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A B S T R A C T

Survival analysis is a valuable tool for estimating the time until specific events, such as death or cancer
recurrence, based on baseline observations. This is particularly useful in healthcare to prognostically predict
clinically important events based on patient data. However, existing approaches often have limitations; some
focus only on ranking patients by survivability, neglecting to estimate the actual event time, while others treat
the problem as a classification task, ignoring the inherent time-ordered structure of the events. Additionally,
the effective utilisation of censored samples−data points where the event time is unknown− is essential
for enhancing the model’s predictive accuracy. In this paper, we introduce CenTime, a novel approach to
survival analysis that directly estimates the time to event. Our method features an innovative event-conditional
censoring mechanism that performs robustly even when uncensored data is scarce. We demonstrate that our
approach forms a consistent estimator for the event model parameters, even in the absence of uncensored
data. Furthermore, CenTime is easily integrated with deep learning models with no restrictions on batch
size or the number of uncensored samples. We compare our approach to standard survival analysis methods,
including the Cox proportional-hazard model and DeepHit. Our results indicate that CenTime offers state-
of-the-art performance in predicting time-to-death while maintaining comparable ranking performance. Our
implementation is publicly available at https://github.com/ahmedhshahin/CenTime.
1. Introduction

Survival analysis has been applied in many areas, including ge-
nomics (Lee and Lim, 2019), healthcare (Lee et al., 2018; Zhao et al.,
2022; Shahin et al., 2022; Lu et al., 2023), manufacturing (Richardeau
and Pham, 2012), marketing (Kim and Suk Kim, 2014), and social
sciences (Emmert-Streib and Dehmer, 2019). To keep the language
concrete, we will discuss and evaluate the healthcare scenario of patient
survival, bearing in mind that our methods are generally applicable.

Survival analysis has a long research history, from traditional sta-
tistical methods to modern machine learning methods (Wang et al.,
2019). Kaplan and Meier proposed an early method that models the
proportions of patients at risk at given times (Kaplan and Meier, 1958).
The main constraint of the K-M approach is that it cannot model the
influence of covariates. The later developed Cox proportional hazards
model (Cox, 1972) overcomes some of the limitations of the K-M ap-
proach, but cannot directly estimate survival times. Rather, it estimates
the relative likelihood of death for one patient compared to another.

A key challenge in survival analysis is dealing with censored data.
In right censoring, we know that the patient was alive up to the
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censoring time, but we do not know when they died or indeed if
they are still alive. Naively disregarding censored samples negatively
impacts the performance of survival models and leads to statistically
biased results (Buckley and James, 1979). As a result, a large body
of the literature has focused on leveraging censored training samples
to improve survival models’ performance and make more accurate
predictions.

Our main contribution is to directly model the time of death of a
patient, for which we introduce a novel censoring model. We compare
our approach with a standard Cox and classical censoring model and
apply these methods to predicting the survival of Idiopathic Pulmonary
Fibrosis (IPF) patients based on volumetric Computerised Tomography
(CT) images and associated clinical data. IPF is a progressive fibrotic
lung disease with a variable and unpredictable progression rate, making
it an ideal test case for our proposed approaches. For completeness we
include comparisons with the Cox model, using standard techniques
to estimate actual survival time from a ranking. Implementing the
Cox model is also computationally demanding and we introduce an
approximation to make this tractable.
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Fig. 1. Distributional survival analysis data generation mechanisms. (a) In the proposed event-conditional censoring model (CenTime), 𝑡 is drawn from the death time distribution
and 𝑐 is uniformly sampled up to 𝑡. (b) In the classical model, 𝑡 and 𝑐 represent randomly drawn death and censoring times from the corresponding distributions. If 𝑐 < 𝑡, the
patient is censored and the observation is the censoring time. Otherwise, the patient is uncensored and observation is the death time.
1.1. Preliminaries

We aim to learn the distribution 𝑝𝜃(𝐷 = 𝑡|𝑥), where 𝐷 is a random
variable associated with the death time 𝑡; 𝜃 represents model parame-
ters and 𝑥 are a set of covariates (e.g. CT scan and clinical data). For
simplicity, we assume that the death time 𝑡 ∈

{

1,… , 𝑇max
}

is discrete
and refers to the number of months that a patient survives post the CT
scan.

Our training data  is a collection of uncensored and right-censored
observations. The observation for an uncensored sample is represented
as (𝛿𝑛 = 1, 𝑥𝑛, 𝑡𝑛), where 𝛿𝑛 = 1 indicates that the death time 𝑡𝑛 is
known. For a right-censored sample, the observation is represented
as (𝛿𝑛 = 0, 𝑥𝑛, 𝑐𝑛), where 𝛿𝑛 = 0 indicates that the death time 𝑡𝑛 is
unknown, and only the censoring time 𝑐𝑛 < 𝑡𝑛 is known, 𝑛 = 1,… , 𝑁 .
The data index set is  , the uncensored observation index set is
uncens = {𝑛 ∶ 𝛿𝑛 = 1}, and the censored observation index set is
cens = {𝑛 ∶ 𝛿𝑛 = 0}. The approaches described below can be naturally
extended to accommodate the other forms of censoring, such as left
censoring and interval censoring, see Appendix A.

2. Centime: an event-conditional censoring model

We introduce CenTime which enables the direct learning of a death
time distribution 𝑝𝜃(𝐷 = 𝑡|𝑥) from either censored or uncensored data.
CenTime uses a novel censoring mechanism that we believe is more
representative of censoring in some clinical situations. The method is
generally applicable to other forms of censoring (left, interval), see
Appendix A. Here we concentrate on right censoring. Specifically, we
first sample the death time and then generate a censoring time from
a distribution up to the death time. This results in the censored time
model

𝑝𝜃(𝐶 = 𝑐|𝑥) =
𝑇max
∑

𝑡=1
𝑝(𝐶 = 𝑐|𝐷 = 𝑡, 𝑥)𝑝𝜃(𝐷 = 𝑡|𝑥) (1)

The objective then is to maximise the log likelihood

L(𝜃) ≡
∑

𝑛∈uncens

log 𝑝𝜃(𝐷 = 𝑡𝑛|𝑥𝑛) +
∑

𝑖∈cens

log 𝑝𝜃(𝐶 = 𝑐𝑛|𝑥𝑛) (2)

The objective in (2) is the likelihood of a mixture model containing
contributions from the uncensored data and censored data, with each
term being a consistent objective for the event model parameters 𝜃 (i.e.
estimators based on either contribution converge to the true parameters
as the number of samples increases). This implies that even in the
scenario where we only have censored training data, the model can
learn the underlying event model.
2

The model also has the advantage that, if needed, we can easily sam-
ple data from this model a given proportion of censored to uncensored
data. If a proportion of censored to uncensored data 𝑝𝑐 ∶ 𝑝𝑛 is required,
for a chosen 𝑁 one can simply sample 𝑁𝑝𝑐 censored datapoints from
𝑝𝜃(𝐶 = 𝑐𝑛|𝑥𝑛) and 𝑁𝑝𝑛 uncensored datapoints from 𝑝𝜃(𝐷 = 𝑡𝑛|𝑥𝑛).
This feature is absent in classical censoring models, in which it is
not possible to sample data with a required proportion of censored to
uncensored data.

We still need to make two assumptions — the censoring distribution
𝑝(𝐶|𝐷, 𝑥) and the event distribution 𝑝𝜃(𝐷 = 𝑡|𝑥). We define the event
distribution 𝑝𝜃(𝐷 = 𝑡|𝑥) below in Section 2.1 and here we define the
censoring distribution 𝑝(𝐶|𝐷, 𝑥). In principle, this can also be learned
from the data but for simplicity we assume a uniform censoring distri-
bution 𝑝(𝐶 = 𝑐|𝐷 = 𝑡, 𝑥) = 𝑐𝑜𝑛𝑠𝑡 for 𝑐 < 𝑡 and 0 elsewhere (see Fig. 1(a)),
giving

𝑝𝜃(𝐶 = 𝑐|𝑥) =
𝑇max
∑

𝑡=𝑐+1

1
𝑡 − 1

𝑝𝜃(𝐷 = 𝑡|𝑥) (3)

For any event distribution model 𝑝𝜃(𝐷 = 𝑡|𝑥) the likelihood objective
to maximise is

L(𝜃) ≡
∑

𝑛∈uncens

log 𝑝𝜃(𝐷 = 𝑡𝑛|𝑥𝑛) +
∑

𝑖∈cens

log
𝑇max
∑

𝑡=𝑐𝑖+1

1
𝑡 − 1

𝑝𝜃(𝐷 = 𝑡𝑖|𝑥𝑖) (4)

2.1. Event time distribution

We need to make an appropriate choice for the event time dis-
tribution 𝑝𝜃(𝐷 = 𝑡|𝑥). We employ a discretised form of the Gaussian
distribution

𝑝𝜃(𝐷 = 𝑡|𝑥) = 1
𝑍

exp

(

−(𝑡 − 𝜇𝜃(𝑥))2

2𝜎2𝜃 (𝑥)

)

(5)

In this formulation, 𝜇𝜃(𝑥) and 𝜎𝜃(𝑥) are parameters of the distribution
that are predicted by the model (a neural network parameterized by 𝜃),
and 𝑍 is a normalisation factor, defined as

𝑍 =
𝑇max
∑

𝑡=1
exp

(

−(𝑡 − 𝜇𝜃(𝑥))2

2𝜎2𝜃 (𝑥)

)

(6)

This formulation has the following advantages

• The term (𝑡−𝜇𝜃(𝑥))2 ensures a heavier penalty for predictions that
deviate significantly from the true death time, promoting closer
predictions. This stands in contrast to approaches that treat death
times as independent categories (Lee et al., 2018), which do not
fully capture this relationship.
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• The model only outputs two quantities (𝜇𝜃(𝑥), 𝜎𝜃(𝑥)). This keeps
the number of parameters low, reducing the risks of overfit-
ting compared to treating this as a 𝑇𝑚𝑎𝑥 classification task, with
category for each timepoint (Lee et al., 2018).

In principle, the form of the distribution 𝑝𝜃(𝐷 = 𝑡|𝑥) is also learn-
able, but we found that the discrete Gaussian performed well in our
experiments.

3. Previous works

3.1. Classical censoring model

One common approach in the literature is to assume that censoring
times follow a distribution 𝑝(𝐶 = 𝑐|𝑥) and death times follow a
distribution 𝑝𝜃(𝐷 = 𝑡|𝑥). These times are independently sampled and
then compared: if the censoring time is less than the death time, the
observation is the censoring time; otherwise, it is the death time (Lee
et al., 2018; Klein and Moeschberger, 2003), see Fig. 1(b). This leads
to the following model

𝑝𝜃(𝛿, 𝑐, 𝑡|𝑥) = 𝑝𝜃(𝑡|𝑥)𝑝(𝑐|𝑥)𝑝(𝛿|𝑐, 𝑡) (7)

where 𝑝(𝛿 = 1|𝑐, 𝑡) = 1 if 𝑐 ≥ 𝑡 and 𝑝(𝛿 = 0|𝑐, 𝑡) = 1 if 𝑐 < 𝑡. For a uniform
censoring distribution 𝑝(𝐶 = 𝑐|𝑥) = 1

𝑇max
a (right) censored observation

then has the following likelihood

𝑝𝜃(𝛿 = 0, 𝐶 = 𝑐|𝑥) = 1
𝑇max

𝑇max
∑

𝑡=𝑐+1
𝑝𝜃(𝐷 = 𝑡|𝑥) (8)

nd the likelihood of an uncensored observation is given by

(𝛿 = 1, 𝐷 = 𝑡|𝑥) =
𝑇max − 𝑡 + 1

𝑇max
𝑝𝜃(𝐷 = 𝑡|𝑥) (9)

Omitting additive constants, the objective then is to maximise

L(𝜃) ≡
∑

𝑛∈uncens

log 𝑝𝜃(𝐷 = 𝑡𝑛|𝑥𝑛) +
∑

𝑖∈cens

log
𝑇max
∑

𝑡=𝑐𝑖+1
𝑝𝜃(𝐷 = 𝑡𝑖|𝑥𝑖) (10)

Comparing this with the CenTime censoring mechanism (4), the dif-
ference is the 1∕(𝑡 − 1) factor in the censored summation term. Also,
for this classical approach, if one wanted to generate data from the
model, one cannot a priori decide on how many samples are censored
or uncensored. The generation process (10) generates either a censored
or uncensored datapoint, with the probability of this happening being
a function of 𝜃.

3.2. Cox model

We briefly review the standard Cox proportional hazards approach
(Cox, 1972). The Cox model is ubiquitous in survival analysis —
however, it cannot directly predict the death time nor deal easily with
censored data. Both of these issues are we believe vital for modern
survival analysis applications. Whilst the Cox model does not directly
produce a prediction for the death time, there are standard approaches
to estimate the death time (Breslow, 1974), and as such it is an impor-
tant baseline comparison method. The hazard function ℎ(𝑡) models the
chance that a patient will die in an infinitesimal time interval [𝑡, 𝑡+𝛥𝑡)
given that death has not occurred before

ℎ(𝑡) = lim
𝛥𝑡→0

𝑝(𝐷 ∈ [𝑡, 𝑡 + 𝛥𝑡)|𝐷 ≥ 𝑡)
𝛥𝑡

(11)

The Cox model (Cox, 1972) constrains the hazard function (conditioned
on the patient covariates 𝑥) to the form

(𝑡|𝑥) = ℎ0(𝑡) exp(𝑔𝜃(𝑥)) (12)

ere ℎ0(𝑡) is the baseline hazard function, which depends only on 𝑡,
hile 𝑔𝜃(𝑥) depends on the patient covariates 𝑥 and 𝜃 are the model
3

arameters. The standard Cox model (Cox, 1972) further constrains the
azard function (conditioned on the patient covariates 𝑥) to the linear
orm 𝑔𝜃(𝑥) = 𝛽𝑥. DeepSurv (Katzman et al., 2018) and other deep neural
etworks extend it to non-linear 𝑔𝜃(𝑥). For each patient 𝑛 we define the
isk set 𝑅𝑛 as all those patients that have not died before patient 𝑛 and
efine the relative death risk as

(𝐷𝑛 = 𝑡𝑛|𝑅𝑛) =
ℎ(𝑡𝑛|𝑥𝑛)

∑

𝑚∈𝑅𝑛
ℎ(𝑡𝑚|𝑥𝑚)

=
exp(𝑔𝜃(𝑥𝑛))

∑

𝑚∈𝑅𝑛
exp(𝑔𝜃(𝑥𝑚))

(13)

The partial log-likelihood is then defined as the sum of log 𝑝(𝐷𝑛 = 𝑡𝑛|𝑅𝑛)
for the set of uncensored patients uncens

𝐿(𝜃) ≡ 1
|uncens|

∑

𝑛∈uncens

[

𝑔𝜃(𝑥𝑛) − log
∑

𝑚∈𝑅𝑛

exp(𝑔𝜃(𝑥𝑚))

]

(14)

As can be seen from (14), Cox-based methods utilise the censored
data only in constructing the risk set 𝑅𝑛 and maximise the likelihood
that the uncensored patients die before patients in the risk set. In our
experiments, 𝑥 is a high-dimensional CT scan, and the function 𝑔𝜃 is
a deep neural network that is costly to compute in both time and
memory. A typical approach to optimising (14) is stochastic gradient
descent, which involves selecting minibatches of training observations
at each iteration 𝑚𝑖 ∈  , where 𝑚𝑖 denotes the minibatch index set at
iteration 𝑖 (Katzman et al., 2018). The objective then is to maximise

(𝜃𝑖) ≡ 1
| 𝑖

uncens|

∑

𝑛∈ 𝑖
uncens

⎡

⎢

⎢

⎣

𝑔𝜃𝑖 (𝑥𝑛) − log
∑

𝑚∈𝑅𝑖
𝑛

exp(𝑔𝜃𝑖 (𝑥𝑚))
⎤

⎥

⎥

⎦

(15)

here 𝜃𝑖 represents the model parameters at iteration 𝑖,  𝑖
uncens is the

uncensored observation index set for samples in minibatch 𝑚𝑖, and 𝑅𝑖
𝑛

is the risk set for patient 𝑛 in the same minibatch.
However, (15) is a ranking objective that compares patients within

the minibatch based on their predicted mortality risk. This requires
large minibatch sizes for robust training; however, for high-resolution
input (e.g. 3D CT scans), we are limited by GPU memory to small
minibatch sizes. Consequently, the minibatches often contain only cen-
sored patients, i.e.  𝑖

uncens = ∅. In such cases, (15) is undefined, and
these minibatches are excluded from the training process, resulting in
a significant reduction in the training data. To overcome this, we use a
memory bank (Wu et al., 2018; He et al., 2016) to store neural network
predictions for later iterations (Shahin et al., 2022), see Appendix B for
details. We call this approach CoxMB and compare it with the standard
Cox model in our experiments.

3.3. DeepSurv

Katzman et al. (2018) This is a deep neural network that is trained
using the Cox objective function (14), outputting a single scalar value
that represents the risk of death. It is compared with our CoxMB
model, which uses a memory bank to store the risk of death for each
patient during training, using this information to penalise the model
for inaccuracies in predicting the ranking of patients’ survival times.

3.4. DeepHit

Lee et al. (2018) approach survival analysis as a classification task
with 𝑇max categories. Specifically, a neural network predicts a vector
of 𝑇max values, which a softmax function then transforms into a death
distribution, 𝑝𝜃(𝐷 = 𝑡|𝑥). This approach, however, has a few challenges:
(1) the ordinal nature of the death time is not directly captured because
the softmax function regards different death times as separate classes;
(2) if 𝑇max is large, the model requires more parameters, heightening
the risk of overfitting; (3) some death times might not be represented
in the training data, which could reduce softmax probabilities to zero,
yielding no gradient and impeding the learning process for these times.
All of these issues are addressed by our alternative formulation in

Section 2.1.
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To leverage the censored data, DeepHit uses a combination of the
classical censoring model (10) and a ranking objective. Specifically, the
objective function is composed of two terms DeepHit = 𝑐

lik. + rank.,
here 𝑐

lik. represents the classical likelihood (10) with a softmax
unction to model the death time distribution, and rank. is a ranking
erm that penalises the model for inaccuracies in predicting the ranking
f patients’ survival times, mirroring the Cox objective

rank. = 𝜂(𝐹𝜃(𝑡𝑖|𝑥𝑖), 𝐹𝜃(𝑡𝑖|𝑥𝑗 )) ∀𝑖, 𝑗 ∈  s.t. 𝑡𝑖 < 𝑡𝑗 (16)

where 𝜂(𝑥, 𝑦) = exp(−(𝑥−𝑦)𝑠 ), with 𝑠 being a hyperparameter set to 0.1,
following the official implementation. 𝐹𝜃(𝑡|𝑥) represents the cumulative
distribution function of the predicted distribution 𝑝𝜃(𝑡|𝑥).

3.5. DeepHit (𝑐
lik. only)

To evaluate the contribution of the likelihood term in DeepHit, we
train another model with the same architecture but without the ranking
term rank..

4. Experiments

We evaluate our methods on a practical and challenging real data
problem. IPF is a chronic fibrotic interstitial lung disease of unknown
cause, associated with progressive fibrosis (stiffening and scarring
of lung tissue), deterioration of lung function, and shortened sur-
vival (Lederer and Martinez, 2018; Barratt et al., 2018). Survival
analysis of patients with IPF is fundamental for studies that evaluate
factors associated with disease progression and is part of the analysis
of clinical drug trials. However, it is a challenging task due to the
heterogeneous progression trajectories of IPF and the lack of available
mortality predictors and survival models. Cox models are often used
in these studies to identify associations with mortality (Jacob et al.,
2017; Gao et al., 2021). Despite its popularity, the Cox model has sev-
eral limitations. Primarily, it relies on the assumption of proportional
hazards, which states that the relative hazard remains constant over
time between different patients. This assumption is not always accurate,
particularly in progressive diseases such as IPF. Furthermore, the Cox
model estimates the relative hazard, rather than the actual death time,
which is often more useful and easier to interpret.

More similar to our method, other approaches train models to
predict death time, rather than ranking patients according to their
death risk. One notable example of this approach is DeepHit (Lee et al.,
2018), which uses a fully connected layer in a deep network to output
the probability of death at every possible time. This approach treats
death-time prediction as a one-of-𝑇max classification problem and does
not encode the natural assumption that making a small error in the time
of death should be penalised less than predicting a large error in the
time of death.

4.1. Dataset and preprocessing

We use the Open Source Imaging Consortium (OSIC)1 dataset which
encompasses lung CT scans along with contemporaneous clinical data
in addition to mortality labels in months (𝛿 and 𝑡 if 𝛿 = 1, otherwise
𝑐). We examine the performance of different methods using exclusively
CT images or a combination of CT images and clinical data, as each
contains pertinent information related to disease progression in IPF.
The dataset consists of 728 samples, which we randomly divided into
training (70%), validation (15%), and test (15%) sets. The mean and
standard deviation of the metrics are reported over five runs with dif-
ferent random splits. Approximately 65% (470 samples) of the dataset
are right-censored.

1 https://www.osicild.org/dr-about.html
4

For the imaging data, only CT scans with a slice thickness of ≤
3 mm are considered. All scans are cropped to the lung area using
the lung segmentation model trained by Hofmanninger et al. (2020).
These scans are then resampled to achieve an isotropic pixel spacing
of 1 × 1 × 1 mm3 via linear interpolation. Following this, the scans
are resized to dimensions of 256 × 256 × 256 voxels using bicubic
interpolation. Later, we apply histogram matching and a windowing
operation within the range [−1024, 150] Hounsfield Units to remove
irrelevant information. Finally, we normalise the scans to have zero
mean and unit variance based on the statistics drawn from the training
set. We apply random rotation (up to 15 degrees) and translation (up
to 20 pixels) to augment the training data.

In experiments involving clinical data, we incorporate six clinical
features: age, sex, smoking history (categorised as never-smoked, ex-
smoker, or current smoker), antifibrotic treatment (yes or no), Forced
Vital Capacity (FVC) percent, and carbon monoxide diffusion capac-
ity (DLCO). To ensure the correspondence between the imaging and
clinical data, we only include patients whose lung function tests were
performed within 3 months of the CT scan. Continuous features (age,
FVC percent and DLCO) are normalised to have zero mean and unit
variance, while categorical features are transformed via one-hot en-
coding. Missing values are sampled using a latent variable model fol-
lowing (Shahin et al., 2022). During testing, we use the most probable
value from the missing data imputation model.

4.2. Implementation details

In our experimental setup, the event distribution models parame-
terize the distribution 𝑝𝜃(𝑡|𝑥) using 𝜇𝜃 and 𝜎𝜃 . A deep learning model
parameterized by 𝜃 is used to learn 𝜇𝜃 , while 𝜎 is fixed at 12 months.
This helps to stabilise the training process and mitigate overfitting
(see Nix and Weigend, 1994 for a similar observation). For DeepHit,
the output of the model is a vector of size 𝑇max, representing the logits
of the 1-of-𝑇max classification labels. Finally, the DeepSurv and CoxMB
models output a single scalar that represents the predicted risk of death,
𝑔𝜃(𝑥) in (14). We evaluate the performance of the models when trained
on imaging data exclusively, as well as combined imaging and clinical
data.

To process HRCT scans, we use a 3D Convolutional Neural Network
(CNN), as illustrated in Appendix C (left). The network initiates with a
3D convolutional layer, which is followed by an instance normalisation
layer and a leaky ReLU activation function. We then stack four residual
blocks, each comprising three 3D convolutional layers (He et al., 2016).
After each convolutional layer, we use instance normalisation (Ulyanov
et al., 2016) and leaky ReLU (Maas et al., 2013) layers. We utilised
1 × 1 × 1 kernels for the first and last convolutional layers, while the
middle layer used a 3 × 3 × 3 kernel. In a parallel branch, we use
a single convolutional layer, and the outputs of the two branches are
concatenated. The output of this series of layers is then passed through
another convolutional layer, designed with a stride of 2, to halve the
spatial dimension. Finally, we use a convolutional layer with 16 filters
and a 1 × 1 × 1 kernel to produce a compact feature representation.
We flatten this representation and input it into the final fully connected
layer. In designing this network, we were aware that the progression of
IPF manifests itself in fine pulmonary patterns, such as honeycombing,
reticulation, and ground glass opacities. To capture these nuances, we
opt for small kernels and deliberately avoid pooling layers, as this could
result in the loss of fine image details.

When we incorporate clinical data, we use a Multi-Layer Perceptron
(MLP) that consists of two fully connected layers with 32 neurones
each, each followed by batch normalisation (Ioffe and Szegedy, 2015)
and leaky ReLU activation (Maas et al., 2013), as detailed in Ap-
pendix C (right). The MLP output is concatenated with the CNN output.
The CNN output, which represents imaging data, is projected to a 32-

element vector to balance the contributions from both imaging and

https://www.osicild.org/dr-about.html
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Table 1
Comparison of the test performance of the different methods on OSIC dataset when trained on imaging data
only, as well as combined imaging and clinical data. The mean and standard deviation are reported over
five runs with different random train/val/test splits. The best results are highlighted in bold.

Data Method C-Index ↑ MAE ↓ RAE ↓

Imaging

DeepSurv (Cox) 67.441 ± 4.572 44.898 ± 19.505 2.286 ± 1.414
CoxMB 71.067 ± 5.572 28.887 ± 2.315 1.762 ± 0.807
DeepHit 53.165 ± 8.313 31.074 ± 7.765 1.830 ± 0.522
DeepHit (𝑐

lik. only) 57.607 ± 4.813 29.862 ± 3.742 1.926 ± 0.869
Classical censoring 68.844 ± 5.313 20.448 ± 4.787 1.407 ± 0.853
CenTime 69.273 ± 0.946 19.319 ± 1.613 1.338 ± 0.665

Imaging + Clinical

DeepSurv (Cox) 72.100 ± 2.186 27.603 ± 3.345 1.718 ± 0.742
CoxMB 68.877 ± 2.413 24.413 ± 2.548 1.892 ± 0.868
DeepHit 54.980 ± 3.490 31.246 ± 4.599 2.240 ± 0.862
DeepHit (𝑐

lik. only) 52.882 ± 3.843 28.718 ± 2.077 2.059 ± 0.722
Classical censoring 70.350 ± 2.947 20.476 ± 1.85 1.546 ± 0.611
CenTime 70.957 ± 3.048 19.178 ± 0.795 1.480 ± 0.671
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clinical data. The combined output is subsequently propagated through
a final fully connected layer.

For optimisation, we use AdamW optimiser (Loshchilov and Hut-
ter, 2018) with a learning rate of 10−4 for the classical and event-
conditional censoring models and 5 × 10−4 for DeepHit, DeepSurv, and
CoxMB. The optimal learning rate value was tuned via a random search
based on the performance on the validation set. Additionally, we apply
a cosine annealing learning rate scheduler and gradient clipping. Due
to the high resolution of the imaging data (256 × 256 × 256), we use
a batch size of 2 for all models. We train the models for an initial
300 epochs. However, training is halted if there is no improvement in
validation performance for 50 consecutive epochs. In CoxMB, we use a
𝐾 value of 1.0. We use a 𝑇max of 156 months for all models, which is the
maximum observed time in the dataset. The models are implemented
using PyTorch and trained on a single NVIDIA A6000 GPU.

4.3. Evaluation metrics

Concordance index. The C-Index estimates the probability that the
predicted risks or survival times of a randomly chosen pair of patients
will have the same ordering as their actual survival times (Harrell et al.,
1996)

C-Index =
#concordant pairs

#concordant pairs + #discordant pairs (17)

A pair is considered concordant if the ranking predicted by the model
matches the true ranking, and discordant if it does not. A perfect model
will have a C-Index = 1. It is worth noting that the C-Index is a ranking

etric, which only assesses the order in which the predicted values
hould be ranked compared to the true ranking.

ean absolute error. The MAE assesses the difference between death
imes predicted by the model and the true death times

AE = 1
|uncens|

∑

𝑖∈uncens

|𝑡𝑖 − 𝑡𝑖| (18)

here 𝑡𝑖 is the predicted death time for patient 𝑖.

elative absolute error. We also report the RAE which quantifies the
elative deviation of the predicted time from the true death time

AE = 1
|uncens|

∑

𝑖∈uncens

|𝑡𝑖 − 𝑡𝑖|
𝑡𝑖

(19)

.4. Results

The evaluation of survival analysis performance depends on the
articular clinical objective. For instance, if the aim is to stratify
atients into high and low-risk groups, the C-Index is a suitable metric.
n contrast, if the objective is a precise prediction of the time of death
5

or each patient, metrics such as MAE and RAE are more appropriate. b
In Table 1, we report the test performance of the different meth-
ds on the OSIC dataset. For the Cox-based methods, we notice that
he introduction of memory banks during training (CoxMB) leads to

significant performance improvement compared to the DeepSurv
odel, which employs the standard Cox objective function (Cox, 1972;
atzman et al., 2018). This improvement can be seen through the

ncrease in C-Index by 3.63, a reduction of the MAE by 16 months,
nd a decrease in the RAE by 0.046.

Upon inclusion of clinical data, CoxMB upholds superior perfor-
ance on MAE in contrast to DeepSurv, whereas DeepSurv excels in

anking performance. This performance divergence, particularly with
espect to the decline of the C-Index in the CoxMB case, can likely be
ttributed to the high noise level and the presence of missing values
n clinical data. In general, DeepSurv seems to benefit more from the
nclusion of clinical data than CoxMB, where the improvements are
arginal. CoxMB already performs well on the imaging data, and the

linical data do not provide much additional information.
For distribution-based methods, CenTime outperforms all other

istribution-based baselines in C-Index, MAE, and RAE metrics, whether
rained solely on imaging data or a combination of imaging and clinical
ata. The superiority of our method is particularly noticeable in the
ybrid case, where the MAE decreases by 9.92 and 1.3 months com-
ared to the DeepHit and the classical censoring models, respectively.
imilarly, the C-Index improves by 12.22 and 0.61 compared to these
odels. Comapred to DeepSurv and CoxMB, CenTime offers a remark-

ble improvement in MAE (8.43 and 5.23 months, respectively) and a
omparable ranking performance. This demonstrates the effectiveness
f CenTime in efficiently capturing the censoring process. Interestingly,
enTime significantly outperforms DeepHit. In addition to the different
odelling of the censoring process, this can be attributed to the differ-

nt ways each model handles the event distribution. CenTime applies
discretised version of the Gaussian distribution (as per (5)), whereas
eepHit considers it as a classification problem comprising 𝑇max classes,
xecuted using a fully-connected layer followed by a softmax function.
y disregarding the ordinal nature of the time variable and facing the
otentially large class number, 𝑇max, DeepHit is more susceptible to
verfitting.

In summary, CenTime outperforms all the baselines in predicting the
ime of death for IPF patients, whether trained solely on imaging data
r a combination of imaging and clinical data. Additionally, it delivers
ompetitive C-Index performance despite not incorporating a ranking
bjective. This makes it a more appropriate choice for clinical scenarios
here the precise prediction of the time of death takes precedence over

he ranking of patients’ survival times. On the other hand, if the ranking
f survival times is of paramount importance, CoxMB model offers a
ore robust training strategy by employing memory banks, especially
eneficial when training on high-resolution imaging data.
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Fig. 2. Performance of the different methods when trained on gradually increasing percentages of uncensored data added to the censored data. 0% corresponds to training on
purely censored data, while 100% corresponds to training on the full training set. The mean and standard deviation are reported over five runs with different random train/val/test
splits.
4.4.1. Performance under limited uncensored training data
The amount of uncensored data available for training survival mod-

els is typically limited. Therefore, it is critical for learning algorithms to
use the available censored data effectively to improve performance. In
this subsection, we examine the performance of the different methods
when trained on a limited amount of uncensored data, in addition to
the censored data (imaging only). We randomly sample 0% (purely
censored), 20%, 40%, 60%, 80%, and 100% of the uncensored data. In
each scenario, all the censored data is added to compose the training
set. The results are presented in Fig. 2.

The initial observation is that Cox-based models (DeepSurv and
CoxMB) are only trainable when uncensored examples are available
during training. This is because the objective function is defined solely
for uncensored examples (see (14)). Second, when utilising purely
censored data, CenTime shows a significant improvement (≈ 4.9x in
terms of MAE) over the classical and DeepHit models. This is because
CenTime forms a consistent estimator of the model parameter 𝜃 even
with purely censored data, a feature not shared by the classical and
DeepHit models. As the amount of uncensored data included in the
training data increases, we generally observe an improvement in the
performance of all models, and the differences between the various
methods diminish. However, CenTime continues to outperform the
other methods in terms of MAE and offers competitive performance in
terms of the C-Index. These findings underscore the effectiveness of our
proposed approach in modelling the censoring process and utilising it
efficiently.

Furthermore, we observe that the performance of the CoxMB model,
when trained with a limited amount of uncensored data, is comparable
to that of the DeepSurv model. This can be attributed to the lessened
effectiveness of the memory bank when the amount of uncensored
data is limited. However, as the amount of uncensored data increases,
the memory bank efficacy improves and the performance of CoxMB
consistently surpasses that of the DeepSurv model. This is evident
in both the C-Index and the MAE metrics. Intriguingly, the C-Index
performance of CenTime is comparable to that of DeepSurv, despite the
fact that it does not use a ranking objective. This further underlines the
robustness and versatility of our proposed event-conditional censoring
model.

4.4.2. Effect of lung segmentation
Idiopathic Pulmonary Fibrosis predominantly affects the lungs,

making this area the most relevant in CT scans. However, there is some
evidence suggesting that the disease can also affect other organs, such
as the heart (Agrawal et al., 2016). Therefore, we examine the effect
of lung segmentation on the performance of CenTime, when trained on
6

Fig. 3. Effect of lung segmentation on the performance of CenTime.

imaging data. We train the model with and without lung segmentation
(using Hofmanninger et al. (2020)) and report the results in Fig. 3.
We do not observe a significant difference in the performance, which
suggests that the model is able to learn the relevant features from the
lung area without the need for explicit segmentation. This also allows
the model to benefit from information in the non-lung area (e.g. heart)
if it is relevant to the survival prediction task.

5. Conclusions

Our work demonstrates the limitations of existing survival methods
and addresses them. Traditional Cox-based methods (i) assume the
strong proportional hazards assumption, which is not always true, (ii)
estimate the relative hazard rather than the actual death time, which is
often more useful and easier to interpret, and (iii) represent a ranking
method and, therefore, require a large batch size, which is not always
feasible. DeepHit (iv) does not encode the ordinal nature of the target
survival time variable, (v) approaches the problem as a classification
task, which becomes prone to overfitting with a large number of classes.
Our CenTime model addresses all these limitations. By modelling the
death and censoring likelihoods, it circumvents the hazards propor-
tionality assumption (i), directly estimates the death time (ii), and

imposes no batch size restrictions (iii). Furthermore, because of the
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adoption of the discretised Gaussian distribution, our model naturally
encodes the ordinal nature of the target survival time variable (iv) and,
by outputting only the discretised Gaussian distribution parameters, is
less susceptible to overfitting (v). Finally, compared to the classical
censoring mechanism, CenTime offers a convenient alternative to the
classical censoring model by providing a consistent estimator even
with purely censored data alone and should be particularly useful in
situations with only very limited uncensored entries.

Our results underscore the effectiveness of CenTime in predicting
the time of death, while also offering competitive performance in terms
of ranking, even without a ranking objective. This makes CenTime a
compelling choice for clinical scenarios where accurate prediction of
the time of death takes precedence over the ranking of patients’ survival
times, particularly when dealing with limited observed death time data.
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Appendix A. Additional forms of censoring

In the main text, we focused on right-censoring, which is the most
common form of censoring in survival analysis. Nevertheless, the ver-
satility of CenTime enables its application to the other variants of
censoring: left-censoring and interval-censoring. In this section, we
discuss these additional types of censoring and delineate how our
7

approach can be naturally adapted to handle them. 
A.1. Left-censoring

In left-censoring, the event is known to have occurred before a
specific time 𝑐. Take, for example, a patient reported dead at time 𝑐,
nd this is all the information we have. We do not know the exact
ime of death, but we know it occurred within {1,… , 𝑐 − 1}. This is

in contrast to right-censoring, where the event is known to occur after
a particular time 𝑐. According to CenTime, we will first sample a death
ime 𝑡 from the distribution 𝑝𝜃(𝑡|𝑥), then sample a censoring time 𝑐 from
distribution whose support is {𝑡+1,… , 𝑇max}. If we assume a uniform

ensoring distribution for states 𝑐 > 𝑡, and using (1), a left-censored
bservation has the following likelihood

(𝐶 = 𝑐|𝑥) =
𝑐−1
∑

𝑡=1

1
𝑇max − 𝑡

𝑝𝜃(𝐷 = 𝑡|𝑥) (A.1)

he likelihood for the uncensored observations remains as 𝑝(𝐷 = 𝑡|𝑥).
eft-censored observations are then incorporated into the objective
unction as follows

(𝜃) =
∑

𝑖∈uncens

log 𝑝𝜃(𝐷 = 𝑡𝑖|𝑥𝑖) +
∑

𝑖∈left-cens

log
𝑐−1
∑

𝑡=1

1
𝑇max − 𝑡

𝑝𝜃(𝐷 = 𝑡|𝑥)

(A.2)

here left-cens denotes the set of left-censored observations.

.2. Interval-censoring

Interval-censoring arises when the event is known to have occurred
ithin a specific time interval {𝑐1,… , 𝑐2}. For instance, a patient is re-
orted to be alive at time 𝑐1 and subsequently reported dead at time 𝑐2.
lthough the exact time of death is unknown, we know that it occurred
ithin {𝑐1,… , 𝑐2}. According to our conditional censoring model, we
ill first sample a death time 𝑡 from the distribution 𝑝𝜃(𝑡|𝑥), then

ample a lower censoring time 𝑐1 from a distribution whose support is
1,… , 𝑡− 1} and an upper censoring time 𝑐2 from a distribution whose
upport is {𝑡+1,… , 𝑇max}. Similarly to the other forms of censoring, we
ssume a uniform censoring distribution for the states 𝑐 < 𝑡 and 𝑐 > 𝑡
or the two censoring distributions, respectively. The likelihood for an
nterval-censored observation is then

(𝐶1 = 𝑐1, 𝐶2 = 𝑐2|𝑥) =
𝑐2−1
∑

𝑡=𝑐1+1

1
𝑡
(

𝑇max − 𝑡
) 𝑝𝜃(𝐷 = 𝑡|𝑥) (A.3)

The objective function is then

L(𝜃) =
∑

𝑖∈uncens

log 𝑝𝜃(𝐷 = 𝑡𝑖|𝑥𝑖)

+
∑

𝑖∈interval-cens

log
𝑐2−1
∑

𝑡=𝑐1+1

1
𝑡
(

𝑇max − 𝑡
) 𝑝𝜃(𝐷 = 𝑡|𝑥) (A.4)

here interval-cens is the set of interval-censored observations.

Appendix B. Cox with memory bank

To overcome this, we use a memory bank (Wu et al., 2018; He
et al., 2020) to store neural network predictions for later iterations.
The memory bank, represented as , is a queue of size ⌊𝐾 × | |⌋

ith 𝐾 representing the fraction of the training dataset stored, and
.⌋ representing the floor function. A 𝐾 value of 1 corresponds to the
torage of the entire training set in the memory bank, while a 𝐾 = 0
eans that no samples are stored, which is equivalent to the standard
ox objective. For every training iteration 𝑖, we calculate predictions
𝜃𝑖 (𝑥𝑖) for the 𝑖th minibatch 𝑚𝑖 and store them in , along with the
orresponding event indicators 𝛿𝑖 and death times 𝑡𝑖 (or censoring times
𝑖 for censored samples). The memory bank  is updated as

 ←  ∥
{

𝑔 (𝑥𝑖), 𝛿𝑖, 𝑡𝑖, 𝑐𝑖
}

(B.1)
𝜃𝑖

https://www.osicild.org
https://www.osicild.org
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Fig. C.4. Model architecture. Left: 3D CNN for processing HRCT scans. Right: MLP to
process clinical data. 𝐹 : Number of filters, 𝐾: kernel size, 𝑆: stride. In the case of using
HRCTs only, the top architecture is used. In the case of using HRCT and clinical data,
the outputs of CNN and MLP are concatenated.

where ∥ denotes concatenation. If the memory bank is full (i.e. || =
⌊𝐾×| |⌋), the oldest samples are removed and new samples are added.
After 𝐼 iterations,  will contain the tuples {𝑔𝜃𝑖 (𝑥𝑖), 𝛿𝑖, 𝑡𝑖, 𝑐𝑖}𝐼𝑖=1. At
each iteration 𝑖, we calculate the risk set 𝑅𝑖

𝑛 for each uncensored patient
𝑛 in  using the stored event indicators and times. The Cox loss for
8

Table D.2
Effect of memory bank size on the
performance of CoxMB model.

K C-Index

0.0 67.441 ± 4.572
0.2 67.968 ± 2.712
0.4 70.884 ± 3.844
0.6 70.154 ± 0.975
0.8 73.294 ± 4.056
1.0 71.067 ± 5.572

samples in  is then calculated using the risk set 𝑅𝑖
𝑛 and the available

predictions in the memory bank as

𝐿(𝜃𝑖) ≡ 1
 𝑖

uncensMB

∑

𝑛∈ 𝑖
uncensMB

⎡

⎢

⎢

⎣

𝑔𝑛
(𝜃≤𝑖) − log

∑

𝑚∈𝑅𝑖
𝑛

exp(𝑔𝑚
(𝜃≤𝑖))

⎤

⎥

⎥

⎦

(B.2)

where  𝑖
uncensMB is the set of uncensored samples in  at iteration

𝑖, and 𝑔𝑛
(𝜃≤𝑖) and 𝑔𝑚

(𝜃≤𝑖) are the predictions for patients 𝑛 and
𝑚 in , respectively, and are functions of the model parameters at
iteration 𝑖 or any previous iteration < 𝑖. The loss is used to update the
current parameters of the model 𝜃𝑖. By updating  at each iteration
and using it to calculate the loss, we can effectively approximate
the Cox loss on a sample size larger than allowed by the standard
Cox objective. We refer to this method as CoxMB and compare its
performance to the standard Cox objective in our experiments.

Appendix C. Model architecture

See Fig. C.4.

Appendix D. Effect of memory bank size in CoxMB

We examine the effect of the size of the memory bank in the CoxMB
model, trained on imaging data. 𝐾 is the fraction of training samples
stored in the memory bank during training. We train the CoxMB model
with different values of 𝐾 and report the results in Table D.2. We
observe that the performance of the CoxMB model improves as the
memory bank size increases. This is expected, as a larger memory
bank allows the model to store more information about the ranking of
patients’ survival times, which is then used to penalise the model for
inaccuracies in predicting the ranking. We anticipate that this depends
on the size of the training set and thus requires tuning for each dataset.
However, we observe that the performance of the CoxMB model is
relatively stable for a wide range of 𝐾 values (0.4 to 1.0), suggesting
that the model is not very sensitive to the choice of 𝐾.
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