figures and is illustrated in Figure 9. 
The results, in Figure 7-a)14, show us ten possible matches, 
eight with the smaller four rectangles, with scale factor 7/10, 
and two with the bigger rectangle in the target shape, with scale 

factor 7/515.  

The second test case involves some oblique figures, with 
odd/infrequent angles (63º and 54º)16, with a shape to match 
having no concrete intersections and with multiple intersection 
sharing the same intersection points. This is depicted in Figure 

 
14 For economy of space, sub-shapes associated to each transformation are not 

shown in the results, although also returned by the algorithm.  
15 Note that each of the rectangles in the target shape will have two matches, 

one for 0º and another for 180º rotation. 
16 Supposedly, an infrequent case in the literature, by the way, which  seems 

to, not infrequently, resort to rectangular, 90º degree angles, shapes. 

Algorithm structural-match(Input: subShape, targetShape) 
Locals: tR1 = {}, tR2 = {}, tRstage1 = {} 
For each is in intersections(subShape) 

For each it in intersections(targetShape) 
For each ips in intersection-pairs(straight-line1(is)) 

For each ipt in intersection-pairs(straight-line1(it)) 
tR1 = t-union(match-ip(ips, ipt), tR1) 

For each ipt in intersection-pairs(straight-line2(it)) 
tR1 = t-union(match-ip(ips, ipt), tR1) 

For each ips in intersection-pairs(straight-line2(is)) 
For each ipt in intersection-pairs(straight-line1(it)) 

tR2 = t-union(match-ip(ips, ipt), tR2) 
For each ipt in intersection-pairs(straight-line2(it)) 

tR2 = t-union(match-ip(ips, ipt), tR2) 
tRstage1 = t-intersection(tR1, tR2) 

Return tRstage1 

Algorithm sub-shape?(Input: subShape, targetShape, tRstage1) 
Locals: tRstage2 = {} 
For each t in tRstage1 

If t(subShape) ≤ targetShape Then tRstage2 = t-union(t, tRstage2) 
Return tRstage2 

Figure 6- The structural-match and sub-shape? algorithms (match-ip tests if 

there is any matches between two intersection pairs returning, in that case, a 

set of transformations for T; t-union and t-intersection return the union and 
the intersection of two sets of transformations; straight-line1 and 

straight-line2 return each of the straight-lines of a given intersection). 
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j7: (90º,0º,(45,80))

j6: (90º,0º,(45,45))

j11: (90º,0º,(80,80))

j10: (90º,0º,(80,45))

j12: (90º,0º,(80,150))

a) Shape to match b) target shape 
Figure 9- First test example. 

 
a) First test example   b) Second test example 

Figure 7- Results for test examples. 
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i1: (63º,0º,(-20,10))
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 a) Shape to match  b) target shape 
Figure 8- Second test example. 



8. The results, in Figure 7-b), show us eight possible matches, 
six with the smaller triangles (four with 0º and two with 180º of 
rotation), with scale factor 1/2, and two with the two big 
triangles of the target shape, with 0º of rotation angle and scale 
factor 1. 

VI. CONCLUSIONS AND FUTURE WORK 

After a brief state of the art and showing our goals and 
context, namely shape grammars and the GSG system, we have 
presented a two-stage algorithm to detect sub-shapes for use in 
that context. Some advantages of this algorithm were exposed 
in face of two other alternative algorithms presented in [16], 
namely a potential reduction in the number of useless steps, 
and in [17] namely the use of data structures directly related to 
shape elements which are expected to allow easier use of 
domain heuristics. Note that, although time/efficiency issues 
aren’t manifest in our, actually toy, examples (2 seconds 
computation time for both, as seen in Figure 7), these domain 
heuristics would be very welcome, as the problem is 
computationally hard [18] in general. In terms of programming, 
all GSG components are built in Common Lisp/Common Lisp 
Object System, using the LispWorks® IDE system. 

Future work will refine the stages of the algorithm, improve 
and finish the GSG system and, using the components and the 
experience gained with the development of GSG, our aim is to 
develop a multi-agent creative system in line with the ideas of 
the (primitive) GeoWin system of our past work. 
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