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A B S T R A C T   

Urban tree canopies are fundamental to mitigating the impacts of climate change within cities as well as 
providing a range of other important ecosystem, health, and amenity benefits. However, urban tree planting 
initiatives do not typically utilize data about both the horizontal and vertical dimensions of the tree canopy, 
despite height being a critical determinant of the quality and value of urban canopy cover. We present a novel 
pipeline that uses airborne LiDAR data to train a multi-task machine learning model to generate estimates of both 
canopy cover and height in urban areas. We apply this to multi-source multi-spectral imagery for the case study 
of Chicago, USA. Our results indicate that a multi-task UNet convolutional neural network can be used to 
generate reliable estimates of canopy cover and height from aerial and satellite imagery. We then use these 
canopy estimates to allocate 75,000 trees from Chicago’s recent green initiative under four scenarios, minimizing 
the urban heat island effect and then optimizing for an equitable canopy distribution, comparing results when 
only canopy cover is used, and when both canopy cover and height are considered. Through the introduction of 
this novel pipeline, we show that including canopy height within decision-making processes allows the distri
bution of new trees to be optimised to further reduce the urban heat island effect in localities where trees have 
the highest cooling potential and allows trees to be more equitably distributed to communities with lower quality 
canopies.   

1. Introduction 

Cities across the world such as London, Singapore, and Nairobi have 
set forth tree planting initiatives as part of larger efforts to mitigate 
climate change, improve quality of life, and promote environmental 
equity (Mayor of London, 2022; Tress 2023; Nyamasege, 2022). Within 
these initiatives, policymakers face hurdles when deciding how to 
allocate tree planting resources because there is little consensus sur
rounding distribution strategies (Young, 2011). Additionally, there is a 
general lack of information about the quality of urban canopies as ini
tiatives tend to focus on increasing the quantity of canopy cover 
(Eisenman et al. 2021). By itself, canopy cover overlooks critical dif
ferences in canopy structures throughout urban areas. Two areas with 
similar canopy cover can provide varying benefits for communities if 
one is comprised of low stature vegetation, shrubs, or newly planted 
saplings, and the other is filled with mature stands of trees (Le Roux 
et al., 2015; Stephenson et al., 2014). 

Many factors influence the impact trees have on the urban 

environment. Using canopy cover alone to make policy decisions is 
problematic because the height of trees (Poulsen et al., 2020), species of 
trees (Franceschi et al., 2022), leaf area index (Rahman et al., 2015), and 
local environmental conditions (Wang et al., 2022), all influence how 
much benefit is gained from investments in additional urban greenery. 
Indeed, quantifying the structure of canopies is crucial to understanding 
the benefits of trees in urban environments (McPherson et al., 1997). For 
example, the height of trees effects how much shade, and therefore 
temperature reductions, are provided by an area with a given canopy 
cover (Lindberg and Grimmond 2011a; Lindberg and Grimmond 
2011b). By including the height of trees into the decision-making 
pipeline, we aim to show that resources can be allocated more effec
tively and comprehensively than by using canopy cover alone. We argue 
that tree metrics such as height can help to distinguish the value of 
canopy cover, which when used together can help ensure that the 
environmental and equity impacts from tree planting initiatives are 
better reaching the communities most in need. 

This paper proposes a novel pipeline utilising machine learning (ML) 
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to generate estimates of urban canopy quality i.e., moving beyond 
canopy cover, by combining both canopy cover and height using a 
combination of aerial and satellite imagery. Estimated data are then 
used to show how tree planting policies can benefit from the inclusion of 
multiple canopy metrics for decision making. This study is not intended 
to provide the most thorough demonstration of how best to allocate 
trees, but rather how the inclusion of tree height can provide important 
information regarding canopy quality not currently utilized by tree 
planting policies. Previous research has used ML approaches to estimate 
forest canopy height (Li et al., 2020) but these techniques have not been 
leveraged to create detailed estimates of urban canopy cover and height; 
we address that gap here. To explore how the addition of canopy height 
can improve policy decisions we utilize the case study of Chicago, USA 
due to the availability of open data and recent policy goals against which 
progress can be judged. 

As part of a larger environmental investment in response to the 
climate crisis, the mayor of Chicago plans to spend 46 million dollars 
planting and maintaining 75,000 trees between 2022 and 2026 (Office 
of the Mayor, 2021). Chicago’s mayor aims to take an “equity-centered 
and data-driven approach” to distribute the benefits of this investment 
to “historically marginalized and underserved communities” (ibid.). 
Here historically marginalized communities refer to communities on the 
south and west sides of Chicago which are and have been dispropor
tionately “Black, low income, and often denied access to economic op
portunity” (Chicago Metropolitan Agency for Planning, 2020). While the 
mayor’s office is working with various stakeholders to determine where 
new trees should be planted, a critical (and open) question is how Chi
cago, and similar urban centres, should leverage canopy metrics to make 
decisions about where to plant trees to meet their climate and envi
ronmental equity goals. 

We begin by examining the ways trees provide benefits to cities, 
before exploring the methods that have previously been used to deter
mine where cities should plant trees. To determine where trees should 
be planted in Chicago, we propose a novel pipeline, utilising a deep 
learning model called UNet, for generating estimates of both canopy 
cover and height which can be updated regularly using aerial and sat
ellite imagery. Previous work has utilized the UNet architecture (Ron
neberger et al., 2015) for various image segmentation tasks, but studies 
have yet to leverage this technique to create estimates of canopy cover 
and height in an urban environment. Additionally, we explore how 
canopy height, in addition to using canopy cover, can provide nuance to 
policy decisions around how to allocate tree planting resources. 

1.1. Why Invest in the Urban Canopy? 

The mayor of Chicago committed to investing in trees because of the 
urban canopy’s direct impact on metrics linked to the climate crisis, 
specifically rising temperatures (CMAP 2020). Wang et al. (2022) 
showed that while the urban canopy can be an effective way to reduce 
elevated temperatures caused by the urban heat island (UHI) effect, the 
cooling efficiency of the tree canopy can vary substantially within cities 
due to local conditions. This relationship between trees and their cooling 
efficiency has been well explored, particularly in relation to the amount 
of impervious surface that exists within communities (Ziter et al., 2019), 
the species of tree (Rahman et al., 2020), the level of social vulnerability 
within communities (Zhou et al., 2021), and the height of the tree 
canopy (Chen et al., 2020; Shahidan et al., 2012). Research has 
confirmed that prioritizing locations with higher cooling efficiencies can 
lead to greater reductions in UHI per tree planted. While we focus on the 
UHI effect, it is important to note that trees provide numerous envi
ronmental benefits, such as reducing levels of sulphur dioxide, ozone, 
and nitrogen dioxide (Nowak et al. 2018), mitigating stormwater runoff 
(Berland et al., 2017), carbon sequestering and storage (Nowak and 
Crane, 2002), and enhancing urban biodiversity (Zhang and Jim, 2014). 

Alongside the climate benefits provided by the urban canopy, trees 
also have numerous non-ecological ‘amenity’ benefits (Price, 2003). In a 

national survey of the United States, urban residents reported that some 
of the most important reasons to have trees in urban areas were the 
trees’ aesthetic benefits such as “to help people feel calmer” (Lohr et al., 
2004, p.33). Tree’s aesthetic benefits can impact people’s reported 
quality of life (Hipp et al., 2015) and change how they interact with their 
outdoor environment (Kuo, 2003), affecting livelihoods above and 
beyond measurable climate indicators. Theories such as Biophyllia hy
pothesis (Kellert and Wilson, 1993) and Attention Restoration Theory 
(Kaplan, 1995) have been proposed to explain these intangible health 
and wellbeing benefit of vegetations. Moreover, research has shown that 
the positive perceptions people have of urban trees are substantiated by 
higher property values (Donovan and Butry, 2011). Where a city chooses 
to invest in the placement of public trees can therefore have long lasting 
additive effects on the economic prospects of communities. 

In an effort to address inequities caused by historical investment 
practices, Chicago’s tree planting initiative contains a dedicated focus 
on environmental equity. This echoes recent works which have called on 
tree planting initiatives to address environmental justice by targeting 
disadvantaged communities (Nyelele and Kroll, 2020; Foster et al., 
2022). Environmental amenities such as public parks and the urban 
canopy have long been inequitably distributed in urban areas 
throughout the United States. In a study of 37 metropolitan areas in the 
United States, findings indicate that historically marginalized commu
nities on average contain half the canopy cover of more affluent 
neighbourhoods (Locke et al., 2021). Nowak et al. (2022) show that 
these communities are often also associated with higher amounts of 
impervious surface, areas such as roads and concrete which present 
barriers to where trees can be planted. The numerous benefits provided 
by trees demonstrates the scope of impacts that tree-planting in
vestments can have on communities, and therefore how contentious the 
decision of where to place trees can be, especially given the discrimi
natory history of resource allocation in many American cities (Locke 
et al. 2021). 

1.2. Deciding where to plant trees 

Deciding where to plant trees requires some knowledge of the urban 
canopy. Surveying techniques have been used, for example, by Morton 
Arboretum in Chicago to produce a tree census based on counting trees 
in selected plots (The Morton Arboretum, 2021). An alternative to 
surveying techniques is airborne Light Detection and Ranging (LiDAR), 
which utilizes light beams to create a cloud of millions of points that can 
be accurate within a few centimetres (Kim et al., 2020). Numerous al
gorithms exist for detecting and measuring trees from LiDAR point 
clouds which can be used to generate three-dimensional representations 
of the urban canopy. LiDAR collection is often unavailable on a regular 
basis, so ML techniques offer an alternative method to generate urban 
canopy estimates from imagery when and where LiDAR data is un
available. For example, image segmentation has been used to identify 
individual trees using natural RGB (red, green, and blue) images 
(Weinstein et al., 2019, Amati et al., 2023), while multi-spectral (MS) 
imagery has been used to predict forest canopy height (Li et al., 2020). 

Once urban canopy estimates are identified, the complicated deci
sion of where specifically to plant trees arises. To tackle this challenge, 
Bodnaruk et al. (2017) focused on the mitigation of environmental 
stressors such as air pollution and the UHI effect when developing 
optimization algorithms for determining new tree locations. In Boston, 
Danford et al. (2014) used the Gini Index, a measure of the degree of 
inequality in a variable’s distribution, to evaluate scenarios in which 
tree placements are estimated based on the availability of space. Wu 
et al. (2008) locate planting sites in Los Angeles using spatial analysis to 
rule out sites that are too small or too close to other urban infrastructure. 
Additionally, past work in Chicago used a multi criteria decision analysis 
to identify priority areas where trees should be planted based on criteria 
including income, English proficiency, air pollution, low canopy cover, 
urban flooding, and high temperatures (Chicago Region Trees Initiative, 
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2018), while a study in New York (Nyelele and Kroll, 2021) utilized a 
multi-objective decision support framework to balance improvements in 
environmental metrics and inequality of the canopy cover between more 
and less advantaged areas. 

The diverse methodologies put forward in previous studies, along
side tools such as i-Tree, demonstrate that there is no agreed upon 
method for determining where trees should be planted in urban areas. 
Furthermore, other works have focused primarily on canopy cover 
without accounting for more holistic measures of canopy quality, as 
done in this study. Taken together, prior work has provided limited 
research that fuses high and low resolution natural and MS imagery to 
predict tree height and cover simultaneously from LiDAR data in an 
urban setting. Additionally, there is limited work showing how tree 
height and cover can be used simultaneously within an urban planning 
setting to reduce the UHI effect, accounting for local environmental 
conditions, and improve environmental equity. Through our novel 
pipeline, we demonstrate the use of a deep learning model to monitor 
tree canopy and the potential of including one measure of canopy 
quality, height, to supplement canopy cover when allocating urban 
trees. 

2. Material and methods 

2.1. Study Area 

This study has been carried out on the case study of Chicago, the 
third most populous city in the US with a land area of about 600 km2. 
Chicago is located right alongside Lake Michigan and remains heavily 
segregated alongside economic as well as racial and ethnic lines with a 
roughly one third split of residents between each of Latino, Black, and 
White residents (United States Census Bureau, 2019). The right side of 
Fig. 4 shows where these populations cluster. Many of the majority Black 
communities reside on the south and west sides, the bulk of majority 
White communities occupy large portions of the north and north-east, 
and many of the majority Latino communities can be found on the 
north-west and south-west sections of the city. 

To determine how the tree canopy is related to the UHI effect in 
different parts of the city, 46,149 census blocks in Chicago are used as 
the level of analysis. Census blocks are the smallest statistical area used 
by the United States Census Bureau (United States Census Bureau, 
2021). To examine post-hoc equity of tree placements in Chicago, census 
block-group data was pulled from the 2019 American Community Sur
vey (ACS) 5-year estimates (United States Census Bureau, 2019). Esti
mates for the percent of households with income below the poverty level 
(categorized into quartiles), as well as the percent of White, Black, 
Latino, and Asian residents were extrapolated to the census blocks from 
the block-group data.1 

2.2. Materials 

LiDAR point cloud data from 2017 were retrieved from the Illinois 
Height Modernization Program (2017). This data consisted of 1131 762 
× 762 m tiles with a derived nominal pulse spacing of one point every 
0.35 m. Additional MS imagery was gathered from the National Agri
culture Imagery Program (NAIP) and the Sentinel-2 satellite program. 
Four-band NAIP RBG and near infrared (NIR) data was collected for 
2017 and 2021. NAIP data is at 1 m resolution and consists of roughly 30 
tiles in each year. Sentinel-2 data from 2017 and 2021 were also used, 

with four bands at 10 m resolution, and six bands at 20 m resolution. 
To measure the UHI effect, Landsat-8 satellite data was used to 

calculate the land surface temperature (LST) at 30 m spatial resolution. 
Chakraborty et al. (2020) note the difference between surface UHI, 
which uses LST, and canopy UHI which utilizes air temperature mea
surements. While these measurements are not identical (Chakraborty 
et al., 2017, Hu et al., 2019), LST is derived from satellite observations 
which allows for a consistent data collection measure and has been 
shown to capture intra-urban UHI differences in a large-scale study of 
the United States (Chakraborty et al. 2020). While recent research has 
been able to examine the effect of trees on both air and surface urban 
heat using handheld measurements (Sharmin et al., 2023), this was not 
practical for a study of this size. When we reference UHI in the following 
pages of this paper, we are referring to surface UHI measured via sat
ellite imagery. More information about the image data used in this paper 
can be found in Supplemental Table 1. 

2.3. Environmental and equity metrics 

LST was calculated using formulas derived from Weng et al. (2004) 
at three timepoints in 20212 for the extent of Chicago, shown on the left 
side of Fig. 4. LST raster values were first aggregated to US census 
blocks. The three timepoints were then averaged together and stan
dardized to limit bias. The average LST during this period was 23.4 ◦C 
with a standard deviation of 1.4 ◦C. More formally; 

LST =
Tb

1 +

(
λQTb

p

)

lnϵ  

where λis the top of atmosphere spectral radiance, Tb is the brightness 
temperature, ϵ is the emissivity, p is a physical constant, and Q is the 
Botlzmann constant. 

Similar to Danford et al. (2014), and recent research looking at the 
equity of urban green space (Chen et al., 2023), we used the Gini coef
ficient as a measure of urban canopy inequality. While the Gini coeffi
cient was developed to study poverty (Farris, 2010), it has also been 
used within astronomy (Abraham et al., 2003), genetics (Gianola, et al., 
2003), and to measure the inequality environmental benefits across 
socio-economic groups (Nyelele and Kroll, 2020). Ranging from 0 to 1, a 
Gini value of 0 indicates perfect equality, where each census block has 
the same percent canopy cover, while a value of 1 implies that all the 
canopy cover is concentrated in a single block. Although the Gini coef
ficient allows for a measure of canopy cover equality across the city, it 
says nothing about historical inequities in investment that have led to 
the current canopy distribution. To help evaluate the equity of tree 
placements in this paper beyond the equality measure provided by the 
Gini coefficient, Chicago’s blocks are examined post-allocation based on 
their majority racial/ethnic group (or are identified as having ‘no racial 
majority’ if the block does not contain >50% of a single racial/ethnic 
group) and the percent of households with income below the poverty 
line, shown on the right side of Fig. 4. This was done to see if the addition 
of tree height alongside canopy cover might actually help increase tree 

Table 1 
Tree Allocation Scenarios.   

Tree Metric (s) Used Variable Minimized 

UHI Scenario 1 (c) Canopy cover LST 
UHI Scenario 2 (d) Canopy cover and height LST 
Environmental Equality 1 (e) Canopy cover Gini Coefficient 
Environmental Equality 2 (f) Canopy cover and height Gini Coefficient  1 Block-group data is the most detailed level of demographic data captured 

for these types of measures by the ACS. Block-groups exist as an area larger than 
a block, but smaller than a census tract. Block-groups are made up of a set of 
contiguous blocks (mean=21; sd=14), which given their spatial proximity and 
the generally segregated nature of Chicago’s population, should give reliable 
estimates of the block-level population. 2 May 17, 2021; September 10, 2021; September 26,2021 
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canopy equity for the most segregated and income disadvantaged groups 
while the distribution policy is optimized by the Gini coefficient. 

2.4. Methodological pipeline 

Fig. 1 shows the methodological pipeline employed for this analysis. 
First, we derive canopy estimates from airborne LiDAR data in 2017. We 
then train a deep learning model with this baseline data from 2017 to 
predict canopy cover and height in 2021 when LiDAR data is unavai
lable. Next, we use a geographically weighted regression (GWR) analysis 
to identify the relationship between canopy cover, canopy height and 
the UHI effect in different localities throughout Chicago. Finally, we use 
an optimization algorithm to assess four different canopy distribution 
scenarios to minimize the UHI effect and inequitable canopy distribu
tion, comparing results when only canopy cover is used, and when both 
canopy cover and height are considered. 

2.5. Data preparation 

Baseline tree metrics were derived from the 2017 LiDAR data. The 
raw LiDAR point cloud was first processed in R using the lidR package 
(v. 4.0.2) with a method similar to Roussel et al. (2020). First, a vege
tation mask was created using the NIR and red bands of the NAIP im
ages, creating a normalized difference vegetation index (NDVI) raster 
layer as calculated in Zhao et al. (2019). For the tree mask, the point 
cloud was then masked to remove non-vegetation points which prevents 
buildings and non-biological objects from being classified as trees. 

Next, a digital terrain model normalization was run using a k-nearest 
neighbour approach with inverse distance weighting to align the height 
of all points relative to ground level. For the tree mask, points below 2 m 
and above 25 m were filtered out to ignore small shrubbery and any 
incidental non-vegetation points (e.g., birds), while for the pixel height 
layer, heights were capped at 200 m to allow for better downstream 

modelling of tree heights. A canopy height model (CHM) was then 
generated using a pitfree algorithm which allowed for individual tree 
detection using a local maximum filter. Finally, the CHM and the indi
vidual tree detection results were used for tree segmentation based on 
the Dalponte and Coomes (2016) algorithm. 

Fig. 2 shows examples of the two baseline raster layers which were 
generated from this process, one with binary values if a pixel was 
identified as being part of a tree, while the other raster layer contained 
the average max height of each pixel. These raster layers were then 
mosaiced together and stacked on top of the Sentinel-2 and NAIP data 
which were all projected to the extent and resolution of the NAIP 1 m 
data. These raster stacks were then cut into 9535 240 × 240 pixel 
patches, where each pixel represents one square metre, to be used as the 
input for the ML model. 

2.6. Deep learning model for tree canopy prediction 

To predict canopy cover and height in 2021 from only the combi
nation of aerial and satellite imagery, we train a deep learning model 
using 2017 LiDAR-derived canopy cover and height estimates. As noted 
previously, LiDAR data provides a highly accurate data source from 
which to estimate features of the urban canopy; however, Chicago’s 
most recent collection of LiDAR data occurred six years ago. Alterna
tively, aerial and satellite imagery from public and commercial sources 
are collected on a more regular basis and are therefore well suited to 
generate up-to-date maps for monitoring and evaluating urban tree 
policies. A recent Chicago tree census estimated that from 2010 to 2020 
the city lost about 3% of its canopy coverage, largely due to an invasive 
pest (The Morton Arboretum, 2021). This equates to differences in tens 
of thousands of trees across the city per year, which would be difficult to 
forecast using only years-old LiDAR data but can be easily observed 
through regularly acquired imagery. 

For this study, we adopted a multi-task (MT) learning approach for 

Fig. 1. Methodological Pipeline.  
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tree canopy prediction, utilizing a fully convolutional UNet architecture, 
that has demonstrated good performances on various pixel-level pre
diction tasks (Singh and Nongmeikapam, 2022; McGlinchy et al., 2019; 
Andersson et al., 2021; Alsabhan and Alotaiby, 2022). This approach 
involved combining two tasks, detecting whether a pixel belongs to a 
tree (tree mask) and estimating the height of a pixel (pixel height), into a 
single model. We hypothesized that this combined approach would 
enable better generalisations on the individual tasks, similar to recent 
research which tried to predict relative building and vegetation height 
and semantic segmentation masks simultaneously (Lu et al., 2022; 
Karatsiolis et al., 2021). 

The UNet architecture, shown in Fig. 3, consists of a contracting 
encoding path that performs a series of convolutions to reduce the 
spatial dimension of the input image followed by an expanding decoding 
path that performs de-convolutions back to the size of the input image 
with shared representations between paths to increase the resolution of 
the output (Ronneberger et al., 2015). The output of the encoding path is 

fed into two separate decoding pathways, one culminating in a linear 
activation function (pixel height task) and one with a sigmoid activation 
function (tree mask task). Retrieving tree canopy height involves 
masking the predicted tree mask over the predicted pixel height which 
ensures only the height of pixels classified as trees are retained for later 
analyses. 

We trained a UNet that maps the input MS data to pixel heights and a 
binary tree canopy mask, minimising the mean squared loss over all n 
pixels, Lheight as follows; 

Lheight =
1
n
∑n

i
(Hi − Ĥ i)

2  

where Hi is the LiDAR-derived pixel height and Ĥi is the predicted pixel 
height and the binary cross entropy loss function; 

Lmask = −
1
n

∑n

i
(MilogM̂i + (1 − Mi)log(1 − M̂i)) )

2 

Fig. 2. LiDAR-derived Canopy cover and Height Estimates. The top row contains RGB images of example ML-input patches (240 m x 240 m), while the middle row is 
the associated LiDAR derived height estimates, and the bottom row is the associated LiDAR derived canopy cover estimates. 

Fig. 3. The fully convolutional UNet Architecture. Each pink rectangle corresponds to a multi-channel feature map. The number of z-dimension channels (filters) is 
denoted on top of the rectangle. The x-y dimensions of each feature map are provided at the bottom of the rectangles. White boxes represent copied feature maps. 
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where Mi is the LiDAR-derived tree mask and M̂i is the predicted tree 
mask from the UNet model. 

The final loss function is a simple weighted additive loss that in
corporates two hyper-parameters λ, γ. During training, the model used 
the Adam optimizer algorithm (Kingma and Ba, 2014) with a learning 
rate of 0.001 for 50 epochs using early stopping if the model does not 
improve after ten epochs. 

Ltotal = λ Lheight + γLmask 

The weighting of the individual losses can have a significant impact 
on the model results. As a result, we compared two MT methods: first, a 
naïve approach that involved systemically tuning the weights through a 
grid search on a small validation subset (N = 500) randomly chosen 
from the training data; and second, an automatic weighting function 
outlined in Kendall et al. (2018) which attempts to learn a relative task 
weighting that accounts for the homoscedastic uncertainty of each task. 

In total, 9535 240 × 240 images from 2017 were used to train the 
model, with 20% of these images randomly held out as a testing set. The 
input images for the model consisted of the 14 spectral bands from the 
NAIP and Sentinel 2 images. Despite their lower resolution, Sentinel 2 
image bands were included because they are regularly available and 
provided minor improvements at little cost to training, shown in Sup
plemental Table 2. In addition to the primary model shown in Fig. 3, 
single-task models for each output were trained, alongside a model 
where both the encoding and decoding features were shared by the two 
tasks. Separate multi-task models for the automatic and manual 
weighting functions were run for a total of six models. These models 
were trained and evaluated solely using data from 2017. The best per
forming model was then used to predict canopy cover and height for 
2021 when LiDAR data does not exist (N = 12,972 240 ×240 pixel 
images). To evaluate model performance, Intersection over Union 
(IoU);. 

IoU = True Positives
True Positives+False Positives+False Negatives 

is used for the tree mask as the dataset is highly unbalanced which 
would naturally inflate accuracy metrics, while Mean Absolute Error 
(MAE) is used for pixel height. 

2.7. Relationship between the urban canopy and the UHI effect 

To quantify how census blocks are related to the UHI effect, we 
employed GWR (Fotheringham et al. 2003; Comber et al., 2023), which 
is a local regression approach, with the SPGWR R package (Bivand et al., 
2022). Initial tests on the residuals of a global ordinary least squares 
(OLS) regression model revealed, as expected, a significant level of 
spatial autocorrelation (Moran’s I =.956, p < 0.001) in this dataset, 
thereby contradicting the assumptions for OLS and requiring a more 
spatially explicit model. GWR has been extensively applied to address 
this type of spatial non-stationarity (Brunsdon et al., 1996) where the 
relationship between the dependent variable and predictors varies 

across geographical locations (Foody, 2003; Su et al., 2012; Zhang et al., 
2004) Fig. 4. 

A GWR model calculates a unique local regression equation for each 
polygon (census block) and only considers a certain number of bordering 
polygons (the bandwidth) when calculating these coefficients, weighted 
by their distances to the centre of the kernel (Comber et al., 2023). An 
adaptive bandwidth was implemented which resulted in roughly 250 
nearest neighbour polygons (census blocks) being included in each of 
our 46,149 regression equations, measured from the centroid of each 
block. Through this local regression technique, we aim to account for 
some of the neighbourhood effects not modelled explicitly but captured 
implicitly by each blocks’ neighbours. The equations below (a, b) show 
the formulas used to analyse these spatial relationships, first just for 
canopy cover (a) and then for canopy cover and height (b).  

(a) yi = βi0 + βi1xi1 + εi  
(b) yi = βi0 + βi1xi1 + βi2xi2 + βi3xi1xi2 + εi 

Where: 
i = census block xi1= percent canopy cover at block i. 
yi = outcome (LST) at block i xi2= avg. canopy height at block i. 
βi0 = intercept at block i βi1 = coefficient 1 at block i βi2 = coefficient 

2 at block i βi3 = coefficient 3 at block i ε = random error at block i. 

2.8. Determining where to plant trees 

Simulating where to place Chicago’s 75,000 trees was done through 
a set of four scenarios described in Table 1. For the two UHI scenarios, 
LST predictions were minimized using the Sequential Least SQuares 
Programming (SLSQP) (Kraft, 1988) optimisation algorithm and the 
marginal effects generated by the GWR equations (c, d). Limits based on 
the initial observed climate values are placed on predictions to avoid 
predicting unobserved values. For the two environmental equality sce
narios, the Gini coefficient was also minimized using SLSQP and the tree 
metrics (e, f). For the UHI scenarios block-level average canopy height 
was held constant; for the environmental equality scenarios a height 
factor was included. Looking at the 2017 LiDAR data, there is a positive 
correlation (0.603) between canopy cover and height in census blocks. 
Using this correlation, average canopy height was therefore estimated to 
increase by 0.084 m for each percentage increase in canopy cover to 
allow for height to be considered in the environmental equality 
scenarios.  

(c) yi = βi0 + βi1(xi1 + zi ∗ T)
(d) yi = βi0 + βi1(xi1 + zi ∗ T) + βi2xi2 + βi3(xi1 + zi ∗ T)xi2 

Given: zi < available space in block i & Sum(zi) = 75,000; 
Minimize: Mean(y1,y2…yn) 
Where: 
i = census block xi1= percent canopy cover at block i 
yi = predicted LST at block i xi2= avg. canopy height at block i 
βi0 = GWR intercept at block i βi1 = GWR canopy cover effect at 

block i βi2 = GWR canopy height effect at block i βi3 = GWR 
interaction effect at block i zi = # of trees added at block i 
T = constant canopy cover added by one tree  

(e) yi1 = xi1 + (zi ∗ T)  
(f) yi1 = xi1 + (zi ∗ T) & yi2 = xi2 + H(zi∗T

Ai
) 

Given: zi < available space in block i & Sum(zi) = 75,000. 
Minimize: (f) Gini( ya1,ya2…yan);. 
(g) Sum(Gini( y11,y21…yn1), Gini( y12,y22…yn2)). 
Where: 
i = census block xi1= percent canopy cover at block i. 
yi1 = new canopy cover at block i yi2= new canopy height at block i 

xi2= avg. canopy height at block izi = # of trees added at block i 
T = constant canopy cover added by one tree H = constant height added 

Table 2 
UHI GWR results.   

Local R2 

(Range) 
Mean 
Canopy 
cover 
Effect 
(Range) 

Mean 
Average 
Canopy 
Height Effect 
(Range) 

Mean 
Interaction 
Effect 
(Range) 

Equation B (LST 
predicted by 
canopy cover) 

0.325 
(− 0.032 to 
0.726) 

-0.392 
(− 2.25 to 
2.19) 

X X 

Equation C (LST 
predicted by 
canopy cover 
and average 
canopy 
height) 

0.346 
(0.021–0.725) 

-0.336 
(− 2.36 to 
2.06) 

0.029 
(− 0.225 to 
0.424) 

-0.225 
(− 2.05 to 
0.984)  
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by % increase in cover Ai = area of block i. 
The number of trees that could be allocated to each block was 

bounded by the amount of available space, determined using the 2021 
NAIP data as the estimated pervious surface (NDVI >.15) not already 
covered by trees. This method is similar to (Codemo et al., 2022), who 
estimate pervious surface using an NVDI value of.1 and note the need for 
careful consideration of the threshold value in urban environments to 
capture barely vegetated areas without including impervious surfaces. 
Previous work has used the National Land Cover Data (NLCD) to 
determine plantable areas (Nowak and Greenfield, 2009) similar to 
methods included within i-Tree Landscape, while more recent work has 
utilized alternative historic land cover datasets (Nyelele and Kroll, 
2021). Similar to Merry et al., (2013), we believe plantable land is best 
assessed in rapidly changing urban environments using the most current 
available imagery. Additionally, the use of NAIP data allows for a 
measure of available space at the same resolution as our tree metrics, 
while restricting our analysis to pervious space allows for a simulation of 
tree placements that would not require additional changes to or in
vestments into the urban environment. To determine how much space 
should be allotted for new trees, we follow Nowak and Crane (2002) 
who showed the average canopy of a city tree in Boston to be roughly 27 
square metres. The number of trees each block can hold was therefore 
the available estimated pervious space not already occupied by trees 
divided by the estimated space for a tree. 

Based on these four scenarios, the 75,000 new trees were allocated to 
one of Chicago’s 46,149 census blocks. Final allocations are shown at 
the scale of Chicago’s 77 community areas which have been in continual 
use since the early 1920 s for city-level statistics and policymaking 
(Zangs, 2014). These community areas align with the census blocks 
perfectly by design. 

3. Results 

3.1. Canopy cover and height estimates 

In total, six UNet models were trained to determine which method 
was best able to locate trees and determine their height. The out of 
sample results of these models are shown in Supplemental Table 2. The 
model that was best able to locate trees (IoU = 0.665) and determine 
their height (MAE = 0.0033) was the MT model with manual weights in 
which only the encoder layers of the UNet were shared between tasks. 
This equates to an average error of about 0.644 m for tree height and an 
average overlap of 66.5% between the predicted and the LiDAR derived 
canopy cover. Notably, the automatic weighting function did not lead to 
any improvements. We also visually inspected the results to ascertain 
where predicted estimates proved most effective, and what circum
stances caused the model to struggle in its estimates of the urban canopy. 
Consistently, the prediction accuracy is enhanced from the incorpora
tion of multi-source MS imagery as opposed to a single source (NAIP 
only) imagery model (see Supplemental Fig. 1 for further results). 

Fig. 5 shows five hand-picked test images from the 2017 image data, 
alongside the tree pixel height and canopy cover predictions generated 
by the best performing model and the LiDAR derived estimates. From 
the variety of areas displayed in Fig. 5 we can see that canopy cover 
appears to be estimated best on trees with larger crowns and in areas 
with higher numbers of trees. Canopy cover estimates struggled when 
faced with lots of smaller shrubbery and in some industrial areas. For 
canopy height at the pixel level, estimates are most precise in open areas 
and with shorter trees. As expected, areas with large numbers of 
buildings make canopy height predictions more error-prone, however 
the model is still able to consistently infer the shape of tree crowns. 

Fig. 4. Left: Land Surface Temperature map. Right: Census-derived Race/Ethnicity and Poverty bivariate map. Land Surface Temperature was standardized across 
three time points in 2021. For race/ethnicity, blocks were categorized if they contained 50% or more of a single group. Poverty is measured as the % of households 
with income below the poverty line. Quartile 4 represents blocks with the highest % of households with income below the poverty line. 
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Using the best model trained from 2017 data, we next inferred the 
2021 canopy cover and height metrics for all of Chicago at a 1 m reso
lution. We estimated a total city-wide cover of 19.7% and an average 
canopy height of 7.9 m. This indicates a slight increase in canopy cover 
from the 2017 LiDAR derived baseline data which estimated the city- 
wide cover to be about 17.9% and the average canopy height to be 
about 8.2 m. Our canopy cover estimates are larger than recent work in 
Chicago which used different methodologies. Chicago’s 2020 tree 
census estimated the canopy cover to be nearly 16% when including 
shrubs (The Morton Arboretum, 2021), while researchers at the Uni
versity of Chicago estimated canopy cover to be closer to 19% when 
using a 2010 LiDAR—based land cover layer (Healthy Regions and 
Policies Lab, 2021). 

Fig. 6 shows the UNet predictions after each of the 12,974 image tiles 
from 2021 were extracted to the census blocks. Fig. 6 indicates that the 
areas of highest canopy cover are concentrated primarily in the northern 
part of the city, as well as within the many parks that line Chicago’s 
eastern coast along Lake Michigan. A further concentration of areas with 
higher canopy cover can be seen on Chicago’s south-west side. Areas 
with the highest average canopy heights are found along the north- 
western and south-western sections of the city, while the west and 
central portions of the city have some of the lowest average canopy 
heights. Large lines of low canopy heights throughout the city primarily 
follow the path of the Chicago River as well as the major highways that 
run through the city, while the large area of low canopy height in the 

south of the city corresponds to marsh land. Interestingly, even though 
there is relatively high canopy cover in many spots along Lake Michigan, 
the average canopy height remains relatively low in most of these areas. 
With these estimated tree metrics in hand, analysis turned to how the 
trees are related to the UHI effect. 

3.2. Spatial regression results 

Coefficient statistics from the two sets of GWR models are shown in 
Table 2. GWR generates a different set of coefficients for each census 
block, maps of which can be found in Supplemental Fig. 2. Not all blocks 
demonstrate a clear negative relationship between trees and LST, and 
some blocks predict increased LST as canopy cover or average canopy 
height increases. This reflects the heterogeneity of Chicago’s census 
blocks whereby depending on the local environmental conditions, sim
ply adding more trees in some locations may not result in reduced LSTs. 
The inclusion of canopy height leads to an improvement in goodness of 
fit, demonstrating its added effectiveness in modelling LST. 

3.3. Tree allocation scenarios 

Fig. 7 explores how the four scenarios would allocate trees to Chi
cago’s 77 community areas. For the UHI scenarios, a larger average 
number of trees (N ≈ 28 and N ≈ 29) are allocated to a smaller number 
of blocks (N = 2658 and N = 2631), while in the environmental equality 

Fig. 5. Visual Inspection of selected samples comparing the baseline LiDAR derived estimates and the 2017 ML Predictions. Higher IoU scores indicate better canopy 
cover predictions, while lower MAE scores indicate better canopy height estimates. 
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scenarios a smaller average number of trees (N ≈ 21 & N ≈ 25) are 
allocated to a larger number of blocks (N = 3549 & N = 2960). Com
munities on the far south and north sides of Chicago are the primary 
beneficiaries of tree allocations aimed at reducing the UHI effect in 
Chicago. For the environmental equality maps, communities on the 
western side of Chicago receive most tree allocations. In both the UHI 
scenario and the environmental equity scenario, adding height resulted 
in a slightly higher centralization of tree allocations. For the UHI sce
nario the addition of height resulted in more trees allocated to the 
northern and southern extremes of the city, and in the environmental 
equality scenario many trees were redistributed from southern com
munities into the western and central sections of the city. Next, we 
examine how these tree placements align with the city’s equity goals. 

Table 3 explores the equity of Chicago’s urban tree canopy using the 
2021 canopy estimates as well as the equity of this study’s four alloca
tion scenarios. In contrast with some previous work (Chicago Region 
Trees Initiative, 2018; Iverson and Cook, 2000), this study found that 
blocks with the highest percentage of household income below the 
poverty line and Majority Black census blocks in Chicago had some of 
the city’s highest canopy cover and average canopy heights. For Chi
cago, Majority Latino and Majority Asian blocks had the lowest esti
mated canopy cover and average canopy heights in 2021, while having 
the hottest observed LSTs. Despite this, relatively few trees are allocated 
to Majority Latino and Majority Asian blocks across our four scenarios, 
as shown in the right side of Table 3. One reason for this, is the large 
discrepancies in the amount of available pervious space for new trees in 
the blocks of different racial/ethnic majorities. We found that Majority 
Latino blocks have room for 75 fewer trees on average than Majority 
Black blocks,. 

For the UHI scenarios which only considered tree’s impact on LST, 

the addition of height as a variable saw an increase in tree allocations to 
Majority White census blocks. This is likely due to blocks on the far 
south-west side of the city where trees were found to be particularly 
effective at lowering the LST. Examining how the addition of height in 
the UHI scenario effects predicted temperatures, we find that city-wide 
temperatures decrease by about .04 C (decreasing by as much as 1.4 C 
depending on local conditions) for each metre of average canopy height 
increase across the city if canopy cover is held constant. For the envi
ronmental equality scenarios which only considered the equality of 
canopy coverage using the Gini coefficient, the addition of height as a 
variable led to more trees allocated to Majority Asian, Latino, White and 
no racial majority census blocks than when only canopy cover was used. 
The addition of height also led to 2% more trees allocated to blocks with 
the highest percentage of household income below the poverty line. 

4. Discussion 

We present a new pipeline for estimating canopy cover and height in 
urban areas using a deep learning approach with MS imagery and 
airborne LiDAR. Combining canopy cover with measures of canopy 
quality, such as height, allows better quantification of the impact of trees 
in urban areas, particularly on temperature. This in turn should allow 
better decisions to be made about where to plant new trees in cities to 
maximize climate benefits as well as improving equity. Urban tree 
canopies are constantly evolving, as are city plans more generally, 
therefore policymakers and urban planners need to use the most rele
vant and up-to-date data. LiDAR remains the most informative data for 
estimating structural measures of the urban canopy, as exemplified by 
recent research in New York (Ma et al., 2023). However, LiDAR data are 
not always available, or are infrequently updated, making them less 

Fig. 6. 2021 Predicted Canopy cover and Average Standardized Canopy Height. While tree canopy metrics were estimated for each square metre of Chicago, here 
estimates are mapped to each of the 46,149 census blocks included in this work for visual clarity. 
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reliable for regular monitoring and evaluation of urban canopies. In 
locations where LiDAR data are unavailable, ML methods which have 
been trained on LiDAR data elsewhere provide a promising alternative 
for researchers and governments to fill in gaps. 

We explore how factors beyond canopy cover alone influence the 
impact trees have on the environment. By including canopy height and 
the varying localised effect of trees into the decision-making pipeline, 
resources can be allocated more effectively. In our case study, the in
clusion of height led to thousands more trees allocated to low income 
and Majority Asian, Latino, White and no racial/ethnic majority census 
blocks when the Gini coefficient was used to maximize tree canopy 
equality. By including height into the tree allocation strategy, fewer 
trees were allocated to blocks with higher quality pre-existing canopies 
and were instead redistributed to blocks with relatively lower quality 
tree canopies. When the UHI effect was minimized, the inclusion of 
height led to trees being primarily allocated to Majority White and 
Majority Black blocks where trees were most effective at reducing land 
surface temperature. More work utilizing strategies which incorporate 
multiple environmental, health and equity conditions (Nyelele and 
Kroll, 2021; Chicago Region Trees Initiative, 2018) are necessary in 
combination with additional canopy quality metrics to ensure that eq
uity of urban canopies is being achieved while investments in urban 
greenery are allocated to areas where they have the strongest impacts. 

The tree allocation scenarios presented here provide a top-down 
approach to distributing trees, which may be necessary to ensure 

equitable outcomes. Prior research has shown that many tree planting 
initiatives rely on residents and community groups for tree requests, and 
residents of historically marginalized communities are less likely to 
engage with the institutions required to make these requests (Pincetl, 
2010). For this work, the largest barrier to addressing tree equity that we 
identified was a lack of available pervious space for trees in some 
communities, particular among Chicago’s Majority Latino blocks. Pre
vious studies have noted that even when a focus is placed on planting 
trees in historically marginalized communities, lack of space will be a 
barrier (Danford et al., 2014). 

At a local level, alternative strategies exist for cities hoping to invest 
in greening these communities. Strategies such as green roofs and bio
swales can provide small pockets of nature where tree planting is nor
mally impossible, while more extensive measures can be taken to 
restructure the urban landscape in communities that are largely covered 
by impervious surfaces, such as the central business district of cities 
which are normally hotter than other areas of cities. Additionally, 
broadening the scope of tree initiatives to include urban nature in
vestments beyond a specific number of newly planted trees is also 
valuable, particularly in densely developed cities (Danford et al., 2014). 
Investments that prioritize the maintenance and expansion of existing 
mature canopy cover is crucial, especially in communities with limited 
space for new trees. However, even when optimal canopy cover equity is 
unobtainable, smaller clusters of added trees can still provide important 
local benefits (Strohbach et al., 2013). 

Fig. 7. Top row: Tree Allocations minimizing the UHI effect. Bottom row: Tree Allocations optimizing for Environmental Equality. The left-side maps use canopy 
cover alone while the right-side maps show the allocation differences when including canopy height. A key for the community area names can be found in Sup
plemental Fig. 1. 
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We have not discussed which types/species of trees should be plan
ted in Chicago, or how different tree species may provide varying ben
efits. This is beyond the scope of the current work. Darling et al. (2017, 
p.125) assessed the positive benefits of species diversity in planting in 
Chicago. They also note that it is vital that sustained resources are 
provided to help marginalized communities retain trees and expand 
their local ecosystems. Simply expending resources to plant trees is not 
enough. Continued investment in the management of urban trees is 
necessary to ensure that trees reach maturity, are properly integrated 
into the local ecosystem, and that environmental justice is achieved 
through the sustainability of urban forestry efforts (Sousa-Silva et al., 
2023). 

We identify several limitations in our current study. There may be 
some spatial bias in the UNet predictions because publicly available 
thermal data are only available at a lower spatial resolution than the 
optical and LiDAR data. Additionally, while Sentinel 2 data are global 
and free, the aerial imagery and airborne LiDAR used in this work are 
not universally available. However, the acquisition and availability of 
these data is growing very rapidly, due to their utility for urban planning 
and environmental applications (Wellmann et al., 2020). 

For assessing where trees could/should be allocated, available space 
to plant trees was based on estimates of pervious surface using NDVI. 
However, there are various other options for tree planting on impervious 
surfaces, such as installing boxes for street trees or re-configuring urban 
areas to create new spaces for trees. Furthermore, more precise esti
mates of useful pervious surfaces are possible by considering sur
rounding context and size (Wu et al. 2008). Finally, other factors that 
contribute to LST in cities such as building height, land use or land cover 
could be included in the GWR as controls to improve fit estimates. 

5. Conclusion 

We demonstrate an application of ML to leverage aerial and satellite 
data for generating estimates of urban canopy cover and canopy height 
over Chicago. We show that the relationship between these urban can
opy metrics and climate outcomes can be predicted spatially and that 

these impacts vary substantially across city blocks. This implies that 
certain types of localities may be a more effective tree planting location 
for reducing UHI effects than other locations. Lastly, we show that the 
inclusion of average canopy height provides important additional in
formation about the quality of urban canopy cover that can help 
determine where planting future trees may be most effective. This 
approach can help inform decisions around how urban planners should 
allocate resources to meet equity and climate goals. 

Not all canopy cover is equal, and in general larger trees tend to have 
a greater environmental effect than smaller trees, with numerous 
smaller trees often unable to match the effects of a single large tree (Le 
Roux et al., 2015; Stephenson et al., 2014). Using both horizontal and 
vertical measures of the urban canopy, the method laid out in this paper 
allows for a more complete assessment of the relation between the urban 
canopy and the wider urban environment. Our approach also provides a 
simple framework to include additional tree metrics in building a more 
holistic view of the urban canopy. While we showed how this method 
could be used in two discrete scenarios, we view this pipeline to be 
method agnostic and believe this framework in whole or in part could 
easily be integrated into other workflows and prioritization strategies 
leveraging the code provided in the associated project GitHub. 

The approach we have developed has the potential to be more widely 
applicable to urban areas. More advanced ML models could be inte
grated into this pipeline, along with higher resolution remotely-sensed 
data and multiple health and environmental objectives for tree 
planting. There is a need to test model generalizability, incorporating 
global LiDAR datasets (e.g., GEDI) as well as including additional ML 
tasks (e.g., species type, above ground carbon estimates). More effective 
use of new datasets on the quality of canopy cover will be key to better 
decision-making around the value of and access to urban canopies. 
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Table 3 
Equity of Chicago’s urban tree canopy and the four allocation scenarios.  

Demographic 
Areas (% of total 
blocks) 

Avg. Predicted 
2021 Canopy 
cover % 

Avg. Predicted 
2021 Avg. 
Canopy Height 
(m) 

Avg. # of trees 
given available 
pervious space 

Avg. 2021 
Scaled 
LST 

Allocation Scenarios # (%) of 75,000 Trees Allocated3 

Urban Heat 
Island 
(Cover 
Alone) 

Urban Heat 
Island (Cover 
and Height) 

Environmental 
Equality (Cover 
Alone) 

Environmental 
Equality (Cover and 
Height) 

Poverty Quartiles 
1–3 (75%) 

20.7% 7.1 101 .0732 62,400  63,200  55,700  54,700       

(83.2%) (84.3%) (74.3%) (72.9%) 
Poverty Quartile 41 

(25%) 
21.6% 7.1 126 .0439 12,600  11,800  19,300  20,300       

(16.8%) (15.7%) (25.7%) (27.1%) 
Majority2 Asian 

(1.0%) 
11.8% 5.2 54.5 0.285 0  0  290  740       

(0%) (0%) (0.4%) (1.0%) 
Majority Black 

(37.9%) 
22.7% 7.3 143 -0.002 31,600  31,200  36,700  30,800       

(42.1%) (41.6%) (48.9%) (41.1%) 
Majority Latino 

(22.1%) 
17.3% 6.8 67.7 0.491 9230  9020  18,500  20,700       

(12.3%) (12.0%) (24.7%) (27.6%) 
Majority White 

(28.4%) 
21.8% 7.1 106 -0.160 30,400  31,200  14,500  16,300       

(40.5%) (41.6%) (19.3%) (21.7%) 
No Racial/Ethnic 

Majority 
(10.7%) 

20.6% 6.9 79.9 0.000 3770  3520  4980  6410       

(5.0%) (4.7%) (6.6%) (8.5%) 

Notes: 1- Blocks in Poverty Quartile 4 represent blocks with the highest percentage of households that have income below the poverty line. 2- Majority racial/ethnic 
blocks are those with at least 50% of a single group as estimated by the ACS. 3- While SLSQP allows for a precise allocation of trees, the numbers in this table have been 
rounded (and may not add to 75,000) to reflect the uncertainty contained within this pipeline. 
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Pretzsch, H., Pauleit, S., 2020. Traits of trees for cooling urban heat islands: A meta- 
analysis. Build. Environ. 170, 106606. 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for 
biomedical image segmentation. In International Conference on Medical Image 
Computing and Computer-assisted Intervention. Springer, Cham, pp. 234–241. 

Roussel, J., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R., Meador, A.S., 
Bourdon, J., de Boissieu, F., Achim, A., 2020. lidR: an R package for analysis of 
Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 251, 112061. ISSN 0034- 
4257.  

Shahidan, M.F., Jones, P.J., Gwilliam, J., Salleh, E., 2012. An evaluation of outdoor and 
building environment cooling achieved through combination modification of trees 
with ground materials. Build. Environ. 58, 245–257. 

Sharmin, M., Tjoelker, M.G., Pfautsch, S., Esperon-Rodriguez, M., Rymer, P.D., Power, S. 
A., 2023. Tree crown traits and planting context contribute to reducing urban heat. 
Urban For. Urban Green. 83, 127913. 

Singh, N.J., Nongmeikapam, K., 2022. Semantic segmentation of satellite images using 
DeepUnet. Arab. J. Sci. Eng. 1–13. 

Sousa-Silva, R., Duflos, M., Barona, C.O., Paquette, A., 2023. Keys to better planning and 
integrating urban tree planting initiatives. Landsc. Urban Plan. 231, 104649. 

Stephenson, N.L., Das, A.J., Condit, R., Russo, S.E., Baker, P.J., Beckman, N.G., 
Zavala, M.A., 2014. Rate of tree carbon accumulation increases continuously with 
tree size. Nature 507 (7490), 90–93. 

Strohbach, M.W., Lerman, S.B., Warren, P.S., 2013. Are small greening areas enhancing 
bird diversity? Insights from community-driven greening projects in Boston. Landsc. 
Urban Plan. 114, 69–79. 

Su, Y.F., Foody, G.M., Cheng, K.S., 2012. Spatial non-stationarity in the relationships 
between land cover and surface temperature in an urban heat island and its impacts 
on thermally sensitive populations. Landsc. Urban Plan. 107 (2), 172–180. 

The Morton Arboretum. (2021). 2020 Chicago Region Tree Census Report. The Morton 
Arboretum. 

United States Census Bureau (2019). Selected household characteristics, 2019 American 
Community Survey 5-year estimates. Available at: 〈https://data.census.gov/〉. 

United States Census Bureau. (2021). Census Glossary. Available at: 〈https://www.cen 
sus.gov/programs-surveys/geography/about/glossary.html#par_textimage_13〉. 

Wang, J., Zhou, W., Jiao, M., 2022. Location matters: planting urban trees in the right 
places improves cooling. Front. Ecol. Environ. 20 (3), 147–151. 

Weinstein, B.G., Marconi, S., Bohlman, S., Zare, A., White, E., 2019. Individual tree 
-crown detection in RGB imagery using semi-supervised deep learning neural 
networks. Remote Sens. 11 (11), 1309. 

Wellmann, T., Lausch, A., Andersson, E., Knapp, S., Cortinovis, C., Jache, J., Haase, D., 
2020. Remote sensing in urban planning: contributions towards ecologically sound 
policies. Landsc. Urban Plan. 204, 103921. 

Weng, Q., Lu, D., Schubring, J., 2004. Estimation of land surface temperature–vegetation 
abundance relationship for urban heat island studies. Remote Sens. Environ. 89 (4), 
467–483. 

Wu, C., Xiao, Q., McPherson, E.G., 2008. A method for locating potential tree-planting 
sites in urban areas: a case study of Los Angeles. USA Urban For. Urban Green. 7 (2), 
65–76. 

Young, R.F., 2011. Planting the living city. J. Am. Plan. Assoc. 77 (4), 368–381. 
Zangs, M., (2014). The Chicago 77: A Community Area Handbook. Arcardia Publishing. 
Zhang, H., Jim, C.Y., 2014. Contributions of landscape trees in public housing estates to 

urban biodiversity in Hong Kong. Urban For. Urban Green. 13 (2), 272–284. 
Zhang, L., Bi, H., Cheng, P., Davis, C.J., 2004. Modeling spatial variation in tree 

diameter-height relationships. For. Ecol. Manag. 189, 317–329. 
Zhao, Z., Wang, H., Wang, C., Wang, S., Li, Y., 2019. Fusing LiDAR data and aerial 

imagery for building detection using a vegetation-mask-based connected filter. IEEE 
Geosci. Remote Sens. Lett. 16 (8), 1299–1303. 

Zhou, W., Huang, G., Pickett, S.T., Wang, J., Cadenasso, M.L., McPhearson, T., Grove, J. 
M., Wang, J., 2021. Urban tree canopy has greater cooling effects in socially 
vulnerable communities in the US. One Earth 4 (12), 1764–1775. 

Ziter, C.D., Pedersen, E.J., Kucharik, C.J., Turner, M.G., 2019. Scale-dependent 
interactions between tree canopy cover and impervious surfaces reduce daytime 
urban heat during summer. Proc. Natl. Acad. Sci. 116 (15), 7575–7580. 

J. Francis et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref43
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref43
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref43
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref44
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref44
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref44
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref45
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref45
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref46
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref46
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref46
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref47
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref47
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref47
https://www.k24tv.co.ke/news/11000-youths-to-be-recruited-for-tree-planting-89178/
https://www.k24tv.co.ke/news/11000-youths-to-be-recruited-for-tree-planting-89178/
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref48
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref48
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref49
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref49
https://www.chicago.gov/city/en/depts/mayor/press_room/press_releases/2021/november/TreeEquityInvestment.html
https://www.chicago.gov/city/en/depts/mayor/press_room/press_releases/2021/november/TreeEquityInvestment.html
https://www.chicago.gov/city/en/depts/mayor/press_room/press_releases/2021/november/TreeEquityInvestment.html
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref50
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref50
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref51
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref51
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref51
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref52
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref52
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref53
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref53
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref53
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref54
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref54
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref54
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref55
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref55
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref55
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref56
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref56
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref56
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref56
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref57
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref57
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref57
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref58
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref58
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref58
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref59
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref59
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref60
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref60
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref61
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref61
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref61
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref62
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref62
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref62
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref63
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref63
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref63
https://data.census.gov/
https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_13
https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_13
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref64
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref64
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref65
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref65
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref65
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref66
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref66
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref66
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref67
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref67
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref67
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref68
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref68
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref68
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref69
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref70
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref70
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref71
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref71
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref72
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref72
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref72
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref73
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref73
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref73
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref74
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref74
http://refhub.elsevier.com/S1618-8667(23)00286-8/sbref74

	Monitoring canopy quality and improving equitable outcomes of urban tree planting using LiDAR and machine learning
	1 Introduction
	1.1 Why Invest in the Urban Canopy?
	1.2 Deciding where to plant trees

	2 Material and methods
	2.1 Study Area
	2.2 Materials
	2.3 Environmental and equity metrics
	2.4 Methodological pipeline
	2.5 Data preparation
	2.6 Deep learning model for tree canopy prediction
	2.7 Relationship between the urban canopy and the UHI effect
	2.8 Determining where to plant trees

	3 Results
	3.1 Canopy cover and height estimates
	3.2 Spatial regression results
	3.3 Tree allocation scenarios

	4 Discussion
	5 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Appendix A Supporting information
	References


