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Abstract

The industry's pursuit for higher antibody production has led to increased cell density

cultures that impact the performance of subsequent product recovery steps. This

increase in cell concentration has highlighted the critical role of solids concentration in

centrifugation yield, while recent product degradation cases have shed light on the

impact of cell lysis on product quality. Current methods for measuring solids

concentration and cell lysis are not suited for early‐stage high‐throughput experimenta-

tion, which means that these cell culture outputs are not well characterized in early

process development. This article describes a novel approach that leveraged the data

from a widely‐used automated cell counter (Vi‐CELL™ XR) to accurately predict solids

concentration and a common cell lysis indicator represented as lactate dehydrogenase

(LDH) release. For this purpose, partial least squares (PLS) models were derived with

k‐fold cross‐validation from the particle size distribution data generated by the cell

counter. The PLS models showed good predictive potential for both LDH release and

solids concentration. This novel approach reduced the time required for evaluating the

solids concentration and LDH for a typical high‐throughput cell culture system (with 48

bioreactors in parallel) from around 7 h down to a few minutes.

K E YWORD S

automated cell counter, centrifugation, monoclonal antibodies, multivariate data analysis
(MVDA), particle size distribution, shear

1 | INTRODUCTION

Therapeutic monoclonal antibodies (mAbs) are one of the leading

classes of therapeutics accounting for one in five FDA approvals with

the 100th mAb approved by the FDA in 2021 and expected revenue

of $300 billion by 2025 (Lu et al., 2020; Mullard, 2021). Mammalian

cell lines are used to produce mAbs, with Chinese hamster ovary

(CHO) cells established as the most commonly used expression

system (Khan, 2013). During cell culture and primary recovery stages

of a mammalian cell‐based mAb manufacturing process, it is
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important to monitor solids concentration and the degree of cell

membrane lysis since these can impact yield and product quality.

However, current methods for measuring solids concentration and

cell lysis are often time‐ and resource‐consuming and hence rarely

performed in early‐stage high‐throughput experimentation when

screening multiple conditions. The aim of this article is to develop

reliable and rapid tools for evaluating cell lysis and solids concentra-

tion that will be compatible with high‐throughput small‐scale

experimentation platforms deployed for early process development.

Primary clarification of mammalian cell culture is usually achieved

via centrifugation. Increases in cell culture solids concentration result

in higher product losses from the disc‐stack centrifugation operation

due to the need for more frequent discharges. Hence, it is important

to be able to measure solid concentration load in a timely manner to

be able to predict yield more accurately and help design more

efficient processes.

Another important cell culture parameter is the loss of membrane

integrity or the degree of cell lysis, since it can lead to the release of

intracellular species with detrimental impact on product quality such as

product degradation via antibody reduction at the disulfide bridge

(Aucamp et al., 2014; Handlogten et al., 2017, 2020; Hutterer et al.,

2013; Kao et al., 2010; O'Mara et al., 2019; Tebbe et al., 1996). The

cells can lose membrane integrity towards the end of cell culture as the

cell culture viability drops. Cells can also lyse due to mechanical forces

such as the shear experienced at the centrifuge feedzone, where the

feed is accelerated to the bowl speed (Joseph et al., 2017). Rapid

detection of cell lysis at the end of cell culture prior and post

centrifugation would help predict and understand the conditions that

lead to product degradation and devise informed strategies to

minimize quality deviations.

The impact of solids concentration on centrifugation yield and cell

lysis on product quality highlights the need to evaluate these

measurements early on in process development as it allows the optimum

process conditions to be identified aiding in tech‐transfer and scale‐up

activities. However, at this stage of process development, studies are

usually carried out using high‐throughput cell culture systems and due to

sample volume and time constraints the analysis is limited to cell counts

via automated cell counters, high throughput metabolites analytics and

in‐process samples are frozen for later analysis.

Current methods for evaluating cell lysis and solids concentra-

tion are usually not compatible with small‐scale, high‐throughput

experimentation. The cell culture solids concentration is typically

defined empirically using packed cell volume measurements

(Li et al., 2010). It is a manual measurement requiring triplicates

and at least 40 µL per sample, which makes it cumbersome for

routine use with high‐throughput cell culture. A common approach

for measuring cell lysis is by measuring the levels of lactate

dehydrogenase (LDH) release. LDH is an ubiquitous intracellular

enzyme found in nearly all mammalian cells. Its release in the cell

culture media indicates that the integrity of the cell membrane has

been compromised (Riss et al., 2004). Although absolute LDH can be

measured with high throughput methods, it suffers from being

sensitive to media composition and culture operating conditions

(Hiebl et al., 2017; Méry et al., 2017). Therefore, it is common to

measure LDH release based on the ratio of the sample's LDH

relative to the total LDH released upon chemical lysis (Cummings &

Schnellmann, 2004). The need for triplicates, additional cell lysing

step and time to read the samples increases the experimental

workload for the measurement.

Another approach for evaluating cell lysis is through viability

measurements. The levels of cell culture viability can be defined

as the ratio of dead‐to‐live cells, where dead cells are considered

cells that have lost plasma membrane integrity or have broken

into discrete fragments (Galluzzi et al., 2015). Typically, cell

culture viability can be determined through using a live/dead dye

for counting live and dead cells. The trypan blue staining method

is a gold standard for routine viability measurements; it uses the

permeability of the dead cells to the dye to differentiate between

viable and nonviable cells. Nowadays, cell counts based on this

method are often performed using automated cell counters

(Cedex; Innovatis and Vi‐Cell™ XR, Beckamn Coulter), which

provide cell counts, viability and particle size distribution data (Li

et al., 2010). This method relies on the ability of the instrument to

accurately count the number of dead and live cells based on the

images. However, dead cells may have completely disintegrated

or shrunk and not be accounted for.

The aim of this article is to develop soft sensors that leverage

existing data available from cell counters to accurately and rapidly

predict solids concentration and cell lysis without increasing the

experimental burden and thus facilitating the analysis for high

throughput systems. This will equip manufacturers with tools to gain

insights about the impact of upstream conditions and the harvest

operation on process performance with the goal of designing

upstream and recovery processes, which currently is only possible

for process development efforts at pilot scale. To reduce the

experimental burden, the methodology described in this article

leverages the routinely collected particle size data (PSD) from the

automated cell counter (Vi‐CELL™ XR) and advanced statistical

techniques to predict the solids concentration and cell lysis.

In this study, first the relationship between LDH release and

viability was investigated to see if the viability can be correlated to

LDH release for fresh cell culture samples as well as for samples that

are lysed due to stress similar to the levels experienced in the

centrifuge feedzone. A thorough analysis of the automated cell

counter PSD data was performed for different cell culture conditions

and day of harvest. A novel method was applied that successfully

leveraged the PSD using partial least squares (PLS) models to predict

the levels of LDH release and solids concentration leading to

significant time and resource savings compared to traditional

methods. The PLS algorithm was selected here based on its proven

ability to extract useful relationships between complex biological data

sets (Banner et al., 2021). This method was integrated in an overall

harvest toolbox that is compatible with upstream small scale

experimentation and uses a centrifugation scale‐down mimic to

characterize different harvests in terms of LDH release and product

quality.
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2 | MATERIALS AND METHODS

2.1 | Cell culture preparation

2.1.1 | Cell culture process

CHO cell lines were utilized in this study, that were either

nonproducing (Null) one or expressing a number of different

mAbs defined as projects A, B, C and D. Table 1 summarizes the

different conditions of the experiments, including their scale,

level of shear, harvest day and seeding density. Chemically

defined media was used in all bioreactors, with a two‐part

proprietary feed addition every other day, between Day 2 and 12.

The temperature was maintained at 35.50°C and pH was set to

6.95 (lower bound = 6.9 and upper band = 7.10) for the standard

process. In some cases pH shift, temperature shift and different

pH set points were applied (Table 1). Cell culture material from

various scales was used in this study, with focus on ambrTM15

and bench‐scale 7 L bioreactors, and some additional samples

taken from pilot scale 50 and 200 L single use bioreactors. The

ambrTM15 systems in this study used 24 and 48 single micro‐

bioreactors. Each vessel has its individual pH and DO control and

gas supply, while temperature and impeller rotational speed are

controlled per culture station. Detailed information about the

system can be found in Hsu et al. (2012). The bioreactors'

working volume was maintained between 11 and 16 mL and

vessels were seeded at different target densities through varying

the inoculum concentrations and harvested on different days.

The bench‐scale experiments were performed in 7‐L glass

bioreactors (Chemglass) with approximately 5‐L working volume,

controlled by DASGIP® (Eppendorf, DASGIP, Germany) or

ez‐Control® (Applikon Biotechnology B.V.) controllers. Feeds

for all scales were through bolus additions.

2.1.2 | Analytical methods for cell culture daily
monitoring

Viable cell density and total cell density were measured in the

Vi‐CELL™ XR (Beckman Coulter) for all cell cultures. Dilution

(1 in 5) was applied after Day 5 (at approximately more than

106 cells/million). For the ambrTM15 runs glucose and lactate

were determined off‐line by YSI 2000 (YSI, Yellow Spring). A

more comprehensive metabolite analysis was carried out for the

bench scale, including glutamate, ammonia and potassium in

addition to glucose and lactate.

TABLE 1 Summary of experimental data used for the PSD analysis and to build the PLS models for LDH release and [solids] with scales,
level of shear, harvest day and seeding density conditions.

Experiment# Project ID Vessel ID Shear Harvest day Seeding densitya

(A) LDH release with PSD analysis

Training data set 1−12 Project Null Bench scale 7 L BR 1 No, Low, High 8, 9, 10, and 12 Mid point

13−24 Project A Bench scale 7 L BR 2 No, Low, High 8, 9, 10, and 12 Mid point

25−45 Project A ambr1 No 11, 13, and 14 Low, Mid, High

46−63 Project A ambr2 No 10 and 12 Low, Mid, High

64 Project B Bench scale 7 L BR 3 No 13 Mid point

65−67 Project B Pilot BR 1 No 12 and 13 Mid point

Test data set 68−72 Project C Bench scale 7 L BR 4 No, Low, High 12 Mid point

73−78 Project C Pilot BR 2 No, Low, High 11 and 12 Mid point

(B) Solids concentration with PSD analysis

Training data set 1−19 Project A ambr1 N/A 11, 13, and 14 Low, Mid, High

20−68 Project A and
Project D

ambr3 N/A 8, 13, and 15 Low, Mid, High

69−87 Project D ambr4b N/A 12, 13, and 14 Low, Mid, High

88−107 Project D ambr5c N/A 13, 14, and 15 Low, Mid, High

Test data set 108−114 Project A Bench scale 7 L BR 2 & 3 N/A 11, 12, and 13 Mid point

115−128 Project D ambr3 N/A 8, 13, and 15 Low, Mid, High

aMid point refers to processes where there was no specific target seeding density;
bDoE center composite design (face centered): target T°C of 35.5°C, shift on Day 6 from 35.5°C to 34.5 or to 33.5°C; target pH of 7.0, pH shift on Day 5

from 7.0 to 6.8 or 7.2; harvest Day 13, 14 and 15; target seeding density of 0.5, 0.75 and 1 × 106 cells/mL;
cscreening DoE: target T°C of 35.5°C and shift on Day 4 from 35.5°C to 33.5°C; target pH of pH 6.8, 7, and 7.2; harvest Day 13, 14, and 15; target seeding
density of 0.5, 0.75, and 1 × 106 cells/mL.
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2.2 | Centrifugation shear mimic

A capillary shear device (CSD) was used as a centrifugation shear

mimic. The CSD consists of a 10 cm long Upchurch Scientific®

stainless steel capillary (VWR.co.uk order # 554‐3222) attached to a

chromatography skid—ÄKTAExplorerTM or ÄKTATM Pure (Cytiva),

which delivers the constant flow through the capillary. The capillary

features a very small inner OD of 0.01′ (0.0254 cm). Further details

about the CSD are discussed by Westoby et al. (2011) and Joseph

et al. (2015, 2017).

2.3 | Analytics for cell lysis and solids
concentration

2.3.1 | Cell lysis evaluation

The release of LDH by the CHO cells was measured using the LDH

Cytotoxicity Assay Kit II (Abcam®). A fully lysed sample was

generated upon incubation with the LDH kit lysing solution for

30min at room temperature. The amount of LDH reactant products

for the lysed and fresh samples were then measured using

absorbance readings at 450 nm for 1 h using the Optima plate

reader (BMG Labtech). The background for each was measured at

650 nm and subtracted from the 450 nm measurement. Percentage

LDH release for harvest sample was, therefore, calculated using

Equation (1).

( ) ( )

R

=

(ABS450 − ABS650 ) − (ABS450

− ABS650 )

ABS450 − AB650 − ABS450 − ABS650

LDH

sample sample blank

blank

lysed
sample

lysed
sample blank blank

(1)

where RLDH is the percentage of LDH release, ABS450sample is the

sample's absorbance at 450 nm, ABS450lysed
sample is the absorbance at

450 nm of the fully lysed sample and ABS450blank is the absorbance

of the blank sample (media) at 450 nm. The background is measured

at 650 nm: ABS650sample for the sample, AB650lysed
sample for the lysed

sample and ABS650blank for the blank.

2.3.2 | Solids concentration

The solids concentration was determined using packed cell

volume (PCV) tubes (TPP®). The bottom of the tubes has a

capillary, which is graded to accurately measure the volume of

solids in the sample. The tube was filled with 40μL of cell culture

material (in triplicates) and the samples were then spun at 2500 g

for 1 min in a swing‐out bucket centrifuge (Thermo Scientific

Sorvall Legend® T Plus). More details about this protocol can be

found in Stettler et al. (2006).

2.4 | Particle size distribution analyses

Each cell count measurement on the Vi‐Cell XR generates a CSV file,

containing the particle size distribution split into 140 discrete particle

size bins in the size range between ~6 µm and 50 µm. A program was

built in Matlab® (The MathWorks, Inc.) to import and pretreat the raw

PSD data. The pretreatment consists of normalizing and binning the

data at different intervals. As part of the data pretreatment, the PSD

data was normalized to a frequency distribution as follows:

N

N
P =

∑
S
particle s

s
k

s

particle

=1
particle

(2)

where Ps
particle is percentage P of particles of channel s (a channel or

bin is defined by upper and lower bound for a particle size range) and

Ns
particle is the number of particles N in channel s and k is the total

number of channels.

2.5 | PLS model development

PLS is an advanced MVDA technique that is particularly suited for

modeling data with large numbers of correlated predictor variables,

which is the case for PSD. The dimensionality of the data is reduced

through the projection of the data on small numbers of vectors

(latent variables), which are orthogonal by nature and hence non‐

correlated. The predictor variables for the percentage LDH release

consisted of the binned frequency PSD data for the viable cells, while

for the solids concentration the predictor variables also included total

and viable cell number as well as the PSD data for the viable cells.

Before the analysis all variables were centered on the mean and

scaled to unit variance.

The NIPALS algorithm was applied to build models with

different numbers of latent variables. The detailed description of

the approach applied to generate the PLS models can be found in

Wold et al. (1987) and more recently applied to a bioprocessing

scenario in Goldrick et al. (2017) and Goldrick et al. (2020). K‐fold

cross validation was applied where the data were split into seven

and onefold was taken out of the analysis. The fit of the predictive

model to the validation data set was determined using the

predicted residual error sum of squares (PRESS). The PLS model

with the optimum number of factors (latent variables) was selected

based on minimum PRESS and prob> van der Voet T2 > 0.1—the

van der Voet T2 tests shows if a model with different numbers of

latent variables is significantly different from the optimum model

(van der Voet, 1994). The variables included in the model were

based on a minimum variable importance on projection (VIP) of at

least 0.8 and hence the VIP score was used as a criteria for the

model “pruning”—removing variables with a VIP score below 0.8 to

improve the model. The VIP score indicates the importance of each

variable and detailed information about its calculation can be

found in Wold et al. 2001).

4 | SEBASTIAN ET AL.
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2.6 | Software

The data were extracted from the Vi‐Cell and normalized as shown in

Section 2.4 using Matlab (The MathWorks, Inc., Version 2015 to

2018b). JMP® Pro (SAS Institute Inc., Version 12.0.1 to 15.0.0) was

used to derive the PLS models.

3 | RESULTS AND DISCUSSION

This section presents the different studies and rationale that were

used to build the harvest toolbox for enhanced process predictability.

Key outputs from the harvest toolbox are the levels of cell lysis prior

and post centrifugation and the solids concentration before

centrifugation. First, the limitations of current techniques were

explored for measuring cell lysis occurring either as a result of

environment stress such as nutrient depletion or an increase in by‐

products that promote natural decline in cell health towards the end

of cell culture or due to centrifugation shear. The PSD was also

plotted for the final days of cell culture to see to how the PSD

changes with the drop in cell culture viability. PLS models were built

leveraging the PSD data to determine if the PSD data could be mined

to predict the levels of LDH release and the solids concentration.

3.1 | Exploring limitations of current techniques for
measuring cell lysis

LDH release assays are often used for detection of cell lysis and yet

can be lengthy and cumbersome to perform. On the other hand, the

automated cell counters, such as Vi‐CELL™ XR, are high throughput,

easy to use routinely and also provide viability measurements using a

live/dead dye. Therefore, this section investigates if viability as

outputted from the Vi‐CELL™ XR can be leveraged to predict

percentage LDH release. Since percentage LDH release is often

applied to characterize the shear in the centrifugation operation, it

was also investigated how shear may affect the accuracy of the

viability measurements.

3.1.1 | Relationship between LDH release and cell
culture viability

The relationship between percentage LDH release and cell culture

viability as outputted from the Vi‐Cell was investigated to see if the

automated Vi‐Cell viability measurements can be leveraged to predict

percentage LDH release. The data used in these studies was

presheared material from across four separate projects—Null, A, B

and C and different scales—working volume of 15mL, 7 L, 50 L and

200 L—with analysis performed on cell culture of different age—

between Day 10 and 14. This data set provided a wide distribution of

Vi‐Cell measured cell culture viabilities (μviability = 79% and

σviability = 17%) and LDH release measurements (μRLDH = 44% and

σRLDH= 26%). In Figure 1 the viability was plotted against the %LDH

release revealing that relationship can be described by a piecewise

function. The relationship that was established between percentage

LDH release and viability can be expressed as a mathematical

function shown below:





%LDH =
100% Viability < Viability

Viability ≥ Viability
release

Crit

100% − Viability

100% − Viability Crit
Crit

(3)

where Viability is the measured cell culture viability in the Vi‐Cell,

ViabilityCrit is the critical viability, below which the % LDH release is

100%. The ViabilityCrit was calculated through a least squares

algorithm that minimized the error of the prediction of the % LDH

release at the various viabilities and this was calculated to be equal to

54% with a coefficient of determination (R2) value equal to 0.80. This

analysis demonstrated that a nonlinear relationship can be derived to

describe the link between Vi‐cell cell culture viability and percentage

LDH release. This function can be applied to leverage the cell culture

viability data to predict the percentage LDH release (cell lysis) in the

cell culture.

As discussed earlier, centrifugation shear can also lead to LDH

release due to cell membrane lysis. Cell membrane lysis post shear is

an important parameter since mammalian cells are often exposed to

shear during the centrifugation‐based recovery operation. The

following section investigates how shear impacts on the accuracy

of the Vi‐Cell viability measurements.

3.1.2 | Measuring cell lysis due to shear

As discussed earlier a nonlinear relationship was established between

percentage LDH release and cell culture viability (e.g., Vi‐Cell). Both

methods have been applied in literature to measure the levels of cell

lysis due to centrifugation shear (Joseph et al., 2016; Tait et al., 2013

and Westoby et al., 2011). Understanding the level of cell lysis and

where it occurs in the processes can shed light on what conditions

can lead to product degradation. However, to date there is no

detailed investigation of the impact of shearing the cells on the

viability measurement as outputted from the Vi‐Cell or a comparison

between the LDH and trypan blue methods such as the Vi‐Cell for

evaluating cell lysis post shear (Figure 1).

A scale‐down centrifugation mimic was applied to shear various

harvested cell culture samples. The centrifugation mimic was devel-

oped through comparison of the levels of LDH release between the

mimic and a pilot scale centrifugation process (data not shown) similar

to work conducted by Joseph et al. (2016). Based on this comparison –

low shear (21mL/min corresponding to ~1.2 × 105 W/kg) and high

shear (41mL/min corresponding to ~7.9 × 105 W/kg) conditions were

achieved through the use of different flowrates in the capillary. In

Figure 2a the levels of LDH release and cell culture viability (Vi‐CELL™

XR) were measured for samples at no shear, low shear and high

shear. Samples collected on different harvest days across different

SEBASTIAN ET AL. | 5
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projects—Null, A, and C—were investigated to obtain a wide range of

cell culture material with different properties. The viability and total

cell number (TCN) for the cell culture at no shear are summarized

in the top graph in Figure 2a; for all cell culture material the viability

was relatively high (above 80%) and the TCN was in the range of

25−40 million cells per mL.

The apparent increase in TCN in Figure 2b is calculated as the

difference betweenTCN before and after shear. Figure 2b reveals

that applying shear to cell culture samples led to an apparent

increase or decrease in the total number of cells. The apparent

increase in TCN is likely due to the increase in cellular debris

counted as cells, while the decrease in cells can be attributed to

disintegration of the cells into smaller particles not counted as

cells. The change in apparent TCN questions the reliability of the

viability measurements obtained for sheared samples using the

trypan blue exclusion method since the viability is calculated as a

ratio of viable to total number of cells. It is important to note that

the automated cell counter was optimized for routine use in the

lab and the parameters were not adapted for each individual run,

for example, tuning the instrument's settings for declustering of

live cells or altering the criteria for counting a particle as a cell

such as size and circularity. Adjusting these parameters would

have introduced additional variability in the measurements and

would have not suited high throughput experimentation

approaches.

This section demonstrated that for sheared samples the

automated cell counter will not provide an accurate evaluation of

the level of cell culture lysis due to overestimation of the total

number of cells linked to the increased levels of debris or the

micronisation of the cell debris to sizes below the size recogniz-

able. Therefore, there is the need to develop improved methods

for evaluating the level of cell lysis for samples subjected to

shear.

3.2 | Investigating the relationship between cell
culture particle size and viability

As discussed in the previous section, there is the need to develop

tools to measure cell lysis that do not require cumbersome

methods such as the LDH assay and that provide accurate

measurements that are not susceptible to issues such as cell

micronisation. The particle size analysis discussed in this section

was performed on an ambr run where the seeding density and

harvest days were varied following a DoE design to generate a

wide range of cell culture viabilities. The data were imported as

described in 2.4 and normalized to facilitate comparison between

samples with different total numbers of cells. In Figure 3 the

averaged PSD across all runs can be found for different harvest

days, described by the solid line with the upper and lower dotted

lines indicating the standard deviation for the measurements. It

was revealed that, the PSD remains narrow during the first few

days of cell culture, with one single peak observed at ~15 µm.

However, towards the end of the cell culture, and especially

during the stationary and death phase (Day 12), multiple peaks

were observed and there was significant increase in the standard

deviation (Figure 3). Further investigation into the last harvest

day, with the biggest standard deviation, reveals that the PSD

changed with cell culture viability. To simplify the analysis, the

samples from Day 12 were grouped into discrete ranges of

harvests of different levels of cell culture viability. This high-

lighted that the PSD shifted to the left as viability dropped,

moving from a broad distribution with a pronounced peak

observed at ~20 µm for high viability samples (>85%) to one

with a peak at ~10 µm for low viability samples (24−36%). The

following sections investigate whether the PSD can be further

leveraged to gain insights into the harvest properties, and in

particular the level of LDH release and solids concentration.

F IGURE 1 Percentage LDH release versus Vi‐Cell XR viability measurements for the fresh harvest (no shear) for four different projects:
Project A in blue ( ), Project B in red ( ), Project C in green ( ) and Project null in purple. ( ). The solid line ( ) shows predicted LDH release
using piecewise regression where Vc is the critical viability, below which the LDH is 100%. All samples above 95% viability have been adjusted
to 100%.
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3.3 | Leveraging PSD data to predict LDH release
using PLS techniques

The previous section demonstrated that the particle size distribution

changes with cell culture viability. In this section, the PSD data were

outputted from the Vi‐Cell for various cell cultures (Table 1) and

analyzed to determine if it can be leveraged to estimate the level of

cell lysis or LDH release. To date, we are not aware of other studies

that have leveraged the PSD data for this purpose. In this section,

predictive PLS models were derived to determine LDH release as a

F IGURE 2 Impact of shear on (a) apparent change in total cell number (TCN) as outputted from the Vi‐CELL™ XR for various mammalian cell
culture harvests for three projects and (b) the appearance of cell debris for high shear samples compared to no and low shear. Harvests from
three different bioreactor runs were collected on different days of cell culture (Day 10−14) to represent different viabilities subsequently
subjected to low and high shear in the capillary shear device. The apparent TCN change was calculated as a difference between theTCN before
and after shear.

SEBASTIAN ET AL. | 7
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function of the PSD data for the viable number of cells as inputs

(binned at 1 µm intervals). This overall workflow is summarized in

Figure 4.

To determine if LDH release can effectively be determined from

PSD data, the prediction statistics of the PLS model were analyzed.

Figure 5a revealed that the PLS model could accurately predict the %

LDH release for an unknown test sample from the PSD data (R2adj. =

0.90 for a parity plot). This was further reinforced by the model

statistics where the R2Y and R2X based on the cross‐validation results

for the model were 82% and 96% respectively indicating that the

model is able to predict variances in Y (predicted variable, i.e., LDH)

and in X (the predictor, i.e., PSD). Hence these findings demonstrate

that PSD data can be mined to get an early predictor of LDH release

without need for additional assays that are traditionally used.

To determine which PSD variables were important for prediction

of % LDH release, a VIP plot was examined. Figure 5b shows that the

highest VIP score is for the lower end of the PSD (between 6 and

12 µm), which could be explained by increase in smaller particles for

the lower viability cell cultures, that was observed earlier (Figure 4).

The PLS model had four latent variables and that predictors that were

used in the PLS model were particle sizes below the expected cell size

(21 µm) based on these sizes meeting the minimum VIP score for

model inclusion (0.8).

The new approach described above only used data that was

available thus eliminating the need for additional analytics to

determine the LDH release levels. Since these data were routinely

generated with each cell count, it allows for retrospective analysis of

the PSD data to estimate the level of LDH release. Furthermore, as

seen in Table 1 the analysis included fresh samples from the

bioreactors and samples subjected to shear in the CSD as well as

for different cell cultures and operating conditions.

3.4 | Leveraging PSD data to predict solids
concentration using PLS techniques

The levels of [solids] in the cell culture harvest is a key parameter for

the harvest operation as it impacts the centrifugation yield. The

approach that was developed to leverage the PSD data to predict the

levels of LDH release was also applied here to predict the levels of

[solids]. A total of 117 measurements for cell culture [solids] and

Vi‐Cell cell count data (including PSD, total and viable cell number

and cell culture viability) were used for the study; the data were

generated from ambr and bench scale bioreactor runs (as described in

Table 1). The conditions varied largely between the different projects

and that led to cell cultures with a wide range of viabilities

(μviability = 85% and σviability = 14%) and densities (μTCN = 30 million

cells/mL and σTCN = 10 million cells/mL). The PSD measurements

were analyzed using the same Matlab program as for the LDH

analysis (described in Section 2.4). The viability, the total and viable

(a) (b) (e)

(c) (d)

F IGURE 3 Change in particle size distribution over cell culture duration in an ambr set of experiments. The solid line depicts the mean of the
PSD, the dotted lines depict the standard deviation across 24 ambr bioreactor runs for (a) Day 5 (n = 24), (b) Day 8 (n = 24), (c) Day 10 (n = 24),
(d) Day 12 (n = 17) and (e) Day 12 for various viability ranges (>85% viability calculated from n = 3; 72% to 82% calculated from n = 6; 62% to
67% calculated from n = 4; 24% calculated from 36%and n = 3). N indicates the number of bioreactors. See Table 1 ambr2 for ambr details.
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cell number together with the frequency PSD data (binned at 1 µm)

for the viable number of cells were used to build a PLS model that

predicts the [solids] in the harvest. The calibration data set used to

build the model consists of four independent ambr runs, while the

validation data set consists of a bench scale run and a separate

culture station from one of the ambr runs. A total of six factors (latent

variables) were used to build the model.

Figure 6a revealed that the model provided a good prediction for

the [solids] with R2Y = 84% and R2 = 0.86 for actual versus predicted

(parity plot). The VIP plot in Figure 6b revealed that the most

important predictors in the model are the total and viable cell counts

and the particle size around 13 µm, which is very close to the actual

average CHO cells' size.

Hence, using PLS techniques and the outputs from the

automated cell counter it was possible to accurately predict the

[solids] without the need for additional sampling. Furthermore,

the [solids] can be linked back to the cell culture conditions, so

that the screening for optimal conditions also accounts for the

potential impact on [solids], and consequently centrifugation

yield.

F IGURE 4 Workflow for analyzing the PSD
data outputted from Vi‐Cell XR. The raw data are
extracted from the Vi‐Cell in the form of CSV files
and an algorithm in Matlab was used to pretreat
and structure the data for further analysis. PLS
models were derived for the pretreated data to
predict LDH release and [solids] as a function of
PSD, TCN (total cell number) and VCN (viable cell
number). The image of the PSD shown in the
figure was extracted from Vi‐Cell user manual
(Beckman Coulter, 2011).
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3.5 | Volume and time savings

During process development, access to material is limited and time is

critical. Figure 7 summarizes the savings for the daily analysis of the

48 vessels of ambrTM15 in terms of time applying the novel workflow

versus traditional sampling and analytics techniques. The figure

highlights that the time for analysis could be reduced to a few

minutes resulting in savings of over 6 h for the LDH release

measurement and over an hour for the [solids] analysis when

leveraging the PSD data instead of the traditional offline analytics.

In addition, the volume savings per vessel per run were determined to

be over 2mL (1.4 mL for the [solids] and 0.7 mL for the LDH

measurement), which is significant considering the working volume of

each ambr vessel (15mL). Hence, the proposed approach using the

PSD data to predict these metrics can be particularly valuable during

high throughput experiments.

4 | CONCLUSIONS AND FUTURE WORK

The paper described a novel approach that leveraged routinely

collected PSD data from an automated cell counter and PLS models

to accurately predict cell culture solids concentration and cell lysis (%

LDH release) for the harvest operation. This avoids the need for

offline analytics for such measurements that can be laborious and

hence often discourage collecting such measurements. Applying the

novel approach, it was possible to predict the % LDH release and

solids concentration for a test data set with a 90% and 86%

F IGURE 5 PLS model predicting LDH release using PSD data for
the viable cells as outputted from the Vi‐Cell. In (a) the actual LDH
release is shown by the bars, the filled squares depict the predicted
LDH release for the data set used to calibrate the model, while the
empty circles show the predicted percentage solids concentration for
the external testing data set. The different colored bars refer to
different projects ‐ project null ( ); project A ( ); project B ( ) and
project C ( ). In (b) VIP plot is shown for the predictors used in the
model. For the PLS model the R2Y is 83% and the R2X is 96%.

F IGURE 6 PLS model for [solids] with (a) actual versus predicted
[solids] and (b) VIP plot with the predictors used in the model.
In (a) the actual [solids] are shown by bars, the filled squares depict
the predicted solids concentration for the data set that was used to
calibrate the model, while the empty circles show the predicted
percentage solids concentration for the test data set. The different
colored bars refer to different projects (A—light gray and D—dark
gray), R2Y = 81% and R2X = 86%. TCN, total cell number (million cells/
mL); VCN, Viable cell number (million cells/mL); viab., viability.
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goodness‐of‐fit respectively (based on actual vs. predicted parity

plots). The paper highlights the volume and time savings by

leveraging the PSD data rather than using offline analytics, with the

analytics time reducing from more than 7 h using the conventional

approach to a few minutes with the proposed workflow when

working with the high throughput ambr15 microbioreactor system

with 48 vessels. The speed and resource‐efficiency of this tool makes

it best suited for early high throughput experimentation. This will

enable gaining understanding about cell lysis and solids concentration

in the cell culture earlier in the development cycle. Adopting such an

approach will facilitate earlier identification of challenging harvests

that can exceed the centrifuge capacity and hence inform process

modifications that lead to more robust processes and improved

facility fit.
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