SUPPORTING INFORMATION

Thermoelectric Performance of Surface Engineered Cu_{1.5-} _xTe-Cu₂Se nanocomposites

Congcong Xing,^[a,b] Yu Zhang,^[a,b]* Ke Xiao,^[a,c] Xu Han,^[d] Yu Liu,^[e] Bingfei Nan,^[a,c]

Maria Garcia Ramon,^[a,f] Khak Ho Lim,^[g] Junshan Li,^[h] Jordi Arbiol,^[d, i] Bed Poudel,^[b]

Amin Nozariasbmarz,^[b] Wenjie Li,^[b] Maria Ibáñez,^[f]* Andreu Cabot^[a,i]*

[a] Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, 08930 Barcelona, Spain.

[b] Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

[c] University of Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain.

[d] Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.

[e] School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.

[f] IST Austriansitute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.

[g] Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou 324000, Zhejiang, P.R. China.

[h] Institute for Advanced Study, Chengdu University, 610106, Chengdu, China.

[i] ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Catalonia, Spain.

**E-mails:* Y. Zhang: *yvz5897@psu.edu;* M. Ibañez: *mibanez@ist.ac.at;* A. Cabot: *acabot@irec.cat;*

1. Synthesize and characterization on Cu_{1.5}Te NPs.

Figure S1. Representative TEM micrographs of the $Cu_{1.5}$ Te NPs synthesized from two different Cu precursors: (a) $Cu(CH_3COO)_2 \cdot H_2O$ and (b) CuCl.

Figure S2. comparison of powder XRD patterns of as-synthesized $Cu_{1.5}Te$ NPs produced from two precursors: $Cu(CH_3COO)_2 \cdot H_2O$ (black color) and CuCl (orange color). The reference pattern for the simulated XRD pattern of $Cu_{1.5}Te$ are also displayed.

Figure S3. (a) Additional HRTEM micrograph taken from the Cu_{1.5}Te sample. Detail of the orange squared region and its corresponding power spectrum which reveals that this nanostructure has a crystal phase that is assigned to the Cu_{1.5}Te cubic phase (space group = Pm-3n) with a=b=c=7.5100 Å. From the crystalline domain, the Cu_{1.5}Te lattice fringe distances were measured to be 0.734 nm, 0.532 nm and 0.728 nm, at 43.44° and 88.78° which corresponds to the Cu_{1.5}Te cubic phase, visualized along its [010] zone axis. (b) Comparison between the experimental and the theoretical bulk plane spacing distances and angles between planes.

2. Surface treatment with SeL solution.

Figure S4. Representative TEM micrographs of $Cu_{1.5}$ Te nanoparticles (NPs) (a) before and (b) after SeL treatment. It is evident from the images that the NPs aggregate after surface treatment with SeL.

Figure S5. (a) Schematic illustration of two surface treatment procedures on $Cu_{1.5}Te$ NPs. (b) Composition of $Cu_{1.5}Te$ NPs, $Cu_{1.5}Te$ -OL NPs, $Cu_{1.5}Te$ -SeL NPs and $Cu_{1.5}Te$ -SeL supernatant obtained from ICP analysis.

Figure S6. (a) Powder XRD pattern of $Cu_{1.5}Te$ (black) and $Cu_{1.5}Te$ -SeL (orange) powder before annealing. The standard diffraction pattern of Te and $Cu_{1.5}Te$ are included as reference. (b) XRD pattern of $Cu_{1.5}Te$ -SeL powder after annealing at different temperature, indicating phase evolution during thermal treatment. The standard diffraction pattern of CuTe (JCPDS No. 00-022-0252) is included as reference.

Figure S7. Additional EELS chemical composition maps of annealed $Cu_{1.5}$ Te-SeL particles obtained from the red squared area in the STEM micrograph. Individual Cu L_{2,3}-edge at 931 eV (red), Te M_{4,5}-edge at 572 eV (green) Se L_{2,3}-edge 1436 eV(orange) and O K-edge at 532 eV (blue) as well as its composites.

Figure S8. FTIR Spectra of $Cu_{1.5-x}$ Te-Cu₂Se nanocomposites before and after annealing at 623 K for 1 h under Ar flow.

Figure S9. (a) TEM images and size distribution histograms of $Cu_{1.5}Te$ NPs. (b) Average crystallite size of $Cu_{1.5}Te$ -SeL NPs, CuTe NPs, $Cu_{2.72}Te_2$ NPs and $Cu_{1.81}Te$ NPs calculated using Scherrer equation.

3. Characterization on consolidated pellets.

Figure S10. XRD patterns of consolidated (a) $Cu_{1.5}Te$ and (b) $Cu_{1.5}Te$ -SeL pellets, the standard diffraction patterns of $Cu_{1.81}Te$ (JCPDS No. 10-0421), CuTe (JCPDS No. 00-022-0252) and $Cu_{2.72}Te_2$ (JCPDS No. 00-043-1401) are included as reference.

Figure S11. (a) Schematic illustration of post synthetic treatment of $Cu_{1.5}$ Te NPs with different ligands. Corresponding cross-sectional SEM images of (b) $Cu_{1.5}$ Te pellet, (c) $Cu_{1.5}$ Te-OL, and (d) $Cu_{1.5-x}$ Te-Cu₂Se pellets.

Figure S12. (a) Differential scanning calorimetry (DSC) curves of $Cu_{1.5-x}Te-Cu_2Se$ pellet collected in a consecutive heating (red) and cooling (black) cycle. (b) Specific heat of $Cu_{1.5-x}Te-Cu_2Se$ pellet.

4. High temperature XRD and TE properties.

Figure S13. (a) 2D heatmap of in-situ XRD characterization on: (a) $Cu_{1.5}Te$ (untreated) pellet; (b) $Cu_{1.5}Te$ -OL (treated with thiol/amine ligands only) pellet; and (c) $Cu_{1.5}Te$ -SeL (treated with Se ligands) pellet in a complete heating-cooling (bottom-top) cycle.

Figure S14. Temperature dependence of thermoelectric properties of Cu_{1.5}Te ($\mathbf{\Omega}$), Cu_{1.5}Te-OL ($\mathbf{\Omega}$) and Cu_{1.5-x}Te-Cu₂Se ($\mathbf{\Omega}$) pellets in a consecutive heating and cooling process: (a) electric conductivity, σ ; (b) Seebeck coefficient, S; and (c) power factor, PF.

5. Stability and repeatability.

Figure S15. (a) Evolution of the electrical conductivity (σ), Seebeck coefficient (S) and power factor (PF) of the Cu_{1.5-x}Te-Cu₂Se sample for 5 consecutive heating-cooling cycles at a temperature range between 540 K and 590 K. (b) Time evolution of the Cu_{1.5}Te-SeL sample during 10 h test. Reversibility of TE properties of Cu_{1.5-x}Te-Cu₂Se sample with several heating-cooling cycles: temperature-dependent TE performance of (c) electrical conductivity, (d) Seebeck coefficient and (e) power factor.

Figure S16. Temperature dependence of electrical conductivity, σ (a); Seebeck coefficient, S (b); thermal conductivity, κ (c); and TE figure of merit, ZT (d) of three Cu_{1.5}Te-SeL pellets measured in heating and cooling cycle. Data from 3 samples is plotted with black, red, and blue circles, respectively.

6. Anisotropic characterizations.

Figure S17. Anisotropic characterizations. Temperature dependence of electrical conductivity, σ (a); Seebeck coefficient, S (b); power factor, PF (c) and XRD patterns (d) of Cu_{1.5-x}Te-Cu₂Se pellet in parallel and perpendicular directions.

Figure S18. The Rietveld refinement of in-situ XRD patterns of $Cu_{1.5-x}$ Te-Cu₂Se pellet at different temperatures.

Temp	Phase	a (Å)	b (Å)	c (Å)	Area%
рт	Cu _{2.86} Te ₂	3.976	3.932	6.119	35.1
KI -	CuTe	3.143	4.080	7.010	64.9
373K -	Cu _{2.86} Te ₂	4.002	3.945	6.110	37.0
	CuTe	3.150	4.077	7.157	63.0
473K -	Cu _{2.86} Te ₂	4.037	3.956	6.087	35.8
	CuTe	3.134	4.142	6.939	65.2
FUDK	Cu _{2.86} Te ₂	4.056	3.937	6.084	36.7
2024	CuTe	3.163	4.096	6.925	63.3
FEDR	Cu _{2.86} Te ₂	3.995	3.976	6.144	33.6
553K -	CuTe	3.160	4.078	6.932	66.4
603K	Cu _{2.86} Te ₂	3.991	3.965	6.110	31.5
	Cu ₄ Te ₃	8.306	8.306	2.110	33.4
	Те	4.458	4.458	5.927	35.1
613K	Cu _{2.86} Te ₂	3.983	3.957	6.156	31.8
	Cu ₄ Te ₃	8.313	8.311	2.115	32.7
	Те	4.447	4.447	5.9346	35.4
603K	Cu _{2.86} Te ₂	3.991	3.965	6.110	34.5
	Cu ₄ Te ₃	8.310	8.308	2.114	31.8
	Те	4.458	4.458	5.927	33.7
553K	Cu _{2.86} Te ₂	3.995	3.976	6.144	31.1
	Cu ₄ Te ₃	8.301	8.303	2.107	35.2
	Те	4.433	4.419	6.222	33.7
гори	Cu _{2.86} Te ₂	3.934	3.917	6.221	33.0
503K -	CuTe	3.231	4.102	6.751	67.0
4521/	Cu _{2.86} Te ₂	3.994	3.978	6.123	34.5
4531	CuTe	3.161	4.079	6.928	65.5
ערדכ	Cu _{2.86} Te ₂	4.011	3.943	6.117	31.6
3/3K -	CuTe	3.155	4.079	7.029	68.4
рт	Cu _{2.86} Te ₂	3.987	3.963	6.109	65.0
	CuTe	3.140	4.078	6.980	35.0

Table S1. Refined lattice parameters (from Rietveld refinement of the XRD patterns) of different crystal structures at corresponding temperatures.

Sample	Cu _{1.5} Te	Cu _{1.5-x} Te-OL	Cu _{1.5-x} Te-Cu ₂ Se
Crystal density (g/cm ³)	6.16	6.42	6.59
Measured density (g/cm ³)	5.79	6.12	6.07
Relative density	93.9%	95.3%	92.1%

Table S2. Relative densities of $Cu_{1.5}Te$, $Cu_{1.5-x}Te$ -OL and $Cu_{1.5-x}Te$ -Cu₂Se pellets obtained from absolute values measured with the Archimedes' method.