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Abstract: Base isolation has been used in the last decades to provide structures with enhanced 
seismic performance, especially to meet the requirements of risk-critical buildings (e.g., 
healthcare facilities). This calls for risk-targeted design approaches that consider the explicit 
computation of various decision variables (e.g., expected annual loss or mean annual frequency 
of exceeding various damage states). Nonetheless, most of these structures are still designed 
following implicit risk/reliability considerations derived from building codes. The main hurdle to an 
explicit risk-based design is the computational effort and time required for seismic performance 
assessments, given the iterative nature of a typical risk/loss-based design process. This paper 
proposes using Gaussian-process-regression-based surrogate probabilistic seismic demand 
models (PSDMs) of equivalent single-degree-of-freedom systems (i.e., the probability distribution 
of peak horizontal displacements and accelerations on top of the isolation layer conditional on 
different ground-motion intensity levels) to address these challenges. This enables a risk-targeted 
methodology for the seismic design of low-rise structures equipped with friction pendulums that 
virtually requires no design iterations. First, the definition, training, and validation of the surrogate 
PSDMs are presented. Then, a brief description of a tentative risk-targeted procedure enabled by 
the proposed surrogate PSDMs is presented. The predictive power of the surrogate PSDMs is 
verified using a 10-fold cross-validation technique, resulting in normalised root mean square error 
below 3% for the parameters of the PSDMs and below 7% for their standard deviation.  

Introduction and Motivation 

Base isolation is one of the most effective methods for achieving enhanced protection of buildings 
against the damaging effects of earthquake-induced ground shaking. Base isolation enables 
superior structural design solutions that meet the needs of risk-aware owners; it is especially 
adopted for risk-critical facilities such as hospitals, emergency-response buildings, and power-
generating stations (e.g., Shao, 2018). Friction Pendulum Systems (FPS) gained much popularity 
during the last few decades (e.g., Zayas et al. 1990). This technology relies on the friction of a 
concave surface to achieve seismic isolation and provide restoring forces to the superstructure.  

The seismic design of base-isolated structures is commonly carried out by following minimum 
requirements established in current building codes, such as ASCE 7-10 (ASCE/SEI, 2017)  or 
Eurocode 8  (CEN, 2005). In fact, the intensity-based approach (i.e., a finite number of limit 
states/performance objectives, each corresponding to a given level of ground-motion intensity) 
considered in modern seismic codes cannot describe the seismic performance of a building for a 
full range of ground-shaking intensities and corresponding performance objectives. Probabilistic 
assessment methods such as the Performance-based Earthquake Engineering (PBEE) approach, as 
described by the Pacific Earthquake Engineering Research Center (PEER), have been developed to 
address this. PBEE is the most appropriate approach to calculate decision-variable metrics (i.e., 
expected annual – monetary – loss) for a given building configuration, including structural and 
non-structural components (e.g., Moehle and Deierlein, 2004). 

Implementing PBEE at the design stage is a challenging task. Indeed, estimating seismic 
performance involves solving a highly nonlinear problem with various random inputs. This 
requires the iterative implementation of the PBEE assessment formulation for different structural 
and non-structural alternatives until a target decision variable value is met. Each iteration of the 
procedure requires multiple nonlinear time history analyses, thus rendering the design process 
time- and computational-resource-intensive, arguably incompatible with the 
preliminary/conceptual design stage. Over recent years, a series of design procedures 
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incorporating PBEE concepts to obtain risk- or loss-based design have been proposed. 
Specifically for base-isolated structures, O’Reilly et al. (2022) presented a risk-based method to 
determine the mean annual probability of exceeding a displacement threshold of the isolation 
system associated with failure, targeting a maximum displacement reliability value. Other authors 
(e.g., Hu et al., 2022; Zhang and Huo, 2009) have proposed loss-based design methods relying 
on advanced optimisation models such as genetic algorithms or multivariate regressions. While 
the method presented by O’Reilly et al. (2022) provides a closed-form approximation for the risk 
of failure of FPS, it does not consider seismic losses or other decision variables. Conversely, the 
second group of approaches require complex computational models and applies to a limited 
range of structures. 

Direct Loss-Based Design (DLBD), first introduced for fixed-based concrete structures (e.g., 
Gentile and Calvi, 2023; Gentile and Galasso, 2020), represents an appealing risk-targeted 
design method that does not require design iterations. This approach adopts a flexible and swift 
mapping between the variables describing inelastic single degree of freedom (SDoF) systems 
and a selected loss metric. To this aim, a surrogate modelling technique is first used to map 
different SDoF systems to their probabilistic seismic demand models (PSDMs), describing the 
probability distribution of various engineering demand parameters (EDPs) conditional to a ground-
motion intensity measure (IM). This approach enables computationally-cheap reliability and loss 
estimates and, consequently, a loss-based design. A designer can, therefore, define a set of seed 
structural configurations and derive their corresponding loss and structural reliability estimates 
directly and without iterations. The designer can then select the structure’s properties that comply 
with the required loss target and detail the design accordingly. 

This paper presents the development of Gaussian Process (GP) Regression-based surrogate 
PSDMs towards a DLBD method for base-isolated structures equipped with FPSs.  Specifically, 
two surrogate PSDMs based on GP regressions (e.g., Rasmussen and Williams, 2006), 
representing the probability distribution of peak horizontal displacements and accelerations on top of the 
isolation layer conditional on different ground-motion intensity levels, are proposed and validated. 
Furthermore, a discussion on selecting IMs for which the surrogate PSDMs are conditioned is also 
included. Finally, a simplified loss/reliability assessment using the surrogate PSDMs is presented and 
a preliminary DLBD procedure for base-isolated structures is described, highlighting its strengths and 
limitations. 

Surrogated Probabilistic Seismic Demand Models 

Two GP regressions (defined below) are used to surrogate the parameters of the PSDMs of SDoF 
systems representing base-isolated structures (assuming a rigid superstructure). The surrogate 
models map the SDoF input parameters, � = ��� , ��, ℎ
�� �  (i.e., yield strength of the isolation 

system normalised by the total weight of the structure, ��; pre-yield period of the SDoF system, ��; the post-yield to pre-yield stiffness ratio of the isolation system, ℎ
��), to their respective PSDM 

parameters, �� = ��� , �� , σ��  (i.e., fitting coefficients, �� ,  ��; and lognormal standard deviation, ��, 
of the PSDMs in terms of the specific EDP conditional on the selected IM, where the subscript k refers 
to each of the two PSDMs). The steps for building the surrogate PSDMs are presented below and 
illustrated in Figure.1. 

1. Definition of an SDoF database representing base-isolated structures and described by 
the parameters in �. 

2. Selection and scaling of ground motion records and cloud-based nonlinear time history 
analysis (NLTHA) of each SDoF system from the database. 

3. Fitting the PSDMs to the cloud results for each SDoF system, obtaining the PSDMs 
parameters (defined in the vectors �� and ��). 

4. Training the GP-based surrogate PSDMs using the dataset obtained from the cloud-
based NLTHAs (Step 3) relating vector � to vectors �� and ��. 

Considered PSDMs 

The first considered PSDM describes the displacement demand on the isolation system (∆), and 
the second represents the peak acceleration demand at the top of the isolation system (Α). These 
models are presented in Eq. 1 and Eq. 2, respectively.  

 



SECED 2023 Conference SUAREZ, GENTILE & GALASSO 

3 

  

Figure 1. Steps for training the proposed surrogate PSDMs (��: yield strength of the isolation 

system normalised by the total weight of the structure; ��: pre-yield period of the isolation 

system;  ℎ
��: post-yield to pre-yield stiffness ratio of the isolation system, �: acceleration on top 

of the isolation system �: displacement of the isolation system; �� , ��: fitting parameters; ��: 

logarithmic standard deviation of the PSDM).  

The PSDMs are obtained by linear regression in the logarithmic space of the IM vs EDP pairs. It 
is generally suitable for structures with first-mode-dominated responses without strength or 
stiffness degradation. Each model is characterised by the fitting coefficients, �� and �� (describing 

the mean response), and the dispersion, represented by the logarithmic standard deviation, ��� ��� !" 
(also referred as �# ). This model is characterised by homoscedasticity (i.e., constant dispersion 
over the entire response range) and normally distributed residuals in the logarithmic space (i.e., 
the residual, $, is a standard Normal variable). 

 ln�∆" = ln���" ( �� ∙ *+ ( $��� �∆" (1) 

 ln�Α" = ln���" ( �� ∙ *+ ( $��� �-" (2) 

SDoF database 

A database of 2000 SDoF systems encompasses a wide range of design options representing 
possible configurations for base-isolated structures using FPSs. To this aim, the SDoF input 
variables, � = �.�, ��, ℎ
���, are derived based on the detailing parameters of the isolation system 

typology (i.e., coefficient of friction and radius of curvature of the sliding surfaces). The modified 
Bouc-Wen model (Park et al. 1986) describes the hysteresis (/01�) of the FPS, and it is constant 
for all the SDoFs. A detailed description of the influence of the Bouc-Wen model parameters on 
the seismic response of base-isolated structures can be found in Ma et al. (2004).  

Three parameters define the response of FPS: friction coefficient, 23 4; the radius of curvature, 53 4 ; and yield displacement, Δ� . Those variables are sampled with a plain Monte-Carlo 

procedure using the ranges of values and distributions shown in Table 1. These values are 
selected so that there is a comprehensive representation of possible FPS characteristics. The 
input parameters (��  , ��, ℎ
��) are then computed from the sampled values of the random variables 

by following the general theory of FPSs (e.g., Naeim and Kelly, 1999).  

Random Variable 789: [%] ;89: [m] <=  [mm] 

Assumed Distribution ∼ ?�1.5,15" ∼ ?�3,25" ∼ ?�1.5,2" 

Table 1. SDoF database definition: assumed distributions for the LRB dataset. 
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Intensity measure selection 

The IM used to condition the PSDMs plays a key role in the accuracy of the loss/reliability 
calculations. The selected IM should lead to small record-to-record variability (efficiency) and 
should lead to structural response estimates that are independent of other ground-motion 
parameters, such as magnitude and source-to-site distance (sufficiency), as has been noted in 
previous works (e.g., Ebrahimian and Jalayer, 2021). Any IM can be selected for the analysis, 
assuming that site-specific hazard curves can be computed in terms of the selected IM. This work 
uses peak ground velocity (or PGV); this selection is based on the computability of this IM and on 
an efficiency analysis (e.g., Luco and Cornell, 2007) on SDoF systems, although not shown here 
for brevity. A more extensive discussion on IM selection for base isolated structures using FPSs 
can be found, for example, in Cardone et al. (2017). 

Seismic response analysis 

For each SDoF system in the database, 100 ground motion records are used to perform cloud-
based NLTHA. The ground motions are selected from the SIMBAD database (Selected Input 
Motions for displacement-Based Assessment and Design) developed by Smerzini et al. (2014). 
These recorded ground motions are characterised by moment magnitudes in the range of 5-7.3, 
source-to-station distances smaller than 35km and peak ground acceleration values in the range 
of 0.29g -1.77g. However, users can re-fit the surrogate model by considering any set of ground 
motions (by filtering the existing results or by running NLTHA for different sets of records). 

The ground motion records are linearly scaled so that there is adequate sampling of displacement 
demand values while using reasonable scaling factors, i.e., as close to the unity as possible, to 
avoid biases in the seismic demand estimation (e.g., Dávalos and Miranda, 2019). To do so, 100 
equally-spaced (tentative) displacement targets are sampled between 0 and 0.6m. Then, for each 
tentative displacement target, a response reduction factor is computed according to Eq. 3 derived 
by Zhou F and L. (2003), where E is the equivalent viscous damping at the displacement target. 

The required elastic spectral displacement at the isolated period of the SDoF system, FG��
��"HIJ, 

is calculated as FG��
��"HIJ = ΔKLHMIK/O. Finally, a required scaling factor is computed for each 

ground motion in the database as F. = FG��
��"HIJ/FG��
��". Consequently, the ground motion 

with the smallest required scaling factor is selected and used for each NLTHA. It is assumed that 
each selected ground motion can be used a maximum of two times within the cloud analysis. 
Note that the NLTHA will not result exactly in the assumed displacement value since the response 
reduction factors are based on empirical approximations for highly damped systems. The 
resulting scaling factors range from 0.4 to 2.5.  
 O = 1 ( 0.05 − E0.06 ( 1.4 ∙ E (3) 

Training of the surrogate models 

GPs are statistical distributions over functions, entirely defined by their mean and covariance 
functions (e.g., Rasmussen and Williams, 2006). A GP regression involves conditioning a prior 
GP (in a Bayesian framework) to an input-output training dataset (in this case, X and Y previously 
defined). GP regressions are non-parametric statistical models and, therefore, not constrained to 
any specific functional form. The user only needs to define the typology of the covariance function 
(e.g., Rasmussen and Williams, 2006). For this work, a squared exponential covariance function 
is used since it can model the expected smoothness of the input-output map (i.e., a small 
perturbation of the input SDoF parameters causes a small variation of the PSDM parameters). 
The parameters of the covariance function are called hyperparameters, and they are calibrated 
using a maximum likelihood approach and a quasi-Newton optimisation method. The 
assumptions adopted for the training process are consistent with those implemented by Gentile 
and Galasso (2022), where they are more extensively explained.  

Validation of the Gaussian Process Regression  

Once the proposed surrogate models have been trained, the normalised root mean squared error 
(NRMSE) is calculated according to Eq. 4 to assess the predictions within the dataset. In Eq. 4, 1T  represents the predicted outputs (e.g., the PSDM parameters) and UT  are the modelled 
outputs for the h-th input vector. The NRMSE values for the displacement surrogate PSDMs of 
parameters ��, ��, and �� are 1.3%, 2.4% and 6.8%, respectively. For the acceleration surrogate 

PSDMs, the NRMSE values of parameters ��, ��, and �� are 0.6%, 3.3% and 8.8%, respectively.  
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 V5+FW = UX�Y�Z�1T − UT"�"UX�Y�UT"  (4) 

To assess the predictive power of the surrogate models for unseen data (i.e., generalisation 
outside of the training dataset), a 10-fold cross-validation is performed. To this aim, the dataset 
is first randomly divided into ten equally-sized subsets. Then, ten more GP regressions are fitted 
for each surrogate model by leaving out one subset at a time and using the remaining nine 
subsets for the training. The excluded subset is used as a testing benchmark for each GP 
regression to compute the in-fold predicted-vs-modelled errors. Finally, the in-fold NRMSE is 
calculated by aggregating the predicted-vs-modelled errors of the 10 GP regressions.  

The in-fold NRMSE values for the parameters a, b, and σ of the displacement PSDMs are equal 
to 1.6%, 2.6% and 7.2%, respectively. For the acceleration PSDMs, the analogous NRMSEs are 
equal to 0.6%, 3.5% and 9.2% (see Figure 2). Therefore, given the uncertainties commonly 
involved in the seismic performance assessment and risk models, the error introduced by using 
the provided GP regressions is deemed acceptable.  

  

Figure 2. Surrogated (GP regression) versus modelled (SDoF cloud analysis) points; a) 
displacement PSDM and b) acceleration PSDM. 

Simplified reliability and loss assessment  

This section illustrates the use of the proposed GP regressions to compute reliability and loss 
metrics for a base-isolated structure by separately analysing four subsystems (Figure 4): isolation 
system, superstructure, drift-sensitive (NSCD) and acceleration-sensitive non-structural 
components (NSCA). This section adopts direct economic losses for the description, although 
other loss metrics may be adopted (e.g., downtime). The reliability metrics are computed by 
deriving fragility curves (representing the probability of being in or exceeding a certain damage 
state given the IM level) for various damage states (DSs) of interest. For this description, the 
selected reliability metrics are the mean annual frequency of exceedance (MAFE) of the near-
collapse DS of the isolation system (defined as the exceedance of a displacement threshold 
corresponding to the FPS displacement capacity) and the MAFE of the yielding DS for the 
superstructure. A vulnerability model for each subsystem (representing the mean repair cost 
normalised by the total reconstruction cost, or loss ratio, for a given IM level) is computed 
separately and aggregated to obtain the selected building-level loss metric. The selected loss 
metric for this section is the Expected Annual Loss (EAL).  

A site-specific hazard model, described by hazard curves (expressing the MAFE of the IM,  [\]),  
in terms of the selected IM required by the surrogate PSDMs, is adopted. The hazard curves can 
be obtained from ready-available models (e.g., Meletti et al. 2006) or computed by performing 
probabilistic seismic hazard analysis (e.g., Cornell 1968). 

Vulnerability model of the isolation system 

The displacement surrogate PSDM (Eq. 1) is used to derive lognormal fragility curves, .�4^,  for 

the isolation system, which are computed for predefined DSs. Although other definitions are 
possible, the recommended DSs are inspection and near collapse (Suarez et al., 2023). Their 

respective damage state thresholds Δ�4^  can be set according to the client´s inspection 

requirements and aided by the experience and judgment of the designer. The fragility curves are 

fully characterised by their median, O�4,  and logarithmic standard deviation, β, which are 
calculated as shown in Eq. 5. 

a" b" 
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Figure 3. Simplified loss and reliability assessment module. 

 
  O�4^ = aΔ�4^��

bc  ;  β =   �� (5) 

The vulnerability model for the isolation system, e5f1g�*+", is computed through Eq. 6. This 
requires using damage-to-loss ratios for each DS, Ge5�4
, which represent the mean loss ratio 
constrained on the realisation of the i-th DS. Those can be obtained based on expert/engineering 
judgement and/or catalogues of FPS. 
 e5
���*+" = h �.�4^ic�*+" − .�4^�*+""#�4k�


l�
Ge5�4
  (6) 

Vulnerability model of the superstructure 

The superstructure response (i.e., maximum storey drifts and peak floor accelerations) 
conditioned on the IM is estimated based on the surrogate PSDMs (Eq. 1 and Eq. 2) and relying 
on an elastic modal response analysis of a two-degree-of-freedom (2DoF) model (Naeim and 
Kelly, 1999). The approximation assumes that the response of the base-isolated structure is 
completely described by its fundamental mode of vibration. The 2DoF model is composed of two 
equivalent SDoF systems in series, the isolation system and the (elastic) superstructure (Figure 
4). The properties of the 2DoF model are derived based on the effective (i.e., consistent with the 
maximum response) properties of the structure.  

A yield displacement profile for the superstructure is selected according to displacement-based 
design principles (Priestley et al., 2007), and then the properties of a substitute SDoF system are 
computed. Specifically, the effective yield displacement, Δ�,I ; effective mass, UI; and effective 

height, ℎI  of the substitute structure are calculated according to Eq. 7. Δ�,m  is the assumed 

displacement at the j-th storey in yielding conditions, ℎm is the height of the j-th storey and Um is 

the mass at the j-th storey. 

Δ�,I = ∑ �Um ∙ Δ�,m�"oml�∑ �Um ∙ Δ�,m"oml�  ;   UI = ∑ �Um ∙ Δ�,m"oml� Δ�,I   ;   ℎI = ∑ �Um ∙ Δ�,m ∙ ℎm"oml�∑ �Um ∙ Δ�,m"oml�  
(7) 
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Figure 4. a) Multi-degree-of-freedom model for a base-isolated structure. B) 2DoF model 
representation and its fundamental modal shape neglecting higher order mode effects.  

The relative displacement of the superstructure with respect to the isolation system, Δ44 , is 
computed according to Eq. 8. U44�IM" defines the mode shape of the 2DoF as per Figure 4 and 

it is computed with Eq. 9. (Ye et al. 2019). sItt is the fundamental period of the isolation system 

(assuming a rigid superstructure) and computed using its effective stiffness corresponding to a 
maximum displacement conditioned on IM and described by the surrogate PSDM (Eq. 1); s44 is 

the fundamental period of the fix-based configuration of the superstructure; Uu  is the total mass 

of the isolated structure and U
�� is the mass of the isolation layer. The ductility demand on the 

superstructure conditioned on the IM is finally calculated as 244�*+" = Δvv,w�IM"/Δ�,I. 
 Δvv�IM" = Δ�IM"U44�IM" (8) 

 ?44�IM" = x s44 sItt�*+"y� ∙ UuU
�� ( UI (9) 

The parameters for the lognormal fragility curves of the superstructure are computed according 
to Eq. 10, which is derived by combining Eq. 1 and Eq. 8. The vulnerability model for the 
superstructure is computed analogously to Eq. 6 for the isolation system and adopting appropriate 
DSs and DLRs defined in terms of the ductility demand of the superstructure. The suggested DSs 
-and related DLRs- are, for example, slight and moderate damage (defined as in Gentile and 
Calvi, 2023). 

 O�4^ = aΔ�4^ ∙ εIJ�� ∙ Δ�,I
bc  ;  β =  ��  (10) 

Vulnerability model of non-structural component groups 

The acceleration at the isolation base is directly derived using the acceleration surrogate PSDM 
(Eq. 2). The acceleration at the effective height of the superstructure, Α44, is estimated with Eq. 
11.  

 Α44�*+" =   Α�IM" ∙ �1 ( u44�IM"" (11) 

The PSDMs for the non-structural components (NSCs), describing the maximum inter-storey drift |
�*+"  and peak floor acceleration }.~
�*+"  values conditioned on IM at each storey, are 
calculated according to appropriate acceleration and displacement profiles for the superstructure 
and the expressions derived by Eq. 8 and Eq. 11.  

The loss calculation for NSCs is based on the abovementioned PSDMs and storey loss functions, 
SLFs (Ramirez and Miranda, 2009). SLFs relate the EDP experienced at a specific storey to a 
loss metric. SLFs must be previously defined for each storey of the structure, separately for 
acceleration- and drift-sensitive NSCs. One option to obtain SLFs involves a simulation-based 
approach in which, for a given potential inventory of non-structural components and their 
respective fragilities models, several loss simulations are performed for different levels of EDPs 
demands, and an SLF is then fitted to this data by assuming a probability distribution, i.e., 
Papadopoulos et al. (2019). 

Once the SLFs are defined, they are combined with the inter-storey drift and the peak floor 
acceleration PSDMs to obtain storey-based vulnerability models for NSCs. The total vulnerability 
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models for NSCD and NSCA are computed by aggregating the vulnerability models of each 
storey,j, as shown in Eq. 12 and Eq. 13, respectively.  
 

 e5o4���*+" = h Fe.m�|m�*+""�

l�

 (12) 

 e5o4���*+" = h Fe.m�}.~m�*+""�

l�

 (13) 

Building-level loss and reliability metrics 

The loss metric for each subsystem n is computed as the convolution of the vulnerability model 
for the subsystem, e5��*+", with the site-specific hazard curve, as per Eq. 14. Finally, the losses for 
the four subsystems are aggregated to obtain the total EAL (Eq. 15).  

 EAL� = � e5��*+" ��[\]�*+ ��
� �*+ 

 
(14) 

 W~e = h W~e�
�

�l�
 

 
(15) 

The selected reliability metric corresponding to the MAFE of the near-collapse DS of the isolation 
system, [
����  is computed according to Eq. 16, where .o��*+" is the fragility curve for the near 

collapse DS. The MAFE of the yielding DS of the superstructure, [���^���  is computed analogously. 

 [
���� = � .o��*+" ��[\]�*+ ��
� �*+ 

 
(16) 

Tentative Direct Loss-based design procedure 

This section provides a tentative DLBD procedure for low-rise buildings equipped with FPSs 
(Figure 4). DLBD allows the designing of a building (isolation system and superstructure) that 
achieves a selected loss target for a site-specific seismic hazard profile. The loss target, eKLHMIK, 
(e.g., 0.02% EAL) is defined (by the client and/or designer) consistently with the loss metric 
computed with the simplified loss and reliability assessment module described above. An 
additional design criterion involves imposing a selected minimum level of reliability. For example, 
this may be achieved by imposing an upper bound for the MAFE of the near-collapse DS of the 
isolation system, [
����  and an upper bound limit for the MAFE of the DS related to the yielding 

of the superstructure, [�
I���� .   DLBD virtually does not require design iterations due to the 

simplified nature of the loss and reliability calculations.  
From a high-level point of view, DLBD starts by identifying a set of seed structures using different 
combinations of design parameters of the isolation system (weight normalised yield strength, ��; 

fundamental period, �� ; and hardening ratio , ℎ
�� ) and the superstructure (weight normalised 

superstructure yield strength, ����). The simplified loss and reliability assessment module (fully 

automated) is run for all the seed structures at a remarkably low computational cost. The seed 
structures that comply with the design requirements (Eq. 17) are equally valid design candidates. 
Finally, a design solution is arbitrarily chosen among the candidates based on user/client 
preferences, as well as gravity-load design requirements. Structural detailing, strictly not part of 
DLBD, allows the detailing of the final structure in compliance with the parameters of the design 
solution (including isolation parameters and force-displacement curve of the superstructure).  

 

Figure 5. Workflow for the DLBD procedure. Taken from Suarez et al., 2023. 
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A preliminary validation study (Suarez et al., 2023) involves a three-storey medical clinic with an 
RC wall lateral resisting system for the superstructure and lead rubber-bearing base isolation. 
The structure is in a high-seismicity region and is designed to achieve a target EAL equal to 
0.017% of the total reconstruction cost, considering direct losses only. Although the validation 
study is being refined and enlarged, the preliminary results show a 9.6% relative error of the target 
EAL with respect to refined NLTHA-based results. Even though direct-only economic loss may 
not be the most appropriate loss type to consider for isolated structures, the preliminary results 
show that the procedure is dependable, and it is worth extending it to include more-relevant loss 
metrics such as downtime. 

Conclusions 

This paper presented the formulation, calibration, and verification of two surrogate probabilistic 
seismic demand models (PSDMs) based on Gaussian Process (GP) regressions. Those allow 
estimating the probability distribution of the displacement demand and the peak acceleration 
demand of single-degree of freedom (SDoF) systems representing structures equipped with 
friction pendulum base isolation systems. A database of cloud-based nonlinear time-time history 
analyses for 2000 SDoF systems was used to calibrate the GP regressions. A 10-fold cross-
validation showed adequate prediction capacity of the adopted GP regressions: normalised mean 
squared errors below 3% for the parameters of the PSDMs and below 7% for their standard 
deviation. 

The proposed surrogate PSDMs enabled the tentative proposal of a Direct Loss-based Design 
(DLBD) of base-isolated structures. This procedure allows designing structures that would 
achieve, virtually without design iterations, a given economic loss target for a given site-specific 
hazard profile while complying with a predefined minimum level of structural reliability. A general 
overview of the tentative DLBD procedure for base-isolated structures was presented. Some 
remarks about this work are summarised in the following:  

• Surrogate models based on GP regressions represent an appealing tool to generate 
predictions of PSDMs.  

• The proposed surrogate PSDMs effectively and efficiently overcome the high 
computational cost required to derive numerical fragility models for several seed design 
configurations (otherwise incompatible with the preliminary design phase).  

• The estimation errors of the proposed surrogate PSDMs lie within acceptable ranges, 
especially considering the uncertainties and approximations generally affecting seismic 
risk analyses. 

• The proposed tentative DLBD procedure is currently under more detailed scrutiny and 
validation to overcome some identified limitations. For example, the adopted SDoF 
assumption only allows capturing the first mode response of the combined isolation and 
superstructure system. This implies that the superstructure’s maximum acceleration and 
displacement response are assumed in phase with the isolation layer. As a result, DLBD 
loses its effectiveness for less-desirable configurations where higher modes are 
important. This may be overcome by imposing a high relative stiffness of the 
superstructure with respect to the effective stiffness of the isolation system. Moreover, in 
highly damped isolated systems, the coupling of modal shapes can generate high floor 
accelerations response (Skinner et al., 1993) that are currently not captured in the 
proposed procedure. 
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