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Abstract
The imagery collected by medium-resolution earth-observing satellites is a powerful and cost-effective tool for the quantitative assess-
ment of shoreline dynamics for water bodies of different spatial scales. In this study, we utilize imagery collected in 1984–2021 on 
the Middle Peninsula, Virginia, bordering the Chesapeake Bay, USA, by medium-resolution (10–30 m) satellites Landsat-5/7/8 and 
Sentinel-2A/B. The data was managed in the Earth Analytics Interoperability Lab (EAIL) Data Cube built and configured by the 
Commonwealth Scientific and Industrial Research Organization (CSIRO, Australia and Chile). The assessments of shoreline change 
demonstrate adequate agreement with assessments based on aerial photography collected during 1937–2009 by the Virginia Institute 
of Marine Science, with reasonable disagreement attributed to the differences in the analyzed periods and in the accuracy of land/
water edge detection. Most of the studied coastline was subject to land loss (erosion), in some locations exceeding 3 m  year−1, usu-
ally along low-lying sandy beaches. The shoreline segments with man-made structures such as marinas, bulkheads, revetments, and 
offshore breakwaters demonstrated a significantly lower range of changes as compared to natural reaches. Regular analysis of medium-
resolution satellite imagery appears to be an effective method for routine assessment of shoreline changes along the land/water edge.

Keywords Coast · Shoreline change · Satellite imagery · Chesapeake Bay

Introduction

The land zones located along ocean coasts include most pop-
ulated and developed areas in the world (Small & Nicholls 
2003). Reliable assessments of how a particular coast has 

changed through time and how it might proceed in the future 
are therefore important challenges directly related to ecosys-
tem vulnerability, human safety, and economic development 
(Neumann et al. 2015; Mills et al. 2021; O'Hara & Halpern 
2022) and, as such, are a focus of intensive research world-
wide (Parthasarathy & Deka 2021; Rahman et al. 2022).

Substantial changes in the shoreline are observed over 
most of the Earth’s surface (Pekel et al. 2016; Mentaschi 
et al. 2018; Murray et al. 2022). These changes are predomi-
nantly associated with natural processes like winds, waves, 
tides, and currents, which modify coastlines by eroding, 
transporting, and depositing sediments (Mentaschi et al. 
2018). Changes in relative sea level are one of two primary 
long-term processes which cause the shoreline to move; the 
other is wave action, particularly during storms. Although 
shoreline change is mostly a natural process, human activ-
ity through shoreline hardening or inlet stabilization also 
plays a crucial role, affecting the resistance/resilience of the 
coastline (Armstrong & Lazarus 2019; Mendoza et al. 2022).

Traditional assessment methods of rates of shoreline 
change utilize the data collected in land-based surveys 
or imagery from aerial platforms (photographs or lidar), 
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which is a laborious and expensive task (Luijendijk et al. 
2018; Apostolopoulos & Nikolakopoulos 2021; Castelle 
et al. 2021). In recent decades, the increasing volumes of 
high- and medium-resolution satellite observations have 
provided a powerful alternative to obtain reliable shoreline 
data (Splinter et al. 2018; Vos et al. 2019a; Apostolopoulos 
& Nikolakopoulos 2021). For any chosen region globally, 
the Landsat series of satellites provides data approximately 
every 2 weeks, resulting in hundreds of available images 
over several decades. More recently, the ease of use of sat-
ellite imagery has dramatically improved, including from 
the use of data cube technology, allowing users to operate 
big Earth observations (EO) data at a minimum cost and 
effort (Lewis et al. 2017; Giuliani et al. 2019; Sudmanns 
et al. 2022).

Most studies using high- and medium-resolution satellite 
imagery for the analysis of shoreline change are focused on 

small areas at specific locations, mostly sandy beaches, and 
use algorithms of shoreline change detection based on cross-
shore transects (Himmelstoss et al. 2018; Vos et al. 2019a, 
2020; Bishop-Taylor et  al. 2021). This approach works 
well in regions with straight coastlines, but often results 
in erroneous assessments in areas with complex (indented, 
embayed) shorelines, where applying baseline transects 
orthogonal to the coast is problematic in both convex and 
concave parts of the shoreline (Mentaschi et al. 2018). The 
area of this study, the Middle Peninsula located in coastal 
Virginia by the Chesapeake Bay (Fig. 1), is characterized 
by complex shorelines and, as such, requires an improved 
approach for detection of shoreline changes.

For assessments of the rates of shoreline change using 
satellite imagery, we did not focus on accurate detection 
of the instantaneous land/water interface at different time 
periods. The term “shoreline” implies a range of indicators 

Fig. 1  a Location of the Middle Peninsula of Virginia within the Chesapeake Bay estuarine system; b eastern part of Middle Peninsula where 
shoreline change was analyzed. The boundaries and the names of counties are in red
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associated with the boundaries visible at satellite images, 
including seaward vegetation edge, wet/dry line, instanta-
neous water line, and surf zone, and the horizontal offset 
between these features can be of the order of several tens 
of meters (Thieler & Danforth 1994; Boak & Turner 2005). 
However, all these indicators are directed alongshore, and 
their displacement associated with erosion/accretion is 
expected to proceed onshore/offshore and with compara-
ble rates (Almonacid-Caballer et al. 2016). Therefore, we 
assumed that the obtained rates of shoreline change are 
acceptable regardless of which shoreline indicator domi-
nated in the satellite imagery analyzed in this study.

Here, we focus on (1) developing a remote-sensing 
method for assessing coastal change that is suitable for both 
straight and complex shorelines; (2) applying this method 
to satellite imagery collected over the Middle Peninsula; (3) 
comparing the obtained rates of shoreline change (erosion/
accretion) to data from aerial photography considering the 
potential sources of disagreement; and (4) analyzing the 
effect of coastal morphology, land cover, and man-made 
shoreline structures on the rates of shoreline change. The 
structure of the paper is arranged as follows: the second sec-
tion describes the study area; the third section details the 
satellite and aerial photography data used for assessments 
of shoreline displacement; and the fourth section presents 
the results of the study. A discussion of the results is then 
presented in the fifth section, followed by the conclusions 
of the study in the sixth section.

The Study Area: Middle Peninsula, Virginia, 
by the Chesapeake Bay

The Middle Peninsula is located on the western shore of the 
lower Chesapeake Bay in Virginia, along the East Coast of the 
USA (Fig. 1a). This region is bounded by the Rappahannock 
River on the north and the York River on the south, both estua-
rine tributaries that flow southeast into the Chesapeake Bay. 
The Middle Peninsula is a part of the Virginia Coastal Plain 
and has a relatively low-lying topography (Fig. 1a), although 
there are reaches along the rivers with higher bluffs. The Mid-
dle Peninsula’s lower part includes three Virginia counties: 
Gloucester, Mathews, and Middlesex. With a population of 
just over 90,000 and a 10-year growth rate of 9% (https:// 
www. mpava. com/ regio nal- profi le), the Middle Peninsula is a 
rural area with no cities and little industry. Major sources of 
income are farming, fishing, aquaculture, tourism, business 
services, and recreational activities. The Middle Peninsula 
coastline includes thousands of acres of ecologically valuable 
tidal and non-tidal wetlands, forests, agricultural lands, rivers, 
streams, and beaches that play important roles in the lives of 
the local population. However, increasing population pressure 
as more people move to coastal areas means more changes 

along shorelines as property owners install living shorelines 
(preferred shoreline protection strategy) or riprap (hardened 
structures to prevent erosion in high energy environments).

The rate of relative sea level rise (RSLR) on the Middle Pen-
insula area (an average of 4.93 mm  year−1 during 1950–2021, 
measured in Yorktown, VA; https:// tides andcu rrents. noaa. gov/ 
sltre nds/ sltre nds. html) significantly exceeds the global mean 
sea level rise estimated as 1.7 to 3.2 mm  year−1, depending on 
the time period examined (Cazenave & Llovel 2010; Church & 
White 2011). One reason is that the land in this area is subsid-
ing due to groundwater withdrawal estimated as 1.5 to 3.7 mm 
 year−1 in different parts of Virginia (Pope & Burbey 2004). As 
a result, the Middle Peninsula area is more vulnerable to RSLR 
than many other coastal regions, causing receding shorelines 
and erosion of the bank material providing sediments for wet-
lands, offshore bars, beaches, and dunes, but also affecting the 
bay’s water quality.

Compared with other estuaries, tidal forcing in the Chesa-
peake Bay is modest with the tidal range rarely exceeding 
1 m (Zhong & Li 2006; Zhong et al. 2008) and an average 
tide range in the Virginia portion of the Chesapeake Bay 
about 0.6 m (https:// tides andcu rrents. noaa. gov/ map/ index. 
html? type= datum s& region= Virgi nia). Wind-driven waves 
are a major source of erosion. They erode and redistribute 
sediment as well as undercut higher bluffs, which causes 
slumping and bank retreat. The height of waves is depend-
ent partly on water depth and fetch. Fetch is the distance 
across the water surface that the wind blows. Longer fetches 
usually result in higher waves. On the Middle Peninsula, 
the wind directions can vary but two major types of storms 
produce the largest waves; they are nor'easters (which bring 
winds from the northeast) and hurricanes (which have vary-
ing tracks and therefore wind directions but tend to come 
from the south and move in a mostly northerly direction). 
The side of the river (north shore or south shore) can affect 
erosion rates (Hardaway & Byrne 1999), with south shores 
(i.e., north-facing) tending to have higher rates than north 
shores (south facing), and creeks and sheltered embayments 
having much lower rates.

Data and Methods

Satellite Data

The satellite data used for assessment of satellite-derived 
shoreline (SDS) displacement were collected between 1984 
and 2021 (38 years) by medium-resolution Earth-observing 
(EO) satellites Landsat-5/7/8 and Sentinel-2A/B (Fig. 2). 
The level 2 (atmospherically corrected surface reflec-
tance) data files obtained from the Amazon Web Services 
(AWS) were managed in the Earth Analytics Interoper-
ability Lab (EAIL) Data Cube built and configured by the 

https://www.mpava.com/regional-profile
https://www.mpava.com/regional-profile
https://tidesandcurrents.noaa.gov/sltrends/sltrends.html
https://tidesandcurrents.noaa.gov/sltrends/sltrends.html
https://tidesandcurrents.noaa.gov/map/index.html?type=datums&region=Virginia
https://tidesandcurrents.noaa.gov/map/index.html?type=datums&region=Virginia
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Commonwealth Scientific and Industrial Research Organi-
zation (CSIRO, Australia and Chile) and hosted on AWS 
with the support of the Chilean Data Observatory (www. 
datao bserv atory. net). The EAIL Data Cube is based on the 
paradigm of EO data cubes (EODCs), which are an approach 
for the management and analytics of multi-dimensional EO 
data and can be operated on a variety of scales and infra-
structures. EODC implementations enhance connections 
between data, applications, and users facilitating manage-
ment, access, and use of analysis ready, cloud-optimized 
data (ARCO), providing instruments for efficient data dis-
covery, view, access, and processing (Lewis et al. 2017; 
Giuliani et al. 2019; Sudmanns et al. 2022). EAIL is a robust 
cloud-based platform based on Open Data Cube (ODC 
– www. opend atacu be. org) and makes use of modern cloud 
technologies for its underlying architecture and to deliver 
scalable analytics capabilities, automated data processing, 
and ingestion workflows.

This study utilized imagery collected by the Land-
sat (Loveland & Dwyer 2012) and Copernicus’ Sentinel 
(Aschbacher & Milagro-Pérez 2012) missions. The Land-
sat program, jointly operated by the National Aeronautics 
and Space Administration (NASA) and the US Geological 
Survey (USGS), collects space-based imagery at moder-
ate (30 m) spatial resolution. In this study, we use the 
images acquired by the Thematic Mapper (TM) on-board 
Landsat 5 (1984–2011), the Enhanced Thematic Mapper 
Plus (ETM +) on-board Landsat 7 (1999–present), and 
the Operational Land Imager (OLI) on-board Landsat 8 
(2013–present) (Fig. 2). The revisit time of each Landsat 
satellite is 16 days. The Scan Line Corrector (SLC) of 
Landsat 7 ETM + has failed since 31 May 2003, causing 
the scanning pattern to exhibit wedge-shaped scan-to-scan 
gaps, leading to images that are missing approximately 
22% of the normal scene area (Maxwell et al. 2007; Lee 
et al. 2016; Li et al. 2017).

The twin satellites, Sentinel-2A and 2B with Multi-Spectral  
Instruments (MSI) onboard, are the part of the European 
Union’s Copernicus program. Sentinel-2A and Sentinel-2B 
were launched on June 23, 2015, and March 7, 2017, but in the 
EAIL Data Cube, the data collected by both Sentinel-2 satellites 
is represented as one product starting January 2017. The Senti-
nel-2 satellites provide both higher spatial, temporal (5 days), 
and spectral resolution optical data compared to Landsat (Drusch 
et al. 2012). The spatial resolution of optical bands used in this 
study is 10 m (“green” band 3) and 20 m (“red edge” band 6),  
both transformed to 30 m resolution in EAIL.

We call the resulting imagery (30 m) resolution “medium”, 
following the terminology (mid-, moderate-, medium-) used 
by many Landsat and Sentinel-2 explorers (Pardo-Pascual 
et al. 2018; Bishop-Taylor et al. 2019, 2021; McAllister 
et al. 2022), which use the term “high resolution” for aerial 
photography and/or satellite imagery of < 5 m pixel size 
(WorldView-2, Planet Labs Inc. SkySat satellites, etc.). At 
the same time, many researchers call Landsat and Sentinel- 
2 spatial resolution “high” (Drusch et al. 2012; Liu et al. 
2012; Zhu & Woodcock 2012; Verpoorter et al. 2014), usu-
ally comparing it to Moderate Resolution Imaging Spectro-
radiometer (MODIS), with a spatial resolution of 250–1000 
m. On the other hand, Apostolopoulos and Nikolakopoulos 
(2021) in their review classify Landsat as low-resolution 
(> 20 m) and Sentinel-2 as medium-resolution data for coast-
line change monitoring.

The temporal density of satellite observations varied during 
different periods of the study, affecting the statistical power 
of the results. Specifically, the periods before June 1999 and 
between September 2011–March 2013 included observations 
of only one satellite (Landsat-5 and Landsat-7, respectively) 
(Fig. 2) and, as such, should be treated with caution.

Images were extracted and processed separately for each 
of the four satellite products stored in the EAIL Data Cube 
(Landsat-5, Landsat-7, Landsat-8 and Sentinel-2A/B). 

Fig. 2  The periods of aerial 
photography and satellite 
observations (Landsat-5/7/8 and 
Sentinel-2A/B). Sentinel-2A 
and Sentinel-2B were launched 
on June 23, 2015, and March 7, 
2017, but in the Earth Analyt-
ics Interoperability Lab (EAIL) 
Data Cube the data collected 
by both Sentinel-2 satellites are 
represented as one product start-
ing January 2017. Dashed verti-
cal lines indicate the periods 
when the number of observing 
satellites changed

http://www.dataobservatory.net
http://www.dataobservatory.net
http://www.opendatacube.org
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Regardless of the spatial resolution of satellite sensors (30 
m for Landsat-5/7/8 and 10–20 m for Sentinel-2A/B), all 
analysis-ready images were extracted from the data cube 
in a consistent spatial resolution (30 m) for 105 rectangular 
regions of 1–5 km size along the Middle Peninsula shoreline 
(Fig. 3a). By resampling and decreasing the spatial resolu-
tion of Sentinel-2, we assume that this parameter does not 
play a significant role in SDS detection accuracy (Hagenaars 
et al. 2018; Vos et al. 2019a).

Taking into account that tidal stage is one of the most 
important factors influencing short-term fluctuations in SDS 
position (Bishop-Taylor et al. 2021; Nanson et al. 2022), 
we analyzed only the images collected during intermediate 
(25–75%) tide levels, excluding 25% of the images collected 
during high and 25% collected during low tides. The tidal 
model FES2014 (Lyard et al. 2021) was used to calculate the 
tide heights at the exact time of each satellite image acqui-
sition for the points closest to the center of each analyzed 
region and at least 1 km offshore. The images were classi-
fied into three groups: 25% collected during high tide; 50% 
collected during mid-tide; and 25% collected during low 
tide. The high-tide and low-tide groups were excluded from 

analysis. We do not expect the remaining small tidal varia-
tions of the water levels to affect SDS significantly because 
this effect occurs in the areas with shallow shore face slopes 
(beaches), where specific methods of tidal correction are 
applied (Vos et al. 2019a, b, 2020; Bishop-Taylor et al. 
2021). In the study area, only 6% of the shoreline (269 of 
4530 analyzes locations) were classified as “beaches”, with 
other areas having higher slopes.

In satellite images, pixels of suspicious quality were elimi-
nated, i.e., replaced with “no data” code. For Landsat-5/7/8, the 
pixels with quality codes “high cloud confidence” and “high 
cloud shadow confidence” were eliminated. For Sentinel-
2A/B, the pixels with quality codes “cloud high probability”,  
“cloud medium probability”, “thin cirrus”, “cloud shadows”, 
and “saturated or defective” were eliminated. After that, the 
images with less than 50% of “good” pixels were excluded  
from the analysis.

All “good” pixels were classified as “land” or “water” using 
the Modified Normalized Difference Water Index (MNDWI)  
(Xu 2006), also called Land Surface Water Index (LSWI) (Xiao  
et al. 2002; Bera & Maiti 2019). MNDWI was calculated from 
the surface reflectances using the equation MNDWI = (Green 

Fig. 3  a Rectangular regions with satellite data extracted from EAIL 
Data Cube; b one region with 100-m circles along the shoreline 
where the rates of coastal change (“land loss/erosion” vs. “land gain/
accretion”) were calculated. The color in b is Modified Normalized 

Difference Water Index (MNDWI) averaged from four Earth Analyt-
ics Interoperability Lab (EAIL) Data Cube satellite products (Land-
sat-5, Landsat-7, Landsat-8, and Sentinel-2A/B). In MNDWI, deeper 
blue/red indicates higher confidence that it’s water/land
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– SWIR) / (Green + SWIR), where Green is the surface reflec-
tance at green band (band 2 for Landsat-5/7 and band 3 for 
Landsat-8 and Sentinel-2A/B) and SWIR is the surface reflec-
tance at shortwave infrared band (band 5 for Landsat-5/7 and 
band 6 for Landsat-8 and Sentinel-2A/B). High MNDWI val-
ues indicate water, low values indicate a non-water or land sur-
face, and maximum MNDWI gradient between them indicates 
shoreline (Fig. 3b). Numerous indices increasing the contrast 
between water and land pixels in the image have been devel-
oped and used for shoreline detection, including Normalized 
Difference Water Index (NDWI), Water Index, Normalized 
Difference Vegetation Index (NDVI), and Complex Band 
Ratio (e.g., Mitra et al. 2017; Abdelhady et al. 2022). MNDWI 
was preferred to other indices based on preliminary analysis 
of Landsat-5/7/8 and Sentinel-2 imagery in the study area. 
The results of using MNDWI and NDWI were close. So far, 
most studies used NDWI as an index for shoreline detection 
(Apostolopoulos & Nikolakopoulos 2021), and some studies 
demonstrated that shorelines detected using NDWI are more 
accurate than other methods (Apostolopoulos et al. 2020). 
NDWI is calculated like MNDWI with near-infrared band 
(NIR) instead of SWIR (McFeeters 1996). From a theoretical 
point of view, MNDWI is expected to work better than NDWI, 
especially in water regions with a background dominated by 
built‐up land areas, because water absorbs SWIR better than 
NIR (Xu 2006). One of the reasons why NDVI was used more 
often than MNDWI is that not all satellite and aerial sensors 
measure SWIR. The imagery used in this study (Landsat-5/7/8 
and Sentinel-2) has the SWIR band, and for this reason, we 
selected MNDWI as the land/water indicator.

The MNDWI calculated for “instantaneous” satellite 
images were averaged to composites of quarterly (3-month) 
periods, i.e., January–March, April–June, July–September, 
and October–December for each year. Selecting a 3-month 
temporal resolution was intended to minimize the effect of 
environmental errors in instantaneous images, such as wave 
foam, clouds, and flooded intertidal areas (García-Rubio 
et al. 2015; Vos et al. 2019a; Bishop-Taylor et al. 2021), and, 
at the same time, keep the ability to quantify intra-annual 
(seasonal) shoreline changes.

In parallel with calculating quarterly MNDWI time 
series, the MNDWI were averaged for the entire periods 
observed by each satellite in each region (an example in 
Fig.  3b). In these averaged images, “basic” SDS were 
detected using the sub-pixel waterline extraction algorithm 
(Bishop-Taylor et al. 2019). Since the threshold between 
water and land for MNDWI values can vary between images 
(Liu et al. 2012), this threshold was determined for each 
image using the Otsu’s thresholding algorithm, a non-
parametric and unsupervised method of automatic thresh-
old selection maximizing the separability of the resultant 
classes based on zeroth- and the first-order cumulative 
moments of the gray-level histogram (Otsu 1979).

In contrast to a traditional approach using the Digital 
Shoreline Analysis System (DSAS) for assessment of shore-
line change along cross-shore transects (Thieler et al. 2009), 
in this study, we analyze the changes in the number of pixels 
classified as land in circular regions of 100-m radius located 
every 100 m along the “basic” (calculated from averaged 
MNDWI) SDS (total 6577 locations, an example in Fig. 3b). 
The size of the analyzed locations/circles (Rc = 100 m) was 
selected on the basis of the spatial resolution of the ana-
lyzed imagery (30 m). The number of pixels in each circle 
(about 35) was sufficient for numerical analysis, and at the 
same time, spatial variations in shoreline changes were not 
oversmoothed.

The locations of 100-m circles and the quarterly MNDWI 
grids were calculated from individual satellite products 
(Landsat-5, Landsat-7, Landsat-8, and Sentinel-2A/B) and 
then averaged. In each circle, the numbers of “land” pixels 
were calculated (all pixels whose centers were within the 
circle were counted) for each quarterly MNDWI compos-
ite, and then, the rate of changes of the number of “land” 
pixels was estimated using Sen’s non-parametric estimator 
of slope (Sen 1968). This robust estimator allows missing 
data, makes no assumptions on data distribution, and is not 
affected by gross data errors and outliers. As a result, all 
6577 locations were classified into three classes: “land loss/
erosion” (negative trend significant at 95% confidence inter-
val), “no trend” (trend not significant), and “land gain/accre-
tion” (positive trend significant at 95% confidence interval).

The rates of change of the numbers of “land” pixels in 
the 100-m circles (pixels·year−1) were transformed to lin-
ear measures of shoreline change (m·year−1) comparable 
to the rates obtained in the studies based on cross-shore 
transects. For this, the formula Esh = NL /Ntot*Rc*π/2 was 
used, where Esh (m·year−1) is the linear rate of shoreline 
change; NL /Ntot  (year−1) is the changes in the ratios between 
the number of “land” pixels to total number of pixels; and 
Rc = 100 m is the radius of the circle where the changes 
were measured. In other words, in each circle, the rate of 
shoreline change in length units (Esh) was calculated as Ea/
Width, where Ea = NL /Ntot*Area is the rate of change of 
the total area (Area = π*Rc

2) of “land” pixels in the circle 
and Width = 2*Rc is the shoreline length equal to the diam-
eter of the circle. A similar conversion from length to area 
(Area = Length * Width) was used by Bera and Maiti (2019) 
when calculating land gain/loss in the Indian Sundarbans 
mangrove forest.

Aerial Photography

The assessments of shoreline change based on satellite 
imagery were compared to the data based on orthorecti-
fied aerial photography collected between 1937 and 2009 
by the Shoreline Studies Program at the Virginia Institute 
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of Marine Science (VIMS) for the Virginia Coastal Zone 
Management Program at the Department of Environmental 
Quality (Hardaway et al. 2005; Milligan et al. 2010, 2012). 
Images from 1937, 1953, 1968, 1978, 1994, 2002, and 
2007–2009 were utilized, and years varied in different parts 
of the study area. Aerial photographs were orthorectified 
and mosaicked to 1-m resolution images, and the shorelines 
were digitized in ArcMap software using USGS 30 m digital 
elevation model (DEM) data from the National Elevation 
Dataset as a vertical control.

The Digital Shoreline Analysis System (DSAS) was used 
to determine the rate of shoreline change (Himmelstoss et al. 
2018). Baselines were created about 60 m seaward of the 
1937 shoreline, and the transects perpendicular to the base-
line were generated about 10 m apart. Baselines generally 
did not include areas that have unique shoreline morphology 
such as smaller creeks, creek mouths, and spits. From the 
intersections of the transects and shorelines, linear regression 
rates (LRR) were calculated by fitting a least-squares regres-
sion line to all shoreline points for given transect (see details  
of LRR calculation in Apostolopoulos & Nikolakopoulos 
2022a). Statistical significance of each slope was assessed 
using a two-tailed t-test at 95% confidence level (Hardaway  
et al. 2005; Milligan et al. 2010, 2012). The rates were 
assigned to points at the ends of the transects. To trans-
late their point data to our shoreline, we used GIS and a 
water interface shoreline created by the Center for Coastal 
Resources Management at VIMS. Shoreline reaches without 
data (typically complex areas with very low wave action) 
were assigned a minimal average value (− 0.03 m·year−1) 
from Rodriguez-Calderon (2010).

To minimize the effect of the difference in pixel size 
between the satellite images and aerial images, the aerial 
assessments were averaged within the same 100-m circles 
where the satellite data were processed (4530 of 6577 
circles; other circles contained no aerial data). The loca-
tions where the averaged shoreline change rates were not 

significantly different from zero at the 95% confidence 
level were classified as “no trend”, and the locations with 
rates significantly different from zero were classified as 
“land loss/erosion” and “land gain/accretion”, depend-
ing on the sign of the resulting mean. Another measure of 
shoreline change was qualitative categories of land loss/
erosion and land gain/accretion (from “very low” to “very 
high”) (Table 1).

The effects of coastline morphology and man-made 
structures on shoreline change rates were analyzed using 
the Shoreline and Tidal Marsh Inventories available from the 
Center for Coastal Resources Management website https:// 
www. vims. edu/ ccrm/ resea rch/ inven tory/ index. php. The 
shoreline conditions captured by these inventories include 
natural features like sandy beaches, detached marshes and 
marsh islands, artificial shore protection structures (revet-
ments, bulkheads, marsh sills, and offshore breakwaters), 
and water access structures (docks, boathouses, boat ramps 
and marinas). Features were represented in the GIS data-
base as lines (breakwaters, bulkheads, debris, groins, jetties, 
marinas, wharfs, etc.) or points (boathouses, docks, ramps, 
etc.) (Table 2).

Statistical Methods of Data Analysis

Temporal trends of the rates of shoreline change and 
regions characterized by these trends were analyzed using 
Empirical Orthogonal Functions (EOFs) (Preisendorfer 
1988; Emery & Thomson 2014), which is a convenient 
method for analysis of successive images of data distrib-
uted in space. EOFs decompose time series of observations 
(shoreline change rates) into a set of orthogonal functions 
or modes. The resulting functions are uncorrelated, i.e., 
associated with independent natural processes. The calcu-
lations include the following operations. First, the vectors 
of shoreline change rates are merged into the matrix T 
with dimension M·N, where M is the number of spatially 

Table 1  The categories 
(grades) of shoreline evolution, 
including land gain (expansion, 
accretion) and land loss (retreat, 
erosion) based on the Shoreline 
Evolution Studies reports 
(Hardaway et al. 2005; Milligan 
et al. 2010, 2012)

a The measure used in Shoreline Evolution Studies reports (Hardaway et al. 2005; Milligan et al. 2010, 2012)

Category Land loss/gain (erosion/accretion) [feet·year−1]a m·year−1

 + 5 Very high gain (accretion)  > + 10 feet·year−1  > + 3.05 m·year−1

 + 4 High gain (accretion)  + 10 to + 5 feet·year−1  + 3.05 to + 1.52 m·year−1

 + 3 Medium gain (accretion)  + 5 to + 2 feet·year−1  + 1.52 to + 0.61 m·year−1

 + 2 Low gain (accretion)  + 2 to + 1 feet·year−1  + 0.61 to + 0.30 m·year−1

 + 1 Very low gain (accretion)  + 1 to 0 feet·year−1  + 0.30 to 0 m·year−1

0 No trend No significant trend No significant trend
 − 1 Very low loss (erosion)  − 1 to 0 feet·year−1  − 0.30 to 0 m·year−1

 − 2 Low loss (erosion)  − 2 to − 1 feet·year−1  − 0.61 to − 0.30 m·year−1

 − 3 Medium loss (erosion)  − 5 to − 2 feet·year−1  − 1.52 to − 0.61 m·year−1

 − 4 High loss (erosion)  − 10 to − 5 feet·year−1  − 3.05 to − 1.52 m·year−1

 − 5 Very high loss (erosion)  < − 10 feet·year−1  > − 3.05 m·year−1

https://www.vims.edu/ccrm/research/inventory/index.php
https://www.vims.edu/ccrm/research/inventory/index.php
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distributed points (locations where shoreline change rates 
were calculated), and N is the number of observations over 
time. Then the matrix T is decomposed into two additional 
matrices as follows: T = A·B, where A is M·I matrix and 
B is I·N matrix, with I being the number of non-zero EOF 
modes. Each mode consists of two parts: (1) the vector 
of spatial distribution of a variable (loadings) and (2) a 
time series that quantifies how each mode changes in time 
(scores). The temporal resolution of the resulting time 
series of EOF scores is 3 months corresponding to the 
quarterly periods when MNDWI images were averaged. 
The modes are ranked according to the fraction of vari-
ance that accounted for each mode in the original data; as 

a result, leading modes explain much of the variance for a 
given parameter. Missing data (3.28%) were reconstructed 
using the data interpolating empirical orthogonal functions 
(DINEOF) method (Beckers & Rixen 2003).

Comparison between satellite and aerial assess-
ments of shoreline change was performed using a non- 
parametric method with quantitative assessments trans-
formed to qualitative categories of land loss/erosion and 
land gain/accretion (from “very low” to “very high”)  
from the Shoreline Studies Program (https:// www. vims. 
edu/ resea rch/ depar tments/ physi cal/ progr ams/ ssp/ index. 
php) and converted to categories (from − 5 to + 5) in this 
study (Table 1), including a zero (“no trend”) category, 
the latter meaning the absence of a statistically signifi-
cant trend at 95% confidence level. These categories are 
comparable to the categories (“erosion”/ “intense ero-
sion”/ “severe erosion”) used by Luijendijk et al. (2018) 
studying the state of the world’s beaches and the catego-
ries used by Apostolopoulos and Nikolakopoulos (2022a;  
b) studying the north Peloponnese coastline.

Results

The Spatio‑Temporal Patterns of Shoreline Change 
on the Middle Peninsula: Empirical Orthogonal 
Functions (EOF) Analysis

The two leading EOF modes explain 21.2% of the total vari-
ance and describe variability of shoreline change over the 
entire study area (Fig. 4a, b). Although the explained portion 

Table 2  Coastline structures stored in the Shoreline and Tidal Marsh 
Inventories  geodatabasesa as lines and points

a https:// www. vims. edu/ ccrm/ resea rch/ inven tory/ index. php

Coastline structures

Lines Points

Breakwater
Bulkhead
Debris
Dilapidated bulkhead
Groin
Jetty
Marina < 50 slips
Marina > 50 slips
Marsh toe
Riprap
Unconventional
Wharf

Boat house
Dilapidated dock
Dock
Outfall
Private ramp
Public ramp

Fig. 4  The maps of EOF loadings (a, b), the time series of EOF 
scores (c, e), and the seasonal components of EOF scores (d, f) of 
the first (a, c, d) and the second (b, e, f) EOF modes of the satel-
lite assessments of the rates of shoreline change in the Middle Pen-
insula of the Chesapeake Bay. The colors and sizes of EOF loadings 

in a, b indicate the contribution of that location to the temporal varia-
tions of the EOF mode (c, e). Blue dotted vertical lines in time series 
plots (c, e) indicate the dates when the number of observing satellites 
changed, from one satellite (Landsat-5) to four satellites (Landsat-7/8 
and Sentinel-2A/B) (see Fig. 2)

https://www.vims.edu/research/departments/physical/programs/ssp/index.php
https://www.vims.edu/research/departments/physical/programs/ssp/index.php
https://www.vims.edu/research/departments/physical/programs/ssp/index.php
https://www.vims.edu/ccrm/research/inventory/index.php
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of total variance is comparatively small, we focus on these 
two modes because the modes of lower rank represent vari-
ations in restricted parts of the Middle Peninsula and dem-
onstrate no evident trends and patterns.

The scores (time series) of both leading EOF modes 
include outliers between the Fall of 2011 and the Spring 
of 2013 (Fig. 4c, e), when satellite data were collected by 
Landsat-7 satellite only. The low quality of satellite imagery 
during this period is not surprising taking into account well-
known problems of Landsat-7 ETM + Scan Line Corrector 
(SLC)-off gap striping (Maxwell et al. 2007; Lee et al. 2016; 
Li et al. 2017).

The first EOF mode explains 12.4% of the total vari-
ance and demonstrates that the entire Middle Peninsula is 
affected by intensive land loss processes (Fig. 4a). Most of 
the observed locations demonstrate the same sign of vari-
ations, highest loadings along exposed reaches of shore-
line, evident linear decreasing trend (land loss/erosion) 
(Fig. 4c), and insignificant seasonal variations (Fig. 4d). 
This mode is associated with continual erosion over the 
entire Middle Peninsula.

The second EOF mode (explains 8.8% of total variance) 
can be attributed to the accuracy of shoreline detection 
in inlets and embayments, which may be affected by sea-
sonal cycles of alongshore vegetation. The EOF-2 loadings 
are most pronounced in the inlets, including an estuary of 

the Piankatank River in the northern part of the study area 
(Fig. 4b). EOF-2 scores demonstrate no significant trend 
(Fig. 4e) and seasonal variations (Fig. 4f) with negative 
rates of shoreline change (land loss) in spring and positive 
rates (land gain) in summer-fall. We attribute these variations 
to a seasonal cycle of vegetation (designated by MNDWI 
as land) along the shoreline. Different types of vegetation 
reflect green and infrared radiance (from which MNDWI is 
calculated) in different ways and their seasonal changes can 
affect the balance between green and infrared and, as a result, 
have an effect on the SDS location associated with the zone 
of maximum MNDWI gradient. In other words, vegetation 
affects SDS, the shoreline detected from satellite imagery, 
rather than the physical edge between land and water.

This assumption is supported by loose but signifi-
cant correlations between EOF-2 loadings and certain 
types of alongshore land cover associated with differ-
ent types of vegetation. The second EOF mode loadings 
were positively correlated with the portions of shore-
line classified as agricultural, residential, and grass 
land cover types (Fig. 5a). Also, the EOF-2 loadings 
were negatively correlated with the areas classified as 
marshes and scrub/shrub (Fig. 5b). We speculate that 
all these land cover types are associated with vegetation 
whose seasonal variability affected MNDWI and SDS in 
different ways.

Fig. 5  Correlations between the loadings of the second EOF mode 
and the shoreline land cover types. X-axes in a and b include the 
sum of the lengths of “agriculture”, “residential”, and “grass” (a) and 
the sum of the lengths of “marsh” and “scrub-shrub” (b) within the 

100-m circles where land gain/loss was assessed. Sums of the lengths 
are used instead of percentage because the shoreline land cover types 
in the shoreline and tidal marsh inventories geodatabase can overlap
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Disagreement Between the Satellite and Aerial 
Assessments of Shoreline Change

The disagreement between satellite imagery and aerial pho-
tography assessments can be evaluated in different ways. 
Considering only the directions of shoreline change (“land 
loss/erosion”, “no trend”, or “land gain/accretion”), we find 
that the agreement is not high, which can be attributed to 
(1) different periods of assessment, 1937–2009 for aerial 
photography vs. 1984–2021 for satellite imagery, and (2) the 
differences between detection of the land/water edge from 
the two data sources. Only 46.4% of the studied locations 
demonstrate agreement (Table 3). Most of the disagreement, 
however, resulted from the very high number (53%) of loca-
tions where “no trend” was found in satellite data. Absolute 
disagreement (“land loss/erosion” in one data source and 
“land gain/accretion” in another) was observed in only 5.6% 
of the analyzed locations. Total Spearman’s rank correlation 
between the two types of measurements was low but signifi-
cant (ρ = 0.173; p <  10−31).

Including more grades into the shoreline change assess-
ments (from “very low” to “very high”, following the 
approach used by the Shoreline Studies Program (Milligan 
et al. 2010, 2012) (Table 1)), considerably improved the cor-
relation between the two assessments (ρ = 0.331; p <  10–115) 
(Table 4).

The maps of the grades of shoreline change obtained by 
both methods were similar, with maximum changes (mostly 
“land loss/erosion”) occurring along exposed reaches of 
shoreline (Fig. 6a, b). For example, in locations where ero-
sion rates exceeded 3 m  year−1, the total shoreline retreat 
during the 38 years of satellite imagery was greater than 
100 m. Few locations, however, demonstrated evident disa-
greement (Fig. 6c, d) probably resulting from the differ-
ences in the periods of assessment. Detailed analysis of the 
VIMS reports (Hardaway et al. 2005; Milligan et al. 2010, 
2012) revealed that in many locations the periods of “land 
loss/erosion” were followed by the periods of “no trend” or 
“land gain/accretion” and vice versa. As a result, the rates of 
shoreline change based on aerial photography (1937–2009) 
differed from the assessments based on satellite imagery col-
lected considerably later (1984–2021) (Fig. 2).

The Effect of Coastal Morphology, Land Cover, 
and Man‑made Structures on Shoreline Change

The shoreline segments most subject to change were sandy 
beaches, i.e., the locations (100-m circles) where the total 
length of “beach” segments obtained from the shoreline 
and tidal marsh inventories geodatabase exceeded 90% of 
the total shoreline length. Among these locations, the per-
centage of sites with medium to high “land loss/erosion” 
and “land gain/accretion” exceeded the mean values for the 
entire study region by a factor of 4 (erosion 32.1–34.7% at 
beaches vs. 8.0–10.6% total; accretion 4.1–4.5% at beaches 
vs. 0.9–0.8% total; Fig. 7b; Table 5). In the study area, the 
chance of beaches to experience erosion (32.1–34.7%) 
exceeded the world’s average (24%) reported by Luijendijk 
et al. (2018). At the same time, the chance of accretion 
(4.1–4.5%) was much lower compared to 28% reported by 
Luijendijk et al. (2018). These figures were similar for both 
satellite and aerial assessments (Table 5).

Very different rates of shoreline change were found in 
the locations with a significant amount of marshes (wet-
lands). In locations (100-m circles) where the total length 
of “detached marshes” and “marsh islands” exceeded 50 
m, satellite data demonstrated a high (> 30%) percentage 
subject to medium to high “land loss/erosion”; this fig-
ure, however, was not confirmed by aerial data (10.3%; 
Fig. 7c; Table 5), which was close to the total average 
(8.0%; Fig. 7a; Table 5). We speculate that this differ-
ence results from the fact that in wetlands/marshes aerial 
surveys and satellite imagery detect shoreline differently. 
In wetlands, high-resolution aerial photography reveals 
the boundary between land and water even when water 
is covered by vegetation. In contrast, satellite pixels over 
wetlands are classified as “land” because their optical 
signatures are dominated by light reflected by vegetation 
rather than water. As a result, satellite assessments dem-
onstrated that shorelines in “marsh” areas were retreating 
during 1984–2021 at higher rates compared with aerial 
assessments. Also, the number of “marsh” locations sub-
ject to accretion was zero in both satellite and aerial data.

The presence of man-made structures demonstrated a 
stabilizing effect on the shoreline (Fig. 7d, e; Table 5). 

Table 3  Correspondence 
between the numbers of 
alongshore locations (100-m 
circles) attributed to categories 
“land loss/erosion”, “no trend”, 
and “land gain/accretion”

The total number of locations in the table (4530) is lower than the total number of locations with satellite 
data (6577) because some locations (circles) contained no aerial assessments

Aerial photography 
(1937–2009)

Satellite imagery (1984–2021)

Land loss/erosion No trend Land gain/accretion Total

Land loss/erosion 1596 (35%) 1724 (38%) 169 (3.7%) 3489 (77%)
No trend 191 (4.2%) 495 (11%) 58 (1.3%) 744 (16%)
Land gain/accretion 81 (1.8%) 178 (3.9%) 38 (0.8%) 297 (6.6%)
Total 1868 (41%) 2397 (53%) 265 (5.8%) 4530 (100%)
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The presence of hardened structures (such as bulk-
heads, revetments, and offshore breakwaters) resulted 
in a decrease of both erosion and accretion rates. This 
decrease, however, was more pronounced in satellite 
assessments compared to aerial measurements; we attrib-
ute this difference to the fact that many man-made struc-
tures were created after the 1960s–1970s and affected 
satellite assessments more than aerial surveys.

Discussion

This study demonstrates the effectiveness of using Land-
sat and Sentinel-2 imagery for the routine assessment 
of tidal shoreline changes, including both straight and 
complex shorelines. The range of shoreline change rates 
detected from satellite data on the Middle Peninsula, 
Virginia (lower Chesapeake Bay), was comparable to 
the rates detected from conventional aerial photography 
analysis. Using imagery from multiple satellites over a 
period of almost four decades allowed for detailed evalu-
ation of shoreline dynamics at high spatial and temporal 
scales, which supports the idea that using multiple sensors 
can improve temporal resolution of shoreline detection, 
remove short-term variability, and reduce uncertainties 
in satellite-derived shoreline analysis compared to a low-
frequency sampling approach (Adebisi et al. 2021).

In this study, the changes in the numbers of “land” vs. 
“water” pixels were analyzed in circular regions of fixed (100 
m) radius, rather than the traditional method of cross-shore 
transects (Thieler et al. 2009; Vos et al. 2019b). The process 
of generating transects orthogonal to the coast is straightfor-
ward only for shorelines with relatively simple morpholo-
gies, such as beaches, and can be performed without manual 
corrections of software-generated results. However, for 
coastlines with complex morphologies such as those around 
river deltas and salt marshes, where the waterline is more 
fragmented and difficult to identify (Shaw et al. 2008), the 
transect-based indicator often fails to characterize the coast-
line position and its change over time (Xu 2018). As a result, 
most studies analyzing shoreline change focus on shorelines 
with simple morphologies such as beaches (Luijendijk et al. 
2018) and skip the locations where a transect-based approach 
does not work (Luijendijk et al. 2018; Armstrong & Lazarus 
2019; Vos et al. 2020). In contrast, the method used in this 
study works well for both straight and complex shorelines 
and does not require laborious and expensive manual work, 
making it applicable in any coastal region. The approach 
used in this study has some common features with the shore-
line movement algorithm used by Abdelhady et al. (2022), 
which also did not use cross-shore transects and was based 
on categorizing the pixels in the target shoreline according 
to distance from the reference shoreline.Ta
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The limitations of using satellite data to detect shoreline 
changes result from inaccurate detection of the land–water 
boundary. One reason is associated with bright targets such 
as sand or whitewater in the surf zone which can be mis-
classified as clouds (Zhu & Woodcock 2012). Highly turbid 
water also makes an accurate extraction of the land/water 
boundary difficult (Teodoro & Goncalves 2012; Chen et al. 
2019). Large vessels next to the shoreline can also result in 
SDS displacement (Chen et al. 2019; Apostolopoulos et al. 
2020). Bright targets cause other issues; e.g., the boundary 
between whitewater and normal water can be easily con-
fused with shoreline (Hagenaars et al. 2018; Pardo-Pascual 
et al. 2018).

Variation of alongshore vegetation can also be misin-
terpreted as satellite-derived shoreline (SDS) expansion/

retreat (Pardo-Pascual et al. 2012). In temperate latitudes, 
the changes in vegetation canopy follow seasonal patterns, 
and we speculate that it was radiance reflected by vegeta-
tion that produced seasonal variations of the second EOF 
mode rather than the movements of shoreline itself. This 
hypothesis agrees with the results of Pardo-Pascual et al. 
(2012), who compared the period when the area they stud-
ied on the Spanish Mediterranean coast was occupied by 
natural vegetation and the period when this vegetation dis-
appeared, and found large (up to 45 m) differences in the 
location of SDS. These variations cannot be attributed to 
sediment transport, although previous studies documented 
seasonal cycles in this process (Castelle et al. 2021), with 
sediments eroded from the foreshore during initial winter 
storms and migrating back shoreward (to the beach face) 

Fig. 6  Assessments of shoreline change from satellite (a) and aerial (b) data using the categories of “land gain”/”land loss” (Table 1). The map 
(c) and the histogram (d) demonstrate the differences between the assessments (aerial minus satellite)
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during less energetic summer periods (Aubrey 1979). Also, 
some beaches change grain size (e.g., from sand to gravel) 
between the seasons, influencing the visibility of the shore-
line indicator and shifting the shoreline proxy (McAllister 
et al. 2022). These effects, however, are typical to open 
shoreline reaches affected by winds, waves, tides, and cur-
rents. In contrast, according to the results of this study, a 
seasonal cycle was most evident in inlets and embayments 

where the effect of waves and currents was expected to be 
small. We conclude that these variations resulted from a 
seasonal cycle of vegetation obscuring accurate detection 
of the shoreline.

An additional source of incorrect detection of shoreline 
change is expected in the areas with barrier islands sepa-
rating open ocean from back-barrier waters (bays, lagoons, 
and tidal creek systems) (see FitzGerald et al. 2008). When 
these barriers are treated as shorelines, the “water” pixels in 
the circles of 100-m radius include both open waters, back-
barrier waters, and tidal inlets. Land retreat associated with 
RSLR in such areas often starts with an increase of the areas 
covered by back-barrier waters with coastline remaining at 
the same position or even migrating offshore (FitzGerald 
et al. 2008; Passeri et al. 2015), resulting in disagreement 
between land loss assessed by our method and by the method 
based on cross-shore transects.

In wetlands (marshes), high rates of shoreline retreat 
observed from satellite data indicate intensive transforma-
tion of marshes to open water environment (marsh drowning) 
resulting from RSLR, which accelerated from 1.6–1.8 mm 
 year−1 over the twentieth century (Church & White 2006, 
2011; Jevrejeva et al. 2006, 2008) to 3.3 ± 0.3 mm  year−1 
over 1993–2019 (The Climate Change Initiative Coastal Sea 
Level Team 2020). The period observed by aerial photog-
raphy was earlier (Fig. 2), and the percentage of “marsh” 
locations with shoreline retreat was much lower (Table 5). It 
should be noted that the process of marsh drowning is non-
linear, highly complex, and site-specific (Passeri et al. 2015) 
and depends on factors such as sediment supply, vegetation 
productivity, rates of subsidence or uplift, changes in storm 
frequency and intensity, and availability of inland areas for 
migration (Stralberg et al. 2011). At low rates of RSLR, 
marsh vegetation remains within the same location due to 
vertical accretion, i.e., accumulation of sediments on the 
marsh platform (Mariotti & Fagherazzi 2010; Stralberg et al. 
2011; Townend et al. 2011). At higher rates of RSLR, con-
version of marsh to open water usually occurs in the interior 
of the marsh, not at the marsh edge, and the marsh drowns 
only after RSLR exceeds the rate of accretion (Reed 1990).

In recent decades, the acceleration of RSLR has led to an 
increase in shoreline retreat (Church & White 2006, 2011; 
Cazenave & Llovel 2010). This study demonstrated that in 
locations with man-made structures, this process was slower 
as compared to natural parts of the coast. Previous stud-
ies showed that human modification of coastlines has had a 
varying impact on shoreline change. On the one hand, some 
developed areas have experienced reduced erosion owing to 
cumulative sediment input (e.g., areas of beach nourishment, 
which adds sand to beach from outside sources) (Armstrong 
& Lazarus 2019) and creation and maintenance of coastal 
infrastructure (Hapke et al. 2013; Mendoza et al. 2022). 
On the other hand, shoreline structures such as offshore 

Fig. 7  Histograms of shoreline change rates detected from satellite 
and aerial data under different shoreline conditions. a All locations 
(100-m circles); b sandy beaches; c marshes; d shoreline structures 
stored in geodatabase as lines (Table 2); e shoreline structures stored 
in geodatabase as points (Table 2). X-axes in a–e indicate the catego-
ries of “land gain”/ “land loss” (Table 1). See footnotes in Table 5 for 
explanation how beaches, marshes, and structures were detected in 
100-m circles
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breakwaters can disrupt the natural longshore transport 
of sand and cause or worsen erosion on nearby properties 
(Saengsupavanich et al. 2022). However, in our study area 
the stabilizing effect of artificial structures was more pro-
nounced than their negative effect on coastal erosion.

The approach used in this study is not free of flaws result-
ing mostly from inaccurate detection of the edge between 
land and water. This issue, however, can be improved using 
advanced approaches of shoreline detection. Recent stud-
ies introduced different deep learning or machine learning 
approaches, resulting in higher accuracy and greater sensi-
tivity to fine-scale, narrow coastline features (Erdem et al. 
2021; McAllister et al. 2022; Pucino et al. 2022; Seale et al. 
2022). Additional improvement of shoreline detection can 
be achieved by classifying image pixels into more than two 
classes (land and water), including sand, whitewater (Vos 
et al. 2019a, b), rip currents, breaking zone, and beach face 
(Teodoro et al. 2011). Further improvement of the assess-
ment technology combining greater data availability pro-
vided by a data cube technology and unified methods of 
accurate shoreline detection is a promising approach sup-
plying valuable information for coastal risk management.

Conclusions

The results of this study highlight the effectiveness of using 
Landsat and Sentinel-2 imagery in quantitatively assessing 
shoreline dynamics. The approach, which was based on the 
variations of the land/water ratio within small alongshore 
regions, provides reliable assessments even for shorelines 

with complex morphology where conventional methods 
based on cross-shore transects are not feasible. The use of 
cloud-based data cube technologies significantly enhances 
the processing capabilities of large amounts of satellite 
information. The comparison of shoreline change demon-
strates reasonable agreement with traditional aerial assess-
ments, considering differences in the analyzed time periods 
and the accuracy of land–water edge detection.
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Table 5  The percentage of 
locations (100-m circles) with 
medium/high shoreline change 
rates (categories − 3 to − 5 
and + 3 to + 5; see Table 1) 
depending on the shoreline 
features (sandy beaches), land 
cover (marshes) and man-made 
structures

a The “beach” percentage of shoreline was calculated as the length of “beach” line feature within the 100-m 
circle divided by the sum of “beach” and “not beach” line features within the same 100-m circle
b We use the total length of “marsh” features within the 100-m circles instead of percentage of shoreline 
because “marsh” group includes “detached marshes” and “marsh islands”, which are not parts of shoreline
c The percentages of “line” man-made structures (Table 2) were calculated as the sums of the lengths of these 
line features within the 100-m circle divided by the sum of all line features within the same 100-m circle

Shoreline morphology/land cover/man-made 
structures

Medium/high land loss (erosion) Medium/high land gain 
(accretion)

Aerial 
photography

Satellite imagery Aerial 
photography

Satellite 
imagery

Beaches (> 90% of shoreline)a 32.1% 34.7% 4.1% 4.5%
Marsh (≥ 50 m)b 10.3% 32.6% 0.0% 0.0%
“Line” structures (> 90% of shoreline)c 7.3% 1.9% 0.3% 1.0%
“Point” structures (all) 4.8% 1.7% 0.4% 0.3%
“Point” structures (boathouses) 2.9% 0.3% 0.5% 0.2%
“Point” structures (docks) 5.0% 1.7% 0.4% 0.3%
“Point” structures (ramps) 6.5% 0.6% 0.0% 0.6%
“Point” structures (outfalls) 0.0% 9.1% 0.0% 0.0%
Total shoreline 8.0% 10.6% 0.9% 0.8%
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