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Abstract 

Background  Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, 
and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be 
identified using ‘mutational signatures’. However, these patterns are difficult to reliably infer from exome sequencing. 
Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describ-
ing the current status of a tumour.

Methods  We apply two methods for characterising homologous recombination deficiency in breast cancer 
to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method 
which leverages small insertions and deletions for high-confidence classification of homologous recombination 
deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop 
a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied 
to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency het-
erogeneity and differential patterns of tumour microenvironment interactivity.

Results  We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination 
deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similari-
ties to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic 
signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous 
recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show 
that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu 
of interactions with their microenvironment compared to their homologous recombination proficient counterparts, 
typified by a decreased cancer cell response to TNFα signalling.

Conclusions  We apply multi-scale approaches to characterise homologous recombination deficiency in breast 
cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can 
improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we 
demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect 
status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations 
into interactions between DNA repair deficient cells and their tumour microenvironment.
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Background
Maintaining genomic integrity is an essential process 
for ensuring the sustained survival of cancer cells and 
is enabled via a complex network of pathways forming 
the DNA damage response (DDR) [1, 2]. Homologous 
recombination (HR) is a robust method of repairing 
double-strand breaks, and HR deficiency (HRD) causes 
the cell to become dependent on alternative repair pro-
cesses such as non-homologous end joining (NHEJ) and 
theta-mediated end joining (TMEJ) [3]. These reliances 
provide therapeutic opportunities to target HRD cells 
with treatments such as poly ADP-ribose polymerase 
(PARP) and polymerase θ (Pol θ ) inhibitors [4–7]. PARP 
inhibitors have already been accepted for clinical use 
for patients with breast and ovarian cancer harbour-
ing mutations in BRCA1 and BRCA2 [8–10]. However, 
a significant proportion of cancer patients appear to 
display evidence of HRD without harbouring these bio-
markers [11–13]. Consequently, identifying patients 
demonstrating HRD, who may therefore benefit from 
these therapies, has received close attention.

One method for identifying HRD is using patterns of 
genomic aberrations known as ‘mutational signatures’ 
[14]. These signatures act as markers of prior mutagenic 
events and features, and identifying them within the 
cancer genome can highlight the driving forces behind 
the development of a given tumour. Signatures of HRD 
were uncovered as early as initial studies of mutational 
signatures [15] and HRD has since been linked with 
signatures of single-base substitutions (SBS), small 
insertions and deletions (indels), and structural vari-
ants [16, 17]. Specific classifiers have also been created 
involving the integration of multiple signatures [11] 
and individual mutational events [12]. However, these 
classifiers work most optimally when applied to whole-
genome-sequenced (WGS) data and do not perform as 
well when capturing a reduced representation of the 
genome, e.g. through exome sequencing, which is a 
common feature of large-scale cancer genomics data-
sets such as The Cancer Genome Atlas (TCGA).

Alternatives have included measures of chromosomal 
instability such as copy number signatures, which have 
been identified in a range of cancers [18–21] as well 
as the Myriad HRD index score [22, 23], which inte-
grates multiple large-scale genomic events to provide a 
broader measure of HRD [24–26]. The Signature Mul-
tivariate Analysis (SigMA) computational tool applied 
a likelihood approach to classify both exomes and tar-
geted panel sequenced data as SBS3-enriched [27], 
which has been shown to successfully predict olaparib 
response in breast and ovarian cancers [28]. However, 
the scope of SigMA has been limited to the SBS3 sig-
nature alone as an HRD marker, and the inclusion 

of HRD-associated indel events offers potential for 
improved classification.

Whilst mutational signatures of HRD have shown sub-
stantial potential for predicting PARP inhibitor sensitiv-
ity, one drawback of this method is that, because these 
signatures result from the accumulation of mutations 
induced by various carcinogens acting from the very 
early stages of cancer initiation, they are by definition a 
feature of the history of a tumour, as opposed to its cur-
rent state. This is of particular importance when it comes 
to HRD, as mechanisms of HR revival, such as BRCA1 
reversion mutations and loss of 53BP1, lead to the emer-
gence of PARP inhibitor resistance in BRCA1-defective 
patients [29, 30]. A signature based on the expression 
profile of a sample would, therefore, be more adept at 
describing the most recent state of a tumour. Transcrip-
tional signatures have been applied to characterise vari-
ous features associated with HRD, including BRCA1 
loss in patients [31], HR gene knockdown in cell lines 
[32], PARP inhibitor sensitivity [33], and chromosomal 
instability [34]. Additionally, the presence of signature 
SBS3 has been used to develop a gene signature for HRD 
classification in TNBC [35]. This disregards the diver-
gent consequences of BRCA1 and BRCA2 defects due 
to their different roles in governing HR function: whilst 
BRCA2 is intrinsically involved in HR via the recruitment 
of RAD51C to exposed single-stranded DNA, BRCA1 
functions upstream of HR and is involved in determin-
ing the choice of repair pathway by inhibiting 53BP1, 
which drives end protection and therefore NHEJ [36, 37]. 
A transcriptional signature reflecting this heterogene-
ity may prevent a skewness towards BRCA1-type HRD, 
whilst also shedding light on the emergence of HRD in 
BRCA-positive patients.

In order to perform multi-scale characterisation and 
explore the heterogeneity of HRD, we present a muta-
tional signature-based classifier of HRD for exome-
sequenced breast cancers which we then apply to develop 
a transcriptional signature of HRD and BRCA1/2 defi-
ciency. We demonstrate that leveraging HRD-associated 
indel events improves HRD classification in downsam-
pled WGS samples and in characterising BRCA-defective 
samples from the TCGA-BRCA cohort as HRD. Addi-
tionally, whilst BRCA + and BRCA-defective HRD sam-
ples are broadly similar regarding standard hallmarks of 
HRD, BRCA + samples show deviations in mutational 
and phenotypic features such as a comparative decrease 
in hypoxia. Using matched RNA sequencing data, we 
then employ multinomial elastic net logistic regression to 
develop a 228-gene transcriptional signature which can 
be used to simultaneously predict BRCA1/2 deficiency 
and HRD status, and is linked with response to PARP 
inhibitors in both cell lines and patients from the I-SPY2 
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trial [38]. Finally, we apply the signature to explore HRD 
at the cellular level from single-cell RNA sequencing 
data and demonstrate substantial deviations in patterns 
of crosstalk with the tumour microenvironment (TME) 
between HRD and HR-proficient tumour cells. Together, 
these findings demonstrate the value of multi-scale 
examination of complex phenotypes like HRD and offer 
opportunities to improve research into the causes and 
consequences of such deficiencies in human cancers.

Methods
Data sources
Whole-genome sequencing data from the ICGC-BRCA 
cohort was obtained from DCC data release 28 [39]. Data 
from two projects was included: BRCA-UK (n = 45) and 
BRCA-EU (n = 569), resulting in a total of 614 samples. 
These datasets were used to obtain HRD-specific muta-
tional spectra.

Exome sequencing data from primary breast cancer 
samples from the TCGA-BRCA cohort (n = 968) was 
obtained from the GDC Data Portal (https://​portal.​gdc.​
cancer.​gov/) using the TCGAbiolinks R package [40]. 
The HRD mutational classifier was applied to this data-
set. Somatic mutation data collated using the Mutect2 
pipeline was obtained using the GDCquery() function. 
Annotation of BRCA-defective samples in TCGA was 
taken from Valieris et al. [41]. Samples were considered 
BRCA1/2-, RAD51C-, or PALB2-defective if they were 
assigned either ‘Bi-allelic inactivation’ or ‘Epigenetic 
silencing’. HRD index scores as calculated by Myriad for 
TCGA samples were obtained directly from Marquard 
et  al. [22]. CX3 scores were obtained from Drews et  al. 
[20].

Exome sequencing (n = 186) and transcriptional profil-
ing (n = 168) from the SMC cohort of Korean breast can-
cer patients [42], as well as chromosome arm-level copy 
number alterations for the TCGA-BRCA cohort, were 
downloaded from cBioPortal [43]. This dataset was used 
to validate the exome-based HRD classifier and the tran-
scriptional signature (based on 166 matched exomes and 
transcriptomes).

FPKM-normalised gene expression data for TCGA was 
obtained from the GDC Data Portal (https://​portal.​gdc.​
cancer.​gov/). These data were used to develop the tran-
scriptional signature of HRD. The proliferation/cell cycle 
arrest capacity of the tumours was calculated from RNA-
seq profiles using the quiescence (Q) score defined in 
Wiecek et al. [44] and was defined as 1-Q, with positive 
scores indicating a higher proliferative capacity.

Gene expression data and PARP inhibitor sensitivity 
profiles of breast cancer cell lines (n = 26) were obtained 
from the Cancer Cell Line Encyclopaedia (CCLE) [45]. 
Drug sensitivity was measured using the PRISM metric 

[46]. Transcriptional profiling and clinical data of patients 
from the patient arm of the I-SPY2 trial (n = 71) were col-
lected from the Gene Expression Omnibus (GEO) data-
base, with accession number GSE173839 [38]. These 
datasets were used to assess the clinical relevance of our 
transcriptional signature of HRD.

Bulk and single-cell RNA-seq data of 515 cells from 13 
samples obtained from Chung et  al. was collected from 
GEO database through the accession number GSE75688 
[47]. Treatment-naïve single-cell RNA-seq data of 44,024 
cells from 14 breast cancer patients obtained from Qian 
et al. [48] and 84,854 cells from 31 breast cancer patients 
obtained from Bassez et al. [49] were downloaded directly 
from the Lambrechts laboratory website https://​lambr​
echts​lab.​sites.​vib.​be/​en/​team. These datasets were used 
to inspect HRD and its relation to the microenvironment 
in single cells. Single-cell RNA-seq profiling from Qian 
et  al. and Bassez et  al. were processed using the Seurat 
R package [50], to extract only cancer cells with between 
200 and 6000 unique feature counts and mitochondrial 
content less than 15%, the expression profiles of which 
were then log-normalised.

Generation of HRD classifier for exome‑sequenced breast 
cancer samples
Mutational signature contributions in WGS breast cancer 
samples
Mutational signature analysis of 614 WGS breast cancer 
samples obtained from the International Cancer Genome 
Consortium (ICGC) project was conducted using the 
deconstructSigs R package [51]. SBS and indel signa-
tures from the COSMIC v3.3 database were included if 
they appeared in > 1% breast cancer samples according to 
the Pan Cancer Analysis of Whole Genomes (PCAWG) 
project [17]. SBS and indel contributions were calculated 
separately, and the results were combined for subsequent 
clustering analysis.

Formation of HRD‑specific mutational spectra
The 614 ICGC breast cancer samples were clustered 
according to their SBS and indel signature contributions, 
which were calculated separately using the deconstruct-
Sigs R package [51]. Since we intended to use WGS sam-
ples to calculate estimated signature contributions within 
the exome regions, we normalised the mutation pro-
files to account for the frequency of each mutation type 
occurring in the exome relative to the whole genome. 
For SBS profiles, this was done by setting the option tri.
counts.method = ‘genome2exome’ in deconstructSigs. 
For indel profiles, we used the ICGC breast cancer cohort 
to count the total frequency of each of the 83 indel muta-
tion types, and estimated the frequency of each within 
the exome by excluding mutations appearing within 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://lambrechtslab.sites.vib.be/en/team
https://lambrechtslab.sites.vib.be/en/team
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intergenic regions. The indel profiles of each sample were 
then multiplied by the ratio of the frequency of each 
mutation type within the exome to the whole genome. 
Additionally, mutation spectra in exomes may also differ 
from the rest of the genome on account of transcription-
coupled damage and repair, which cannot be accounted 
for in WGS samples even after factoring for varying tri-
plet frequencies.

Model-based clustering was conducted using the 
mclust R package using finite mixture modelling [52]. 
The final classification and optimal number of clusters 
was selected according to the Bayesian Information Cri-
terion value. Whilst 22 clusters were initially identified 
via this method, two of these clusters consisted of only 
one sample each, neither of which displayed discernible 
features; therefore, these clusters were discarded. The 20 
remaining clusters were named according to the most 
prevalent features, with the seven clusters enriched for 
SBS3 labelled as ‘HRD’.

The mutational spectrum for each cluster was deter-
mined by collectively calculating the mean distribution of 
the 96 SBS and 83 indel mutation types. The result is 20 
representative mutation distributions consisting of muta-
tion events, each summing to one.

Application of mutational spectra for HRD classification 
in TCGA​
The frequencies of the 179 mutation events across 986 
exome-sequenced breast cancer samples obtained from 
TCGA was determined using the sigminer R package 
[19]. The probability of a sample being assigned to a spe-
cific cluster given the set of aberrations displayed follows 
Bayes’ theorem as follows:

where S represents the n mutations forming the muta-
tional profile of the sample, P(clusteri) is the prior proba-
bility of assignment to cluster  i , with 

i ∈ [1, 20]
 , as 

estimated from clustering of WGS ICGC samples, and 
P(S|clusteri) is the likelihood of S occurring in a sample 
from cluster i , calculated as:

where sj is the jth mutation, P sj clusteri) is the probabil-
ity of sj within the mean mutational spectrum of clusteri , 
and the normalising constant P(S) is the sum of likeli-
hoods multiplied by prior probabilities for all 20 clusters:

P(clusteri
∣

∣S) =
P(S|clusteri) ∗ P(clusteri)

P(S)

P(S|clusteri) =

n
∏

j=1

P
(

sj
∣

∣clusteri)

The overall probability of a sample being HRD was 
calculated as the sum of the probabilities of a sample 
appearing across the seven HRD clusters, and samples 
with a probability of greater than 0.79 were deemed HR-
deficient. For BRCA-defect-specific HRD classification, 
samples are assigned to the specific cluster to which they 
have the greatest probability of assignment.

Evaluation of the HRD classifier
The success of the classifier was determined by calculat-
ing its ability to identify patients with HR gene  defects. 
The characterisation of over 900 TCGA samples for 
either bi-allelic inactivation or epigenetic silencing of 
BRCA1, BRCA2, RAD51C or PALB2 by Valieris et al. [41] 
was used as the truth label/gold standard annotation. The 
F-scores for each HRD classification method were calcu-
lated as:

where TP is the number of true positives, FP is the num-
ber of false positives, and FN  is the number of false nega-
tives. Whilst we expected model sensitivity to be close 
to 100% (as we assumed that the majority of BRCA-
defective samples would be HRD) and did not expect 
these results for model specificity (due to the known 
presence of BRCA-positive HRD samples), we aimed to 
ensure that overclassification of HR-proficient samples 
as HRD was as limited as possible, and so did not apply 
a weighted F-score. HRD classification using the HRD 
index score was done using thresholds of 42 and 63 due 
to their application in the literature [23, 53].

Simulation analysis
We tested our method’s HRD classification perfor-
mance in a low mutation count context using simulated 
data where we varied the fraction of indels included in a 
sample. This also allowed us to understand what impact 
indels generally have for HRD classification. Categories 
for simulation analysis were generated using hierarchical 
clustering applied to the SBS signature contributions cal-
culated for the ICGC-BRCA cohort. Samples were down-
sampled to mutational burdens of 25, 50, and 100, with 
the additional constraint that the proportion of indels in 
the simulated data were set from 0 to 0.5, in steps of 0.05. 
Each combination of sample sizes and indel proportions 
was iterated 100 times, and differences in the resulting 
AUC values for identifying SBS3-enriched samples using 

P(S) =

20
∑

k=1

P(S|clusterk) ∗ P(clusterk)

F =

TP

TP +
1
2
∗ (FP + FN )
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the classifier at each iteration were analysed using Wil-
coxon rank-sum testing.

To analyse the effect of altering the indel contributions 
within the likelihood distributions, we repeated the anal-
ysis except instead of constraining the indel proportions, 
we multiplied the indel contribution to each likelihood by 
increasing factors: 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5.

Simulation analysis was repeated using all 20 clusters 
by downsampling each sample to sizes of 25, 50, and 100, 
with no constraint on indel proportions, calculating the 
AUC for correct cluster assignment using the classifier, 
and conducting 100 iterations of this process.

Mutation enrichment analysis
Mutation enrichment analysis was conducted on 738 
genes which have been causally implicated in cancer 
according to COSMIC as of July 3rd 2023 [54]. Only 
genes which were mutated in more than 5% of samples 
were included in the analysis, and their enrichment in the 
HRD/HR-proficient groups was calculated using Fisher’s 
exact test. Mutated genes under positive selection were 
identified by dN/dS analysis, which was conducted using 
the dNdScv R package [55] with default parameters. The 
analysis was run independently for six groups: all HR-
proficient, all HRD, BRCA1-defective, BRCA2-defective, 
RAD51C-defective, and HRD BRCA+.

Chromosome arm‑level enrichment analysis
For all chromosome arms, enrichment of CNAs in HRD 
breast cancer samples compared to HR-proficient sam-
ples were calculated using Fisher’s exact tests indepen-
dently testing gains against non-gains (normal or loss), 
and losses against non-losses (normal or gain).

Pathway enrichment analysis
Differential activity of 14 signalling pathways was ana-
lysed using decoupleR [56], which was applied to 
RNA-seq counts from the TCGA-BRCA cohort. Lowly 
expressed genes were removed and the remaining data 
was VSN-normalised. Differential expression analysis 
was conducted using the DESeq2 R package [57] and 
the results of this analysis were fed into the decoupleR R 
package to estimate pathway activity. Cancer type-spe-
cific hypoxia scores, using the Buffa signature [58], were 
obtained from Bhandari et al. [59].

Generation of a transcriptional signature of HRD
Data preprocessing
Samples from the TCGA-BRCA cohort were selected 
only if they included exome-sequencing data (and there-
fore had been assigned as HRD/HR-proficient), and a 
BRCA-defect label obtained from Valieris et  al. [41]. To 
prevent confounding, samples harbouring defects in 

RAD51C or PALB2 were excluded. This resulted in 857 
samples, of which two-thirds (n = 572) were assigned as 
training. Training and testing sets were defined using the 
createDataPartition() function from the caret R package 
[60] to ensure equal proportions of each HRD/BRCA-
defect group within the two sets.

Expression deconvolution
Expression deconvolution was conducted using the Baye-
sPrism R package, which estimates cell type-specific bulk 
expression profiles from a single-cell RNA-seq refer-
ence dataset. In this case, the Qian et al. [48] dataset was 
used as a reference dataset. Genes from selected groups, 
including mitochondrial, ribosomal, and chromosome X 
and Y genes, were excluded. Following this, protein cod-
ing genes only were included. To ensure that the result-
ing signature would be suitably applicable to single-cell 
RNA-seq data, genes that were expressed in less than 2% 
of the cancer cells in the Qian et al. dataset were excluded 
from further analysis, resulting in 9853 genes for down-
stream analysis.

Development of the multinomial transcriptional signature
The transcriptional signature was generated by multino-
mial elastic net regularised logistic regression using the 
glmnet R package [61]. We performed 1000 iterations 
of tenfold cross validation using the cv.glmnet() func-
tion with type.multinomial = ‘grouped’. Initially, four 
signatures were created, setting alpha = 0.25 or 0.5, and 
applying or excluding weightings to account for group 
imbalances. We collated the coefficients provided for all 
features for each iteration in a model generated using � 
= lambda.min being the value of � which gives the low-
est mean cross-validated error. The non-weighted elastic 
net model, with alpha = 0.25, was selected due to its pres-
ence within the Qian et al. cohort. The final signature was 
formed of 228 genes which were assigned non-zero coef-
ficients across all 1000 iterations.

Similarly to Severson et al. [31], the signature was cal-
culated using a nearest centroid method. To create the 
BRCA1/2-deficiency signature, the TCGA training data 
was split into its four categories, and a template was cre-
ated for each group by taking the mean expression of 
each of the 228 genes across the samples in that category. 
For new samples, four ‘scores’ were then created by cal-
culating Pearson’s correlation coefficient between the 
expression profile of the new sample and each of the four 
templates.

The same procedure was also applied to generate an 
HRD signature, except only two templates were created 
relating to ‘HRD’ and ‘HR-proficient’. For a new sample, 
the Pearson correlation coefficients against the two tem-
plates were calculated, and then the correlation with the 
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‘HR-proficient’ template was subtracted from the correla-
tion with the ‘HRD’ template to generate an overall HRD 
score.

This transcriptional signature was compared against 
four published signatures: a 230-gene HRD signature 
developed by Peng et al. [32], a 77-gene BRCA1ness sig-
nature developed by Severson et  al. [31], a 70-gene sig-
nature of chromosomal instability (CIN70) [34], and 
a 7-gene signature of PARPi sensitivity (PARPi7) [33]. 
Application of these signatures for comparison was also 
conducted using the centroid method described above. 
In the event of a gene in the signature not appearing in 
a dataset, the gene was removed from the signature and 
did not contribute to the correlation calculation.

Gene set enrichment analysis
Gene set enrichment analysis was conducted using the 
pathfindR R package [62] and enrichR R package [63]. For 
the pathfindR analysis, to provide relevant significance 
values, an ANOVA was conducted for each gene against 
the four BRCA-defect groups. The KEGG and Gene 
Ontology Biological Process gene sets were used, and 
default inputs were used for the remaining arguments.

Importance analysis using a Graph Neural Network 
Approach
A Graph Attention Network (GAT) was used to map 
gene co-expression graphs into an embedding space and 
to analyse its classification output in order to obtain a 
classification importance score for each gene, indicative 
of the extent to which this gene’s expression can discrimi-
nate HRD and HR-proficient samples. The pipeline con-
sisted of following steps:

(1) A weighted correlation network analysis 
(WGCNA) [64] method was employed to extract a 
gene co-expression graph involving all 228 genes in 
the HRD transcriptional signature across the TCGA-
BRCA cohort;
(2) A GAT-based feature extractor was applied to 
the high dimensional embeddings of the gene co-
expression graphs which integrates information from 
neighbouring domains;
(3) A simple prediction module for the classification 
task was implemented;
(4) A gradient-based method was used to calculate 
gene importance scores as post-hoc explanations for 
model behaviour [65].

This pipeline was implemented based on the Pytorch 
[66] and Pytorch Geometric library [67]. An Adam opti-
mizer was used with batch size 8 and an initial learn-
ing rate of 0.002. Linear learning rate decay and early 

stopping were applied to avoid overfitting. A threshold of 
0.7 was applied to identify ‘important’ genes for HRD and 
HR-proficiency classification.

Cell–cell interaction analysis
Differential patterns of cell–cell interactivity within the 
tumour microenvironment of HRD and HR-proficient 
cells were analysed using CellphoneDB [68], which was 
applied to the Qian et al. and Bassez et al. cohorts [48]. 
Tumour cells were labelled as HRD if they displayed 
a positive HRD score. CellphoneDB was conducted 
within a Conda virtual Python environment, with default 
parameters applied.

Statistical analysis
Groups were compared using two-sided Student’s t test, 
Wilcoxon rank-sum test or ANOVA, as appropriate. 
P-values were adjusted for multiple testing where appro-
priate using the Benjamini–Hochberg method. Graphs 
were generated using the ggplot2 and ggpubr R packages.

Results
Establishing HRD‑associated signature phenotypes 
in whole‑genome‑sequenced breast cancers
Prior to studying HRD in exome-sequenced samples, we 
aimed to develop an initial understanding of the recur-
ring profiles of mutational signatures seen in breast can-
cers. This was achieved by calculating the contributions 
of breast cancer-associated SBS and indel signatures in 
614 whole-genome-sequenced breast cancers obtained 
from the International Cancer Genome Consortium 
(ICGC), and then clustering these profiles to established 
‘signature phenotypes’. According to finite mixture mod-
elling, the ICGC cohort could be grouped into 20 clus-
ters, seven of which were assigned as ‘HRD’ due to the 
enrichment of SBS3 and the indel signatures ID6 and ID8 
(Additional file 1: Fig, S1a-b; Additional file 2: Table S1).

As expected, BRCA-defective samples were strongly 
enriched within the seven HRD clusters, as were sam-
ples labelled as HRD by either HRDetect [11] or CHORD 
[12], with all BRCA-defective samples appearing in an 
HRD cluster (Additional file 1: Fig. S1c). 117/120 (97.5%) 
of samples with HRDetect scores greater than 0.7 appear 
in an HRD-associated cluster. Considering samples with 
known BRCA status, 75/135 (55.6%) of samples within 
the HRD clusters are BRCA-defective, similar to the 
74/120 (61.7%) of samples with HRDetect scores greater 
than 0.7. This is demonstrative of the fact that, even 
accounting for defects in a range of HR genes such as 
RAD51C and PALB2 which would increase the precision 
of these classifiers, the source of HRD for many samples 
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is unknown, and therefore the specificity for any HRD 
classifier is not expected to reach 100%.

Interestingly, BRCA1 and BRCA2-defective samples 
could also be broadly separated. Whilst this has been 
demonstrated using CHORD [12], we show that it can 
also be achieved using mutational signatures. BRCA2-
defective samples are enriched in clusters characterised 
by increased contribution of the ID6 signature, referred 
here as ‘BRCA2-type HRD’. The ID6 signature displays 
deletions at microhomologous regions flanking double-
strand breaks, indicative of high TMEJ activity [69]. 
Alternatively, BRCA1-defective samples appear in clus-
ters featuring increased ID8 signature contributions, 
which we call ‘BRCA1-type HRD’, associated with NHEJ 
[17]. Since BRCA1 is heavily involved in determining 
how a double-strand break will be processed, BRCA1-
defective samples will naturally rely on non-homologous 
end joining to be their primary method of DSB repair. 
Each type of HRD cluster shows high sensitivity for clas-
sifying their respective BRCA defect, with BRCA1 and 
BRCA2 defects being correctly classified with sensitivi-
ties of 68.9 and 70.0% respectively (Additional file 1: Fig. 
S1d). Whilst CHORD shows greater specificity (73.3 and 
93.3% respectively), there is concordance between the 
BRCA-type HRD clustering and CHORD classification 
(78.3% for BRCA1-type HRD and 72.2% for BRCA2-type 
HRD). Thus the indel signatures may not only be useful 
as HRD-associated signatures, but also shed light on the 
method employed by a sample for tolerating that type of 
HRD.

Evaluating HRD in exome‑sequenced breast cancers
A minimum of 50 mutations are generally believed to 
be required for reliable mutational signature inference 
[51]. By this criterion, SBS signature analysis is unsuit-
able in 558/968 whole-exome-sequenced samples from 
the TCGA-BRCA cohort, and indel signature analy-
sis is unsuitable in 958/968 (Additional file  1: Fig. S2). 
In particular, these samples display a median indel load 
of 3, and a mean of 5.39, with 94 samples harbouring 
zero indel events. There is an opportunity to overcome 
such limitations when it comes to identifying HRD 
in exome-sequenced cancers by employing the previ-
ously described signature phenotypes in whole cancer 
genomes: rather than identifying the relevant signatures 
themselves, the signature profile of a cluster can be pre-
dicted instead. To achieve this, we developed a likeli-
hood-based computational method which would enable 
the assignment to the 20 signature phenotypes without 
the need to calculate the prevalence of specific signatures 
(Fig. 1a). For each of the 20 clusters, a mean mutational 
spectrum was calculated, representing a ‘ground-truth’/
baseline profile against which new sample spectra can be 

compared (Additional file 1: Fig. S3). Subsequently, each 
mutation in the profile of a new sample will influence 
the likelihood of that sample being assigned to each of 
the signature phenotypes, with the prior probabilities of 
assignment to each cluster determined by their size in the 
ICGC-BRCA cohort.

To initially demonstrate the capacity of this technique 
and the accuracy gained by considering indel events, we 
simulated exome-sequenced samples by downsampling 
whole-genomes from ICGC data to see if our framework 
would correctly classify the downsampled data accord-
ing to clusters defined by mutational signatures (see 
Methods). For these simulations, we based the cluster-
ing solely on SBS signatures as a conservative approach 
that would avoid any bias from indel events which might 
favour our methodology. We sampled events from each 
ICGC sample with replacement, constraining them to 
specific proportions of indel events to demonstrate how 
their inclusion improved classification. Simulated exomes 
were set to 25, 50, and 100 mutations. At mutation loads 
of 50, classification of SBS3 enrichment improved when 
5–10% of the simulated mutations were constrained 
to indel events, indicating that even a small number of 
indels could improve HRD classification (Fig.  1b). As 
the simulated mutational load decreased from 100 to 
25, a larger proportion of indels was required to enable 
substantial improvement over using SBS events alone 
(5% versus 20%, Additional file  1: Fig. S4). The mean 
and median indel proportions across the TCGA-BRCA 
cohort are 6.75% and 5.88% respectively, thereby dem-
onstrating that the results of these simulations align with 
real-world features and that the inclusion of indel events 
improves HRD classification.

Given the demonstrated and known importance of 
indel events for HRD classification, we sought to under-
stand whether increasing the weights of indels within 
the likelihood distributions would improve classifica-
tion. The above analysis was repeated in WGS samples 
downsampled to 50 mutations, and the respective indel 
proportions within the likelihood distributions were mul-
tiplied by factors increasing from 1/5 to 5 (see Methods). 
We demonstrate that whilst HRD classification is broadly 
unaffected when the indel likelihood weight is decreased, 
accuracy decreases significantly once it is increased, 
thereby showing that overestimating the importance 
of these indel events will hamper the accuracy of HRD 
classification (Additional file  1: Fig. S5). Thus, from our 
analysis we conclude that the optimal HRD classification 
is attained when indel spectra are equally weighted as the 
SNV ones.

Finally, we asked if the full set of 20 phenotypes seen 
in WGS data could be captured at lower mutational 
loads. To this end, we conducted simulations to test the 
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reclassification ability for each phenotype following sub-
sampling (Additional file  1: Fig. S6). This demonstrated 
that reclassification of specific APOBEC-enrichment 

clusters was highest at low mutational loads, followed by 
HRD-enrichment. Additionally, in cases where a sample 
was misclassified, it was most often assigned to a broader 

Fig. 1  Evaluating HRD in exome-sequenced breast cancers. a Workflow for HRD classification of an exome-sequenced breast cancer sample. 
Each sample contains a profile of mutations, each of which has a probabilistic association with each of the 20 signature phenotypes, defined 
by a representative signature profile inferred from WGS data. The mutational profile is collated to calculate the probability of assignment 
of the respective sample to each of the 20 clusters. b Simulation analysis of SBS3-enrichment classification of ICGC samples downsampled to 50 
mutational events constrained to varying indel proportions. Adding a small percentage of indels is sufficient to improve classification. AUC = area 
under the ROC curve for SBS3 enrichment classification. The dotted red line represents the mean proportion of indel events in the TCGA-BRCA 
cohort. c Classification of 968 exome-sequenced breast cancer samples from TCGA. The heat map indicates the probability of each sample (column) 
being assigned to each signature phenotype (rows). Samples are annotated by ER status and HR gene defects. The value p(HRD) is the sum 
of probabilities of assignment across the seven HRD-associated phenotypes. The label ‘Phenotype assigned’ refers to the phenotype to which 
the respective sample has the highest probability of assignment. d Summary of HRD cluster assignment probabilities across the TCGA-BRCA cohort. 
Samples with a total probability of HRD assignment greater than 0.79 (as shown by the dotted red line) would be assigned as HRD, whereas the rest 
would be deemed HR-proficient. e HRD classification of HR gene-defective and -positive samples in the TCGA-BRCA cohort. ‘HRD’ refers to samples 
with a probability of HRD assignment greater than 0.79. f F-score comparisons of HRD classifiers for exomes. ‘HRDi + ’ refers to the classifier 
developed in this study. The HRD index is presented using cutoffs of 42 and 63
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associated cluster. Thus the APOBEC and HRD pheno-
types are reliably identified as such even when the muta-
tion load in a tumour is low or not fully captured by the 
sequencing technique.

We next applied the likelihood-based classifier to 
968 exome-sequenced breast cancer samples obtained 
from TCGA (Fig.  1c; Additional file  2: Table  S2). The 
samples  harbouring defects in HR genes were mainly 
assigned across the seven HRD-associated clusters. 
The overall probability of HRD classification was cal-
culated as the sum of probabilities of assignment to the 
seven HRD-associated clusters, and samples with a clas-
sification probability greater than 0.79 were labelled as 
HRD. This value was selected to maximise the accuracy 
of the classifier for identifying patients with defects or 
alterations in HR genes (BRCA1, BRCA2, RAD51C, and 
PALB2, hereafter termed ‘HR gene-defective’), as deter-
mined using an F-score (Methods; Additional file 1: Fig. 
S7a). This method was selected to ensure sufficient sensi-
tivity for classifying samples harbouring known HR gene 
defects, whilst maximising the confidence in HRD clas-
sification of HR gene-positive samples. Overall, HR gene-
defective samples from TCGA were labelled as HRD with 
an AUC of 0.91 (Fig. 1d, Additional file 1: Fig. S7b), 73.4% 
sensitivity and 74.8% specificity (Fig. 1e).

In general, the accuracy of the classifier is greater 
when considering ER-negative samples compared to ER-
positive ones, likely due to the increased enrichment of 
HR gene-defective samples within ER-negative samples 
(31.6% versus 6.79%) (Additional file 1: Fig. S7c-d, Addi-
tional file 2: Table S2). It is known that HRD features can 
vary substantially between cancer types [70], and there-
fore in some cases redefining specific thresholds based 
on a given context can improve classification. However, 
in both cases, the probability threshold of 0.79 performs 
well for maximising the resulting F-scores.

A similar performance was observed when applying 
the method in an independent exome-sequencing valida-
tion dataset of 186 breast cancer patients from the SMC 
Korean breast cancer cohort [42]. Here, 13/20 (65%) of 
BRCA-defective patients were classified as HRD, increas-
ing to 17/20 (85%) when applying a probability cut-off of 
0.5 (Additional file 1: Fig. S8).

Our method outperformed other signature-based 
methods such as SigMA (27), the CX3 copy number sig-
nature from Drews et al. [20], or SBS3-based identifica-
tion alone in terms of both specificity and sensitivity for 
classifying HR gene-defective samples as HRD (Fig.  1f ). 
It also outperformed the HRD index score, which is 
based on the levels of loss of heterozygosity, large-scale 
transitions and telomeric allelic imbalances in a sam-
ple (Fig. 1f ). We note that the HRD large-scale genomic 
aberration features required for the Myriad HRD test are 

often imperfectly called from exome-sequencing data 
and that efforts have been made to optimise the calling of 
these features [70]. Therefore, we have used two different 
thresholds of HRD classification using this HRD index 
score based on literature-reported cutoffs [53, 71]. Whilst 
our classifier had a recall in TCGA of only 73.4%, gen-
erally lower than some alternative methods proposed, it 
demonstrated a far superior precision of 74.8%, demon-
strating an increased stringency and confidence for HRD 
classification (Additional file 1: Fig. S9).

Assignment to HRD clusters occurs more frequently 
for BRCA2-defective samples (93%) compared with 
BRCA1-defective (72%) and RAD51C-defective (68%) 
samples (Additional file  1: Fig. S10). However, whilst 
HRD classification was strong amongst HR gene-defec-
tive samples, unlike in the ICGC data, the classifier was 
unable to assign BRCA-defective samples to BRCA1- or 
BRCA2-type HRD clusters specifically, with respective 
sensitivities of 55.0 and 37.0% (Additional file 1: Fig. S10). 
This is likely due to the scarcity of indel events appearing 
in exome-sequenced samples.

Hallmarks of HRD
Primary TCGA-BRCA samples labelled as HRD accord-
ing to the classifier displayed numerous hallmarks asso-
ciated with DDR deficiencies (Fig.  2), including greater 
levels of large-scale genomic scarring (Fig. 2a), and high 
levels of the CX3 copy number signature (Fig. 2b), which 
has been linked with impaired HRD alongside increased 
replication stress and impaired damage sensing [20], and 
which performed particularly well for HR gene-defect 
HRD classification (Additional file 1: Fig. S11). HRD sam-
ples displayed increased expression of POLQ (Fig.  2c), 
indicating a greater reliance on TMEJ  for double-strand 
break repair [6, 72, 73], as well as increased proliferative 
capacity (Fig. 2d), which is expected to be associated with 
HRD [74].

Within TCGA, we see that HRD samples are signifi-
cantly enriched amongst TNBC samples, with 38.3% 
of TNBC samples labelled as HRD (with TNBC consti-
tuting 40.9% of all HRD samples) compared with 7.1% 
amongst the remaining samples (Fig.  2e,f ), which was 
also observed in the SMC breast cancer cohort [42]. This 
aligns with prior information pointing to TNBC sam-
ples in TCGA being highly enriched for HR gene defects 
(43.2% compared with 7.2% amongst the remaining sam-
ples). We also classify 55% of the TNBC samples in the 
SMC cohort as HRD, which is aligned with their findings 
that 85% of these samples displayed at least some SBS3 
signature contribution (Additional file 1: Fig. S8c). Finally, 
we observed an association between HRD and amplifica-
tion of MYC (Fig. 2g), which could imply an increase in 
replication stress [75].
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HRD and HR-proficient breast cancers in TCGA were 
shown to display differential enrichment of mutational 
drivers of tumorigenesis (Fig. 2h). TP53 mutations were 
significantly enriched in HRD samples, in agreement 
with their common co-occurrence with BRCA1/2 defects 
[76, 77]. In contrast, the genes CDH1, MAP3K1, PIK3CA, 
and GATA3 were more frequently altered in HR-profi-
cient samples. Mutations in GATA3, which is involved in 
normal mammary gland development and has been pre-
viously associated with ER positivity, occur frequently in 
breast cancer, in particular frameshift indels [16, 78, 79] 
and were strongly enriched in a cohort of Nigerian breast 
cancer patients [80].

We applied the dN/dS method [55] to identify signals 
of positive selection for mutations within the HRD and 
HR-proficient groups (Fig. 2i). Unsurprisingly, mutations 
in TP53 and PIK3CA were positively selected within both 
groups, acting as generic drivers in this cancer. Seven 
genes were positively selected in the HR-proficient group 
but not HRD. In contrast, CASP8 and F5 were positively 
selected only in HRD samples. Caspase signalling has 
previously been hypothesised as a driver of cell death 
following the induction of cGAS–STING and interferon 
signalling induced by knock-out of BRCA2, indicating 
that positive selection for CASP8 mutation could allude 
to a method of maintaining cell viability in the context of 
increased chromosomal instablility [81].

BRCA1- and BRCA2-defective samples showed dif-
ferent patterns of positive selection according to dN/dS 
analysis, with BRCA1-defective and HRD BRCA+ sam-
ples showing positive selection only for TP53, whilst 
BRCA2-defective samples only demonstrated this in 
PIK3CA (Fig. 2i) [56].

Due to the chromosomal instability associated with 
HRD, we also sought to highlight associated copy num-
ber aberrations. Chromosome arms were more likely to 
be enriched for losses than gains in HRD samples, align-
ing our knowledge of loss of heterozygosity as an HRD 

signature [26, 82] (Fig.  2j). Only chromosome arm 16p 
was significantly enriched for both losses in HRD sam-
ples, and gains in HR-proficient samples. Notably, the 16p 
arm carries the PALB2 gene, which is strongly involved in 
HR and has been associated with PARPi sensitivity [83–
85]. Only three arms were significantly enriched for gains 
in HRD samples, which were 3q, which carries POLQ, 
10p, which carries the DCLRE1C gene, which encodes 
for the Artemis protein that is essential for NHEJ activ-
ity [86], and 8q, which carries the SPIDR and RAD54B 
genes, encoding accessory factors for RAD51C activity 
during homologous recombination [87, 88], indicating a 
potential compensatory mechanism in these patients.

Given the variation in mutation selection across HRD 
samples, we sought to further analyse how BRCA+ HRD 
samples compare to those harbouring BRCA defects. 
HRD-BRCA+ samples showed significantly increased 
levels of HRD hallmarks in comparison to HR-proficient 
samples (Additional file 1: Fig. S11a). Whilst they showed 
a slight decrease in CX3 copy number signature contri-
bution compared with BRCA-defective samples, these 
samples showed no difference in POLQ expression or 
proliferative capacity, indicating that they were display-
ing a clear HRD phenotype despite their BRCA+ status. 
Additionally, patients with an HRD classification prob-
ability between 0.5 and 0.79 display significantly lower 
levels of HRD hallmarks compared with those exceeding 
the threshold, further indicating increased confidence in 
our HRD classification (Additional file 1: Fig. S11b).

Additionally, we checked the somatic mutation sta-
tus of HRD HR gene-positive samples in comparison 
with those carrying HR gene defects. In commonly 
altered cancer genes, there were no discernible differ-
ences between BRCA+ and HR gene-defective sam-
ples (Additional file  1: Fig. S12a). Of the 27 HRD HR 
gene-positive samples, 25 (93%) presented a non-silent 
mutation in a DDR gene, of which 10 (37%) carried 
mutations in a double-strand repair gene, according 

Fig. 2  Genomic and transcriptional hallmarks of HRD. Association between HRD status and a the Myriad HRD index score, b contribution 
of the CX3 copy number signature, c POLQ expression, and d a transcriptional measurement of proliferation/cell cycle arrest capacity. e 
Enrichment of HRD across breast cancer subtypes. f Enrichment of breast cancer subtypes across HRD status. g Association between HRD status 
and amplification of MYC. h Enrichment/depletion of somatic nonsynonymous mutations in key cancer genes in HRD and HR-proficient breast 
cancer samples. A positive log(odds ratio) indicates enrichment in HRD samples. i Positive selection of cancer genes in HR-proficient, all HRD, 
BRCA1-defective, BRCA2-defective, RAD51C-defective, and HRD BRCA + breast cancer samples. Circle size indicates the strength of positive selection 
according to the dN/dS ratio. j Comparison of chromosome arm loss and gain events between HRD and HR-proficient breast cancer samples. 
Positive values indicate enrichment in HRD against HR-proficient samples, whilst the x and y axes indicate enrichment for chromosome arm 
gains and losses respectively. k Results of differential pathway activity analysis between HRD and HR-proficient breast cancer samples across 14 
signalling pathways ordered by the Normalised Enrichment Score (NES). Positive scores indicate pathway enrichment in HRD samples. l Comparison 
of hypoxia scores in the TCGA-BRCA cohort according to the Buffa transcriptional signature across HRD/BRCA-defect categories, split by ER status. 
P-values refer to Wilcoxon testing between each group and the HRD-BRCA + group, tested across all samples (black) and ER-negative samples 
only (red)

(See figure on next page.)
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to a curated list of genes associated with DDR [89]. 
Whilst DDR gene mutations were similarly frequent in 
BRCA-defective HRD samples (96%), the proportion 
of double-strand repair-mutated samples, excluding 

BRCA1 and BRCA2, was significantly higher at 61%. 
Within HRD BRCA+ samples, 17/27 (63%) carried 
a TP53 mutation (similar to 68% amongst HR gene-
defective samples), with the next most commonly 

Fig. 2  (See legend on previous page.)
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mutated DDR genes being ARID1A and MDM4, a 
p53 inhibitor, although this was only in 2/27 cases 
each (Additional file 1: Fig. S12b). Interestingly, muta-
tions in ARID1A have previously been associated with 
PARPi sensitivity [90], indicating a potentially rare 
cause of HRD. The 16p chromosome arm, carrying 
the PALB2 gene, was marginally enriched for gains 
amongst HRD HR gene-positive samples (Additional 
file  1: Fig. S12c). However, following multiple testing 
correction, no genes were enriched for gains or losses 
within HRD samples depending on HR gene defects 
(Additional file 1: Fig. S12d).

To gain a broader perspective on the differences 
driven by BRCA status in HRD samples, we analysed 
variation in pathway activity using decoupleR [91]. 
Unsurprisingly, oestrogen and p53 signaling were sig-
nificantly downregulated in HRD samples (Fig.  2k). 
We also found that the hypoxia signalling response 
was substantially upregulated in HRD compared with 
HR-proficient samples (Fig.  2k). It has previously 
been demonstrated that BRCA-defective samples 
from TCGA display increased hypoxia scores com-
pared with BRCA+ samples [92]. Here, we found that 
HRD HR gene-positive samples also show increased 
hypoxia scores against HR-proficient samples, 
although this association disappears when analys-
ing ER-negative samples alone (Fig.  2l). Interestingly, 
whilst these samples have lower hypoxia scores com-
pared to BRCA1-defective samples, this was not 
observed in comparison to BRCA2-defective samples. 
A two-way ANOVA revealed that even after account-
ing for ER status, both BRCA-defect (F(2,801) = 11.28, 
p = 1.5e − 05) and HRD status (F(1,801) = 11.28, 
p = 8.2e − 04) were significantly associated with 
hypoxia scores (Additional file  2: Table  S3). Severe 
hypoxia has been shown to lead to PARPi sensitivity in 
HR-proficient tumours [93], and hypoxia has also been 
shown to inhibit ER expression in breast cancer cells 
[94], potentially explaining the similar hypoxia levels 
across BRCA+ ER-negative breast cancers. However, 
hypoxia as a BRCA-independent mechanism of HRD 
requires further analysis and experimental validation 
that is beyond the scope of this study.

Overall, we confirm that the samples classified as 
HRD via our signature-based method display numer-
ous HRD-associated hallmarks, and demonstrate that 
HRD and HR-proficient samples show noticeable vari-
ation in genomic profiles. Additionally, HRD samples 
can show variation depending on HR gene-defect sta-
tus both at mutational as well as signalling activity 
level, in particular hypoxia, demonstrating physiologi-
cal deviations which may be reliant on BRCA defects 
specifically.

Developing a transcriptional signature of BRCA1/2 
deficiency
To further explore the functional consequences of 
HRD, we sought to develop a transcriptional signature 
reflecting the gene expression profiles of HRD and HR-
proficient breast cancers. We aimed to ensure that the 
signature encompassed the various forms of HRD that 
could be driven by different factors, such as BRCA1 or 
BRCA2 defects as well as BRCA-independent mecha-
nisms (HRD-BRCA+). To this end, we trained a mul-
tinomial elastic net regression model on the expression 
profiles from two-thirds of the TCGA-BRCA cohort to 
distinguish between different forms of HRD or HR pro-
ficiency, with the remaining TCGA-BRCA samples used 
for testing (Fig. 3a, Methods). A multinomial elastic net 
approach was chosen due to the ability to remove unin-
formative features, whilst also tolerating correlated 
variables. Additionally, since we were seeking a cancer 
cell-specific phenotype, as opposed to a signal of the 
tumour microenvironment which can confound bulk-
sequenced samples, we conducted expression deconvo-
lution using BayesPrism [95] on the training cohort and 
used the estimated cancer-specific transcriptional pro-
files for signature development (see Methods). The esti-
mated cell type fractions from BayesPrism significantly 
correlated with tumour purity estimates [96], indicating 
reliable cancer cell-specific estimation (Additional file 1: 
Fig. S13).

The transcriptional signature was generated by con-
ducting 1000 iterations of multinomial elastic net regres-
sion with tenfold cross validation and extracting the 
genes which were included in all 1000 iterations (see 
Methods). An HRD ‘score’, as well as four scores repre-
senting HR proficiency, BRCA1ness, BRCA2ness, and 
HRD-BRCA-positivity, were then calculated using a 
centroid-based approach (see Methods). This procedure 
was conducted with varying regularisation parameters, as 
well as with and without observation weights to account 
for imbalanced groups (see Methods). The final signature, 
containing 228 genes (Fig. 3b, Additional file 2: Table S4), 
was selected on account of its optimal capture in single-
cell data based on the Qian et al. cohort [48] (Additional 
file 1: Fig. S14).

The resulting HRD score was adept at classifying sam-
ples labelled as HRD or HR-proficient according to the 
mutational signature-based classifier (AUC = 0.88) 
(Fig.  3c). An advantage of the signature was that whilst 
BRCA1-defective samples showed the highest HRD 
scores, BRCA2-defective samples also demonstrated 
HRD scores greater than HR-proficient samples, dem-
onstrating that this signature can capture overall features 
of heterogeneous HRD (Fig.  3d). For HRD/HR-profi-
ciency classification, the signature outperformed other 
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Fig. 3  Development and validation of a BRCA-defect type-specific HRD transcriptional signature. a Workflow for transcriptional signature 
development. Data is split into training and testing cohorts. The training data undergoes expression deconvolution to extract a cancer cell-specific 
signal, using the Qian et al. single-cell RNA-seq cohort as a reference, and genes that are lowly expressed in this dataset are removed. Processed 
training data undergoes 1000 iterations of tenfold cross validation of elastic net regression, and a signature is formed from the 228 genes selected 
in every iteration. Centroid templates are formed for HRD/HR-proficient and BRCA-type HRD groups from the 228 genes across the training cohort, 
and scores for testing and validation cohorts are calculated by correlating the new sample against each template. b Summary of the 228-gene HRD 
transcriptional signature profiles across the TCGA training set. The HRD status assignment is annotated along with BRCA1/2 defects. c,d Comparison 
of HRD scores calculated using the transcriptional signature between c HRD vs HR-proficient and d HRD/BRCA-defect groups. e Comparison of HRD 
transcriptional signatures and gene expression markers for predicting HRD status in the TCGA testing set, measured by AUC. ‘Elastic net’ refers 
to the 228-gene transcriptional signature presented in this study. ‘Peng’, ‘CIN70’, ‘Severson’, and ‘PARPi7’ refer to alternative transcriptional signatures 
as described in the Methods. POLQ, BRCA1, PARP1, and BRCA2 are gene expression markers. f Comparison of HRD/BRCA-defect scores across HRD/
BRCA-defect groups in the TCGA testing cohort. Each panel corresponds to a specific HRD/BRCA-defect signature, with the y-axis representing 
correlation with the respective centroid model. Each box refers to the samples within the respective group
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transcriptional signatures associated with HRD [32], 
BRCA1ness [31], chromosomal instability (CIN70) [34], 
and PARP inhibitor sensitivity (PARPi7) [33], as well as 
gene markers associated with HRD (Fig. 3e).

The signature also showed potential at classifying 
samples depending on their specific BRCA-defect/HRD 
status, including when applied to BRCA2-defective sam-
ples (Fig.  3f; Additional file  1: Fig. S15). The elastic net 
signature outperformed all others in characterising 
BRCA1ness, BRCA2ness and HR proficiency, further 
demonstrating that, unlike alternative HRD classifiers, 
using a multinomial approach prevents the resulting 
signature from skewing away from BRCA2ness, ensur-
ing that the established HRD heterogeneity is captured. 
Whilst the overall distribution of HRD scores is greater 
for ER-negative samples in the TCGA testing data regard-
less of HRD/HR-proficiency status, HRD is also identifia-
ble using the signature after accounting for breast cancer 
subtype, suggesting that it is not just merely capturing 
the ER status of the tumours (Additional file 1: Fig. S16).

These results were validated in the SMC breast cancer 
cohort [42]. The 228-gene signature outperformed alter-
native methods in HRD classification (AUC = 0.81) and 
demonstrated adept capacity for BRCA-defect and HRD 
BRCA+ classification in comparison with alternative 
methods (Additional file 1: Fig. S17). It is noted that HRD 
classification capacity is slightly reduced in the SMC 
cohort which is suspected to be due to the small number 
of BRCA1-defective patients in the SMC cohort, whilst 
BRCA1-defective patients dominated the HRD group in 
TCGA.

According to gene set enrichment analysis, DNA repair 
processes are dominantly enriched across the signature, 
as driven by BRCA1, BRCA2, TOP3B, and FANCI (Addi-
tional file  1: Fig. S18). Intriguingly, the signature was 
also enriched for genes associated with insulin signalling 
and glucose transport (IRS1, IRS2, CACNA1D, SOCS3, 
PRKCZ), and autophagy and mTOR signalling (RPTOR, 
RRAGD, GABARAP, ATP6V1E2, ATP6V1C1).

Key transcriptional contributors to HRD classification
Whilst the 228-gene signature predicts both the HRD 
and BRCA-defect status, we were interested to explore 
whether a reduced signature could characterise HRD 
sufficiently. To achieve this, we employed graph atten-
tion networks (GATs) that would help us prioritise genes 
in the signature which have the greatest contribution 
to distinguishing HRD and HR-proficient phenotypes 
(Fig. 4a, Methods). The model makes use of the original 
genes from the signature and the degree to which they 
are correlated in their expression within the TCGA-
BRCA cohort to classify patients as HRD and or HR-
proficient, whilst the correlated gradient information 

decides which gene sub-modules might drive the clas-
sification. Briefly, a patient-specific weighted gene co-
expression graph is extracted using weighted correlation 
network analysis (WGCNA) [64] and these graphs are 
input into the GAT, which is then trained to distinguish 
HRD from HR-proficient samples and then selects parts 
of the graph based on its gradients. The resulting graph 
neural network showed high accuracy for HRD classifica-
tion (AUC = 0.90). By ranking the genes using a gradient-
based approach for their performance in classifying HRD 
or HR proficiency, we were then able to highlight the key 
genes driving correct model prediction.

The analysis highlighted 26 genes which were suffi-
ciently important for classifying the HRD and HR-profi-
ciency groups, of which 15 were predictive of HRD and 
11 were predictive of HR proficiency (Fig.  4b,c, Addi-
tional file  2: Table  S5). A number of these genes have 
been associated with DDR, including USP13, a regula-
tor of replication stress involved in ATR activation via 
TopBP1 deubiquitination [97, 98], POLG, a key regulator 
of mitochondrial DNA replication and repair [99, 100], 
and IP6K2, a stabiliser of DNA-PKcs and ATM lead-
ing to p53 phosphorylation [101, 102]. Additionally, the 
reduced signature contains two genes encoding zinc fin-
ger proteins (ZNF718 and ZNF583) which are involved 
in both HR and NHEJ [103, 104]. On their own, these 
26 genes provide an adept reduced gene signature for 
capturing HRD, with maintained capacity for HRD clas-
sification across BRCA2-defective samples (Additional 
file 1: Fig. S19).

Testing the signature against sensitivity to PARP inhibitors
To determine the therapeutic relevance of the transcrip-
tional signature of HRD, we next applied the signature to 
breast cancer cell lines to predict PARP inhibitor sensi-
tivity. The signature was applied to 68 breast cancer cell 
lines from the Cancer Cell Line Encyclopaedia (CCLE) 
[45], and matched to PRISM drug sensitivity data from 
26 of these cell lines (Additional file 2: Table S6).

Cell lines with increased transcriptional scores for 
HRD showed increased sensitivity to four different 
PARP inhibitors, as represented by lower PRISM scores 
(Fig. 5a). We note that the correlation is marginal, espe-
cially regarding olaparib and talazoparib. However, the 
228-gene signature still shows a stronger correlation 
with PARPi sensitivity in these cell lines than any alterna-
tive signatures (Additional file 1: Fig. S20). This is likely 
a result of the signature being developed from bulk-
sequenced primary tumour samples, whilst the cell lines 
will be lacking a microenvironmental component. Whilst 
we have attempted to account for microenvironmental 
signals using expression deconvolution, these extracted 
cancer cell-specific signals will still exist in a broader 
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environmental context which the cell lines will be lack-
ing, hence a resulting transcriptional HRD signal will 
likely vary significantly.

The HRD score also predicted responses to com-
bined PARP and checkpoint inhibition in breast cancer 
patients. The signature was applied to 105 HER2-nega-
tive, Stage II/III breast cancer patients from the I-SPY2 
trial [38]. In this trial, 71 patients were treated with a 
combination of olaparib and the PD-L1 inhibitor dur-
valumab, as well as the neoadjuvant chemotherapy taxol, 
whilst 34 control patients were treated with taxol alone. 
Amongst the patients in the treatment arm, 29 showed 
pathologic complete response (pCR), and these patients 
showed significantly increased HRD scores compared to 
those who did not display pCR (Fig. 5b). Our HRD score 

was significantly correlated with their own PARPi7 signa-
ture score from the trial but showed a better separation 
between responders and non-responders (Fig. 5c, Addi-
tional file 1: Fig. S21). Overall, this demonstrates that, in 
capturing a general transcriptional phenotype of HRD, 
the 228-gene HRD signature is also linked with PARP 
inhibitor sensitivity, especially in patient samples.

Application of the HRD signature to single cells
When considering HRD in the context of treatment 
or identification, it is often forgotten that whilst HRD 
can manifest and cause effects at the level of the whole 
tumour, it is still an intrinsically cellular phenotype. 
Since the transcriptional signature was developed 
with the intention of characterising HRD in terms of 

Fig. 4  Graph analysis to determine transcriptional signature drivers. a Workflow for graph attention network analysis to classify HRD/HR-proficient 
TCGA-BRCA patients and determine gene importance. Weighted gene co-expression graphs are built from the gene expression profiles 
of the TCGA-BRCA cohort, whilst taking into account the patient-level gene expression for the 228 genes in the transcriptional HRD signature. 
A graph attention network (GAT) is then trained to distinguish HRD and HR-proficient samples using the weighted co-expression graphs as inputs. 
The output highlights part of the graphs with greater weight in the classification and generates an importance score for each gene. b The 
top-ranked 26 genes in the HRD versus HR-proficiency classification with importance scores greater than 0.7. The colour indicates the phenotype 
(HRD/HR-proficient) for which the gene is predictive. c The co-expression graph of 24 of the 26 highly ranked genes for classification. Genes are 
connected only if they are co-expressed in the cohort, and genes with no connections have been removed. The colour of the nodes depicts 
the associated phenotype as in b 
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tumour-specific signalling, as opposed to that of the 
microenvironment, this suggested that the signature 
could be applied to scRNA-seq data, which would pro-
vide insight into the distribution of HRD across cells and 
generate further questions about the varying roles of 
HRD and HR-proficient tumour cells within the context 
of the tumour microenvironment.

To investigate whether the signature may be applicable 
to single-cell data, we first applied it to 11 breast cancer 
samples with matched bulk and single cell-sequencing 
data from Chung et al. [47]. We show a good correlation 
between the bulk HRD scores and the mean HRD scores 
across the individual tumour cells within each sample 
(Fig.  6a), providing an indication that the HRD signal 

Fig. 5  HRD transcriptional signature is linked with PARP inhibitor sensitivity in breast cancer cell lines and patients. a Correlation between the HRD 
transcriptional scores calculated using transcriptomes from breast cancer cell lines from CCLE and sensitivity to PARP inhibitors evaluated using 
the PRISM metric. b Comparison of HRD transcriptional scores between responders and non-responders to olaparib and durvalumab combination 
treatment in the I-SPY2 trial. c Correlation of HRD transcriptional scores against the PARPi7 signature score calculated by Pusztai et al. (38) 
in the I-SPY2 treatment arm patients. Responders are more frequently scoring high using our signature compared to PARPi7
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captured in bulk sequencing data reflects, on average, the 
levels seen in single cells.

Following this, we applied the signature to a cohort 
of 14 single cell-sequenced breast cancers containing 

over 44,000 cells from Qian et al. [48]. These 14 samples 
included one BRCA1-defective sample (sc5rJUQ033), 
which we assumed to be HRD, and one Stage II Lumi-
nal A sample (sc5rJUQ064) which we assumed to be 

Fig. 6  Transcriptional profiling of HRD in single cell-sequenced breast cancer cells. a Correlation of mean HRD transcriptional score across individual 
cancer cells against matched bulk RNA sequencing from the Chung et al. cohort (47). b Distribution of HRD scores across tumour cells from a Stage 
III BRCA1-defective TNBC sample (sc5rJUQ033) and a Stage II Luminal A sample (sc5rJUQ064) from the Qian et al. cohort (48). c–e Profiling of HRD 
across tumour cells from the Qian et al. cohort as demonstrated by UMAP coordinates labelled by c HRD score and d breast cancer subtype. e The 
proportion of cells within each sample with HRD scores greater than zero in the Qian et al. cohort. The defined breast cancer subtypes include 
here are: ‘B1 TN’ = BRCA1-defective Triple negative, ‘Lum HER2’ = Luminal-HER2+ , ‘HER2’ = HER2 positive, ‘TN’ = Triple negative, ‘LumA’ = Luminal A-like, 
‘LumB’ = Luminal B-like. f–h Profiling of HRD across tumour cells from the Bassez et al. cohort (49), similar to c–e 
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HR-proficient, given the characterisation of this type of 
breast cancer as slow-proliferating [105, 106]. These two 
samples display substantially different distributions of 
HRD scores across the cancer cells in these respective 
samples, with the Stage II Luminal A sample displaying 
a distinctively more HR-proficient distribution (Fig. 6b), 
further demonstrating that a transcriptional signature of 
HRD can potentially be captured at single-cell resolution.

Across the Qian et  al. cohort and 31 treatment-naïve 
samples obtained from the Bassez et  al. cohort [49], on 
average 10.7% and 11.2% genes from the signature were 
expressed per cancer cell, respectively (Additional file 1: 
Fig. S22a-b). The mean proportion of genes in the sig-
nature expressed per cell across each sample varied 
between 6.7% and 17.9% in the Qian et al. cohort (Addi-
tional file 1: Fig. S22c) and 6.4% and 23.3% in the Bassez 
et al. cohort (Additional file 1: Fig. S22d), indicating suf-
ficient capture of the transcriptional signature across the 
single-cell cohorts.

The cancer cells from these 14 samples displayed intra-
sample heterogeneity of HRD scores (Fig. 6c; Additional 
file  1: Fig. S23a) that matched the clustering by breast 
cancer subtype (Fig.  6d). Generally, the triple negative 
and BRCA1-defective samples presented a greater pro-
portion of HRD cells, defined as displaying a transcrip-
tional score greater than zero (Fig. 6e).

Similarly to Qian et al. [48], the tumour cells obtained 
from Bassez et  al. [49] displayed a distinctive gradient 
of HRD scores (Fig.  6f; Additional file  1: Fig. S23b) in 
accordance with the clustering by breast cancer subtype 
(Fig.  6g), and TNBC samples displayed greater propor-
tions of HRD cells in comparison with receptor-positive 
samples (Fig.  6h). Moreover, we found that, whilst the 
HRD scores from the TME were consistent across sam-
ples and tended to centre closely around zero, these 
scores varied far more broadly across samples within the 
cancer cells across both cohorts, indicating that the tran-
scriptional signal of HRD is likely arising strongly from 
the tumour cells (Additional file 1: Fig. S23c-d).

This further demonstrates the potential provided by 
this transcriptional signature of HRD to capture this phe-
notype at single-cell resolution, as well as demonstrat-
ing the heterogeneity of HRD levels across individual 
samples.

Exploration of the HRD tumour microenvironment 
at a single‑cell level
To further explore the activities of HRD and HR-pro-
ficient cells within the tumour microenvironment, we 
applied CellphoneDB [68], an extensive database of 
ligand-receptor interactions, to observe whether the 
interactions established between tumour cells and the 
surrounding immune and stromal cells varied based on 

HR capacity utilising both the Qian et al. and Bassez et al. 
cohorts [48]. In both cohorts, cell–cell interactivity pro-
files were dominated by fibroblast, endothelial, myeloid, 
and dendritic cells, with cancer cells demonstrating fewer 
interactions with the TME (Fig. 7a,b). However, across all 
cell types, HRD cancer cells consistently displayed fewer 
significant interactions with the TME, in particular as 
the target of these interactions, than HR-proficient cells 
(Fig. 7c,d).

Whilst some common interactions were observed, 
multiple ligand-receptor pairs uniquely mediated the 
interactions of HR-proficient cells with T-cells across 
both cohorts (Fig. 7e). In particular, these included inter-
actions involving TNF, TGFb, and prostaglandin E2 sig-
nalling across both cohorts and from different cell types 
(Additional file  1: Fig. S24). These results align with a 
previous hypothesis suggesting downregulation of TNF 
signalling as a mechanism of cell survival following 
BRCA2 deficiency on account of the resulting decrease in 
caspase-induced apoptosis [81]. Unique TME-HRD cell 
interaction pairs often involved LGALS9 signalling, a fea-
ture which also re-occurred across cell types and cohorts 
(Additional file 1: Fig. S24). LGALS9 has previously been 
associated with antimetastatic potential in breast cancer 
[107], potentially indicating a compensation for increased 
chromosomal instabilility which may drive metastasis 
[108]. Additionally, expression of the LGALS9 gene prod-
uct, Gal-9, is increased following taxane treatment in 
TNBC, due to nuclear activation of NF-kB, which is also 
upregulated in HRD breast cancers [109, 110].

This analysis unveils the specific strategies HRD and 
HR-proficient cells employ in their crosstalk with the 
TME, highlighting differences in the type and variety 
of molecular components involved. Generally, the HRD 
cells appear less ‘promiscuous’ whilst HR-proficient cells 
display a wider array of interaction strategies. However, 
these findings do not inform us on whether HRD cells 
respond less or more frequently to other cells in their 
environment, as the individual cell–cell interactions can-
not be inferred using this method, and should not be 
interpreted as such.

Overall, our results highlight a complex pattern of inter-
actions between cancer and non-cancer cells which may 
be mediated by the DNA damage response and could, 
in the long term, inform treatment strategies that jointly 
target HRD tumours and their microenvironments.

Discussion
As the clinical utility and capabilities of personalised 
treatments increase, it is necessary to ensure that the 
features predicting positive treatment response can be 
identified reliably. In this study, we present multi-scale 
approaches to characterising HRD which can be applied 
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in a variety of contexts. We developed a method for 
high-confidence HRD identification in exome-sequenced 
breast cancers which incorporates indel events that 
indicate both the presence of HRD and alternative DSB 
repair mechanisms employed in the event of HRD. We 
demonstrate that even small amounts of indels like the 
ones expected to be seen in WES data improve HRD clas-
sification. Furthermore, the HRD group defined by our 
genomic signatures displays the characteristic features 
expected of such cancers, including MYC amplification 
and elevated POLQ expression. Applying this classifier to 
the TCGA-BRCA cohort, we then developed a 228-gene 
transcriptional signature that characterises the heteroge-
neity of HRD, whilst also correlating with PARP inhibitor 
sensitivity and displaying the capacity to define HRD at 
single-cell resolution.

In creating the mutational signature-based classifier, 
we only considered SBS and indel signatures due to our 
focus on the HRD phenotype and data availability in 
TCGA. However, the generalisability of the method is 
worth highlighting. Copy number signatures could be 
effectively integrated into this method to improve HRD 

classification, especially if copy number profiles can be 
divided into specific features and contexts as demon-
strated in previous studies [20, 21]. Furthermore, our 
method also defines subgroups enriched for alterna-
tive mutational processes, including APOBEC cyti-
dine deamination and mismatch repair deficiency. With 
regard to this, double base substitutions (DBSs) can 
also be included within the method and may be of use 
for improved classification of processes with associated 
DBS signatures, such as mismatch repair deficiencies and 
tobacco-associated mutagenesis.

We applied a probability threshold of 0.79 for HRD 
classification using the mutation-based classifier, which 
was determined through optimising the resulting F-score 
for identifying patients with HR gene defects. Whilst 
using this threshold leads to high-confidence classifica-
tion of HRD in samples which do not harbour HR gene 
defects (Additional file  1: Fig, S11b), this does lead to a 
minor but notable decrease in sensitivity. Additionally, we 
note that these groups may not be distributed identically 
in the TCGA cohort, as demonstrated by the differences 
in rates of BRCA defects (13.6% in ICGC compared to 

Fig. 7  TME-cancer interactivity across HRD and HR-proficient cancer cells. a,b Number of significant ligand-receptor interactions established 
between cells in the a Qian et al. (48) and b Bassez et al. (49) cohorts according to CellphoneDB. Cancer cells are labelled as HRD if they have 
a positive HRD score, HR-proficient otherwise. The x-axis refers to cell types as sources, and the y-axis refers to cell types as targets. c,d The number 
of significant interactions between TME cell types as sources and cancer cells as targets, separated by HR status, across the c Qian et al. and d 
Bassez et al. cohorts. e Specific ligand-receptor interactions between T-cells and cancer cells, with cancer cells as the targets, across the Qian et al. 
and Bassez et al. cohorts. The red circles indicate interactions unique to HRD cells within a given cohort, and the yellow circles indicate interactions 
unique to HR-proficient cells within a given cohort. Grey circles represent common interactions
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8.99% in TCGA), suggesting that the prior distributions, 
whilst based on real data, might not be wholly represent-
ative. It is non-trivial whether to emphasise sensitivity or 
specificity when generating an HRD classifier, in which 
it is known that the specificity should not be 100%. This 
is because a key difficulty in developing an HRD classi-
fier is the lack of ground truth beyond HR gene defects 
and, as was used for SigMA and the simulation analysis 
conducted in this study, SBS3 signature contribution in 
WGS data. Therefore, we used a balanced F-score which 
considers both with equal importance. However, we note 
that different probability thresholds can be applied, as 
was utilised for SigMA [27].

Mutational signatures have also shown promise for 
HRD classification in targeted panel sequencing, when 
presented as a likelihood-based approach as was done 
through SigMA [27]. Due to the availability of gene 
panels, this development presents invaluable clinical 
relevance. Whilst we also employ a likelihood-based 
approach, owing to the substantially decreased indel 
loads identified through targeted panel sequencing, it 
is unlikely that this method would significantly contrib-
ute to improved HRD classification, and therefore do 
not recommend its application to gene panels. Further-
more, it should be noted that our exome classifier’s spe-
cific clinical utility is limited. Whole-genome sequencing 
will likely become increasingly available for mutational 
signature-based diagnostics such as HRDetect, and 
panel sequencing is already widely applied for identifying 
gene defects. However, the primary benefit of an exome-
based classifier is its application to large-scale genomics 
resources such as TCGA, enabling further profiling of 
HRD from a broad range of omics perspectives and new 
hypotheses generation which these resources enable.

Whilst it is not surprising that our 228-gene transcrip-
tional signature outperforms alternative methods given 
that it was trained using labels determined by our own 
mutational HRD classifier, this transcriptional signa-
ture also simultaneously captures BRCA1- and BRCA2-
specific deficiency phenotypes, highlighting the distinct 
consequences of loss of function of these two genes. It 
is worth noting that we additionally capture a group of 
tumours that display transcriptional profiles closer to 
those of classically HR-deficient BRCA mutated samples 
but lacking any BRCA defects. These tumours might be 
experiencing some level of HRD-like state due to more 
complex changes across the HR and linked pathways, 
some of which may be epigenetic or of other nature. Fur-
ther analyses are needed to shed light into the aetiology 
of these cancers, and it is likely they are a rather hetero-
geneous group.

In terms of its relevance in a therapeutic context, we 
found that our HRD transcriptional signature was more 

strongly associated with PARP inhibitor sensitivity in 
patients than in cell lines. Given that the signature was 
developed using breast cancer patient samples, this was 
likely to have been the case. Whilst we have attempted to 
ensure that we are capturing a tumour-cell intrinsic HRD 
signature by correcting for microenvironmental signals 
in bulk data, some tumour intrinsic regulation might still 
be partly environmentally triggered, and this component 
would not be captured in cell lines which lack this micro-
environment. Additionally, due to a broad variety of fac-
tors including genetic instability and growth conditions, 
drug responses across cell lines may be hugely variable 
[111], which may partially explain the decrease in signa-
ture performance when applied to cell lines.

Future developments are likely to focus significantly 
on PARP inhibitor resistance. Archetypal mechanisms of 
PARP inhibitor resistance are becoming well established, 
such as BRCA1 reversion cases, 53BP1 loss following 
BRCA1 loss, and PARG loss following BRCA2 muta-
tions [112], and features such as reprogramming of cell 
survival pathways and an increasingly mesenchymal phe-
notype have been associated with gradual PARP inhibitor 
resistance [113]. Currently, there are no available datasets 
demonstrating the effect of HR resurgence on tumour 
heterogeneity; however, these will provide an invaluable 
resource for studying HRD moving forward.

Additionally, recent developments in inferring muta-
genic processes in single cells have shed light on the 
driving forces behind the evolution of tumour hetero-
geneity in TNBC and high-grade serous ovarian carci-
noma [114]. In breast cancer, HRD tumours are generally 
believed to be more immunogenic due to their potential 
to generate increased mutational loads and neoantigen 
signalling, which can be exploited for checkpoint inhibi-
tion [71, 115, 116] BRCA defects have also been associ-
ated with increased immunosurveillance in high-grade 
serous ovarian cancer, and CellphoneDB was recently 
applied to highlight a malignant cell population associ-
ated with poor prognosis in ovarian cancer, which was 
associated with immune cell interactions and displayed 
generally low levels of chromosomal instability [117, 
118]. Additionally, CellphoneDB was used to explore 
human breast cancer immune microenvironments, and 
specifically highlighted a large number of unique interac-
tions between fibroblasts and endothelial cells, as well as 
smaller levels of interaction by T-cells and B-cells, as we 
have also observed, which was attributed to fewer genes 
being expressed in these cell types [119]. Whilst the TME 
has been fairly extensively explored in breast cancer bulk 
datasets and more recently in single cells, our under-
standing of how the tumour-TME crosstalk is estab-
lished in the context of HRD or HR proficiency at single 
cell resolution is much more limited. We show that our 
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transcriptional signature may be employed to highlight 
patterns of HRD in single cells, and this paves the way for 
further explorations into the way that DNA repair defi-
ciencies may influence their microenvironments, and 
vice versa. Thus, we believe our analysis can pave the way 
to more detailed interaction studies by highlighting spe-
cific strategies of tumour-T-cell coupling in HRD cells 
which may have relevance to immunotherapy effective-
ness. The association between HRD and various facets 
of the tumour microenvironment is already being mined 
for therapeutic potential through investigation of joint 
PARP and immune checkpoint inhibition [38, 120, 121], 
and chromosomal instability has been shown to elicit an 
inflammatory response offering further targets for com-
bination treatment [81, 122]. The capacity to investigate 
differential cell–cell interactivity of HRD and HR-profi-
cient cells may allow for insight into further mechanisms 
which may be exploited.

Conclusions
We have demonstrated that HRD classification in exome-
sequenced breast cancers can be improved by leveraging 
the presence of HRD-associated indel events, and have 
shown that mutational and phenotypic profiles of HRD 
persist regardless of the presence of HR gene defects. 
These classifications have been used to develop a tran-
scriptional signature which is associated with sensitivity 
to PARP inhibitors and can be applied to characterise 
HRD in single-cell RNA sequencing data. In examining 
the TME crosstalk at single-cell resolution, we demon-
strate substantial variation in cell–cell interactivity pat-
terns dictated by the HRD or HR proficiency status of 
the tumour cells, suggesting distinct pathways mediating 
immune recognition and/or escape. These findings pave 
the way to further investigation of the heterogeneity of 
HRD and HR proficiency both at patient and individual 
cell level, as well as therapeutic implications.
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