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ABSTRACT

The blue crab (Callinectes sapidus) is a commercially and ecologically important

species found along the Atlantic coast of North and South America. These

crustaceans play a critical role in coastal ecosystems, serving as both predators

and prey in the food web. The blue crab supports a major fishery in Chesapeake

Bay, where the species is a cultural icon. Juvenile blue crabs, the smallest and

most vulnerable size classes of individuals, are reliant upon structurally complex

habitats. Population dynamics of this species are therefore influenced by

spatiotemporally fluctuating environmental variables, such as habitat availability.

Understanding blue crab ecology is essential for managing their populations

sustainably and maintaining the health of their habitats. The primary aim of this

dissertation was to quantitatively evaluate the contributions of several widely

distributed habitats to blue crab population dynamics in Chesapeake Bay.

Empirical valuation of nursery habitat effects on blue crab population dynamics

can (i) estimate the optimal extent of habitat required for the long-term

sustainability of blue crab fisheries, (ii) quantify how changes in habitat extent will

affect blue crab populations, such as alterations due to climate change, and (iii)

inform ecosystem-based fisheries management (EBFM) decisions, as a

complement to stock assessments. Here, I present four separate but interrelated

studies examining habitat-specific demographic rates at multiple spatial and

temporal scales. These studies involved a combination of survey data,

mensurative and manipulative field experiments, and complex population

dynamics models. Chapter 1 evaluates nursery habitat contributions to blue crab

population dynamics by examining relationships between juvenile blue crab

distributions and multiple environmental variables in three tributaries—the York,

James, and Rappahannock rivers—at broad spatial (regional) and temporal

(decadal) scales using fisheries-independent survey data and digitized GIS maps

of habitat distributions. Chapter 2 examines fine-scale spatiotemporal (i.e., 10s of

km2 over biweekly intervals) variation and ontogenetic shifts in juvenile blue crab

densities in salt marsh edge, seagrass, shallow detrital habitat, and unstructured

habitat under a suite of physical and biological parameters in the York River.

Chapter 3 expands on these findings to examine the mechanistic basis for

ontogenetic habitat shifts by evaluating differential abundance and survival of

juvenile blue crabs across three size classes in salt marsh edge, seagrass, and

unstructured sand habitat, with specific attention to effects of refuge, turbidity, and

postlarval supply. Finally, Chapter 4 integrates population-scale indices of

abundance from two major fisheries-independent surveys with time-series of

habitat data to assess the influence of seagrass species on blue crab population

dynamics at the scale of Chesapeake Bay.
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Empirical valuation of primary and alternative nursery habitats for the blue crab

Callinectes sapidus in Chesapeake Bay



Chapter 1

Spatiotemporal modeling of nursery

habitat using Bayesian inference:

environmental drivers of juvenile

blue crab abundance

Abstract

Nursery grounds are favorable for growth and survival of juvenile fish and crustaceans

through abundant food resources and refugia, and enhance secondary production of

populations. While small-scale studies remain important tools to assess nursery value

of habitats, targeted applications that unify survey data over large spatiotemporal scales

are vital to generalize inference of nursery function, identify highly productive regions,

and inform management strategies. Using 21 years of GIS and spatiotemporally indexed

field survey data on potential nursery habitats, we constructed five Bayesian models with
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varying spatiotemporal dependence structures to infer nursery habitat value for juveniles

of the blue crab C. sapidus within three tributaries in lower Chesapeake Bay. Out-of-

sample predictions of juvenile counts from a fully nonseparable spatiotemporal model

outperformed predictions from simpler models. Salt marsh surface area, turbidity, and their

interaction showed the strongest associations (and positively) with abundance. Relative

seagrass area, previously emphasized as the most valuable nursery in small spatial-scale

studies, was not associated with abundance. Hence, we argue that salt marshes should

be considered a key nursery habitat for blue crabs, even amidst extensive seagrass

beds. Moreover, identification of nurseries should be based on investigations at broad

spatiotemporal scales incorporating multiple potential nursery habitats, and on rigorously

addressing spatiotemporal dependence.

1.1 Introduction

A key element of ecosystem-based fishery management (EBFM) is the incorporation of

habitat (e.g., EFH, “Essential Fish Habitat”) into management, conservation and restoration

decisions [139]. However, quantitative assessments of the production value of habitats have

only recently been attempted [216, 188, 226, 16, 21]; see [102] for a review. In particular,

nursery habitats can enhance growth and survival of juvenile fish and crustaceans in

diverse marine and estuarine ecosystems [8, 67, 128, 140, 109, 143, 160] through the

provision of food resources and refugia. Hence, linking nursery habitat quantity and

quality to population dynamics and EBFM of exploited species has been emphasized

[188, 216, 226, 16, 102, 21].

Unfortunately, quantification of habitat value has been uncommon due to the consider-

able logistical difficulties associated with field experiments [8]. Until recently, comparison of

potential nurseries relied primarily on examination of specific habitat types (e.g., sea grass,
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oyster reef, marsh) as single units disconnected from adjacent habitats [140]. However, es-

tuaries are complex habitat mosaics that include physical, biotic, and chemical components

interacting at multiple spatial and temporal scales [149], and as such, these connections

must be considered. Operational definitions of nurseries must be expanded to consider

multiple structured and unstructured habitat types, as well as environmental characteristics

within a region [140]. Furthermore, inference on nursery habitat value is complicated in

that habitat preferences of many marine and estuarine species change with ontogeny,

such that early-life stages frequently inhabit different habitats than older juveniles or adults

[89, 141, 44]. Quantitative assessments of nursery function and fisheries production must

therefore move beyond comparisons between specific habitat types [140, 191, 109] and

be considered within the context of ontogeny [103], especially for organisms with complex

life cycles [103, 43, 44].

While ecological studies often quantify nursery function at fine temporal and spatial

scales, few are conducted at the scales relevant to the population [208]. Small-scale studies

on the importance of structured habitats as nurseries may not scale up to the population

level. For example, high local juvenile density or survival in small-scale studies [8] may

not translate to high secondary production in a population if per-unit-area productivity of a

potential nursery habitat is negated by the small area of a habitat in the seascape [35, 140].

For robust evaluation of nursery habitats at sub-population or population scales, small-scale

field studies should be complemented with analyses of large-scale field data, especially

when informing decision-making within the context of EBFM.

The blue crab Callinectes sapidus, which supports valuable fisheries along the Western

Atlantic and Gulf of Mexico coasts [144], is a model organism for quantifying value of

structured habitats under spatially and temporally varying environmental characteristics.

Like many exploited marine species, the blue crab utilizes a range of nursery habitats
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and exhibits ontogenetic shifts in habitat utilization [154, 70, 103, 188, 44]. Postlarvae

settle in structured habitats, such as seagrass, where they metamorphose to the first

juvenile instar [120] and either remain or exhibit density-dependent secondary dispersal

to alternative structured habitats [45, 46, 88]. After reaching 20-25 mm carapace width

(CW), they emigrate to unstructured soft-bottom habitats [105, 186], but also continue to

use structured habitats for foraging, molting, and mating [70, 103]. For the blue crab, [70]

and [103] reviewed the extensive evidence for the value of specific nursery habitats, such

as seagrass, using the definition of nursery habitat as areas with elevated per-unit-area

density, survival and growth.

Two aspects of the blue crab’s life history are particularly useful in quantifying value

of nursery habitats. First, size-specific habitat use and dispersal patterns of the blue crab

through ontogeny are well understood [103, 70]. Second, male and immature female blue

crabs larger than 20 mm carapace width (CW) exhibit high site fidelity and low emigration

rates during summer and fall at spatial scales less than a few kilometers [230, 36, 71, 86].

Hence, abundance of juvenile blue crabs larger than 20 mm CW can be used to identify

areas of high productivity, and facilitate quantitative comparisons of the relative contribution

of multiple nursery habitats in the seascape to the population.

Here, we exploited the differential habitat utilization of pre- and post-dispersal juve-

nile blue crabs to infer relative nursery value of various habitats associated with specific

environmental characteristics. We constructed statistical spatiotemporal models to exam-

ine geographic heterogeneity in post-dispersal juvenile blue crab abundance and to infer

variation in nursery habitat value within and across estuaries in lower Chesapeake Bay,

Virginia. Specifically, we used temporal extensions of conditional autoregressive (CAR)

spatial models to assess the effects of environmental factors on abundance of juvenile

blue crabs at the tributary and regional scales simultaneously. Using local abundance of
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post-dispersal sized (20-40 mm CW) juvenile blue crabs as an indicator for local production,

our objectives were to 1) evaluate relationships between nursery habitat distribution and

local productivity at regional scales (≥ 100 km2), and 2) identify geographic areas with

consistently high abundance and productivity.

1.2 Study design

1.2.1 Study Area

The three large tributaries analyzed in this study–the James, York, and Rappahannock

Rivers–discharge into the lower portion of western Chesapeake Bay and serve as nursery,

foraging and spawning habitats for many marine and estuarine species (Fig. 1.1). The

tributaries are partially mixed, coastal plain subestuaries with depths generally between 5 to

10 m along the axes, but with deeper portions (>20 m) near the mouths [196]. Each tributary

contains a range of seagrass and salt marsh configurations. Seagrasses, primarily eelgrass

Zostera marina and widgeon grass Ruppia maritima, vary from large, continuous meadows

to areas with few small patches of variable shoot densities [77]. Salt marshes, dominated

by smooth cordgrass Spartina alterniflora, span extensive sections of the shorelines of

each tributary, although areal coverage of marsh patches varies spatially among and within

individual tributaries.
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Figure 1.1: Map of Rappahannock, James, and York rivers with tributary sections (areal

units) superimposed. See Section 1.2.3 and Appendix A.2 for the definition of areal units

within tributaries.

1.2.2 Predictors of Abundance and Productivity

Seven environmental variables (herein, predictors) were initially considered as potential de-

terminants of local productivity for juvenile blue crabs, and are described below. Additional
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details on variable definition and associated regression coefficients are in Section 1.2.3,

Table 1.1, and Appendix A.1. We did not include salinity as a predictor due to substantial

collinearity with turbidity and location along the river axis.

Table 1.1: Descriptions of predictors used in all initial models

Predictor Regression Description

Coefficient

— β0 (Intercept of model)

Tow distance (log) O Offset term relating juvenile blue crab abundance

to surface area river sections

Turbidity βTurbidity Mean water cloudiness measured as the negative

value of the Secchi disk depth (m) for the kth river
section in the tth year

Seagrass (relative area) βSeagrass
(SAV area)kt
(Section area)k

= Total area of SAV in section k at time

t divided by the area of section k

Marsh (relative area) βMarsh
(Marsh area)kt
(Section area)k

= Total area of salt marsh in section k

at time t divided by the area of section k
Marsh × Turbidity βMarsh×Turbidity Interaction term between marsh relative area and

turbidity.

Predator abundance (log-count) βPredator Log-transformed counts, in section k at time t, of
predator abundance between 100 and 300 mm in

total length (fish) or CW (adult blue crabs) from the

10 most common predators of small juvenile blue

crabs (see Table 1.2)

Management (post 2008) βManagement Effect of Chesapeake Bay blue crab management

changes enacted in 2008

Rappahannock βRappahannock Tributary-specific effect of the Rappahannock River

relative to the James River (baseline)

York βYork Tributary-specific effect of the York River relative to

the James River (baseline)

Seagrass

Historically, emphasis was placed on seagrass meadows as the preferred nursery for small

(i.e., <30 mm CW) juvenile blue crabs [154, 159, 77, 171] due to the high densities of

juvenile crabs and settlement of postlarvae [148, 222, 215] in seagrass meadows over

alternative structured and unstructured substrates [154, 105]. Effects of seagrass area
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are likely influenced by the spatial extent of the river section. Thus, we defined a relative

seagrass area metric by dividing the area of seagrass cover within each river section in

each year by the area of that section to yield a relative seagrass area metric (i.e., percent

area covered, PAC). Hereafter, we refer to the spatiotemporal unit representing a given

river section in each year as a section-year.

Marsh

Salt marshes may serve as nursery habitat for juvenile blue crabs, particularly in locations

where seagrass is absent or declining [84, 12, 86]. In the Gulf of Mexico, juvenile blue crab

abundance is high in both seagrass and salt marsh habitats [205, 175, 66]. In tethering

experiments, survival of juveniles was comparable between the two habitats, both of which

had higher survival than in unstructured habitat [189]. Similar to seagrass, we defined a

relative marsh area metric for each section-year.

Turbidity

Strong turbidity gradients exist in each tributary [142, 93, 98, 48]. Dissolved and particulate

suspended solids are imported from surrounding watersheds to tributaries via terrestrial

runoff. In contrast, seawater from estuarinemouths is relatively clear. Divergence in turbidity

is apparent when comparing marine (i.e., polyhaline) to mesohaline and oligohaline, highly

turbid upriver areas, where water clarity is frequently driven by allochthonous inputs and

sediments from the surrounding watershed. The estuarine turbidity maximum (ETM), a

region of elevated suspended solid concentrations and reduced light availability, occurs

near the limit of salt intrusion in each tributary, where turbidity peaks [181].

Turbidity may provide juvenile blue crabs with protection from visual predators [32, 113]

and from cannibalism by larger congeners [146] through a reduction in light intensity.
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Upriver unstructured habitat is turbid, whereas similar habitat downriver has lower turbidity,

such that upriver unstructured habitat can also serve as an effective nursery [105, 186].

Hence, mean turbidity per section-year was included as a continuous covariate.

Marsh-Turbidity Interaction

Whereas seagrass meadows do not occur in high-turbidity areas due to light requirements,

extensive salt marshes are present in both high- and low-turbidity regions of the tributaries.

As such, turbidity may modify the effectiveness of structured salt marsh habitat as nursery

for juvenile crabs by decreasing predatory foraging efficiency through both low visibility

(turbidity) and structural impediments (marsh grass). For this reason, the interaction

between marsh area and turbidity was included in the analysis. We recognize that there

may be confounding variables with turbidity, such as location along the upriver-downriver

gradient and resources such as prey availability. Hence, our interpretations will be limited

to a association between crab abundance and turbidity.

Predation

Although physical refuges can reduce predator foraging success, predator density may

also determine survival [130]. For example, high abundances of juvenile blue crabs in

low salinity regions have been linked to low predator abundance in those regions [165].

Predators for each section-year were determined from the literature and abundances of

the 10 most important predators of small juvenile blue crabs, including larger conspecifics

(Table 1.2), were obtained from the Virginia Institute of Marine Science Juvenile Fish and

Blue Crab Trawl Survey (hereafter VIMS Trawl Survey) [206]. Predator densities were

estimated for individuals between 100 and 300 mm in total fish length (or CW for blue crabs),

with the lower bound defining the smallest size able to capture and consume small juvenile
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blue crabs [182], and the upper bound representing animals which would be expected to

consume smaller juvenile blue crabs.

Table 1.2: List of predator species considered in predation abundance variable

Common name Species name Source

Blue crab (adult) Callinectes sapidus [70, 14]

Striped Bass Morone saxatilis [70, 103, 15]

Red Drum Sciaenops ocellatus [70, 61, 15]

Silver Perch Bairdiella chrysoura [61]

Weakfish Cynoscion regalis [15]

Atlantic Croaker Micropogonias undulates [61, 15]

Northern Puffer Sphoeroides maculatus [14]

Striped Burrfish Chilomycterus schoepfi [14]

Blue Catfish Ictalurus furcatus [184]

Oyster Toadfish Opsanus tau [14]

Tributary

The three tributaries in our study vary in geography, morphology, and hydrology. Average

discharge is relatively high in the James River (194 m3 s−1) and lower in the Rappahan-

nock and York Rivers (47 m m3 s−1 and 31 m3 s−1, respectively) [29]. Additionally, the

three tributaries are positioned along a latitudinal gradient in Chesapeake Bay, with the

Rappahannock River being northernmost, the James River southernmost and closest to

the Bay mouth, and the York River intermediate. Finally, these tributaries vary substan-

tially in surface area [29]. The James River is the largest at 513.0 km2, the York River

is the smallest at 162.5 km2, and the Rappahannock River is intermediate at 307.5 km2

[196]. Variation in these physical characteristics may affect blue crab abundance and thus,

tributary was considered as a predictor in the model.
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Management

Early in the 1990s the blue crab spawning stock in Chesapeake Bay declined by 80% [106],

and average annual female abundance dropped 50% from 172 million crabs in 1989-1993

to 86 million crabs in 1994-2007 [117]. As a consequence, larval abundance and postlarval

recruitment were lower by approximately 1 order of magnitude [106]. The sharp decline

resulted in a range of management and recovery actions implemented from 2001 through

2008, including establishment of an extensive spawning sanctuary that encompassed about

75% of the spawning grounds in Chesapeake Bay [104, 107, 94]. Most notably, severe

fishery reductions were implemented in 2008 by the three management agencies, which

included the Virginia Marine Resources Commission, Potomac River Fisheries Commission,

and Maryland Department of Natural Resources (MDNR), leading to a 34% reduction in

female landings across Maryland and Virginia [117] and triggering population recovery in

subsequent years. Since 2008, annual female abundance rebounded to pre-1994 levels,

and stabilized at an average of 161 million crabs during 2008-2019 [117]. We included

management status (before and after 2008, with 2009 being the first recruitment period

after management change) as a categorical predictor to capture potential effects on juvenile

blue crab abundance due to increases in female blue crab abundance in response to

regulatory changes that were implemented in 2008. However, we also realize that the

effects of management may be interactive with those of other factors (e.g., management

may increase abundance in marsh habitats but not in unvegetated areas), and thus we

interpret the results for the additive effect of management with caution.

1.2.3 Sampling and Data Processing

Juvenile blue crab and predator abundance data were obtained from the fisheries-independent

VIMS Trawl Survey [206]. Beginning in March 1996 and continuing to the present, stratified-
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random and fixed-site sampling has been conducted monthly in the James, York, and

Rappahannock Rivers using consistent gear, research vessel, and methodology. Secchi

disk measurements, a proxy for turbidity, are collected immediately following each trawl tow.

This sampling design provided a monthly time series of juvenile blue crab and predator

catch data as well as water quality data (temperature, turbidity) in each tributary. The

maximum size of predators (300 mm fish total length or crab carapace width) represent the

sizes that are reliably captured by the VIMS Trawl Survey [206].

GIS data on submersed aquatic vegetation (SAV) and salt marsh distributions were used

as explanatory habitat variables. SAV polygons digitized from annual aerial photographs

were obtained from the VIMS SAV program, while polygons of salt marsh distributions were

obtained from the Shoreline and Tidal Marsh Inventory dataset from the VIMS Center for

Coastal Resource Management.

The spatiotemporally varying samples from the VIMS Trawl Survey were aggregated to

annually indexed areal units for the period 1996 to 2017. We limited the months considered

for each year to April–December to avoid bias in crab distributions associated with winter

dormancy [70]. First, each tributary was divided along its axis into sections approximately

five km in length resulting in K = K1 +K2 +K3 = 37 total areal units, or sections (K1 = 14

for James,K2 = 13 for Rappahannock, andK3 = 10 for York), which excluded one polygon

at the mouth of the James representing the first five km because no samples were collected

in this region by the trawl survey (Fig. 1.1). Areal unit definitions are discussed in Appendix

A.2. For each kth areal unit within each tth year (i.e., (k, t)th section-year), blue crab catch

and tow distance (m) information were summed to derive values of total abundance and

total tow distance. Secchi disk depth and loge-transformed predator abundance values

were averaged within each (k, t). Finally, marsh and seagrass area within each section-year

divided by the total area of each section were used as a relative habitat area metric for
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each structurally complex habitat. The aggregated trawl data resulted in 814 section-year

observations. All but one of the 814 section-years contained trawl tows, and the exception

was from 2017. This aggregation resulted in values of relevant response and predictor

variables for each river section k in each year t.

1.3 Model Development and Specification

The spatiotemporal structure of the data in this study required complex modeling because

sampling sites did not represent independent replicates. The study region covered three

tributaries, each comprised of a set of k = 1, ...,Kg non-overlapping areal units (sections),

g = 1, 2, 3, and data were recorded for each section for t = 1, ..., T consecutive time

periods (T = 21 years over 1996–2016, due to the 2017 data being withheld for out-of-

sample cross validation; see Section 4.2.7). A multilevel (hierarchical) spatiotemporal

Bayesian model framework for discrete responses (count data) was used to evaluate the

effects of predictors while simultaneously accounting for spatiotemporal dependence. We

used temporal extensions of conditional autoregressive (CAR) models [220] to examine

spatiotemporal patterns in the abundance of juvenile blue crabs among potential nursery

areas. To determine the necessary model complexity to capture spatial and temporal

patterns in juvenile blue crab abundance, we constructed five model variants with various

spatiotemporal dependence structures. Specifically, we compared models that i) ignored

spatial and temporal autocorrelation, ii) considered exclusively spatial autocorrelation, iii)

considered separable (i.e., non-interacting) spatial and temporal autocorrelation (split into

(3a) and (3b)) and iv) considered fully non-separable (i.e., interacting) spatiotemporal

autocorrelation.
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1.3.1 Model 1

The simplest model considered in this study was a Poisson generalized linear mixed-effects

model with a random effect for all river sections k = 1, ...,K:

Ykt|µkt ∼ Pois(µkt) (1.1)

ln(µkt) =

p∑
i=0

xktiβi +Okt + θk

θk|σ2
θ ∼ N(0, σ2

θ)

βi ∼ N(0, 100)

σ2
θ ∼ inverse-Gamma(1, 1)

The response data, juvenile crab counts, are denoted by Ykt, for the kth section in year

t. Tow distances, known offsets that have been log-transformed, are denoted by Okt. An

offset variable is one that is treated like a regression covariate whose slope parameter is

fixed at 1. Offset variables are most often used to scale the modeling of the mean structure

when the response variable is expected to be proportional to the offset term. A vector of

predictors (see Table 1.1), xkt = (1, xkt1, ..., xktp) is denoted for each (k, t), and includes

xkt0 = 1 which corresponds to the intercept term. Model 1 included an independent and

identically distributed (i.i.d.) random effect, θk. This parameter was normally distributed and

accounted for section-specific variation only and did not consider spatial autocorrelation

among neighboring sections or temporal autocorrelation within a given section through time.

All fixed-effect regression coefficients were given a normal prior distribution with mean

0 and variance 100. The random-effect variance σ2
θ was given an inverse-Gamma(1, 1)

hyperprior, which is reasonably diffuse to reflect the lack of information about the parameter.
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1.3.2 Model 2

This model considered the effects of spatial autocorrelation among neighboring river sec-

tions through the substitution of i.i.d. θk with conditionally autoregressive (CAR) Φk [218]:

Ykt|µkt ∼ Pois(µkt) (1.2)

ln(µkt) =

p∑
i=0

xktiβi +Okt +Φk

Φ|Σ ∼ MVN(0,Σ)

Σ = σ2
Φ(D − λW )−1

βi ∼ N(0, 100)

λ ∼ U(0, 1)

σ2
Φ ∼ inverse-Gamma(1, 1)

where the joint probability distribution of Φ = (Φ1, ...,ΦK) is specified as a multivariate

normal distribution with a mean vector of 0s and variance-covariance matrix Σ. The Σ

matrix describes spatial correlation based on the neighborhood structure specified by a

K×K adjacency matrix,W , and an autocorrelation parameter λ, which controls the degree

of spatial autocorrelation among neighboring sections across the entire region of study. We

employed a binary weighting scheme forW where wk,k′ = 0 for all (k, k′) unless areal units

k 6= k′ share a common border. The influence of neighboring sections on a given section

was standardized by subtracting λW from D, a diagonal matrix where Dk,k is the number

of neighbors for section k. This specification effectively scaled spatial dependence by the

number of neighbors for each section while avoiding model unidentifiability of the intrinsic

CAR (ICAR) structure [23]. The parameter λ was constrained between 0 and 1 (hence,
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non-negative) through a uniform prior. This spatial dependence structure was assumed to

be homoscedastic through the variance parameter σ2
Φ, again with an inverse-Gamma(1, 1)

hyperprior. The regression coefficients were given the same prior distributions as before.

1.3.3 Model 3

Models 3a and 3b considered separable spatial and temporal dependence [220] by expand-

ing on Model 2 through the addition of an autoregressive temporal autocorrelation structure

of order 1, i.e., AR(1), at two spatial resolutions. The model equations below for 3a and 3b

hold for all k and t. Model 3a included an autocorrelated normally distributed error term ηt,

with η = (η1, ..., ηT ) and a global temporal autocorrelation parameter, ρ, and variance σ2
η,

where ρ is given a uniform prior distribution between 0 and 1, (again, non-negative) and

the remaining model parameters are given the same prior distributions as before.

Ykt|µkt ∼ Pois(µkt) (1.3a)

ln(µkt) =

p∑
i=0

xktiβi +Okt +Φk + ηt

Φ|Σ ∼ MVN(0,Σ)

Σ = σ2
Φ(D − λW )−1

ηt|ρ, ηt−1, σ
2
η ∼ N(ρηt−1, σ

2
η) for all t = 2, 3, ..., T

βi ∼ N(0, 100)

λ, ρ ∼ U(0, 1)

σ2
Φ, σ

2
η ∼ inverse-Gamma(1, 1)
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In contrast, Model 3b stipulated tributary-specific temporal autocorrelation for g = 1, 2, 3:

Yktg|µktg ∼ Pois(µktg) (1.3b)

ln(µktg) =

p∑
i=0

xktiβi +Okt +Φk + ηgt

Φ|Σ ∼ MVN(0,Σ)

Σ = σ2
Φ(D − λW )−1

ηgt|ρg, ηg,t−1, σ
2
η ∼ N(ρgηg,t−1, σ

2
η) for all t = 2, 3, ..., T

logit(ρg) = logit(P ) + rg

r3 = −r1 − r2

βi ∼ N(0, 100)

λ, P ∼ U(0, 1)

σ2
Φ, σ

2
η ∼ inverse-Gamma(1, 1)

r1, r2 ∼ N(0, 0.25)

Here, ηgt is the normally distributed AR(1) error term for year t and tributary g, with

a local temporal autocorrelation parameter ρg and global variance σ2
η. the complete set

is denoted by η = (η1, η2, η3), where ηg = (ηg1, ηg2, ..., ηgT ). Here, each ρg on the logit

scale is modeled as the logit of a global temporal autocorrelation parameter P plus a

tributary-specific offset rg, subject to the sum-to-zero constraint
∑3

i=1 rg = 0. Two of the

rgs are given normal priors of N(0, 0.25) which reflect a compromise between the lack of

pre-existing knowledge about these parameters and a desire to constrain the distributions

from unrealistic extremes (Fig. A1)[56]. The inverse-logit transformation, logit−1(u) = eu

1+eu

for any real number u (here, u = logit(ρg)), constrains ρg between 0 and 1. Similarly, P is

given a uniform prior between 0 and 1. The remaining model parameters were given the
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same prior distributions as before.

1.3.4 Model 4

For the final model, we considered a non-separable spatiotemporal random effect. The

spatiotemporal structure includes a multivariate first-order autoregressive process with

a first-order spatial CAR structure. The data level and linear predictor of the resulting

hierarchical model are:

Ykt|µkt ∼ Pois(µkt) and ln(µkt) =

p∑
i=0

xktiβi +Okt +Φkt.

Here, the Φkt term is the random effect associated with section k in year t, with the complete

set denoted by Φ = (Φ1, ...,ΦT ), where each Φt = (Φ1t, ...,ΦKt) is the tth map of spatial

random effects.

Φ1|Σ ∼ MVN(0,Σ) (1.4)

Σ = σ2
Φ(D − λW )−1

Φt|ρ,Φt−1,Σ ∼ MVN(ρΦt−1,Σ), when t > 1

Σ = σ2
Φ(D − λW )−1

βi ∼ N(0, 100)

σ2
Φ ∼ inverse-Gamma(1,1)

λ, ρ ∼ U(0, 1).

The spatiotemporal autocorrelation structure is stipulated by replacing ηt in Model 3a
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with the entire Φt map, an approach employed by previous work [179], and represents the

spatiotemporal pattern in the mean response with a single set of spatially and temporally

autocorrelated random effects. The Φt map follows a multivariate autoregressive process

of order one. Thus, in year t = 1, the Φ1 map assumes a strictly CAR structure. However,

when t > 1, temporal autocorrelation is induced by explicitly allowing Φt to have conditional

mean equal to ρΦt−1.

The regression coefficients, autocorrelation parameters, and variance parameters were

given the same prior distributions as before.

1.4 Model Implementation and Validation

For each model, Bayesian inference required numerical approximation of the joint posterior

distribution of all model parameters including the vectors of random effects θ,Φ, and η. To

this end, we implemented the above models using the Stan programming language for

Bayesian inference to generate Markov chain Monte Carlo (MCMC) samples from the pos-

terior [57]. For each model, we ran four parallel Markov chains, each with 15,000 iterations

for the warm-up/adaptive phase (and subsequently discarded as burn-in), and another

15,000 iterations as posterior samples (i.e., 60,000 draws in total for posterior inference).

Convergence of the chains was determined both by visual inspection of trace plots (e.g.,

Fig. B2) and through inspection of the split R̂ statistic. All sampled parameters had an

R̂ value less than 1.01, indicating chain convergence [57]. Covariates and interactions

whose regression coefficients had credible intervals (CIs) that excluded 0 at a credible

level of 80% (i.e., reasonably high for hierarchical Bayesian inference) were considered

scientifically relevant to juvenile blue crab abundance. All CIs referenced here are highest

posterior density intervals (HPDIs) [115].

Model validation and relative predictive performance were assessed using out-of-sample
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cross validation (CV), whereby a subset of the full data was used to train models, and

the trained models were then used to predict the withheld data. Given the spatiotemporal

dependence structures within our model, common CV procedures, such as leave-one-out

(LOO), are difficult to interpret if the goal is to assess predictive performance, because

withheld observations depend on other observations from different time periods and different

spatial units in addition to the dependence on the model parameters [19]. For example,

withholding random observations in time-series models will still allow information from the

future to influence predictions of the past. Instead, we employed the leave-future-out (LFO)

CV approach to evaluate predictive performance through withholding future samples [18].

Thus, prior to CV analysis, the data from the final year of the study, 2017, were excluded

from the models. Then, the above Models 1–4 were fitted to the reduced dataset for both

model inference (whose results appear under Section 1.5) as well as CV. For CV, 80%

Bayesian prediction intervals were computed from the posterior predictive distributions

of the excluded values, as a forecasting exercise. The final step of CV analysis was to

compare the excluded blue crab count values to the forecast prediction intervals. Note

that due to missing data in one of the sections in 2017 (see Section 1.5.1), CV was only

possible for n = 36 sections.

1.5 Results

1.5.1 Data Summary

In total, 75,103 juvenile blue crabs between 20-40 mm CW were captured between 1996

and 2017 from April to December in the York, James, and Rappahannock Rivers. The

highest abundances of juvenile blue crabs occurred in upriver locations of each tributary

(Fig. 1.2a, 1.3a). Relative seagrass area was highest in the York River and lowest in the
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James River (Table 1.3). Relative marsh area and turbidity were highest in the York River

and lowest in the Rappahannock River (Table 1.3). Within each tributary, turbidity generally

increased with distance upriver.
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Figure 1.2: Temporally aggregated observed and expected juvenile blue crab abundance

in each tributary section based on inter-annual grand means of model quantities from

years 2009-2017 and management after 2008 (see Section 1.5.3 for definitions). Panel (a)

shows the mean observed juvenile blue crab abundance (yk+), while Panel (b) shows the
pseudo-posterior median of the expected abundance on the count scale (µk+).
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Figure 1.3: Temporally aggregated observed and expected juvenile blue crab abundance

in each tributary section based on inter-annual grand means of model quantities from years

2009-2017 and management after 2008 (see Section 1.5.3 for definitions), standardized

within tributary. Panel (a) shows the tributary-specific standardized values of yk+ (mean

observed juvenile blue crab abundance), while Panel (b) shows the tributary-specific

standardized values of µk+ (pseudo-posterior median of the expected abundance on the

count scale).
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Table 1.3: Mean (minimum–maximum) section-year values for Secchi disk depth, salinity,

relative seagrass area (RSA), relative marsh area (RMA), and predator abundance for each

tributary. Values were calculated from data collected over a 22-year period (1996–2017).

Tributary Secchi Salinity RSA RMA Predator abundance

James 0.77 11.13 0 0.15 287.52

(0.29–1.59) (0.5–22.12) (0–0.08) (0.02–0.36) (0–2838)

Rappahannock 1.1 12.74 0.01 0.08 147.32

(0.26–2.34) (2.73–19.39) (0–0.09) (0.01–0.38) (0–2154)

York 0.78 15.85 0.02 0.23 383.62

(0.38–1.57) (6.81–22.24) (0–0.17) (0.01–0.48) (2–2381)

1.5.2 Model Selection and Validation

Cross validation indicated that the non-separable spatiotemporal model, Model 4, best

described patterns in juvenile blue crab abundance. The 80% posterior prediction intervals

from Model 4 contained 81.1% of withheld 2017 data, while Model 1 (random effect only),

Model 2 (spatial-only CAR model) , Model 3a (spatial CAR model with separable, global

AR(1) term), and Model 3b (spatial CAR model with separable, tributary-specific AR(1)

term) captured 21.6, 18.9, 43.2, and 70.3% of withheld data, respectively (Fig. 4.5). A full

description of model validation and predictive performance is provided in Appendix A.3.

Hereafter, inferences are made from Model 4 only.
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Figure 1.4: Leave-future-out cross validation results for Models 1–4. Bars denote nominal

80% Bayesian prediction intervals derived from posterior predictive distributions, while dots

depict observed crab counts for 2017. Red bars indicate an observed value is outside

the prediction interval, while blue bars indicate an observed value is within the prediction

interval. Actual coverage percentages of prediction intervals (= % of blue) appear in the

panel headings.

1.5.3 Implications of Prioritized Areas for Conservation

Using posterior distributions derived from Model 4, we aggregated over time and made

spatial-only predictions of juvenile blue crab abundance to identify areas of high abundance.

For continuous predictors, data were aggregated for each section over 2009–2017 to

obtain inter-annual grand means, i.e., xk+i =
∑T

t=1 xkti/T for continuous predictor variable

xkti, where T = 9 for all sections except T = 8 for the section with no trawl data in

2017. The same aggregation was applied respectively to the log-transformed tow distance
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offset term Okt and each dth posterior draw for the spatiotemporal random-effect term

Φ
(d)
kt to define Ok+ and Φ

(d)
k+. Thus, for abundance, µ

(d)
k+ denotes a temporally aggregated

posterior draw of the expected abundance from replacing µkt of Model 4 with µ
(d)
k+ that

was computed using xk+i, Ok+, and Φ
(d)
k+; the set {µ

(1)
k+, µ

(2)
k+, ...µ

(60000)
k+ } for each k forms a

pseudo-posterior distribution of the temporally aggregated expected abundance µk+ for

spatial section k. (A true posterior distribution would require fitting a spatial-only version

of Model 4 that directly models temporally averaged counts yk+.) We limited spatial-only

comparisons to 2009–2017 due to the change in management following 2008, which was

a categorical predictor and could not be reasonably averaged over time. In addition to

inspecting the n = 37 values of pseudo-posterior median for µk+ (k = 1, ..., n), we computed

tributary-specific standardized values (centered and scaled to have unit variance) of the

pseudo-posterior medians of µk+ to determine regions of locally high and low abundance

relative to each tributary. Resulting sections with predictions corresponding to higher

average relative juvenile blue crab abundance were interpreted as more productive within

tributary, whereas sections with predictions corresponding to lower average relative juvenile

blue crab abundance were interpreted as less productive within tributary.

According to pseudo-posterior medians of µk+, upriver sections of tributaries consistently

harbored highest crab abundances (Figs. 1.2b and 1.3b). In particular, upriver sections in

the York River were very high, with a pseudo-posterior median of 30–60 crabs per 1000 m

towed. Upriver sections in the James River had a pseudo-posterior median of 13–26 crabs

per 1000 m towed, whereas those in the Rappahannock River were much lower at 0–13

crabs per 1000 m towed. Pseudo-posterior medians for µk+ were generally consistent with

observed juvenile blue crab abundances yk+ in each section from 2009–2017 (Figs. 1.2

and 1.3).
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1.5.4 Drivers of Juvenile Blue Crab Abundance

Based on posterior distributions of Model 4 parameters, tributary, turbidity, relative marsh

area, and relative marsh area × turbidity were relevant drivers of juvenile blue crab abun-

dance. All tributaries differed in average juvenile blue crab abundances, with posterior

probabilities P (βYork > βJames|data) > 0.99, P (βYork > βRappahannock|data) > 0.99, and

P (βJames > βRappahannock|data) = 0.99. Turbidity, marsh, and their interaction positively in-

fluenced juvenile blue crab abundance— posterior medians (and 80% CIs) were: βTurbidity =

0.48 (0.20–0.77), βMarsh = 2.55 (1.07–4.01), and βMarsh x Turbidity = 3.42 (1.34–5.49). Regres-

sion coefficients βSeagrass, βPredator, and βManagement had respective 80% CIs that included

0. Supporting posterior summaries and graphics are in Table 1.4 and Fig. C2.

Table 1.4: Posterior summary statistics (median and 80% CIS) of regression coefficients

β as well as autocorrelation parameters λ (spatial) and ρ (temporal) from Model 4. For

regression coefficients, the symbol “*” indicates the 80% CI does not contain 0

Parameter 10% 50% 90%

β0* -4.66 -4.33 -3.99

βTurbidity* 0.20 0.48 0.77

βSeagrass -4.44 -1.24 1.88

βMarsh * 1.07 2.55 4.01

βMarsh×Turbidity* 1.34 3.42 5.49

βPredator -0.00 0.04 0.09

βManagement -0.08 0.09 0.27

βRappahannock* -0.56 -0.34 -0.13

βYork* 0.53 0.74 0.97

λ 0.48 0.55 0.61

ρ 0.05 0.11 0.16

Conditional effects plots (Figs. 1.5 and 1.6) were used to visualize the relationship

between juvenile blue crab abundance and predictors relative marsh area and turbid-

ity. For conditional effects plots, we considered the function µcond(xTurbidity, xMarsh) =

xTurbidityβTurbidity+xMarshβMarsh+xMarshxTurbidityβMarsh×Turbidity+βManagement+ln(1000), which
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re-expresses the juvenile blue crab expected abundance µkt as a function of xTurbidity and

xMarsh as the only varying predictors, while all other continuous predictor variables were

held at 0 and the tow offset term was held at 1000 m, while categorical variables were

held at the James River (tributary) and post 2009 period. The relationship between each

varying predictor and µcond was plotted (along with credible bands) with the other varying

predictor held at fixed percentiles (1, 20, 40, 60, 80, and 99%) to visualize interaction effects.

Relative marsh area influenced juvenile blue crab abundance negatively at low turbidities

(i.e., ≤ −0.81 = median) and positively at high turbidities (i.e., ≥ −0.81 = median) (Fig. 1.5).

In contrast, turbidity influenced crab abundance positively at both low and high relative

marsh area values, with the strength of the relationship between turbidity and abundance

growing progressively stronger at high relative marsh area values (Fig. 1.6).
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Figure 1.5: Conditional effects plots depicting relationship between juvenile blue crab

abundance per 1000 m towed (µcond) vs relative marsh area (RMA) at turbidity values

corresponding to 1, 20, 40, 60, 80, and 99% percentiles to visualize interaction effects

between relative marsh area and turbidity on crab abundance. All other continuous variables

were held at 0 and categorical variables at the James River (tributary) and post 2008

(management). Colored bands indicate credible bands of µcond. (See Section 1.5.4 for
definitions.)
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Figure 1.6: Conditional effects plots depicting relationship between juvenile blue crab

abundance per 1000 m towed (µcond) vs turbidity at relative marsh area (RMA) values

corresponding to 1, 20, 40, 60, 80, and 99% percentiles to visualize interaction effects

between relative marsh area and turbidity on crab abundance. All other continuous variables

were held at 0 and categorical variables at the James River (tributary) and post 2008

(management). Colored bands indicate credible bands of µcond. (See Section 1.5.4 for
definitions.)

1.5.5 Spatiotemporal Dependence

The posterior distribution of λ indicated that substantial spatial dependence existed within

the data (Fig. C3). Posterior distributions of λ and ρ yielded medians (80% CIs) of 0.61

(0.55–0.68) and 0.14 (0.08–0.19), respectively. Although the magnitude of ρ was small,
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this non-separable spatiotemporal model, when compared to simpler models, gave leave-

future-out 80% Bayesian prediction intervals that had the highest coverage of the withheld

2017 data, and the coverage was close to its nominal 80% (Fig. 4.5). Moreover, among the

competing models the spatiotemporal structure was strong enough that posteriors of the

fixed�effect coefficients changed markedly when spatially and spatiotemporally structured

random effects were included (Fig. C4).

1.6 Discussion

Abundance of juvenile blue crabs varied spatially both within and among the three tributaries,

James, York and Rappahannock Rivers. Within all tributaries, abundance of juvenile blue

crabs consistently peaked in upriver sections. Given the limited mobility of juvenile blue

crabs <60 mm CW, we interpret high 20–40 mm CW abundance in upriver areas as

reflective of highly productive nursery habitats, as previously hypothesized for the York

River [105, 186]. Moreover, juvenile blue crab abundance was associated with specific

environmental characteristics, especially with high turbidity and extensive marsh area

near the turbidity maximum of each tributary. These findings offer an initial quantification

of multiple environmental components of highly productive nursery locations within the

seascape paradigm for juvenile blue crabs in lower Chesapeake Bay.

1.6.1 Environmental Determinants of Juvenile Blue Crab Abundance

Availability of marsh habitat and high turbidity were the most important predictors of ju-

venile blue crab abundance, which was strongly and positively related to turbidity, and

increased with the availability of salt marsh habitat relative to geographic area. However,

the substantial interaction between marsh habitat and turbidity required that inferences on
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the relationship between marsh habitat or turbidity and juvenile blue crab abundance be

made within the context of the other factor.

In areas characterized by low turbidity (i.e., mean Secchi depth >1 m), the effect of

marsh habitat ranged from negligible to negative. Conversely, in locations of high turbidity

(i.e., mean Secchi depth <1 m), juvenile blue crab abundance was positively associated

with availability of marsh habitat. About half of the section-years considered in our study

were characterized by high turbidity where marsh availability was positively related to

crab abundance. Turbidity and crab abundance were always related positively, and this

relationship grew stronger (steeper slope) as marsh area increased in a river section.

While relative area of adjacent marsh habitat was positively related to juvenile blue crab

abundance, other potential nursery habitats were weakly associated with crab abundance.

Specifically, relative seagrass area was not associated with juvenile crab abundance. This

was particularly surprising for seagrass, which has long been considered the preferred

nursery habitat for small juvenile blue crabs [154, 103]. We propose that the lack of associ-

ation between juvenile blue crab abundance and these habitat types reflects differences

between nursery habitat contributions per unit area ([proposed by [8]) versus effective

nursery habitat and total contribution to the adult segment of the population (proposed

by[35]). At the tributary spatial scale of our study, the areal extent of marsh habitat relative

to the area of river sections was much greater than that of seagrass meadows, particularly

in the York and James Rivers. Moreover, section-years harboring seagrass meadows (such

as in downriver York and midriver-downriver Rappahannock sections) were not associated

with high juvenile blue crab abundance. Consequently, at the tributary scale, the potentially

high production of juvenile blue crabs per unit area expected in river sections with seagrass

meadows was likely obfuscated by the broad areal extent of marsh habitat in other sections.

Furthermore, in downriver sections where seagrass was present, a substantial fraction of
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juveniles 20–40 mm CW may have remained in seagrass where they were not susceptible

to capture by the trawl [154, 105, 186, 171].

Predator abundance was not related to juvenile blue crab abundance. The apparent lack

of an effect of predator abundance on juvenile blue crab abundance may reflect high refuge

capacity of crab nurseries or increased availability of alternative prey in locations harboring

high blue crab abundance [105]. Moreover, finfish predators are highly mobile and not

likely to remain in a specific section. Regardless, our findings suggest that abundances

of juvenile blue crabs at the regional scale are largely driven by bottom-up controls rather

than top-down controls, which is consistent with studies of blue crab abundance in highly

turbid, upriver localities harboring expansive marsh habitat [187, 165, 186].

Finally, juvenile blue crab abundance differed substantially among the three tributaries.

These spatial patterns in abundance likely reflected tributary-specific characteristics that we

did not consider in our models (e.g., differences in flow, bathymetry, total area, geographic

position relative to the mouth of the Chesapeake Bay, or land-use patterns). Ultimately,

spatial variation in juvenile blue crab abundance among tributaries indicates that tributaries

in the Chesapeake Bay are not equal as nursery areas for the blue crab population, and

that further studies should quantify tributary-specific production to the population.

1.6.2 Effect of Management

Changes in management of the blue crab population in the Chesapeake Bay after 2009

were positively associated with juvenile blue crab abundance, but not strongly, in contrast

to the findings of other studies [117, 100]. One explanation for this result is the potential

effect of cannibalism by larger juveniles and adults on small juveniles, which might negate

positive effects of increased recruitment from a larger spawning stock [106]. More likely, the

effect of management may depend upon specific habitats, especially those where juveniles
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are abundant, such as in habitats with expansive marshes. Other sections where juveniles

are not as abundant, such as unvegetated habitat, may not be able to support higher levels

of recruitment, which would confound singular interpretation of management. Targeted

analyses of the effects of management in specific habitats are ongoing to resolve this issue.

1.6.3 Prioritized Areas for Conservation

An objective of this study was to assist management to prioritize and direct restoration and

conservation efforts of the blue crab within Chesapeake Bay as well as other blue crab

stocks along its geographic range. Although previous focus of blue crab nursery studies

was on seagrass meadows [169], salt marshes and certain unstructured, high turbidity

habitats appear more valuable at the tributary and regional scales due to their extensive

areal cover. Our best fitting model indicates that expansive salt marshes in highly turbid

upriver locations are highly productive nurseries for this ecologically and economically

exploited species. As a result, a major recommendation of this paper is the inclusion of

these habitats in future conservation targets.

1.6.4 Relevance

The EFH provisions of the Magnuson-Stevens Act directs fishery management councils to

utilize the best available science to describe and identify EFH for federally managed species

and protect them to the extent practicable [139]. The highest level of EFH information is

level 4: production rates by habitat type; yet level 4 EFH information is largely unavailable

for most commercially harvested species, particularly at spatial and temporal scales needed

for effective fisheries management. This lack of level 4 EFH information is currently limiting

the inclusion of habitat effects in stock assessments and in ecosystem-based fisheries

management plans [60]. Furthermore, area-based estimates of nursery habitat value may
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inform decision-making related to protected area management and habitat restoration, by

allowing the per unit area contribution of protected or restored habitat to be quantified [233].

Understanding the relative contribution of both structured habitats and other environ-

mental factors on the productivity of a given area is important, as many conditions resulting

in such productivity are diminishing. Some structured nursery habitats are declining, espe-

cially Z. marina eelgrass beds due to direct and indirect anthropogenic influences such as

land-use change and long-term warming of Chesapeake Bay [156, 137, 158]. Similarly,

salt marshes have been reduced by coastal development and shoreline hardening [193].

Scientists and managers have generally assumed that when structured habitats are

degraded, the services they provide such as nursery habitat for valuable marine species

are lost [163]. Therefore, state and federal agencies have long invested in coastal habitat

conservation and restoration to recover lost production. However, these investments have

often preceded the availability of, and thus would be enhanced by the development of,

rigorous analytical tools capable of quantifying the ecosystem services expected from

conservation actions and habitat restoration efforts. While standalone small-scale studies

have been and remain important tools to initially assess nursery value of structured habitats

and other environmental factors, targeted comprehensive applications of survey data

collected over broad spatial and temporal scales are a vital complement to generalize

inference of nursery function, highlight highly productive regions, and inform regional

management strategies.
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Chapter 2

Ontogenetic Patterns in Juvenile

Blue Crab Density: Effects of Habitat

and Turbidity in a Chesapeake Bay

Tributary

Abstract

Nursery habitats are characterized by favorable conditions for juveniles, such as higher

food availability and lower predation risk, and disproportionately contribute more individuals

per unit area to adult segments of the population compared to other habitats. However,

nursery habitat inference is complicated by changes in habitat preferences with ontogeny;

individuals in early-life stages frequently inhabit different habitats than older juveniles or

adults. In this study, we quantified juvenile blue crab density of two size classes based

on carapace width (CW) across multiple juvenile habitats at various locations within an
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estuarine seascape over the blue crab recruitment season. We examined four habitat

types—unstructured sand, seagrass meadows, salt marsh edge (SME), and shallow detrital

habitat (SDH). Results indicated that although densities of small juvenile blue crabs (≤ 15

mm CW) were highest in seagrass, abundances of larger juveniles (16–30 mm CW) were

highest in SME. Meanwhile, densities of large juvenile blue crabs in SME were greater

than those of small juveniles, suggesting immigration to this habitat. Finally, turbidity was

positively correlated with densities of both sizes classes, although it was unclear whether

this was due to top-down (refuge) or bottom-up (food availability) mechanisms. Observed

patterns in size-specific habitat utilization may result from changing requirements of juvenile

blue crabs with size as animals minimize mortality-to-growth ratios. Taken together with

previous work and patterns observed in SME, these findings emphasize the role of salt

marsh habitat within juvenile blue crab ontogeny and underscore the need to quantify

and preserve the complete chain of habitats used by juveniles before they enter adult

populations.

2.1 Introduction

Nursery habitats are critically important for fishes and invertebrates. Under the Nursery Role

Hypothesis [8], nursery habitats are characterized by favorable conditions for juveniles, such

as higher food availability and lower predation risk, and disproportionately contribute more

individuals per unit area to adult segments of the population compared to other habitats

[8, 67, 128, 58]. Hence, nursery habitat availability is a major driver of commercially

exploited fisheries population dynamics. Consequently, a major research focus in fisheries

science and estuarine ecology is identification of nursery habitats for commercially exploited

fish and invertebrate species both to prioritize conservation and restoration efforts as well

as to guide management decisions [188, 216].
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Nursery status is often evaluated through four factors: juvenile density, growth, survival,

and connectivity between juvenile and adult habitats [8]. As the contribution of juveniles

to adult segments of the population arises from combinations of these four factors, these

metrics are generally higher in nursery habitats compared to other candidate nursery

habitats [67, 128]. However, nursery habitat research typically focuses on one or two of the

first three factors due to financial and methodological limitations [2, 188, 216, 109, 102].

The Nursery Role Hypothesis maintains that comparisons among all, or at least most,

juvenile habitats are required prior to conferring nursery status of a habitat for a given

species [8, 35, 109]. Juveniles tend to utilize structurally complex habitats as nurseries in

early life stages in part because of their superior refuge capacity [67, 128, 95]. The relative

value of a given structurally complex habitat as a nursery may be dependent on availability

of other habitats with similar characteristics. For example, submersed aquatic vegetation

(SAV) or intertidal emergent vegetation (e.g. salt marshes) may seem less important

as nurseries in regions where alternative structurally complex habitats are present and

accessible [140, 109]. However, many studies investigating nursery habitats only consider

binary comparisons such as a structured habitat and an unstructured control (see review

by [27]), which can severely limit inference.

Characteristics of nominal nursery habitats (e.g. seagrass meadows or salt marshes)

may fluctuate across space and time. The nursery function of these habitats can vary

depending on the position within the seascape or season due to the influence of latent

environmental, biological, or anthropogenic factors [140, 191, 109]. For example, predator

composition and density vary seasonally in temperate estuaries [41], and may alter habitat

use of prey [30, 54, 31, 28]. Moreover, spatial position within the seascape may modify

a habitat’s suitability as a nursery, such as when habitats are positioned close to the site

of larval ingress [201] or in areas with low predation pressure [165]. Assessments of
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habitats conducted over short temporal intervals or only in one spatial location may miss

such phenomena and lead to spurious conclusions about nursery status [109]. Hence,

these dynamic processes require careful consideration to ensure inferences on habitat

comparisons are robust. Moreover, indirect comparisons of multiple habitats via meta-

analyses and literature reviews of multiple studies – each considering different combinations

of potential nursery habitats – are hindered by the potential influence of confounding,

spatiotemporally fluctuating latent variables [82]. Thus, robust evaluation of nursery habitat

requires that studies consider as many habitats concomitantly as possible, as well as other

influential environmental factors.

Assessment of nursery habitat value is complicated by changes in habitat preferences

with ontogeny. Individuals in early-life stages frequently inhabit different habitats than

older juveniles or adults [89, 141, 44]. Ontogenetic habitat shifts from one nursery to

another can minimize mortality-to-growth ratios [223], and juvenile survival increases with

size [164] such that larger juveniles can exploit habitats with less structural refuge and

higher food availability [34, 105, 186, 141]. Consequently, juveniles may utilize different

habitats as they grow to minimize mortality-to-growth ratios. Failure to consider these

shifts may lead investigators to prioritize only a subset of habitats critical for maintaining

healthy population abundances, while neglecting habitats that may be preferred by different

stages [192, 191, 140]. Quantitative assessments of nursery function must therefore

consider nursery roles within the context of ontogeny, especially for organisms with complex

life cycles [103, 43, 188, 216, 109, 44]. Partitioning juveniles into multiple size classes

and assessing each class concomitantly allows researchers to detect shifts in habitat

utilization as juveniles grow and identify stage-specific nursery habitats throughout ontogeny

[140, 111, 5, 1]. It is especially important to identify all nurseries used through ontogeny

for commercially exploited species with complex life histories so that these habitats can be
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conserved and related fisheries remain sustainable.

The blue crab Callinectes sapidus is an commercially exploited species that relies on

structurally complex nursery habitats through ontogeny. The blue crab opportunistically

utilizes many habitats in early life stages, including seagrass (e.g. eelgrass Zostera

marina and widgeon grass Ruppia maritima meadows in the Chesapeake Bay), Spartina

alterniflora salt marshes, and coarse woody debris (see [103] for a review). After re-

invading estuaries from the continental shelf, blue crab postlarvae settle into structurally

complex nursery habitats, such as seagrass meadows, and rapidly metamorphosize into

first instar (j1) juveniles [43, 44]. Although some early (j1–j5) juveniles emigrate from

initial settlement locations to avoid adverse density-dependent effects associated with

conspecifics [45, 13, 172], many remain to exploit the high refuge quality afforded by

primary nursery grounds. As juveniles outgrow the mouth-gape sizes of smaller predators,

they emigrate to other habitats with lower quality refuge but more abundant preferred prey

(e.g. Macoma balthica; [187, 105, 186]).

Several studies have posited different size thresholds for when emigration out of primary

nursery grounds unfolds. A mesocosm experiment examining the effects of simulated S.

alternaflora shoots on survival estimated that juvenile blue crabs may shift their habitat

preferences at sizes as small as 12 mm carapace width (CW), when they could achieve

a size refuge from smaller predators abundant within salt marsh habitats (e.g. Fundulus

heteroclitus; [155]). Subsequent field studies maintained that juveniles begin emigrating

from seagrass meadows to utilize unstructured and salt marsh habitats only after reaching

25–30 mm CW [164, 105, 88, 82]. Notably, these hypotheses are not mutually exclusive.

Salt marsh habitat may represent an intermediate nursery – one with marginally lower refuge

quality than seagrass but higher food availability [187, 186] – before juveniles emigrate to

unstructured or alternative nursery habitats [201, 131, 169, 228].
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Secondary production from a habitat is the common currency used to quantify the

value of different habitats [163]. Small-scale studies previously demonstrated that blue

crab production from salt marshes was substantial in the Gulf of Mexico [205, 232] and

Chesapeake Bay [26, 25]. Recently, large-scale spatiotemporal analyses of juvenile blue

crab habitats emphasized the roles of salt marsh and high-turbidity habitats in addition to

seagrass meadows in promoting secondary production [82]. Spatially explicit analyses

of relative secondary production are useful for assessing potential nursery capacity of

large regions [53, 9, 171]. For example, by exploiting ontogenetic shifts in habitat usage,

such as juveniles emigrating from nursery habitats to unstructured adult habitats, broad-

scale studies can highlight productive areas which can be prioritized for conservation [82].

However, evaluation of nursery habitats at broad scales may miss important processes

operating at smaller scales. In addition, broad-scale studies are unable to ascertain which

aspects of a habitat promote secondary production. For example, although turbid salt

marsh habitat is positively associated with juvenile blue crab density at large spatial and

temporal scales [82], it is unclear if such production is more closely linked to vegetative

structure (i.e. Spartina shoots; [86, 83]), or to structurally complex detritus along erosional

marsh shorelines [45, 46]. As small-scale studies are uniquely suited for capturing these

processes, it is important to employ this approach in concert with broad-scale studies to

determine: (1) which habitats are associated with high juvenile density; (2) which habitat

characteristics are important in promoting juvenile density, and (3) which environmental

variables modify habitat suitability.

In this study, we modeled juvenile blue crab abundance of two size classes (herein small:

≤15 mm CW, and large: 16–30 mm CW) in multiple juvenile habitats at various locations

within an estuarine seascape during the blue crab late summer-fall recruitment season.

Building on previous work [82], we sought to complement large-scale spatiotemporal analy-
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ses with mensurative experiments [210] at local spatial (i.e. 10s of kilometers) and temporal

(i.e. biweekly) scales within the York River, a tributary of Chesapeake Bay. Specifically,

we wanted to determine the effects of habitat, spatial position, and environmental factors

on juvenile blue crab density. To accomplish this, we developed multiple models (labeled

gi) with different combinations of spatial position, habitat, and turbidity as independent

variables. We describe and justify the models and corresponding independent variables in

Appendix B.1.

2.2 Habitats considered

We examined four habitat types—unstructured sand, seagrass meadows, salt marsh

edge, and shallow detrital habitat. Seagrass meadows (herein, seagrass) are regarded as

preferred nursery for juvenile blue crabs [154, 159, 77, 75, 171] due to disproportionately

high densities and survival of small juvenile crabs (i.e. <30 mm CW) in seagrass meadows

relative to other potential nursery habitats [154, 164, 105]. Meanwhile, salt marshes

serve as alternative nursery habitat for juvenile blue crabs in locations where seagrass is

absent or declining [49, 84, 12, 86]. In Gulf of Mexico and some Chesapeake Bay nursery

habitats, juvenile blue crab density was high in both seagrass and salt marsh habitats

[205, 175, 66, 82]. Salt marshes may afford refuge through structurally complex shoots

and rhizomes (i.e. salt marsh edge; SME; [86, 123]). In addition, detritus exported from the

vegetated marsh surface accumulates in adjacent tidal marsh creeks. This “shallow detrital

habitat” (SDH) is associated with eroding peat and can harbor high densities of juvenile

blue crabs [45, 46, 219]. Finally, unstructured sand habitat (herein, sand) constitutes the

most abundant shallow habitat in Chesapeake Bay, but is characterized by relatively low

predation refuge [105] and serves as a control to assess nursery value of seagrass and

salt marsh habitats for juvenile blue crabs [66, 105, 189].
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2.3 Methods

2.3.1 Study Area

Field work was conducted in the York River, a tributary in the lower portion of western

Chesapeake Bay between August and November, 2020. The river is morphometrically char-

acterized by depths generally between 5 to 10 m along the axes, but with deeper portions

(>20 m) near the mouth [196]. In addition, This system contains a range of seagrass, salt

marsh, and unstructured sand habitat configurations ideally suited for investigating the rela-

tive importance of multiple habitat types [77, 105]. Seagrasses, primarily eelgrass (Zostera

marina) and Widgeon grass (Ruppia maritima), vary from large, continuous meadows to

areas with few small patches of variable shoot densities [77]. Salt marshes, dominated

by smooth cordgrass (Spartina alterniflora), span extensive sections of the shorelines,

although areal coverage of marsh patches varies spatially along the shorelines. Secchi

disk depth values, a proxy for turbidity, range from 0.5–1.5 m at the mouth of the system

and 0–0.5 m upriver near the confluence of the Pamunkey and Mattaponi tributaries. For

a more detailed description of physiochemical variables, see Table B1. The river was

divided into 3 approximately evenly split strata (nearly 17 km each) for a lack of an obvious

stratification strategy, constituting downriver, midriver, and upriver strata (Fig. 3.1).
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Figure 2.1: Map of the York River displaying sampling sites colored by habitat type. Salt

marsh edge sites are a subset of shallow detrital habitat sites.

2.3.2 Sampling design

Site selection was achieved via a random sampling algorithm. Selection involved (1)

extracting geographic coordinates for the entire shoreline of the York River, (2) subsetting

coordinates by habitat type and stratum, and (3) randomly selecting a prespecified number

of stations for each habitat within each stratum. Six SDH and sand stations were selected

in each stratum, while two SME stations were randomly selected from the six SDH sites in

each stratum. Finally, six seagrass stations were randomly selected from the downriver

stratum, as seagrass is absent in midriver or upriver strata (Fig. 3.1). The number of sites

per habitat in each stratum were the maximum logistically feasible to sample in a day given
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time constraints and tidal considerations.

Between August and November 2020, juvenile blue crabs were sampled in seagrass,

SME, SDH, and sand at biweekly intervals. Four sampling trips were conducted to sample

all four habitats. The first three sampling trips – targeting seagrass, SDH, and sand –

were conducted August 24th–27th (Trip 1), September 15th–22nd (Trip 2), and October

5th–8th (Trip 3). SME was also sampled on trips 2 and 3, as well as Trip 4, which occurred

October 19th–23rd. Hence, there is confounding between trip 4 and SME habitat, otherwise

exploratory data analyses did not indicate interactions between habitat and trip. This

culminated in a total of 144 samples (Table B2), although five samples were later expunged

due to missing predictor values (i.e. Secchi disk depth) in seagrass (two) and SDH (three).

Each habitat was sampled using gear and methodologies corresponding to habitat-

specific structure and bottom types. All gear types used 3-mm mesh netting to ensure that

size-specific catchability was consistent after accounting for differences in gear efficiency.

SDH and sand stations were sampled ± 3 h of high tide via benthic scrapes towed for

20 m along tidal salt marsh creek and beach shorelines, respectively [170]. Meanwhile,

SME stations were sampled using modified flume nets set at flood tide and collected at

ebb tide (Fig. B1) [116]. At seagrass stations, a 1.68-m2 drop-cylinder and a 10-cm diam

PVC suction pipe attached to a sampling pump, modified from [154], were employed to

collect juvenile blue crabs [154, 171, 77, 66]. Seagrass stations were suctioned within the

drop-cylinders for 6 min continuously. For sand, SDH, and SME stations, immature juvenile

crabs were counted, measured in situ and released. The contents of each seagrass

suction sample were frozen for storage and subsequently examined for juvenile blue

crabs, double-checked, and all crabs counted and measured. Physicochemical variables

salinity, temperature, and turbidity were recorded using a YSI data sonde (for salinity and

temperature) and a Secchi disk (water clarity, the inverse of turbidity) at each station on
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each trip.

2.3.3 Analyses

2.3.3.1 Basic model structure

All data analyses, transformations, and visualizations were carried out using the R pro-

gramming language for statistical computing [167]. Relationships between both small and

large juvenile blue crab abundance and environmental variables were evaluated using

multivariate negative binomial linear mixed-effects models within a Bayesian framework.

The predictor variables for juvenile abundance include habitat (seagrass, SME, SDH, and

sand), spatial stratum (downriver, midriver, and upriver), and turbidity.

Transformations to turbidity values were applied prior to their inclusion in abundance

models. Here, ln turbidity was defined as the natural log transformation of Secchi-disk

depth, multiplied by -1 (T = − ln Secchi). The natural log transformation was applied

based on the assumption that a threshold exists in water transparency. Assuming that

effects of turbidity on juvenile abundance reflect refuge from visually oriented predators

(top-down control), small changes in water transparency when water is relatively clear

are not expected to substantially affect juvenile abundance as much as small changes

in water transparency when water is turbid (e.g. predation rates by summer flounder on

mysid shrimp; [78]). Similarly, if associations between juvenile abundance and turbidity are

related to elevated food availability near the estuarine turbidity maximum, juveniles would

presumably remain more sensitive to fluctuations in turbidity at high values compared to

clearer waters. Multiplying the variable by -1 facilitates inference on turbidity, instead of

water transparency (inverse).

For the sth site on trip t in habitat h, the Bayesian model for juvenile blue crab abundance

of size class i is expressed as:
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yhsti|µhsti, φi ∼ NB(µhsti, φi)

ln(µhsti) = Xhstβi + θhsi +Ah + Eh

βi = [βi1, βi2, . . . , βip][
θhs1
θhs2

]
|Σ ∼ MVN(0,Σ)

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
1

2
ln
(1 + ρ

1− ρ

)
∼ N(0, 0.92)

βik ∼ N(0, 1) for k = 1, . . . , p

Esand, ESDH ∼ N(−1.20, 0.18)

ESME ∼ N(−0.083, 0.02)

Eseagrass ∼ N(−0.13, 0.02)

σ2
1, σ

2
2, φ1, φ2 ∼ inverse-Gamma(1, 1)

whereNB(µhsti, φi) denotes a negative binomial type II distribution with mean µhsti, while φi

controls the over-dispersion for each size class such that E[yhsti] = µhsti and VAR[yhsti] =

µhsti +
µ2
hsti
φi

. The response variables, juvenile crab counts for size classes, are denoted

yhsti where i = 1 denotes the small size class (≤ 15 mm) and i = 2 denotes the large

size class (16–30 mm). Total area sampled (seagrass = 1.68 m2, SME = 1 m2, SDH and

sand = 20 m2) is included as an offset term Ah. Here, θhs denotes a site-specific random

effect following a multivariate normal (MVN ) distribution with mean 0 and covariance Σ.

The covariance matrix is composed of σ2
i along the diagonal denoting variance for size

class i and ρ describing the correlation between size classes at a given site. A normal

prior was applied to Fisher-transformed ρ to constrain values between -1 and 1. In addition,
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due to varying requirements as a function of size, each size class was not expected to

respond equally to predictor variables Xhst (habitat, turbidity, spatial position, and relevant

interaction terms, see Appendix B.1 for details). Hence, βi refer to regression coefficients

for each size class i associated with Xhst. Measurements of both the abundances of size

classes and predictors Xhst were taken at the site-trip spatiotemporal resolution, such

that predictors were not specific to any one size class i but to all sizes classes at a given

site-trip. Informative prior distributions for gear efficiency Eh were supplied based on gear

efficiencies from literature (seagrass, SDH, and sand) and from the fall pilot study (SME),

converted to the ln-scale (see Appendix B.2 for details). This incorporated increased

uncertainty into habitat-specific estimates.

Bayesian inference required numerical approximation of the joint posterior distribution of

all model parameters including the vectors of random effects. To this end, we implemented

the model using the Stan programming language for Bayesian inference to generate Markov

chain Monte Carlo (MCMC) samples from the posterior [57]. For each model, we ran four

parallel Markov chains, each with 5,000 iterations for the warm-up/adaptive phase, and

another 5,000 iterations as posterior samples (i.e. 20,000 draws in total for posterior

inference). Convergence of the chains was determined both by visual inspection of trace

plots (e.g. Fig B2) and through inspection of the split R̂ statistic. All sampled parameters

had an R̂ value less than 1.01, indicating chain convergence [57]. We considered covariates

and interactions whose posterior distributions indicated a positive or negative effect with ≥

80% posterior probability, as scientifically relevant to juvenile blue crab abundance [92].

All CIs referenced here are the highest posterior density intervals [115].

Estimated log-pointwise predictive density (ELPD) and related∆ELPD values were used

to evaluate the degree of predictive power for each model among the set of statistical models

gi [217]. The ELPD is a statistical concept used in model evaluation and comparison. It
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measures the accuracy of a probabilistic model’s predictions by estimating the log likelihood

of the observed data given the model structure and coefficient estimates. Values of ELPD

are widely employed to measure out-of sample predictive accuracy, while ∆ELPD values

refer to the difference in ELPD between a given model and the model with the best ELPD

in the set. Values of ELPD and ∆ELPD were estimated using the Widely-Applicable

Information Criterion (WAIC) [221, 57, 217]. Both WAIC and ELPD were estimated using

the loo package. When two models had comparable ∆ELPD values (i.e. ≤ 4), the simpler

model was chosen as the more appropriate model under the principle of parsimony [194].

2.3.3.2 Alternative model structures

In our design, the downriver stratum was partially confounded with seagrass habitat, as

seagrass is present only at the mouth of the York River (Fig. 3.1)[82]. As a consequence,

under this design it is not easily discernible whether spatial stratum interacted with seagrass

habitat. To ensure that seagrass habitat and spatial stratum did not interact and influence

results, we constructed two additional models – one with only SME, SDH, and sand across

all strata and a second with all four habitats only in the downriver stratum – and compared

the results to our best-fitting model, g1. Posterior distributions of main effects (where present

across models) strongly overlapped, indicating that interactions between spatial stratum

and habitat were unlikely when other predictors were considered (Fig. B3).

2.3.3.3 Conditional effects

Conditional effects plots were used to visualize the relationship between response variables

(juvenile blue crab abundance) and meaningful predictors both among habitats within

a size class and within habitats between size classes. Herein, we refer to ”conditional

effects” as the effects of a given predictor (either continuous or categorical) while holding
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all random effects at 0 and fixing co-varying predictors. Specifically, we held ln turbidity at

0 to estimate habitat conditional effects and held habitat effects at the reference (i.e. sand;

h = 1). Conditional effects were used to conceptualize mean effects of each level in a given

categorical variable. Hence conditional linear contrast statements were used to determine

whether differences in abundances among habitats were statistically meaningful. For the

hth habitat (where h > 1), we considered pairwise difference between habitats βhi − β1i,

where β1i is the reference intercept (sand). Meanwhile, for comparisons of within-habitat

abundances between ≤ 15 (i.e. i = 15) and 16–30 mm (i = 30) size classes, for the hth

habitat, we considered the contrast βh,15 − βh,30.

2.4 Results

We collected and measured 1,004 juvenile blue crabs ≤ 30 mm CW from 139 samples. A

complete summary of all physicochemical variables and crab sizes is detailed in Table B1,

while a histogram of crab sizes is provided in Figure B4. Herein, all abundance values for

size classes refer to abundance per square meter, and are referred to as density.

2.4.1 Model selection

The best fitting model was g5, which posited juvenile blue crab abundance as a function

of habitat, turbidity, stratum, and a habitat-turbidity interaction. However, all models had

comparable ELPD values (∆ELPD ≤ 4 for all models except g4) and overlapping standard

errors (Table 2.1), indicating relative statistical equivalence. Hence, we chose the simplest

model g1, with habitat and turbidity additive, as the best model under the principle of

parsimony. Hereafter, inferences are based on model g1.
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Table 2.1: Model selection results from five Bayesian multivariate negative binomial regres-

sion models (gi) using ln turbidity (T), habitat (H), and stratum (S) as predictors of juvenile

blue crab abundance. Models are presented in order of predictive power based on col-

lected data. WAIC: the Widely-Applicable Information Criterion; ELPDWAIC: the estimated

log-pointwise density calculated from WAIC; ∆ELPD: the relative difference between the

ELPD of any model and the best model in the set; SE∆ELPD
: standard error for the pairwise

differences in ELPD between the best model and any given model; pWAIC: estimated

effective number of parameters. The selected model (g1) values are presented in bold font.
Model justifications are in Appendix B.1

Model: Fixed effects in mean structure WAIC ELPDWAIC ∆ELPD SE∆ELPD
pWAIC

g5: H + T + S + (H x T) 1049.76 -524.88 0.00 0.00 37.03

g1: H + T 1050.46 -525.23 -0.35 3.31 36.92

g2: H + T + (H x T) 1050.60 -525.30 -0.42 1.67 37.36

g3: H + T + S 1050.76 -525.38 -0.50 3.17 37.13

g4: H + T + S + (H x S) 1058.09 -529.04 -4.16 3.71 40.43

2.4.2 Habitat effects

2.4.2.1 Small (≤15 mm) size class

Small juvenile blue crab density was highest in seagrass (13.83 per m2 on the count scale),

followed by SME (4.70), SDH (0.62), and sand (0.35) (Table 3.6; Figs. 2.2 and B5). For

pairwise linear contrasts among habitats, the posterior probability that a given contrast

was positive all exceeded 90%, indicating that differences in the expected density of small

juvenile crabs among habitats were statistically meaningful (Table 2.3 and Fig. B6).
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Table 2.2: Posterior summary statistics (median and 80% CI) of habitat and turbidity effects

for the small (≤15 mm CW) juvenile size class based on model g1 . Habitat values represent
the expected small juvenile density in a given habitat (abundance per m2), holding random

effects and ln turbidity at 0. Meanwhile, the last column reflects the effect (i.e. regression

coefficient) of ln turbidity on small juvenile density, irrespective of habitat. Values are

supplied on both the model (ln) and count scales.

Scale Quantile Sand Seagrass SME SDH ln Turbidity

10% -2.02 1.24 0.38 -1.54 -0.06

Model 50% -1.06 2.63 1.55 -0.48 0.18

90% -0.10 3.94 2.66 0.58 0.43

10% 0.13 3.47 1.47 0.21 0.94

Count 50% 0.35 13.83 4.70 0.62 1.20

90% 0.91 51.39 14.30 1.78 1.54
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Figure 2.2: Posterior distributions of habitat-specific conditional ln expected densities

(holding random effects and ln turbdity at 0), from model g1 for both small (≤15 mm CW;

left column) and large (16–30 mm CW; right column) size classes. Dots denote posterior

median expected values, while thick bars represent 80% Bayesian CIS and thin bars denote

95% Bayesian CIS.
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Table 2.3: Within-size class linear contrast depicting differences in expected juvenile blue

crab density between habitats from Model g1 (model scale), holding random effects and ln

turbidity at 0. Percentages indicate 80% CI and median of differences in effect sizes, while

the final two columns list the probability of a positive or negative effect.

Size Class Contrast 10% 50% 90% Pr > 0 Pr < 0

SDH – Sand 0.05 0.59 1.09 0.92 0.08

Seagrass – Sand 2.83 3.70 4.47 ≈ 1.00 ≈ 0.00

Small Seagrass – SDH 2.33 3.11 3.83 ≈ 1.00 ≈ 0.00

Seagrass – SME 0.28 1.10 1.85 0.95 0.05

SME – Sand 1.94 2.60 3.24 ≈ 1.00 ≈ 0.00

SME – SDH 1.52 2.01 2.51 ≈ 1.00 ≈ 0.00

SDH – Sand -0.97 -0.56 -0.17 0.03 0.97

Seagrass – Sand 1.44 2.08 2.68 ≈ 1.00 ≈ 0.00

Large Seagrass – SDH 2.02 2.64 3.23 ≈ 1.00 ≈ 0.00

Seagrass – SME -1.27 -0.65 -0.07 0.07 0.93

SME – Sand 2.21 2.73 3.24 ≈ 1.00 ≈ 0.00

SME – SDH 2.84 3.29 3.76 ≈ 1.00 ≈ 0.00

2.4.2.2 Large (16-30 mm) size class

In contrast to the smaller size class, density of the large size class was highest in SME

(13.80), followed by seagrass (7.19), sand (0.90), and SDH (0.51) (Table 3.8; Fig. 2.2).

For pairwise linear contrasts among habitats SME–SDH, SME–sand, seagrass–SDH, and

seagrass–sand, the posterior probability that a given contrast was positive exceeded 90%.

Meanwhile, for pairwise linear contrasts among habitats seagrass–SME and SDH–sand,

the posterior probability that a given contrast was negative exceeded 90%. Taken together,

these results indicated that differences in the expected ln density of small juvenile crabs

among habitats were statistically meaningful (Table 2.3 and Fig. B6).

Pairwise linear contrasts among habitats yielded posterior probabilities that a given

contrast was positive or negative all exceeded 90%, indicating that differences in the

expected density of large juvenile crabs among habitats were statistically meaningful (Table

2.3 and Fig. B7).
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Table 2.4: Posterior summary statistics (median and 80% CI) of habitat and turbidity

effects for the large (16–30 mm CW) juvenile size class based on model g1. Habitat values
represent the conditional expected large juvenile density in a given habitat (see Section

3.5). Meanwhile, the last column reflects the effect (i.e. regression coefficient) of ln turbidity

on large juvenile density, irrespective of habitat. Values are supplied on both the model (ln)

and count scales.

Scale Quantile Sand Seagrass SME SDH ln Turbidity

10% -0.96 0.82 1.64 -1.60 0.07

Model 50% -0.11 1.97 2.62 -0.67 0.29

90% 0.75 3.10 3.61 0.26 0.51

10% 0.38 2.27 5.16 0.20 1.07

Count 50% 0.90 7.19 13.80 0.51 1.33

90% 2.12 22.09 37.00 1.29 1.67

2.4.2.3 Comparisons among size classes

Within-habitat linear contrasts between small and large size classes indicated changes in

habitat utilization with size. Moving from small to large size classes, utilization decreased

in seagrass meadows, increased in both SME and sand, and did not change appreciably in

SDH. The probability of seagrass harboring fewer large crabs than small crabs was 70%,

indicating weak-moderate support but failing to meet our threshold for relevance. Meanwhile,

the probability that SME and sand harbored more large individuals than small individuals

were both 85% (Table 2.5; Fig. B8). Conversely, contrasts among size classes for SDH

were distributed evenly across both negative and positive values, indicating considerable

uncertainty and no discernible size effect.
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Table 2.5: Within-habitat linear contrasts depicting differences in expected juvenile blue

crab density between small and large size class (see Section 3.5) Positive values indicate

increases in expected density as animals grow from ≤15 to 16 – 30 mm, while negative
values indicate decreases in expected density. The first three rows indicate 80% CI and

median values, while the final two rows list the probability of a positive or negative effect.

Quantile Sand Seagrass SME SDH

10% -0.24 -2.22 -0.26 -1.46

50% 0.94 -0.66 1.07 -0.21

90% 2.17 0.95 2.47 1.12

Probability

Pr > 0 0.85 0.30 0.85 0.42

Pr < 0 0.15 0.70 0.15 0.58

2.4.3 Turbidity effects

Turbidity was positively associated with juvenile density, though the effect of turbidity was

stronger for large juveniles. Posterior distributions of regression coefficients for ln turbidity

indicated a broadly positive effect for both small and large size classes. The probability that

the effect sizes of turbidity were positive were 83% and 96% for small and large juveniles,

respectively (Tables 3.6 and 3.8; Fig. 2.3 right of red line).
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Figure 2.3: Posterior summaries (median and CIs) for ln turbidity regression coefficients

for small (≤15 mm CW) and large (16–30 mm CW) size classes. Dots denote posterior

median difference in expected values, while thick bars represent 80% Bayesian CIS and

thin bars denote 95% Bayesian CIS. The red line denotes 0.

2.4.4 Correlation between size classes

The posterior distribution of ρ suggested that substantial dependence existed among size

classes (Fig. 2.4). The posterior distribution of ρ yieldedmedian of 0.90 (80%CI: 0.71–0.97),

which indicated strong positive associations between size classes.
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Figure 2.4: Posterior distribution for the correlation parameter ρ between small and large
juvenile size classes.
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2.5 Discussion

This study presents model-based evidence of differential habitat utilization among juvenile

blue crab early-life stages and suggests the current paradigm surrounding blue crab early life

history requires revision. Subsetting young-of-year juveniles into finer-scale size classes

enabled us to observe shifts in density between small and large size classes among

habitats, particularly from seagrass to SME. Our results are consistent with previous work

emphasizing seagrass as an important nursery for the smallest juveniles (e.g. [103]),

and suggest that SME represents a possible intermediate nursery habitat following initial

emigration from seagrass beds but before occupying unstructured habitat commonly utilized

by adults [105]. After accounting for habitat-specific differences in density, turbidity was

positively related with both small and large juveniles. However, our models could not

address whether this effect is due to top-down (predation) or bottom-up (food availability)

controls. Although more evidence (i.e., comparisons of survival and growth) is required to

ascertain the exact role of structured marsh habitat in juvenile blue crab ecology, we posit

that both seagrass and SME habitats are important in maintaining adult populations and

serve as nurseries for different size classes of juveniles.

2.5.1 Size-specific habitat effects

Small juvenile blue crab density was highest in structurally complex seagrass and SME

habitats. In our study, seagrass meadows harbored the highest densities of small juvenile

crabs, which is consistent with previous work emphasizing this habitat as the preferred

nursery for small juveniles [154, 159, 77, 171, 219]. We also observed that SME harbored

high densities of small juveniles per square meter relative to sand and SDH, although SME

densities remained much lower than those estimated in seagrass. Postlarvae re-invading
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Chesapeake Bay likely encounter seagrass beds and other SAV such as the non-native

macroalga Gracilaria vermiculophylla and preferentially choose these habitats for initial

settlement [201, 215, 88, 228]. However, heterogeneity in hydrodynamic conditions can

cause a substantial proportion of ingressing postlarvae to miss structurally complex SAV

habitats [201]. Although somewhat less suitable than SAV, SME provides an alternative

nursery habitat. In addition, a proportion of early juveniles in SAV emigrate to alternative

substrates to avoid adverse density-dependent effects [45, 172, 13]. High densities of

juveniles observed in salt marshes at all spatial locations within the tributary likely reflect a

combination of these two processes.

In contrast, small juvenile densities in SDH and sand were less than 1 m−2, suggesting

that these habitats were relatively unproductive. Although food availability can be high in

sand, occupation by smaller juveniles in this habitat is likely discouraged by low structural

refuge. High densities of small juveniles were reported inhabiting SDH in North Carolina

estuaries [45, 46, 219]. We estimated far lower small juvenile densities in similar habitat in

the York River. It is unclear why SDH is an attractive habitat for small juveniles in other

locations but not within the York River, although differences in gear type or hydrodynamics

associated with wind-driven vs tidally-driven estuaries may be responsible for these dis-

crepancies. Specifically, logistical issues related to benthic scrapes may make this gear

type inefficient when assessing abundance in SDH. Unlike sand, SDH is characterized by

pitted surfaces and complex material, such that this gear type may be much less efficient

in this habitat than efficiency estimates would indicate. As a result, we caution that our

abundance estimates may be overly conservative, and stress that additional studies using

gear better suited to sample SDH (e.g. kick-net sampling; [219]) are required to validate

our estimates.

Our estimated habitat-specific abundance patterns changed notably between small and
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large juveniles. Whereas small juveniles were more abundant in seagrass meadows than

in SME, this pattern reversed among large juveniles. Moreover, large juveniles were more

abundant in SME and less abundant in seagrass relative to small juveniles. Decreases in

habitat-specific density of large juveniles with size are understood as being due to mortality

or emigration of small juveniles. Mortality and emigration may explain decreases in juvenile

abundance between small and large size classes, but the degree to which these processes

affect density is not clear. In contrast, increases in the density of large juveniles in SME are

indicative of a possible shift in habitat utilization concurrent with losses due to mortality and

emigration, and consequently the preference of SME for this size class may be understated.

Patterns in size-specific habitat utilization observed here likely result from changing

requirements of juvenile blue crabs with size. Seagrass meadows afford high survival

to newly settled juveniles, particularly from smaller predators, due to the small interstitial

spaces between shoots and rhizomes. In contrast, emergent salt marsh vegetation has

higher interstitial space between shoots, allowing small predators such as the mummichog

(Fundulus heteroclitus) to navigate and forage within the inundated marsh surface [155]. In

the absence of juvenile density-dependent effects, smaller juveniles may prefer seagrass

meadows because of the lower mortality risk when compared to salt marshes. However,

upon reaching 10–15 mm CW, juvenile blue crabs outgrow the mouth-gape sizes of many

smaller predators, making salt marsh habitats favorable [155, 211]. Furthermore, marsh

shoots are dense enough to prevent larger predators from foraging effectively [87, 123]. Salt

marshes additionally harbor abundant detrital material, bivalves, and other invertebrates,

which are consumed by juveniles to accelerate growth [186]. The combination of lower

mortality risk from small predators and high food availability is consistent with mechanisms

driving ontogenetic shifts in many marine species [223, 34], and accounts for shifts in

utilization from seagrass to SME as juveniles grow.
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Similar to patterns we observed in SME, sand utilization also increased among large

juveniles. Estimated densities of large juveniles in sand were nearly triple those of smaller

juveniles, although in both size classes, abundance in sand was much lower than in

seagrass and SME. These findings are consistent with the current paradigm that as juveniles

reach 20–30 mm CW, they reach a size refuge from a broader suite of predators and are

free to increasingly exploit unstructured habitat with less refuge but high food availability

[105, 186].

Taken together with previous work and patterns observed in SME [105, 86, 82], our

findings suggest that the existing paradigm of ontogenetic shift in juvenile blue crab habitat

utilization requires revision. Although previous evidence supports shifts in blue crab habitat

utilization at sizes exceeding 25 mm CW, our results suggest that juvenile blue crabs

begin to emigrate from seagrass meadows to salt marsh habitat near 15 mm CW, before

progressing to unstructured habitats at larger sizes (i.e. 25–55 mm CW) [105]. Emigration

to SME at smaller sizes would also explain patterns at larger spatial and temporal scales

[82], whereby density of juvenile blue crabs 20–40 mm CW was positively correlated with

salt marsh habitat availability, especially in turbid areas. Although low densities of juveniles

>30 mm CW prevented us from evaluating their habitat use of salt marsh, the present

findings and related inferences would benefit from studies that consider additional size

classes beyond those included here (e.g. ≤ 15, 16–30, and 31–45 mm CW size classes) to

assess whether larger juveniles remain near marsh habitat or emigrate to other unstructured

habitats.

2.5.2 Turbidity

In our study, juvenile blue crab abundance was positively associated with turbidity in both

size classes. In addition, the association between turbidity and abundance of large juvenile
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was stronger than that of small juveniles. High turbidity may increase juvenile abundance

through both bottom-up and top-down controls. First, turbidity is positively associated

with preferred food items of juvenile blue crabs: thin-shelled infaunal bivalves including

the soft-shell clam Mya arenaria and Baltic clam Macoma balthica [187, 186]. These

species constitute a substantial proportion of juvenile blue crab diets and they aggregate

near estuarine turbidity maxima within Chesapeake Bay tributaries [187]. Turbid upriver

unstructured habitats are associated with higher juvenile blue crab growth rates than those

in downriver habitats [186]. Hence, association between turbidity and juvenile blue crab

abundance may be a proxy for high prey abundance and bottom-up control. Second,

turbidity may provide protection to juveniles from visual predators through a reduction in

detectability [32, 4, 113], and it may also reduce cannibalism by larger congeners [146].

However, many estuarine-dependent predators possess adaptations to forage using chemo-

tactile sensors in low-visibility environments characteristic of estuaries, and as a result it is

unlikely that high turbidity provides more than a partial refuge from predation (e.g. summer

flounder Paralichthys dentatus, blue catfish Ictalurus furcatus, adult blue crabs callinectes

sapidus; [79, 59, 70]). Whether the association between turbidity and juvenile abundance

is due to the former mechanism, the latter, or a combination of both is not addressed here

and requires further research.

2.6 Conclusions and future work

Juveniles of marine fish and invertebrates encounter a diverse portfolio of habitats within

the estuarine seascape. Habitat characteristics and environmental heterogeneity engender

variability in vital rates. The attractiveness of a particular habitat to juveniles is dependent

on size or life stage due to changing requirements as juveniles grow [223, 34, 105, 88].

These shifts in habitat utilization can occur at small sizes [140]. The relatively short duration
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of occupancy, coupled with the tendency of studies to assess juvenile habitat requirements

in aggregate (i.e. assessing the needs of immature animals without regard to size-classes),

may cause researchers to underestimate the importance of transient habitats essential to

juvenile organisms at specific life stages [140]. As requirements of juveniles may change

most rapidly in their earliest life stages, it is imperative that fine-scale changes in habitat

utilization be identified.

Our results both underscore the value of salt marsh habitat for small blue crab juveniles

and is consistent with the hypothesis that salt marshes represent a valuable intermediate

nursery habitat as larger juveniles move from seagrass meadows to unstructured bottom

through ontogeny [223, 34, 105]. Loss of salt marsh habitat may thus impose a bottleneck

in population dynamics as small juveniles emigrate from seagrass beds.

Although juvenile abundance is a key metric when assessing the nursery function

of salt marsh habitat, its role in population dynamics requires assessment of secondary

production to the adult segment of a population by the use of additional metrics including

survival, growth, and juvenile-adult linkage [8]. For example, high juvenile abundance will

not necessarily translate into high secondary production if survival of juveniles to adulthood

is low. Further studies using additional metrics concomitantly, such as growth and survival,

would help to clarify the role of salt marsh nursery habitats at the population level for blue

crabs.

2.7 Caveats and limitations

Our study comes with several important caveats that should be considered when interpreting

the inferences drawn from our results. First, although we included gear efficiency for each

habitat concerning juvenile blue crabs in our design, it is essential to note that there might

be differences in gear efficiencies for different size classes. Unfortunately, data on gear
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efficiency as a function of juvenile blue crab size are currently unavailable. Thus, a major

assumption of our work is that efficiency for both size classes is comparable. To ensure the

robustness of our findings, future research should explore the viability of this assumption.

Second, our primary focus was on structurally complex habitats, but it is crucial to

recognize that the vast majority of the York River consists of unstructured sand. Despite

the low juvenile density in such areas, unstructured sand contributes significantly to adult

populations in aggregate [105, 169], aligning with the effective juvenile habitat hypothesis

[35]. While our current study primarily examines ontogenetic patterns in juvenile blue crab

habitat shifts, it would be a mistake to overlook the substantial contribution of unstructured

sand at population scales.

Third, it is important to acknowledge that our study was not replicated spatially in other

tributaries within Chesapeake Bay, nor was it replicated temporally at an annual scale. This

lack of replication raises questions about the generalizability of our findings. Unfortunately,

logistical constraints prevented us from expanding the replication beyond the York River

on a biweekly temporal scale. Although our results appear to align with findings from a

broad-scale study that examined salt marsh utilization patterns for larger juveniles across

multiple tributaries in Chesapeake Bay [82], we emphasize the need for future studies to

replicate these investigations across multiple size classes and locations within Chesapeake

Bay to ensure the reliability of our conclusions.

Finally, it is crucial to reiterate the uncertainty surrounding SDH due to gear limitations

and logistical challenges. While we made efforts to sample this habitat, there is a strong

possibility that it plays a significant nursery role similar to observations described in other

systems. Hence, future research should focus on evaluating the nursery role of shallow

detrital habitats in Chesapeake Bay.

In summary, we acknowledge these limitations and emphasize the need for further
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research to confirm and strengthen the validity of our findings on ontogenetic juvenile blue

crab habitat shifts.
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Chapter 3

Model-based evaluation of critical

nursery habitats for juvenile blue

crabs through ontogeny: abundance

and survival in seagrass, salt marsh,

and unstructured bottom

Abstract

Ontogenetic nursery habitat shifts refer to the dynamic changes in habitat preferences

exhibited by juvenile organisms as they progress through different stages of their life

cycle. During early developmental phases, juveniles often seek specific nursery habitats

that offer optimal conditions for survival, such as protection from predators. However,

juvenile marine and estuarine organisms commonly use multiple habitats as nurseries at
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different life stages to satisfy shifting resource requirements, such as preferences for higher

food availability over refugia at larger sizes. It is important to identify and conserve all

habitats used by a species through ontogeny. To this end, we conducted manipulative and

mensurative field experiments to evaluate two nursery metrics, abundance and survival, for

juvenile blue crabs across multiple size classes and habitats, including structurally complex

habitats — seagrass meadows and salt marshes — and unstructured habitat (sand flats)

in the York River, Chesapeake Bay. We also considered effects of site-specific spatial

orientation within the York River, seasonality, physicochemical variables, and postlarval

influx. Our results showed that abundance was higher in both seagrass meadows and

salt marshes relative to unstructured sand, and positively associated with turbidity and

post-larval abundance. Notably, seagrass habitats harbored the highest abundances of

small (≤15 mm carapace width) juveniles, whereas salt marsh edge harbored the highest

abundance of medium (16–30 mm carapace width) and large (31–60 mm carapace width)

juveniles. Moreover, survival was positively associated with juvenile size and structurally

complex habitats relative to unvegetated controls. Seasonally, survival peaked in April,

reached a seasonal minimum in August, and increased throughout fall. Finally, habitat-

specific survival was dependent on spatial position: survival was elevated at upriver salt

marsh and unstructured sand habitats compared to downriver counterparts. Taken together,

abundance and survival results indicate that seagrass meadows are key nurseries primarily

for early-stage juveniles, whereas salt marshes are an intermediate nursery habitat for

larger individuals, most likely to maximize growth-to-mortality ratios. Our results underscore

the need to consider both habitats as critical nurseries for juvenile blue crabs throughout

ontogeny.
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3.1 Introduction

The population dynamics of marine and estuarine organisms are dependent upon multiple

habitats used throughout their life cycles. Specifically, the value of a particular habitat to

juveniles is dependent on size- or life-stage due to changing growth and survival require-

ments [223, 34, 105, 52]. Juveniles possess life-history strategies that maximize energy

gains (i.e. growth rates) and minimize predation risk [223, 34]. In many cases, however,

there are trade-offs; habitats that offer higher potential growth rates can have greater risks

of predation [105]. Juvenile habitat use therefore shifts with transitions between different

life stages because of changing resource needs as well as altered predation risk. Initially,

the earliest juvenile life stages are the smallest and most vulnerable to predation, and

typically prioritize refuge for survival over food availability for growth [88]. As juveniles

grow, their probability of survival increases as their size exceeds the mouth gapes of many

smaller predatory species [141]. However, to continue growth and development, juveniles

must have access to ample food resources.

Literature on nursery habitats has increasingly emphasized the need to consider all

critical habitats utilized by a species throughout ontogeny [140]. Prioritizing only a subset

of nursery habitats throughout ontogeny may miss bottlenecks at one or more life stages.

For example, if initial settlement habitats are conserved, but intermediate habitats used

by larger size classes deteriorate, overall population abundance may decrease. Explicitly

focusing on vital rates for only a single size class or multiple size classes in aggregate

is insufficient for complete nursery inference [192, 191]; multiple size classes must be

evaluated concomitantly across candidate habitats to identify the full scope of nursery

habitats required to maintain healthy populations [140, 81].

One economically important species which uses multiple nursery habitats during early
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life stages is the blue cab, Callinectes sapidus. Initially, ingressing postlarvae (herein,

megalopae) preferentially settle into seagrass habitats when available, but may use other

structurally complex habitats if seagrass meadows are unavailable or competition for

space/resources in seagrass is substantial due to high juvenile densities. The current

paradigm maintains that juveniles emigrate to unstructured habitat after reaching 30 mm

carapace width (CW), upon which individuals reach a size refuge from predation and may

exploit abundant food resources in unstructured habitat [103]. However, abundances of

16 – 30 mm CW crabs are higher in salt marshes [169, 176, 81], particularly salt marsh

habitat near the estuarine turbidity maximum [82]. These recent findings suggest that salt

marsh habitat may serve as an intermediate nursery due to higher food availability, which

may be ideal for larger juveniles.

Although the proposed mechanism for these shifts is hypothesized to be changes in

the mortality-to-growth ratio, evidence is circumstantial, and several important questions

remain. First, previous work did not consider abundance patterns with respect to spatial

variation in megalopae supply. Without information on megalopae supply, it is unclear

whether juvenile abundance patterns across habitats are a function of habitat quality or

simply reflect higher numbers of ingressing postlarval recruits [192]. Second, the refuge

function of salt marsh habitat for blue crabs is not well understood. Although previous

mesocosm experiments suggest juvenile blue crab survival is higher in salt marshes relative

to unstructured habitats [87, 123], there is little field evidence to validate this hypothesis.

For example, juvenile survival was equivalent in salt marshes and unstructured habitat

in a fragmented salt marsh system in the Gulf of Mexico [189], and no comparable field

studies exist to evaluate juvenile survival among multiple structured habitats in mid-Atlantic

estuaries. Robust inferences on ontogenetic habitat shifts require information on larval

supply, juvenile abundance, and juvenile survival to understand the relative importance of
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both initial nursery habitats and intermediate habitats within the estuarine seascape for a

given life stage [8, 140].

In this study, we conducted mensurative (abundance) and manipulative (survival) field

experiments to investigate juvenile blue crab abundance and survival across multiple

nursery habitats and juvenile size classes. Our objectives were to 1) evaluate the extent

to which habitat- and size-specific vital rates were consistent with the existing paradigm

on juvenile blue crab life history and 2) determine the contribution of multiple structurally

complex habitats to juvenile blue crab secondary production at various juvenile stages.

These objectives are in light of the fact that ontogenetic shifts in larger size classes of

juvenile blue crabs are presently unclear, notwithstanding the well understood principles

regarding ontogenetic habit shifts in general ecology [223, 34], and the robust association

between the smallest individuals and seagrass meadows[103]. In addition, both megalopae

supply and turbidity may influence abundance [45, 46, 201, 82], and turbidity alone may

influence survival [4, 78], potentially confounding results if either were excluded. Hence,

we concurrently assessed the influence of spatially varying turbidity and megalopal supply

through comprehensive field sampling. To address these objectives, we constructed

Bayesian hierarchical models to evaluate the effects of two structurally complex habitats

– seagrass beds (herein, seagrass) and salt marsh edge (herein, SME) – as well as

unstructured sand habitat (as a control; herein, sand) across the seascape of the York

River, a tributary of Chesapeake Bay. We focused on three size classes of juveniles: small

(≤15 mm CW), medium (16–30 mm CW) and large (31–60 mm CW).
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3.2 Methods

3.2.1 Study Area

Blue crab abundance sampling and survival experiments were conducted in the York River,

a tributary in the lower portion of western Chesapeake Bay. The tributary contains a wide

range of habitat configurations and gradients of environmental variables such as turbidity

[81]. In addition, the York River harbors high abundance of juvenile blue crabs spanning

multiple size classes [82]. These characteristics make the York River an ideal natural

laboratory for nursery habitat comparisons among multiple size classes.

The river was divided into sections based on morphology, constituting downriver,

midriver, and upriver strata (Fig. 3.1). This is in contrast to Chapter 2, which arbitrar-

ily divided the system into three approximately equal sections. Here, we used the Coleman

Bridge (Lat = 37.2421, Lon = -76.5068) as a logical delineation between downriver and

midriver strata due to the large changes in hydrology associated with this area of geographic

constriction and may limit megalopae supply to upriver areas [201]. Delineation between

midriver and upriver remained consistent with Chapter 2.
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Figure 3.1: Map displaying sampling sites for the York River. A: abundance sites; B:

megalopae sites; C: survival sites; and D: a close-up of seagrass abundance sites sampled

in the downriver stratum. Megalopae (i.e. postlarvae) sites are not habitat-specific and are

not color-coded by habitat.

3.2.2 Predictors

We considered six environmental and biological variables (herein, predictors) as potential

determinants of abundance and survival for juvenile blue crabs (Tables 3.1 and 3.2). Al-

though most predictors were included in both the abundance and survival models (Sections

3.2.4.1 and 3.2.4.2 ), some were only included in one or the other model. We justify the

inclusion or exclusion of each predictor for a given model in Tables 3.1 and 3.2. We did not

include salinity as a predictor in either model due to substantial collinearity with turbidity

and location along the river axis. For a detailed description and justification of all predictors,

see Appendix C.
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Table 3.1: Descriptions and justifications of predictors used in modeling juvenile abundance.

Predictor Levels (if categorical) Justification and prediction References

Habitat

Seagrass Abundance should be higher in structurally

complex seagrass and SME relative to

sand.

[154, 105, 103, 88, 171, 82, 81]SME

Sand

Stratum

Downriver Spatial position may influence abundance

through spatially correlated, unobserved

variables.

[165, 105]Midriver

Upriver

Megalopae continuous
Abundance is initially dictated by postlarval

supply.
[46, 66, 65]

Turbidity continuous

Abundance is positively correlated with tur-

bidity due to higher food availability and

refuge afforded by turbid habitat.

[32, 113, 146, 78, 74]
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Table 3.2: Descriptions and justifications of predictors used in the juvenile survival model. The

categorical variables stratum, habitat, and structure form an incomplete, crossed design and

therefore are collapsed into a single categorical variable (Str x Hab x Struc indicates stratum–

habitat–structure interaction). For details, see Appendix C.

Predictor Levels (if categorical) Justification and prediction References

Str x Hab x Struc

Downriver seagrass structured

Survival will vary as a function of

spatial stratum, habitat, and

structure due to differences in

spatial and habitat-specific predator

assemblages, refuge quality, and

alternative prey availability.

[154, 105, 103, 88,

171, 82, 81, 165, 105,

76, 77]

Downriver seagrass unstructured

Downriver SME structured

Downriver SME unstructured

Downriver sand

Midriver SME structured

Midriver SME unstructured

Midriver sand

Upriver SME structured

Upriver SME unstructured

Upriver sand

Month

April

Juvenile blue crab survival

fluctuates seasonally.
[73, 70, 103]

May

June

August

September

October

Turbidity Continuous

Survival is positively correlated with

turbidity due to higher refuge af-

forded by turbid habitat

[146, 78, 74]

Size Continuous

Survival increases with size. As ju-

venile blue crabs grow, they are less

susceptible to predation as their cara-

pace widens and hardens, spines be-

come more prominent, and aggres-

sive behavior intensifies.

[73, 77, 103, 15]
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3.2.3 Field Sampling

All sampling sites were selected from a subset of sites used in the random sampling design

from Chapter 2 (Fig. 3.1). Subsampling was due to changes in the primary gear type for

sand habitat (i.e. seine hauls instead of boat-mounted scrapes) which reduced the number

of samples logistically feasible. Survival sites were also a subset of sites in Chapter 2

for logistical reasons. For juvenile abundance sampling, three SME and sand sites were

randomly selected from the six habitat-specific sites in each stratum from Chapter 2. The

six seagrass sites used in the downriver stratum were consistent with those employed

in Chapter 2 (nsites = 3 x 6 + 6 = 24). In midriver and upriver strata, seagrass was not

present and only sand and SME were investigated. Megalopae sampling was used to

assess the effect of postlarval supply on juvenile blue crab abundance, particularly for the

small size class. Logistical limitations prevented us from sampling megalopae at every

abundance site. Therefore, site selection for megalopae sampling and survival assessment

was based on a random subsample of the 24 abundance sites. Specifically, three random

shoreline sites in the upriver and midriver strata and four sites in the downriver stratum

were randomly chosen (nsites = 10). Finally, in the survival study two tethering sites were

randomly selected from the three abundance sites for each habitat within each stratum

(nsites = 14). Turbidity was recorded a Secchi disk (proxy for inverse of turbidity) at each

site on each trip for all three sampling procedures. For a detailed description of sampling

effort by study type, habitat, and stratum, see Table C1.

3.2.3.1 Juvenile abundance

Juvenile abundance was sampled at each station in seagrass, SME, and sand at biweekly

intervals between August 5th and October 14th, 2021 (5 trips x 24 sites = 120). Juvenile

blue crabs in sand sites were sampled using a 5 m seine net (half-circle sweeps), while
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SME sites were sampled using modified flume nets [116]. At seagrass sites, a suction

sampler was utilized to collect juvenile blue crabs [154, 171, 77, 66]. All gear types used 3

mm2 mesh. Juvenile crabs were counted and measured for carapace width (see Chapter 2

for additional details on abundance sample processing).

As different sampling methods were employed for the three habitat types, gear efficiency

estimates were required to scale abundance estimates for each sample. Efficiency of the

suction sampling methodology is estimated at 88% [154], while efficiency tests of the

modified flume net design using marked blue crabs in fall of 2020 suggested an estimated

efficiency of 92% [81]. Finally, literature suggested efficiency estimates for seine nets

targeting juvenile blue crabs varied between 10–50% (mean 30% ;[37]). These efficiency

estimates and their associated uncertainties were included as Bayesian prior distributions

in juvenile abundance models both to more accurately determine the effects of habitat as

well as to incorporate relevant uncertainty into model estimates. For additional details on

how gear efficiency was incorporated in the model, see Table 3.3, Section 3.2.4.1, and

Chapter 2.

3.2.3.2 Megalopae

Megalopae sampling was used to assess the effects of postlarval supply on juvenile blue

crab abundance. Sampling took place at biweekly intervals between July 16th and October

7th, 2021, following new and full moon cycles (7 trips x 10 sites = 70; [214, 43, 44]).

Collectors consisted of a hog’s hair filter sleeve surrounding an inner PVC cylinder (0.18

m2; [214, 121]), deployed for approximately 12 h from sunset to sunrise. Upon collection,

filters were submersed in fresh water in the field for 1 h to remove megalopae. The filters

were then transported to the lab and rinsed again in fresh water three times until no fauna

remained. The filter contents were subsequently sieved using 500 micron mesh. Sieve
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contents were sorted underneath a magnifying glass for blue crab megalopae, which are

distinct in coloration and morphology relative to other local estuarine crustacean larvae

[147]. Megalopae were counted and recorded along with local turbidity as described in

Appendix ??.

3.2.3.3 Survival

A tethering experiment was conducted at biweekly intervals between April and November,

2021 with juvenile crabs of 6–50 mmCW (n = 848), using an established tethering technique

to assess survival [105]. July was not considered because logistical issues prevented

sampling in that month. Tethering was conducted in <1 m mean low water to limit the

influence of depth [177]. At each site, five crabs were haphazardly selected and tethered

in both structured (where present) and unstructured treatments. Within a habitat/treatment,

individual tethers were haphazardly spaced ∼5 m apart. The size (CW) of each crab was

measured to the nearest 0.1 mm using calipers prior to deployment, and deployed for ∼24

h. Within SME and seagrass, locations within the delineated habitat which were devoid

of vegetation were regarded as “unstructured” and used to compare variation in survival

at the patch scale. Unstructured SME habitat was defined as areas devoid of vegetation

immediately adjacent to the SME, whereas unstructured seagrass habitat was defined as

interstitial barren patches within or immediately adjacent to seagrass beds. In contrast,

“structured” SME and seagrass habitat were defined as localities within those habitats

where vegetation was present. Within SME and seagrass habitats, crabs were tethered

in both structured and unstructured treatments. Only seagrass patches with 100% aerial

cover were considered in the structured seagrass treatment, while sand consisted of only

an unstructured treatment. Additional details, including assessment of treatment-specific

bias, can be found in Appendix C.3.
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3.2.4 Analysis

All data analyses, transformations, and visualizations were completed using the R pro-

gramming language for statistical computing [167] and the Stan probabilistic programming

language for Bayesian statistical modeling [199, 198].

3.2.4.1 Abundance

Relationships between abundance and environmental variables for small juvenile blue

crabs were modeled using a multivariate negative binomial linear mixed-effects model

under a Bayesian framework. Predictor variables for juvenile abundance data included

habitat (seagrass, SME, and sand), stratum (downriver, midriver, and upriver), megalopae

local abundance four weeks prior to each sampling trip (averaged across stratum), and

turbidity. Natural log (ln)-transformations were applied to both turbidity and megalopae

abundance prior to analyses (see Appendix ?? for details).

Extending the model from [81], for the sth site on date t in habitat h, the model for

juvenile blue crab abundance in the ith size class is expressed as:
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yhsti|µhsti, φi ∼ NB(µhsti, φi) (3.1)

ln(µhsti) = x>hstβi + θhsi +Ah

βi = [β1i, β2i, . . . , βpi]
>[

θhs1
θhs2
θhs3

]
|Σ ∼ MVN(0,Σ)

Σ = σ2
θ(D − λW )−1

λ ∼ U(−1, 1)

σ2
θ , φ1, φ2, φ3 ∼ inverse-Gamma(1, 1)

whereNB(µhsti, φi) denotes a negative binomial type II distribution with mean µhsti, while φi

controls the over-dispersion for each size class such that E[yhsti] = µhsti and VAR[yhsti] =

µhsti +
µ2
hsti
φi

. The response variable, juvenile crab counts for each size class i, is denoted

yhsti where i = 1 denotes CW ≤15 mm, i = 2 denotes 16–30 mm, and i = 3 denotes 31–60

mm. Total area sampled in habitat h (SME = 1 m2, seagrass = 1.68 m2, sand = 9.81 m2)

is included as an offset term Ah. Meanwhile, βi refers to regression coefficients for each

size class i associated with predictors xhst, while > denotes that the βi coefficients were

transposed. Measurements of both the abundances of size classes and predictors xhst were

taken at the site-trip spatiotemporal resolution, such that predictors were not specific to any

one size class i but to all sizes classes at a given site-trip. Here, θhsi denotes a site-specific

random effect for a given size class i. The joint probability distribution of (θhs1, θhs2, θhs3) is

specified as multivariate normal with a mean vector of 0s and variance-covariance matrix

Σ. The Σ matrix describes dependence among size classes based on the nearest neighbor

structure specified by a 3× 3 adjacency matrix, W , and an autocorrelation parameter λ,
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which controls the degree of autocorrelation among size classes. We employed a binary

weighting scheme forW wherewi,i′ = 0 for all (i, i′) unless size classes i 6= i′ were adjacent.

For example, the smallest size class (≤15 mm CW) and the next largest i = 2 (16–30 mm

CW) are considered adjacent because increases in size among individuals in i = 1 would

shift them to i = 2, whereas size classes i = 1 and i = 3 are not considered adjacent

because individuals in size class i = 1 (≤15 mm CW) would need to move through size

class i = 2 prior to reaching i = 3 (31–60 mm CW). Hence the 3 × 3 binary adjacency

matrix employed here is expressed as:

W =

[
0, 1, 0
1, 0, 1
0, 1, 0

]
The influence of an adjacent size class on a given size class was standardized by subtracting

λW fromD, a diagonal matrix whereDi,i is the number of neighbors for size class i (1, 2, and

1 for size classes i = 1, 2, and 3 respectively). The parameter λ was constrained between

-1 and 1 through a uniform prior. This size class dependence structure was assumed to be

homoscedastic through the variance parameter σ2
θ , with an inverse-Gamma(1, 1) hyperprior.

A similar parameterization is outlined in [82], although here the nearest neighbor structure

refers to covariance among size classes instead of covariance across spatial polygons.

Results from [81] suggested that spatial dependence was accounted for by spatial stratum

and site random effects.

Initial model priors for fixed-effects coefficients were derived from the posterior inference

from Chapter 2, which examined the same sites, habitats, and size classes except for

the largest size class i = 3. For size class i = 3 (31–60 mm CW), supplied prior means

were identical to those for size class i = 2, while prior variances were scaled by a factor

of 4 (model scale) to account for higher prior uncertainty associated with this size class.

Descriptions of fixed effects included in the preliminary juvenile abundance model as well
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as their corresponding prior distributions are listed in Table 3.3.

Table 3.3: Descriptions of predictor coefficients used in the juvenile abundance model. Prior

distributions are on the model (log) scale. All β terms refer to priors of a given coefficient for all

three size classes (Small = ≤15 mm CW; Medium = 16–30 mm CW; Large = 31–60 mm CW.

Predictor Regression Description Prior Prior Prior

Coefficient (Small) (Medium) (Large)

— β0i Intercept of model (i.e. inter-

cept of the reference, taken

to be sand downriver)

N(−1.10, 0.75) N(−0.11, 0.67) N(−0.11, 2.00)

Turbidity β1i Effect of water cloudiness

measured as the negative log

transformation of the Secchi

disk depth (m) in site s on

date t (see Appendix ?? for

details)

N(0.19, 0.19) N(0.29, 0.17) N(0.29, 2.00)

SME β2i Effect of SME relative to the

reference

N(2.59, 0.51) N(2.72, 0.4) N(2.72, 2.00)

Seagrass β3i Effect of seagrass habitat rel-

ative to the reference

N(3.67, 0.64) N(2.07, 0.49), N(2.07, 2.00)

Midriver β4i Effect of midriver stratum rel-

ative to the reference

N(0, 10) N(0, 10) N(0, 10)

Upriver β5i Effect of upriver stratum rela-

tive to the reference

N(1.20, 10) N(1.2, 10) N(1.2, 10)

Megalopae β6i Effect of ln(average mega-

lopae abundance + 1) in a

given stratum corresponding

to site s four weeks prior to
the tth date (see Appendix ??
for details)

N(0, 10) N(0, 10) N(0, 10)

Suction efficiency β7i Suction efficiency parameter

for juvenile blue crab abun-

dance in seagrass

N(−0.13, 0.02) N(−0.13, 0.02) N(−0.13, 0.02)

Flume efficiency β8i Flume efficiency parameter

for juvenile blue crab abun-

dance in SME

N(−0.08, 0.02) N(−0.08, 0.02) N(−0.08, 0.02)

Seine efficiency β7i Seine efficiency parameter

for juvenile blue crab abun-

dance in sand

N(−1.27, 0.41) N(−1.27, 0.41) N(−1.27, 0.41)

Area (log) A Offset term relating juvenile

blue crab abundance to sur-

face area of gear used to

sample habitat h

— — —
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3.2.4.2 Survival

Crab survival, recorded as 1 (alive) or 0 (eaten), was analyzed for probability of survival

using a hierarchical logistic regression mixed-effects model. Within stratum, unstructured

treatments among habitats (seagrass, SME, and sand for downriver or SME and sand

otherwise) were compared to isolate effects of differing predation pressure and refuge.

Within a given stratum and within SME and seagrass habitats (where present), nearby

structured and unstructured treatments were compared to facilitate inference on the effect

of structure while controlling for differences in predation pressure. Due to the nature of our

sampling design, we approximated nonlinear effects of seasonality by using month as a

categorical fixed effect.

For the jth tether trial in the sth site on date t, the model for juvenile blue crab survival is

expressed as:

ystj |πst ∼ Bernoulli(πst) (3.2)

logit(πst) = x>stβ + θs + ηst

θs|σ2
θ ∼ N(0, σ2

θ)

ηst|σ2
η ∼ N(0, σ2

η)

βi ∼ N(0, 10)

σ2
θ , σ

2
η ∼ inverse-Gamma(1, 1).

The response, binary juvenile crab survival ystj for the jth tethering trial, is distributed

as a Bernoulli random variable with probability of survival, πst. Tethering trials entailed
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repeatedly using the same sites, which may introduce site-specific bias. Moreover, 5

m spacing of individual tethers within a site may not have been sufficient to guarantee

independence [6]. Hence, θs and ηst denote site-specific and site within trip-specific random

effects, respectively. All regression coefficients were assigned diffuse priors (N(0, 10)).

Descriptions of the fixed effects for the preliminary juvenile blue crab survival model can be

found in Table 3.4.

Table 3.4: Descriptions of regression coefficients used in the juvenile survival model. The

categorical variables stratum, habitat, and structure form an incomplete, crossed design

and therefore are collapsed into a single categorical variable. For details, see Appendix

??.

Predictor Regression Description

Coefficient

— β0 Intercept of model (i.e. the reference intercept, taken to be the

intercept for sand downriver in April)

Turbidity β1 Effect of water cloudiness measured as the negative log trans-

formation of the Secchi disk depth (m) in site s on date t (see
Appendix ?? for details)

Carapace width β2 Effect of crab width (mm)

May β3 Effect of May relative to the reference

June β4 Effect of June relative to the reference

August β5 Effect of August relative to the reference

September β6 Effect of September relative to the reference

October β7 Effect of October relative to the reference

Downriver SME structured β8 Effect of downriver structured SME relative to the reference

Midriver SME structured β9 Effect of midriver structured SME relative to the reference

Upriver SME structured β10 Effect of upriver structured SME relative to the reference

Downriver SME unstructured β11 Effect of downriver unstructured SME relative to the reference

Midriver SME unstructured β12 Effect of midriver unstructured SME relative to the reference

Upriver SME unstructured β13 Effect of upriver unstructured SME relative to the reference

Downriver seagrass structured β14 Effect of downriver structured seagrass relative to the reference

Downriver seagrass structured β15 Effect of downriver unstructured seagrass relative to the reference

Midriver sand β16 Effect of midriver sand relative to the reference

Upriver sand β17 Effect of upriver sand relative to the reference
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3.2.5 Model implementation and validation

For each model, Bayesian inference required numerical approximation of the joint posterior

distribution of all model parameters including the vectors of random effects. To this end,

we implemented the above models using the Stan programming language for Bayesian

inference to generate Hamiltonian Monte Carlo (HMC) samples from the posterior [57].

For each model, we ran four parallel Markov chains, each with 5,000 iterations for the

warm-up/adaptive phase, and another 5,000 iterations as posterior samples (i.e. 20,000

draws in total for posterior inference). Convergence of the chains was determined both by

visual inspection of trace plots (e.g. Fig. D3) and through inspection of the split R̂ statistic.

All sampled parameters had an R̂ value less than 1.01, suggesting chain convergence

[57]. Covariates and interactions whose regression coefficients had Bayesian confidence

intervals (CIs) that excluded 0 at a confidence level of 80% were considered scientifically

relevant to juvenile blue crab abundance and survival. All CIs referenced here are highest

posterior density intervals [115].

3.2.6 Conditional inference

Conditional means and conditional effects plots were used to assess the relationship

between response variables (juvenile blue crab abundance and survival) and meaningful

predictors both among habitats within a size class and within habitats between size classes.

Herein, we refer to “conditional” as holding all random effects at 0 and fixing co-varying

predictors. For a detailed description of the estimation procedure for each conditional

quantity, see Table 3.5. Conditional effects for categorical terms are reported using posterior

median values and 80% CIs, while the relationship between the conditional mean (µcondvi

or πcondv ) and each continuous predictor (xvi or xv) was plotted with posterior medians as

well as 50%, 60%, and 80% credible bands.
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Table 3.5: Descriptions of conditional means and conditional effects derived from the

abundance and survival models.

Model Term Description Equation

µcondhi
The expected number of crabs in size class

i in habitat h, with random effects fixed at 0,

ln turbidity and ln megalopae fixed at 0, and

stratum taken to be downriver (reference).

exp(β0i) for h = reference

exp(βhi + β0i) for h > reference

Abundance µcondvi(xvi) The expected number of crabs in size class

i as a function of continuous predictor xvi,

with random effects fixed at 0, all other con-

tinuous predictors fixed at 0, and categorical

terms fixed at the reference (i.e. downriver

sand).

exp(β0i + βvixvi)

ηcondhi
The lnµcondhi (i.e. the linear predictor).

β0i for h = reference

βhi + β0i for h > reference

Lhi−mi The linear contrast between habitat h and

habitat m for size class i
ηcondhi − ηcondmi

πcondj The probability of survival at categorical

level j, with random effects fixed at 0, ln

turbidity fixed at 0, and crab width fixed at

22.4 mm (i.e. average crab size in study).

When j denotes a stratum-habitat-structure
combination, month is held at April. When j
denotes a month, stratum-habitat-structure

is fixed at downriver sand.

expit(β0) for j = reference

expit(βj + β0) for j > reference

Survival γcondj The linear predictor (logit πcondj )
β0 for j = reference

βj + β0 for j > reference

Wj−r The linear contrast between levels j and r. γcondj − γcondr

πcondv (xv) The probability of survival as a function of

continuous predictor xv, with random effects

fixed at 0, all other continuous predictors

fixed at 0 (except crab CW, fixed at 1 mm to

show increased contrast in survival proba-

bilities), and categorical terms fixed at the

reference.

expit(β0 + βvxv)

87



3.3 Results

3.3.1 Abundance

3.3.1.1 Patterns in abundance among small-sized (≤15 mm) juveniles

Habitat was an important driver of small juvenile blue crab abundance (Table 3.6; Fig. C2).

Among habitats, the estimate (i.e. posterior median) of the conditional mean (µcondh,15 ,

Table 3.5) for small juvenile blue crab abundance was highest in seagrass, followed by SME

and sand (Table 3.6; Fig. 3.2, left panel). Linear contrasts (Lh,15−m,15) between habitats

for small juvenile blue crabs all yielded 80% Bayesian CIs that excluded 0, indicating that

differences in the expected number of small juvenile crabs among habitats were statistically

meaningful (Fig. 3.3, left panel). Herein, we use the term “indicate” to refer to inferences

with strong statistical support (see section 3.2.5).
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Figure 3.2: Posterior median and 80% CI for µcondhi of habitat for small (≤15 mm CW;

left column), medium (16–30 mm CW; middle column), and large (31–60 mm CW; right

column) size classes.
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Table 3.6: Posterior summary statistics (median and 80% CIs) for the small (≤15 mm CW)

juvenile size class. Values under the habitat columns refer to ηcondh,15 (model scale) and
µcondh,15 (count scale) and should be interpreted as the expected small juvenile abundance
in a given habitat at a given site with 0 ln turbidity and 0 ln megalopae. Values under the

ln turbidity and ln megalopae columns reflect abundance model slope terms (β) for those
continuous predictors with categorical terms held at the reference (i.e. downriver sand).

Stratum effects were not statistically meaningful for any size class and are not reported

here.

Scale Quantile Sand Seagrass SME ln Turbidity ln Megalopae

10% -1.75 1.84 0.70 0.06 0.01

Model 50% -1.31 2.20 1.10 0.27 0.12

90% -0.84 2.58 1.51 0.47 0.24

10% 0.17 6.27 2.01 1.06 1.01

Count 50% 0.27 9.06 3.02 1.31 1.13

90% 0.43 13.16 4.52 1.61 1.27
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Figure 3.3: Linear contrast statements (Lhi−mi) depicting conditional differences in ex-

pected juvenile blue crab abundance between habitats by size class. Dots denote posterior

median difference in expected values, while thick bars represent 80% Bayesian CIs and

thin bars denote 95% Bayesian CIs. The red vertical line denotes 0.

Turbidity and megalopae abundance were both positively associated with small juvenile

blue crab abundance – 80% CIs of both (model scale) are above 0 (Table 3.6 and Fig.

C2). Conversely, effects of midriver and upriver strata relative to the downriver stratum

(reference) were not meaningfully different (Fig. C2). Expected small juvenile abundance

increased with both averagemegalopae per collector (back-transformed from ln (megalopae

+1) and ln turbidity (Figs. 3.4A and 3.4B).
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Figure 3.4: Conditional relationships between expected juvenile blue crab abundance

(µcondvi(xv)) as a function of A) average megalopae abundance per collector and B) ln

turbidity. The response value for A) is the expected number for small size class, while the

response values for B) include both small (left) and medium (right) size classes. Colored

bands indicate credible bands ranging from 50% (0.5) to 80% (0.8) credibility.

3.3.1.2 Patterns in abundance among medium-sized (16–30 mm) juveniles

Habitat and turbidity were both relevant drivers of abundances of medium-sized juvenile blue

crabs (Fig. C3). Based on the posterior median of µcondhi (Table 3.5), unlike the smaller size

class, medium-sized juveniles were most abundant in SME, followed by seagrass and sand

(Table 3.7; Fig. 3.2). Similar to small juveniles, linear contrasts (Lh,30−m,30) among habitats

for juveniles in the medium size class indicated that differences in the expected number

of medium-sized juvenile crabs among habitats were statistically meaningful, although

the linear contrast between seagrass and SME was marginally meaningful (i.e. 80% CI

= -0.76 to 0.031; Fig. 3.3, middle panel). Turbidity was also positively associated with

medium-sized juvenile abundance (Table 3.7 and Fig. C3). However, posterior distributions

of coefficients for both megalopae and spatial strata indicated that these predictors were
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not meaningful in predicting abundances of medium-sized juveniles (Fig. C3).

Table 3.7: Posterior summary statistics (median and 80% CIs) for the medium (16–30

mm CW) juvenile size class. Values under the habitat columns refer to ηcondh,30 (model
scale) and µcondh,30 (count scale) and should be interpreted as the expected small juvenile
abundance in a given habitat at a given site with 0 ln turbidity and 0 ln megalopae. Values

under the ln turbidity and ln megalopae columns reflect abundance model slope terms (β)
for those continuous predictors with categorical terms held at the reference (i.e. downriver

sand). Stratum effects were not statistically meaningful for any size class and are not

reported here.

Scale Quantile Sand Seagrass SME ln Turbidity ln Megalopae

10% -0.79 1.32 1.67 0.00 -0.15

Model 50% -0.38 1.68 2.05 0.19 -0.03

90% 0.05 2.05 2.43 0.38 0.11

10% 0.46 3.73 5.32 1.00 0.86

Count 50% 0.68 5.36 7.74 1.21 0.97

90% 1.05 7.75 11.40 1.46 1.11

3.3.1.3 Patterns in abundance among large (31–60 mm) size class

Habitat was the only predictor that was statistically informative of abundances among

the largest size class of juvenile blue crabs (Fig. C4). The posterior median of large

juvenile conditional abundance (µcondh,60) was highest in SME habitat, and lower in sand

and seagrass (Table 3.8; Fig. 3.2). 80% CIs for linear contrasts between both SME and

seagrass as well as SME and sand excluded 0, although that between seagrass and sand

included 0 (Fig. 3.3). This indicated that SME was associated with higher abundances of

large juveniles relative to seagrass and sand, which harbored equivalent abundances of

large juveniles. Posterior distributions for coefficients of turbidity, megalopae, and strata

indicated these variables did not statistically influence large juvenile blue crab abundance

(Fig. C4).
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Table 3.8: Posterior summary statistics (median and 80% CIs) for the large (31–60 mm CW)

juvenile size class. Values under the habitat columns refer to ηcondh,60 (model scale) and
µcondh,60 (count scale) and should be interpreted as the expected small juvenile abundance
in a given habitat at a given site with 0 ln turbidity and 0 ln megalopae. Values under the

ln turbidity and ln megalopae columns reflect abundance model slope terms (β) for those
continuous predictors with categorical terms held at the reference (i.e. downriver sand).

Stratum effects were not statistically meaningful for any size class and are not reported

here.

Scale Quantile Sand Seagrass SME ln Turbidity ln Megalopae

10% -1.41 -1.03 0.62 -0.71 -0.23

Model 50% -0.75 -0.53 1.10 -0.23 -0.08

90% -0.06 -0.05 1.58 0.25 0.07

10% 0.24 0.36 1.87 0.49 0.80

Count 50% 0.47 0.59 3.01 0.80 0.93

90% 0.94 0.96 4.84 1.28 1.07

3.3.2 Survival

Stratum-habitat-structure, turbidity, month, and carapace width were relevant drivers of

juvenile blue crab survival (Table 3.9 and Fig. C5). Among stratum-habitat-structure

combinations, the posterior median of the conditional probability of juvenile blue crab survival

(πcondj , Table 3.5) was highest in downriver seagrass structured, followed by midriver and

upriver SME structured habitat (Fig. 3.5). The stratum-habitat-structure combination with

the lowest posterior median conditional probability of survival was downriver seagrass

unstructured .
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Table 3.9: Posterior summary statistics (median and 80% CIs) of regression coefficients β
from the survival model. Effects of categorical predictors should be interpreted as relative to

the reference (downriver sand in April). See Table 3.4 for descriptions of predictors. Values

in bold font indicate that the coefficient of a given parameter is statistically meaningful.

Coefficient corresponding to 10% 50% 90%

Intercept -0.09 1.04 2.29

ln Turbidity -0.01 0.29 0.60

CW 0.03 0.04 0.06

May -2.75 -1.83 -1.02

June -3.93 -2.97 -2.12

August -4.17 -3.28 -2.49

September -3.69 -2.78 -1.99

October -2.70 -1.82 -1.05

Downriver SME structure -0.28 0.60 1.45

Midriver SME structure 0.77 1.69 2.63

Upriver SME structure 1.10 2.06 3.05

Downriver SME unstructured -1.50 -0.60 0.26

Midriver SME unstructured -0.55 0.36 1.28

Upriver SME unstructured -0.58 0.38 1.33

Downriver seagrass structure 1.39 2.20 3.09

Downriver seagrass unstructured -2.26 -1.35 -0.42

Midriver sand -0.59 0.33 1.25

Upriver sand -0.72 0.26 1.22
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Figure 3.5: Posterior median and 80% CIs of conditional mean (πcondj ) for habitat-structure
combinations by river stratum.

Bayesian 80% CIs of linear contrasts (Wj−r) indicated downriver structured seagrass,

midriver structured SME, and upriver structured SME indicated that these habitats con-

ferred the highest relative survival to juvenile blue crabs. Linear contrasts between these

stratum-habitat-structure levels against all others were positive and excluded 0. This (Table

C2). However, linear contrasts among these three stratum-habitat-structure combinations

indicated that they conferred equivalent probabilities of survival relative to one another.

Moreover, contrasts among sand habitats across all strata indicated that these habitats

conferred equivalent survival regardless of location. The posterior median for the condi-

tional probability of survival in SME habitat increased from downriver to midriver and upriver

habitats. The 80% CIs of linear contrasts between downriver unstructured seagrass and

all other habitats were negative and excluded 0 with the exception of downriver unstruc-
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tured SME, which indicated that this habitat conferred the lowest survival among those

considered.

Amongmonths considered, the posterior median for the conditional probability of survival

(πcondj ) was highest in April and lowest in August (Fig. 3.6). Across months, this probability

exhibited a nonlinear pattern in which survival appeared to peak in spring, decline in summer

months, and increase again through fall (Fig. 3.6). 80% CIs of linear contrasts between

April and all other months were positive and excluded 0, indicating that April conferred

the highest survival among months (Fig. C6). Linear contrasts among June–September

and June–August indicated these months conferred relatively equivalent survival, although

juvenile survival was lower in August than September (Table C2 and Fig. 3.6). Finally, May

and October conferred statistically equivalent survival, which was higher than in summer

months (June, August, and September) but lower than April (Table C2 and Fig. 3.6).
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Figure 3.6: Posterior median and 80% CIs of juvenile blue crab conditional survival

probability (πcondj ) in months April, May, June, August, September, and October.

With respect to continuous predictors, the conditional probability of survival (πcondv(xv))

increased with both carapace width and ln turbidity: the 80% CI for carapace width excluded

0, which indicated CW was statistically important in explaining variation in juvenile blue

crab survival. Similarly, the lower limit of the 80% CI for the effect of ln turbidity marginally

contained 0 (Table 3.9). Based on the posterior median, the conditional probability of

survival increased with ln turbidity, such that for every unit (ln(1 cm)) increase in turbidity,

the odds ( π
1−π ) of survival increased by 33% (Fig. 3.7). Similarly, based on the posterior

median, a 1-unit increase in carapace width (1 mm) corresponded with an increase in the
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odds of survival by 4% (Fig. 3.7).

Figure 3.7: Relationships between the conditional probability of juvenile blue crab survival

(πcondv(xv)). Colored regions indicate credible bands.

3.4 Discussion

For a given life stage, habitat-specific abundance and survival are key determinants of a

habitat’s relative importance within the seascape. Identifying and understanding the biotic

and abiotic mechanisms governing these two processes both within and among habitats is

critical for accurate estimation of size- and habitat-specific production. In nursery habitats

of marine species, evaluation of survival, growth, abundance and ontogenetic habitat
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shifts has typically focused on relatively broad size ranges through the juvenile phase.

Yet, ontogenetic shifts in habitat use may occur within narrower size ranges. Early-stage

ontogenetic shifts have not been well studied in many species and may be important to

the conservation and restoration of nursery habitats. Using manipulative and mensurative

field experiments, we jointly assessed habitat-specific abundance and survival for multiple

size classes of newly recruited juvenile blue crabs to highlight the relative importance of

initial and intermediate nursery habitats through ontogeny. We found that habitat-specific

utilization rates differed by juvenile size class over a surprisingly narrow range of size,

and were related to (1) the structural and biological characteristics of the nominal nursery

habitats, (2) spatial gradients of environmental variables within the tributary, and (3) the

likely trade-offs between growth and survival through ontogeny .

3.4.1 Habitat-utilization patterns of juvenile blue crabs

3.4.1.1 Small juveniles

Habitat utilization by small (≤15 mm CW) juveniles was a function of habitat, postlarval

supply, turbidity, and survival. Small juvenile abundance was positively correlated with

megalopal recruitment, whereby small juvenile abundance sharply increased when mega-

lopal abundance was elevated in the previous month and then tapered to an asymptote at

the highest densities of megalopae. This phenomenon is consistent with density-dependent

processes occurring at this size class. Strong responses to megalopal supply are expected

when juvenile densities are low. However, high abundances of megalopae may exceed the

carrying capacity of structurally complex nursery habitats [65]. As a result, post-settlement

processes such as competition, cannibalism, and density-dependent secondary dispersal

increasingly influence small juveniles at higher megalopal abundances [66, 197, 45, 172, 13]

After accounting for variation in abundances due to megalopal supply, small juveniles
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were most abundant in seagrass, followed by SME and sand. High abundance of small

juveniles in seagrass and SME is consistent with previous research demonstrating that these

structured habitats are preferred primary nurseries (seagrass; [154, 159, 77, 171, 88, 219])

as well as alternative nurseries (SME and complex algae;[154, 165, 86, 228, 82, 81]) for

this life stage of juveniles. High abundances of small juveniles in structured habitats should

be considered within the context of megalopal supply. Megalopae re-enter estuaries from

the continental shelf, and therefore the highest concentrations of megalopae occur near

the York River mouth and decline farther upriver [201]. Seagrass beds only occur in the

downriver portion of the York River and are positioned farther from the shoreline (and thus

closer to ingressing megalopae) relative to SME. Seagrass beds are therefore most likely

the first structurally complex habitat encountered by immigrating megalopae within the

seascape and act as an initial settlement habitat [201]. Moreover, structured seagrass

habitat provided the highest relative survival among all habitats considered. Survival also

increased with size across habitats, adding further support that the smallest juveniles are

most vulnerable to predation pressure [164, 159]. Hence, the spatial orientation of seagrass

beds relative to ingressing megalopae, coupled with the survival requirements of small

juveniles, renders seagrass beds an adaptive initial settlement habitat.

SME also harbored higher abundances of small juveniles compared to sand habitat,

but lower than seagrass habitat. This observation is likely a function of (1) the survival

conferred by SME, (2) habitat-specific megalopal encounter probabilities, and (3) density-

dependent trade-offs. First, structured SME – particularly structured SME positioned

upriver – conferred roughly equivalent survival to juveniles relative to seagrass. In contrast,

survival in unstructured SME was lower and roughly equivalent to sand. As access to salt

marsh vegetation for aquatic organisms is controlled by marsh flooding and tidal regimes,

the importance of marsh structural complexity in governing survival is likely regulated by
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hydrology [129]. In Chesapeake Bay, SME utilization is limited by mesotidal inundation

profiles characteristic of mid-Atlantic estuaries [129, 38]. Aggregate survival in SME is

therefore a combination of the survival conferred by both structured and unstructured

components of salt marshes. Indeed, the effectiveness of the flume nets used to capture

juveniles in SME relied upon movement of small juveniles from structured salt marsh

vegetation to unstructured bottom to remain inundated. Second, although a majority of

megalopae encounter seagrass beds, a portion of megalopae miss this habitat and are

advected upriver [201]. Here, higher survival conferred by upriver SME relative to nearby

sand habitat makes SME an adaptive alternative in the absence of seagrass habitat. Finally,

in downriver habitat immediately adjacent to seagrass beds, high juvenile abundance in

SME habitat is likely related to density-dependent secondary dispersal of juveniles avoiding

competition in seagrass beds [45, 46, 172, 13].

3.4.1.2 Medium-sized juveniles

In contrast to small juveniles, medium-sized (16-30 mm) juveniles were not correlated

with megalopal abundance and were more abundant in SME than in seagrass, although

abundances remained high in both types of structured habitats. Megalopal abundance was

not expected to directly affect medium-sized or large juvenile abundances, as megalopae

must transit the small juvenile stage before reaching larger size classes. Preferences of

medium-sized juveniles for SME are consistent with recent findings in this system [169, 81]

and likely reflect shifting energetic requirements relative to predation pressure [223]. In

contrast to smaller juveniles, medium-sized juveniles were less vulnerable to predation. In

addition, juvenile blue crab growth rates are higher in upriver unstructured SME due to high

availability of preferred prey items [187, 186, 105]. The shift in utilization from seagrass

to SME likely reflects changes in predation risk-growth rate tradeoffs and the changing
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resource requirements between small and medium-sized juveniles, such that juvenile crabs

may derive a growth advantage by dispersing from seagrass beds to SME as they continue

to grow [13, 172, 173, 105, 169, 81].

3.4.1.3 Large juveniles

Large (31–60 mm) juveniles were most abundant in SME. In contrast, large juvenile abun-

dances in seagrass and sand were relatively low and equivalent. Densities in SME were

six times as high as those in seagrass and sand. The findings that both medium-sized

and large juveniles remain in SME is supported by movement patterns across a range of

juvenile sizes in salt marsh habitat, which indicates immature blue crabs between 20–60

mm exhibit high site fidelity and low emigration rates within salt marsh tidal creeks [86]. The

ontogenetic habitat-shift paradigm [223, 34], coupled with literature on blue crab growth

and movement within the seascape-nursery concept offer an explanation for these ob-

served patterns. Although the current understanding of ontogenetic blue crab habitat shifts

maintains that larger juveniles exploit unstructured bottom habitat for high food availability,

unstructured bottom exists both within marsh-fringed tidal creeks and embayments as well

as along shorelines devoid of vegetation. Both of these unstructured habitat types harbor

high abundances of preferred prey [187, 186]. Unstructured habitat near salt marshes

may be exceptionally productive, harboring higher diversity and abundance of benthic prey

relative to comparable unstructured habitat distant from fringing salt marsh vegetation [185].

Accordingly, juveniles of many estuarine species commonly utilize multiple unstructured

and structured habitat types for foraging and refuge [140]. The close proximity between the

high-refuge, structurally complex salt marsh vegetation and prey-rich adjacent unstructured

muddy bottom confers high survival and growth rates to both medium-sized and large

juveniles within salt marshes. Although unstructured bottom distant from marsh habitat
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likely offers similarly high growth rates, the additional refuge afforded by salt marshes shifts

predation risk-growth rate ratios in favor of salt marsh habitat utilization.

3.4.2 Turbidity

Abundance and survival of small and medium-sized juveniles were positively associated

with turbidity. This finding agrees with recent evidence detailing positive effects of turbidity

over both large [82] and small [81] spatial scales. In addition, the relationship between

turbidity and juvenile blue crab abundance was stronger in medium-sized than in small

juveniles. The positive association between juvenile blue crab abundance and turbidity

may reflect both top-down and bottom-up effects, albeit to varying degrees. First, juvenile

blue crabs are positively associated with abundances of preferred prey such as the thin-

shelled bivalve Macoma balthica, which aggregate in unstructured habitats near estuarine

turbidity maxima [187, 186]. Hence, positive associations between juvenile blue crab

abundance and turbidity may be a proxy for the bottom-up effect of benthic food availability.

Second, the positive association between turbidity and survival implies that turbidity inhibits

foraging efficiency among visually-oriented predators [146, 78, 74] which may partially

ameliorate predation pressure for juveniles. Although the effect of turbidity on survival

was positive, the posterior contained 0 within 80% credible intervals, indicating a relatively

high degree of uncertainty. This may be explained by adaptations of estuarine-dependent

predators. Although turbidity reduces foraging efficiency of visually-oriented predators,

some estuarine-dependent predators rely on chemosensory abilities to forage in low visibility

waters [79] and are unlikely to experience major impediments to foraging in highly turbid

water. Our results indicate that turbidity is most likely a proxy for food availability (i.e. a

bottom-up control) [187, 105, 186], though turbidity may also provide a partial refuge from

predation from predators primarily relying on visual foraging. Moreover, in concert with
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ontogenetic preferences of larger juveniles for salt marsh habitat, effects of turbidity provide

a mechanism for high abundances of 20–40 mm CW juveniles observed in highly turbid

salt marsh habitat [82], as this combination of habitat and environmental characteristics

would be ideal for minimizing predation risk-growth rate ratios.

3.4.3 Spatiotemporal variation in habitat-specific survival

Within a habitat, juvenile blue crab survival changed across space and time. Seasonally,

survival was highest in spring and late fall, and lowest in summer. This curvilinear pattern

in survival is consistent with literature on seasonal juvenile blue crab survival rates and

corresponds well with patterns in seasonal predation pressure by cannibalistic and piscine

blue crab predators [73, 178, 133, 76, 47]. In salt marsh habitat, both structured and

unstructured, survival increased from downriver to midriver and upriver habitats. Spatial

differences in survival in juvenile blue crabs have been linked to variation in predator

communities along estuarine salinity gradients [165], as well as increased alternative prey

availability [186, 105]. As our results are consistent under either proposed mechanism,

additional work is required to determine the extent to which either mechanism is driving

survival patterns.

The high relative survival in upriver and midriver salt marsh habitat conflicts with previous

work [189]. A major caveat of these results is the potential confounding between historically

low adult blue crab abundance and effects on habitat-specific survival, particularly in midriver

and upriver strata. Specifically, adult male population abundances in 2021 were the lowest

ever recorded since fisheries-independent monitoring began in 1990 [117, 22]. Adult blue

crabs are a substantial source of mortality for juvenile conspecifics [132, 42, 70, 103, 15]. In

particular, adult male blue crabs concentrate upriver near estuarine turbidity maxima where

salt marsh edge survival was highest [72]. Hence, it is conceivable that higher survival
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probabilities in upriver and midriver SME were positively influenced by relatively low adult

male blue crab predation pressure, and hence salt marsh edge relative survival may be

overstated. Hence, we caution broader interpretability of these results, and stress that

our results should be replicated once adult male populations rebound to ensure that these

patterns are robust.

In contrast to survival, abundance of juvenile blue crabs did not vary spatially once

we accounted for two co-varying environmental variables: megalopal abundance and

turbidity. Both of these variables exhibited strong spatial gradients across the tributary

axis (i.e. downriver to upriver). Hence, spatial variation in juvenile blue crab abundance

is likely predominantly controlled by these environmental variables. Although megalopal

supply declined precipitously with distance upriver, juvenile blue crab abundances remained

high even in the upriver stratum. This highlights the role of density-dependent secondary

dispersal [45, 172, 13]. High initial settlement of juveniles in downriver structured habitats

may exceed habitat carrying capacities, such that juveniles emigrate to upriver habitats to

avoid adverse density-dependent effects.

3.4.4 Within-habitat variation in survival

Within seagrass and SME, survival varied markedly among structured and unstructured

treatments. In all cases, survival was higher in structurally complex vegetation within

seagrass and SME. This finding was particularly notable in seagrass, which conferred the

highest survival among all habitats considered in its structured treatments and the lowest

survival within its unstructured treatment. These patterns are consistent with the general

predation-refuge paradigm associated with structurally complex habitats and edge effects

[161, 195] and highlights a need for researchers to carefully define the degree of spatial

separation between vegetated treatments and unstructured controls in survival studies [103].
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The higher refuge value of structurally complex habitats makes them attractive for vulnerable

prey. Although the structural complexity of seagrass and salt marsh shoots provides high

refuge value, it is also attractive to predators due to the higher availability of food resources

[195]. Within structured portions of these habitats, higher predation pressure is offset

by high refugia. However, interstitial patches devoid of vegetation are characterized by

equivalent predation pressure as in adjacent structured patches but without the associated

refuge, leading to disproportionately higher mortality. These effects underscore the need

to separate unstructured controls and vegetated treatments by considerable distances to

avoid confounding predation pressure and refuge capacity [103].

These findings have additional implications for intertidal habitats such as salt marshes.

As SME remains inundated for only a portion of the full tidal cycle, small juveniles must leave

the vegetated marsh surface to adjacent unstructured habitat at low tide [38], while larger

juveniles and adults may remain in tidal pools to opportunistically forage [85]. Although

survival in adjacent unstructured habitat in these locations maybe be higher than in similar

deeper habitat [177], these areas nevertheless provide lower refuge quality relative to

structured habitat [180]. Aggregate survival in SME may therefore be an average in survival

across structured and unstructured patches of a nursery habitat, based on accessibility

dictated by hydrology and tidal regimes.

3.4.5 Ontogenetic habitat shifts for the juvenile blue crab: a revised paradigm

Placed within the context of previous work, our results indicate that the current paradigm

of juvenile blue crab ontogenetic habitat utilization requires revision. Here, we propose a

revised conceptual model describing differences in juvenile blue crab habitat use at different

size classes (Fig. 3.8). Initially, ingressing megalopae predominantly settle into seagrass

beds or other SAV until ∼15 mm CW [154, 81, 88], although small juveniles may utilize
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salt marsh vegetation as an alternative nursery if they do not encounter downriver SAV as

megalopae [201] or after emigrating from seagrass to avoid adverse density-dependent

effects [45, 46, 172, 13]. Once juveniles reach ∼15 mm CW, they begin dispersing to SME

and tidal marsh creek habitats with increasing frequency to exploit the higher food availability

(and higher growth rates) associated with these habitats. Juveniles may also exploit refugia

associated with salt marsh vegetation, particularly when molting [180, 103, 70]. The higher

food availability in upriver salt marsh habitat near the estuarine turbidity maximum appears

particularly valuable for juveniles ≥20 mm [82]. By 31-60 mm CW, most juveniles reside in

salt marsh habitats before maturing.

Figure 3.8: Conceptual diagram of revised juvenile blue crab ontogenetic habitat shifts.

Arrows depict transitions between habitats with increases in size. Arrow widths denote

abundance contributions of individuals between habitats. Images were derived from the

University of Maryland Center for Environmental Science Integrated and Application Net-

work

Similar ontogenetic habitat shifts were posited by [103], which maintained that the size
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refuge obtained by juveniles at approximately 30 mm allowed individuals to exploit the

high food availability afforded by upriver unstructured habitats. The new conceptual model

advanced here illustrates the intermediate refuge value of both unstructured as well as

structured salt marsh habitat in conferring high survival and growth rates.

3.4.6 Caveats and limitations

While this study provides valuable insights on the ontogenetic mechanisms governing

blue crab habitat shifts, there are several important caveats that must be considered.

First, our abundance study focused solely on shallow water habitats. Although previous

evidence suggested that juveniles predominantly inhabit shallow waters to avoid larger

piscine predators [177], it is conceivable that larger juveniles, having reached a size refuge

from predators, may have shifted to deeper water habitats which were not included in

our experimental design. Consequently, while our findings offer compelling evidence of

ontogenetic habitat shifts from seagrass to salt marsh habitats among small and medium-

sized juveniles, there remains greater uncertainty regarding shifts (or lack thereof) between

medium-sized and large juveniles. To bolster the robustness of our results, we emphasize

the need for additional sampling in deeper-water unstructured sand habitats further from

the river shoreline.

Second, although our measurements of megalopae abundance were taken at regular

intervals (biweekly) along the river axis, we did not conduct shorter frequency (i.e. daily)

measurements. Hydrodynamic modeling suggests that megalopae may take several days

to reach upriver locations distant from the river mouth [201]. Therefore, repeated sampling

over multiple days, preferably near the time of the new and/or full moon, would offer more

concrete insights into the relationship between river location and maximum megalopae

supply.
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Finally, as mentioned earlier, we observed surprisingly high survival rates of juveniles in

midriver and upriver salt marsh edge habitats, which appear to differ from previous findings

in other systems. As such, we urge further investigation to determine whether this pattern

persists or if it is influenced by local and/or ephemeral processes. Additional research in

this area is crucial to validate and understand these results more comprehensively.

3.4.7 Relevance

Our results expand upon previous work documenting patterns of habitat utilization in juvenile

blue crabs [105, 81] to include more size classes and provide a plausible mechanism –

trade-offs between growth and survival – underlying ontogenetic habitat shifts. Our findings

indicate that shifts in habitat utilization from seagrass beds occur at earlier size intervals

than previously thought and emphasize the role of structured salt marsh habitat as a critical

nursery to juveniles within 16-60 mm size ranges.

Our results also add to a growing body of research highlighting a need to preserve both

seagrass beds and salt marsh habitat to preserve the complete chain of habitats used by

juvenile blue crabs before entering adult habitats [86, 82, 81]. Seagrass and salt marsh

declines have received considerable attention in Chesapeake Bay [137, 183]. Eelgrass

(Zostera marina) beds are declining due to direct and indirect anthropogenic influences such

as land-use change and long-term warming of Chesapeake Bay [156, 137, 158]. Similarly,

salt marshes have been reduced by coastal development and shoreline hardening [193]

as well as sea level rise [91, 183]. Although losses in blue crab secondary production

associated with seagrass declines has received considerable attention [76, 77, 131, 171, 88],

effects of salt marsh loss on blue crab population dynamics remains a major data gap for

Chesapeake Bay and other mid-Atlantic estuaries. Moreover, ratios of marsh-migration to

marsh-erosion associated with sea level rise are spatiotemporally variable, and higher rates

110



of salt marsh loss are expected in upriver regions such as within the York River [183], which

are potentially the most valuable for later-stage juvenile blue crabs. Additional empirical

and mechanistic modeling is required to estimate how shifting seagrass and salt marsh

distributions, as well as novel nursery habitats such as algal patches, will affect blue crab

population dynamics both within Chesapeake Bay specifically and among Northwestern

Atlantic estuaries generally.
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Chapter 4

A state space approach to modeling

blue crab population dynamics of

Chesapeake Bay: influence of

seagrass availability on juvenile

survival

Abstract

Nursery habitats enhance growth and survival of juvenile fish and invertebrates by providing

abundant food resources and refugia, and can significantly augment secondary production

of exploited species and their fisheries. The quality of nursery habitats therefore influences

success of fisheries management and conservation efforts. Although the importance

of nursery habitats to marine and estuarine species has been documented widely, the
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quantitative value of these habitats in population dynamics at spatial and temporal scales

relevant to management has only recently been emphasized and documented for a few

species. Hence, a need exists to quantify the relative value of nursery habitats to population

dynamics of exploited species. One particularly useful approach to population dynamics

modeling is the use of state-space models in fisheries stock assessment where data are

noisy or incomplete. These models can provide more precise estimates of population

size and growth rates while also incorporating environmental effects, which can inform

ecosystem-based management decisions. Using multiple sources of juvenile and adult

indices of abundance, in concert with spatiotemporal data on seagrass (habitat) extent, we

developed a 2-stage state-space model of the effects of seagrass habitat distribution on blue

crab, Callinectes sapidus, population dynamics. Despite the well-understood importance

of seagrass meadows on juvenile blue crab vital rates, and by extension its influence on

adult population dynamics, traditional population models of the blue crab have primarily

emphasized generalized stock-recruit relationships, fishing mortality, and population-level

vital rates without consideration of habitat-specific effects or multiple sources of uncertainty.

We found that seagrass availability, specifically that of Zostera marina increased carrying

capacity of the blue crab population, and that maximum sustainable yield was overestimated

when seagrass cover was excluded as a covariate. Taken together, our results indicate

that fisheries managers should consider habitat (e.g. seagrass) availability within blue

crab population dynamics models to set more realistic harvest and seagrass conservation

targets.

4.1 Introduction

Fisheries are critical components of marine and estuarine ecosystems and constitute a

major source of both food security and income for coastal communities. However, the
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vast majority of global marine fish and invertebrate stocks are either fully or over-exploited

[118], which has far-reaching effects on both coastal communities and marine ecosystems

[17]. Furthermore, anthropogenic stressors like habitat loss/fragmentation, climate change,

and pollution further exacerbate the degradation of ecosystems and negatively impact fish

stocks [62, 200]. Attempts to manage fisheries and rebuild stocks globally have had mixed

success, and there has been increasing recognition of the need to incorporate ecosystem

considerations into management frameworks [99, 40].

One vital requirement for the success and sustainability of fisheries is the quantity and

quality of juvenile habitats. In particular, nursery habitats contribute disproportionately to

fisheries productivity. A habitat is considered a nursery if it contributes more juveniles per

unit area to adult populations relative to other candidate habitats, which may be due to

higher relative survival and/or growth [8]. Generally, nurseries support greater secondary

production via enhanced density, growth, and/or survival of juveniles [8, 67, 128, 35, 143,

140, 109, 160] through the provision of food resources and refugia.

Despite the importance of these habitats to fisheries, the quantitative contribution of

these habitats to populations at spatial and temporal scales relevant to fisheries manage-

ment has only recently been emphasized and documented for a few species [216, 188,

226, 16, 102, 21]. Without this information, management frameworks may not account for

environmental processes that reduce juvenile survival and growth – such as habitat loss.

Resulting habitat management failures may lead to degradation, fragmentation, and loss of

nursery habitat, which directly affects fisheries by lowering population productivity, either by

reducing resiliency, lowering the carrying capacity of an ecosystem harboring an important

fishery, or both [209, 229, 203, 216]. These potential negative impacts to commercially

exploited species’ population dynamics have important implications for fisheries reference

points, management interventions, and long-term sustainability of the fishery [216]. In
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contrast, effective management of nursery habitats, including conservation and restora-

tion measures, can help maintain the integrity and functionality of these critical habitats,

ensuring the presence of essential nursery habitat for juvenile fish and invertebrates [234].

The expansion of traditional population modeling approaches to rigorously link habitat

availability to fisheries production can provide important insights with relevance to fisheries

management [102]. These approaches can explicitly incorporate nursery habitat effects

either by leveraging vital rates derived from small-scale studies [51, 131, 114, 212] or directly

estimating effects of habitat on vital rates through inclusion of environmental covariates

into stochastic population models fit to observed field data [39, 114, 127]. Further, using

Bayesian inferential frameworks, fisheries population models can robustly integrate nursery

habitat characteristics and their effects on vital rates by initially using estimates from

small-scale, reductionist studies as prior distributions (when available) and subsequently

evaluating habitat-specific vital rates at the population level by fitting models to population

survey data [122].

In this study, we constructed multiple population dynamics models to demonstrate the

effects of nursery habitat on fisheries using the blue crab Callinectes sapidus population in

Chesapeake Bay as a case study. The blue crab fishery is both currently and historically

one of the most valuable fisheries in Chesapeake Bay. Blue crabs undergo complex

ontogenetic changes in habitat utilization, with seagrass meadows serving as the preferred

nursery habitat for the smallest and most vulnerable juvenile stages. [103, 70]. However,

seagrass meadows in Chesapeake Bay are threatened by climate change and nutrient

pollution [156, 137, 158, 68]. To model the effects of seagrass habitat on blue crab

population dynamics, we employed a state-space model framework to incorporate data on

both abundance indices from multiple fisheries-independent surveys and annual seagrass

cover information. Specifically, we constructed five state-space models with different
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configurations of seagrass effects, specifically looking at availability of Zostera marina and

Ruppia maritima. Additionally, by using published seagrass species-specific distribution

trajectories modeled under different management actions, we established a clear and

direct connection between water quality management and blue crab population abundance.

Our research is particularly insightful when comparing the results to models that exclude

seagrass covariates, highlighting the critical role of seagrass in shaping the outcomes of

ecosystems generally and fisheries management strategies specifically.

4.2 Methods

4.2.1 Study fishery and area

We focus on the Chesapeake Bay blue crab Callinectes sapidus stock from 1990–2022.

Chesapeake Bay harbors the largest blue crab fishery along the Atlantic coast. The blue

crab population in Chesapeake Bay has fluctuated considerably over the 33 years since

an annual bay-wide population surveys were established. From 1990 to 2007, the blue

crab spawning stock in Chesapeake Bay declined by 80% [106, 117]. In response to these

trends, severe fishery reductions, including the closure of the winter dredge fishery, were

implemented in 2008 by the three management agencies operating within Chesapeake Bay:

the Virginia Marine Resources Commission (VMRC); Potomac River Fisheries Commission

(PRFC); and Maryland Department of Natural Resources (MDNR) [22]. Although estimates

of population abundance and fishery exploitation between 2009–2016 suggested that the

population had begun to recovered from over-exploitation, annual adult female abundances

have fluctuated substantially between very low and high levels since 2017 [22]. Meanwhile,

juvenile abundances in 2021 and 2022 were the lowest on record [101]. The absence of

a sustained, population-level response to management interventions in 2008 suggests
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that fishing pressure is not the sole driver of blue crab abundance. Further recovery of

the Chesapeake Bay blue crab population may be dependent upon seagrass quality and

availability during recruitment [131, 171], the role of which has yet to be quantified at the

population level.

4.2.2 Life cycle

The current understanding of the blue crab life cycle underlies the proposed state-space

model framework (Fig. 4.1). Consistent with many estuarine invertebrate species, the

blue crab has a complex life history. After mating, mature females migrate to high-salinity

entrances of estuaries in late spring/early summer to brood. Once hatched, zoeae (larvae)

are advected from the estuary into adjacent marine waters along the continental shelf [44].

Following three to four weeks of development and seven to eight larval molts, zoeae molt to

become megalopae (postlarvae) and subsequently re-invade estuaries and coastal systems

between late summer and mid-fall via wave or tidally driven currents and eventually settle

into nursery habitats before rapidly metamorphosing to first-instar recruits [103]. Recruits

must subsequently survive through fall, which is a function of fluctuating environmental

variables such as habitat, predation pressure, and population size [70, 103]. Surviving

recruits then overwinter as juveniles and mature over the following year.
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Figure 4.1: Life cycle diagram of the blue crab population with two stages. Blue boxes

denote adult stages in each season, while red boxes denote juvenile states. Similarly,

blue and red arrows denote transitions between stages at different times of year for adults

and juveniles, respectively. The dashed red line denotes offspring produced by adults in

summer. The life cycle begins with juveniles recruiting to nursery habitat in fall (1). Juveniles

then overwinter (2) and gradually grow to larger size classes over the following spring

(3) and fall (4), before maturing after approximately one year (5). Adults subsequently

overwinter (6) before mating in spring (7) and reproducing in summer (8). Surviving adults

remain in the adult stage (5–8) until death. Blue crab symbols were obtained through the

University of Maryland Center for Environmental Science Integrated Application Network

(UMCES IAN) Image Library.

4.2.3 Environmental covariates considered

The blue crab is reliant on abundant nursery habitat distributions during its early life stages

[103]. In particular, seagrass meadows represent a critically important nursery habitat

for the smallest and most vulnerable juvenile stages [154, 159, 164, 77, 171], although

other nursery habitats such as fringing salt marsh appear critically important to larger

juveniles [105, 186, 86, 82, 81, 81]. Juvenile blue crab growth and survival are both
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enhanced in seagrass meadows [159, 164, 76, 77], and juvenile blue crab densities are

frequently orders of magnitude higher in seagrass meadows relative to unstructured sand

habitat [154, 171, 81]. Despite the well-understood importance of seagrass meadows on

juvenile blue crab vital rates, and by extension their influence on adult population dynamics,

traditional population models of blue crabs have primarily emphasized generalized stock-

recruit relationships, fishing mortality, and population-level vital rates without consideration

of habitat-specific effects, particularly at the population scale [124, 125, 106, 126]. Moreover,

more recent efforts to estimate the influence of seagrass habitat on blue crab population

dynamics [131, 169, 227] relied primarily on parameter estimates derived from small- scale

studies and did not fit population dynamics models to observed estimates of juvenile and

adult abundance at the population scale. As observed relationships between environmental

variables and population abundances may decouple when assessed at multiple spatial and

temporal scales [82], the effect of seagrass availability on blue crab population dynamics

at the population level remains an open question.

Trends in seagrass aerial cover in Chesapeake Bay appear species-specific, and future

blue crab population sizesmay depend onwhether the nursery quality conferred by seagrass

meadows are equivalent across seagrass species. Although recent reductions in nutrient

loads have led to general recoveries of some seagrass beds in Chesapeake Bay [96],

future projections depict long term declines in the historically dominant seagrass species,

eelgrass Zostera marina due to increasing thermal stress associated with anthropogenic

climate change [137, 225, 68]. In contrast, projections of a co-occurring seagrass species,

Ruppia maritima are less influenced by projected water temperature shifts and instead

will depend on whether additional nutrient reduction measures are undertaken [68]. It is

unclear how the Chesapeake Bay blue crab population will respond to changes in differential

trajectories of various seagrass species. Limited evidence suggests that juvenile densities
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may be higher in R. maritima than Z. marina [157, 219], perhaps due to higher structural

complexity associated with R. maritima shoots [219]. Moreover, even among seagrass

monocultures, meadows are not homogeneous, and evidence suggests that seagrass shoot

density influences juvenile abundance and survival [76, 77, 14], which may impact carrying

capacity [131]. Hence, we considered multiple seagrass habitat covariate configurations

of varying complexities ranging from no seagrass effect to separable Z. marina and R.

maritima density-weighted cover effects (see Section 4.2.5).

4.2.4 Sampling and data processing

4.2.4.1 Indices of abundance and catch data

Blue crab indices of abundance were developed from two fishery-independent surveys

employing stratified random sampling designs: the Virginia Institute of Marine Science

Juvenile Fish and Blue Crab Trawl Survey (herein; VIMS Trawl Survey)[207], and the Winter

Dredge Survey (WDS;Fig. 4.2)[101]. Herein, all instances of juveniles refer to animals

≤60 mm carapace width (CW), while adults refer to animals >60 mm CW. Beginning

in March 1989 and continuing to the present, the VIMS Trawl Survey has conducted

spatially stratified-random and fixed-site monthly sampling in the mainstem Virginia portion

of Chesapeake Bay using consistent gear and methodology. In addition, the VIMS Trawl

Survey has employed similar methodology in Virginia tributaries (i.e. the York, James, and

Rappahannock rivers) since 1996. Meanwhile, the WDS has been operating in Chesapeake

Bay using a stratified random sampling design (with a different spatial strata design for the

entire bay) since its inception in 1990. In contrast to the monthly resolution of the VIMS

Trawl Survey, the WDS is conducted annually each year between November and March at

1,500 randomly selected sampling stations throughout the Maryland and Virginia waters.

The WDS employs a crab dredge and targets both adult and juvenile crab populations
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during winter while crabs are dormant and buried in the sediment to increase gear efficiency

[190].

Figure 4.2: Maps describing the sampling distribution of the VIMS Trawl Survey and Winter

Dredge Survey. Points denote 2022 sampling.

Juvenile and adult indices of abundance and corresponding uncertainty estimates were

developed based on the stratified-random survey design employed by VIMS Trawl Survey

with a finite-population correction, as follows. For a given stage l (where l = J for juveniles

and l = A for adults) in the VIMS Trawl Survey in year t, the index of abundance Ôlt and

associated variance σ2
Ôlt

are calculated as:
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Ôlt =

H∑
s=1

ȳslt ·Ws (4.1)

ȳslt =

∑nst
g=1 ysglt

nst

σ2
Ôlt

=

M∑
s=1

(
Ws

)2 · vslt
nst

·
(
1− nst

Ns

)

The expected value for an index of abundance for a given state Ôlt in year t is the sum of

ȳslt (the mean number of crabs in stage l caught per tow in stratum s in year t), multiplied

by the stratum weight Ws for all H strata. ȳslt is the sum of ysglt (the number of animals

from stage l collected in the gth trawl tow collected from the sth stratum in year t) divided

by nst (the number of samples in the sth stratum in year t). Meanwhile, Ws = Ns
N is the

stratum weight, where Ns is the total number of spatially explicit grid cells (here using a

1000 m x 1000 m lattice) in a stratum [63, 231, 207] and N is the total number of cells such

that N = N1,+N2 + ...+NH . Finally, the index variance, σ
2
Ôlt

, is expressed as the sum of

stratum weights Ws squared and subsequently multiplied by vslt, the sample variance in

abundances of stage l for randomly selected tows in stratum s in year t and scaled by a

finite population correction factor [90].

For each year, we considered trawl survey tows collected between April and June

(i.e. when water is warm enough to facilitate relatively high catchability in bottom trawl

tows), leading to an average of 169 trawl samples each year, with a standard deviation

56. This information was used to develop VIMS Trawl Survey indices of abundance for

temporally indexed juvenile and adult indices of abundance and associated time-varying,

state-specific observation error. Although the VIMS Trawl Survey has employed consistent

gear and methodology across all sampled regions for nearly 30 years, a vessel change
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in 2015 was associated with reduced catchability of adult and juvenile blue crabs [207].

As a consequence, we only considered VIMS Trawl Survey estimates from 1990–2014

for adults and 1996–2014 for juveniles. Meanwhile, temporally indexed WDS juvenile and

adult indices of abundance and time-varying juvenile and adult observation error were

calculated using similar methodology and corrected for adult catchability [190], and were

supplied by MDNR [126, 22]. Both VIMS Trawl Survey and WDS indices of abundance

and observation errors were estimated at spatial scales of 1 m2. Hence, all indices and

observation errors were multiplied by 1.16 × 1010, the total surface of Chesapeake Bay

in units of m2, to relate observations to the spatial scale of the blue crab population in

Chesapeake Bay. We note that for the VIMS Trawl Survey, this is a strong assumption;

abundances of blue crabs – particularly juveniles – may not be equally distributed across

Maryland and Virginia waters. Finally, estimates of bay-wide total annual female catch

(number of animals) were supplied by MDNR.

4.2.4.2 Seagrass data

Estimates of seagrass availability were derived from GIS data on submersed aquatic

vegetation (SAV) obtained from the Virginia Institute of Marine Science SAV Monitoring

Program, as follows. First, R. maritima and Z. marina beds were identified from a ground

observation dataset consisting of in situ presence/absence field surveys of SAV species

collected throughout the bay by both researchers and citizen scientists [153]. To quantify

annual total aerial SAV cover, as well as annual density-weighted SAV cover in identified

R. maritima and Z. marina beds, annual aerial imagery was analyzed from 1984–2022

[68], although only data from 1990–2022 were considered in this modeling effort. Juvenile

blue crabs primarily settle in the southern portion of Chesapeake Bay (i.e. lower Bay)

during the fall recruitment period [213, 64] and do not reach Maryland waters until the
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following summer, at which point they have achieved sizes less vulnerable to predation [72].

On the western shore, postlarvae and recruits occur as far as the Potomac River, while

incoming currents advect postlarvae and young juveniles farther north along the eastern

shore (R. Lipcius pers comm)[214]. Consequently, we chose to consider only SAV from

the Chesapeake Bay mouth to the Potomac River (latitude: 38.063, longitude: -76.322) on

the western shore, and SAV between the Bay mouth and Fishing Creek (latitude: 38.315,

longitude: -76.205) on the eastern shore (Fig. 4.3).
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Figure 4.3: Seagrass meadow coverage of Z. marina (blue) and R. maritima (green) of

Chesapeake Bay in 2019. The black polygon denotes the boundary of seagrass considered

in the blue crab state-space model framework.
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For each year, density-weighted aerial cover was calculated by a previous publication

[68] for each species-complex (i.e. R. maritima monoculture, Z. marina monoculture, and

mixed species beds). Digitized SAV polygons were assigned by by the Virginia Institute

of Marine Science Restoration and Mapping Program (herein, VIMS SAV Program) a

density score of 1–4, indicating densities of 0–10%, 11–40%, 41–70%, and 71–100%

cover, respectively. Using these data, we took the mean aerial cover (0.05, 0.25, 0.55

and 0.85) for each density score and applied a weighted sum of total cover for a given

species-complex in a given year to obtain density-weighted area estimates (in thousands

of hectares). In the absence of an obvious assignment scheme, we divided the areas of

mixed-species beds for each year by two and added the area values to corresponding total

and density-weighted area estimates of R. maritima and Z. marina. Finally, we calculated

total seagrass density-weighted area for each year as the sum of respective R. maritima

and Z. marina areas (see Appendix D.1 for details).

We used future seagrass projections for each seagrass species developed by the VIMS

SAVProgram (https://www.vims.edu/research/units/programs/sav/predicting-sav/index.php)

to simulate conditional catch at maximum sustainable yield (CMSY) under various climate

change and nutrient management scenarios. The scenarios include “no climate change”,

“no further reduction”, and “nutrient reductions”. The “no climate change” scenario” is a

hypothetical scenario in which climate change does not continue to occur and no nutrient

reductions were undertaken as part of the Chesapeake Bay Watershed Implementation

Plan (WIP) and established Total Maximum Daily Loads (TMDLs) of dissolved nitrogen and

phosphorous. The “no further reductions” follows a semi-plausible assumption where, after

2017, no further nutrient reductions are enacted. Finally, the “nutrient reductions” scenario

assumes watershed managers will continue agreed nutrient reductions according to the

WIP and established TMDLs.
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4.2.5 Model structure

Based on blue crab life history (Fig. 4.1), we constructed five state-space models to evalu-

ate the effects of seagrass quantity on blue crab population dynamics using a Bayesian

framework. State-space models present a flexible framework which can incorporate en-

vironmental effects as well as uncertainty inherent in estimating population abundance,

particularly when considering biomathematical models (e.g. Ricker or Beverton-Holt density-

dependence). State-space models are Markov hidden process models that enable separa-

tion of process error – stochastic changes in the population over time – and observation

error – uncertainty associated with estimates of population size arising from random sam-

pling of commercially exploited populations [3]. State-space models express unobserved

states (i.e. abundances of different stages or ages, subject to process error) at time t

through a probabilistic function of (1) the states at time t − 1 and (2) the observations

(subject to sampling error) of each state at time t. The additional complexity of state-space

approaches, although computationally expensive, reduces bias in parameter estimates

relative to regression-based approaches which assume either perfect state observations

(i.e. process error only) or perfect model structure (i.e. observation error only) at all time-

steps [202]. Hence, state-space models are an improvement from traditional regression

approaches that employ well-established mechanistic (process) models while allowing

for rigorous statistical inference of model quantities. State-space frameworks have been

successfully used to assess vital rates in both age- and stage-structured populations

[204, 50, 174, 20], and more recently have expanded to include environmental effects

[39, 114, 166, 127].

All state-space models considered here were predicated on a two-stage population

structure consisting of immature juvenile (here defined as ≤60 mm CW) and mature adult

(>60 mm CW) abundance at each year t, denoted Jt and At, respectively. For simplicity,
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we chose to focus only on juvenile and mature female blue crab abundances and assumed

that fecundity was predominantly a function of female spawning stock. Our models are

structured as follows. For a given year t, juvenile abundance is a function of the mature

female abundance at year t−1. Meanwhile, mature female abundance in year t is a function

of mature female abundance at year t−1, juvenile abundance at time t−1, fishing mortality

Ft−1, and natural mortality M (fixed at 0.9 for both states, see below). For each year, we

assumed a log-normal process error structure for both juvenile and adult states. Juvenile

and adult states in year t were related to observed indices of abundance for juveniles and

adults at year t from multiple fisheries-independent surveys (see Section 4.2.4.1). We

assumed that observation errors associated with juvenile and adult states were normally

distributed with supplied indices of abundance and corresponding variances derived from

stratified random sampling designs with finite population corrections. Indices of abundance

Ôlit and related observation error σÔlit
were calculated from the VIMS Trawl Survey using

raw data from equation 4.1, while WDS indices and observation error were supplied by

MDNR. Finally, fishing mortality in year t was related to observed catch in year t using

Baranov’s catch equation [7]. Here, we assume that Ct, observed commercial catch at year

t, is an imprecise but unbiased estimate of the true catch in year t. We therefore specified

that model estimates of catch calculated using Baranov’s catch equation be related to

observed catch through a normal distribution with a standard deviation of 107, yielding

coefficients of variation between 5% and 17% among all years. This choice of catch error

was the smallest possible while still facilitating model convergence and estimated catch

corresponded well with reported values (Fig. D1). Moreover, the majority of coefficients

of variation specified here were comparable to coefficients of variation estimated by the

previous benchmark stock assessment from 1990 to 2010 (the last year of the assessment),

although values estimated by the previous assessment were slightly larger (min: 8%; max:

128



22%; Fig. D2) [126]. Hence, the complete set of model equations is expressed as:

ln(Jt) = ln
( αAt−1

1 + βt−1At−1

)
+ εJt (4.2)

ln(At) = ln(At−1 + Jt−1)− (Ft−1 +M) + εAt

Ct ∼ N

( Ft
Ft+M

(
1− e−(Ft+M)

)
(At + Jt)

Dt
, 107

)
ÔJit ∼ N(qJiJt, σÔJit

)

ÔAit ∼ N(qAiAt, σÔAit
)

βt = eγ0+Xtγ

εlt ∼ N(0, σl)

Dt = Do if t = 1990, 1991, ..., 2008

Dt = 1 if t = 2009, 2010, ..., 2022

Here, Ôlit denotes the ith index of abundance (where i = D for WDS and i = V for VIMS

Trawl Survey) for stage l (where l = J for juveniles and l = A for adults), with standard

deviation σÔlit
. Catchability coefficients relating index of abundance i at the population

level to state l is denoted qli. Adult WDS indices of abundance were already corrected for

catchability across multiple vessels sampling Virginia and Maryland waters using estimates

derived from a previous study leveraging 10 years of efficiency data [190]. As a result,

we assumed qAD = 1. However, recent evidence suggests that the survey design of the

WDS results in systematic under-sampling of juveniles, with catchability rates estimated

between 0.14 and 0.24 [169]. Moreover, catchability of juvenile and adult stages in VIMS

Trawl Survey are unknown. Hence, we specified prior distributions for qJD, qAV , and qJV

(see Appendix D.2 and Table D1). Finally Dt is a scaling parameter to account for dredge
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fishery mortality not accounted for in reported catch values i.e. animals destroyed as part

of the dredging process that were not landed) [124]. The dredge fishery was closed in

2008, and as a result for all years prior to 2009, we set Dt = Do, where Do is an estimated

parameter used to scale catch data, while for all years later than or equal to 2009, we set

Dt = 1. Hence, At, Jt, Ft, and Dt are state variables; α, γ0, qJi, qAi, σl are coefficients and

dispersion parameters; and Ct, ÔJit, and ÔAit are imperfect observations of functions of

state variables.

Model results based on simulated data with known parameter values resulted in non-

sensical inference when catchability coefficients and natural mortality M were both esti-

mated, indicating that the model was unidentifiable. Hence, we chose to fixM in all models

and estimate fishing mortality and catchability coefficients [112]. A comparison of direct

and indirect estimates of annual natural mortality suggested that M ranges from 0.7− 1.1

for large juvenile and adult blue crabs [69]. Here, we fixed M at the median value, 0.9

[69, 126].

Density dependence was imposed using a Beverton-Holt stock-recruit relationship,

which presumes that density-dependent juvenile mortality in year t is primarily a function

of cohort size [10]. Here, α is the productivity parameter at low spawning stock size (i.e.

the product of per capita female births, density-independent larval/postlarval survival, and

density-independent juvenile survival) [124, 125, 131]. Meanwhile, βt denotes the effect of

density dependence, such that the carrying capacity of juveniles in the system at time t is α
βt
.

Different models were predicated on various hypothesized relationships between juvenile

survival and seagrass quality and quantity (Table 4.1). Specifically, we postulated that

juvenile survival would be a function of either (1) a seagrass-invariant carrying capacity (i.e.

no seagrass effect), (2) total seagrass density-weighted aerial cover without consideration

of seagrass species, (3) Z. marina density-weighted seagrass aerial cover, (4) R. maritima
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density-weighted seagrass aerial cover, or (5) Z. marina and R. maritima separate density-

weighted aerial cover (i.e. two environmental covariates). Following the approach by

a recent study including environmental covariates in state-space frameworks [127], we

related density dependence to environmental covariate (here, seagrass predictors) using

a log linear function such that βt = eγ0+Xtγ where γ0 denotes the seagrass-independent

density-dependence effect, Xt is a design matrix of one or more seagrass predictors at

year t, and γ is a vector of coefficients (see Table 4.1). Altogether, the unknown model

parameters to be estimated are α, γ0, γ, σJ , σA, Do, Jt, At, and Ft. Prior distributions for all

non-temporal parameters are detailed in Appendix D.2 and Table D1.
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Table 4.1: Descriptions and justifications of five expressions (gk) of juvenile density depen-
dence as a function of seagrass cover.

Model Hypothesis Justification

g1: βt = eγ0 Juvenile density-dependence is

solely a function of seagrass-

independent component γ0.

Juvenile blue crabs are highly opportunistic and

may utilize a diverse suite of structurally complex

habitats when seagrass is not present[165, 86, 88].

g2: βt = eγ0+γ1Ĝt Juvenile density-dependence is a

function of a seagrass-independent

component and a total density-

weighted seagrass cover Ĝt with co-

efficient γ1 without consideration of
species composition.

Juvenile blue crabs grow faster, survive at higher

rates, and are more abundant in seagrass mead-

ows compared to unstructured habitat, such that

bay-wide carrying capacity increases with higher

seagrass availability [154, 76, 77, 103, 70, 171, 14].

g3: βt = eγ0+γ2ξ̂zt Juvenile density-dependence is a

function of a seagrass-independent

component and a Z. marina cover

component ξ̂zt with coefficient γ2.

Z. marina may provide superior habitat characteris-

tics for juvenile blue crabs, supporting their growth,

survival, and overall fitness. For instance, Z. ma-

rina beds offer high structural complexity, which

provides refuge and protection for young crabs

against predation. Additionally, Z. marina beds ex-

hibit greater biomass and higher primary productiv-

ity than R. maritima, providing a more food-rich en-

vironment for juveniles, such as higher abundances

and diversities of prey species, such as amphipods

and polychaetes. Finally, the spatial location of Z.

marina beds in the lower Bay may make this habitat

more attractive to postlarvae re-entering the estuary,

as it may be encountered first [152, 224, 80, 103].

g4: βt = eγ0+γ3ξ̂rt Juvenile density-dependence is a

function of a seagrass-independent

component and a R. maritima cover

component ξ̂rt with coefficient γ3.

R.maritima shoots and blades are smaller andmore

complex than Z. marina, corresponding to higher

structural complexity. As a result, juvenile blue crab

carrying capacity may be more closely related to

distributions of R. maritima than that of Z. marina

[157].

g5: βt = eγ0+γ4ξ̂zt+γ5ξ̂rt Juvenile density-dependence is a

function of a seagrass-independent

component and species-specific sea-

grass cover for Z. marina and R. mar-

itima (ξ̂zt and ξ̂rt, respectively) with
coefficients γ3 and γ4.

Structural characteristics and spatial orientation of

both Z. marina and R. maritima may result in signif-

icantly different but positive effects on juvenile blue

crab carrying capacity (see above sources)
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4.2.6 Model implementation

All data analyses, transformations, and visualizations were completed using the R pro-

gramming language for statistical computing [167] and the Stan probabilistic programming

language for Bayesian statistical modeling [199, 198]. We used Bayesian inference to

approximate the joint posterior distribution of all model parameters for each model. To

this end, we utilized the Stan programming language with Hamiltonian Monte Carlo (HMC)

estimation to generate samples from the joint posterior distribution [57]. Each model was

subjected to a warm-up/adaptive phase consisting of 5,000 iterations in a single Markov

chain, followed by an additional 5,000 iterations to obtain posterior samples. We assessed

chain convergence by examining trace plots and the split R̂ statistic (e.g. Fig. D3). In all

cases, the R̂ values for all unknown quantities in the model were below 1.01, indicating

convergence of the chains for all models [57]. Reported effect sizes were calculated based

on 80% Bayesian confidence intervals. All confidence intervals referenced here are the

highest posterior density intervals [115].

4.2.7 Model selection

Relative model performance was assessed using a one-step-ahead prediction leave-future-

out cross validation (1-SAP LFO-CV) approach to evaluate predictive performance through

withholding future observations [18]. We created 22 truncated datasets with terminal years

2000 to 2021. We subsequently re-fit each model to each artificially truncated dataset

and predicted the juvenile and adult abundances for the year immediately following the

terminal year. The final step of 1-SAP LFO-CV analysis was to compare the forecasted

predictions and associated uncertainty to excluded juvenile and adult blue crab indices

of abundance (i.e. 2001 to 2022, one year after terminal year). To this end, we used

estimated log-pointwise predictive density (ELPD) to evaluate out-of-sample predictive
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accuracy for each model [217]. For a given index i of abundance for a given stage l

in year t (Ôlit), conditioned on all previous observations from all states and indices (de-

noted Y1:t−1 = {ÔAD1:t−1, ÔAV 1:t−1, ÔJD1:t−1, ÔJV 1:t−1} for brevity) and the joint posterior

distribution p(θ|Y1:t−1) of the vector of all parameters θ, the ELPDLFO for the mth model is:

ELPDm =
∑

l={J,A}

∑
i={V,D}

2021∑
t=1991

ln p(Ôlit|Y1:t−1) for n = 2000, 2001, ..., 2021 (4.3)

=
∑

l={J,A}

∑
i={V,D}

2021∑
t=1991

ln

∫
p(Ôlit|Y1:t−1)p(θ|Y1:t−1)dθ

≈
∑

l={J,A}

∑
i={V,D}

2021∑
t=1991

ln
1

S

S∑
s=1

p(Ôlit|Y1:t−1, θ
(s)
1:t−1)

where here s denotes a given posterior predictive draw among a total of S. Models were

evaluated using ∆ELPD values: the difference in ELPDLFO between a given model and the

model with the best (i.e. largest) ELPDLFO in the set, as well as SE∆ELPD, the standard

error for the pairwise differences in ELPD between the best model and any given model.

We assume that a normal approximation adequately describes the pairwise differences (i.e.

∆ELPD values).

Models with large∆ELPD values (i.e. > 4 and> 1.96×SE∆ELPD; [194]) were considered

inferior relative to the best fitting model. When two models had comparable ∆ELPD values

(i.e. ≤ 4 and≤ 1.96× SE∆ELPD; [194]), the simpler model was chosen under the principle

of parsimony.

4.2.8 Goodness of fit

Goodness of fit for the highest-performing model was assessed through CV. For each

reduced dataset ending in t = 2000, 2001, 2002, . . . 2021, we computed 80% and 95%
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posterior predictive intervals for each index of abundance the following year (t+1). For CV,

we compared each forecasted posterior predictive interval to the corresponding observed

index of abundance at time t+1, as a forecasting exercise. Goodness of fit was determined

based on the observed coverage. (i.e. the proportion of excluded values which were

successfully captured by their respective 80% and 95% prediction intervals). For example, a

model yielding an observed coverage differing greatly from the nominal Bayesian predictive

credible level of 80% or 95% may indicate underfitting/overfitting.

4.2.9 Simulation-based projections

After fitting the five models, we chose the best performing model using 1-SAP LFO-CV.

Based on the best performing model, we conditionally projected multiple counterfactual

scenarios to illustrate the effect of seagrass covariates on blue crab population dynam-

ics and to approximate maximum sustainable yield (MSY) curves under each seagrass

management scenario. Using observed past seagrass cover as well as mean seagrass

projections for years 2023–2060 (both taken from VIMS SAV Program), we employed

numerical simulations to generate these conditional counterfactual plots and projection-

based MSY estimates. Conditional counterfactual projections were made by 1) setting

starting values to the 2022 state estimates (i.e. the entire posterior distributions for adults

and juveniles in 2022, conditioned on holding process error values at 0, 2) fixing catch

at harvest estimates from 2022 (67 million individuals), and 3) fixing density-weighted Z.

marina cover for all years 2023–2060 at maximum, median, and minimum values observed

from 1990–2022. For all mathematical formulas and detailed descriptions of counterfactual

plots, see Appendix D.1. For projection-based MSY estimates, again using observed past

seagrass cover (1990 – 2022) as well as mean seagrass projections for years 2023–2060,

we employed numerical simulations with starting values at 5×108 for both juvenile and adult
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states (i.e. reasonably high to assume unexploited conditions). For each exploitation rate

u = 0.0, 0.05, 0.1, . . . 1, we projected the population forward 100 iterations using posterior

draws of model parameters with M fixed at 0.9 and seagrass values fixed at the projec-

tions for a given year (1990–2060). At each projection time-step y, fishing mortality was

numerically estimated using Baranov’s catch equation, with catch at time-step y estimated

as Ĉ
(n)
y = (Â

(n)
y + Ĵ

(n)
y )u. The final iteration of the simulation (i.e. 100) was used as the

equilibrium population. Simulations indicated that populations typically stabilized after 10-20

iterations, and thus the additional 80 iterations were used as a precaution to ensure stability.

For each seagrass estimate in a given year and each exploitation rate, we then extracted

the posterior median equilibrium catch and 80% CIs. This procedure was repeated for all

three seagrass scenarios (i.e. “no climate change”, “nutrient reduction”, and “no further

reduction”). The exploitation rate corresponding with the maximum equilibrium catch (i.e.

the peak of the posterior median curve) was taken to be the exploitation rate at MSY. The

distribution of CMSY corresponding to the exploitation rate at MSY was then plotted for all

years and all future scenarios. For all mathematical formulas and detailed descriptions of

MSY calculations, including conceptual figures, see Appendix D.4 and Fig D4.
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4.3 Results

4.3.1 Model selection

The best fitting model was g3 (Table 4.2), which posited juvenile blue crab density de-

pendence as a function of density-weighted Z. marina cover, and corresponded to an

ELPDLFO value 26 units lower than the next-best model, Model g5. Moreover, the standard

error of the pairwise 1-SAP ELPD differences between models g3 and g5 was 7.04 (i.e.

∆ELPD > 1.96× SE∆ELPD
), indicating that Model g3 had superior predictive performance.

Hence, we chose Model g3 as the best-performing model. Notably, predictive performance

of all models including seagrass predictors was substantially higher than the base model

(g1) which did not include seagrass effects. Hereafter, inferences are based on model g3.

Posterior distributions of juvenile and adult states for all years are depicted in Fig. 4.4.

Table 4.2: Model selection results (rounded to two decimal places) from five Bayesian

state-space models (gk) expressing juvenile density dependence as a function of various
seagrass cover configurations. Models are presented in order of complexity. ELPDLFO: the

estimated log-pointwise density calculated from 1-SAP LFO-CV (Equation 4.3; ∆ELPD: the

relative difference between the ELPD of any model and the best model in the set; SE∆ELPD
:

standard error for the pairwise differences in ELPD between the best model and any given

model. The values corresponding to the selected model (g3) are presented in bold font.

Model: Density-dependence structure ELPDLFO ∆ELPD SE∆ELPD

g1: βt = eγ0 -1734.12 184.28 26.25

g2: βt = eγ0+γ1Ĝt -1653.79 103.95 18.13

g3: βt = eγ0+γ2ξ̂zt -1549.84 0.00 0.00

g4: βt = eγ0+γ3ξ̂rt -1600.04 50.20 8.69

g5: βt = eγ0+γ4ξ̂zt+γ5ξ̂rt -1576.32 26.48 7.04
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Figure 4.4: Posterior median (black line) and 80% CIs (grey bands) of population states

(A: juveniles; B: adults; C: juveniles and adults combined) from Model g3.

4.3.2 Goodness of fit

Comparisons between posterior predictive intervals and withheld values from the Model

g3 indicated that this model reliably predicted future values. The 80% and 95% posterior
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prediction intervals from model g3 contained 75.7% and 95.9% of withheld observations

across indices of abundance, respectively (Fig. 4.5). In addition, estimated catch fell well

within 80% Bayesian credible intervals, although catch estimates later in the time series

were consistently higher than observed catch, signaling potential, if mild, biases (Fig. D1).
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Figure 4.5: Leave-future-out cross validation results for Model g3. Plot labels denote the
index of abundance and posterior prediction confidence level. Colored points (blue or red)

denote posterior predictive medians, while error bars denote 80% or 95% CIs (see plot

labels). Red error bars indicate an observed value is outside the prediction interval, while

blue bars indicate an observed value is within the prediction interval. Black dots depict

observed indices of abundance for a given year. Trawl survey values after 2014 are not

included in any model or CV because of gear and vessel changes beginning in 2015 (See

Section 4.2.4.1).
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4.3.3 Recruitment parameters

Population-level recruitment parameters estimated by Model g3 include α, γ0, and γ2

(Tables 4.1 and 4.3). Juvenile carrying capacity is estimated as Kt =
α
βt

= α

eγ0+γ2ξ̂zt
using

a Beverton-Holt stock-recruit relationship with time-varying density-dependence. In the

absence of any Z. marina cover (i.e. holding ξ̂zt at 0), posterior median juvenile blue

crab carrying capacity of Chesapeake Bay is estimated at 2.9× 108 (80% CI: 1.9× 108 to

4.7× 108). Meanwhile, the posterior distribution of γ2, the effect of Z. marina on juvenile

density-dependence, was negative and its 80%CI did not contain 0, indicating that increases

in density-weighted Z. marina cover decreased the strength of density dependence (βt)

and therefore increased carrying capacity (Table 4.3 and Fig. 4.6).

Table 4.3: Parameter descriptions and posterior median and 80% CIs for model g3.

Parameter Description 10% 50% 90%

α ln Beverton-Holt productivity parameter 5.15 9.81 22.09

γ0 Seagrass-independent Beverton-Holt density-dependence param-

eter

-17.74 -16.83 -15.88

γ2 Coefficients relating density-weighted seagrass cover (see Table

4.1 for details) to Beverton-Holt density-dependence

-0.18 -0.10 -0.02

D Effect of dredge fishery (operation in 1990-2008 only) 1.00 1.11 1.23

qJD WDS juvenile catchability coefficient 0.43 0.47 0.51

qJV VIMS Trawl Survey juvenile catchability coefficient 0.06 0.07 0.08

qAV VIMS Trawl Survey adult catchability coefficient 0.12 0.13 0.13

σJ Juvenile process error sd 0.36 0.42 0.50

σA Adult process error sd 0.40 0.48 0.58
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Figure 4.6: Conditional counterfactual projections of total blue crab abundance (adults

and juveniles combined for each year; Jt + At) under three density-weighted Z. marina

cover values. The black lines and grey bands denote conditional posterior median total

blue crab abundance and 80% CI, respectively for years 1990–2022. Meanwhile, colored

lines and bands denote posterior predictive median population trajectories and 80% CIs

under different fixed Z. marina cover: maximum observed cover (green), median observed

cover (yellow), and minimum observed cover (red). For details, see Appendix D.1.

4.3.4 Projection-based MSY

Using estimates from Model g3, and seagrass projections through 2060, we conditionally

projected CMSY and corresponding uncertainty for all years (past and future) under each

seagrass management scenario. Density-weighted cover of Z. marina, the environmental

covariate included in Model g3, dropped precipitously in 2019 and is not expected to reach

pre-2019 coverage even under the most optimistic seagrass scenario (Fig. 4.7A) [68].

Consequently, our CMSY estimates (i.e. conditional posterior predictive median and 80% CI)
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derived based on mean density-weighted Z. marina cover by the VIMS SAV Program were

all approximately equal to CMSY estimates between 2004 and 2008 when density-weighted

Z. marina cover was at similarly low levels (Fig. 4.7B).

Figure 4.7: Time series of A) past and projected density-weighted mean cover of Z. marina

by the VIMS SAV Program and B) our estimates and projections for CMSY. For A), density-

weighted mean cover of Z. marina of observed (black) and projected scenarios for no

climate change (green), nutrient reduction (yellow) and no further reductions (red). For

B), conditional CMSY posterior median (lines) and 80% CI (shaded regions) are based on

past (grey) and future (green: no climate change; yellow: nutrient reduction; red: no further

reduction) density-weighted Z. marina cover estimates in A). Points in B) depict reported

female total catch Ct for each year 1990 to 2022.

Comparisons of past projection-based CMSY values to reported catches (Ct, see equa-

tion 4.2 and Section 4.2.5) were generally consistent with the blue crab population trajectory

over time (Figs. 4.4 and 4.7). Reported catch generally exceeded CMSY in years prior to

2010, particularly prior to 2000. However, after 2010 almost all reported female catches
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were near or below median CMSY (Fig. 4.7B). This broadly corresponded with the estimated

population trajectory for total female blue crab populations, which declined from 1990 to

2008 and began increasing in 2009 (Fig. 4.4C). Meanwhile, projection-based CMSY under

different future scenarios of density-weighted Z. marina were generally consistent with one

another due to the relative similarity in projected density-weighted Z. marina (Fig. 4.7A).

The estimated CMSY in 2060 under the “no climate change” scenario was only marginally

higher than the other two scenarios (73 million individuals vs 65 and 63 million individuals

in 2060) and confidence intervals overlapped substantially, indicating relative statistical

equivalence.

Finally, comparisons of CMSY projections between models g3 and g1 (the base model)

demonstrated the benefit of including seagrass covariates into future projections. As

model g1 did not include time-varying MSY coefficients, the CMSY derived from Model

g1 for all future years considered was static (conditional posterior median: 116 million

individuals year-1; 80% CI: 75 to 138 million individuals year-1). Although the conditional

posterior inference for this CMSY was comparable to that from Model g3 in the early part

of the time series (i.e. 1990-2000), they were considerably higher than the highest CMSY

posterior distribution produced from Model g3 future projections (“no climate change” in

2060; conditional posterior median: 74 million individuals year-1; 80% CI: 34 to 98 million

individuals year-1). These results suggest that exclusion of density-weighted Z. marina

cover resulted in conditional median projections for CMSY which were 150% higher and

may substantially overestimate sustainable harvest.
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4.4 Discussion

In this study, we carried out a model-based assessment of the quantitative value of seagrass

distribution on blue crab population dynamics in Chesapeake Bay, which should also be

relevant to other blue crab populations along its geographic range. Our findings indicate

that 1) inferences for blue crab population states are improved when incorporating seagrass

cover as an environmental covariate, 2) blue crab population dynamics are presently more

responsive to density-weighted Z. marina cover than to that of R. maritima, and 3) future

Z. marina projections under all three scenarios (no climate change, nutrient reduction, no

further reductions) suggest general declines in both population abundance and CMSY relative

to past values. Hence, these findings enhance our basic understanding of the importance

of nursery habitats for exploited marine and estuarine species [139, 188, 16, 102] and

rigorously express how declines in nursery habitat quality and quantity impact commercially

exploited fisheries.

4.4.1 Seagrass-specific effects

Density-weighted Z. marina cover reduced the strength of juvenile blue crab density depen-

dence and increased juvenile carrying capacity in Chesapeake Bay. Inclusion of seagrass

covariates improved predictive performance relative to the seagrass-independent base

model in all cases, although Model g3, which included only density-weighted Z. marina cover

as the sole environmental covariate, exhibited superior predictive performance relative to

both the base model and other candidate seagrass models.

Correspondence between juvenile blue crab density dependent regulation and density-

weighted Z. marina cover as opposed to either R. maritima or seagrass generally is

potentially due to 1) structural characteristics of Z. marina and R. maritima, 2) differences
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in temporal persistence of these two species, and 3) spatial distribution of Z. marina

relative to that of R. maritima. First, R. maritima is characterized by short, thin, rod-

like shoots, compared to longer, thicker, strap-like leaves characteristic of Z. marina

[11, 136, 80, 33]. Thus, Z. marina shoots and canopy structure may provide superior refuge

quality to juvenile blue crabs [134]. Second, although faunal densities are comparable

between the two species in Chesapeake Bay [135, 55], R. maritima blades only occupy

the water column for 10 to 30% of the year; considerably less than that of Z. marina,

which occupies the water column 80% of the year [136]. Moreover, R. maritima is an

ephemeral species reliant on sexual reproduction and known for substantial fluctuations

in annual cover [24]. Hence, differences in annual persistence of R. maritima may hinder

the development of complex communities typically associated with the perennial nature

of Z. marina [33]. In simpler terms, the seasonal decline of R. maritima may prevent the

formation of diverse and long-lasting habitats, unlike the more persistent Z. marina, which

allows for the establishment of more intricate ecological communities [68]. Finally, juvenile

blue crabs may be more responsive to distributions of Z. marina due to the spatial position

of this species in Chesapeake Bay. Z. marina remains the dominant seagrass in lower

Chesapeake Bay, while R. maritima primarily occurs farther from the mouth of Chesapeake

Bay in lower salinity environments [68]. Meanwhile, blue crab postlarvae re-enter the Bay

through the mouth and rapidly settle into the first structurally complex habitat available –

usually lower Bay SAV [201]. Moreover, the stenohaline nature of blue crab postlarvae

may limit extensive penetration into relatively fresh middle and upper Chesapeake Bay

waters. For example, blue crab postlarvae were found in consistently higher densities in

the lower York River (≈ 50 km from Chesapeake Bay mouth) relative to Tangier Sound

(≈ 104 km from Chesapeake Bay mouth) [214]. Taken together, the structural complexity,

phenology, and spatial position of Z. marina provide superior nursery quality compared to
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R. maritima.

4.4.2 Implications for blue crab management

Conditional posterior predictive inferences for maximum sustainable yield from both historic

and projected density-weighted Z. marina cover facilitated useful insights for blue crab

management. First, the degree of coherence between reported catches and estimated

CMSY from 1990 to 2022 lends insight to blue crab population trajectories. Extensive

blue crab population declines from 1990–2008 corresponded with substantial divergences

in reported catch and estimated CMSY, particularly from 1990–2000, However, following

management changes enacted in 2008, reported catch fell within CMSY confidence intervals.

Higher relative population estimates after this time period could reflect the correspondence

between reported catch and estimated CMSY. However, in recent years (i.e 2020–2022),

both juvenile and adult abundances have fallen notably [22]. These declines appear to

coincide with dramatic losses in density-weighted Z. marina cover between 2018 (7535 ha)

and 2019–2022 (2746–4338 ha) [68]. Hence, discrepancies between reported catch and

CMSY, coupled with recent Z. marina cover trajectories, could explain observed changes in

blue crab population dynamics well.

Unfortunately, Z. marina cover is expected to continue declining relative to historic

extents even under the most opportunistic scenarios. Unlike R. maritima, Z. marina is

far more sensitive to thermal stress [151]. Z. marina currently experiences temperature-

induced stress in summer months, giving rise to severe episodic die-offs followed by limited

recovery [156, 151, 137]. This species is expected to continue to decline in abundance

and distribution in Chesapeake Bay as summer temperatures rise; a direct result of climate

change [137, 68]. Summer temperatures are already sufficiently high relative to historic

norms that, even under the “no climate change” scenario in [68], long-term Z. marina
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projections remain far lower than the 1990–2022 values (conditional posterior median value

under 3667 ha of density-weighted cover in “no climate change” vs 5228 ha cover observed

in time series). Hence, although counterfactual projections demonstrate the value of Z.

marina cover to blue crab population dynamics, the low contrast in density-weighted cover

trajectories correspond to comparable blue crab population trajectories.

Traditionally, population dynamics models have focused on single-species applications

primarily concerned with fishing pressure and population vital rates. Although it is widely

understood that population vital rates are influenced by environmental processes, vital rates

in traditional models are usually assumed static across space and time and unresponsive

to fluctuations in environmental variables. This stationarity assumption, although question-

able, could be justified in the past because of relatively limited directional anthropogenic

influence on environmental variables, and thus stochastic perturbations in environmental

variables could be accounted for with the use of random process error. However, anthro-

pogenic pressures have led to multiple unprecedented directional changes in numerous

environmental variables. Hence, variation in environmental processes – and corresponding

influences on fisheries population dynamics – is increasingly deterministic and directional.

As a consequence, ignoring influential environmental processes is increasingly untenable.

Comparisons in CMSY projections between our best performing model and our seagrass-

independent base model highlighted the benefit of including environmental covariates

and the peril of their continued exclusion. First, evidence from cross-validation exercises

illustrated the improved performance of Model g3 relative to Model g1, irrespective of CMSY.

Second, although CMSY estimates from models g1 and g3 were more comparable in past

years –particularly prior to 2000, CMSY estimates derived from Model g1 were noticeably

higher than those produced from Model g3 in future years when Z. marina cover is projected

to be considerably lower than past estimates. This suggests that management advice from
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Model g1 may substantially overestimate sustainable harvest in future scenarios in which Z.

marina is much lower than historical values. Consequently, although CMSY estimates under

various seagrass management scenarios were similar due to the physiology of Z. marina,

the projections remain notably more conservative relative to estimates from models not

considering Z. marina cover.

4.4.3 Caveats and future work

A major caveat of this study is the confounding of Z. marina and R. maritima with spatial

position within Chesapeake Bay. Currently, Z. marina remains the dominant seagrass

species in the lower Bay, while R. maritima is the dominant species in the middle and upper

portions of Chesapeake Bay. While we believe the superior refuge value of Z. marina

to blue crabs as evidenced in our model is a function of both seagrass physiology and

spatial position, we acknowledge that the relative importance of R. maritima may change

as this species replaces extirpated Z. marina in the lower Bay. As a result, we stress

that our results might be improved by using more granular spatial delineations such as

density-weighted seagrass species extents in upper, middle, and lower Chesapeake Bay

as an initial means of delineating effects of seagrass species and spatial position.

The impacts of habitat declines on population dynamics can be either mitigated or

intensified as a result of changes in other habitats, highlighting the importance of considering

multiple habitats when evaluating nursery status. For example, fringing salt marsh habitat is

gaining recognition as an intermediate nursery for larger (i.e. 15 to 60 mm CW) juvenile blue

crabs and potentially as an alternative primary nursery for smaller (≤15 mm CW) juveniles

in areas where seagrass meadows are sparse or absent [86, 82, 81, 81]. Ideally, the

effects of multiple habitats on species’ population dynamics should be assessed together

to determine nursery status. We were unable to include additional habitats such as salt
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marsh area or salt marsh edge in the present study due to model non-convergence,

which likely stems from 1) low temporal contrast in salt marsh habitat due to historic and

current marsh migration compensating salt marsh losses [183]1 and/or more likely 2) the

absence of an additional, unmeasured juvenile state in our data required to delineate

habitat effects of salt marsh and seagrass habitat. Although evidence strongly suggests

that smallest and most vulnerable juvenile blue crabs utilize seagrass meadows as a

primary nursery habitat [154, 164, 105, 171, 14], juveniles larger than 15 mm CW appear

to utilize structured and unstructured salt marsh habitat [105, 81, 81]. It is possible that the

increased survival of the most vulnerable and most abundant juvenile stages conferred by

seagrass provides a stronger signal that that of salt marsh or other structured habitats, or

that the substantially greater aerial cover of seagrass relative to other habitats provides

a clearer signal. Isolating potential effects of salt marsh or other structured habitats on

juvenile population dynamics (here ≤60 mm CW) may require assessment of small (≤15

mm CW) juvenile abundance in addition to the states assessed by the dredge and trawl

survey. Unfortunately, no survey in Chesapeake Bay currently exists that samples juvenile

blue crabs of that size class in shallow-water structured habitats due to logistical limitations.

Moreover, postlarvae re-invade estuaries in sporadic waves between July and November in

Chesapeake Bay [148, 214], such that multiple cohorts move through seagrass and other

structurally complex habitats within a given year. Hence, accounting for multiple nursery

habitats used throughout blue crab ontogeny may require a monthly time-step instead of

the annual time step in the present study. Future models operating at finer-scale temporal

resolutions with additional juvenile statesmay substantially improve our understanding of the

effects of multiple habitats on juvenile population dynamics. Finally, our CMSY projections

were based on conditional posterior predictive inference, whereby state equations were

1We were able to make inference on marsh habitat in Chapter 1 due to high spatial contrast in the data
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regarded as perfect representations of nature. Although such projections are in line with

simulation studies in literature [131, 169], we acknowledge that unconditional posterior

predictive simulation studies would yield uninformative projections beyond 2023 (i.e. one

year into the future) due to the multiplicative nature of process errors compounded over

time.

4.4.4 Relevance

The sustainable management of fisheries requires considering the crucial role of nursery

habitats and incorporating ecosystem considerations. Neglecting the value of nursery

habitats can result in habitat management failures, leading to the loss of critical habitats

and reduced population productivity. By expanding population modeling approaches and

rigorously linking habitat availability to fisheries production, we can gain valuable insights

for effective fisheries management. Moreover, fisheries management necessitates the use

of brief forecasts for stock performance, highlighting the necessity for techniques that can

integrate the impact of covariates on recruitment when their influence is significant. The

high correspondence between the nominal 1-SAP 80% and 95% posterior intervals and the

observed proportion of withheld values captured within those intervals suggests that our

best-performing model is a useful forecasting tool for at least the following year, although

the multiplicative process error structure may make posterior predictions farther into the

future considerably more uncertain.

Our study on the blue crab stock in Chesapeake Bay also exemplifies the interdepen-

dence between nursery habitat management and fisheries management, emphasizing the

importance of considering these factors for long-term sustainability. Seagrass habitat has

long been the focus of conservation [150, 151, 156, 137, 96, 68], and the importance of

seagrass as a nursery habitat to blue crabs is well known [103]. However, before this study,
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the relative quantitative value of a specific parcel of seagrass to blue crab populations at

broad spatial scales remained unclear. Hence our findings can be used to incorporate

seagrass habitat availability into stock assessments [117] and management decisions,

enhance Integrated Ecosystem Assessments (IEAs) [97], and inform Ecosystem Status

Reports, all of which facilitate movement towards ecosystem-based fisheries management

(EBFM) [99, 145, 40]. High-quality scientific information detailing the relationships among

fishery species and their essential habitats is a fundamental element in EBFM [160]. Hence,

our results provide a high-quality EBFM product [160] concentrated on Chesapeake Bay

to accurately measure vital nursery habitats and their effects on blue crab population

dynamics in this system. It is our hope that our approach and associated findings will

provide managers of the multi-state Chesapeake Bay blue crab fishery—the Chesapeake

Bay Stock Assessment Committee (CBSAC)—with tactical, and actionable, management

advice [108].
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Appendix A

Chapter 1

A.1 More on predictor variables

Unstructured habitat constitutes the majority of available shallow habitat in Chesapeake Bay,

but varies considerably in food availability and predation refuge [105]. Evidence suggested

unstructured mud may serve as an alternative nursery for juveniles where structurally

complex habitat is unavailable due to relatively abundant alternative prey and potential

for juveniles to bury deep in the soft substrate [119, 168]. Thus, in the earliest exploratory

models, we had included mean percent mud composition of substrates in each section-year

as a continuous covariate, in addition to those presented in Table 1.1. However, 80%

credible intervals for the corresponding regression coefficient of this variable consistently

included 0, and inclusion of the variable did not otherwise change inference results of the

initial models. In contrast, the other variables, such as seagrass, management status,

and predator abundance, were always kept in our models regardless of their statistical

importance in explaining juvenile blue crab abundance, due to their implications on large-

scale blue crab population management. Because percent mud composition did not carry

the same implications with respect to management, it was excluded as a variable of interest
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in all models presented in this article.

A.2 Defining areal units

Note that despite the arbitrary nature of areal unit definitions in practice, the one we

employed in our work here did not meaningfully influence our results, or bias, our inference.

In fact, initially, we explored numerous areal unit configurations when aggregating spatially

random trawls. Alternative configurations included dividing each tributary into i) ten sections

whose lengths were tributary dependent, ii) sections based on morphologically meaningful

characteristics (e.g., branching structures and choke points), and iii) sections∼2km in length

along the tributary axis. In all cases, parameter estimates from models were practically

identical. The final areal unit configuration was chosen based on the high number of areal

units per year produced, and only a single section-year had 0 trawl tows.

A.3 Model validation and predictive performance

Cross validation (CV) is a robust, generic method to adjudicate between competing statistical

models. Unlike information theoretic criteria (e.g., AIC, BIC, DIC), cross validation assesses

predictive performance directly by separating the data in a part that is used for fitting (i.e.,

training set) and another used to assess predictive adequacy (i.e., test set). Cross validation

preference goes to the model that best predicts the out-of-sample test set withheld.

Cross validation is helpful in determining relative model generalizability. In a Bayesian

CV framework, prediction intervals are computed using the posterior predictive distributions

of the excluded values in the test set based on posterior distributions of model parameters

to simulate the training set. Generalizability is determined based on the observed coverage,

i.e., the proportion of excluded values which are successfully captured by their respective
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prediction intervals.

We used 80% prediction intervals to infer model performance of our suite of candidate

models. Models yielding an observed coverage differing greatly from the nominal Bayesian

predictive credible level of 80% may indicate underfitting/overfitting. Cross validation results

from Models 1, 2, 3a, and 3b, all indicated underfitting (being less complex than Model

4) and poor predictive performance. In contrast, posterior prediction intervals of Model 4

contained 81% of excluded data (n = 36), indicating overall superior predictive performance

relative to all other candidate models. Hence, we selected Model 4 as the model which

best represents our observed data as well as the most generalizable model.

In contrast with simpler models, Model 4 is characterized by greater uncertainty in

posterior distributions of predictor coefficients as well as posterior predictive credible

intervals used in cross validation (Figs. 4.5 and C4). This is a frequent characteristic of

models with increasing complexity. Complex models (with a larger number of unknown

model parameters) lead to more uncertainty in the inference, whereas simpler models which

are inadequate in capturing latent dependence processes would give incorrect inference,

irrespective of the amount of uncertainty.
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A.4 Chapter 1 Supplementary figures

Figure A1: Marginal prior distributions of ρg with increasing standard deviations of the

normally distributed prior for rg (whose mean is 0), and a prior distribution of U(0, 1) for P .
The marginal prior distribution for ρg is approximately U(0, 1) when a N(0, 0.25) is imposed
on rg. Thus, constraining the prior for rg to a relatively narrow distribution results in a diffuse

marginal prior for ρg.
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Figure A2: A set of trace plots for Model 4 parameters illustrating sampled values of

each regression coefficient and σΦ per chain throughout the post burn-in iterations. Visual

inspection of trace plots is used to evaluate convergence and mixing of the chains.
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Figure A3: Posterior distributions (black) and prior distributions (blue) of regression coeffi-

cients from Model 4; dashed black lines denote 80% credible intervals, while solid red lines

denote 0
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Figure A4: Posterior distributions (black) and prior distributions (blue) of autocorrelation pa-

rameters λ (spatial) and ρ (temporal) from Model 4; dashed black lines denote 80% credible

intervals. Leave-future-out cross validation of Models 1–4 showed that the non-separable

spatiotemporal dependence structure of Model 4 was necessary for good predictive perfor-

mance, despite the small ρ.
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Figure A5: Posterior distributions of regression coefficients from Models 1-4.
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Appendix B

Chapter 2

B.1 Logical framework

g1: Abundance is a function of habitat and turbidity. Structurally complex habitats har-

bor higher densities of juvenile blue crabs relative to unstructured habitats. Hence, rel-

ative to sand habitat, juvenile blue crab density is higher seagrass, SME, and SDH

[154, 66, 86, 45, 82]. Meanwhile, high local turbidity increases juvenile abundance through

both bottom-up [187, 186] and potentially top-down [146, 4] mechanisms (see methods in

[82] for more details).

g2: Abundance is a function of habitat, turbidity, and an interaction between habitat and

turbidity. Here, the effect of turbidity is dependent on a particular habitat. Whereas seagrass

meadows are absent from high-turbidity areas due to light requirements, extensive salt

marshes and unstructured sand habitats occur in both high- and low-turbidity regions of the

tributaries. Turbidity may therefore modify the effectiveness of these habitats as nurseries

for juvenile crabs by decreasing predatory foraging efficiency through both low visibility

(turbidity) and structural impediments (in SME or SDH; [4, 82]).
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g3: Abundance is a function of habitat, turbidity and spatial position. Recruitment in a

given location is dependent on postlarval supply [8, 58, 192]. Blue crab postlarvae enter

tributaries from the mouth (i.e. downriver), and decline with distance upriver along the

tributary axis as they encounter suitable habitat and settle [201]. Hence, we expected

habitats positioned closer to the mouth of the river would be associated with higher juvenile

abundances due to proximity to postlarval supply.

g4: Abundance is a function of habitat, turbidity, spatial position, and an interaction between

habitat and spatial position. Environmental conditions vary substantially along tributary axes

[165]. Latent variables influencing juvenile abundance may inconsistently affect habitats.

As a consequence, the effects of spatial position are habitat-specific [191, 140].

g5: Abundance is a function of habitat, turbidity, spatial position, and an interaction between

habitat and turbidity [82].

g6: Abundance is a function of habitat, turbidity, spatial position, an interaction between

habitat and spatial position, and an interaction between habitat and turbidity. Additional

environmental variables other than turbidity may augment habitat suitability at different

spatial positions, such as salinity [165] and/or food availability [186].

B.2 Prior distributions for gear efficiency

As different sampling methods were employed for the four habitat types, gear efficiency

estimates were required to scale abundance estimates for each sample. Efficiency of the
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suction sampling methodology is estimated at 0.88 [154]. Meanwhile, pilot efficiency tests of

the modified flume net design using marked blue crabs in fall of 2020 indicated an estimated

efficiency of 0.92 ± 0.02. Finally, juvenile blue crab depletion experiments for benthic

scrape gear suggested efficiency between 0.21 and 0.45 [170]. However, benthic scrapes

used here differed slightly in that they did not include iron teeth, which may decrease

efficiency.

We constructed normally distributed prior distributions for each gear type based on

estimates from literature and observed data and subsequently applied a log-transformation

to relate prior estimates of efficiency to the model scale. For flume traps, the prior distribution

was lnN(0.92, 0.02) which has a mean of-0.083 and standard deviation of 0.02. Similarly,

for scrape estimates, we assumed the mean efficiency was 0.33 (average of 0.45 and 0.21)

and a standard deviation of 0.12 to yield a prior of lnN(0.33, 0.12) which has a mean of

-1.2 and standard deviation of 0.18. Finally, for suction sampling, average efficiency is 0.88

[154], although uncertainty estimates were not supplied in literature. Here, we assumed an

efficiency of 0.02 similar to uncertainty in flume traps and applied a prior of lnN(0.88, 0.02)

which has a mean of -0.13 and standard deviation of 0.02.

B.3 Chapter 2 Supplemental Tables

Table B1: Data summaries of crab carapace widths (CW) and physicochemical variables.

Temperature (oC) Salinity Secchi (cm) DO (mg/L) CW (mm)

Min 17.30 2.66 8.20 3.90 1.00

10% 19.90 6.06 30.00 6.28 6.40

50% 24.10 17.56 78.00 7.63 12.90

90% 28.90 19.46 128.41 8.77 25.28

Max 30.90 20.32 183.00 11.37 135.10
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Table B2: Table displaying the number of samples for each habitat by trip. Five of the total

144 samples were expunged due to missing predictor values (i.e. Secchi disk depth) in

seagrass (two samples) and SDH (three samples)

Habitat Trip 1 Trip 2 Trip 3 Trip 4 Total

SME 0 6 6 6 18

SDH 15 18 18 0 51

Seagrass 4 6 6 0 16

Sand 18 18 18 0 54
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B.4 Chapter 2 Supplementary figures

Figure B1: Images of flume net in multiple stages of deployment: a) depicts a flume net

set up at slack flood tide; b) denotes flume net collected at slack ebb tide; and c) denotes

flume in non-deployment stage with net walls down and end removed when net is not in

use. When not in use, enclosures will remain on site with the net walls folded and staked

into the ground and the end removed, facilitating movement of animals throughout marsh

habitat. Prior to use, walls of the flume nets will be rapidly erected to contain all animals

occupying the habitat at the time of sampling.
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Figure B2: A set of trace plots for model g1 parameters illustrating sampled values of each
regression coefficients per chain throughout the post-warmup/adaptive phase iterations.

Visual inspection of trace plots is used to evaluate convergence and mixing of the chains.
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Figure B3: Posterior distributions from the selected model g1 using the complete data set
(Complete), and subsets of the data using only the downriver stratum (Downriver only)

and without seagrass (No seagrass). Distributions were largely consistent across models,

indicating inferences on the complete data set were robust.
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Figure B4: Histogram of all crab carapace wdiths (mm) caught in Fall 2020 recruitment

period.
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Figure B5: Conditional posterior distributions of mean habitat abundances (conditioned on

holding random effects and ln turbidity at 0) from model g1 for both small (≤ 15 mm CW; left

column) and large (16–30 mm CW; right column) size classes. Dashed black lines denote

80% Bayesian confidence intervals, while red lines (where present) denote 0. Blue lines

depict prior distributions. Depicted values are on the model (log) scale.
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Figure B6: Linear contrast statements (see Section 3.5) depicting differences in expected

juvenile blue crab abundance for the small size class from Model g1. Dots denote mean
difference in expected values, while thick bars represent 80% Bayesian CIS and thin bars

denote 95% Bayesian CIS. Depicted values are on the model (log) scale.
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Figure B7: Linear contrast statements (see Section 3.5) depicting differences in expected

juvenile blue crab abundance for the large size class from Model g1. Dots denote mean
difference in expected values, while thick bars represent 80% Bayesian CIS and thin bars

denote 95% Bayesian CIS. Depicted values are on the model (log) scale.
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Figure B8: Posterior distributions of within-habitat linear contrasts (see Section 3.5) depict-

ing differences in expected juvenile blue crab abundance for small and large size class

from Model g1. Positive values indicate increases in expected abundance as animals move
from ≤15 to 16–30 mm, while negative values indicate decreases in expected abundance.
Depicted values are on the model (log) scale.
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Appendix C

Chapter 3

C.1 Predictor justification

C.1.1 Habitat

Inference on nursery habitat quality with respect to juvenile blue crab abundance and

survival was the over-arching objective of this study. Structurally complex habitats harbor

higher densities of juvenile blue crabs relative to unstructured habitats due to higher

food availability and superior refuge quality [154, 105, 103, 88, 171, 82, 81]. Hence,

relative to sand, we expected higher juvenile blue crab densities in seagrass and SME

[154, 66, 86, 45, 82, 81]. Moreover structurally complex habitats provide higher refuge

quality to small prey through the substantial number of interstitial spaces between biogenic

structures such as shoots and rhizomes [76, 155, 88, 123]. Hence, we expected higher

survival in structurally complex seagrass and SME relative to sand [110, 4, 14]. However,

not all structure provides equally beneficial refuge. For example, smaller interstitial spaces

of seagrass shoots may provide superior refuge quality to juveniles relative to the larger

spaces characteristic of salt marsh shoots [155]. Moreover, most habitats encompass

areas both with and without structural complexity or otherwise spatially vary in the degree
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of structure they afford (e.g. patchiness; [76, 77, 105]). Hence, in the survival model we

considered ”structured” and ”unstructured” treatments in each habitat (see section 3.2.3.3

for details). We expected high survival in structured components of seagrass and SME

and comparatively low survival in adjacent, unstructured portions.

C.1.2 Turbidity

Multiple studies have noted positive correlations between blue crab abundance and turbidity

[82, 81]. Two potential mechanisms may engender these observed patterns. First high

turbidity is associated with increased juvenile abundance through both bottom-up controls

[187]. The thin-shelled baltic clam Macoma Baltica is a preferred prey item of juvenile

blue crabs [187, 186] which aggregates near estuarine turbidity maxima and may attract

juveniles [187, 186, 105]. Second, turbidity may provide juvenile blue crabs with protection

from visual predators [32, 113] and from predation [146, 78, 74] through a reduction in

light intensity. Upriver unstructured habitat is turbid, whereas similar habitat downriver has

lower turbidity, such that upriver unstructured habitat can also serve as an effective nursery

[105, 186]. Hence, observed patterns between juvenile blue crab abundance and turbidity

at regional scales may be a proxy for patterns between juvenile and potentially top-down

[146, 4] mechanisms (see methods in [82] for more details). Hence, we expected turbidity

would be positively associated with juvenile blue crab abundance and juvenile blue crab

survival.

C.1.3 Stratum

Aside from turbidity, abundance may be influenced by spatial position through spatially

correlated, unobserved variables. Hence, stratum was included in our abundance model to

avoid confounding variation as well as to assess the effect of spatial orientation. Moreover,
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habitats in different spatial locations along the river axis may harbor different predator

guilds, such that inference on impacts of structure among habitats may be confounded

by unmeasured effects of differing predator communities and abundances (i.e. predation

pressure; [165, 105]). Thus, we included stratum as a categorical fixed-effect in our

abundance model and a habitat-stratum variable (i.e. an interaction) in our survival model.

C.1.4 Megalopae

Juvenile abundance is initially dictated by megalopae supply [43]. Although post-settlement

dynamics of early juvenile blue crabs are strongly density-dependent at local scales

[46, 172], early juvenile abundances may be limited by megalopae supply when juve-

nile populations are relatively low [46, 66, 65]. Megalopae abundance was not expected to

affect juvenile blue crab survival, and thus was not included as a predictor in our survival

model.

C.1.5 Carapace width

Juvenile blue crab habitat utilization changes through ontology [105, 103, 81]. Smaller

juveniles are vulnerable to a larger suite of predators than larger juveniles which achieve

a size refuge from smaller foraging species [105]. We therefore included carapace width

as a continuous covariate in our survival model. Carapace width was not included as a

predictor in our abundance model because we instead chose to include three separate size

classes as response variables.

C.1.6 Month

Juvenile blue crab survival fluctuates seasonally. Juvenile blue crab survival is highest

in late spring and late fall months, and lowest in summer [73]. Seasonal variation in
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survival is likely influenced by seasonal predator abundances. For example, red drum

Sciaenops ocellatus, and striped bass Morone saxatilis both consume juvenile blue crabs

at high rates [138, 70, 103]. Abundances of these species fluctuate seasonally in the North

Atlantic estuaries as animals utilize estuaries in during early life stages and spawning in

summer and early fall [47, 178]. Hence, we included month as a categorical variable in the

survival model. In contrast, juvenile blue crab abundances were sampled only within the

fall recruitment period and exploratory data analysis did not indicate substantial fluctuations

with month or trip. As a result, month was only included in the survival model.

C.2 Statistical treatment of continuous variables

Both megalopae abundance and turbidity values were transformed prior to inclusion in

abundance models. Megalopae in a given location must enter the river through the mouth,

and as a result megalopae abundances generally decline with distance upriver as mega-

lopae encounter suitable habitat and settle out of suspension [201]. We therefore expect a

log-linear relationship between local juvenile blue crab abundance and megalopae abun-

dance, where increases in megalopae abundance at low levels have larger positive effects

on juvenile blue crab abundance than at higher levels, as post-settlement processes dom-

inate when megalopae supply exceeds the carrying capacity of a system [66, 197, 103].

The natural log of megalopae plus a constant (M = ln(Megalopae + 1)) to avoid infinite

values when (Megalopae = 0) was therefore used in lieu of the raw variable. Moreover,

as new recruits require time to grow to a size which could be detected by our gear, we

used ln(Megalopae+ 1) abundances lagged by four weeks as a predictor for local juvenile

abundance.

Similarly, a natural log transformation was applied to turbidity measurements. Log-

turbidity was defined as the natural log transformation of Secchi-disk depth, multiplied by -1
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(T = − ln Secchi). The natural log transformation was applied based on the understanding

that a threshold exists in water transparency. Assuming that effects of turbidity on juvenile

abundance reflect refuge from visually oriented predators (top-down control), small changes

in water transparency when water is relatively clear are not expected to substantially

affect juvenile abundance as much as small changes in water transparency when water

is cloudy (e.g. predation rates by Summer Flounder on mysid shrimp; [78]). Alternatively,

if associations between juvenile abundance and turbidity are related to elevated food

availability near the estuarine turbidity maximum, juveniles would presumably remain more

sensitive to fluctuations in turbidity at high values compared to clearer waters. Multiplying

the variable by -1 facilitates inference on turbidity, instead of water transparency (inverse).

C.3 Tethering methodology details

Tethering involved attaching 30 cm monofilament fishing line to the crab’s carapace with

cyanoacrylate glue. The other end of the line was tied to a stake pushed into the sediment;

the stake was tied to a location pole 1 m from the crab to minimize effects of artificial

structures that could attract predators to the tethered crab. Tethered crabs were allowed to

acclimate in laboratory aquaria for 24 h prior to placement in the field.

Prior to field experiments, pilot experiments were used to determine probability of

escape (i.e., crabs un-tethering themselves) and potential changes in behavior. In April (i.e.

when predation is negligible) [177, 133] five crabs were tethered in two locations (n = 10)

and checked daily. In the absence of predation, juvenile crabs remained on tethers for over

a week and were able to bury themselves in sediment. We replicated this procedure in lab

conditions with 10 additional crabs observed daily for 10 d. Here, only one crab escaped its

tether on day eight. Since crabs in our field experiments were deployed for approximately

24 h, we concluded that the number of crabs removed due to escape was negligible.
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Predation is evident by a missing crab and either pieces of carapace remaining on the

line, chewed pieces of tape and monofilament line, or cut monofilament lines [164, 77, 105].

Although uncommon (i.e.,< 10%of all instances), some tethers were excluded from analysis

because the crab molted and only the exoskeleton remained on the tether. However, this

was apparent upon retrieval due to the intact molt remaining on the monofilament line.

These features were used to distinguish predation from molting in the field experiments.

Molts were subsequently recorded and excluded from analysis.

C.3.1 Treatment-specific bias

Tethering can introduce treatment-specific bias in survival [162]. For example, tethered

crabs may experience lower survival in structurally complex habitats such as seagrass

and SME as a result of entanglement, but would not experience the same reduction in

survival in sand, such that relative survival rates could not be compared between these

habitats. Alternatively, variation in escape behaviors (e.g., crypsis in structurally complex

habitat vs. fleeing in sand) may also introduce bias. Extensive work from previous studies

examining treatment-specific biases of tethering juvenile crabs in seagrass, SME, and sand

have not found interactions between tethering and habitat [164, 76, 105, 123], therefore,

we assumed there was no treatment-specific bias in our experiments, which used similar

tethering methods and habitats as those in previous studies.
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C.4 Chapter 3 Supplementary Tables

Table C1: Summary table displaying the number of samples for each habitat by stratum

and field study.

Area Megalopae Abundance Survival

Shore SME Seagrass Sand SME Seagrass Sand

Downriver 4 3 6 3 2 2 2

Midriver 3 3 NA 3 2 NA 2

Upriver 3 3 NA 3 2 NA 2

Total 10 9 6 9 6 2 6
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Table C2: Linear contrast statements depicting differences in expected juvenile blue

crab survival (πcond) among habitat-strata combinations. Dots denote mean difference in
expected values, while thick bars represent 80% Bayesian CIS and thin bars denote 95%

Bayesian CIS. The red vertical line denotes 0. Depicted values are on the model (logit)

scale. Relevant contrasts are defined as those which exclude 0 with their 80% CI. Only

contrasts which exclude 0 within their 80% CI are included here for brevity.
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C.5 Chapter 3 Supplementary figures

Figure C1: A set of trace plots for abundance model regression parameters for small

(≤15 mm ) size class illustrating sampled values of each regression coefficients per chain

throughout the post-warmup/adaptive phase iterations. Visual inspection of trace plots

is used to evaluate convergence and mixing of the chains. See Table 3.3 for details on

abundance model predictor coefficients.
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Figure C2: Posterior distributions (grey) and prior distributions (blue) of regression coef-

ficients for small (≤15 mm CW) juvenile blue crabs derived from the abundance model;

dashed black lines denote 80% credible intervals, while solid red lines denote 0.
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Figure C3: Posterior distributions (grey) and prior distributions (blue) of regression coeffi-

cients for medium (16–30 mm CW) juvenile blue crabs derived from the abundance model;

dashed black lines denote 80% credible intervals, while solid red lines denote 0.
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Figure C4: Posterior distributions (grey) and prior distributions (blue) of regression coeffi-

cients for large (31–60 mm CW) juvenile blue crabs derived from the abundance model;

dashed black lines denote 80% credible intervals, while solid red lines denote 0.
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Figure C5: Posterior distributions (grey) and prior distributions (blue) of regression coeffi-

cients derived from the survival model; dashed black lines denote 80% credible intervals,

while solid red lines denote 0.
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Figure C6: Linear contrast statements depicting differences in expected juvenile blue crab

survival among months. Dots denote mean difference in expected values, while thick bars

represent 80% Bayesian CIs and thin bars denote 95% Bayesian CIs. The red vertical line

denotes 0. Depicted values are on the model (logit) scale.
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Appendix D

Chapter 4

D.1 Density-weighted seagrass means

Density-weighted mean seagrass cover for Z. marina and R. maritima were calculated using

the following procedure. Species-specific total area for each density index s = 1, 2, 3, 4

for each observed year were supplied by [68]. For each year t = 1990, ..., 2022, we used

the following weighted-sum equations to generate density-weighted mean values ξ̂gt for

each species-complex g (where g = z, r, and m for Z. marina, R. maritima and mixed beds,

respectively) and density index s:

ξ̂gt =

4∑
s=1

dsη̂gts +
1

2

4∑
s=1

dsη̂mts

where ds refers to the weight associated with a given density index s (i.e. 0.05, 0.25, 0.55,

and 0.85), and η̂gts refers to the area of species-complex g of density index s in year t.

Mixed-beds are a combination of Z. marina and R. maritima. In absence of an obvious

classification scheme, we divided the density-weighted area of
∑4

s=1 dsη̂mts by two and
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added the corresponding value to
∑4

s=1 dsη̂zts and
∑4

s=1 dsη̂rts. Finally, for models using

total density-weighted seagrass cover Ĝt, we took Ĝt = ξ̂rt + ξ̂zt.

D.2 Prior distributions

We employed informative prior distributions on all parameters using a combination of ex-

ploratory data analysis, literature, and expert judgement. To facilitate parameter estimation,

we specified log-normal prior distributions for most parameters. The exceptions were

process error terms and coefficients influencing density-dependence as well as γ0 and γ,

which were already practically on the ln scale due to the log-linear relationship between

γ0 and γ and βt (Equation 4.2). To obtain a reasonable initial estimate for VIMS Trawl

Survey adult catchability qAV , we used least squares regression of ÔAV t on ÔADt and fixed

the intercept at 0, which resulted in a slope estimate of 0.124. We subsequently specified

a prior mean of ln(0.124) = −2.08 and prior standard deviation of 0.5 for ln qAV to allow

allocation of prior probability for catchability coefficient values between 0 and 1 (i.e. the

minimum and maximum values for catchability). Meanwhile, in accordance with estimates

of juvenile WDS catchability from [170], we specified a prior for ln qJD as N(0.2, 0.02) which

has a mean of -1.61 and standard deviation of 0.1. Similar to adult VIMS Trawl Survey

catchability, to specify a reasonable prior distribution for qJV , we used least-squares re-

gression ÔJV t on
ÔJDt
0.2 and fixed the intercept at 0 – the mean a priori catchability of WDS

juveniles being 0.2 [170]. This yielded a slope estimate of 0.03. We used a prior mean

of ln(0.03) = −3.52 and prior standard deviation of 1 that yielded a plausible prior for qJV

values between 0 and 1. These values were deemed reasonable in lieu of an obviously

better method to estimate catchability given the data and prior information available.

Prior distributions for Beverton-Holt stock-recruit parameters were derived from fitting

the function using least-squares regression of ÔJDt on ÔADt−1. Natural-log transformations
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were applied to the resulting estimates for α and β (5 and 1× 10−8, respectively), and used

to center prior distributions for lnα and γ0 (i.e. density dependence without considering

seagrass effects, exponentiated in the model structure to estimate β). We specified prior

standard deviations for lnα and γ0 as 1 and 2, respectively, resulting in a plausible prior

range of parameter values for each term (0 to 60 for α and 0 to 6× 10−6 for eγ0). Finally,

for models with seagrass coefficients (i.e. models 2–5, Table 4.1), we specified priors for γ

centered at 0 with a standard deviation of 1 to constrain the effects of seagrass covariates

such that resulting prior range of βt remained plausible.

For time-varying fishingmortality Ft, we specified a prior distribution lnFt ∼ N(−0.3, 0.3).

This centered values of Ft at 0.74 and allocated prior probability to values of Ft ranging

from 0 to 2.5, which was considered relatively diffuse compared to estimated ranges of

fishing mortality from previous work [124, 125, 131, 126, 169]. The winter dredge fishery

operated from December to March in years prior to 2009. Unpublished data suggested that

dredge fishery mortality as high as 28% (R. Lipcius pers comm). Given that the fishery only

operated for one third of the year, we assigned a normally distributed prior of Do centered

at 1 with a standard deviation of 0.1 (i.e. 1 + 0.28/3). Finally, for lack of an obvious prior

distribution for process error terms, we assigned diffuse exponential prior distributions with

a mean of 10 for σJ and σA.

D.3 Conditional counterfactual projections

Conditional counterfactual plots were made by projecting the population outwards from

t = 2022 conditioned on fixing catch and density-weighted Z. marina cover and holding

process error at 0. For the nth posterior draw (from the inferences of models g1 and g3) in

the kth seagrass conditional counterfactual scenario, the set of projection equations are as

follows:
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Ĵ
(n)
2022 = J

(n)
2022 (D.1)

Â
(n)
2022 = A

(n)
2022

Ĵ
(n)
t =

α(n)Â
(n)
t−1

1 + eγ
(n)
0 +γ

(n)
2 ZkÂ

(n)
t−1

for t = 2023, ..., 2060

Â
(n)
t = (Â

(n)
t−1 + Ĵ

(n)
t−1)e

−(F̂
(n)
t−1+M) for t = 2023, ..., 2060

F̂
(n)
t is such that Ĉ =

F̂
(n)
t

F̂
(n)
t +M

(
1− e−(F̂

(n)
t +M)

)
(Â

(n)
t + Ĵ

(n)
t ) for t = 2023, ..., 2060

That is, we first set starting values for juvenile and adults states at the entire pos-

terior distributions for adults and juveniles in 2022 (Ĵ2022 and Â2022). Next, we fixed

catch at reported harvest (i.e. Ĉ) from 2022: 67 million individuals). We then fixed

density-weighted Z. marina cover (here denoted Zk in equation D.1) to values observed

from 1990–2022 for all years 2023–2060, where k = 1 for minimum observed cover, k =

2 for median observed cover, and k = 3 for maximum observed cover. Finally, using fixed

catch Ĉ, projected juvenile and adult states (Ĵt and Ât), Baranov’s catch equation, and the

bisection method, we numerically estimated F̂t and projected the states forward to the next

time-step. The resulting conditional posterior projections at each time-step are presented

in Fig. 4.6B for all years after 2022. Note that the superscript (n) for state projections is

due to their dependence on Ĵ
(n)
2022 and Â

(n)
2022,

D.4 MSY projections

Conditional posterior inference for CMSY based on annual density-weighted Z. marina values

is as follows. First, starting values for the unfished population (A1 and J1, respectively)

were set to 500 million individuals each, constituting a reasonably high ‘unfished’ population.
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Second, for each year t (both past and future), the observed (past) or projected (future)

density-weighted Z. marina values were held constant at their estimated or projected values

(ξ̂zt, see Appendix D.1). Note that here t still denotes a given year for which MSY is

estimated, while y refers to time-steps within a single projection used to estimate CMSY

for year t. Next, for each posterior draw n in year t, we ran the population projections for

each exploitation rate (in equal increments of 0.05) u = 0.0, 0.05, 0.1, . . . , 1 from time-steps

y = 1, . . . , 100. For each exploitation rate u in projection time-step y, catch was calculated

as Ĉ
(n)
y = (Â

(n)
y + Ĵ

(n)
y )u. We subsequently numerically solved for F̂

(n)
y using the bisection

method and Baranov’s catch equation to project the population forward to the next time-

step y + 1. Note that Ĵ
(n)
y , Â

(n)
y and F̂

(n)
y for y > 1 are scan-dependent because they are

functions of the nth scan of model coefficients (i.e. α(n), γ
(n)
0 , γ

(n)
2 , D

(n)
o ). That is:

Ĵy=1 = 5× 108 (D.2)

Ây=1 = 5× 108

Ĵ (n)
y =

α(n)Â
(n)
y−1

1 + eγ
(n)
0 +γ

(n)
2 ξ̂ztÂ

(n)
y−1

for y > 1

Â(n)
y = (Â

(n)
y−1 + Ĵ

(n)
y−1)e

−(F̂
(n)
y−1+M) for y > 1

F̂ (n)
y is such that = (Ây + Ĵy)u =

F̂
(n)
y

F̂
(n)
y +M

(
1− e−(F̂

(n)
y +M)

)
(Â

(n)
y + Ĵ

(n)
y )

D
(n)
t

D
(n)
t = D(n)

o if t = 1990, 1991, ..., 2008

D
(n)
t = 1 if t = 2009, 2010, ..., 2060

For each posterior draw n in year t, the exploitation rate u corresponding with the

maximum equilibrium catch (i.e. the peak of the nth curve) was taken to be the exploitation
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rate at MSY at y = 100 (Fig. D4A). The posterior distribution of CMSY corresponding to the

exploitation rate at MSY was then plotted based on posterior draws in all past years and

future scenarios (Figs. D4A and D4B).

D.5 Chapter 4 Supplemental tables

Table D1: Parameter descriptions and prior distributions for all models.

Parameter Description Prior distribution

lnα ln Beverton-Holt productivity parameter N(1.54, 1)
γ0 Seagrass-independent Beverton-Holt density-dependence param-

eter

N(−18.4, 2)

γ Coefficients relating density-weighted seagrass cover (see Table

4.1 for details) to Beverton-Holt density-dependence

N(0, 1)

Do Effect of dredge fishery (operation in 1990-2008 only) N(1, 0.1)
ln qJ,D ln WDS juvenile catchability coefficient N(−1.5, 0.1)
ln qJ,V ln VIMS Trawl Survey juvenile catchability coefficient N(−3.53, 0.1)
ln qA,V ln VIMS Trawl Survey adult catchability coefficient N(−2.09, 0.1)
σJ Juvenile process error sd exp(10)
σA Adult process error sd exp(10)
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D.6 Chapter 4 Supplemental figures

Figure D1: Comparison of reported and modeled mean catches from the best-performing

model (g3). The black line and grey regions depict posterior median and 80% CI for modeled

mean catch (see equation 4.2), while blue dots depict reported catch. In all cases, reported

catch Ct fell within 80% CI for modeled mean catch.
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Figure D2: Histogram of coefficients of variation on catch from the most recent blue crab

benchmark stock assessment [126] from 1990 to 2010 (blue) and values specified in the

present study (red).

194



Figure D3: A set of trace plots for non-temporal parameters (panels 1–9) and temporal

(panels 10–12) for selected years (t = 1, 2,and 3) in Model g3 illustrating sampled posterior
values throughout the post-warmup/adaptive phase iterations. Visual inspection of trace

plots is used to evaluate convergence and mixing of the Markov chains.
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Figure D4: Plots displaying CMSY estimation for year 2022. Plot A) depicts the conditional

posterior distribution of Ĉy for year 2022 (black line and shaded region denote posterior

median and 80% CIs, respectively) derived from equation D.2 as a function of exploitation

rate u. The red line in A) denotes the exploitation rate with the maximum conditional

posterior median catch (0.35). Plot B) depicts the conditional posterior distribution of catch

corresponding to the exploitation rate with the maximum conditional posterior median catch.

Black dashed lines in B) denote 80% CI.
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