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sciCSR infers B cell state transition and 
predicts class-switch recombination 
dynamics using single-cell transcriptomic 
data

Joseph C. F. Ng    1,4  , Guillem Montamat Garcia    2,4, Alexander T. Stewart3,4, 
Paul Blair2, Claudia Mauri2, Deborah K. Dunn-Walters3 & Franca Fraternali1 

Class-switch recombination (CSR) is an integral part of B cell maturation. 
Here we present sciCSR (pronounced ‘scissor’, single-cell inference of 
class-switch recombination), a computational pipeline that analyzes 
CSR events and dynamics of B cells from single-cell RNA sequencing 
(scRNA-seq) experiments. Validated on both simulated and real data, sciCSR 
re-analyzes scRNA-seq alignments to differentiate productive heavy-chain 
immunoglobulin transcripts from germline ‘sterile’ transcripts. From a 
snapshot of B cell scRNA-seq data, a Markov state model is built to infer the 
dynamics and direction of CSR. Applying sciCSR on severe acute respiratory 
syndrome coronavirus 2 vaccination time-course scRNA-seq data, we 
observe that sciCSR predicts, using data from an earlier time point in the 
collected time-course, the isotype distribution of B cell receptor repertoires 
of subsequent time points with high accuracy (cosine similarity ~0.9). Using 
processes specific to B cells, sciCSR identifies transitions that are often 
missed by conventional RNA velocity analyses and can reveal insights into 
the dynamics of B cell CSR during immune response.

B cells are the main drivers of the humoral response in developing 
protection against infectious diseases. An understanding of how  
this process is regulated over time is crucial to evaluate the quality  
of the antibodies produced and, in turn, the effectiveness of vaccina-
tion and therapeutic strategies1. B cells mature from a naive state to  
acquire memory against the antigen and differentiate into antibody- 
producing plasma cells1. Traditionally, the dynamics of B cell matura-
tion is investigated by isolating different B cell subsets based on their 
surface protein expression, and comparing the proportion of these 
subsets before and after antigen exposure, or through a more detailed 
time course2,3. Such subsets are typically distinct cell states, and one 

would require additional experimental evidence to probe the molecular 
details of how cells transition from one state into another. Single-cell 
profiling offers rich descriptions of the transcriptomic features of 
B cell states and how they are altered during B cell maturation4,5. In 
combination with B cell receptor (BCR) repertoires, these data have 
yielded great insights into the heterogeneity and functional relevance 
of different B cell subsets in health and disease4–7.

In the past few years a plethora of computational methods have 
been created to infer the dynamics of cell state transitions from 
single-cell RNA sequencing (scRNA-seq) data. Typically they fall into 
two categories: the first belongs to a large family of methods which 
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repertoire barcoded with originating cell and molecule identifiers) 
data (Fig. 1b,c). Neither standard RNA velocity or pseudotime methods 
have access to CSR and SHM, but it is these processes that are of interest  
in describing B cell maturation and the function of the resultant anti-
bodies secreted during an immune response20,28. Extracting signals 
of CSR and SHM from the data, and utilizing them to infer B cell tran-
sitions, would complement existing velocity/pseudotime methods  
and yield a more faithful reconstruction of B cell maturation dynamics 
from single-cell transcriptomic data.

In this Article, we introduce sciCSR (pronounced ‘scissor’, acro-
nym for ‘single-cell inference of class switch recombination’), a com-
putational tool designed to infer state transitions between mature 
B cell states and predict the direction of CSR in B cells assayed using 
scRNA-seq. Motivated by the need to faithfully capture B cell state 
transitions, sciCSR implements routines which extract B-cell-native 
information, such as CSR and SHM, from scRNA-seq data and, if avail-
able, BCR repertoire of the same population of B cells. This information 
is used as input to CellRank17 to infer transition probabilities between 
cells. We further applied transition path theory (TPT) onto this transi-
tion matrix to analyze the dynamics of transitions between cell clusters. 
This method, popularized in analyzing conformational state transitions 
in molecular dynamics (MD) simulation data29,30, describes transitions 
by considering an ensemble of possible paths governed by the given 
transition matrix and, as such, allows for more flexible analysis of 
transitions beyond visualization of arrows depicting velocity streams 
that are typical in RNA velocity analysis. We validated sciCSR using 
immunization, in vitro cell culture and gene knockout studies, and 
showed that sciCSR could recover BCR isotype distributions at the 
steady state and capture CSR dynamics, which could be subsequently 
verified over a time course.

Results
Extracting CSR signal from scRNA-seq data
We hypothesize that the use of information native to B cells, namely 
CSR and SHM, would improve the inference of cell state transitions in 
mature B cells as observed in scRNA-seq data. SHM level can be easily 
retrieved from BCR sequencing data, which are routinely obtained in 
parallel to transcriptome-wide single-cell profiling: SHM is inversely 
related to the sequence identity between the observed BCR sequence 
and the corresponding germline immunoglobulin gene31,32 (Fig. 1b). 
The detection of CSR, on the other hand, is less trivial at the single-cell 
level: CSR is more easily characterized by either comparing the expres-
sion level of different IgH isotypes at the transcript or protein level 
for a cell population33, or by studying BCR clonotypes that comprise 
sequences of different isotypes31. In sciCSR a series of routines has been 
implemented to distinguish productive and sterile IgH transcripts from 
scRNA-seq data, by enumerating mRNA molecules (identifiable by 
observing combinations of cell barcode and unique molecular identi-
fier (UMI)) with reads mapping to the VDJ, 5′ C or C regions in the IgH 
genomic locus (Fig. 1c). Molecules with insufficient evidence to be 
classified as productive or sterile (for example, if only one read mapped 
to the C exonic regions is found) are labeled as ‘uninformative’. This 
quantification complements conventional data processing workflow: 
in standard genome annotations, individual immunoglobulin V, D, J 
and C genes are treated as separate gene entities; reads that are 5′ of 
C genes would therefore be considered as intergenic reads typically 
discarded in transcriptomic data analysis workflows.

We first asked whether these 5′ C reads could be detected in B 
cell scRNA-seq data. We previously sorted mature, circulating human 
B cells into different phenotypically defined subsets and generated 
scRNA-seq libraries4 using the 5′ 10x Genomics protocol; Fig. 2a shows 
the distribution of sequencing reads across the IgH genomic locus. We 
observed reads mapped to regions 5′ to IGHG1 and IGHG2 in unswitched 
B cell subsets (CD19+IgD+CD27−CD10− naive B cells and CD19+IgD+CD27+ 
IgM memory cells), and notably with peaks at the transcription start 

infer ‘pseudotime’ ordering of cells8, and the second corresponds to 
exploiting the balance between unspliced and spliced reads to infer 
what is called ‘RNA velocity’ (refs. 9,10). Pseudotemporal ordering is 
derived from ‘trajectories’ of cell differentiation fitted to the data by 
imposing directionality onto a transcriptional similarity network of 
cells. The directionality can either be indicated by using prior knowl-
edge (requiring users to specify start and end states, for example, 
slingshot11), or be learned from the data (for example, Monocle12). As 
such, cells can be ordered along a ‘pseudotime’ axis often understood 
to encode the differentiation potential of cells13. The second category 
of tools which describe cell transition dynamics estimate ‘RNA velocity’ 
by considering the splicing kinetics for genes9,10. The observation of 
nascent, unspliced messenger RNA and its mature, spliced counter-
parts across single cells allows one to extrapolate the future state of the 
system given its current state9. Recent years have seen methodological 
development in the estimation of RNA velocity, accounting for varia-
tions of splicing rates and expression levels across genes to improve 
the reconstruction of cell differentiation trajectories10,14. This accom-
panies experimental approaches to capture the time component of 
cellular development, for example, lineage tracing15 and metabolite 
labeling16 approaches coupled to scRNA-seq data generation. Com-
putationally, methods such as CellRank17 build on both RNA velocity 
and pseudotime methods, to fit statistical models which describe the 
overall dynamics of cell state transitions observed in the data. These 
methods, although successful in experimental validation, are designed 
and tested on use cases in developmental biology, where typically both 
the progenitor(s) and mature cell state(s) are transcriptionally distinct 
and well defined. Hematopoiesis has been studied with scRNA-seq, 
including the application of RNA velocity and pseudotime ordering 
tools, to some degree of success8. On the other hand, it is posited that 
samples such as peripheral blood mononuclear cells (PBMCs) are cell 
types with already equilibrated RNA metabolism, lacking the dynamic 
information required for RNA velocity analysis. This limitation results 
in noisy velocity profiles and erroneous inference of transitions18. While 
computational approaches begin to offer diagnostic approaches to 
determine the suitability of RNA velocity analysis on these datasets14, a 
viable alternative to study transitions in scRNA-seq datasets of immune 
cell types is lacking.

This raises methodological questions on how to improve the 
approaches to study transition dynamics in immunological systems, 
especially mature cell types such as B cells in circulation and in second-
ary lymphoid tissues. Notably, B cells continue to mature after exiting 
the bone marrow by somatic hypermutation (SHM) and class-switch 
recombination (CSR)19,20 to optimize the BCR for function. SHM targets 
the variable (V), diversity (D) and joining ( J) gene segments and intro-
duces mutations catalyzed by activation-induced cytidine deaminase 
(AID)21,22 (Fig. 1a, left) to optimize antigen binding. On the other hand, 
CSR alters the constant (C) region to adapt the BCR to function in 
different immune challenges and tissue contexts. CSR also depends 
on AID, which recognizes ‘switch’ genomic regions 5′ to each C gene 
enriched in motifs such as 5′-AGCT-3′ (refs. 20,22,23) and catalyzes 
deamination20,22 (Fig. 1a, right). The repair of these mutational events 
entails DNA recombination that brings the immunoglobulin variable 
region proximal to a downstream C gene that, when transcribed and 
translated, would encode an immunoglobulin molecule switched to 
this isotype24. AID is targeted to the desired downstream C gene in 
part by transcriptional activity caused by specific combinations of 
molecular signals; such transcription initiates at positions immedi-
ately 5′ to the target C gene and, as such, lacks the VDJ gene segments 
to encode a fully functional immunoglobulin heavy chain (IgH)20,25. 
The production of these germline or ‘sterile’ transcripts therefore 
signifies predisposition to CSR events20,26,27 (Fig. 1a, right). Theoreti-
cally, both CSR and SHM would leave transcriptomic footprints (BCR 
sequence substitutions for SHM; sterile transcripts for CSR) that can 
be captured in scRNA-seq and scBCR-seq (that is, profiling the BCR 
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sites (TSSs) (Fig. 2a and Extended Data Fig. 1). While these reads could 
be consistent with either genuine sterile IgH transcripts (and therefore 
suggesting these cells are poised to CSR), or productive IgH transcripts 
where the intron between the variable and constant regions is yet to be 
spliced, we reason that the latter case is unlikely given the scRNA-seq 
library preparation protocol enriches mRNA at the 5′ end: in our  
data we observe that reads that were concentrated at typically around 
600 base pairs downstream of TSS (when inspecting single-exon tran-
scripts, for example, that of JUNB and RHOB, to eliminate splicing 
effects on the read distributions, see Extended Data Fig. 2), and the IgH 
read peaks in Fig. 2a would have been around 1–2 kilobase downstream 
of the TSS of a productive IgH transcript, thus discounting the likeli-
hood that IgH transcripts bearing the VDJ segments were the sources 
of these 5′ C reads.

Applying the sciCSR routine depicted in Fig. 1 to simulated reads 
sampled from the human IgH genomic locus (Methods), we confirm 
that commonly used RNA read aligners STAR34 (which is used in the 10x 
cellranger preprocessing workflow) and HISAT2 (ref. 35) can accurately 
identify the isotype corresponding to sterile IgH transcripts (Fig. 2b); 
notably, these aligners are precise in identifying the exact IgG and IgA 
subtypes, supporting the direct use of aligned reads generated by these 
data preprocessing pipelines to analyze productive/sterile IgH tran-
scription in sciCSR. In further support of this, we find that both aligners 
can accurately recover the composition of mixtures of sterile IgG and 
IgA transcripts simulated with fixed proportion of each subtype (Fig. 
2c). The major requirement for sciCSR is the adoption of a 5′ enrichment 
protocol during library preparation, as reads biased to the 3′ end do not 
capture the 5′ C region necessary to define sterile transcripts (Fig. 2b). 
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Fig. 1 | Overview of the theories of SHM and CSR and their footprints in 
empirical data. a, Schematic of the IgH genomic locus to illustrate SHM and 
CSR in B cells. For details, see Results. b,c, Both SHM and CSR can be observed 
in sequencing datasets: SHM can be analyzed in scBCR-seq (b), by comparing 
the observed VDJ sequences with the nearest germline allele and enumerating 
mutations. CSR can be analyzed in scRNA-seq (c); sciCSR provides functionalities 

to reconstitute each heavy-chain transcript as productive or sterile, based on 
whether reads mapping to the VDJ, C or 5′ C (that is, region 5′ to the C region 
coding segment) regions can be observed for each transcript. Dots and crosses 
in the table denote presence and absence of reads mapping to these regions, 
respectively. IGHV, immunoglobulin heavy-chain variable genes.
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Fig. 2 | sciCSR reconstitutes productive and sterile IgH transcription levels 
in different B cell subsets. a, Histograms of scRNA-seq reads for mature 
human B cells from peripheral blood FACS-sorted into different B cell subsets 
(data from Stewart et al.). Counts of 5′-AGCT-3′ motif are displayed to indicate 
the locations of switch regions. Only reads mapped to IgM, IgG1 and IgG2 are 
shown here; for the complete IgH locus, see Extended Data Fig. 1. Notice the 
IgH coding sequences are on the minus strand of human chromosome 14; the 
horizontal axis is depicted in reverse. b, Alignment of simulated reads (using the 
polyester package), sampled from IgG1, IgA1 and IgE which are mapped to the 
5′ C (light shade) or the C exons (dark shade), using either HISAT2 (teal) or STAR 
(magenta). Reads sampling are biased either to the 3′ (top) or the 5′ (bottom) 
end of transcripts to mimic typical scRNA-seq library preparation protocols. 
c, Alignment of polyester-simulated reads sampled from sterile transcripts of 

a mixture of IgG (left) or IgA (right) subtypes. The heatmap at the top depicts 
the proportion of sampled reads mapped to the 5′ C region that is informative 
of indicating sterile IgH. The bar plots depict the proportions of reads aligned 
to each isotype using HISAT2 (teal) or STAR (magenta). The ground-truth 
proportions were noted by crosses (X). d, Dotplot depicting productive and 
sterile transcription level recovered using sciCSR for the Stewart et al. dataset 
shown in a. Dot size corresponds to the proportion of cells with positive 
expression while color intensity represents expression level. e, Proportion of 
simulated reads sampled from the 5′ C, C and VDJ regions (columns), of sterile 
and productive IgG1 and IgA1 (rows). The differences in the relative positions 
of these regions in the transcripts lead to variations in the number of reads 
attributable to each sterile/productive transcript.
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The simulation results suggest that given this prerequisite is fulfilled, 
the aligned reads generated by commonly used aligners in scRNA-seq 
data preprocessing workflows can be used to analyze sterile IgH levels 
using sciCSR. The sciCSR workflow extracts information about both 
the current state of a B cell (the IgH isotype it currently produces) and 
its immediate future26, ideal as a basis to build models which describe 
B cell transition dynamics.

sciCSR characterizes B cells expressing specific sterile 
transcript
The routine above generates count matrices just like the standard  
transcriptome-wide count data typically used for downstream 
scRNA-seq analysis, such as differential expression and visualization 
of expression levels. For example, Fig. 2d shows the sterile and produc-
tive IgM transcription levels in the Stewart et al. dataset4 visualized  
in Fig. 2a. This captures B cells at different stages of maturation,  
including IgM+IgD+ antigen-inexperienced B cells, IgM memory cells 
with increased sterile transcription (most notably IgG subtypes) and 
the classical memory subset with productive transcription of IgG  
and IgA subtypes. The deconvolution into sterile and productive tran-
scripts is useful in highlighting the diversity of CSR tendencies between 
B cell subsets. For example, depending on B cell subsets, up to 25–30% 
of cells express sterile transcripts of more than 1 isotype in human  
B cell scRNA-seq atlases we have analyzed (Extended Data Fig. 3).  
Users should, however, exercise caution for interpreting counts corres
ponding to productive IgH: they are fairly sparse (Extended Data  
Fig. 3) given their definition requires at least two reads mapped for each 
molecule. Analysis of the simulated data reveals that for productive 
transcripts, most (>70%) sequencing reads would fall in the C region, 
while reads mapped to the VDJ region (that is, evidence that reads cor-
respond to bona fide productive transcripts) are much rarer (Fig. 2e). 
Noting this undersampling of productive transcripts, direct compari-
son of sterile and productive transcript counts for specific isotypes 
can be confounded by technical factors. For accurate quantification 
of productive transcripts, the isotype assignments from scBCR-seq 
data could be used to reliably identify and group B cells by their IgH 
isotypes. We noted additionally that the presence of sterile transcripts 
in a B cell does not necessarily indicate the productive BCR isotype  
of cells belonging to the same clonotype (Extended Data Fig. 4).

The sterile transcript count data can be used for investigating the 
underlying biology of CSR control mechanisms. We analyzed in vitro 
cultures of naive B cells exposed to a cocktail of anti-IgM, CD40L  
(mimicking BCR engagement and T cell help, respectively) and IFNγ 
(Fig. 3a). IFNγ is known to stimulate sterile transcription of IgG36;  
these CSR polarizing conditions should therefore lead to increased  
sterile transcription and CSR towards different IgG subtypes. We gener-
ated scRNA-seq and scBCR-seq data in parallel of cells sampled from 
the time course (day 0 before addition of stimuli, day 3 and day 6). 
scRNA-seq data show increase in proliferation (expression of proli
ferative marker MKI67) at day 3 and day 6 that generated distinct cell 
populations from day 0 (Fig. 3b,c). sciCSR confirms the induction 
of sterile IgG transcripts, particularly IgG3 (Fig. 3d). The scBCR-seq 
data suggest that a small amount (~1%) of cells were positive for IgG 
productive transcripts at the end of the time course (Fig. 3e), which 
agrees with flow cytometry analysis on the same culture experiment 
detecting intracellular and surface IgG proteins (Fig. 3f). To investi-
gate the molecular profiles of cells expressing IgG sterile transcripts, 
sciCSR allows users to group cells by the sterile transcripts they express.  
This enables the application of routine analyses, including differen-
tial expression: hypothesizing that the IgGsterile

+ cells would exhibit  
elevated IFNγ signaling, we performed differential expression analysis 
comparing IgGsterile

+ versus IgM+IgGsterile
− cells, and observed that genes 

involved in IFNγ signaling and response were indeed upregulated in the 
IgGsterile

+ cells (Fig. 3g). Specifically, IFNGR1 (encoding a component of 
the IFNγ receptor), JAK2 and STAT1 transcription were upregulated at 

day 3 and day 6 (Fig. 3h), and more IgGsterile
+ cells were positive for these 

transcripts (Fig. 3i). Coupling the capability of sciCSR in identifying 
sterile transcripts with more sophisticated computational tools, such 
as the inference of gene regulatory networks37, will facilitate investiga-
tion into how CSR signals are coordinated to induce sterile transcrip-
tion, and identify additional endogenous factors that control CSR.

The sciCSR pipeline
We reason that, beyond simple enumeration, productive and sterile  
IgH transcript counts enable modeling of B cell maturation dynamics. 
To derive metrics for inferring cellular transition dynamics, it is advis-
able to leverage signals from productive and sterile transcripts of all 
IgH C genes collectively for robustness; ideally, metrics that summarize 
CSR status should also be comparable across datasets, such that they 
are robust to different data integration protocols commonly used to 
aggregate scRNA-seq datasets. In sciCSR we address this by defining 
‘isotype signatures’ using non-negative matrix factorization38 (NMF) 
over the productive and sterile transcripts of all isotypes from refer-
ence data (Fig. 4a), and using these signatures to score the CSR status of 
cells. These ‘isotype signatures’ describe the expression level of all IgH 
productive and sterile transcripts for naive/memory B cell states. The 
other output of the NMF analysis is a weighting specific for each B cell in 
the data, which are scores indicating its resemblance to naive/memory 
state based on the observed productive/sterile IgH counts (Fig. 4a).  
The weighting for the naive state for each cell is taken to define a  
metric that we term ‘CSR potential’; this metric orders cells from naive  
to isotype-switched state (which would typically comprise both  
classical memory B cells and switched plasmablast/plasma cells). 
Visualizing the distribution of ‘CSR potential’ in real data from both 
human peripheral blood4 and tonsils5, we observe that this metric 
orders B cells correctly by their maturation stages (Fig. 4b), which 
can be cross-referenced with changes in productive and sterile tran-
scription levels.

To generate CSR potentials which can be compared across dif-
ferent conditions, we apply NMF on reference atlases of mouse and 
human B cells4–6,39 covering cell states present in germinal center (GC) 
and circulating B cells, to learn isotype signatures separately for each 
species (Extended Data Fig. 5). These pretrained signatures can be used 
directly to obtain the CSR potential from new, user-supplied datasets 
(Fig. 4c). If parallel libraries of BCR sequences (hereafter ‘scBCR-seq’) 
are available, sciCSR can also calculate the SHM level of each cell, 
by computing the quantity (1 − percentage identity to germline IgH 
V gene). Both CSR potential and SHM frequency can be interpreted 
effectively as pseudotime ordering of B cells defined on the basis of 
these processes that are biologically relevant to B cell maturation. 
These metrics are used as input to the CellRank algorithm17 to impose 
directionality onto the cell–cell k-nearest neighbor (kNN) network, to 
derive a transition matrix that describes the probability of transition 
between cells (Fig. 3d). We can directly compare the inference results 
using CSR/SHM information to conventional CellRank analyses that 
uses RNA velocity to bias the kNN network.

CellRank automatically aggregates individual cells into ‘macro
states’ that share similar transitional behaviors, detects the start and 
end points of the transition pathway by examining the properties of the 
cell-cell transition matrix, and fits a Markov state model to describe the 
cellular dynamics of the system. In our application to B cells, we require 
a more flexible analytical framework to accommodate use cases where 
(1) cell states are defined not solely by transcriptome-wide features, 
but rather by using other criteria of interest (for example in CSR, where 
‘states’ are defined on the basis of the productive IgH isotype of indi-
vidual B cells, but not necessarily its overall transcriptomic profile), 
and (2) multiple possible traversal pathways are possible and expected 
(for example, in CSR, one could switch isotype in a stepwise manner 
along the IgH genomic locus, or jump directly between isotypes whilst 
skipping those located physically between the source and destination 
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isotype C genes). To address these challenges, sciCSR incorporates 
the following innovations in analyzing cell transition dynamics based  
on scRNA-seq data: first, we introduce TPT to analyze the Markov  
model and describe the dynamics of transitions between cell group-
ings (Fig. 4c). TPT is used in physics and chemistry to understand how 
the potential energy landscape is explored in chemical reactions or in 
conformational changes30, and popularized in biology to analyze bio-
molecular dynamics simulation data29. Instead of nominating a single 
pathway to navigate the state landscape, TPT considers the ensemble of 

all possible transition paths given the transition matrix, and identifies 
transitions frequently implicated in navigating the states. State transi-
tions are characterized by the amount of flux between states, and a list 
of possible traversal pathways are ranked by their likelihoods given the 
flux estimates. The inclusion of multiple traversals provides flexibility 
in modeling transitions more relevant to contexts such as stepwise 
versus direct CSR events; stepwise switching is partitioned into indi-
vidual pairwise fluxes to reflect the relative abundance of each step 
of the modeled pathway. Second, to robustly identify unidirectional 
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transitions such as CSR, we reason that insignificant fluxes should 
have magnitudes comparable to null transition models defined by 
reshuffling columns of the transition matrix; sciCSR carries out ran-
dom shuffling of the transition matrix and fits null TPTs, from which P 
values are calculated to evaluate the relevance of fluxes inferred from 
the data, to assist the interpretation of TPT fluxes and down-weigh 
random transitions. Finally, sciCSR groups cells either by user-defined 
cluster labels or by the BCR isotypes they express. This allows evaluat-
ing transitions at the cell cluster level arising from trajectories of B cell 
subsets in the data, or infer CSR that are directly testable by comparing 
the fluxes against the isotype distributions observed in BCR repertoire 
sequencing data (Fig. 4c). sciCSR imports functionality implemented 
in CellRank to fit Markov models, and allows user to use either CSR or 
SHM as input for estimating the transition matrix; these can be com-
pared against CellRank models fitted using RNA velocity, to evaluate 
the impact of using different information to infer B cell dynamics from 
scRNA-seq data.

sciCSR predicts CSR directionality in temporal scRNA-seq 
data
The design principle of sciCSR enables the use of a scRNA-seq ‘snapshot’ 
of B cells to infer their CSR tendencies (that is, the isotype(s) the cells 
are going to switch from/to) during immune response. We first tested 
this idea by utilizing a published dataset by Kim et al.40 that profiled 
GC B cells following severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) mRNA vaccination to monitor long-term B cell matura-
tion. Figure 5 shows data from two donors for which complete data-
sets with data from weeks 4, 7, 15 and 29 post first dose of vaccination 
are available, with the latter three time points sampling B cells from 
lymph nodes and profiling using scRNA-seq and scBCR-seq. We used 
sciCSR on week 7 scRNA-seq data of GC B cells and sought to predict 
the isotype distribution observed using week 15 scBCR-seq data, and 
similarly analyzed week 15 scRNA-seq to predict week 29 scBCR-seq. 
The two donors displayed differences in their BCR isotype distribu-
tions (Fig. 5b). sciCSR successfully predicted these distributions using 
donor-specific GC B cells with high accuracy (median cosine similarity 
0.949) when comparing the TPT inward fluxes (that is, amount of CSR 
towards each isotype) against the isotype distribution observed in 
scBCR-seq data at the subsequent time point (Fig. 5c,d; Extended Data 
Fig. 6). The flux matrix and its associated P values can be visualized in a 
bubble plot that breaks down the inferred CSR fluxes, revealing differ-
ent switching sequences (IgG1 to A1 to G2 for donor 07, and IgG1 to IgG4 
accompanied by switching to IgA1 for donor 20) that can be validated 
with scBCR-seq data. sciCSR successfully predicts the directionality 
of CSR and uncovers nuances in CSR trajectories that are otherwise 
hidden in the scRNA-seq data space, given that these GC B cells do 
not appear transcriptomically distinct in the original analysis by Kim 
et al.40 (Extended Data Fig. 7).

sciCSR demonstrates CSR differences introduced by gene 
knockouts
We reason that sciCSR can be an ideal tool to analyze functional genom-
ics experiments that aim to uncover gene effects on B cell maturation 
by introducing perturbation to the system. To investigate this in greater 
detail, we first collected from the literature scRNA-seq data of gene 
knockouts with reports of CSR effects. Figure 6 shows application of 
sciCSR to analyze two such datasets, on mice with two genes (Aicda41 
and Il23 (ref. 42)) knocked out, either at a whole-organism level or 
conditionally in Cd19+ B cells (Fig. 6a and Extended Data Fig. 8). In the 
original reports, Aicda knockouts decreased both CSR and SHM accord-
ing to scBCR-seq data41, while Il23 knockouts biased the cells away 
from IgG2b, measured via enzyme-linked immunosorbent assay and 
immunofluorescence experiments42. Applying sciCSR on the knockout 
and wild-type (WT) mice scRNA-seq data, we recapitulated the observed 
isotype distribution in the scBCR-seq data reported in these studies 

(Fig. 6b,c). Since the TPT workflow implemented in sciCSR accepts 
any one of RNA velocity, CSR or SHM as inputs, we asked whether these 
methods capture different information in the inference of cell state 
transitions. We considered the Hong et al. Il23 knockout dataset42, 
which sampled murine splenic B cells covering both GC and memory 
subsets (Fig. 6d), and inferred the cell–cell transition matrices using 
RNA velocity (using the scVelo package10 following default settings, see 
section ‘Il23 gene knockout mice study from Hong et al.’ in Methods), 
CSR and SHM. This allowed us to simulate transition paths given the 
three Markov chains, and compare the frequencies these simulated 
paths visited each state in the data (Fig. 6d,e). We observed that RNA 
velocity consistently provided different inference than to CSR and SHM: 
the latter two methods faithfully reproduced the cell type distribu-
tions in the data, while RNA velocity appeared to bias towards specific 
states (Fig. 6e). We mapped from these Markov chains the frequency 
of sampling each state onto the uniform manifold approximation and 
projection (UMAP) visualization; these indicate that, compared to 
RNA velocity, CSR and SHM allow for a more extensive sampling of cell 
states in the data (Fig. 6f). These results suggest that sciCSR captures 
CSR information that is consistent with evidence from SHM in infer-
ring transitions that can be missed by RNA velocity analysis. Both CSR 
and SHM represent B-cell-specific evidence to infer state transitions 
relevant to the system. Given that RNA velocity methods are known 
to give noisy inference in mature immune cell types14,18, sciCSR could 
serve as a viable alternative by harnessing CSR and SHM to analyze  
B cell state transitions.

Discussion
A lack of tools to study immune cell state transitions in mature cell 
types precludes accurate computational analyses of these processes 
from scRNA-seq datasets of important biological phenomena such as 
immune response to vaccines, pathogens or malignant cells. sciCSR 
addresses this gap by implementing a novel approach for studying B cell 
state transitions. The uniqueness of our approach focuses on extracting 
B cell-specific information (expression of sterile/productive IgH tran-
scripts, SHM level) from scRNA-seq/scBCR-seq datasets, while benefit-
ing from CellRank17 to provide underlying implementations that infer 
cellular trajectories. We introduce TPT43 to analyze CellRank-inferred 
transition matrices. Inspired by analysis of MD simulation data, TPT 
and the generation of null transitions matrices (offer a principled way 
to assess the robustness of the inferred transitions. While the robust-
ness of sciCSR predictions is dependent on the amount of CSR activity 
implicated in the dataset (Supplementary Note 1), sciCSR is robust in 
recovering transitions between small populations (Supplementary 
Note 2), making it ideal to study transitions in rare B cell populations 
(for example, antigen-specific B cells from peripheral blood).

We believe a standout feature of sciCSR is in utilizing 
cell-type-specific biological features to inform trajectory inference: 
here, most commonly used tools are agnostic to the biological system 
of study. CellRank by default uses RNA velocity to build cell-to-cell tran-
sition matrices; here we derived a custom cell ordering based on B cell 
biology and used this as input to CellRank to infer transitions. Tools that 
utilize system-specific biological knowledge to study cellular dynam-
ics have recently received more attention, owing to their potential in 
overcoming the limitations of general trajectory inference tools. Some 
tools necessitate collection of orthogonal data types, for example, 
barcode-based lineage tracing of the same cell population sampled 
using scRNA-seq (PhyloVelo44). Here, while B cells represent an attrac-
tive system to apply such methodologies as phylogenies can be readily 
reconstructed from scBCR-seq V(D)J sequences, the limited number 
of B cells represented in many currently available scRNA-seq libraries 
implies restricted sampling of these lineages, posing challenges to 
the subsequent trajectory inference step. One approach (Pseudocell 
Tracer45) considered the BCR isotype expression profiles and trained 
deep-learning-based generative models to overcome the sparsity of 
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cell states in the data. These generative models were then used to map 
out the inherent CSR trajectory in the latent space. This represents a 
viable approach to model CSR in scRNA-seq data; however, it lacks a 
publicly available implementation. Here we build upon CellRank17 and 
interface with well-supported scRNA-seq data analysis packages in R 
and Python (Seurat46, scanpy47 and so on) to provide a method that also 
incorporates CSR and SHM signals from the data. We have evaluated 
the performance of sciCSR in a range of scRNA-seq datasets generated 
under common model systems used in immunology such as vaccination 
and mouse knockout models. With these datasets we show that sciCSR 
offers accurate predictions of CSR that can be verified by measuring 
the BCR isotype expression subsequent to perturbations.

The major innovative feature in sciCSR is the enumeration of 
productive and sterile IgH transcription in single cells, which can 

be applied in any human or mouse B cell scRNA-seq dataset. While 
analysis of sterile transcription was previously attempted in some B 
cell scRNA-seq studies, they were performed at the stage of raw data 
preprocessing5,48, without the relevant code made available in the 
associated publications. sciCSR allows this analysis to be performed 
on an ad-hoc, a posteriori basis as for other common scRNA-seq data 
analysis tasks. Counts for productive and sterile IgH transcripts are 
sparse, especially for the productive transcripts; this can be mediated 
with parallel scBCR-seq libraries obtained for the same cells, which are 
increasingly popular in B cell studies relating to their antigen-binding 
features5,40.

A recent analysis by Horton et al.26 uses lineage tracing to study 
the establishment of B cell fates, and found that the CSR fate of a B 
cell is largely independent from its predecessors; CSR fate is instead 
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determined by a combination of AID expression and sterile transcrip-
tion26, as previously noted by others20,22,27. In contrast with the Horton 
et al. approach to predict CSR behaviors of individual B cell lineages, 
here in sciCSR we model the switching dynamics of a heterogeneous 
group of B cell lineages.

In the future, sampling a large number of B cell lineages using 
single-cell genomics will allow a more detailed model of CSR that per-
mits prediction of switching behavior from scRNA-seq data. We believe 
that sciCSR will open the door to further explore the basic mechanisms 
of CSR: the enumeration protocol in sciCSR can support the use of 
scRNA-seq to study the variegation of CSR fates, and motivate math-
ematical modeling approaches to quantify CSR likelihoods beyond 
the analysis presented in Horton et al.26. Coupling with experimental 
approaches to study single-cell epigenetic landscape of B cells49 and 
computational approaches to infer gene regulatory activities37, sciCSR 
could contribute towards understanding how sterile transcription of 
different isotypes are differentially regulated, how this reconciles with 
their observed baseline expression levels, and how different molecular 
stimuli could modulate sterile transcription and ultimately fine-tune 
CSR in vitro and in vivo.

sciCSR is a freely available R package providing implementations 
to build inference of CSR and B cell maturation using scRNA-seq data. 
The enumeration of productive and sterile IgH transcripts does have 
its technological limitations: it necessitates usage of the 5′-biased 
read sampling protocol that would currently preclude datasets gener-
ated using the more common 3′ protocol and the use of spatial tran-
scriptomics data. More detailed analyses in the future (for example, 
identification of latent features of CSR states that are also detectable 
using 3′ data) will extend the utility of sciCSR to different technologi-
cal platforms. We believe sciCSR offers a starting point to model B cell 
maturation in scRNA-seq data; these models can be further analyzed 
to understand the molecular cues of CSR and different steps of the 
maturation process, their regulation in situ within tissues, and their 
dysregulation in diseases.
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Methods
The sciCSR algorithm
sciCSR is a R package to annotate productive and sterile IgH tran-
scripts given scRNA-seq aligned reads, and process scRNA-seq (and 
scBCR-seq if available) data to infer state transitions using CSR and 
SHM information. The inputs to sciCSR are (1) BAM files of the pro-
cessed and aligned scRNA-seq reads; (2) processed and normalized 
cell-by-gene count matrix corresponding to the BAM files, and (3) 
optionally, associated scBCR-seq data for the same set of cells. If (1) 
and (2) are available, sciCSR will extract CSR information and use this 
to infer cell state transition. If (3) is also provided, sciCSR will extract 
both CSR and SHM information and users can opt to use either in the 
inference. For notational convention let N be the number of cells and 
G be the number of genes transcriptome-wide recorded for a given 
scRNA-seq dataset. sciCSR aims to:

	(i)	 Enumerate productive and sterile IgH transcripts, as defined in 
the main text and illustrated in Fig. 1c, for each cell. These 
results produce a separate cell-by-transcript count matrix 
where for each IgH isotype, two transcripts will be listed, one 
corresponding to the productive transcript of the given 
isotype, and another corresponding to sterile transcripts. For a 
species with S isotypes, this will yield a 2S × N  matrix which we 
will refer to as ‘isotype matrix’ in the following text.

	(ii)	 Use the isotype matrix or, if scBCR-seq data are available, the 
SHM level as input to generate a cell ordering, as a ‘pseudo-
time’ input to CellRank to infer a cell-by-cell transition matrix. 
CellRank17 is used in accordance with author-recommended 
protocols, that is, the final cell transition matrix combines the 
matrix inferred using the kNN network that describes transcrip-
tomic similarity between cells, and the matrix inferred using 
CSR/SHM information. CSR/SHM information is used as bias to 
impose directionality on the kNN-based transition matrix.

	(iii)	 Infer the fluxes between either cell clusters or isotypes by  
applying TPT on the transition matrix.

Mapping positions of sterile transcription at the IgH genomic loci. 
The problem of identifying sterile IgH transcripts given scRNA-seq 
reads mapped to the reference genome is nontrivial, since sterile 
transcripts are not annotated in standard genome references such as 
those provided by Ensembl or UCSC genome browser. The distinction 
between productive and sterile IgH transcripts lies in the TSS: produc-
tive IgH transcripts are transcribed beginning at positions 5′ to the  
Ig variable (V) gene in the leader region, while sterile transcripts  
begin at some position 5′ to the first constant region (C) exon50–54. We 
first clarified the exact genomic position of TSS for the sterile tran-
script for every human and mouse IgH C gene with the exception of 
IgD where sterile transcription is not well understood. We collected 
from the literature a set of DNA genomic sequences isolated using 
traditional molecular cloning and restriction enzyme analysis, of the 
promoter region of sterile transcripts observed in experimental and/
or clinical models of CSR51–53,55–61. These sequences are mapped to the 
hg38 (for human)/mm10 (for mouse) reference genomes using BLAT62 
(v.36×4). Supplementary Table 1 lists the positions of sterile transcript 
TSS; this table is stored in the sciCSR package to guide the extraction 
of aligned scRNA-seq reads for enumerating productive and sterile 
transcripts (see below).

Re-analyzing scRNA-seq read alignments to distinguish productive  
and sterile IgH transcripts. The first step of sciCSR reads in user- 
supplied BAM files where aligned reads are listed with additional fields 
noting their associated cell (with tag ‘CB’) and molecular (tag ‘UB’) 
nucleotide barcode; these tags that are used in 10x cellranger-generated 
output BAM files are set as default. The BAM file is scanned three times, 
each time extracting reads mapped to a different genomic location:  

(1) the exonic regions encoding any IgH V, diversity (D) or joining ( J) 
gene, (2) the exonic regions encoding any IgH C gene, and (3) the 5′ 
region starting from the sterile transcript TSS to the site immediately 
preceding the start site of the first C exon (hereafter ‘5′ C’). In each 
scan sciCSR extracts the aligned genomic positions for reads fulfill-
ing each criterion listed above. Spliced reads that merely span across 
a given genomic range without actual matches to the genomic region 
of interest, as well as those without cell and/or molecular barcodes, 
are removed in each scan. We next implemented the following scheme 
to summarize these three lists of aligned reads to discern, for each 
molecule with a unique combination of cell and molecular barcodes, 
whether they represent productive or sterile IgH transcripts (Fig. 1c):

	(i)	 A ‘productive’ transcript must have at least two reads, one map-
ping to the VDJ genes and another to the C exonic regions;

	(ii)	 A ‘sterile’ transcript must have at least one read mapping to the 
5′ C region, and optionally to the C exonic regions, but no read 
mapping to the VDJ genes, and;

	(iii)	 Transcripts where insufficient information exists to be classified 
as productive or sterile are labeled ‘uninformative’.

The number of cell–molecule barcode combinations were enu
merated for each productive/sterile/uninformative IgH transcript  
type. Discounting the uninformative transcripts, this gives, for each 
cell, a gene count vector of length 2S where S is the total number of  
IgH C genes for the given species. Concatenating these vectors 
column-wise yield a 2S × N  matrix where N is the total number of  
cells. We term this matrix the ‘isotype matrix’.

Validating workflow to identify productive and sterile IgH tran-
scripts. We validated the enumeration of sterile and productive tran-
scripts by utilizing a simulated dataset where we sampled sequencing 
reads from the human IgH genomic locus. Comparison between the 
ground-truth distribution of reads we sampled and the isotype distribu-
tion reconstituted after aligning these reads to the reference genome 
would indicate whether the workflow can distinguish between produc-
tive and sterile IgH transcripts. To generate this simulated dataset we 
concatenated the DNA sequence for the VDJ region of the antibody 
CR3022 (GenBank accession DQ168569)63 with the exonic regions of 
each human IgH C gene (GRCh38 reference genome from Ensembl); 
this set of sequences would be the full-length productive transcripts. 
For sterile transcripts, the genomic sequences (genome build hg38) of 
each human isotype between the sterile transcript TSS and the end of 
the C gene coding region was retrieved from the UCSC genome browser 
application programming interface. All productive/sterile transcript 
sequence constructs are included in Supplementary Dataset 1. We next 
designed scenarios where cells express either one specific sterile/pro-
ductive transcript, or a combination of sterile/productive transcripts of 
different isotypes at given proportions; all such scenarios are shown in 
Fig. 2b,c. The R package polyester64 (v1.29.1.1) was used to sample reads 
based on these ground-truth sampling proportions, using the function 
‘simulate_experiment_countmat’. To mimic experimental data where 
reads are biased towards either the 3′ or the 5′ ends of transcripts, we 
included the positional bias model from Li and Jiang65 as an argument 
for polyester to generate sets of reads biased to the 3′ end, and the 
mirror image of the Li and Jiang model as input to generate 5′-biased 
reads. All other parameters to run polyester were unchanged. A total of 
1 million reads were sampled for each designed scenario. The sampled 
reads were aligned to the chromosome 14 genomic sequence from 
the GRCh38 reference genome, using either HISAT2 (ref. 35) (v2.2.1) 
or STAR34 (v2.5.1.b) (for further details, see Supplementary Methods, 
heading ‘Analysis of simulated productive and sterile IgH transcripts’).

Deriving CSR potential. For CSR, sciCSR makes use of the productive/
sterile isotype matrix to derive a score that ranks cells from naive to 
memory/terminally differentiated. The intuition is that the isotype 
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matrix can be decomposed into ‘signatures’ of isotype expression 
that are representative of naïve/memory cell types; these signatures 
can then be used to deconvolute the isotype matrix and score the 
resemblance of each cell to naive or memory state, in terms of their IgH 
transcription profile. To guide the definition of these isotype signatures 
we first applied the sciCSR productive/sterile transcript quantification 
to scRNA-seq data of B cells at reference B cell states; these reference B 
cell atlases were compiled for human and mouse (see heading ‘Refer-
ence atlases’ under ‘Datasets’ section). These datasets were chosen as 
reference B cell atlases to cover a wide range of B cell states found in 
circulation and in secondary lymphoid organs, and, wherever possible, 
sampled from healthy subjects. We next applied NMF38 separately on 
the human and mouse data, to decompose the isotype matrix T (of 
dimension 2S (total number of isotypes) × N (number of cells)) into 
two matrices:

T ≈ P × C

The matrix P is of dimension 2S × H , where H is the number of 
isotype signatures. C is a matrix of dimension H × N . Each isotype sig-
nature consists of weights indicating the importance of the given 
productive/sterile transcript for a cell type of interest, while an entry 
of the C matrix cij would refer to the contribution of isotype signature 
i in cell j. Note the approximation sign in the equation; applying NMF 
is to jointly estimate P and C, which together approximates best the 
input matrix T. Our goal here is to obtain one signature (that is, column) 
v from the matrix P, which either biases towards memory B cells and/
or terminally differentiated cells in the lineage such as plasma cells 
(that is, cvj increases as cells go from naive to memory), or one that is 
biased to the sterile/productive transcripts of IgM (that is, the develop
mental trajectory would go inversely of this signature) to rank the cells. 
In principle we could obtain signatures specific to IgG/A/E using this 
method; here the IgM-biased signature was deemed preferable as it 
could be applied to different biological contexts where any switching 
events away from IgM were of interest.

Separate NMF runs were performed on the human and mouse data 
to derive a two-signature matrix for each, with one IgM-biased signa-
ture signifying naive B cells and another signifying memory cells 
(mainly IgG, see Extended Data Fig. 6 and Supplementary Methods 
heading ‘NMF analysis to derive isotype signatures’). These P matrices 
are stored to score cells from a new, user-supplied, dataset T′, using 
non-negative least square (NNLS) regression, that is, estimating 
T′ ≈ P × C′ using P trained on the reference dataset T. The entries c′vj   
in the C′ matrix corresponds to the contribution of the naive (that is, 
IgM-biased) signature v, trained on the reference atlas, in cell j in the 
user-supplied data. c′vj for all j were taken to derive the CSR potential 
by scaling into the range [0,1] and reversing the scale such that switched 
cells (that is, less naive-like) have a higher CSR potential:

c′′vj =
c′vj − min(c′vj)

max(c′vj) − min(c′vj)
, c′′vj ∈ [0, 1]

CSRpotential = 1 − c′′vj

NMF was performed using the R NMF package (v0.24.0) using the 
‘nmf’ function, applying the alternating least square approach from 
Kim and Park66 (argument ‘methods = ‘snmf/r’’). The ‘nmf’ function 
attempted ten NMF fits, and the best (that is, the smallest approxima-
tion error) fit was taken as the final signature matrix to be stored and 
used to score user-supplied datasets. For the human atlas, all cells were 
considered and the ‘nmf’ function was applied once; for the mouse 
atlas, to reduce memory usage, the ‘nmf’ function was called ten times, 
each time using a different, randomly selected set of 20,000 cells from 
the atlas to fit ten NMF. Signature matrices from the best NMF fit from  

each of the ten subsetted datasets were summarized as element- 
wise mean values to derive the final signature matrix for storage and 
decomposition of user-supplied productive/sterile transcript counts. 
NNLS was performed using the R package nnls (v1.4).

Deriving SHM level. If scBCR-seq data have been integrated with 
scRNA-seq results, sciCSR calculates the SHM level of each cell as 
follows:

SHM = 1 − nucleotide identity to assigned germline V gene (%)

This value is subsequently scaled into range [0,1] similar to the 
derivation of the CSR potential.

Applying CellRank. The CSR and SHM ranking of cells were taken as 
‘pseudotime’ orderings, to generate cell–cell transition matrix using 
the CellRank17 (v1.5.1) ‘PseudotimeKernel’. We followed the CellRank 
recommended protocols and generated a final transition matrix M 
for each dataset by combining transition matrices using two different 
sources of information:

M = 0.8 ×MkNN + 0.2 ×MPseudotime

where MkNN is the transition matrix (‘ConnectivityKernel’ in CellRank) 
derived by considering the kNN network calculated using scanpy 
(v1.9.1), and MPseudotime is the transition matrix derived from using the 
CSR/SHM information as pseudotime ordering of cells. The respective 
weights of MkNN and MPseudotime were defaults for combining kernels in 
CellRank17.

TPT. TPT is a statistical framework to analyze the properties of transi-
tion paths governed by a discrete-state Markov chain30,43,67. The major 
premise of TPT is, since transition paths between states can adopt a 
variety of behaviors (for example, to reach state B from A, this can be 
accomplished via a direct jump, or a more convoluted path involving 
some other intermediate state(s), or simply fail to reach B and return 
back to A), it is important to describe the statistical properties of an 
ensemble of transition paths, from a source state to a target state (both 
defined by the user), to capture more truthfully the transition dynam-
ics in the system43,67. This is in contrast to Markov chain analyses that 
seeks to extract a maximum likelihood solution to fit the observed 
data. TPT is a well-established technique in physics and chemistry to 
study dynamics of chemical reactions and conformational changes of 
molecules30,43,68; the latter has been adopted in computational biology  
in the analysis of MD simulation trajectories29,69,70. Here, in the con-
text of CSR, TPT seeks to analyze the Markov chain, and extract spe-
cific switching events that are prominent in the model: considering  
the Markov chain, TPT reports which states (isotypes), and there-
fore which transition paths (isotype switches), are more likely to be 
observed if a cell consistent with the input data is to begin CSR. Supple-
mentary Note 3 contains further discussion on the motivation of TPT.

We used the Python package deeptime71 (v0.4.2) (which powered 
the backend calculations of TPT in the MD analysis package PyEMMA2 
(ref. 29)) for TPT calculations. deeptime implements TPT in a Python 
class ‘ReactiveFlux’ to fit TPT on the CellRank-derived transition matrix 
M, such that it describes the transition dynamics of the cells from a 
source to a target state indicated by the user. These source/target states 
can either be cell states defined by the cell cluster labels users typically 
give to scRNA-seq datasets, or BCR isotypes specifically for the analysis 
of CSR dynamics, or any arbitrary grouping defined by the user. Since 
the transition matrix M from CellRank has dimension N × N  where N  
is the total number of cells, a grouping (‘coarse-graining’ in the deep-
time package) step is required to group fluxes such that they can  
be interpreted between clusters of cells. We fit TPT on the N × N  transi-
tion matrix giving vectors of cell indices corresponding to the source 
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and the target state, respectively, and then use the ReactiveFlux.
coarse_grain() function in deeptime to coarse-grain the fluxes at the 
cell cluster level. These ‘clusters’ are supplied by the user; they can 
either be cell identities defined by clustering the transcriptomic data, 
or BCR isotypes.

The ReactiveFlux object computes various quantities typical of 
Markov chain and TPT analysis, but we deem the following the most 
informative about cell state transitions:

	(1)	 Gross flux F, a n × n matrix where n is the total number of  
cell states. Each element fij describes the amount of flux that 
flows from state i to state j. Recall that TPT analyzes all possible 
path of traversing between all states, and reports transitions 
between specific pairs of states which are more likely to be 
sampled in these traversal paths. Fluxes break down these paths 
into individual jumps between states, and quantify the relative 
abundance of these jumps in the ensemble of paths. Important-
ly, TPT provides flux estimates for any pair of states, not just 
limited to direct fluxes between the source and target states.  
We adopted the recommendations in PyEMMA2 (ref. 29) to 
interpret these as relative fluxes, that is, instead of the absolute 
flux values these are normalized as f′ij =

fij
∑i,j fij

, which describe 

the proportion of total flux in the system that flows from state i 
to j. These fluxes are the indicators of transitions and can be 
visualized with, for example, projection of arrows on dimen-
sionality reduction plots, typical in scRNA-seq transition 
dynamics analyses such as RNA velocity9,10.

	(2)	 Stationary distribution π. This is a vector of length n, where 
each element is a probability describing the likelihood to reach 
a given state when the system reaches equilibrium over a long 
period of time. Intuitively, the stationary distribution is 
informative in the comparison of transition dynamics observed 
in perturbation experiments where the perturbation (for 
example, a gene knockout) yields a discernible effect to the 
likelihood to sample certain states. All elements in π sum to 1, 
that is, ∑nπ = 1.

	(3)	 Mean first passage time (MFPT) between the source and target 
states. This refers to the amount of time (in arbitrary unit) 
needed to reach the target after leaving the source state, as a 
measure of the efficiency of transition given the data.

	(4)	 A list of transition pathways with intermediate states from the 
source to the target, with probabilities of their traversal to 
reach the target from the source.

These results are provided when users execute the fit_TPT() 
function in the sciCSR R package together with analogous null/boot-
strapped estimates to assess statistical robustness (see below).

Interpreting TPT. TPT fluxes are descriptions of transitions between 
states estimated by considering the frequencies each state is sampled 
in the data and the transition behaviors of each cell as specified in the 
input transition matrix. Since the goal of TPT is to evaluate possible 
pathways to traverse the state landscape to reach a user-specified 
target state from a source state, the choice of source and target states 
influence the TPT inference results (Extended Data Fig. 7). Specifically, 
the magnitude of flux tends to be higher for fluxes involving either the 
chosen source or target states, since the algorithm is designed to con-
sider pathways that necessarily pass through these states as required by 
user definition. It is therefore important to choose appropriate states 
with the aim of describing the fluxes and stationary distributions of 
all states in the system. Here we chose source and target states which 
were (1) sampled in the data and (2) as close to the ultimate start/end 
points of the relevant biological process as possible. For example, for 
analyzing CSR we would want to set the source state as IgM and the 
target state as IgA2 (human)/IgA (mouse) given these isotypes were 

observed in the data; transition paths involving any possible pairs of 
isotypes in the middle of the locus would then be traversed, some of 
which would be of interest to the analysis. For analyzing transitions 
between cell clusters, we chose the cell cluster representing naive B 
cells (if available) as the source state, and the plasma cell/plasmablast 
cluster as the target state. We reasoned that in most use cases users 
would have an intuition of the observed states and be able to choose 
source and target states using prior knowledge.

Pruning TPT results. While quantities listed in the section ‘TPT’ are 
typically analyzed in usage of TPT in biological settings (for example, in 
MD analysis29,70), we reasoned that additional measures were necessary 
to prune the TPT results and give uncertainty estimates to fluxes and 
stationary distribution quantities to aid interpretation. In applying 
TPT to infer CSR, backward fluxes (that is, flow from a given isotype to 
another that is 5′ to itself) are excluded as these transitions are physi-
cally prevented via genomic DNA excision during CSR. To evaluate the 
statistical significance of fluxes, we estimated a P value for each entry in 
the gross flux matrix F by one-way comparison of whether the observed 
flux is greater than those obtained by randomly reshuffling the input 
transition matrix to TPT. We reshuffled columns of the transition matrix 
for t times (by default t = 100; users can change this number as appro-
priate) and fit t TPT models. The randomized fluxes were modeled as 
a Gaussian distribution and a one-way z-test was performed to derive 
P values for each element of the gross flux matrix. The resultant P 
values, after multiple-testing correction implemented using the false 
discovery rate (FDR) method with the p.adjust function in R, give con-
fidence on how likely the observed fluxes are due to the structure of 
the transition matrix rather than merely the distribution of cell types/
isotypes in the system. For the stationary distribution, we performed 
bootstrap sampling of cells for each cluster label and summed over 
their individual stationary distributions, to obtain cluster-wise boot-
strapped samples of stationary distributions.

Visualizing cell state transition inference results. sciCSR offers the 
following visualization tools to present the TPT results: first, sciCSR 
provides function to depict the stationary distribution of states as a 
bar plot, with the 95% bootstrapped confidence intervals as error-bars. 
Second, for fluxes, users can project the inferred transitions onto 
either a grid of arrows or velocity streams, akin to RNA velocity plots 
generated using velocyto or scVelo. sciCSR uses the scVelo plotting 
facility in Python in the backend and outputs the figure in R console. 
This visualization is applicable for TPT inference where the cluster 
labels are used to group the cells. For analyses where cells groupings 
are not distinct on the dimensionality reduced space, users can also 
visualize fluxes as a bubble plot where each bubble corresponds to 
transitions between any pair of states; the bubble color corresponds 
to the amount of flux, and bubble size indicates statistical significance 
(given by −log(adjusted P value)). This visualization is applicable to 
CSR-specific analyses grouping cells by BCR isotypes.

Comparing transitions inferred using different biological informa-
tion. Since sciCSR allows users to supply either CSR or SHM pseudotime 
orderings to infer cell transitions, and the underlying CellRank algo-
rithm supports transition inference using RNA velocity information17, 
we reason that the CellRank transition matrices derived using these 
difference sources of information can be directly compared. To do so, 
we set up separate Markov chains using the transition matrices, sample 
random walks from these Markov chains, and compared the frequen-
cies of visiting each cell state in the sampled walks to ascertain whether 
these different transition matrices capture similar information regard-
ing cell state transitions. For each transition matrix, a ‘markovchain’ 
object (using the R package markovchain72, v0.9.0) was created and 
a total of 1,000 walks (users can change this default parameter) were 
sampled using the ‘markovchainSequence’ function. The resultant  
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frequency matrices which record the number of times each state  
is visited in the random walks are compared using either Kullback– 
Leibler divergence or Jensen–Shannon divergence, both calculated 
with default parameters using the R philentropy73 package (v0.5.0).

Implementation. The sciCSR pipeline has been implemented as a R 
package. scRNA-seq data are handled using data objects defined in 
the Seurat (v4.2.2) R package46; sciCSR directly extracts and modifies 
data stored in the Seurat data objects, including inserting the isotype 
matrix as a separate ‘assay’ in the Seurat object, and adding and modify-
ing columns of the metadata. The inferences of state transitions using 
CellRank17 (v1.5.1) and TPT are implemented in Python (v3.9.12), which 
sciCSR directly deploys under the R reticulate environment; sciCSR 
calls the R package SeuratDisk (v0.0.0.9020)74 to convert between 
R Seurat object and Python AnnData files as input to CellRank. TPT 
is fitted to the CellRank transition matrix using the python package 
deeptime71 (v0.4.2). A function within the R package (‘prepare_sciCSR’) 
enables users to set up a working conda environment containing  
these Python packages; the RNA velocity Python package scVelo10 
(v0.2.4) is also included in the environment to allow users to run  
CellRank using RNA velocity information for direct comparisons 
against the transitions inferred using CSR/SHM information as  
implemented in sciCSR.

Datasets
Data preprocessing. Unless otherwise stated, the datasets below 
were obtained and processed as follows: FASTQ files for the datasets 
were downloaded either by using the wget command-line utility (for 
ArrayExpress) or the NCBI Sequence Reads Archive (SRA) Toolkit 
(v2.11.1) (for Gene Expression Omnibus (GEO)). Raw FASTQ files were 
aligned to either the GRCh38 (for human data) or mm10 (for mouse) 
reference genomes and cell-by-gene count matrices were generated 
using 10x Genomics cellranger (v7.0.0). For datasets with scRNA-seq 
and scBCR-seq data available in parallel, the ‘cellranger multi’ option 
was used to simulataneously call cells with both transcriptomic and 
VDJ data; otherwise the ‘cellranger count’ option was used. Refer-
ence genome annotation (version 3.0.0 for both human and mouse) 
was downloaded from the 10x Genomics cellranger website. The  
‘filtered_feature_bc_matrix’ folder of cellranger output was read into  
R using Seurat::Read10X function as a cell-by-gene count matrix. Before 
generating a Seurat object that holds this count matrix, counts for 
genes encoding Ig V, D and J segments were summed for each cell 
as count for a meta-gene ‘Ig-vdj’ to eliminate any effects caused by 
individual-/clonotype-specific VDJ gene usage to downstream cluster-
ing and differential expression analyses. The count matrix was then 
subsetted such that only features detected in at least three cells and 
cells with transcripts from at least 200 distinct features were retained. 
Dimensionality reduction and clustering analysis were performed 
stepwise as follows:

	(1)	 removal of cells with the percentage of mitochondrial reads 
larger than 10%;

	(2)	 log-normalization using Seurat::NormalizeData with default 
parameters;

	(3)	 identification of variably expressed genes using Seurat:: 
FindVariableMarkers and removal of BCR-/TCR-specific genes 
from this variably expressed gene list as per Stewart et al.4;

	(4)	 scale and center the normalized count data using 
Seurat::ScaleData with default parameters;

	(5)	 principal component analysis using only the pruned variably 
expressed gene list;

	(6)	 UMAP using Seurat::RunUMAP, calling the Python umap-learn 
package and using correlation as the metric. We retained only 
the top p principal components, each of which explained at 
least 1.5% of the total variance;

	(7)	 construct kNN network using Seurat::FindNeighbors with 
default parameters and Louvain clustering on the kNN network. 
The resolution parameter is specific to each dataset and is indi-
cated below separately.

Aicda gene knockout mice study from Gómez-Escolar et al.. This 
dataset contains scRNA-seq data from reporter mice where historical 
AID (Aicda) expression could be traced by sorting for expression of the 
fluorescent tdTomato (Tom) protein versus mice that are AID deficient. 
Cells from the spleen were collected and prepared for scRNA-seq and 
scBCR-seq after immunization with injection of the ovalbumin (OVA) 
protein. FASTQ files were downloaded from SRA accession SRP348368 
and processed as detailed above, for sciCSR analysis of productive/
sterile IgH transcripts. The transcript count matrix containing data for 
the other genes, as well as the cell metadata, were directly downloaded 
from the associated GEO entry GSE189775 and imported using the 
Seurat package in R. sciCSR was applied to analyze transitions both 
between cell clusters and between BCR isotypes, separately for the 
AID-deficient and WT cells, using the signature-based CSR potential 
defined above. For inferring CSR, the following isotypes were chosen as 
the source/target states: WT—IgM (source), IgA (target); AID-deficient—
IgM (source), IgG2b (target) (since for the AID-deficient cell subset no 
cells harbor isotypes further beyond IgG2b in the IgH locus).

Il23 gene knockout mice study from Hong et al.. This dataset con-
tains scRNA-seq and scBCR-seq data from splenocytes of autoimmune 
BXD2 mice with knockout of the p19 component of Il23 (hereafter Il23 
p19−/−) and WT BXD2 mice. FASTQ files were downloaded from SRA 
accession SRP250728 and processed as detailed above. Unspliced 
and spliced transcripts were quantified using velocyto9 (v0.17.17), 
supplying both the mm10 General Transfer Format file from cellranger 
references (see above) and the mm10 repeat mask General Transfer 
Format file obtained from the UCSC genome browser (RepeatMasker 
track) as arguments. RNA velocity estimation using the scVelo ‘dynami-
cal’ model was performed using the scVelo Python package (v0.2.4) 
with default parameters. The filtered_contig_annotation files output 
from ‘cellranger vdj’ were supplemented with the percentage identity 
to the germline V gene for each sequence by merging the cellranger 
filtered_contig_annotation files with the AIRR-formatted output of 
IMGT/HighV-Quest75,76 (accessed 5 July 2022) analysis of the same set 
of contigs. These scBCR-seq annotations were merged with the Seurat 
data object holding scRNA-seq data as detailed above. The dataset was 
filtered to retain B cells fulfilling the following criteria: (1) with match-
ing heavy/light chain sequence from scBCR-seq, and (2) non-zero 
expression of both Cd19 and Ms4a1. A resolution parameter of 0.4 was 
used in Seurat::FindClusters to determine cell clusters. sciCSR was 
applied to infer transitions both between cell clusters and between 
BCR isotypes, using (1) the signature-based CSR potential, (2) SHM 
level and (3) RNA velocity information. For transitions between cell 
clusters, the source state was chosen to be the IgM-hi memory cluster 
(Extended Data Fig. 8) and the target state as the plasmablast cluster 
(which typically produce a large amount of transcripts mapping to V 
genes; Extended Data Fig. 8). For inferring CSR, IgM was chosen as the 
source and IgA as the target state.

SARS-CoV-2 vaccination longitudinal follow-up from Kim et al.. 
Raw FASTQ files were downloaded from SRA accession SRP356296 
and aligned as described above; these alignments were used as input 
for sciCSR to enumerate productive/sterile transcripts. The scRNA-seq 
cell-by-gene count data were downloaded from the Zenodo reposi-
tory77 as a Python AnnData object. Only cells from donors 07 and 20 at 
weeks 4 (day 28), 7 (day 60), 15 (day 110) and 29 (day 201) were retained, 
exported as .h5ad files and converted to R Seurat objects using the R 
SeuratDisk package (v0.0.0.9020). Since the count data were already 
preprocessed and normalized, this Seurat object was directly analyzed. 
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scBCR-seq data from the same cells were downloaded from the same 
Zenodo repository. This data table annotated heavy-chain sequences 
as IgM/G/A but lacked annotations of the subclasses. IgBLAST78 
(v1.19.0) was used (with default parameters) to call subclasses for these 
sequences, using nucleotide sequences of germline immunoglobulin 
alleles downloaded from IMGT (accessed 28 July 2022) as reference. The 
human C-region artificially spliced exons sets were downloaded79 and 
used as reference set. The scBCR-seq table annotated with heavy-chain 
subclass information was merged into the metadata slot of the Seurat 
data objects. Only the cells labeled ‘GC’ in the author-provided cell type 
annotation were considered. Calculation of CSR potential and SHM 
level was carried out using sciCSR as described above. The transition 
inference method in sciCSR was used using the CSR potential as pseu-
dotime, to infer CSR using IgM as the source state and IgG4 as the target 
state; since there were no cells with IgE or IgA2 as their BCR isotypes, 
IgG4 was the state furthest along the IgH locus for this dataset. The 
isotype annotation was taken from the merged scBCR-seq metadata.

To compare CSR inference with observed BCR isotype distribu-
tion, we first calculated, for each isotype, the total inward flux (that is, 
amount of flux towards each isotype) inferred using TPT, and reasoned 
that this total inward TPT flux should predict the isotype distribution 
observed in a subsequent time point. We therefore compared the TPT 
inward flux at week 7 to scBCR-seq isotype distribution at week 15, and 
TPT inward flux at week 15 to observation at week 29. The similarity of 
the TPT-predicted and observed distributions was evaluated using 
cosine similarity, calculated using the R philentropy73 package (v0.5.0).

Reference atlases. We integrated previously published datasets to 
generate the following B cell atlas, profiled using 10x Genomics 5′ 
technologies, for obtaining reference isotype signatures in estimat-
ing CSR potentials for user-supplied datasets. In each case the aligned 
BAM files were used as input to sciCSR for quantifying productive/
sterile transcripts and the resultant count matrix was decomposed  
using NMF to derive a reference signature matrix (see section ‘Deriving 
CSR potential’).

Human B cell atlas. We integrated the following two scRNA-seq data-
sets of human B cells:

	(1)	 Data from Stewart et al.4 containing B cells from the peripheral  
blood fluorescence-activated cell sorting (FACS)-sorted into  
five phenotypically defined populations (Transitional (CD19+ 
IgD+CD27−CD10+), Naive (CD19+IgD+CD27−CD10−), IgM memory 
(CD19+IgD+CD27+), Classical Memory (CD19+IgD−CD27+), Double 
Negative (CD19+IgD−CD27−)). Data from the donor HB6 were 
considered in this atlas. Data preprocessing was previously  
described4, and the aligned BAM files were directly taken as  
input to sciCSR to generate productive/sterile transcript 
counts, and merged with the R Seurat data object available at 
ArrayExpress accession E-MTAB-9544.

	(2)	 Data from King et al.5 containing B cells from human tonsil 
samples. Raw FASTQ files were downloaded from ArrayExpress 
accession E-MTAB-9005 and processed as described above for  
sciCSR productive/sterile transcript quantification. B cell scRNA- 
seq transcriptomic count data were downloaded as a Seurat  
data object from the same ArrayExpress accession record.

Mouse B cell atlas. We processed and integrated the following two 
datasets to form a mouse B cell atlas:

	(1)	 Data from Mathew et al.6 for B cells from mediastinal lymph 
node, lung and spleen of mice at days 7, 14 and 28 days after  
influenza infection. Raw FASTQ files were downloaded from  
ArrayExpress accession E-MTAB-9478 (scRNA-seq) and 
E-MTAB-9491 (scBCR-seq) and preprocessed as described above 
using the ‘cellranger multi’ function.

	(2)	 Data from Luo et al.39 for peritoneal B cells sampled from 
healthy neonates, young adults, and elderly mice. Raw 
FASTQ files were downloaded from ArrayExpress accession 
E-MTAB-10081 and preprocessed using ‘cellranger multi’. Only 
data from samples D, E and F were considered as scBCR-seq, and 
scRNA-seq data were obtained in parallel only for these samples.

Data integration. For the mouse atlas, count matrices from  
Mathew et al. and Luo et al. were read in and directly combined before 
normalization, dimensionality reduction and clustering. For the human 
atlas, the two Seurat data objects holding data from King et al. and 
Stewart et al. were integrated by following the data integration protocol 
in the Seurat46 package. Briefly, anchoring points for data integration 
were established using the SelectIntegrationFeatures followed by 
FindIntegrationAnchors function, and the two datasets were integrated 
using the IntegrateData function in Seurat. All functions were evaluated 
using default parameters.

scRNA-seq analysis of in vitro cultures of naive B cells in 
IgG-polarizing conditions
Ethics. Blood samples were collected from healthy individuals. Ethical 
approval was obtained from the UCL ethical committee, under REC 
reference no. 14/SC/1200. Sample storage complied with requirements 
of the Data Protection Act 1998 and the Human Tissue Act 2004. Two 
male donors and one female donor between 25 and 45 years of age were 
selected. Informed consent was obtained from all donors.

In vitro CSR. PBMCs from three healthy controls were obtained by 
venepuncture, separated by Ficoll density gradient centrifugation 
and cryopreserved in fetal bovine serum (FBS) with 10% dimethyl 
sulfoxide at −80 °C for a week. PBMCs were thawed, and total B cells 
were obtained by negative selection using the EasySep Human B Cell 
Isolation Kit (StemCell Technologies, #17954). Total B cells were then 
stained for further flow cytometry sorting with anti-CD19 (1:200), 
anti-CD27 (1:200) and anti-IgD (1:200). Viability staining using LIVE/
DEAD Fixable Near IR Viability Kit (Invitrogen, #L34975) was performed 
together with the surface staining. Naive B cells (CD27−IgD+) were 
sorted by flow cytometry using a BD FACSAria Fusion and BD FACS-
Diva software version 9.4, and collected at 4 °C in recovery medium 
(50% heat-inactivated FBS + 50% RPMI 1640 (Sigma-Aldrich, #R7388). 
Naive B cells at day 0 were washed in PBS with 5% fetal calf serum  
and run on the Chromium 10x controller as described in the single- 
cell methodology below. In parallel, the rest of the sorted naive  
B cells, 250,000 cells per well, were then cultured in vitro under 
IgG polarizing class switch consisting of complete RPMI (10% heat- 
inactivated FBS and 1% penicillin–streptomycin) + 1 μg ml−1 anti-IgM 
( JacksonImmunoResearch, #309-006-043) + 1 μg ml−1 CD40L (Enzo 
Life Sciences, #ALX-522-110-C010) and 50 ng ml−1 IFNγ (Bio-Techne,  
#285-IF-100/CF) in a round bottom 96-well plate at 37 °C and 5% CO2  
for 3 or 6 days. IgG polarizing class-switch medium was refreshed 
on day 2 by gently centrifuging the cells (300g for 10 min) and fresh 
medium added with the above-mentioned factors.

Flow cytometry staining and analysis. Cultured B cells in IgG polari
zing class-switch medium from each donor were collected and stained 
for subsequent flow cytometry measurement. Anti-CD19 (1:200), 
anti-CD27 (1:200), anti-CD24 (1:200) and anti-CD38 (1:200) were used 
to stain the cells extracellularly. Viability staining using LIVE/DEAD 
Fixable Blue Dead Cell Stain Kit (Invitrogen, #L23105) was performed 
together with the surface staining. Cells were then fixed and permeabi-
lized using eBioscience Intracellular Fixation & Permeabilization Buffer 
Set (Invitrogen, #88-8824-00) and stained intracellularly with anti-IgD 
(1:200), anti-IgM (1:200), anti-IgG1 (1:200), anti-IgG2 (1:200), anti-IgG3 
(1:200), anti-IgA (1:200) and anti-IgE (1:200). Samples were acquired 
in a Cytek Aurora cytometer (five lasers) using SpectroFlo software 
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version 3.0.3 with automated unmixing. Day 3 flow cytometry was 
performed in a pooled sample of the three healthy controls as the main 
part of the recovered cells were dedicated for the single-cell readout. 
Analyses were performed using FlowJo version 10.8.1. Supplementary 
Fig. 1 illustrates the gating strategy used in the flow cytometry analysis.

scRNA-seq. Cultured B cells in IgG polarizing class-switch medium 
from each donor were collected on days 3 and 6, then counted, and  
their viability was measured using acridine orange/propidium iodide 
(Nexcelom, #CS2-0106-5mL) as viability dye in a CellometerAuto 2000 
cell counter (Nexcelom). Dead cells were removed using the EasySep 
Dead Cell Removal (Annexin V) Kit (StemCell Technologies, 17899). 
For each time point, samples from each healthy control were stained 
separately using TotalSeq hashtags 1, 2 and 3 (BioLegend #394661, 
#394663 and #394665) (1:100) and anti-CD27 Total Seq (BioLegend, 
#302853) (1:200) for 30 min in PBS with 5% fetal calf serum supple-
ment. Cells from each were then washed, counted and pooled at equal 
concentrations. Pooled cells were counted and run on a Chromium 
10x controller using 5′ v2 chemistry (10x Genomics) in one lane with 
an expected recovery rate of 5,000 cells per lane, according to the 
manufacturer’s instructions. Libraries were generated according to 
10x Genomics instructions and run on a High Output HiSeq2500 in 
30-10-100 format with a target of 50,000 reads per GEX library and 
5,000 reads per BCR and Feature Barcode library.

Data analysis. Raw FASTQ files were aligned and annotated using 
cellranger (v7.1.0). The ‘cellranger multi’ option was used to jointly 
call gene counts, VDJ and Feature Barcode data with matching cell 
barcodes. Feature barcodes were demultiplexed using the HTODemux 
function in Seurat (v4.3.0) using default parameters. We follow the 
procedure detailed above in the Dataset section to perform quality 
control, normalization and definition of variably expressed genes. 
Harmony80 (v0.1.1) was applied to remove batch effects (between 
donors). The kNN network was calculated on the output from harmony 
and cell clusters were defined using Seurat::FindClusters on the kNN 
graph, with resolution parameter of 0.5. For scBCR-seq, the filtered 
contig FASTA files were subject to IgBLAST78 (v1.19.0) analysis. Since 
cellranger prioritizes full-length VDJ sequences for annotations, we 
reasoned that for a small number of cells where switched (that is, with 
isotypes beyond IgM and IgD) productive sequences were present, 
these switched transcripts would be omitted by chance in the final fil-
tered contig annotation output because of incomplete read coverage. 
These cells were identified by comparing the C gene annotations in the 
filtered (‘filtered_contig_annotations.csv’) and unfiltered (‘all_contig_
annotations.csv’) contig annotation files from the cellranger output, 
and overriding such annotations if switched transcripts with lower 
read coverage were found in the unfiltered data. Functions in sciCSR 
were used to integrate the scBCR-seq repertoire data to the prepared 
Seurat data object, and to enumerate productive and sterile transcripts 
from the scRNA-seq BAM files. Cells were grouped by the isotype of the 
sterile transcripts found with the highest transcript counts for each 
cell; we performed differential expression analysis based on these cell 
groupings using Seurat::FindMarkers.

Statistics and data visualization
All analysis was performed under the R statistical computing environ-
ment (v4.2.2). Statistical analyses specific to implementations in the 
sciCSR package were detailed under the ‘Implementation’ subsection 
of the ‘The sciCSR algorithm’ section. Data visualization was generated 
using the R ggplot2 package (v3.4.1), and t-tests and multiple test cor-
rections were performed using stats functions in R v4.2.2.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The scRNA-seq and scBCR-seq data of the IFNγ culture experiment 
are accessible via ArrayExpress (accession E-MTAB-13050). All other 
datasets used in this work are publicly available: Kim et al.40 (GEO 
entry GSE195673), Gómez-Escolar et al.41 (GSE189775), Hong et al.42 
(GSE145922), Stewart et al.4 (E-MTAB-9544), King et al.5 (E-MTAB-9005), 
Mathew et al.6 (E-MTAB-9478 and E-MTAB-9491) and Luo et al.39 
(E-MTAB-10081). For GEO entries raw FASTQ files were downloaded 
from the associated SRA entries. Processed data files generated in this 
study can be found in the Zenodo repository https://doi.org/10.5281/
zenodo.8005705. Reference genome data (hg38, mm10) used in align-
ing scRNA-seq datasets were obtained from the 10x cellranger website 
(https://support.10xgenomics.com/single-cell-vdj/software/down-
loads/latest). Source data are provided with this paper.

Code availability
Source code for the sciCSR package is available at https://github.com/
Fraternalilab/sciCSR. Documentation and vignettes can be found in the 
github repository. Analysis notebooks and code used in generating the 
analysis presented in this manuscript can be found at https://github.
com/Fraternalilab/sciCSR-analysis.
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Extended Data Fig. 1 | Histogram of scRNA-seq read counts from the Stewart 
et al. dataset across the IGH genomic locus. The distribution of constant region 
genes was illustrated at the bottom of the histogram (coloured boxes) along with 

counts of 5’-AGCT-3’ motifs in sliding windows of 500 base-pairs (histogram in the 
middle). Regions 5’ of the constant region coding segment were highlighted with 
pink rectangles.
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Extended Data Fig. 2 | Distribution of scRNA-seq reads from Stewart et al. 
across two single-exon transcripts. Two genes were shown: JUNB (Ensembl 
transcript ENST00000302754.6, panel a) and RHOB (ENST00000272233.6, 

panel b). Regions of 600 base-pairs (bp) at the 5’ end of the transcript were 
highlighted (blue rectangles) to illustrate the concentration of reads at this 
region from the scRNA-seq experiments.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Distribution of productive/sterile IgH transcripts. 
(a) Sparsity of productive/sterile IgH transcripts. Grey bars depict distribution 
of all transcripts with count data in the King et al. tonsil B cell dataset (left) and 
the Stewart et al. peripheral B cell dataset (right), showing for each transcript 
the proportion of cells in the data with positive counts. The values for each 
productive and sterile IgH transcript are noted at the top of the histogram with 
crosses. (b) The number of isotypes presented in the sterile transcripts observed 

in each cell in the King et al. and Stewart et al. datasets, expressed per cell type. 
Each cell was assessed in terms of the number of isotypes represented in the 
sterile transcripts associated with each cell. (c,d) (from left to right) UMAP 
visualisation with cell type annotation, CSR potential scores, sterile IGHG1 
and sterile IGHG3 expression from the Stewart et al. (panel c) and King et al. (d) 
datasets.
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Extended Data Fig. 4 | Recall BCR isotypes using productive/sterile transcript 
count recovered using sciCSR in the King et al. tonsil B cell dataset. (a) 
(left) Productive transcript count was recovered from scRNA-seq data using 
sciCSR and treated as a predictor of BCR isotype of the same cell according to 
the scBCR-seq data. Pizza charts depict the area-under-curve of the receiver 
operating characteristic (AUC-ROC) curve separately for each isotype. (right) 

Sterile transcript count was recovered from scRNA-seq data using sciCSR and 
treated as a predictor of BCR isotype of the same cell. Pizza charts depict AUC-
ROC separately for each isotype. (b) Sterile transcript count was recovered from 
scRNA-seq data using sciCSR and treated as a predictor of BCR isotype of cells 
belonging to the same clonotype. Pizza charts depict AUC-ROC separately for 
each isotype.
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Extended Data Fig. 5 | Isotype signatures identified using nonnegative 
matrix factorization (NMF) on human and mouse B cell atlases. (a) Effect of 
changing NMF rank (that is the desired number of signatures) on the human B cell 
atlas. The signature matrix under each NMF setup was shown. The final isotype 
signature matrix for human is the rank = 2 condition. (b) Deriving the mouse 
signature matrix. (left) the NMF signature matrices using rank = 2 and 3. Neither 

setup derived a signature matrix similar to the rank = 2 condition in the human 
atlas (see panel a), although it appears that the IgM-dominant signature was 
separated into two signatures in the rank = 3 condition (first two columns). (right) 
The final signature for mouse was derived by summing together the first two 
signatures in the rank = 3 condition. The final signature matrix was shown here.
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Extended Data Fig. 6 | Effect of selecting different source and target states 
on TPT results. TPT inference was performed using different source and target 
states, using the week 15 timepoint of donor 07 from the Kim et al. vaccination 
time-course dataset. All inferences were performed using the NMF-derived CSR 
potential as pseudotime input to sciCSR which was invoked using identical and 

default parameters. The inferred fluxes tend to be higher for transitions involving 
states which are either the chosen source or target states. Statistical significance 
was obtained by one-sided comparisons to determine whether the flux values are 
greater than predictions generated from randomised transitions.
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Extended Data Fig. 7 | UMAP visualisation of GC B cell scRNA-seq data of two donors from Kim et al. dataset. Visualisations were separated by timepoints 
(columns) and coloured by BCR isotype indicated in the single-cell-matched scBCR-seq data. All donor/timepoint combinations were projected onto the same UMAP 
reduction.
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Extended Data Fig. 8 | Annotations on mouse knockout dataset use cases. (a) 
Sterile (horizontal axis, features ending with ‘-S’) and productive (ending with 
‘-P’) IgH transcript expression level in the Gómez‐Escolar et al. Aicda knockout 
dataset. (b) Sterile and productive IgH transcript expression level in the Hong et 
al. Il23 knockout dataset. (c) (left) Key gene marker expression levels in the Hong 
et al. dataset. (right) The cell cycle scoring method in Seurat was applied to assign 

scores for the S and G2M phases for each cell. Heatmap denotes the mean score 
for each cell cluster. (d) UMAP projection of the Hong et al. data grouped into 
10 cell clusters (colours). (e) Expression of Ighm gene in the Hong et al. data. (f ) 
Percentage of transcripts which are mapped to IGV genes for each cell expressed 
as a heat scale.
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