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ABSTRACT

Safeguarding data from unauthorized exploitation is vital for pri-

vacy and security, especially in recent rampant research in secu-

rity breach such as adversarial/membership attacks. To this end,

unlearnable examples (UEs) have been recently proposed as a com-

pelling protection, by adding imperceptible perturbation to data so

that models trained on them cannot classify them accurately on

original clean distribution. Unfortunately, we find UEs provide a

false sense of security, because they cannot stop unauthorized users

from utilizing other unprotected data to remove the protection, by

turning unlearnable data into learnable again. Motivated by this ob-

servation, we formally define a new threat by introducing learnable
unauthorized examples (LEs) which are UEs with their protection re-

moved. The core of this approach is a novel purification process that

projects UEs onto themanifold of LEs. This is realized by a new joint-

conditional diffusion model which denoises UEs conditioned on the

pixel and perceptual similarity between UEs and LEs. Extensive ex-

periments demonstrate that LE delivers state-of-the-art countering

performance against both supervised UEs and unsupervised UEs in

various scenarios, which is the first generalizable countermeasure

to UEs across supervised learning and unsupervised learning. Our

code is available at https://github.com/jiangw-0/LE_JCDP.

CCS CONCEPTS

• Security and privacy→ Human and societal aspects of se-

curity and privacy; • Computing methodologies→Machine

learning.
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1 INTRODUCTION

The abundance of “freely” accessible data on the Web has been piv-

otal to the success of modern deep learning, such as ImageNet [37]

and Ms-celeb-1m [15]. However, these datasets might include per-

sonal data collected without mutual consent [2], which has raised

public concerns that private data can be utilized to create com-

mercial models without the owner’s authorization [19]. To address

such concerns, growing efforts [11, 21, 47] have been made to add

protection to data to prevent unauthorized usage by making the

data unexploitable. These methods add imperceptible “shortcut”

noise to the images so that the deep learning models learn no useful

semantics but correspondences between noise and labels [12]. Con-

sequently, the models trained on unexploitable data fail to classify

clean data, thereby safeguarding users’ privacy. Such poisoning

methods are named as unlearnable example (UE) protection [21] or

availability attack [47].

While the growing research focuses on how to make data unex-

ploitable [10, 16, 35, 38, 43, 51], we aim to challenge this paradigm

by exposing a key vulnerability in this protection: the protection

is merely effective if the unexploitable data is all that is accessible.

Unfortunately, this is often not the case. Data protectors can only

add the “unlearnable” perturbations to their own data, but they can-

not prevent unauthorized users from accessing similar, unprotected

data from other sources. As a result, one can study the underly-

ing distribution of the protected examples, via studying similar

newly collected (unprotected) data. Taking face recognition as an

example, although unlearnable examples cannot be directly used to

train classifiers, it is easy to collect new unprotected face data. As

long as there is sufficient similarity between the newly collected

(unprotected) data and the original clean data, it is still possible

to train a classifier that can successfully classify the original clean

data. In other words, unauthorized users can easily bypass data

protection to learn the original data representation from newly

collected unprotected data, even if the data might be small in scale,

different from the clean data, lacks label annotation, and is alone

not ideal for training a classifier [42, 53].
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To show the existence of the aforementioned vulnerability, we

design a new approach that can turn unlearnable examples into

learnable ones. A straightforward solution would be to design a spe-

cific training scheme that can train on unexploitable data [24, 25, 33].

This is less ideal as it merely classifies unexploitable data but not re-

veal much about the underlying clean data, i.e. unprotected version

of the unlearnable data. We argue that an ultimate countermeasure

is to infer/expose the underlying clean data by turning UEs into

learnable again, which can enable further unauthorized exploita-

tion such as standard training or representation learning [16, 35].

Therefore, the learnable unauthorized data should be independent

of training scheme and can be normally used just like original train-

ing data. We refer to examples in learnable unauthorized data as

learnable examples (LEs). The key idea behind obtaining learnable
examples is to learn a learnable data manifold from other similar

data and then project unlearnable examples onto this manifold.

Inspired by the power of the diffusion models in noise purifica-

tion [30] and image generation [6], we propose a novel purification

method based on diffusion models, called joint-conditional diffu-

sion purification, to capture the mapping from the unlearnable

examples to their corresponding clean samples. We first inject the

unlearnable images with controlled amounts of Gaussian noises

progressively, until their unlearnable perturbations are submerged

by Gaussian noise. Next, we equip the denoising process with a

new joint condition that speeds up noise removal while preserv-

ing image semantics. The joint condition is parameterized by both

the pixel distance and the neural perception distance between the

unlearnable sample and its corresponding denoised version. This

is based on the observation that unlearnable examples typically

exhibit small differences in pixel distance from clean samples and

the differences are imperceptible to the human vision. Therefore,

the denoised images should closely resemble the original samples

through minimizing the visual difference from the unlearnable

example.

We extensively evaluate our approach on both supervised and

unsupervised UEs across a number of benchmark datasets, and

compare it with existing countering methods. The results show

LE substantially outperforms existing countermeasures and it is

the only one that maintains effectiveness under both supervised

learning and unsupervised learning. More importantly, unlike ex-

isting countermeasures that are tied to specific training schemes,

our learnable examples are independent of them and can be used

normally as the original clean training data. Surprisingly, we found

that our approach still retains effectiveness even when there is a

large distributional difference between the newly collected data

(utilized in training a learnable data manifold) and the clean data. In

other words, the distributions between training data and collected

raw data can be different and we can still turn unlearnable exam-

ples into learnable. This undoubtedly further deepens our concerns

about the vulnerability of unexploitable data since it does not re-

quire the collected raw data to be very similar to the unprotected

version of the unlearnable examples.

In summary, our main contributions are: 1) We identify and

demonstrate an inherent vulnerability of UE protection, by for-

mally defining an ultimate threat to UEs called learnable examples,
which can turn unlearnable examples into learnable ones. 2) We

propose a novel purification strategy for producing learnable exam-
ples, called Joint-conditional Diffusion Purification, which purifies

UEs with a diffusion model simultaneously conditioned on pixel

and perceptual similarity. 3) We demonstrate that LE outperforms

existing state-of-the-art countermeasures against both supervised

UEs and unsupervised UEs. LE is the first generalizable countermea-

sure across supervised learning and unsupervised learning. 4) We

empirically demonstrate that the joint-conditional diffusion model

can still purify UEs even when the learned density is not the same

as the clean distribution, exposing the fragility of protection by

UEs.

2 RELATEDWORK

2.1 Unlearnable Examples

Unlearnable examples (UEs) are a type of poisoning methods [34],

but aimed at defending against unauthorized data exploitation [21,

27]. The vanilla UEs define a bi-level optimization objective, which

makes the optimal solution on UEs have a maximum loss on clean

data [9, 21, 48]. Given its effectiveness and efficiency, many variants

of UEs have been proposed, such as robust UEs [11, 44], manu-

ally designed UEs [38, 47], clustering-based UEs [51], and sparse

UEs [46]. Inspired by the effectiveness of UEs in supervised learn-

ing, He et al. [8] and Ren et al. [35] investigate the impact of UEs

on unsupervised learning.

Countermeasures against UEs have only been attempted very

recently [7, 24, 33]. Adversarial Training (AT) [21] has been shown

to partially resist UE protection, but robust UE soon broke through

this countermeasure [11, 44]. Adversarial augmentation [33], which

combines various data augmentation policies with adversarial train-

ing, is further proposed to improve generalization of the unautho-

rizedmodel. Liu et al. [24] suggest using grayscale transformation to

counter UE protection. However, these methods are associated with

specific training schemes, which limits the use of unauthorized data

for other training schemes and tasks. The recent arXiv paper [7]

applies diffusion models to counter UEs. The major differences to

our approach are that we propose a new joint-conditional diffusion

model instead of a naive application of the diffusion model, tackling

the trade-off between perturbation purification and image semantic

retaining. Furthermore, all prior countermeasures [7, 21, 24, 33] are

designed for supervised learning, but not much is known about the

fragility of unsupervised UEs.

2.2 Diffusion Models

Diffusion models [20, 39] have surpassed Generative Adversarial

Networks (GANs) [13] in the field of image generation and have

achieved impressive results with conditions such as text, semantic

maps or reference images [1, 32, 36]. A typical diffusion model con-

sists of two processes: a forward process and a denoising process.

The former gradually approaches Gaussian noise by iteratively

adding noise to clean images, while the latter obtains real images

from noise in the form of Markov chains. Since a carefully designed

denoising process can defuse the ramifications of data perturba-

tions, recent works [7, 26, 30, 41] leverage the power of diffusion

models for noise purification, such as adversarial purification. How-

ever, the key difference between existing noise purification and our
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work is the accessibility of training data. Existing purification meth-

ods [7, 30] assume that training data (the unprotected version of the

unlearnable examples) is available for training, allowing diffusion

models to learn the original data distribution in advance. However,

UE makes the training data unexploitable. How to train a diffusion

model(and more generally learning a similar data manifold) without

access to training data poses a crucial challenge for removing UE

protection. Existing purification methods have yet to explore this

aspect.

3 METHODOLOGY

3.1 Problem Statement

In this subsection, we first give the definition of UEs, and then

define the typical countermeasures against UE protection.

3.1.1 Data Protector. Suppose that the data protectors have access
to the original dataset and it is denoted as D𝑐 = {(𝒙 (𝑖 ) , 𝑦 (𝑖 ) )}𝑁

𝑖=1

with𝑁 clean samples, in which i.i.d. input-label pairs (𝒙 (𝑖 ) , 𝑦 (𝑖 ) ) are
drawn from the joint data distribution 𝑝𝑑 (𝒙, 𝑦). The protectors’ goal
is to protect the data from unauthorized training after its release. To

this end, they release an unlearnable datasetD𝑢 = {(𝒙̃ (𝑖 ) , 𝑦 (𝑖 ) )}𝑁
𝑖=1

to the unauthorized users. The protector aims to make a classifier

𝑓𝜃 : X → Y trained on the unlearnable dataset perform poorly on

the original clean data distribution 𝑝𝑑 (𝒙, 𝑦):

𝜽 ∗ = argmin

𝜽
E(𝒙̃,𝑦) ∈D𝑢

[L(𝑓𝜽 (𝒙̃), 𝑦)] (1)

s.t. 𝑝𝜽 ∗ (𝑦 |𝒙) ≠ 𝑝𝑑 (𝑦 |𝒙)

where L(·) is the cross-entropy loss. Since unlearnable perturba-

tions should not affect the normal data utility, it is assumed that

𝒙̃ = 𝒙 + 𝜹 , where 𝜹 is the “invisible” unlearnable perturbations

bounded by | |𝜹 | |𝑝 ≤ 𝜀.

3.1.2 Unauthorized Data Exploiter. We assume the unauthorized

parties only have access to the protected data, i.e. unlearnable

examples set D𝑢 . Their goal is to train models on D𝑢 and make

them generalize well on the original clean data distribution. To this

end, existing countermeasures [21, 24, 33] have attempted to design

a special training scheme that can train classifiers on unexploitable

data. It has been shown that adversarial training (AT) [25] can

be used to prevent UE protection to some extent [21], which is

formulated as follows:

argmin

𝜽
E(𝒙̃,𝑦) ∈D𝑢

[
max

| |𝜹𝒂𝒅𝒗 | |𝑝≤𝜀
L(𝑓𝜽 (𝒙̃ + 𝜹𝑎𝑑𝑣), 𝑦)

]
(2)

Inspired by AT, adversarial augmentations (AA) [33] is further

proposed very recently. Specially, they combine data augmentation

policies with adversarial training:

argmin

𝜽
E(𝒙̃,𝑦) ∈D𝑢

[
max

T∼A
L(𝑓𝜽 (T (𝒙̃), 𝑦)

]
(3)

where T (·) is the combination of image augmentation policies

from a set of all possible data augmentations A. However, AT-

based methods suffer from a significant performance drop when

training on robust unexploitable data [11]. Moreover, AT modifies

the training schemes, leaving the unauthorized data itself still un-

exploitable. This forces the training data to be tied to adversarial

training, which limits the use of data for other training schemes

and tasks, such as standard training and representation learning.

Last but not least, using AT to train a large model on large-scale

unexploitable datasets is not desirable, given the computational

complexity involved [45].

3.2 Learnable Examples

Existing countering methods rely on specific training schemes.

However, we argue that an ultimate threat against UEs should turn

unexploitable data D𝑢 into a learnable dataset D𝑙 . D𝑙 can be used

normally as the original clean training data, enabling further unau-

thorized exploitation such as standard straining and representation

learning. Here we consider standard setting in supervised learning

as an example, a model trained on D𝑙 can easily generalize well on

the original clean data distribution 𝑝𝑑 (𝒙, 𝑦):

𝜽 ∗ = argmin

𝜽
E(𝒙,𝑦) ∈D𝑙

[L(𝑓𝜽 (𝒙), 𝑦)] (4)

s.t. D𝑙 = denoise(D𝑢 ); 𝑝𝜽 ∗ (𝑦 |𝒙) = 𝑝𝑑 (𝑦 |𝒙)

We refer to learnable protected examples in D𝑙 as learnable ex-
amples (LEs). Note that LEs are independent of training schemes,

hence they also can be used for unauthorized unsupervised learn-

ing. Given a good denoiser denoise, we can project unlearnable

examples back to the learnable data manifold to obtain correspond-

ing LEs. A good denoiser is often achieved by learning a generative

model 𝐺 [30]. However, how to train a generator without access

to the original training data is a tricky challenge. Our key observa-

tion is that although the original training data D𝑐 is not accessible,

small-scale raw (unprotected) data without labeled annotation D𝑟

can be easily collected in the wild [18]. As long as there is sufficient

similarity between D𝑟 and D𝑢 , we can learn an unconditional gen-

erator 𝐺 from D𝑟 and utilize it to project UEs onto the manifold of

LEs. Considering that diffusion models [20, 39] can achieve a high

sample quality [6, 40] and noise purifying performance [30], we use

a diffusion model for denoising. However, a naive application of the

diffusion model will suffer the trade-off between noise purification

and image semantic retaining. To tackle this problem, we propose

a new joint-conditional diffusion purification conditioned on simul-

taneously measuring the pixel and perceptual similarity between

UEs and corresponding denoised ones. An overview illustration is

shown in Fig. 1. Next, we give details of the purification process.

3.3 Joint-conditional Diffusion Purification

3.3.1 DDPM for Data Purified. Diffusion model defines a Markov

chain of diffusion steps to add Gaussian noise gradually to the data

and then learn the reversal of the diffusion process to construct

desired data samples from the noise. Given a clean data point 𝒙0
sampled from a data distribution 𝑞(𝒙0), Denoising Diffusion Proba-

bilistic Models (DDPM) [20] define a forward or diffusion process

that follows Markov chain to gradually add Gaussian Noise to 𝒙0
in 𝑇 steps with pre-defined variance schedule 𝛽1:𝑇 ∈ (0, 1)𝑇 :

𝑞(𝒙1:𝑇 |𝒙0) =
𝑇∏
𝑡=1

𝑞(𝒙𝑡 |𝒙𝑡−1) (5)

𝑞(𝒙𝑡 |𝒙𝑡−1) = N(𝒙𝑡 ;
√︁
1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡 𝑰 )
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Figure 1: An illustration of producing learnable examples via joint-conditional diffusion purification (JCDP). The classifier

training on unlearnable data does not generalize well on clean distribution. To remove such data protection, we propose JCDP

that projects unlearnable data onto a learnable data manifold, which is learned from newly collected raw (unprotected) data.

If we define 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =
∏𝑡

𝑠=1 𝛼𝑠 , we can reformulate the

diffuse process via a single step:

𝑞(𝒙𝑡 |𝒙0) = N(𝒙𝑡 ;
√︁
𝛼𝑡𝒙0, (1 − 𝛼𝑡 )𝑰 ) (6)

The reverse process is also a Markov process that learning a model

𝑝𝜑 to estimate these conditional probabilities 𝑞(𝒙𝑡−1 |𝒙𝑡 ):

𝑝𝜑 (𝒙0:𝑇 ) = 𝑝 (𝒙𝑇 )
𝑇∏
𝑡=1

𝑝𝜑 (x𝑡−1 |𝒙𝑡 ) (7)

𝑝𝜑 (𝒙𝑡−1 |𝒙𝑡 ) = N(𝒙𝑡−1; 𝝁𝜑 (𝒙𝑡 , 𝑡),𝝈2

𝑡 𝑰 )

where the reverse process is started from 𝑝 (𝒙𝑇 ) = N(𝒙𝑇 ; 0, 𝑰 ). The
mean 𝝁𝜑 (𝒙𝑡 , 𝑡) is a neural network parameterized by 𝜑 , while the

variance 𝝈2

𝑡 can be learned by a neural network [29] or a set of

time-dependent constants [20].

Now we introduce the purification process via utilizing DDPM.

Assume that we have trained a DDPM model on collected raw data

D𝑟 . Suppose the unlearnable example 𝒙̃0 = 𝒙0 + 𝜹 , we first diffuse
the unlearnable image for 𝑇𝑝 steps by adding Gaussian noise to

submerge the unlearnable perturbation:

𝒙̃𝑇𝑝 =

√︃
𝛼𝑇𝑝𝒙0 +

√︃
𝛼𝑇𝑝𝜹 +

√︃
1 − 𝛼𝑇𝑝 𝝐 (8)

where 𝝐 is a standard Gaussian noise. The reverse process aims to

simultaneously mitigate the added Gaussian noise and the residual

unlearnable perturbation in 𝒙̃𝑇𝑝 :

𝒙̃∗𝑡−1 =
1

√
𝛼𝑡
(𝒙̃∗𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝝐𝜑 (𝒙̃∗𝑡 , 𝑡)) + 𝝈𝑡𝝐𝑡 (9)

where 𝒙̃∗
𝑇𝑝

= 𝒙̃𝑇𝑝 . During the purification process described above,

selecting the optimal purification step 𝑇𝑝 is crucial. If 𝑇𝑝 is too

small, the unlearnable perturbation term

√︃
𝛼𝑇𝑝𝜹 cannot be fully

submerged by Gaussian noise, while choosing too large𝑇𝑝 will lead

to a loss of original semantic information. In our preliminary exper-

iments, we have found that iteratively purifying the unlearnable

images multiple times can mitigate this problem to some extent.

Choosing a relatively small𝑇𝑝 to conduct multiple purification iter-

ations is more effective than purifying once with a large 𝑇𝑝 . The

detailed iteration process is listed in Algorithm 1.

3.3.2 Joint-conditional Diffusion Model. To further eliminate the

trade-off between purification strength and semantic content re-

taining, we propose a novel purification process based on diffusion

model, called Joint-conditional Diffusion Purification (JCDP). JCDP

leverages both pixel and perception distance guidance to enable

joint control on low-level and high-level semantic similarity be-

tween the purified image to the original clean one. From the perspec-

tive of the unauthorized parties, the original clean training data is

not known a priori, we hence turn to retain consistency between the
purified image and the unlearnable one during the reverse process.

This approximation is reasonable because unlearnable example by

definition is imperceptible to humans, and its unlearnable pertur-

bation is constrained to a small 𝜖-ball by pixel distance. Therefore,

the purified image will closely resemble its original clean sample

by encouraging it to be visually close to the unlearnable example.

The pixel distance can be easily calculated by mean square error

(MSE). However, the true perception distance cannot be directly

computed for image data. Considering that perceptual similarity can

be intuitively linked to deep visual representation [52], we propose

to use neural perception distance LPIPS [52] to approximate the

true perception distance. We introduce an extra neural network

ℎ(·) and denote its generated feature embeddings as Φ(𝒙). Next,
according to condition this reverse process 𝑝𝜑 (𝒙𝑡−1 |𝒙𝑡 ) in Eq. (7)

on 𝒙̃𝑡 and Φ(𝒙̃𝑡 ), we can obtain the denoised learnable sample from
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the joint conditional distribution 𝑝𝜑 (𝒙̃∗
0:𝑇𝑝
|𝒙̃,Φ(𝒙̃)):

𝑝𝜑 (𝒙̃∗
0:𝑇𝑝
|𝒙̃,Φ(𝒙̃)) = 𝑝 (𝒙̃∗𝑇𝑝 )

𝑇∏
𝑡=1

𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃
∗
𝑡 , 𝒙̃𝑡 ,Φ(𝒙̃𝑡 )) (10)

where 𝒙̃𝑡 is the noise version of 𝒙̃0 via 𝑡-step diffusion. Using Bayes’
rule, we can derive the joint conditional reverse process:

𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃
∗
𝑡 , 𝒙̃𝑡 ,Φ(𝒙̃𝑡 ))

=
𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡−1, 𝒙̃

∗
𝑡 , 𝒙̃𝑡 )𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙

∗
𝑡 , 𝒙̃𝑡 )

𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡 , 𝒙̃𝑡 )

= 𝑝 (𝒙̃∗𝑡 |𝒙̃∗𝑡−1, 𝒙̃𝑡 ,Φ(𝒙̃𝑡 ))
𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡−1, 𝒙̃𝑡 )
𝑝 (𝒙̃∗𝑡 |𝒙̃∗𝑡−1, 𝒙̃𝑡 )

𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃
∗
𝑡 , 𝒙̃𝑡 )

𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡 , 𝒙̃𝑡 )

(11)

Since the diffuse process of DDPM is a Markov process, we have:

𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃
∗
𝑡 , 𝒙̃𝑡 ,Φ(𝒙̃𝑡 ))=

𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡−1, 𝒙̃𝑡 )𝑝𝜑 (𝒙̃
∗
𝑡−1 |𝒙̃

∗
𝑡 , 𝒙̃𝑡 )

𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡 , 𝒙̃𝑡 )
(12)

then we take the logarithm of both sides

log 𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃
∗
𝑡 , 𝒙̃𝑡 ,Φ(𝒙̃𝑡 )) = log 𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡−1, 𝒙̃𝑡 )
+ log 𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃

∗
𝑡 , 𝒙̃𝑡 ) − log 𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡 , 𝒙̃𝑡 )

(13)

We can approximate log 𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡 , 𝒙̃𝑡 ) using a Taylor expansion

around 𝒙̃∗𝑡 = 𝒙̃∗𝑡−1. This gives

log 𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃
∗
𝑡 , 𝒙̃𝑡 ,Φ(𝒙̃𝑡 ))

≈ (𝒙̃∗𝑡−1 − 𝒙̃
∗
𝑡 )∇𝒙̃∗𝑡 log 𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃

∗
𝑡 , 𝒙̃𝑡 ) + log 𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃

∗
𝑡 , 𝒙̃𝑡 )

(14)

According to work [39] and [6], it is proved that:

𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃
∗
𝑡 , 𝒙̃𝑡 )

≈ N(𝒙̃∗𝑡−1; 𝝁𝜑 (𝒙̃
∗
𝑡 , 𝑡) + 𝝈2

𝑡∇𝒙̃∗𝑡 log𝑝 (𝒙̃𝑡 |𝒙̃
∗
𝑡 ),𝝈2

𝑡 𝑰 )
(15)

then we can show that

𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃
∗
𝑡 , 𝒙̃𝑡 ,Φ(𝒙̃𝑡 ))

≈ N(𝒙̃∗𝑡−1; 𝝁𝜑 (𝒙̃
∗
𝑡 , 𝑡) + 𝝈2

𝑡 (𝒅1 + 𝒅2),𝝈2

𝑡 𝑰 )
𝒅1 = ∇𝒙̃∗𝑡 log 𝑝 (𝒙̃𝑡 |𝒙̃

∗
𝑡 ), 𝒅2 = ∇𝒙̃∗𝑡 log 𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃

∗
𝑡 , 𝒙̃𝑡 )

(16)

In the above equation, 𝑝 (𝒙̃𝑡 |𝒙̃∗𝑡 ) and 𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡 , 𝒙̃𝑡 ) represent how
likely 𝒙̃∗𝑡 is close to 𝒙̃𝑡 under the data space and latent feature space
in the reverse process. Following [41], we can utilize MSE as the

distance metric D𝒎 to approximate 𝑝 (𝒙̃𝑡 |𝒙̃∗𝑡 ):

𝑝 (𝒙̃𝑡 |𝒙̃∗𝑡 ) =
1

𝒁
𝑒𝑥𝑝 (𝜆1D𝒎 (𝒙̃∗𝑡 , 𝒙̃𝑡 )) (17)

where 𝒁 is a normalization factor and 𝜆1 is a scale factor that

modulates the guidance strength. From Eq. (17) we have

𝒅1 = ∇𝒙̃∗𝑡 log𝑝 (𝒙̃𝑡 |𝒙̃
∗
𝑡 ) = −𝜆1∇𝒙̃∗𝑡 D𝒎 (𝒙̃∗𝑡 , 𝒙̃𝑡 ) (18)

Similarly, we quantify 𝑝 (Φ(𝒙̃𝑡 ) |𝒙𝑡 ) by adapting LPIPS as the per-

ception distance metric D𝒑 :

𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃∗𝑡 , 𝒙̃𝑡 ) =
1

𝒁
𝑒𝑥𝑝 (𝜆2D𝒑 (𝒙̃∗𝑡 , 𝒙̃𝑡 )) (19)

D𝒑 (𝒙̃∗𝑡 , 𝒙̃𝑡 ) = | |Φ(𝒙̃∗𝑡 ) − Φ(𝒙̃𝑡 ) | |2
Next, we can calculate its gradient

𝒅2 = ∇𝒙̃∗𝑡 log 𝑝 (Φ(𝒙̃𝑡 ) |𝒙̃
∗
𝑡 , 𝒙̃𝑡 ) = −𝜆2∇𝒙̃∗𝑡 D𝒑 (𝒙̃∗𝑡 , 𝒙̃𝑡 ) (20)

Based on the inference above, the conditional transition operator

𝑝𝜑 (𝒙̃∗𝑡−1 |𝒙̃
∗
𝑡 , 𝒙̃𝑡 ,Φ(𝒙̃𝑡 )) can be approximated by a Gaussian distri-

bution, whose mean is shifted by 𝝈2

𝑡 (𝒅1 + 𝒅2). Algorithm 1 outlines

the inference details of JCDP.

Algorithm 1: Joint-conditional Diffusion Purification

Input: Unlearnable example 𝒙̃0, diffusion step 𝑇𝑝 per each

purification run, number of purification iterations 𝑁 ,

given a DDPM (𝝁𝜑 (𝒙𝑡 , 𝑡),𝝈2

𝑡 𝑰 ), gradient scale 𝜆1
and 𝜆2.

1 Init: 𝒅1 = 0 and 𝒅2 = 0;

2 for 𝑖 ← 1 to 𝑁 do

3 The diffusion process:

4 𝑞(𝒙̃1:𝑇𝑝 |𝒙̃0) =
∏𝑇𝑝

𝑡=1
𝑞(𝒙̃𝑡 |𝒙̃𝑡−1);

5 The reverse process:

6 for 𝑡 ← 𝑇𝑝 to 1 do
7 𝝁,𝝈2

𝑡 ← 𝝁𝜑 (𝒙̃∗𝑡 , 𝑡),𝝈2

𝑡 ;

8 𝒅1 ← −𝜆1∇𝒙̃∗𝑡 D𝒎 (𝒙̃∗𝑡 , 𝒙̃𝑡 );
9 𝒅2 ← −𝜆2∇𝒙̃∗𝑡 D𝒑 (𝒙̃∗𝑡 , 𝒙̃𝑡 );

10 𝒙̃∗𝑡−1 ← sample from N(𝝁 + 𝝈2

𝑡 (𝒅1 + 𝒅2),𝝈2

𝑡 𝑰 )
11 end

12 end

13 return 𝒙̃∗
0

3.3.3 Fine-tuning for Diffusion Model. We can directly train a diffu-

sion model on newly collected (unprotected) data. However, since

the size of the collected data is typically much smaller than the

original training data, the generation quality may be low. Fortu-

nately, it is almost impossible that data protectors add unlearnable

perturbations to all data in the real world. Therefore, we can trans-

fer knowledge from unprotected source domains to unauthorized

target domains with limited collected data by means of fine-tuning.

Specially, we first initialize DDPM with the weights of a source net-

work pre-trained on one unprotected domain, and then fine-tune

it on the newly collected data. This simple fine-tuning operation

can shorten the convergence time and improve the purification

performance, especially when collected raw data is limited.

4 EXPERIMENTS

4.1 Settings

4.1.1 Datasets and Evaluation. We select three widely adopted

benchmark datasets for LE evaluation: CIFAR-10 [22], CIFAR-100 [22],

SVHN [28] and Pets [31]. CIFAR-10&100 consist of 50000 images

in the training set and 10000 images in the test set. SVHN contains

73257 digit images for training and 26032 digit images for testing.

Pets consists 3680 pet images for training and 3669 pet images for

testing. To demonstrate the superiority of LE, we compare LE with

AT [25] and the recently proposed supervised countermeasures,

including ISS [24], AA [33] and AVATAR [7]. AT, ISS and AAmodify

the training scheme. AVATAR uses pre-trained generative models

to purify UEs and the used pre-trained models access the original

training set. AA uses adversarial augmentation technology, which

applies 𝐾 different random augmentations for each image. For a
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Table 1: Comparing test accuracy (%) of Resnet-18 classifiers trained on protected datasets CIFAR-10, CIFAR-100 and SVHN.

Clean means standard training on clean training set. EMN refers to the sample-wise form of error-minimizing noise while

EMN (S) is the class-wise type. Note that ISS contains 3 image transformation strategies and we report the best strategy. The

best results are highlighted in bold.

Countermeasures

CIFAR-10 (Clean 95.3) CIFAR-100 (Clean 78.8) SVHN (Clean 96.2)

EMN [21] EMN (C) [21] REMN [11] LSP [47] TAP [10] EMN [21] EMN (C) [21] REMN [11] LSP [47] TAP [10] EMN [21] REMN [11] LSP [47] TAP [10]

Vanilla 21.2 20.7 20.5 15.0 7.8 14.8 4.0 10.9 4.1 8.6 13.9 11.6 7.3 41.0

AVATAR [7] 91.0 - 88.5 85.7 90.7 65.7 - 64.9 58.5 65.0 93.8 88.5 83.8 93.4

ISS [24] 93.0 - 92.8 82.5 83.9 67.5 - 57.3 53.5 56.3 89.9 - 92.2 -

AT [25] 84.8 85.0 49.2 80.2 83.0 63.4 60.1 27.1 58.1 61.4 86.3 70.0 80.2 -

AA [33] 90.8 - 85.5 84.9 - 70.0 - - 67.4 - 88.7 - 92.6 -

LE (Ours) 93.1 94.0 92.2 92.4 90.8 70.9 67.8 65.3 68.7 68.0 94.7 89.9 93.3 94.9

fair comparison, we do not consider adding extra data in training

stage so we set 𝐾 = 1.

To demonstrate LE is a generalizable countering approach under

supervised and unsupervised learning, we employ state-of-the-art

supervised UE and unsupervised UE for generating unexploitable

data. The supervised UE protections include Error-Minimization

Noise (EMN) [21], Robust Error-Minimization Noise (REMN) [11],

Linear-separable Synthetic Perturbations (LSP) [47] and Target

Adversarial poisoning(TAP) [10]. For unsupervised UE, we employ

Contrastive Poisoning (CP) [16] and Unlearnable Clusters (UC) [51].

Following their default setting, we generated EMN, REMN and TAP

on the backbone ResNet-18 [17], and CP on three unsupervised

backbones, including SimCLR [3], MoCo (v2) [4] and BYOL [14].

LSP is a manually designed UE so no backbone is required. UC is

generated on backbone ResNet-18 base on surrogate model and

evaluated via an self-supervised SimCLR. Following the evaluation

protocol in recent countermeasures [24, 33], the perturbation radius

is 𝑙∞ = 8/255 for EMN, REMN and TAP, 𝑙2 = 1.0 for LSP and

𝑙∞ = 16/255 for UC. To achieve the strongest poison performance,

all unlearnable approaches have a 100% poisoning rate.

4.1.2 Training Details. in the joint conditional diffusion purifica-

tion process JCDP is a learning-free purification method, hence we

need to train an unconditional DDPM from other unprotected data

in advance. There are two settings for the collection of unprotected

data: distribution match and distribution mismatch. In distribution

match, we use the unprotected raw testing set (without label annota-

tion), which belongs to the same distribution with the unprotected

version of the unlearnable examples but without overlapping. Un-

less specified otherwise, we use it by default. The detailed settings

of the distribution mismatch are reported in Sec. 4.4. ResNet-18 [17]

is used as the default classifier to train on purified data. Please refer

to supplementary document for the fuller training settings and

implemental details.

4.2 Evaluation on Supervised UEs

We report the comparison results with the state-of-the-art counter-

measures [7, 24, 25, 33] on all datasets in Tab. 1. First, our proposed

method achieves the best test accuracy in all scenarios (countermea-

sures vs. datasets vs. UE methods). The only exception is REMN on

CIFAR-10, where there is only a 0.6% difference with ISS. Secondly,

it is apparent that other countering approaches exhibit the gen-

eralization problem across different UE methods. Specifically, AT

Table 2: Comparsion with data augmentations on CIFAR10.

UE Vanila Cutout [5] Mixup [50] CutMix [49] FAutoAug. [23] LE (Ours)

EMN 21.2 23.8 51.5 25.3 56.3 93.1

REMN 20.5 20.5 26.6 26.8 26.6 92.2

LSP 15.0 11.8 19.7 23.8 25.9 92.4

and AA lead to a significant degradation in accuracy when coun-

tering REMN and LSP protection on CIFAR-10. LSP and TAP also

proves to be more resilient against AVATAR and ISS than other UE

methods. However, our method, LE, does not have these issues, con-

sistently performing well across all UE protection, demonstrating

its effectiveness against unforeseen UE protection. This is because

our approach aims to learn a good data representation that is inde-

pendent of both UE and specific training schemes. Overall, existing

countermeasures might not pose an ultimate threat to unexploitable

data compared to LE. Next, we provide a detailed analysis.

Comparsion with AT Methods and Data Augmentation. AT [25]

can be employed to counter UE protection. A recent study has

shown that Adversarial Augmentation (AA) [33], which combines

data augmentation with adversarial training, can further enhance

the countering performance. However, this countermeasure heavily

relies on the adversarial training procedure. The robust form of

error-minimizing noise [11] can easily compromise their perfor-

mance by replacing the normally trained surrogate in EMN with

an adversarially trained model. As shown in Tab. 1, REMN can

easily break AT and significantly degrade the performance of AA

on CIFAR-10. In contrast, LE transfers well across different UE

protections, whose performance on REMN is only slightly lower

than EMN. Furthermore, the computational complexity of AT is

typically higher than standard training. For LE, the unauthorized

data only needs to be denoised once, then it can be used for training

models in standard setting. Hence LE reduces training time by ap-

proximately 70% compared with AT-based methods. We report the

consuming time of producing learnable data using LE in supplemen-

tary document. In addition, considering that data augmentation

technology is another commonly used countermeasure [7, 24], we

compare our approach with 4 common used data augmentations

in Tab. 2. As shown in Tab. 2, LE significantly outperforms various

data augmentations by a big margin.
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Table 3: Comparsion with ISS on CIFAR-10 and CIFAR-100.

Data UE Vanila BGR Gray JPEG LE (Ours)

CIFAR-10

Clean 94.7 88.7 92.4 85.4 n/a

EMN 21.2 36.5 93.0 81.5 93.1

REMN 20.5 40.8 92.8 82.3 92.2

LSP 15.0 66.2 82.5 83.1 92.4

CIFAR-100

Clean 74.5 - 71.8 57.8 n/a

EMN 14.8 - 67.5 56.0 70.9

REMN 10.9 - 57.3 55.8 65.3

LSP 4.1 - 44.6 53.5 68.7

Comparsion with Image Compression. Image Shortcut Squeezing

(ISS) contains three common image compression operations, includ-

ing grayscale transformation (GRAY), JPEG and bit depth reduction

(BDR). We compare LE with every operation in ISS and the results

are shown in Tab. 3. Different from LS showing consistent counter-

ing performance across all UE protections, the optimal compression

operation in ISS varies across different types of UEs, e.g. JPEG is not

effective against error-minimizing noise (EMN, REMN) while GRAY

is not effective against patch-based linear separable perturbation

(LSP). In order to get the optimal performance, ISS has to ensemble

multiple models which are applied with different compressions.

As a result, LE is more efficient than ISS and has the best overall

performance.

Comparsion with Noise Purification. Similar to LE, AVATAR [7]

also uses diffusion model for purifying unlearnable perturbation.

However, the main experiments reported in [7] utilize the original

clean training data for training diffusion models. In contrast, our

approach does not need to have access to the unprotected version

of the unlearnable examples (original training data), which is more

available in real-world scenarios. In practice, the amount of newly

collected (unprotected) data we used for training diffusion model is

10000 on CIFAR-10&CIFAR-100, and 26032 on SVHN, much smaller

than the amount of data used by AVATAR (50000 clean training

data on CIFAR-10&100 and 73257 on SVHN). In addition, unlike

a naive application of diffusion model in AVATAR, we propose a

novel joint-conditional diffusionmethod to improve the purification

performance. The results in Tab. 1 show our proposed method

surpasses AVATAR under all UE scenarios, especially in countering

against LSP. It is worth noting that the amount of data used by

LE is only 1/5 of that used by AVATAR on CIFAR-10&100, and

1/3 on SVHN. We attribute the improvement to the new proposed

joint-conditional diffusion model.

4.3 Evaluation on Unsupervised UEs

Unlike existing countering methods, which are only available in

supervised learning, LE is capable of countering unsupervised UEs

as well. Considering the unsupervised UEs Contrastive Poison-

ing (CP) [16] are designed for unsupervised contrastive learning

(UCL), we evaluate the effectiveness of LE on three well-knownUCL

frameworks, including SimCLR [3], MoCo (v2) [4] and BYOL [14].

Unlearnable Cluster (UC) [51] methods are not specifically designed

Table 4: Performance of LE against unsupervised UE

(CP&UC). Table report linear probing accuracy. The best per-

formance is shown in bold.

UE Data Backbone Clean Vanila LE (Ours)

CP [16]

CIFAR-10

SimCLR 90.4 44.9 86.6

MoCo v2 89.3 55.1 86.0

BYOL 92.2 59.6 85.7

SimCLR 63.6 34.7 57.4

CIFAR-100 MoCo v2 65.2 41.9 57.1

BYOL 65.3 39.2 57.2

UC [51]

Pets SimCLR 48.3

17.9 46.0

UC-CLIP [51] 26.1 47.5

for unsupervised setting, but are robustness to unsupervised ex-

ploitation against SimCLR. We evaluate the effectiveness of LE on

SimCLR for UC. As shown in Tab. 4, LE is consistently effective

across various UCL algorithms. As there is no unsupervised coun-

tering method for direct comparison, we employ the contrastive

learning version of AT (AdvCL) [8] and common data augmenta-

tions like Cutout [5] and Random Noise. We conduct comparisons

using backbone SimCLR on CIFAR-10. The linear probing accuracy

of AdvCL, Cutout and Random Noise is 79.3%, 47.7%, and 54.1%

respectively, while LE achieves 86.6%, showing the superiority of

LE by big margins in the context of unsupervised learning. To the

best of our knowledge, LE is the first generalizable countermeasure

that is effective against UEs in both supervised and unsupervised

learning.

4.4 Investigating the Distribution Similarity

Although LE requires collecting raw unprotected data to learn a

data manifold, in practice, we find collecting raw data is not difficult

because the distributions of the newly collected data(surrogate dis-

tribution) can be different from the original clean distribution. To

evaluate LE’s tolerance to distribution mismatch, we propose to es-

timate the scale of distribution mismatch using semantic similarity.

We set up 3 scenarios with varying levels of semantic similarities, in-

cluding: (1) high semantic similarity, (2) medium semantic similarity

and (3) low semantic similarity. In scenario (1), we train DDPM on

clean CIFAR-100 data and use it to purify the unlearnable CIFAR-10

training set. This is because a class with high similarity to CIFAR-10

classes can always be found in CIFAR-100. For example, although

there is no “dog” (CIFAR-10) in CIFAR-100 class set, the CIFAR-100

class set contains other semantically similar animal classes such as

“fox” and “raccoon”. In scenario (2), we train DDPM on clean CIFAR-

10 data and use it to purify the unlearnable CIFAR-100 dataset. For

example, the classes in CIFAR-10 have a relatively large seman-

tic difference from “people” classes in CIFAR-100 (“baby”, “boy”,

“girl”, “man”, and “woman”). We define such semantic similarity

as medium level. In scenario (3), we train DDPM on clean SVHN

and purify on unlearnable CIFAR-10&100. Scenario (3) is the most

extreme case since the door digits in SVHN are totally different

from the objects in CIFAR-10&100.

For a fair comparison, we do not use fine-tuning and keep the

amount of data for training DDPM consistent with the setting
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Table 5: The results using different surrogate distributions.

S-Distribution means the surrogate distribution for training

DDPM.

Setting Data S-Distribution EMN LSP

(1) CIFAR-10

Vanilla 21.2 15.0

CIFAR-100 92.1 89.1

(2) CIFAR-100

Vanilla 14.8 4.1

CIFAR-10 66.9 66.0

(3)

CIFAR-10 SVHN 89.3 85.6

CIFAR-100 SVHN 52.9 54.1

Figure 2: Visual results of LEs with distribution mismatch.

UEs are drawn from the protected (unlearnable) CIFAR-10

dataset. LEs(S1) and LEs(S3) choose the surrogate distribution

CIFAR-100 and SVHN respectively.

in Sec. 4.1. The results are presented in Tab. 5. When the learned

density is not far from the original clean distribution(scenario 1&2),

LE can still achieve high test accuracy. Surprisingly, even when the

learned data manifold is totally different from the original data dis-

tribution (scenario 3), LE can still largely improve the test accuracy.

To further understand why LEs can tolerate distribution mismatch,

we visualize some examples under scenario 1 and 3 in Fig. 2. Even

under extreme scenario 3, LEs(S3) still retain the main original

semantic features, albeit more blurred than corresponding UEs and

LEs(S1). We speculate that this is because the joint-conditional

terms in the reverse process (Eq. (16)) shift the mean of the learned

data distribution (SVHN), pulling the purified image towards the

CIFAR-10 distribution. It is hard to theoretically identify the cause

and we will leave it to future research. Overall, this discovery fur-

ther shatters the illusion of protected data, as it is impractical to

add unlearnable noise to all unprotected images in the real world.

4.5 Ablation Studies

To further understand the comparative effects of different elements

of our proposed method, we conduct two pairs of ablation studies:

Fine-tuning vs. Training from Scratch, and Joint-conditional Diffu-

sion Purification vs. Unconditional Diffusion Purification. “Training

from Scratch” means directly training DDPM on collected raw data,

while fine-tuning means fine-tuning from a DDPM trained on other

unprotected datasets. The results are shown in Tab. 6. Compared

with training from scratch, fine-tuning DDPM can generate higher-

quality images already in earlier steps(reducing convergence steps

from 80000 to 1000 on CIFAR-10), and higher-quality DDPM also

Table 6: Ablation analysis LE on CIFAR-10 and CIFAR-100.

“FT” means whether to use fine-tuning for training DDPM,

and “JC” means whether to use Joint-conditional Diffusion

Purification. STEPS means the training steps of DDPM(batch

size 256)

FT JC Steps EMN(CIFAR-10) EMN(CIFAR-100)

% % 80000 90.6 69.0

! % 1000 91.4 69.3

! % 10000 91.9 69.7

! ! 10000 93.1 70.9

Figure 3: Visual examples of Joint-conditional Diffusion

Purification(JCDP) vs. Unconditional Diffusion Purifica-

tion(UCDP) on CIFAR-100.

helps achieve better purification performance. Additionally, Joint-

conditional Diffusion Purification achieves the best defensive re-

sults. This is because joint-condition control can bring the purified

image closer to the original image, while images purified by the

unconditional diffusion model tend to gradually deviate from the

original clean image as the purification step increases. We show a

visual example in Fig. 3.

5 CONCLUSIONS

To systematically investigate the vulnerability of unexploitable data,

we formally define a new threat called learnable examples, which
can turn unlearnable examples into learnable. This is realized by

a novel joint-condition diffusion purification process that projects

the unlearnable examples onto a learnable data manifold, which is

learned from other newly collected (unprotected) data. Notably, LE

is independent of training scheme and consistently effective for both

unauthorized supervised&unsupervised learning. More generally,

we call for future work to design UEmethods that are not influenced

by other unprotected data and use our approach to evaluate their

performance. Because it is impractical to expect all the data in the

world to be added “unlearnable” perturbations. In addition, such a

UE solution can only slightly reduce the effectiveness of LE since

LE can tolerate distribution mismatch to a great extent.
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