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ABSTRACT: Urban climate model evaluation often remains limited by a lack of trusted urban weather observations.
The increasing density of personal weather sensors (PWSs) make them a potential rich source of data for urban climate
studies that address the lack of representative urban weather observations. In our study, we demonstrate that carefully
quality-checked PWS data not only improve urban climate models’ evaluation but can also serve for bias correcting their
output prior to any urban climate impact studies. After simulating near-surface air temperatures over London and south-
east England during the hot summer of 2018 with the Weather Research and Forecasting (WRF) Model and its building
Effect parameterization with the building energy model (BEP–BEM) activated, we evaluated the modeled temperatures
against 402 urban PWSs and showcased a heterogeneous spatial distribution of the model’s cool bias that was not captured
using official weather stations only. This finding indicated a need for spatially explicit urban bias corrections of air tempera-
tures, which we performed using an innovative method using machine learning to predict the models’ biases in each urban
grid cell. This bias-correction technique is the first to consider that modeled urban temperatures follow a nonlinear spa-
tially heterogeneous bias that is decorrelated from urban fraction. Our results showed that the bias correction was benefi-
cial to bias correct daily minimum, daily mean, and daily maximum temperatures in the cities. We recommend that urban
climate modelers further investigate the use of quality-checked PWSs for model evaluation and derive a framework for
bias correction of urban climate simulations that can serve urban climate impact studies.

SIGNIFICANCE STATEMENT: Urban climate simulations are subject to spatially heterogeneous biases in urban
air temperatures. Common validation methods using official weather stations do not suffice for detecting these biases.
Using a dense set of personal weather sensors in London, we detect these biases before proposing an innovative way to
correct them with machine learning techniques. We argue that any urban climate impact study should use such a tech-
nique if possible and that urban climate scientists should continue investigating paths to improve our methods.
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1. Introduction

Although the decades following the 1960s have seen an in-
crease in the body of literature on urban climates (Oke et al.
2017), the scales of applicability and the transferability of the
studies’ outcomes are often limited. This can partially be
attributed to the lack of observations representative of the
variety of existing urban climates in cities. To address this lim-
itation, two major solutions were proposed over the past
20 years: first, the development of urban surface energy bal-
ance coupled to regional climate models (e.g., Masson 2000;
Martilli et al. 2002; Wouters et al. 2016), and second, the increased
interest toward crowdsourced and low-cost weather sensors
(e.g., Muller et al. 2015; Chapman et al. 2017; Fenner et al. 2017;

Meier et al. 2017). After proper validation and parameteri-
zation, urban climate models (UCMs) offer an unprece-
dented opportunity to represent the impact of cities on a
wide variety of weather variables at very high spatial and
temporal resolutions. This has been further supported by
the recent development of global standardized land-use/
land-cover datasets designed for urban climate studies that
permit their parameterization in cities formerly deprived of
these data [see the World Urban Dataset and Access Portal
Tool (WUDAPT) project; Ching et al. (2018), Demuzere
et al. (2022)]. Likewise, after proper filtering and quality
control (Napoly et al. 2018; Fenner et al. 2021), crowdsourced
personal weather sensors (PWSs) permit the extension of sens-
ing networks into urban environments that were formerly not
studied despite the fact that PWSs often do not meet the stand-
ards imposed by official meteorological offices for implementa-
tion of weather stations. Several studies have demonstrated
their range of applications since then (e.g., Fenner et al. 2019;
Venter et al. 2020; Potgieter et al. 2021; Benjamin et al. 2021;
Varentsov et al. 2021; Venter et al. 2021; Brousse et al. 2022).
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One of the major limitations induced by the lack of official
weather stations in cities is that quantifying existing uncertain-
ties as a function of urban climate archetype is not feasible.
This means that urban environments are poorly evaluated
and have a higher chance of being inaccurately modeled be-
cause studies currently assume that UCMs will perform simi-
larly for all types of urban environments that compose a city.
In face of this challenge, crowdsourced PWSs could improve
the evaluation of UCMs, as Hammerberg et al. (2018) demon-
strated over Vienna. But the potential of PWSs may even be
greater, particularly when used jointly with or in parallel to
UCMs. In fact, a recent study by Sgoff et al. (2022) improved
the weather forecasting of the Icosahedral Nonhydrostatic
(ICON) model (Zängl et al. 2015) at a horizontal resolution
of 2 km over Germany by assimilating the data provided by
PWSs for air temperature and relative humidity at 2-m height.
Although data assimilation occurs at runtime, PWSs could
also be used to bias correct urban climate simulations as a
postprocessing step. Oleson et al. (2018) already noted the
need for a global dataset of urban weather observations to
properly bias correct simulated urban climates. We indeed ex-
pect urban climate simulations to have systematic biases that
can be induced for a variety of reasons, such as urban canopy
parameters (Demuzere et al. 2017; Hammerberg et al. 2018;
Zonato et al. 2020), complexity of urban climate models
(Grimmond et al. 2011; Loridan and Grimmond 2012; Lipson
et al. 2021), time at which the simulation is initialized (Bassett
et al. 2020), choice of initial and boundary conditions for lat-
eral and vertical forcing (Brisson et al. 2016), or choice of
model parameterizations}such as the two evaluated in this
work (see section 2). Hence, the UCM will always present a
certain degree of uncertainty that has to be allowed for prior
to performing urban climate impact studies that use climatic
variables derived from modeled simulations to estimate the
impact of the urban climate on other things (e.g., mortality
and biodiversity). Using PWSs could thus be beneficial for ob-
taining realistic urban weather data of present and future
urban climates that can be used to perform urban climate im-
pact studies and guide decision-making.

In this study, we propose to leverage the increasingly dense
network of PWSs over southeast England since 2015 (Brousse
et al. 2022) to evaluate and bias correct urban climate simula-
tions that were run for the hot summer of 2018}the hottest
summer on average in the United Kingdom. Common practi-
ces in bias correction include adding the mean bias to the mod-
eled variable distribution or applying a separate correction to
each quantile of the distribution (Maraun and Widmann
2018). Model biases are usually measured at official weather
stations at rural sites, thereby assuming that the urban heat is-
land phenomenon is accurately represented by the UCM (e.g.,
Lauwaet et al. 2015; Oleson et al. 2018). Some studies, how-
ever, tried considering the urban effect by linearly transform-
ing the bias-correction coefficient via an urbanization ratio
calculated at each grid cell, as in Wouters et al. (2017) over
Belgium. Assuming that urban climate simulations biases can-
not be linearly related to the urban fraction only [here defined
as the total nonnatural fraction of a model grid that composes
an urban canyon (street, roofs, building walls)], we decided to

test whether urban in situ observations can be used to perform
an urban-specific bias correction of air temperatures driven by
machine learning.

We chose to use machine learning regressors to correct the
air temperature biases because machine learning allows us to
perform spatially explicit bias corrections that are directly de-
rived from the observed biases at all PWS locations and that
are related to a set of spatially explicit covariates. Machine
learning regressors of ranging complexities allow for the sta-
tistical discretization of a single relationship between the co-
variates and the variety of biases. To our knowledge, such a
technique has never been proposed as a viable approach for
bias correction of urban climate simulations, probably be-
cause of the lack of observations in urban areas. We hereby
hypothesize that such an innovative bias-correction method
would be beneficial for urban heat impact studies by improv-
ing the UCM outputs on which they rely. Such innovations
are needed to better assess the heat burden in cities (Nazarian
et al. 2022).

To respond to these issues through the scope of urban
near-surface temperatures, we (i) evaluated the ability of the
complex three-dimensional UCM embedded in the Weather
Research and Forecasting (WRF) Model}the building effect
parameterization coupled with its building energy model
(BEP–BEM)}to accurately represent the urban impact on
air temperatures under two boundary layer schemes for the
summer of 2018 in southeast England using official weather
stations and PWSs separately to show their added value for
detecting spatially heterogeneous urban temperature biases;
(ii) used machine learning regressions to predict the models’
daily air temperature biases in the urban environment and
bias correct the two simulations suggested in step i}which al-
lowed us to determine an optimal time step at which the bias
correction should be performed to optimize the outputs; and
(iii) compared the two bias-corrected products against the
predicted daily air temperatures using only PWS measure-
ments to investigate how realistic the bias-corrected products
are. In parallel, to illustrate the benefit gained from the bias
correction for impact studies, we showcase how the bias cor-
rection leads to different population weighted temperatures
in the Greater London area. We also estimated the number of
PWSs that are necessary to achieve optimal machine learning
regressors’ performance and tested the added value of official
weather stations for bias correction.

It is important to consider that our study does not try to es-
timate how a bias-corrected modeled product is better com-
pared to a predicted product from observations for urban
climate impact studies. We hereby simply try to demonstrate
that any urban climate impact work that is based on urban
climate modeling should pursue a spatially explicit bias cor-
rection specific to urban areas.

2. Methods

a. Model setup and region of interest

We focused our study on the southeastern parts of England,
centered over the metropolis of London, host to approximately
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9 million inhabitants. We chose to model the impact of urbani-
zation on 2-m air temperature in London during the summer of
2018, since it was the hottest summer on average in the United
Kingdom (McCarthy et al. 2019). During the British Isles
heatwaves, maximum daily temperatures often surpassed 308C
(Fig. 1) with a maximum of 34.48C measured at London’s
Heathrow Airport on 26 July. This former record has yet been
broken in 2019 and 2022.

To model the impact of the urban areas of London and
southeast England on local meteorology, we used the WRF
regional climate model, version 4.3, and activated the embed-
ded BEP (Martilli et al. 2002) urban climate model with its
partner BEM (Salamanca et al. 2010; Salamanca and Martilli
2010)}hereinafter referred to as BEP–BEM. We ran the
model at a horizontal resolution of 1 km 3 1 km following a
two-way nesting strategy where the outer domain is forced by
ERA5 6-hourly data at 25 km with 199 3 199 grid points and
the two intermediate domains are run at horizontal resolu-
tions of 9 and 3 km with 252 3 241 and 210 3 180 grid points,
respectively (Fig. 2, top). Initial land surface conditions were
provided by the default MODIS 5-arc-s land-use dataset pro-
vided by the WRF community, whereas sea surface tempera-
tures were updated 6-hourly out of ERA5. No lake models
were activated, hence meaning that inland freshwater bodies
are given the MODIS Water land cover class and are not up-
dated on 6-hourly time steps as sea surface temperatures. We
ran the model in parallel over 200 CPUs using restarts every
4 days of simulation. We started the simulations on 25 May
2018 and ended them on 31 August 2018, considering the first
7 days of simulation as spinup time.

All domains used the same physical and dynamical parame-
terizations we obtained from preliminary testing done over
the two hottest days of the summer 2018}26 and 27 July 2018
(see appendix A). We thereby used the WRF single-moment
3-class microphysics scheme (Hong et al. 2004), the Dudhia
shortwave and RRTM longwave schemes (Dudhia 1989;
Mlawer et al. 1997), and the revised MM5 surface layer

scheme (Jiménez et al. 2012). In the first domain, the Kain–
Fritsch convection scheme was activated (Kain 2004) and
then turned off in the second and third domains, which were
at convection-permitting scales. We set the model top at
50 hPa with an additional 5000-m damping layer and subdi-
vided the atmosphere into 56 vertical layers. We used the
Noah-MP land surface scheme (Niu et al. 2011; Yang et al.
2011) in its default parameterization over four soil layers.

Urban canopy parameters required by the WRF BEP–
BEM Model were provided via the newly standardized
WUDAPT-TO-WRF (W2W) Python package developed by
Demuzere et al. (2021), following the FORTRAN version
used by Brousse et al. (2016). This allowed the transfer of spa-
tially explicit morphological urban canopy parameters suit-
able for urban climate simulations via local climate zone
(LCZ) maps covering the inner domain (Fig. 2, bottom). We
use the European LCZ map by Demuzere et al. (2019). Ther-
mal and radiative parameters are also directly derived from
the LCZ classification and follow those used by Stewart et al.
(2014), who used these parameters for the city of Basel, Swit-
zerland. Each parameter for roofs, walls, and roads is related
to each modal LCZ of the 1-km grid cell via the URB-
PARM_LCZ.TBL (see Table 1). We decided to keep the
roughness length for momentum and the lower boundary for
temperatures of roofs, walls, and roads identical across each
LCZ. We fixed the roughness length at 1.00 3 1024 m for
walls and at 0.01 m for roofs and roads, respectively. This
does not mean that the effective roughness length at the bulk
level does not differ between urban morphologies. Although
materials composing them are considered identical in the drag
they impose on the flow, their density and height will matter.
Urban canyons with buildings above 25 m and another with
buildings below 5 m will effectively have a different roughness
length. For the boundary temperatures, we set it at 299 K for
the roofs and the walls, respectively, and at 293 K for the
road. We chose to deactivate the air conditioning in our simu-
lation because air-conditioning systems are not common in

FIG. 1. Diurnal ranges of temperatures observed by the Met Office MIDASAWSs. The urban St. James’ Park station in central London
(dark gray) is always hotter than the average temperature of all MIDAS stations in southeast England (light gray) for daily average, mini-
mum, and maximum temperatures. The thick lines represent the daily average temperature, and the shading represents the spread be-
tween daily maxima and minima.
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residential areas across London and surrounding cities, which
compose the majority of the land use/land cover.

In this study, two potential planetary boundary layer (PBL)
schemes are compared in terms of performance and need of
bias correction: the commonly used Bougeault–Lacarrère
scheme (BouLac; Bougeault and Lacarrere 1989) for urban
simulations that use BEP–BEM and the recently coupled
YSU scheme to BEP–BEM (Hong et al. 2006; Hong and Kim
2008; Hendricks et al. 2020). Although we found that the lat-
ter performed better over the two hottest days of summer
2018 (see appendix A), we decided to keep a simulation with
BouLac as YSU has only been applied over Dallas (Wang

and Hu 2021), whereas BouLac has been used in multiple studies
already (e.g., Salamanca et al. 2011, 2012; Gutiérrez et al. 2015;
Tewari et al. 2017; Mughal et al. 2019). The Mellor–Yamada–
Janjić (MYJ; Janjić 1994, 2001) scheme, also available for BEP–
BEM simulations, is disregarded in this study since this PBL
scheme is especially used for mountainous terrain (Zonato et al.
2022), and we are modeling the relatively flat terrain of southeast
England.

b. Model evaluation prior to bias correction

We evaluated the model’s performances against 35 official
weather stations’ measurements of air temperature at 2 m

FIG. 2. (top) Domain nesting and (bottom) urban land cover in the inner domain. The WRF nesting strategy consists of three nested
domains at 12-km (D1), 3-km (D2), and 1-km (D3) horizontal resolution. The altitude is plotted to highlight the flat terrain of southeast
England covered in D3. In the lower panel, the resulting urban landcover in D3 after using the WUDAPT-TO-WRF Python tool is presented
in the form of LCZ. The MIDAS official AWSs and the Netatmo PWSs used for the evaluation of the model and the subsequent bias correc-
tion using PWSs only are overlayed in gray. The sea is shown in blue in the bottom panel, and coastlines are drawn in black in the top panel.
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obtained from the Met Office Integrated Data Archive Sys-
tem (MIDAS) network (Sunter 2021; UKMO 2021; Fig. 1,
lower panel). To address the issue of lack of official observa-
tions among the urban environment, we used Netatmo PWSs
to complement the model evaluation (Fig. 1, lower panel).
The Netatmo PWS measurements were obtained through the
Netatmo developer application programming interface (API)
and were collected for all PWSs contained within the inner-
most domain of WRF and that were running over the 2015–20
period [more information can be found in Brousse et al.
(2022)]. Prior to the evaluation, unrealistic PWS measure-
ments were filtered out using the Crowd-QC v1.0 R package
from Grassmann et al. (2018). This statistical quality check
and filtering method is based on the assumption that the
whole set of PWSs should be regarded as a reference to indi-
vidual stations’ specificities. Through four main obligatory
quality checks}potentially complemented by three optional
checks}erroneous data are removed. Details of this filtering
method can be found in other publications like Napoly et al.
(2018) and/or Brousse et al. (2022) who used the same dataset
over London. For the summer 2018, the filtering reduced the
dataset from 935 potential PWSs to 909 potential stations
over the whole domain. Such filtering has already been ap-
plied over several studies, including a large-scale study by
Venter et al. (2021) over a European city, and has recently
been ameliorated into the CrowdQC1 package (Fenner et al.
2021). The purpose of this study is not to test the effect of
the PWS quality check on the model evaluation and bias
correction.

After quality checking the PWSs, we also added an addi-
tional filtering where we removed PWSs that did not have suf-
ficient temporal data coverage and that were not located in an
urban pixel according to WRF. Only PWSs that have less
than 4 h per day without data and that are located in urban
pixels with an urban fraction greater than 0 are retained}
where the WRF land use/land cover at 1-km horizontal reso-
lution refers to an LCZ. This ensures that we do not include
measurements that are not representative of the daily varia-
tions in air temperatures or built-up environments. Addition-
ally, the prior filtering performed using the CrowdQC package

also ensures that measurements that are not representative of
outdoor thermal variations (e.g., indoor sensors) or that are re-
sulting from defective sensors are taken out. Overall, the filter-
ing step is necessary to ensure that our model outputs are
evaluated against measurements of sufficient quality and that
the subsequent bias correction is deprived of unnecessary
noise in the data that could lower its performance. This re-
sulted in a sample of 402 PWSs usable for model evaluation
and bias correction. Out of these, 354 were located in WRF
grids classified as LCZ 6, 30 in LCZ 5, 8 in LCZ 2, 6 in LCZ 8,
3 in LCZ 9, and 1 in LCZ 3.

Each model simulation was evaluated using a set of common
statistical indicators: the root-mean-square error (RMSE), the
mean absolute error (MAE), the mean bias (MB) error,
Spearman’s coefficient of correlation (r), and the square of
Pearson’s coefficient of correlation (r2). These metrics are ob-
tained using the Python scikit-learn and scipy’s stats packages
from Pedregosa et al. (2011) and Virtanen et al. (2020).

c. Bias correction using personal Netatmo
weather stations

In our study, we propose an innovative method to bias cor-
rect urban temperatures at a horizontal scale of 1 km by using
machine learning regression. The advantage of using machine
learning regression compared to more common bias-correction
strategies (e.g., the definition of a single bias coefficient) is that
we are able to relate our model output biases out of spatially
varying and explicit sets of parameters. In our case, we make
the assumption that the spatial variation in the bias of the
model is dependent only upon the spatial morphological inputs
to the UCM. These include the urban fraction, the surface
height, the average building height, the building surface to plan
area fraction (lb), the plan area fraction (lp), and the frontal
area fraction (lf). Using this set of predictive covariates, we
train our regressors to predict the bias in the modeled air tem-
perature at 2 m (T2) based on observed biases at urban PWS lo-
cations. In this way, we are able to bias correct the modeled
temperatures in each urban pixel based on the predicted bias
(T2 2 biaspred). Our bias correction does not make use of of-
ficial MIDAS weather stations as their use is considered

TABLE 1. Thermal and radiative parameters per LCZ based on Stewart et al. (2014). Road parameters are considering a mixture of
asphalted and concrete road pavements and grass.

Heat capacity (J m23 K21)
Thermal conductivity

(J m21 s21 K21) Albedo Emissivity

Roof Wall Road Roof Wall Road Roof Wall Road Roof Wall Road

LCZ 1 1.80 3 106 1.80 3 106 1.75 3 106 1.25 1.09 0.77 0.13 0.25 0.15 0.91 0.90 0.95
LCZ 2 1.80 3 106 2.67 3 106 1.65 3 106 1.25 1.50 0.73 0.18 0.20 0.16 0.91 0.90 0.95
LCZ 3 1.44 3 106 2.05 3 106 1.63 3 106 1.00 1.25 0.69 0.15 0.20 0.18 0.91 0.90 0.95
LCZ 4 1.80 3 106 2.00 3 106 1.54 3 106 1.25 1.45 0.60 0.13 0.20 0.20 0.91 0.90 0.95
LCZ 5 1.80 3 106 2.00 3 106 1.50 3 106 1.25 1.45 0.62 0.13 0.25 0.20 0.91 0.90 0.95
LCZ 6 1.44 3 106 2.05 3 106 1.47 3 106 1.00 1.25 0.60 0.13 0.25 0.21 0.91 0.90 0.95
LCZ 7 2.00 3 106 7.20 3 105 1.38 3 106 2.00 0.50 0.51 0.15 0.20 0.24 0.28 0.90 0.92
LCZ 8 1.80 3 106 1.80 3 106 1.80 3 106 1.25 1.25 0.80 0.18 0.25 0.17 0.91 0.90 0.95
LCZ 9 1.44 3 106 2.56 3 106 1.37 3 106 1.00 1.00 0.55 0.13 0.25 0.23 0.91 0.90 0.95
LCZ 10 2.00 3 106 1.69 3 106 1.49 3 106 2.00 1.33 0.61 0.10 0.20 0.21 0.91 0.90 0.95
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detrimental to the bias correction following an analysis on
sample size and sensor types given in appendix B.

We chose to bias correct the simulated daily minimum,
maximum, and average T2 (T2min, T2max, and T2mean, respec-
tively) using filtered PWS observations in London and south-
east England. Daily temporal scale is considered optimal as it
combines a higher spatial density of measurements compared
to hourly data and a lower computational requirement; it is
also a commonly used temporal scale for urban heat impact
studies. Daily minimum and maximum air temperatures at
2 m are defined following the Met Office Hadley Centre defi-
nition: minimum temperature observed from 0900 local time
(LT) of the previous day d 2 1 to 0900 LT of the d day and
maximum temperature observed from 0900 LT of the d day
to 0900 LT of the next day d1 1 (Hollis et al. 2019).

We test the ability of six different regressors of increasing
complexity available in the Python scikit-learn packages
(Pedregosa et al. 2011) to predict the model bias based on
WRF spatial urban canopy parameters only. These regressors
are dummy regression (which simply returns the mean bias),
linear regression, Ridge regression, Lasso regression, random
forest regression, and gradient boosting regression. Each of
the different regressors, except the dummy regression, offers
a set of parameters that can be fine-tuned to increase each re-
gressor’s performance. Hence, prior to running the daily bias
correction, we use a 5-K-fold cross validation using the Grid
Search CV package from scikit-learn in Python to evaluate
the impact of hyperparameter tuning on the regressors’ per-
formances based on RMSE, MAE, and r2. The cross validation
is done over the summertime average daily mean temperature
bias from the YSU run only, for computational reasons. We re-
tain RMSE as the refitting score to better capture the spatial
spread and extremes of T2. The resulting parameterizations are
given in Table 2. We chose to keep the same hyperparameter
tuning for all bias correction and predictions to ease compara-
bility between the outcomes.

Once the hyperparameter tuning is done and prior to per-
forming the final bias correction, we test if the bias correction
is beneficial for palliating to the models’ bias and if it also
benefits from training the regressors at the daily time step or
if a training using the time-mean bias is sufficient. To perform
this evaluation using the same metrics as in the model evalua-
tion, we bootstrap each regressor 25 times per day, randomly
sampling 80% of the PWS locations that had data available
on that day as training and keeping the remaining 20% as
testing}for both the daily minimum, daily maximum, and
daily average and their respective summertime-mean average.

We then first average all bootstrapped T2_BC at the testing
PWS sites before performing a subsequent averaging to ob-
tain an average T2_BC at the daily time step representative of
all randomly selected testing PWS sites. These are evaluated
against the daily average of all observed temperature at the
PWS sites}for daily minimum, maximum, and average. In
short, we are measuring how well the two different types of
bias correction perform under all regressors for capturing the
daily variation (n5 92 days) of temperature on average.

After this final step, we bias correct both the BouLac and
YSU runs using 100% of the measured biases and related co-
variates at PWS locations to compare the spatial outcomes.
We also predict T2 out of PWSs’ observed T2 with the same
set of covariates used to predict the model bias to illustrate
how divergent each bias-corrected model output is to a simpli-
fied predicted T2 that is not a derivative of any model con-
straint. Because more refined and complex techniques exist to
predict air temperature from PWSs and very high-resolution
Earth observations (e.g., Venter et al. 2020, 2021), we do not
evaluate these predicted temperatures that should simply be
considered as an illustration of how bias-corrected products
are similar or divergent to observational data.

Last, to illustrate the potential benefit of modeled air temper-
ature bias correction prior to urban heat impact studies, we cal-
culate the average population weighted temperatures}based
on the United Kingdom census data from 2011}in Greater
London before and after the bias correction.

3. Results

a. WRF simulation evaluation

When we evaluate the two model simulations against MIDAS
official weather stations only, they perform similarly, demonstrat-
ing a systematic negative bias of ;0.558C on average (Table 3).
The average correlation with the automatic weather stations
(AWSs) following the squared Pearson’s r2 is of 0.77 for BouLac
and 0.79 for YSU, whereas using Spearman’s r, it is of 0.86 and
0.88, respectively. A slight decreased performance is found in
urban pixels for YSU, with an average MAE of 1.838C and a
negative MB of 0.798C compared to BouLac’s 1.828C for
MAE and20.568C for MB. In general, the bias is more impor-
tant at night, and in nonurban stations, performances are simi-
lar. Hence, looking only at the models’ performances using
standard in situ observations does not provide information on
which model represents the urban climate more accurately.

On the other hand, comparison with PWS observations
identifies differences in performance in urban areas between

TABLE 2. Hyperparameter tuning used by each regressor.

Model Parameters dictionary

Linear ‘normalize’: False
Ridge ‘alpha’: 1, ‘normalize’: True, ‘random_state’: 42, ‘solver’: ‘lsqr’, ‘tol’: 0.01
Lasso ‘alpha’: 1, ‘normalize’: False, ‘random_state’: 42, ‘selection’: ‘random’, ‘tol’: 1 3 10210

Random forest ‘max_features’: ‘sqrt’, ‘min_samples_leaf’: 11, ‘min_samples_split’: 2, ‘n_estimators’: 400, ‘random_state’: 42
Gradient boosting ‘learning_rate’: 0.2, ‘max_depth’: 3, ‘max_features’: ‘sqrt’, ‘min_samples_leaf’: 10, ‘min_samples_split’: 22,

‘n_estimators’: 200, ‘random_state’: 42, ‘subsample’: 0.2
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the models, as shown by the performance metrics plotted in
Figs. 3a and C1. The BouLac simulation has a stronger cool
bias of 21.468 6 0.68C on average in the urban area, com-
pared to YSU’s MB of 20.978 6 0.818C. RMSE and MAE
are similar, with values of 2.798 6 0.368C and 2.198 6 0.318C
for BouLac and 2.658 6 0.408C and 2.148 6 0.348C for YSU.
These metrics are consistent with the MIDAS observations,
highlighting a systematic cool bias of the model and a coeffi-
cient of determination (r2) of 80%. Importantly, the vari-
ability in the model’s performance is greater in the YSU
run}reflected by greater standard deviations of perfor-
mance metrics}and, in the BouLac simulation, the metrics

are more heterogeneously distributed among the urban
area. Indeed, when we look at the YSU simulation, we can
see that the model has a smaller MB in suburban areas and
a greater MB in the city center. Yet, in parallel, the correla-
tion with the PWSs is lower in the suburban areas and
higher in the center of the city. This could mean that YSU
accurately represents the urban temperatures on average
due to compensating effects, which we do not intend to eval-
uate in this study. Nevertheless, this shows how PWSs are
beneficial for capturing the spatial heterogeneity of each
model’s performance and therefore supports the use of spa-
tially varying bias correction.

FIG. 3. Performance metrics calculated at the location of each citizen PWS for the two model simulations using
different planetary boundary layer schemes (YSU and BouLac). The metrics are calculated over the whole summer
2018 with hourly outputs of near-surface air temperature at 2 m. RMSE and MB are given in degrees Celsius (8C).
The coefficients of correlation measured with the squared Pearson’s r are also provided. MAE and Spearman’s r are
given in Fig. C1 in appendix C to increase clarity.

TABLE 3. Average of all performance metrics calculated at each MIDAS official weather stations for hourly air temperature at
2 m for the summer period (1 Jun 2018–31 Aug 2018). Urban stations are stations located in a pixel classified as an urban LCZ in
WRF and rural stations are located in other natural land use/land cover.

BouLac YSU

RMSE MAE MB r2 r RMSE MAE MB r2 r

All 2.33 1.82 20.56 0.77 0.86 2.31 1.83 20.57 0.79 0.88
Urban 2.42 1.88 20.73 0.76 0.86 2.42 1.92 20.93 0.77 0.87
Rural 2.32 1.81 20.53 0.78 0.86 2.28 1.81 20.50 0.80 0.88
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b. Bias correction of urban climate simulations

Over our domain of study covering southeast England during
the summer 2018, both models are subject to a cold negative
bias of ;20.58C on average according to official stations and
from ;21.08 to ;21.58C according to PWSs. But as demon-
strated above, the bias of the models against PWS observations
has substantial spatial variation, and so, the bias correction for
urban heat impact studies should be spatially explicit.

We find that each machine learning regressor gives a similar
performance (Fig. 4; values numerically given in Tables C1
and C2 in appendix C). All bias corrections were, however, bene-
ficial compared to the original outputs from the WRF Model,
reducing RMSE, MAE, and MB by 0.298, 0.328, and 1.028C on
average. The bias correction was most efficient for daily minimum

temperatures and less for daily maximum temperatures, where
RMSE was not diminished}if not slightly increased (by 0.058C
for YSU daily maximum temperatures, for example)}by the
time-step bias correction. Interestingly, the spatial correlation be-
tween the bias-corrected and observed temperatures are low,
with values ranging from around 0.02 to 0.2 for the squared
Pearson’s r and from around 0.15 to 0.45 for Spearman’s r.
This can be expected as machine learning algorithms have dif-
ficulties representing a time-varying variable with static spatial
elements only (Georganos et al. 2021; Venter et al. 2021). Un-
expectedly, we find that the training at the daily time step does
not outperform the training at the summertime mean in terms
of spatial correlation with the heat distribution across London.
Nonetheless, if we take the average daily minimum, daily mean,

FIG. 4. Performance metrics for the model prior to the bias correction (WRF) and all the different regressions (ran-
dom forest: RF; linear regression: LinReg; Ridge regression: Ridge; Lasso regression: Lasso; gradient boosting: GB;
and dummy regression: Dummy). The different regressions are assigned a suffix: “avg” for regressions that were
trained on the summertime-mean average of daily minimum, daily mean, or daily maximum temperatures and “tstep”
for those that were trained with the temperatures at each daily time step.
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and daily maximum temperatures of all PWSs and compare it to
the modeled temperatures, we find that the time-step bias correc-
tion is closer to the observations (Figs. C2–C4). Last, we find that
greater model performance is achieved with a minimum of
;24% (96 PWSs) of the whole sample of PWSs and that official
weather stations are detrimental to the regressors’ performance
(see appendix B).

Comparing the spatial differences of the bias-corrected
products related to the complexities of each regressor, we find
that although each regressor is performing similarly on aver-
age, important disparities are found between the outputs. For
example, when looking at the average bias correction imposed
to daily minimum temperatures after training the regressors
at each time step, the Lasso and Ridge regressors impose a
flat bias correction, similar to the dummy regression, whereas
the random forest and gradient boosting regressors’ degrees
of freedom result in a spatially diverse bias correction (Figs. 5,
C5, and C6). Besides, the linear regression imposes an aver-
age bias correction spatially correlated to the modal LCZ. In
general, the signal is consistent across each regressor, apart
from the Lasso regression and the dummy regression, where,
for YSU, central London requires a stronger bias correction
by 18–28C compared to the suburban areas where the bias cor-
rection is around 0.58C; for BouLac, the central bias correc-
tion is lower than YSU. We find that these spatial tendencies
are also found for daily maximum and daily average tempera-
tures, defending our hypothesis of a systematic bias correlated
to spatially explicit input parameters. The spatial differences
in bias correction are, however, less important for daily maxi-
mum temperatures, which is the time at which the urban heat
island is also expected to be the lowest.

Finally, we find that the bias-corrected BouLac simulation
corresponds spatially to predicted temperatures using PWSs
more than YSU}something we find equally across all regres-
sors (Figs. 6 and C7–C11). As an example, when comparing
the average bias-corrected products using the time-step-trained
random forest regressor, we can see that YSU’s urban heat
is more homogeneously distributed than BouLac’s or the
predicted temperatures from PWSs only. BouLac’s bias-
corrected product shows stronger urban heat in central
London compared to suburban areas, coherent with the pre-
dicted temperatures. Nonetheless, BouLac’s suburban areas
are hotter by 0.58–1.08C than the predicted ones with PWSs
only. This remains less pronounced than in YSU. Last, we
can see that both bias-corrected products show similar trends
when compared to the PWS-only predicted temperatures with
hotter suburban areas and cooler secondary cities as well as
coastlines. Again, this does not show which product between
the PWS-only predicted temperatures and the bias-corrected
products is better since we do not evaluate this here.

These results show that bias correction of modeled air tem-
peratures changes their spatiotemporal distributions. When
focusing on the potential impact bias correction may have in
estimated urban heat impact on urban health, we find that us-
ing the random forest regression trained at each daily time
step leads to an increased average population weighted tem-
perature by 0.778C in the YSU case and by 1.248C in the

BouLac case. Raw model outputs are thereby lowering the
impact of heat on the urban population.

4. Discussion

In this study, we argue that the joint use of data from
crowdsourced PWSs and UCMs can add value to urban cli-
mate research and in particular to urban climate impact re-
search. This is supported by two major outcomes of our case
study focused over London during the summer 2018. First, we
showed that evaluation of urban climate simulations using
PWSs enables the detection of spatially varying systematic
biases in urban areas related to the UCMs’ parameterization,
which are not detectable using only official weather stations.
Second, we demonstrated that PWSs, combined with detailed
morphological data derived from LCZ maps, can be used to
derive a spatially varying bias correction via commonly used
machine learning regressors. This latter point has major impli-
cations for urban climate impact research}and especially fu-
ture urban climate impact studies}as we hereby propose the
first bias-correction technique that considers the existence of
a nonlinear spatially heterogeneous bias in modeled urban
climates.

Of course, using PWSs for evaluating UCM simulations
should always cautiously be considered because of the lower
accuracy of PWSs and the potential uncertainties related to
user-driven mistakes in the setup of their PWSs (e.g., indoor
sensors instead of outdoor, poor shading conditions, height of
the sensor). However, reliable tools have now been developed
since the first use of PWSs for model evaluation by Hammerberg
et al. (2018) to filter dubious measurements out [e.g., CrowdQC
from Napoly et al. (2018) or CrowdQC1 by Fenner et al.
(2021)], thus making PWS observations increasingly reliable.
This does not resolve the question of the representativity of
measurements, that is, “how is one PWS measurement repre-
sentative of the simulated urban pixel?” Yet, the increasing
density of PWSs in the urban environments begins to alleviate
this uncertainty}despite a recognized unequal distribution of
PWSs among a variety of environmental, socioeconomic, and
demographic indicators (Brousse et al. 2023). For example,
Venter et al. (2020) found that a density of one PWS per
square kilometer is optimal for predicting seasonal air tem-
perature in Oslo. Dense PWS networks hence permit the
detection of systematic biases that would otherwise pass unde-
tected. Therefore, to support the development of PWSs as a
source of urban weather observations for model evaluation,
urban climate scientists should identify an optimal density of
PWSs for UCM evaluation, to define which cities need urban
weather observations, and to start instigating common frame-
works and standards.

We consider our study to be innovative and supportive of
future advances in the field because it is the first bias-correction
technique in urban environments that considers that the accu-
racy of the simulated UHI is spatially heterogeneous due to the
complexity of the urban surfaces and the lack of a linear correla-
tion between urban environmental archetypes and temperatures
at local scales. Aided by the expanding fields of crowdsourcing
weather observations through PWSs, machine learning, and
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potentially deep learning, we infer that our work should serve
as the basis of future research that would try to improve the
bias correction of urban climate models using PWSs. For in-
stance, we did not find any machine learning regressor to be

more efficient at predicting the model bias. This could be ex-
plained by the rather restricted set of covariates we used for
training the regressors as well as the coarse horizontal resolu-
tion of 1 km at which the covariates were aggregated to be

FIG. 5. All regressions propose different bias corrections (DT2) of the average modeled absolute daily minimum
urban temperature (T2min). Differences of bias correction are observed between the runs with different planetary
boundary layer schemes (BouLac and YSU). The center of London is subject to a stronger bias correction. Rural
lands are masked in gray, and the seas are shown in blue. Bias corrections of daily mean and maximum temperatures
are given in Figs. C5 and C6.
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consistent with the model’s spatial resolution. Higher spatial
resolutions and more specific satellite Earth observations
could be used to improve regressors’ performance, following
up on the work by Venter et al. (2021), for example. When
modeling the near-surface UHI, their regressor achieved simi-
lar performances as ours, with an RMSE of 1.058C and Pear-
son’s r2 of 0.23; it is important to note that these are the
performance metrics for predictions of temperature rather
than urban climate model bias. Although the common use of
model’s input parameters and Earth observations as covariates
could be beneficial, particular attention should be given to the
choice of Earth observations since these should not be decor-
related to the model’s physics and dynamics as the purpose
would remain the bias correction.

Independent of the set of covariates used in this study, we
found that the regressors’ performances greatly improved
when trained over a certain number of PWSs (more than
;90) before plateauing. Because of this, future research
should try to investigate how machine learning regressors
could benefit from unfiltered PWS data and other PWS data
sources. Interestingly, we found that official sources of data
like MIDAS were detrimental to the regressors, potentially
because official weather stations tend to be placed in open
fields or parks without surrounding built-up areas to increase
measurement accuracies. This would explain why our regres-
sors tended to further increase the systematic cool bias when
using only MIDAS stations for training as parks are typically
cooler at night and on average than more urbanized areas
where PWSs are located. In addition, we found that training
regressors at the daily time step did not outperform training
with the summertime-mean average. Regressors could there-
fore gain in performance by adding a temporal component to
the covariates. Following up on this idea, the recent work by
Zumwald et al. (2021) tried predicting the near-surface air
temperature in Zurich for 30 June 2019 out of ;650 Netatmo
PWSs’ measurements during the preceding week. Their set of
covariates consisted of spatial Earth observations as well as
35 meteorological predictors that were all derived from one
of the official automatic weather stations. The latter predic-
tors helped train the model to recognize how the temperature
measured at each PWS location was related to the meteoro-
logical variables measured at the automatic weather stations.
Their predictions at hourly time steps achieved reasonable
performances with RMSEs around 1.708C. Bias correction of
UCM simulations could hence be improved by incorporating
temporally explicit meteorological observations from offi-
cial weather stations. Notwithstanding, this would require
extensive investigation of the area down to which each offi-
cial station is representative for training the regressors.
More geographically oriented machine learning regressors,
like the geographical random forests (Georganos et al. 2021),
could also help integrate these spatial heterogeneities for an
improved bias correction.

In general, we support the use of quality-checked PWS obser-
vations for bias correction of urban climate simulations. As
shown in this case study, model outputs prior to any bias correc-
tion could lead to under- or overestimation of urban heat im-
pact on public health. We indeed find that for the summer 2018

in London, average population weighted temperatures}which
are directly correlated to heat-related mortality}were higher
after bias correcting the model outputs. This suggests that there
could be a higher urban heat-related mortality during this pe-
riod that would not be captured without bias correction. This
simple example shows that bias correction of urban climate sim-
ulations could have important implications for calculating the
exposure of urban citizens to heat or estimating the urban heat-
related mortality. Although preferring bias-corrected model
outputs to predicted urban air temperatures from Earth obser-
vations for present-day urban heat impact studies is not covered
in this study}and must be further explored}we still argue that
bias correction should be done prior to any urban heat impact
studies that imply using climate model outputs. This argument
is especially valid for future climate projections at urban scale,
and we encourage future research to investigate how to transfer
present urban bias-correction coefficients to simulated future
urban climates. Doing so, bias-corrected simulations could
help targeting areas where heat mitigation or adaptation strat-
egies could be more beneficial as their efficiency is dependent
on their location and scales of implementation (Yang and
Bou-Zeid 2019; Broadbent et al. 2022). We also suggest that
our methods could be extended to other fields of urban clima-
tology and urban air quality. Several devices already offer the
possibility to obtain information on air quality, precipitation,
or wind speed, to name a few (de Vos et al. 2020). Hence, bias
correction of regional climate models’ outputs using crowd-
sourced data should not be restricted only to air temperatures.

5. Conclusions

We demonstrate that the higher density of quality-controlled
data from personal weather sensor measurements of tempera-
tures in cities like London is beneficial for urban climate model
evaluation. We then show that PWSs could be helpful for bias
correcting modeled temperatures using a set of machine learn-
ing statistical regressors. We did not observe tangible differ-
ences in performance of the regressors to predict the bias at
various locations. A minimum of;24% of the total sample size
of PWSs (96 stations of the 402 used in this study) was required
to efficiently train our regressors; official weather sources like
MIDAS were detrimental to the urban bias correction, proba-
bly because of site specificities. Our work has important impli-
cations for urban climate impact studies that would make use of
urban climate model outputs.
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APPENDIX A

Model Sensitivity Testing over the Two Hottest Days of
Summer 2018

Prior to running the 3-month simulation, we tested the
model’s sensitivity to a set of parameterizations to assess
which model is the best performing model for the 3-month
simulation. We perform the sensitivity in a progressive way;
parameters are kept if beneficial and removed if detrimen-
tal. We chose to run the simulations over the two hottest
days of the summer 2018 with one additional day as spinup
time}from 25 to 27 July 2018}to see how the model is capa-
ble of accurately representing an extreme condition in terms
of air temperature at 2 m}tested against official MIDAS au-
tomatic weather stations and personal Netatmo PWSs. The
model was also tested for relative humidity and wind speed at
10 m at MIDAS locations where records were available. All
wind speed measurements are converted from knots to meters
per second.

We start from Heaviside et al. (2015) model’s parameteriza-
tion, who simulated the impact of urbanization on the local
climate in the West Midlands in England but supplement the
Coordination of Information on the Environment (CORINE)
land-use/land-cover by the local climate zones classification in-
stead since Brousse et al. (2016) compared both products and
proved the added value of LCZ over Madrid. We chose the
work by Heaviside et al. (2015) as a starting point since it
also uses the BEP urban climate model, coupled to the WRF
Model and is one of the only WRF simulations done over
England.

From there, our simulations tested (i) the use of YSU, re-
cently coupled to the BEP–BEM (Hendricks et al. 2020),
instead of Bougeault–Lacarrère; (ii) the use of the more
complex land surface scheme Noah-MP in its default pa-
rameterization instead of the default Noah land surface
model; (iii) the forcing by ERA5 reanalysis data at 25-km
horizontal resolution instead of ERA-Interim; and (iv) the

reduction of soil moisture by 50% and its increase by 200%,
following suggestions provided by Martilli et al. (2021). We
chose not to test the impact of urban canopy parameters in
this case to keep our simulations standardized and universally
coherent through the LCZ scheme. Their simulation used the
same micro, clouds, convection, and radiation physics as ours.

We found that all steps taken from the original parame-
terization by Heaviside et al. (2015) were beneficial to the
model’s performance. Through an intermediate simulation
where we tested again the BouLac turbulence scheme after
step iii, we found that YSU was still performing better.

APPENDIX B

Sensitivity of Machine Learning Regressors to Data
Quality and Quantity

Before running our bias correction and our bootstrap-
ping, we needed to evaluate the degradation in perfor-
mance of all the regressors in relation to the quantity of
data available for training. In this way, we could ascertain
that the chosen amount of 80% for running the bootstrap-
ping procedure was not detrimental to the regressors’
performances. Additionally, despite the fact that official
weather data coming from MIDAS are usually coming
from open fields like airports or parks, we still chose to
test how our model performs if only these data were avail-
able for bias correction, thereby ensuring that the use of
the dense network of PWSs is useful for bias correction.
To test this, we trained all the regressors over both WRF
boundary layer conditions to bias correct the summertime
average daily mean, minimum, and maximum temperatures.
This means that we are testing the ability of the regressors
to predict the bias at certain PWS locations to correct the
modeled temperature. In this case, we evaluate the bias-
corrected temperatures against the observed temperatures.
We chose not to run over daily time steps as this would be
too computationally expensive.

We followed a bootstrapping procedure, where 20% of
the PWS temperature data were randomly selected and
kept for testing the regressors’ performance. Random sam-
ples with increasing ratios of the remaining 80% of PWS
temperature data and covariates were used to train the re-
gressors 25 times. We ensured that the randomly sampled
20% and ratios are kept constant between regressors. We
first started with 1% of the remaining 80% and increased
the ratio by steps of 1% to 10% of the remaining 80%.
Steps of 10% were then used until reaching 90% of the re-
maining 80%. We chose to use these steps as we expect
our regressors’ performance to rapidly increase with a low
amount of data before plateauing with a greater amount of
data. Then, to test the added value of urban PWS density
and data, we trained the same regressors over the modeled
bias at the 10 urban MIDAS station locations and evaluated
the bias correction against the 20% of the PWS data kept
for evaluation at each bootstrapping step. As a comparison,
we also evaluated the WRF output prior to bias correction
against the same 20% of PWS temperature data at each
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bootstrapping step to demonstrate the added value of bias
correction using a certain number of PWSs.

We found that all regressors benefited from a greater
amount of PWS data, which reduced the RMSE, the MAE,
and the MB on average and also reduced the variability of
performances between each bootstrap sample (Figs. B1–B6).
Only gradient boosting showed a slightly deteriorated perfor-
mance by having more than 30% of the 80% PWS data used
for training (96 PWSs)}probably due to overfitting. Below a
number of 40 PWSs, all models performed poorly. We also
showed that training the regressors over official MIDAS
data only led to a poor bias correction for both summertime
average daily minimum and mean temperatures. For the
maximum, no clear benefit was demonstrable, which was
also the case with PWSs and could be explained by the lower
UHII during hot hours of the day, as discussed in the manu-
script. We argue that this general outcome is explicable by

the standard location of MIDAS weather stations}typically
located in open parks or fields}which would explain why
the bias correction for minimum temperatures further in-
creases the cool bias already existing in WRF. This supports
the use of PWSs for bias correction of urban temperatures
for two reasons: first, the need for a sufficiently dense net-
work of weather stations in urban environments; second, the
necessity of weather stations located in typical built-up envi-
ronments to accurately represent the effect of built-up surfa-
ces on the local climate.

APPENDIX C

Additional Figures and Tables

This section presents all figures that are not given in the
main text (Figs. C1–C11; Tables C1 and C2).

FIG. C1. As in Fig. 3, but for MAE and Spearman’s r.
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FIG. C2. Average modeled daily minimum air temperature at 2 m against observed at citizens’ personal weather sensor locations show
that all machine learning regressors perform a similar bias correction on average. In blue, modeled temperatures at 2 m are from the
model simulation that used the YSU planetary boundary layer scheme before the bias correction (circles), after the summertime-mean
bias correction (squares), and after the daily time-step bias correction (stars). In purple, the same values are given for the simulation which
used the BouLac scheme. Dashed lines represent the least squares polynomial fitted lines and the black full line represents the identity
line.
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FIG. C3. As in Fig. C2, but for daily maximum temperatures.
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FIG. C4. As in Fig. C2, but for daily mean temperatures.
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FIG. C5. As in Fig. 5, but for daily mean temperatures.
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FIG. C6. As in Fig. 5, but for daily maximum temperatures.
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