
Principled and Efficient Bilevel
Optimization for Machine Learning

Riccardo Grazzi

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

October 2, 2023



2

I, Riccardo Grazzi, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.



Abstract

Automatic differentiation (AD) is a core element of most modern machine learning

libraries that allows to efficiently compute derivatives of a function from the cor-

responding program. Thanks to AD, machine learning practitioners have tackled

increasingly complex learning models, such as deep neural networks with up to hun-

dreds of billions of parameters, which are learned using the derivative (or gradient)

of a loss function with respect to those parameters. While in most cases gradients

can be computed exactly and relatively cheaply, in others the exact computation

is either impossible or too expensive and AD must be used in combination with

approximation methods. Some of these challenging scenarios arising for example in

meta-learning or hyperparameter optimization, can be framed as bilevel optimization

problems, where the goal is to minimize an objective function that is evaluated by

first solving another optimization problem, the lower-level problem. In this work, we

study efficient gradient-based bilevel optimization algorithms for machine learning

problems. In particular, we establish convergence rates for some simple approaches

to approximate the gradient of the bilevel objective, namely the hypergradient, when

the objective is smooth and the lower-level problem consists in finding the fixed

point of a contraction map. Leveraging such results, we also prove that the projected

inexact hypergradient method achieves a (near) optimal rate of convergence. We

establish these results for both the deterministic and stochastic settings. Addition-

ally, we provide an efficient implementation of the methods studied and perform

several numerical experiments on hyperparameter optimization, meta-learning, data-

poisoning and equilibrium models, which show that our theoretical results are good

indicators of the performance in practice.



Impact Statement

Gradient-based bilevel optimization methods have recently started to be more popular

in machine learning research, while they are still rarely employed in industrial

applications. The bilevel formulation allows to cover a wide variety of problems, but

the complexity and high time and memory cost of gradient-based bilevel methods

make them often less appealing than simpler and cheaper alternatives based on

heuristics or tailored to specific applications. For these reasons, we foresee that this

work will affect almost exclusively the academic world, at least until either a suitable

industrial application is found or bilevel methods become easier to set up and/or

cheaper to run.

This thesis can be seen as an effort to build a quantitative theoretical foundation

for gradient-based bilevel optimization methods. The scale of modern bilevel opti-

mization problems combined with the complexity of gradient-based methods used to

solve them makes it difficult and expensive to perform comprehensive experimen-

tal evaluations, and our analysis provides an alternative way to compare different

bilevel methods in terms of iteration and sample complexity. This may be useful

to researchers and practitioners for designing methods which are provably better

than established ones, but also to better understand strength and weaknesses of each

method and when it is suitable to apply.

The experimental part of this work validates the theory on different small and

medium scale problems in a variety of scenarios, and is accompanied by open-source

code designed to be (and that has been) used by researchers to develop new methods

and to solve custom bilevel problems.
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Chapter 1

Introduction

The complexity of machine learning problems and algorithms is rapidly increasing

thanks to the exponential rise in computational power. Nowadays, practitioners

can develop and test new and existing methods with unprecedented ease, aided by

powerful and reliable software libraries. A core element of recent machine learning

libraries such as PyTorch (Paszke et al., 2019a), JAX, (Bradbury et al., 2018) and

TensorFlow (Abadi et al., 2015) is automatic differentiation (AD) (Griewank and

Walther, 2008), which is a way to automatically and efficiently compute exact deriva-

tives from a program which evaluates a mathematical function. For instance, reverse

mode AD (or backpropagation) allows to compute the gradient of the loss w.r.t. the

parameters of deep learning models (Goodfellow et al., 2016) such as Convolutional

Networks (Krizhevsky et al., 2012), LSTMs (Hochreiter and Schmidhuber, 1997),

and Transformers (Vaswani et al., 2017), which would be hard and expensive to

evaluate using other methods. The loss function is a scalar measure of the error

the model commits on a given task, and its gradient is exploited by gradient-based

optimization methods to learn the parameters minimizing the loss. Gradients are

fundamental to learn models with a high number of parameters, since the cost of

learning by relying only on loss values is generally too high.

In some situations however, even with the help of AD, computing derivatives is

more challenging. For example in gradient-based hyperparameter optimization the

dataset is split into training and validation, and we want to compute the gradient with

respect to the hyperparameters of the validation loss evaluated on the optimal model
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parameters, i.e. the ones minimizing the training loss. However, when this gradient

is well-defined it is often very expensive or impossible to compute exactly since

the optimal model parameters are the solution of another optimization problem. A

similar hurdle is present also in meta-learning, where the goal is to learn a meta-model

capable to adapt quickly to new tasks. Moreover, other similarly challenging settings

studied in this work are poisoning adversarial attacks and learning models whose

internal representation is the fixed point of a certain parametrized map. Instances of

the latter are some kind of recurrent neural networks (Almeida, 1987; Pineda, 1987),

graph neural networks (Scarselli et al., 2008) and more recently deep equilibrium

models (Bai et al., 2019).

Most of these challenging scenarios fit into the mathematical framework of

Bilevel Optimization (Franceschi et al., 2018; Franceschi, 2021), where the goal

(or upper-level problem) is to minimize a function f where some variables are the

solution of another optimization problem (the lower-level problem).

Bilevel optimization problems have a long history and have been originally

referred to as Stackelberg Games (Von Stackelberg, 2010), where upper and lower

level problems are solved by two players, the leader and follower respectively. A

large amount of literature of bilevel optimization has been published by the operations

research community and initially focused on linear bilevel problems: having linear

constraints and linear upper and lower level objectives. However, even bilevel

problem of this simple kind are usually non-convex and are often solved via global

optimization algorithms like branch and bound (Hansen et al., 1992), that are less

suited for high-dimensional problems.

In contrast, many bilevel problems in machine learning are high-dimensional,

have usually a weaker structure for the lower-level objective, which can be quadratic,

strongly convex, or even non-convex, and have either few or no constraints at the

lower-level. Machine learning practitioners often use simple black-box approaches

that ignore the bilevel structure such as grid or random search, which are intuitive

and easy to implement. More sophisticated alternatives are Bayesian optimization

methods (Snoek et al., 2012), which use past function evaluations to decide which
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points to evaluate next, balancing exploration and exploitation. However, these

black-box strategies struggle to optimize the large number of upper-level parameters

present for example in some meta-learning problems, where e.g. the upper-level

parameters are the weights of a neural network.

Recent works have instead shown the advantage of gradient-based1 bilevel meth-

ods that rely on approximations of the so called hypergradient, i.e. the gradient of

the upper-level objective, to solve bilevel optimization problems. In hyperparameter

optimization for example, Pedregosa (2016) showed that gradient-based methods

can find the best regularization parameters faster than random search and Bayesian

optimization, while Lorraine et al. (2020) showed that these methods can also opti-

mize millions of hyperparameters. In meta-learning the success of gradient-based

methods is even more striking (Finn et al., 2017; Rajeswaran et al., 2019; Denevi

et al., 2019a), since we usually deal with many meta-parameters. Other examples of

the success of gradient-based optimization methods are in neural architecture search

Liu et al. (2018) and dataset poisoning attacks (Biggio et al., 2012; Muñoz-González

et al., 2017).

1.1 The Bilevel Fixed-Point Framework
In this section, we describe the mathematical bilevel framework that is the subject

of this manuscript. Let Λ ⊆ Rn be closed and convex, E : Rd ×Λ → R be the

upper-level objective and Φ : Rd ×Λ → Rd be the lower-level fixed-point map. We

consider the following bilevel problem

min
λ∈Λ

f (λ ) := E(w(λ ),λ )

with w(λ ) = Φ(w(λ ),λ ).

The upper-level problem is that of finding the minimizer of f , while the lower-

level problem is that of computing w(λ ), i.e. the fixed point of Φ. This fixed-

point formulation is different from the classical bilevel formulation where we have

1Notice that such methods may not be first-order methods, since they may rely on the second
derivative of the lower-level objective.
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a minimization problem at the lower-level, i.e. w(λ ) = argminw∈Rd L(w,λ ) with

L : Rd ×Λ → R. However, when L is differentiable and strictly convex, since w(λ )

is the only point satisfying ∇1L(w(λ ),λ ) = 0, if we set the fixed-point map to be

the one-step gradient descent update, i.e. Φ(w,λ ) = w−η∇1L(w,λ ) for any step

size η > 0, then the two problems are equivalent.

We focus on the fixed-point formulation because it has two main advantages.

Firstly, it simplifies the analysis when the lower-level problem can be solved by the

repeated application of the map Φ. Secondly, it allows to handle more naturally

problems where the lower-level is commonly written as a fixed-point problem: e.g.

in the case of equilibrium models (Bai et al., 2019).

Note also that to ensure that ∇ f (λ ) is well defined we implicitly assume that

the solution of the lower-level problem is unique. When this is not the case, the

optimistic (or pessimistic) bilevel reformulation is often used, where at the upper-

level there is an additional minimization (maximization) over the solution set at the

lower-level. Optimistic bilevel problems are usually transformed into value function,

Karush-Kuhn-Tucker (KKT) or mathematical program with equilibrium constraints

(MPEC) reformulations (Dempe and Zemkoho, 2020).

Throughout this manuscript, we will assume that E and Φ are differentiable

and indicate with ∇iE and ∂iΦ the gradient and Jacobian with respect to the i-th

component of E and Φ respectively. If w(λ ) is unique and I − ∂1Φ(w(λ ),λ ) is

invertible, then, thanks to the implicit function theorem, both w(λ ) and f (λ ) are

differentiable, and we have

w′(λ ) = (I −∂1Φ(w(λ ),λ ))−1
∂2Φ(w(λ ),λ )

∇ f (λ ) = ∇2E(w(λ ),λ )+w′(λ )⊤∇1E(w(λ ),λ ),

where ∇ f (λ ) is called the hypergradient (see Lemma 3.3.2 in Chapter 3). Note that

computing ∇ f (λ ) accurately can be difficult because w(λ ) is usually the solution of

an optimization problem, and also evaluating, storing and inverting the Jacobians of

Φ might be too costly especially when d and n are large. Moreover, in many machine

learning applications, E and Φ are either sums over many examples or integrals over
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the data distributions, which makes even their evaluation expensive. To study more

efficient strategies in this case, we consider the stochastic setup where

E(w,λ ) = E[Ê(w,λ ,ξ )], Φ(w,λ ) = E[Φ̂(w,λ ,ξ )],

with Ê : Rd ×Λ×Ξ → R, Φ̂ : Rd ×Λ×Z → Rd being cheaper to evaluate than E

and Φ, and ξ , ζ being two independent random variables with values in Ξ and Z,

respectively.

For the reasons described above, computing the exact hypergradient is often not

feasible, and gradient-based bilevel methods use an approximation which is usually

done with one of the following two strategies.

• Iterative Differentiation (ITD) (Maclaurin et al., 2015; Franceschi et al., 2017),

which works by differentiating the steps of the solver for the lower-level

problem.

• Approximate implicit differentiation (AID) (Pedregosa, 2016), which works

as follows. Firstly, it computes an approximate solution to the lower-level

problem using a given solver. Secondly, it uses another solver to compute the

approximate solution of a linear system arising from the implicit expression of

the hypergradient.

Thanks to reverse mode AD, used to compute upper-level gradients and lower-level

Jacobian or hessian vector products, AID and ITD can be implemented efficiently,

because the complexity of approximating the hypergradient is of the same order

as that of approximating the objective f . However, prior to Grazzi et al. (2020),

there was little focus on establishing theoretical guarantees for these methods and

for gradient-based bilevel methods in general.

Deterministic Iterative differentiation was previously studied by the automatic

differentiation community (Griewank and Walther, 2008, Chapter 15), which proved

asymptotic linear rates for the approximation error. Asymptotic results for the

convergence of the minimizers of the approximate bilevel problem (i.e. where the

w(λ ) is replaced by an approximate solution) where given for ITD (Franceschi et al.,
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2018). Concerning AID instead, the asymptotic convergence of the hypergradient and

of a deterministic bilevel procedure using approximate hypergradients was proved by

Pedregosa (2016), while hypergradient error rates in the special case of meta-learning

with biased regularization where given by Rajeswaran et al. (2019). The sample

complexity for some gradient-based bilevel procedure based on AID where provided

in (Couellan and Wang, 2016; Ghadimi and Wang, 2018) for specific deterministic

and stochastic algorithms. Multiple research developments have occurred within our

field of study since we began our work on this subject. We discuss some of them in

detail in the related works section of Chapters 4 and 5.

1.2 Outline of the Thesis
This work studies how well AID and ITD approximate the hypergradient and estab-

lishes convergence guarantees for a whole bilevel optimization procedure relying on

AID. In particular, under the assumptions that the functions involved are smooth and

the fixed-point equation at the lower-level is a contraction, we present a theoretical

analysis of gradient-based bilevel optimization techniques used in machine learning

together with experimental evidence of their efficacy. The main focus will be on

establishing rates of convergence, which provide a principled way of comparing

different bilevel optimization algorithms.

1.2.1 Summary of Contributions

• We propose to study an alternative formulation of bilevel optimization where

the minimization problem at the lower-level is replaced by a fixed-point equa-

tion. This formulation naturally covers applications like equilibrium models

and some graph and recurrent neural networks and allows us to analyse more

naturally ITD approaches.

• We provide iteration complexity results for two deterministic approaches to

approximate the hypergradient: iterative differentiation (ITD) and approximate

implicit differentiation (AID). Both methods converge linearly to the true

hypergradient, although AID has a better error upper bound, O(qt) versus

O(tqt) of ITD where q is the contraction constant and t is the number of
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iteration of the lower-level and linear system solvers, and is usually faster also

in practice.

• We introduce the Stochastic Implicit Differentiation (SID) method to compute

the hypergradient. SID modifies AID to include stochastic estimators. We

prove that the mean square error of SID goes to zero when both the mini-batch

sizes used to estimate ∇1E, ∂2Φ and the number of iterations of the solvers

for the lower-level problem and linear system go to infinity, and provide

O(1/t) convergence rates when both solvers are simple stochastic fixed-point

iterations.

• As a byproduct of the Analysis of SID, we prove rates of convergence for

stochastic fixed-point iteration methods when the expected fixed-point map is

a contraction. These results are rather straightforward extensions of the ones

for the stochastic gradient method on strongly convex and Lipschitz smooth

objectives reported in Bottou et al. (2018) and can be of interest even beyond

bilevel optimization.

• Finally, we establish the sample complexity of a bilevel procedure using

inexact projected gradient descent at the upper-level, with hypergradient com-

puted via SID. In particular, we recover the optimal O(ε−2) and near-optimal

O(ε−1 log(ε−1)) sample complexity to reach an ε-stationary point in the

stochastic and deterministic setting respectively. Contrary to previous work,

this result is achieved without warm-starting the lower-level problem, i.e. with-

out using previously computed lower-level solutions as starting points for

future steps of the bilevel algorithm. This makes our approach more suited

to bilevel problems where the lower-level can be decomposed into many sub-

problems, such as meta-learning and equilibrium models, as we also show

empirically.

1.2.2 Scope

The primary focus of this work is on theoretical aspects of gradient-based bilevel

optimization algorithms, while black-box and higher order methods are secondary
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topics. Deep learning models are sometimes used for the empirical evaluation, but

they are not the primary subject of research.

All theoretical results that we propose assume that the upper-level objective

E and the fixed point map Φ in the bilevel formulation are smooth. We will not

study the issues arising when this is not the case. Furthermore, to be able to derive

complexity results on the hypergradient approximation, we assume that the map

in the fixed-point equation at the lower-level is a contraction. This is a strong

assumption which guarantees that the lower-level problem has only one solution

and the existence of the hypergradient. The reader is referred to the works by

Mairal et al. (2011); Ochs et al. (2015); Bertrand et al. (2020, 2022b), which present

algorithms for hyperparameter optimization on non-smooth lower-level problems,

and to Liu et al. (2020, 2022); Arbel and Mairal (2022) which tackle the case where

the lower-level problem has multiple solutions.

The bilevel optimization point of view that we adopt does not take into account

possible issues concerning generalization. For example in hyperparameter optimiza-

tion, when the number of hyperparameters is large we can more easily overfit to the

validation set, if this is too small. This is an important problem which is seldom

addressed by the literature from a theoretical perspective. A notable exception is the

work by Bao et al. (2021), which provides generalization bounds leveraging stability.

We will partially address this issue through experiments measuring the performance

on a hold-out test set without any theoretical claims.

Related Publications

• R. Grazzi, M. Pontil, and S. Salzo. Bilevel optimization with a lower-level con-

traction: Optimal sample complexity without warm-start. Journal of Machine

Learning Research, 24(167):1–37, 2023.

• R. Grazzi, M. Pontil, and S. Salzo. Convergence properties of stochastic

hypergradients. In International Conference on Artificial Intelligence and

Statistics, pages 3826–3834. PMLR, 2021b.

• R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo. On the iteration complex-
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ity of hypergradient computation. In International Conference on Machine

Learning, pages 3748–3758. PMLR, 2020.

Other Works Done During the PhD

• R. Grazzi, A. Akhavan, J. I. T. Falk, L. Cella, and M. Pontil. Group meritocratic

fairness in linear contextual bandits. NeurIPS, 2022.

• R. Grazzi, V. Flunkert, D. Salinas, T. Januschowski, M. Seeger, and C. Ar-

chambeau. Meta-forecasting by combining global deep representations with

local adaptation. arXiv preprint arXiv:2111.03418, 2021a.

• G. Denevi, C. Ciliberto, R. Grazzi, and M. Pontil. Learning-to-learn stochastic

gradient descent with biased regularization. In International Conference on

Machine Learning, pages 1566–1575. PMLR, 2019a.

1.2.3 Structure

The remaining part of this thesis is structured as follows.

1. Chapter 2 presents the background material. Section 2.1 explains the notation

we use, while Section 2.2 introduces foundational mathematical concepts

for our analysis. In Section 2.3, we discuss scalable optimization methods

including theoretical results used in our analysis. In Section 2.4, we describe

the inner workings and time/space complexity of automatic differentiation.

Section 2.5 presents several important bilevel applications which will be

explored in following chapters.

2. In Chapter 3 we derive deterministic iteration complexity results for the hy-

pergradient computed using approximate implicit differentiation and iterative

differentiation methods. The content of this chapter is adapted from Grazzi

et al. (2020).

3. In Chapter 4 we illustrate a principled stochastic method to approximate the

hypergradient, namely SID, and prove iteration complexity results for such

method. The content of this chapter is mainly adapted from Grazzi et al.
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(2021b), but we include the improved algorithm and analysis from Grazzi et al.

(2023).

4. In Chapter 5 we derive the sample complexity for a bilevel procedure using

SID to compute the hypergradient. The content of this chapter is adapted from

Grazzi et al. (2023).

5. In Chapter 6 we derive general conclusions and discuss potential future works.

Our theoretical results are in Chapters 3 to 5. Each one of these chapters also contains

a section with experiments on several bilevel problems arising in machine learning.



Chapter 2

Background

2.1 Notation

We outline part of the notation used throughout the thesis. R+ and R++ are used

to denote the non-negative (either positive or zero) and positive reals respectively.

We denote by ∥·∥ either the Euclidean norm or the spectral norm (when applied to

matrices). For a differentiable function f : Rn → Rm we denote by f ′(x) ∈ Rm×n

the derivative of f at x. When m = 1, we denote by ∇ f : Rn → Rn the gradient of

f . For a real-valued function g : Rn ×Rm → R we denote by ∇1g(x,y) ∈ Rn and

∇2g(x,y) ∈ Rm the partial derivatives w.r.t. the first and second variable respectively.

We also denote by ∇2
1g(x,y) ∈ Rn×n and ∇2

12g(x,y) ∈ Rn×m the second derivative

of g w.r.t. the first variable and the mixed second derivative of g w.r.t. the first

and second variable. For a vector-valued function h : Rn ×Rm → Rk we denote,

by ∂1h(x,y) ∈ Rk×n and ∂2h(x,y) ∈ Rk×m the partial Jacobians w.r.t. the first and

second variable respectively at (x,y) ∈ Rm ×Rn. The transpose and the inverse of

a given matrix A, is denoted by A⊤ and A−1 respectively. We use the shorthand

notation ∂h⊤v to denote the Jacobian-vector product h′(x,y)⊤v for some x and y.

For a random variable X we denote by E[X ] and V[X ] its expectation and variance

respectively. Finally, given two random variables X and Y , the conditional variance

of X given Y is V[X |Y ] := E[∥X −E[X |Y ]∥2 |Y ] where E[X |Y ] is the conditional

expectation of X given Y . We sometimes use Lip(h) to refer to the Lipschitz constant

of the function h.
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2.2 Foundational Mathematical Concepts

This section delves into the foundational concepts that form the basis of this research.

In particular, we will focus on convexity, strong convexity, Lipschitz continuity,

Lipschitz smoothness, and contraction within the scope of functions from X ⊆Rn to

Rd where X is convex. These definitions are standard in the optimization literature,

see e.g. (Boyd and Vandenberghe, 2004; Ryu and Boyd, 2016), and are used to define

specific classes of problems and to obtain the rate of convergence of algorithms.

Definition 2.2.1 (Convexity). A function f : X →R is convex if for all x,y ∈ X , and

for any t ∈ [0,1], we have:

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y).

if f is also differentiable in an open set containing X , we can equivalently write

f (y)≥ f (x)+∇ f (x)⊤(y− x).

Definition 2.2.2 (Strong convexity). A function f : X → R is said to be µ-strongly

convex if it satisfies the inequality:

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)− t(1− t)µ
2

∥y− x∥2,

with µ > 0, for all x,y ∈ X and for any t ∈ [0,1]. If f is also differentiable in

an open set containing X , we can equivalently write

f (y)≥ f (x)+∇ f (x)⊤(y− x)+
µ

2
∥x− y∥2.

Definition 2.2.3 (Lipschitz continuity). A vector-valued function g : X → Rd is said

to be Lipschitz continuous if there exists a constant L > 0 such that, for all x,y ∈ X ,

∥g(x)−g(y)∥ ≤ L∥x− y∥.
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If g is also differentiable in an open set containing X , we can equivalently write

∥g′(x)∥< L.

Definition 2.2.4 (Lipschitz smoothness). A function g : X → Rd is said to be Lips-

chitz smooth if g is differentiable in an open set containing X and its derivative g′ is

Lipschitz continuous.

Definition 2.2.5 (Contraction). If a function g : X →X is Lipschitz continuous with

constant q < 1, then g is a contraction.

A direct application of the Banach fixed-point theorem (Banach, 1922) shows

that if g is a contraction with constant q, then it has a unique fixed point x∗ ∈ X , i.e.

such that g(x∗) = x∗, and that starting from any x0 ∈ X , the sequence (xi)i∈N where

xi = g(xi−1) converges linearly to x∗, i.e. ∥x∗− xk∥ ≤ qk∥x∗− x0∥.

2.3 Scalable Optimization Methods
Mathematical Optimization studies methods to select the best element from a set ac-

cording to some criterion. Optimization problems arise in all quantitative disciplines

from computer science to economics. Moreover, the problem of learning from data

is essentially an optimization problem. In this chapter, we consider the minimization

problem

min
w∈W⊆Rd

f (w), (2.1)

where f : W 7→ R is called the objective function.

In the bilevel optimization framework subject of this thesis, the upper-level

problem is formulated as a minimization problem similar to (2.1). In contrast, the

lower-level problem is that of finding the fixed-point of a vector valued map. Despite

being seemingly different, these two formulations are related, since the minima of a

smooth and/or convex function f are also fixed point of a certain operator related

to the subgradient of f . This perspective allows to unify the analysis of several

optimization methods (Ryu and Boyd, 2016).
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Parametric Supervised Learning. The goal of supervised learning is to minimize

the expected risk

E(x,y)∼ρx,y [E(hw(x),y)]

where (x,y) are random variables representing the data and following the distribution

ρx,y, where x ∈ X ⊆Rm is the input while y ∈ Y is the target (or label), hw : X 7→ Y

is the machine learning model, also called hypothesis, in this case parameterized

by w ∈W and E : Y ×Y 7→ R is the error measure for the task, measuring the error

between predictions and targets (e.g. the square loss E(ŷ,y) := (ŷ−y)2 for regression

problems or the zero-one loss 1{ŷ = y} for classification).

Since the expected risk cannot be directly computed due to the inaccessibility

of ρx,y, supervised learning algorithms usually minimize the (regularized) empirical

risk

f (w) =
1
n

n

∑
i=1

L(hw(xi),yi)+βR(w), (2.2)

where ((xi,yi))
n
i=1 are the training examples sampled i.i.d. from ρx,y, L : Y×Y 7→R

is the loss function, which is a usually continuous and convex on the first argument

and acts as a surrogate for E (e.g. if E is the zero-one loss, L can be the cross-

entropy loss), and R : W 7→W is a regularizer generally used to prevent overfitting

to the training data (low empirical risk but high expected risk) and to encode prior

knowledge about the problem (e.g. the Lp regularizer R(w) = ∥w∥p
p). The regularizer

is multiplied by the hyperparameter β ∈R+ (β = 0 means no regularization is used).

The parameter space W is generally convex and closed and has a simple

structure: either W = Rd , or is defined by simple constraints (e.g. box or ball),

which allow for a relatively cheap projection of points in Rd onto W . Furthermore,

L(·,yi) and R are usually convex and differentiable almost everywhere. The majority

of the complexity usually resides on the model hw, which is usually differentiable

almost everywhere, but can vary from a linear model hw(x) = w⊤x to deep neural

networks with a hundred billion weights, as in large language models (Brown et al.,

2020; Chowdhery et al., 2022). For some machine learning problems, the input
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space X can be high-dimensional, in the order of thousands or millions (e.g. in the

case of images it is the number of pixels times the number of color channels) and the

number of training examples n can also range from the hundreds to the billions.

In the following, we primarily focus on optimization methods that are scalable,

meaning that they can be applied when d and n are large, which is common in

large-scale machine-learning applications. First-order methods, and in particular

stochastic gradient descent and its several variants, have been proven very effective

to tackle these problems.

2.3.1 Stochastic Gradient Descent

Let’s assume that, in Problem (2.1), W = Rd and the objective function f is smooth

(in general f is smooth almost everywhere). Stochastic gradient descent (SGD) is an

iterative procedure which starts from w1 ∈ Rd and at each iteration t ∈ N computes

wt+1 = wt −ηt∇1 f̂ (wt ,ξt), (2.3)

where {ηt} is a sequence of step-sizes (also called learning rates), f̂ : W×Ξ 7→ R

is differentiable w.r.t. the first variable, {ξt} is a sequence of i.i.d. random variables

with values in Ξ and E[∇1 f̂ (w,ξt)] = ∇ f (w).

In the case of the supervised learning objective in (2.2) a typical example is

f̂ (w, i) being either the regularized loss on the i-th training example, i.e. f̂ (w, i) =

L(hw(xi),yi)+βR(w) with ξt uniform random on {1, . . . ,n}, or on a small group

of examples, called a mini-batch. When n is large, computing ∇1 f̂ can be much

cheaper than computing the full gradient ∇ f while still yielding a descent direction

in expectation. We note that SGD can also be used to minimize the expected risk

if we set f̂ (w,(x,y)) = L(hw(x),y) with (x,y) ∼ ρx,y. Gradient Descent (GD) is

obtained by setting f̂ = f .

In the following two theorems, we state some convergence results for SGD that

hold in expectation under some mild assumption on the variance of ∇1 f̂ . These

results are special cases of (Bottou et al., 2018, Theorems 4.6 to 4.10) with unbiased

stochastic gradients (i.e. by setting µ = µG = 1 in the cited work).



2.3. Scalable Optimization Methods 34

Theorem 2.3.1 (SGD asymptotic convergenece). Let f be L-smooth and bounded

from below, i.e. there exists f ∗ ∈ R such that f ∗ = minw∈Rd f (w). Let also

E[∇1 f̂ (w,ξt)] = ∇ f (w) and V[∇1 f̂ (w,ξt)] ≤ σ1 +σ2∥∇ f (w)∥2 for every t ∈ N. If

SGD in (2.3) is applied with decreasing step-sizes such that

∞

∑
t=1

ηt = ∞,
∞

∑
t=1

η
2
t < ∞.

Then the expected weighted average of squared gradient norms satisfies

lim
T→∞

E
[

∑
T
t=1 ηt∥∇ f (wt)∥2

∑
∞
t=1 ηt

]
= 0,

and hence liminft→∞E[∥∇ f (wt)∥2] = 0.

Theorem 2.3.2 (SGD Rates). Let f be L-smooth and bounded from below. Let also

E[∇1 f̂ (w,ξt)] = ∇ f (w) and V[∇1 f̂ (w,ξt)]≤ σ1+σ2∥∇ f (w)∥2 for every t ∈N. The

following statements hold.

(i) If f is τ-strongly convex and SGD in (2.3) is applied with constant step-size

ηt = η such that 0 < η ≤ 1
L(σ2+1) . Then the expected optimality gap satisfies

E[ f (wt)− f ∗]≤ σ1Lη

2τ
+(1−ητ)t−1( f (w1)− f ∗).

(ii) If SGD in (2.3) is applied with constant step-size ηt = η such that, as in the

previous case 0 < η ≤ 1
L(σ2+1) . Then the expected average of squared gradient

norms satisfies

E
[

1
T

T

∑
t=1

∥∇ f (wt)∥2
]
≤ σ1Lη +

2( f (w1)− f ∗)
T η

.

(iii) If f is τ-strongly convex and SGD in (2.3) is applied with decreasing step-size

ηt =
α

γ + t
, for some β >

1
τ

and γ > 0 such that η1 <
1

L(σ2 +1)
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then the expected optimality gap satisfies

E[ f (wt)− f ∗]≤ max
{

σ1Lβ 2

2(βτ −1)
,(γ +1)( f (w1)− f ∗)

}/
(γ + t).

To summarize the above results, Theorem 2.3.1 states that for square summable

but not summable stepsizes, SGD reaches a stationary point in expectation. In-

stead, Theorem 2.3.2 establishes the rates O(exp(−t)+ c) (with constant stepsize

on strongly convex objectives), O(1/t + c) (with constant stepsize on possibly non-

convex objectives) and O(1/t) (with decreasing stepsize on strongly convex objec-

tives), where c is a problem and step-size specific constant which is zero when the

variance parameter σ1 is equal to zero (this implies that c = 0 for GD). O(1/
√

t)

non-convex rates are proved when σ2 = 0 in Ghadimi and Lan (2013) for randomized

SGD, i.e. when final parameters are chosen at random among the iterates {wt} with

probability which depends on the step-sizes, which are set as ηt = Θ(1/
√

t).

Non-convex objectives and neural networks. Without the convexity assump-

tion on f , the strongest SGD guarantees in the theorems above concern only the

expected average gradient norm, while when f is strongly convex, we have rates

on the expected optimality gap in function values, i.e. E[ f (wt)− f ∗]. These rates

transfer directly to the expected squared norm of the optimality gap on the iterates

E[∥wt −w∗∥2], since if f is τ-strongly-convex and w∗ = argminw∈Rd f (w), we have

f (wt)− f ∗ ≥ τ

2∥wt −w∗∥2. When training a neural network, the objective function

is non-convex and the optimization could get “trapped” in a saddle-point or a bad

local-minima. However, stochastic gradient descent can provably escape certain

types of saddle points (Ge et al., 2015), and even gradient descent can do so with a

proper random initialization (Lee et al., 2016). Furthermore, for over-parameterized

models, i.e. where n < d, (stochastic) gradient descent on some common deep neural

architectures converges polynomially to a global minimizer with zero training error

(Du et al., 2019; Allen-Zhu et al., 2019).

Constant vs decreasing step-sizes. From Theorem 2.3.2, we see that SGD

with decreasing step-sizes converges properly, i.e. either the optimality gap (if f is
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strongly-convex) or the expected norm of gradients (if f is not convex) are zero in the

limit when the number of iterations goes to infinity. In contrast, SGD with constant

step-sizes converges faster, but only up to a region which is proportional to the

product of the step-size η , the Lipschitz constant L and a component of the variance

of the stochastic gradients σ1. A good strategy suggested by Bottou et al. (2018)

would then be to start with a constant step-size until such region is reached and

then proceed with decreasing step-sizes. However, for machine learning problems,

going beyond a given precision might not bring any significant advantage or even be

detrimental. This is because, as we previously showed, the objective f is a proxy for

the expected risk and minimizing it accurately can cause overfitting. Indeed, limiting

the precision of the optimization, by e.g. limiting the number of SGD iterations, is

considered as an implicit form of regularization because it prevents overfitting.

Gradient descent and projection. We can recover the rates for gradient descent

by setting σ1 = σ2 = 0 in Theorem 2.3.2. When σ1 = 0, decreasing step-sizes are

no longer necessary to achieve proper convergence, and we recover the O(1/t) and

linear rates for non-convex and strongly-convex objectives respectively. Furthermore,

when W ̸= Rd is convex and closed, convergence guarantees similar to the case

W = Rd can also be obtained for the projected stochastic gradient descent method,

which projects the iterates onto W after the stochastic gradient update.

Bias and bilevel optimization. The results in Theorems 2.3.1 and 2.3.2 can

be extended to biased stochastic gradients where E[∇1 f̂ (wt ,ξt)] is a direction of

sufficient descent with norm comparable to that of the gradient (Bottou et al., 2018).

However, we cannot apply this extension to bilevel optimization because, despite the

stochastic upper-level gradients being biased, they are usually not descent directions

in expectation. Therefore, to obtain convergence guarantees for gradient-based

bilevel methods, the bias has to vanish when the number of upper-level iterations

goes to infinity.

2.3.2 Accelerated Methods

Accelerated methods are gradient-based methods that also make use of previously

computed gradients in their update rule.
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Stochastic Gradient Descent with Momentum (SGDM) uses the updates

vt+1 = γtvt +∇1 f̂ (wt ,ξt),

wt+1 = wt −ηtvt+1,

where w1 ∈ Rd , v1 = 0. vt contains the running average of past gradients and

{ηt},{γt} are the sequence of step-sizes and momentum factors respectively. The

deterministic variant (GDM) is obtained by setting ∇1 f̂ (wt ,ξt) = ∇ f (wt)

On L-smooth and τ-strongly convex quadratic objectives GDM with fixed step-

size and momentum factor, also known as the heavy-ball method, converges faster

than gradient descent: the optimality gap at iteration t is O(exp(−t/
√

κ)) (Polyak,

1964) against O(exp(−t/κ)) for GD where κ := L/τ is called the condition number.

Furthermore, the GDM variant proposed by Nesterov (1983) is shown to achieve

the optimal rate of O(1/t2) for convex objectives, improving the O(1/t) rate of GD.

However, the stochastic variant SGDM does not improve the theoretical rates despite

still outperforming SGD in some applications (Sutskever et al., 2013).

ADAM (Kingma and Ba, 2015) is arguably the most popular optimization method

for deep learning after SGD. It has the following update rule.

vt+1 = γ1vt−1 +(1− γ1)∇1 f̂t(wt ,ξt)

mt+1 = γ2mt−1 +(1− γ2)∇1 f̂t(wt ,ξt)
2

wt+1 = wt −η

√
1− γ t

2
1− γ t

1

vt√
mt + ε

,

where squares and divisions for vectors are element-wise, γ1,γ2 ∈ [0,1) control the

exponential decay of the moving averages of gradients (vt) and squared gradients (mt),

and η is the learning rate. The recommended defaults γ1 = 0.9, γ2 = 0.999 and η =

10−3 perform quite well for several deep learning problems, which contributed to the

success of the method. The method uses a combination of momentum and element-

wise learning rates (given by the element-wise division by
√

mt + ε) which help

in situations when the ranges of gradients vary greatly across different parameters.
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Despite its popularity, ADAM does not converge in general even on some convex

objectives (Reddi et al., 2019).

2.3.3 Second-Order Methods

While stochastic gradient descent and its variants like SGDM and ADAM use only

first-order information, second-order methods try to speed up the convergence by

leveraging second-order derivatives, which are helpful especially when the Hessian

of f is ill-conditioned. The most prominent example is the (deterministic) Newton

method

wt+1 = wt −H−1
t ∇ f (wt),

where f is twice differentiable and Ht = ∇2 f (wt) is its Hessian matrix. On quadratic

strictly convex objectives of the form w⊤Aw+ b⊤w+ c with x⊤Ax > 0 for every

x ∈ Rd , it is easy to see that this method converges in one iteration from any starting

point w1 ∈ Rd . More generally, the Newton method can exhibit a local quadratic

rate of convergence on strongly convex objectives (Nesterov, 2003). However,

convergence of the Newton method (and many second-order methods) has usually

stronger requirements than that of first-order methods. For example, it requires

that the Hessian can always be inverted and, to achieve global convergence, to be

coupled with line search or trust-region methods (Nocedal and Wright, 1999, Chapter

3 and 4), which are often too costly for large scale applications and not directly

applicable to the stochastic setting. Furthermore, the cost of each Newton iteration is

dominated by that of computing H−1
t ∇ f (wt), which is equivalent to that of solving

the linear system ∇2 f (wt)x = ∇ f (wt). This can be solved without fully inverting

the Hessian either through matrix factorization methods (for small d), or iterative

methods which do not even require to compute and store the entire Hessian but only

Hessian-vector products. Computing such products is usually much more efficient

than computing the full hessian matrix and can also be done automatically and

efficiently thanks to automatic differentiation. One of the commonly used iterative

methods is conjugate gradient, which converges exactly after d iterations (and has

fast rates even before that) when the Hessian is positive definite. Despite this, the cost
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of computing a full Newton step is usually not feasible for large scale applications

when d is large (it is usually O(d2) versus O(d) for first-order methods). Therefore,

several approximation have been proposed to reduce the cost per iteration and make

second-order methods competitive with first-order approaches.

Hessian-free, quasi and stochastic Newton. To alleviate the cost of the Newton

update, Hessian-free Newton methods solve the linear system associated with the

Newton step approximately by stopping the iterative solver before convergence.

Despite the approximation, these methods still have local superlinear convergence

when the linear system is solved with increasing accuracy (Dembo et al., 1982).

Alternatively, quasi-Newton methods like BFGS and L-BFGS (Fletcher, 2013)

approximate the Hessian inverse using past gradients. BFGS has local superlinear

convergence but high memory cost, while L-BFGS reduces the memory cost but

is only provably linearly convergent. When the exact gradient or Hessian-vector

product is too expensive to compute, stochastic algorithms, which replace these

quantities with random estimators, have also been proposed (Martens and Grosse,

2015; Agarwal et al., 2017). However, stochastic second-order methods only improve

the constants in the sublinear convergence rates w.r.t. stochastic first-order methods.

Second-order methods in deep learning. Second-order methods are seldom

used to optimize deep neural networks. Despite some promising early proposals

outperforming gradient descent on very deep (at the time) networks (Martens, 2010;

Martens and Sutskever, 2011), SGD variants like ADAM combined with specific

components in network architectures such as batch normalization (Ioffe and Szegedy,

2015) and residual connections (He et al., 2016), which simplify the optimization

problem, have now become standard approaches capable of training very deep

networks on huge datasets. Designing scalable second-order methods for deep

learning is still an active area of research with some recent proposals outperforming

first-order methods in some tasks (Yao et al., 2021; Frantar et al., 2021).

In this work we focus primarily on first-order methods, since they are currently

the standard methods used to tackle large scale machine learning problems.
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2.4 Automatic Differentiation

Automatic Differentiation (AD) (Griewank and Walther, 2008) is a technique to

augment a given function evaluation program, i.e. a program whose inputs and

outputs are numerical values and that evaluates a given mathematical function, with

the ability of computing derivatives. It relies on the fact that good function evaluation

programs are essentially clever compositions of simple operations for which exact

derivatives are well known and that can be evaluated efficiently. As we will see,

symbolic derivatives of some programs, obtained by applying the chain rule to the

symbolic expression of the function computed by the program, can be complicated,

uninformative and inefficient to evaluate without implementations that avoid re-

computing the same quantities. AD instead takes advantage of the implementation

of the function evaluation program: it also uses the chain rule, but applied directly to

numerical values and following the program’s order of execution. For this reason,

evaluating derivatives, or more precisely Jacobian-vector products, with AD has a

cost comparable to that of evaluating the original program.

In this section, we will present “exact” AD, i.e. assuming that the evaluation

program works with infinite precision the corresponding derivative program will

output the exact derivative. The main subject of this thesis and of (Griewank and

Walther, 2008, Chap. 15) is instead that of computing approximate AD derivatives,

where the evaluation program contains some approximation method used to compute

certain implicit quantities. As we will show in the following chapters, in such case

exact AD is still used to compute intermediate values.

To better motivate AD, we now compare it with two other techniques commonly

used to compute derivatives.

Finite differences. A common technique to approximate the derivative of a

function f : X ⊆ Rd → Rm at a point x in the direction h is to use

f (x+ εh)− f (x)
ε

or
f (x+ εh)− f (x− εh)

2ε
,

with ε > 0. These expressions however, might not provide an accurate derivative
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estimate: when ε is too small the cancellation error due to finite precision arithmetic

might reduce the number of significant digits of the estimate, but when ε is too large

there might be truncation errors as we are further away from the derivative definition

in which ε → 0. Even when ε is optimal, these issues can be problematic in practice

and become even more pronounced for higher-order derivatives. Furthermore, to

approximate the full Jacobian of f , we would need to approximate d directional

derivatives for a total cost of at least d function evaluations. In contrast, AD does

not require to set a parameter, is not afflicted by truncation errors, and reverse mode

AD on functions with scalar output has usually a cost never greater than that of 5

function evaluations for any d.

Symbolic differentiation, similarly to differentiation by hand, applies the chain

rule to the symbolic expression of a given function. A simple problematic example

where this approach might not be ideal is

f (x) =
d

∏
i=1

xi = x1x2 · · ·xd, ∇ f (x)i = ∏
j ̸=i

x j = x1 · · ·xi−1xi+1 · · ·xd

where ∇ f (x)i is the i-th component of the gradient of f . The symbolic expression for

the full ∇ f (x) is quite cumbersome and contains several repeated sub-expressions

that can result in wasted computation if some intermediate values are not stored

and reused during the evaluation. AD instead does not differentiate the symbolic

expression of f but its program, which is assumed to provide and efficient imple-

mentation for the evaluation of f . In this example, if the program evaluating f

computes the values of the partial products x1 · · ·xk internally, these are saved by the

AD augmented program and then used to evaluate the derivative.

2.4.1 Function Evaluation Program

Let

f : X ⊆ Rd → Rm, D f : X ⊆ Rd 7→ Rm ×Rd,

be respectively the differentiable mathematical function we wish to differentiate

and its first-order derivative, i.e. its Jacobian. To perform symbolic differentiation,
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we need the analytic expression of f , while for finite differences f is treated as a

black box, and we only need to be able to evaluate f at any given point. In contrast,

automatic differentiation requires the knowledge of a program which evaluates f at

any point x ∈ X . Therefore, we will assume that f (x) can be written as

f (x) = gl ◦gl−1 ◦ · · · ◦g1(x), (2.4)

where w0 = x and for any i ∈ {1, . . . l −1}

gi(wi−1) =

 wi−1

ψi(wi−1)

 , gl(wl−1) = ψl(wl−1)

and ψi are simple possibly vector-valued differentiable operations (such as element-

wise addition, multiplication, reciprocal or affine transformations) called elementals,

belonging to a predefined library Ψ. The RHS of eq. (2.4) represents a computer

program evaluating f , where we use the convention that each operation gi is executed

sequentially from right to left and the partial computation is saved in l −1 auxiliary

vector variables

vi = ψi
(
(v j)

i−1
j=0
)
, where (v j)

i−1
j=0 = concat

(
(v j)

i−1
j=0
)
, v0 = x,

and we overloaded the notation (v j)
i−1
j=0 to also be the concatenation of the vectors

v0, . . . ,vi−1 when needed. In practice, ψi usually depends on just one or two variables.

To capture this aspect, we can also frame the evaluation of f at x as a directed acyclic

graph where nodes are the auxiliary vector variables {vi}l
i=0, and edges represent

direct dependencies between nodes: there is an edge from v j to vi, denoted with j ≺ i,

when v j has a direct dependence on vi. For instance, an indirect dependence would

be when the output variable vl depends on the input variable x but only through the

intermediate variable vl−1. With this notation we can write the expression for vi

more compactly by excluding unused variables as follows.

vi = ψi(ui), where ui = (v j) j≺i = concat
(
(v j) j≺i

)
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For example, for the product function f (x) = ∏
d
i=1 xi we could set vi to be equal to

the partial product ∏
i+1
j=1 x j, i.e. set v0 = x and for every i ∈ {2, . . .d −1}1

v1 = ψ1(v0) = x1 ∗ x2, vi = ψi(vi−1,v0) = vi−1 ∗ xi+1,

which yields the following computational graph, where we set d = 4.

x1

x2

v1 = x1 ∗ x2

x3

v2 = v1 ∗ x3

x4

f (x) = v2 ∗ x4

Figure 2.1: A possible computational graph for f (x) = ∏
4
i=1 xi

For every elemental ψ ∈ Ψ AD uses a program that computes ψ(u), and another

for the Jacobian-vector products Dψ(u) u̇ (for forward mode AD) and Dψ(u)⊤ū

(for reverse mode AD), where u, u̇, ū are vectors of appropriate dimensions. A

minimal set of elementals that can approximate a large variety of functions is the

so-called polynomial core, which contains only addition, multiplication, unary sign

switch and constant assignment. However, a richer Ψ can usually speed up the

computation. For example the library of elementals in the deep learning framework

PyTorch (Paszke et al., 2019b) contains several vector and matrix operations whose

programs for function evaluation and (reverse) Jacobian-vector products have fast

C++ implementations which may take advantage of GPU parallelism. Furthermore,

if we want our program to contain branches, the resulting function will in general not

be differentiable, but AD can still be applied to recover some generalized derivatives.

For a given library Ψ of elementals, more than one program might correspond

to a given function f and some operations gi in eq. (2.4) might also be carried out in

parallel if the order of application does not change the final result. In general, AD

assumes that the decomposition we use to evaluate f gives us an efficient program

and exploits such decomposition to compute derivatives.
1For a simple exposition and since since v0 is a vector, we reduce the number of variables by

setting ψi as a composition of two other elemental operations: coordinate selection (of the input x)
and binary product.
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2.4.2 Forward and Reverse Mode Automatic Differentiation

Forward and Reverse mode AD provide an efficient way to compute the Jacobian-

vector products

D f (x) ẋ ∈ Rm (forward), D f (x)⊤ y ∈ Rd (reverse),

for any x ∈ X , ẋ ∈ Rd and y ∈ Rm. By applying the chain rule to eq. (2.4) we obtain

D f (x) ẋ = Dgl(wl−1)Dgl−1(wl−2) · · · Dg1(w0) ẋ, (2.5)

D f (x)⊤ y = Dg1(w0)
⊤ Dg2(w1)

⊤ · · · Dgl(wl−1)
⊤ y, (2.6)

where for i ∈ {1, . . . , l −1}

Dgi(wi−1) =

 I

Dψi(wl−1)

 and Dgl(wl−1) = Dψl(wl−1).

Forward and Reverse AD can be thought of as computing the products in

eq. (2.5) and eq. (2.6) respectively, from right to left, so that each computation step

reduces to one (forward or reverse) Jacobian-vector product involving one elemental.

A common implementation is outlined in Algorithms 2.4.1 and 2.4.2.

Algorithm 2.4.1 Forward Mode AD

Input: x, ẋ ∈ Rd

Output: f (x), D f (x) ẋ
1: v0 = x, v̇0 = ẋ
2: for i = 1, . . . , l do
3: vi = ψi(ui), v̇i = Dψi(ui) u̇i

4: return vl , v̇l

Algorithm 2.4.2 Reverse Mode AD

Input: x ∈ Rd , y ∈ Rm

Output: f (x), D f (x)⊤ y
1: v0=x, vl=y, vi=0 for i= 1, . . . , l−1
2: for i = 1, . . . , l do
3: vi = ψi(ui)

4: for i = l, . . . ,1 do
5: ui = ui +Dψi(ui)

⊤ vi

6: return vl , v1

Figure 2.2: Forward and Reverse Mode AD. We set ui = (v j) j≺i, u̇i = (v̇ j) j≺i, ui = (v j) j≺i.
{v̇i}, {vi} are called the dotted and adjoint variables respectively. Computations on
the same line and, depending on the structure of the evaluation graph of f (x), also

some iterations in the for cycles can be performed in parallel.
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As one can predict from eq. (2.5), the auxiliary dotted variables {v̇i} in forward

mode AD are computed together with the intermediate variables {vi} in one so-called

forward pass (going forward from inputs x to outputs f (x)), which also evaluates

f (x). On the other hand, from eq. (2.6) we observe that reverse mode AD requires

first to compute and save all the intermediate {vi} during the forward pass and then

proceed, in the so-called reverse or backward pass (going backwards from output

to inputs), to compute the auxiliary adjoint variables {vi} by plugging-in the saved

{vi} in the (reverse) Jacobian-vector products. Hence, reverse mode AD has usually

a greater memory cost than forward mode AD.

Expanding the computation of dotted and adjoint variables in Algorithms 2.4.1

and 2.4.2, and letting ∂v jψi(ui) be the partial derivative of ψi(ui) w.r.t. v j, we have

v̇i = ∑
j≺i

∂v jψi(ui) v̇ j, v j = v j +∂v jψi(ui)
⊤ vi ∀ j ≺ i.

This shows that dotted variables {v̇i} are set in one step, while adjoint variables {vi}

are set incrementally during the reverse pass using backward pointers from each

intermediate node vi to its parents {v j} j≺i. Adjoint variables can also be set in one

step by using instead forward pointers from each node vi to its direct descendants

{v j}i≺ j. This is done by replacing the incremental update in line 5 of Algorithm 2.4.2

with vi = ∑i≺ j ∂v jψi(ui)
⊤ vi. However, since forward pointers are less natural to

implement, they are rarely used in AD frameworks.

Checkpointing. Forward and reverse AD can also be applied recursively if

each elemental ψ ∈ Ψ is seen as a composition of sub-elementals and so on. This is

useful to save memory in reverse mode AD in exchange for an increased computation

time. Indeed, a strategy to save memory called checkpointing is that of grouping

some operations to be treated as higher level elementals. This hierarchical structure

yields less auxiliary variables {vi} to be saved in the forward pass at each level, but

increases the time complexity of the backward pass, which needs to re-compute the

forward pass of the higher level elementals.

Hessian-vector products. Some optimization methods, including bilevel ones,
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may require computing Hessian-vector products ∇2 f (x)v where f : Rd 7→ R and

v ∈Rd is a given vector. By applying reverse mode AD twice we can see that the cost

of a Hessian-vector product is of the same order as that of computing the function

value. However, this can be done more efficiently by first computing ∇ f (x) using

reverse mode AD and then computing ∂x(x 7→ ∇ f (x)) v = ∇2 f (x) v with forward

mode. This forward-over-reverse approach (Pearlmutter, 1994) requires less memory

than a double application of reverse mode AD. The same result can be achieved also

by applying forward mode AD first to compute ∇ f (x) v and then reverse AD to get

∂x(x 7→ ∇ f (x) v) = ∇2 f (x) v, but this has increased time and space complexity since

reverse is applied to a larger computational graph.

Reverse mode AD in deep learning frameworks. In deep learning appli-

cations, Reverse mode AD, also called backpropagation, is used to compute the

gradient of a scalar loss function w.r.t. the potentially large number parameters of

a deep neural network. This can be done by setting y = 1 ∈ R in Algorithm 2.4.2.

In the PyTorch library, AD is performed by saving the backward pointers to the

arguments and a link to the reverse Jacobian-vector product operation Dψ(u)⊤ u

together with the result of an elemental operation ψ , during the forward pass. Instead,

during the backward pass the evaluation graph is traversed backwards to compute

the adjoints variables. Pytorch uses a dynamic graph that is constructed at runtime

and is by default discarded after the backward pass. While pytorch only implements

reverse mode AD, other frameworks like JAX (Bradbury et al., 2018) also implement

forward mode AD which, as we saw, can be useful for fast Hessian-vector products.

2.4.3 Computational Complexity

Let Time and MEM be two time and space complexity measures such that for any

function g

TIME
[
g(x)

]
, MEM

[
g(x)

]
are respectively the time and memory required for the evaluation of g at x, given by a

certain fixed program. More precisely, MEM
[
g(x)

]
measures the number of floating

point allocations required, while TIME
[
g(x)

]
can be thought of as a weighted sum of
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the number of additions, multiplications, memory moves and non-linear operations

performed, where each weight represents the (hardware-dependent) time required

by each operation type. When Dg(x) ẋ or Dg(x)⊤ y are added to their arguments,

TIME and MEM measure the time and memory complexity of forward or reverse

AD respectively.

Time complexity and the cheap gradient principle. To study the time com-

plexity we note that according to the decomposition of f in elemental functions we

can reasonably assume that

Time[ f (x)] =
l

∑
i=1

Time[ψi(x)].

From Algorithms 2.4.1 and 2.4.2 we observe that for each elemental ψi, Forward

mode AD computes ψi(ui) and Dψi(ui) u̇i, while Reverse mode AD computes ψi(ui)

and ui +Dψi(ui)
⊤ vi. Therefore, we assume the following forward/reverse sub-

additivity property

Time[ f (x),D f (x) ẋ]≤
l

∑
i=1

Time[ψi(x),Dψi(ui) u̇i],

Time[ f (x),D f (x)⊤ y]≤
l

∑
i=1

Time[ψi(x),ui +Dψi(ui)
⊤ vi].

We can easily show that when the library of elemental Ψ contains scalar functions in

the polynomial core, i.e. addition, multiplication, unitary sign switch and constant

assignment, then for any ψ ∈ Ψ and vectors u, u̇,v we get

Time[ψ(u),ψ(u) u̇]≤C f Time[ψ(u)],

Time[ψ(u),u+ψ(u)⊤ v]≤CrTime[ψ(u)],

where C f ∈ [2,5/2] and Cr ∈ [2,5]. These constants can also be improved for vector

mode forward and reverse AD, i.e. when ẋ and y are replaced by the matrices

Ẋ ∈ Rd×p and Y ∈ Rm×p. In this case a lower number of additions and memory

accesses are performed. For a richer Ψ, e.g. containing vector-valued elementals a
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similar linearly bounded complexity holds but with different constants. Combining

the above inequalities with the forward/reverse sub-additivity we finally obtain

Time[ f (x),D f (x) ẋ]≤C f Time[ f (x)],

Time[ f (x),D f (x)⊤ y]≤CrTime[ f (x)].

Which means that the time complexity of forward and reverse Jacobian-vector

products is at most linear in the time of evaluating the function. When applying

reverse mode with y = 1 ∈ R to a scalar valued function f we obtain

Time[ f (x),∇ f (x)]≤CrTime[ f (x)],

which is referred to as the cheap gradient principle. Computing the same quantity

with forward AD would require instead d forward Jacobian-vector products, which

is less convenient already if d > 5. This fundamental and somewhat counterintuitive

result is one of the root causes of the widespread use of reverse mode AD in deep

learning to compute the gradient of the loss w.r.t. the numerous parameters of a

neural network.

Computing the full jacobian. We can easily see that since D f (x) =

∑
d
i=1 D f (x) ed

i = ∑
m
i=1 em⊤

i D f (x) where ed
i and em

i are elements of the canonical

basis of Rd and Rm respectively, computing the full Jacobian requires either d for-

ward mode AD computations or m reverse AD computations and hence its time

complexity is proportional to either d or m times that of evaluating the function.

However, notice that the forward pass for the function evaluation can be reused for

each Jacobian-vector product to save time. Computing the full Jacobian is inherently

slower than a single Jacobian-vector product, but can be useful when such Jaco-

bian is repeatedly used, for example when Jacobian-vector products are repeatedly

computed with the same Jacobian to approximate the Newton step for a quadratic

minimization problem.

Memory allocation. In the Algorithms 2.4.1 and 2.4.2, we defined auxiliary

variables {vi}, {v̇i} and {vi} which are used to compute the function value, forward
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mode AD and reverse mode AD respectively. To save memory, some of these

auxiliary variables can be overwritten by others, i.e. share the same memory location,

when this does not change the final result. In particular to evaluate f (x), vi can be

overwritten by any other variable vk if vi is never an argument of ψ j with j > k, i.e. if

k ≥ maxi≺ j j. The same also applies to {v̇i} in forward mode AD, which can mimic

the same overwrite protocol of {vi}: when vk overwrites vi, v̇k also overwrites v̇i.

Therefore, since the dimension of vi is the same as that of v̇i we have

MEM
[

f (x),D f (x) ẋ
]
= 2MEM

[
f (x)

]
.

For reverse mode AD instead, since each vi is accessed sequentially in the backward

pass from vl to v0 to compute the adjoints variables {vi}, their values must be

saved separately during the forward pass to be able to retrieve them even in case of

overwriting. It may be convenient in case of sequential execution if this separate

storage is a last in first out (LIFO) queue, also called tape, for faster retrieval during

the backward pass. Therefore, if we denote with dim(vi) the dimension of the vector

vi we obtain

MEM
[

f (x),D f (x)⊤ y
]
∼

l

∑
i=0

2 dim(vl)≥ 2 MEM
[

f (x)
]
.

In general, for programs allowing several overwrites (e.g. programs evaluating feed

forward neural networks or exectuing optimization algorithms), the memory cost

of reverse mode AD can be largely greater than that of forward mode AD. For this

reason, there are several techniques that aim at decreasing this cost like the aforemen-

tioned checkpointing. Another strategy is that of recomputing vi during the backward

pass when this can be done cheaply using the inverse of elemental functions, e.g.

in the case of some linear operations. This allows to save memory and potentially

decrease the computation time when re-computing is cheaper than retrieving from

memory, but can result in catastrophic cancellations and other numerical problems

arising from finite precision arithmetic since vi in the backward pass is computed

differently and possibly less accurately than in the forward pass.
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2.5 Bilevel Problems in Machine Learning
In this section we describe important machine learning applications that can be

framed as bilevel optimization problems. In particular, we will cover hyperparameter

optimization in Section 2.5.1, meta-learning in Section 2.5.2, equilibrium models in

Section 2.5.4 and poisoning adversarial attacks in Section 2.5.3. In the following

Chapters, we show experimental results in all of these scenarios. We note that the

bilevel framework is not limited to such applications.

2.5.1 Hyperparameter Optimization

Hyperparameter optimization (HPO) is the problem of finding the best value for the

parameters controlling the behavior of a learning algorithm. These parameters are

called hyperparameters to distinguish them from the parameters set through learning.

Consider the supervised learning problem2 of finding a hypothesis h : X 7→ Y

which minimizes

E(x,y)∼ρx,y [E(h(x),y)], (2.7)

where ρx,y is the unknown data distribution while E is a suitable error measure for the

problem, which in this case might even be discontinuous (e.g. the classification error).

This problem is generally solved through an algorithm A (possibly randomized)

which takes as input some training dataset D = {(xi,yi)}n
i=1 of i.i.d. examples each

sampled from ρx,y and some hyperparameters λ ∈ Λ and returns the hypothesis h:

A(D,λ ) = h. For example, if we let h be parameterized by w we can have

A(D,λ ) = hw∗, where w∗ ∈ argmin
w∈Rd

1
n ∑
(x,y)∈D

L(hw(x),y)+R(w,λ ),

with L being a loss function surrogate for E and usually continuous and convex on the

first argument, R is some regularization (e.g. λ ∈ R++ and R(w,λ ) = λ∥w∥2) and

the model hw could be e.g. a linear model or a more complex deep neural network.

The definition of A can vary greatly depending on the desired level of abstrac-

tion. In the above example it outputs a minimizer of the regularized training loss,

2Note that hyperparameter optimization can also be applied to reinforcement and unsupervised
learning.
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which does not generally have a closed for solution and could be too expensive to

compute accurately. Another approach could be for A to output the mapping obtained

after some steps of (stochastic) gradient descent or another first-order optimization

method on the regularized loss. In addition to regularization hyperparameters, λ

could contain parameters involving the loss (e.g. the weights of different losses),

design hyperparameters (e.g. the ones that chooses which network architecture and

how many layers and neurons to use), optimization hyperparameter (e.g. the learning

rate schedule and number of iterations) and others.

Hyperparameter optimization aims at solving the minimization problem

min
λ∈Λ

{ f (λ ) := C(A(D,λ ))} (2.8)

where C provides a good substitute for the expected error in eq. (2.7). Note that

when A is defined as a minimizer of the training error, the problem in eq. (2.8) is a

bilevel optimization problem. The complexity of A and the hyperparameter space

Λ defines how large is the space of hypothesis. However, the larger the hypothesis

space the higher the computational complexity of the problem. In general, choosing

the appropriate Λ is a difficult problem which we do not tackle in this thesis. We

refer the interested reader to (Perrone et al., 2019), which studies a transfer learning

approach.

One of the most popular choices for C is the validation loss

C(h) = 1
n′ ∑

(x,y)∈D′
L̂(h(x),y), (2.9)

where D′ = (xn+i,yn+i)
n′
i=1 is the validation set, containing i.i.d. samples from ρx,y

independent of D and L̂ is a surrogate loss for E , which might be different from L

and sometimes even equal to E . While here we only consider a train and a validation

set, usually obtained by splitting in two the original training set, we can instead take

several non-overlapping training-validation splits of the same dataset using K-fold

cross-validation (Stone, 1974). This will be more expensive but will also reduce the

variance in the estimated quantities, which can be beneficial with small datasets.
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Once the final hyperparameters and corresponding model (λ ∗,h∗) are chosen,

the final performance is measured on a hold out test set D′′ = (xn+n′+i,yn+n′+i)
n′′
i=1

containing i.i.d. samples from ρx,y independent from D and D′ by measuring the test

set error n−1
∑(x,y)∈D′′ E(h∗(x),y). This also allows to detect if the hyperparameter

optimization procedure has overfitted to the validation set D′ (low C(h∗) but high test

set error), which may happen more often with a large number of hyperparameters

and/or small datasets.

Other choices for C which do not rely on a validation dataset are e.g. Stein’s

unbiased risk estimate (Stein, 1981) and Akaike information criterion (Akaike, 1998).

However, these usually require additional statistical modeling assumptions and are

therefore less generally applicable than eq. (2.9).

Challenges. Solving the hyperparameter optimization problem in Equation (2.8)

presents several challenges. The HPO objective function f is usually non-convex,

can be non-smooth or even discontinuous and very expensive to compute, especially

when dealing with deep neural networks and large datasets. The hyperparameters

might be heterogeneous (e.g. λ1 ∈R++ is the learning rate and λ2 ∈N is the number

of layers in the neural network) and of different types (reals, naturals, and even

categorical). Moreover, there might be many hyperparameters whose choice greatly

affects the performance of the algorithm (this happens more the more complex the

model is).

Hyperparameter optimization methods

In the following, we describe commonly used hyperparameter optimization methods

highlighting advantages and disadvantages. Since the literature in the field is vast,

here we focus on describing only a few simple and established methods without

covering possible variations and extensions which may also lie in between the

proposed categorization. We refer to each coordinate of λ , a value λ ∈ Λ, and f in

Equation (2.8) as hyperparameter, hyperparameter configuration and HPO objective

respectively.

Manual search, also jokingly called “grad student descent”, consists in the

human practitioner iteratively deciding which hyperparameter configuration λ to
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try next. The decision is usually based on the value of the HPO objective for the

previous configurations, together with heuristics based on the previous experience

and insights on the problem of the practitioner. Manual search is easy to implement

and potentially cheap to execute. However, since it relies on human decisions, it is

very hard to reproduce and, if done improperly, might even be biased by leaking

information from the test set D′′, which instead should only be used for the final

evaluation of the method. Despite the downsides, manual search is widely used,

especially for very large scale problems, mainly due its practically non-existent

implementation overhead.

Grid search consists in choosing a priori a grid of hyperparameter configura-

tions to evaluate. More specifically, for each hyperparameter, some candidates are

chosen and all the configurations obtained as combinations of candidates are evalu-

ated. Then, the configuration achieving the best HPO objective is selected. Usually,

for categorical hyperparameters, all values are candidates, while for real and natural

ones, candidates are chosen equally spaced in the domain or in the logarithm of the

domain (Bengio, 2012). Grid search can be parallelized: each configuration can

be evaluated in parallel since the set of configurations is chosen a priori. However,

optimizing more than 3 hyperparameters becomes prohibitive due to the number of

configurations growing exponentially with the number of hyperparameters.

Random search, like grid-search, also consists in constructing a set of hyper-

parameters configurations, then evaluating them and finally picking the one with

the lowest f (λ ). However, each configuration is drawn randomly from the same

distribution over the search space Λ. Usually, the distribution of each hyperparameter

is independent of the others and popular choices are simple distributions as the

uniform or the log-uniform (or reciprocal) distribution. For example if λ1 is the

number of layers of a neural network, λ2 is the learning rate and λ3 is the regular-

ization parameter we can have each configuration λ = (λ1,λ2,λ3) drawn from the

distribution

U [{1, . . . ,100}]× logU [10−4,103]× logU [10−4,103]
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where U and logU are the uniform and log-uniform (or reciprocal) distributions

respectively. Random search is easy to implement and to parallelize (as grid search).

Furthermore, it can be particularly effective even with many hyperparameters when

they have a low effective dimensionality (Bergstra and Bengio, 2012), e.g. if only a

few have a significant impact on the HPO objective. For these reasons, Bergstra and

Bengio (2012) propose to use random search instead of grid search as the default

hyperparameter optimization method. Despite the advantages, random search in high

dimensions is affected by the curse of dimensionality: even when the number of

configurations is large, only a small portion of the search space is explored when Λ

is high-dimensional. This means that if the effective dimensionality of the search

space is proportional to the number of hyperparameters nλ , the probability of finding

a good configuration drops exponentially with nλ . This makes it difficult to handle

many important hyperparameters, as in the case of grid search.

Model-based methods are iterative methods which choose the next hyperpa-

rameter configuration(s) to evaluate with the aid of a surrogate model of f , namely f̂ ,

constructed by using information obtained from previously evaluated configurations

{(λi, f (λi))}. The surrogate model should be substantially cheaper to evaluate than

f itself and usually measures also the uncertainty on its estimates for the values of f .

Bayesian Optimization (Bergstra et al., 2011; Hutter et al., 2011; Snoek et al.,

2012) is one of the most popular and principled model-based approaches. It relies

on Bayesian statistics, in particular on Gaussian process regression, to model the

surrogate f̂ . In Gaussian process regression, f is assumed to be continuous and

for every λ ∈ Λ, f̂ (λ ) is modeled as a Gaussian random variable whose mean and

covariance depend on previously evaluated points. At the start of the procedure,

f̂ (λ ) has the prior distribution N (µ0(λ ),σ0(λ )), where µ0 and σ0 are simple mean

and covariance functions (e.g. µ0(λ ) = 0, σ0(λ ) = α0 > 0) that can encode prior

knowledge on the problem. Furthermore, we set σ0(λ ) = κ(λ ,λ ) where κ is a kernel

function measuring the similarity between its arguments (e.g. λ1,λ2 ∈Λ, κ(λ1,λ2) =

α0 exp(−∥λ1 −λ2∥2)). At iteration s, let {λi}s
i=1 be the previously evaluated points,
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then the posterior distribution of f̂ (λ ) | {λi, f (λi)}s
i=1 is N (µs(λ ),σs(λ )) where

µs(λ ) = µ0(λ )+ vκ(λ )
⊤K−1(y− ŷ), σ

2
s (λ ) = σ0(λ )− vκ(λ )

⊤K−1vκ(λ ),

K is the kernel matrix such that Ki j = κ(λi,λ j) for every i, j ∈ {1, . . . ,s} and

vκ(λ ) = {κ(λ ,λi)}s
i=1, y = { f (λi)}s

i=1, ŷ0 = {µ0(λi)}s
i=1.

Then, the next point to evaluate, i.e. λs+1, is the one which maximizes a so-called

acquisition function balancing exploitation and exploration. A common choice for

the acquisition function is the expected improvement:

a(λ ) = E[max{ fmin − f̂ (λ ),0} | {λi, f (λi)}s
i=1],

where fmin = mini∈{1,s} f (λi), that has a closed form when the posterior is Gaussian.

The procedure is usually warm-started by choosing some initial points via random

search. Note that the cost of the kernel matrix inversion (K−1), which scales cubically

in the number of evaluated points, but this is usually not a big issue for hyperparame-

ter optimization, since evaluating f is usually very expensive and dominates the total

cost. Compared to random and grid search, Bayesian Optimization is still a black

box technique (only requiring function values), but is less parallelizable, far more

complex and introduces a number of design choices, e.g. which prior µ0, σ0, kernel

κ and which acquisition function a to use, that may limit its accessibility (despite

defaults being usually provided in popular libraries). Furthermore, it struggles to

optimize more than 20 hyperparameters (Frazier, 2018).

Population based methods are iterative methods that, at each round, generate

a population of hyperparameter configurations to evaluate which depends on the

population evaluated at previous rounds. They usually require a greater number of

function evaluations than Bayesian optimization, but at each round, the evaluation

for different configurations can be executed in parallel. Evolutionary strategies and

some bandit algorithms fall into this category.
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Evolutionary strategies are heuristics methods which take inspiration from

natural evolution. For example, the population in the next round may be formed by

selecting, mutating (by adding random perturbation to the features) and/or combining

(by mimicking sexual reproduction) the best individuals (according to their fitness

score, f (λ ) in our case) of the current population. The evolutionary strategy CMA-

ES has been applied to optimize the parameters of deep neural network (Loshchilov

and Hutter, 2016). More recently, evolutionary strategies have been successfully

applied for neural architecture search (Real et al., 2019, 2020).

Bandit approaches instead cast hyperparameter optimization as a multi-armed

bandit problem (Lattimore and Szepesvári, 2020). One example is the successive

halving strategy proposed by Jamieson and Talwalkar (2016), which consists in

starting from a large population of configurations which is partially evaluated in

parallel, i.e. by stopping the iterative learning algorithm A after some fixed number

of iterations, and then resuming A only for the best half of the configurations

(according to this partial evaluation). This procedure is then recursively applied to

the remaining half until A is executed completely only for a few configurations, from

which the best one is finally chosen. This procedure assumes that algorithms which

learn fast will also perform better at the end of training, which is often the case, and

exploits the iterative nature of learning algorithms to save compute time.

Gradient-based methods exploit (approximations of) the gradient of the HPO

objective f in eq. (2.8), also called the hypergradient. Usually they are iterative

methods that update λ as in (stochastic) gradient descent, but where the gradient of

the HPO objective is often replaced by an approximation, due to its high computa-

tional complexity. Contrary to most hyperparameter optimization methods, gradient

based approaches are usually white-box, requiring knowledge on the structure of f ,

which is combined with automatic differentiation to compute accurate and efficient

derivatives. The main advantage of using gradients is that it enables in principle to

optimize a very large number of hyperparameters, as shown by Lorraine et al. (2020),

while also being competitive even on problems with a few hyperparameters (Pe-

dregosa, 2016). On the other hand, gradient-based methods require the objective f to
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be differentiable and the hyperparameters to be real-valued. The former assumption

can be easily satisfied by using commonly used surrogates in place of non-smooth

error measures: e.g. using the cross-entropy loss in place of the classification error.

Moreover, discrete hyperparameter can be replaced by continuous (Franceschi et al.,

2017; Liu et al., 2018) or probabilistic (Franceschi et al., 2019; Niepert et al., 2021)

relaxations, although this may require also to change the underlying learning algo-

rithm. Main disadvantages of gradient-based methods are that they are not directly

parallelizable and have a large implementation overhead. Indeed, f is usually defined

via either a gradient-based optimization routine or the minimizer of some function,

and in most cases the automatic differentiation technique used should be able to

handle second-order derivatives. In some cases computing the hypergradient could

also have a prohibitive memory cost (Maclaurin et al., 2015; Franceschi et al., 2018;

Grazzi et al., 2020). Finally, we mention that the capability of optimizing a large

number (potentially millions) of hyperparameters increases the chances of overfitting

to the validation set (Franceschi et al., 2018).

2.5.2 Meta-Learning

Humans still surpass machines in their ability to transfer their learned skills and

knowledge. Indeed, when a football player starts playing basketball for the first time,

they do not learn it from scratch, but they may, for example, rely on their improved

awareness of the other players developed playing football, to learn faster how team

play works. Many scientists believe that this transfer learning ability across different

activities or tasks is necessary to achieve artificial general intelligence.

The meta-learning framework represents this concept by defining the objective

to learn, from a group of tasks, a learning algorithm capable of adapting to new

related tasks faster, i.e. with fewer examples. More formally, focusing on supervised

learning and inspired by Denevi et al. (2019a), we define each task T as a set

containing an error measure E , a distribution ρx,y and the number of training example

n, i.e. T = {E ,ρx,y,n}. We also define the task distribution ρT , which encodes how

the task are related. The goal of single-task learning is finding the hypothesis h
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which minimizes

E(x,y)∼ρx,y [E(h(x),y)],

through a learning algorithm that uses n training examples sampled form ρx,y. By

contrast, the goal of meta-learning is to find a learning algorithm A, taking n training

examples as input and returning an hypothesis as output, which aims at minimizing

ET ∼ρT ED∼ρn
x,yE(x,y)∼ρx,y[E(A(D)(x),y)], (2.10)

using a set of training datasets, called meta-training dataset, each belonging to a

task sampled from the task distribution ρT . In light of eq. (2.10), it might be useful

to think about meta-learning as a “lifted” form of learning, where hypotheses are

replaced by learning algorithms and examples are replaced by tasks. We also note

that if A(D) is defined as the minimizer of some loss function over D, the meta-

learning framework exhibits a bilevel structure with an upper-level learning problem

across tasks and several lower-level single-task learning problems.

Meta-learning algorithms work well in a few-shot learning scenario where the

meta-training dataset contains many tasks, each with only a few (usually less than

50) examples, and where the evaluation is done exclusively on new tasks not present

in the meta-training dataset. This is in contrast with multi-task learning (Caruana,

1997), where both training and testing is done on the same usually small group

of tasks, each containing a larger number of examples. Mini-Imagenet (Ravi and

Larochelle, 2017), Omniglot (Lake et al., 2011) and more recently Meta-Dataset

(Triantafillou et al., 2019) are popular few-shot learning benchmarks in the domain

of image classification. However, it must be noted that a simple last-layer adaptation

strategy has been shown to outperform several meta-learning methods on these

benchmarks (Tian et al., 2020), although by exploiting additional and commonly

inaccessible information (Wang et al., 2021).

In the following, we categorize and outline the most popular meta-learning

methods.

Model-based meta-learning methods exploit the power of very expressive
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models such as deep neural networks which can take sets or sequences as inputs, to

transform the entire training datasets D of each task together with one or multiple

test inputs into prediction for the test outputs. This class of methods ignores the

bilevel structure of the meta-learning framework: single-task learning is entirely

performed in the forward pass of the network while meta-learning is done through

(stochastic) gradient updates of the network’s weights (the meta-parameters), where

the objective function is the sum of the losses of the meta-training tasks. Some

model-based meta-learning methods are based e.g. on LSTMs (Hochreiter et al.,

2001), neural augmented networks (Santoro et al., 2016) and temporal convolution

plus attention Mishra et al. (2018). More recently, transformers have been shown to

perform well in the meta-learning setting on language modeling tasks (Brown et al.,

2020; Schick and Schütze, 2021) and to classify tabular data (Hollmann et al., 2022).

Algorithmic meta-learning methods directly exploit the bilevel structure of the

meta-learning framework by augmenting established single-task learning algorithms

e.g. logistic regression or SVM, with meta-parameters learned across meta-training

tasks. This provides additional inductive bias often enabling generally faster and

more data efficient meta-learning and less meta-parameters compared to model-based

methods.

Several algorithmic meta-learning methods developed in the late 90s and 2000s

learn to select from a pool of single-task learning algorithms, the best one for each

task (Vilalta and Drissi, 2002; Smith-Miles, 2009). For methods of this kind, learning

is usually done in two stages. First, each learning algorithm in the pool is executed

on every meta-training task. Then, the algorithm selection problem is treated as

a supervised learning problem having as inputs some features of the task, called

meta-features, and as outputs either the cross-validation errors or the index of the

best performing algorithm computed in the first stage. Meta-features are often

hand-engineered statistics, although a more recent approach (Edwards and Storkey,

2016) uses learned dataset representations output of a variational autoencoders. An

alternative to just selecting one algorithm is using an ensemble of all the algorithms in

the pool. This can improve the performance, although it increases the computational
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cost.

In recent times, several end-to-end meta-learning approaches learn meta-

parameters, usually weights of a neural network, that augment a single-task learning

algorithm. Fore example, some methods augment simple non-parametric learning

algorithms like k-nearest neighbor with meta-learned distance metrics (Sung et al.,

2018) and example-specific (Vinyals et al., 2016) or class-specific (Snell et al., 2017)

embeddings. Other methods meta-learn either entire single-task optimizers (Ravi

and Larochelle, 2017; Andrychowicz et al., 2016), or embeddings to be used in

linear or logistic regression (Bertinetto et al., 2018; Franceschi et al., 2018) or SVM

(Lee et al., 2019). Instead, the approaches by Finn et al. (2017); Rajeswaran et al.

(2019) meta-learn the parameters of a neural network at initialization. As highlighted

by Franceschi et al. (2018), several algorithmic meta-learning approaches learn

through first-order bilevel optimization techniques, i.e. exploiting the gradient of the

validation loss of a mini-batch of tasks w.r.t. the meta-parameters, where such loss is

computed after the execution of the single-task learning algorithm on each task of the

batch. We also note that for this kind of methods, the number of meta-parameters is

usually in the order of thousands or millions and often even outnumbers task-specific

parameters. Therefore, black-box optimization methods, which only rely on function

evaluations and not gradients, are much less effective.

2.5.3 Poisoning Adversarial Attacks

In poisoning adversarial attacks, a malicious agent or attacker aims at corrupting

some examples in a dataset so that a model trained on such dataset will perform

worse or will behave in a way that the attacker can exploit when deployed. A recent

comprehensive survey is provided by Cinà et al. (2022). The rise in complexity and

scale of modern machine learning models trained with distributed and federated

optimization techniques and data often coming from untrusted sources, has greatly

increased the potential harm of such attacks, which are considered a major threat by

industry organizations (Kumar et al., 2020).

An effective albeit computationally expensive way of carrying out such attacks

is by solving a bilevel optimization problem with the objective of finding the poisoned
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examples that maximize the error on the validation set (indiscriminate attacks) or

to maximize the error only on a certain class of examples (targeted attacks). More

formally, the bilevel problem for indiscriminate attacks can be written as

min
Dp∈C

−L(w(Dp);D′), w(Dp) ∈ argmin
w

L(w;D∪Dp)+λR(w),

where L is the loss for the task (e.g. MSE, cross-entropy), w is the parameter vector

of the model, λ > 0, R is a regularizer (e.g. R(w) = ∥w∥2), D and D′ are the train

and validation datasets respectively, while Dp is the set of poisoned examples and C

is a usually compact set representing the constraints of the problem (e.g. features

of poisoned examples should not be too far from some training examples so that

there are higher chances that the attack is undetected). This class of attacks has

been pioneered by Biggio et al. (2012) for SVM models, while Muñoz-González

et al. (2017) have developed a more efficient algorithm that can be applied to deep

neural networks with potentially many weights. Note also that Dp can be very high-

dimensional, since it is usually of dimension np × (d +1) where np is the number of

poisoned examples (which can be up to 30% of the training dataset) while d is the

number of features of each example (number of pixels times number of channels in

the case of images). To reduce the dimensionality of the problem (Yang et al., 2017;

Feng et al., 2019) propose to optimize the parameters of a generative network which

outputs Dp, instead of Dp directly.

Carrying out bilevel optimization for poisoning can be hard and computationally

expensive. Alternatives approaches are e.g. heuristic methods based on label flipping

(Biggio et al., 2011; Xiao et al., 2012, 2015), where only the example’s labels are

modified, or feature collision (Shafahi et al., 2018), where noise is added to the

features of the poisoned image to make its latent representation similar to a given

target image at test time. Furthermore, Cinà et al. (2021) showed that a simple

heuristic can be effective in attacking linear models, and also demonstrated how the

bilevel problem in data poisoning can be difficult to optimize with gradient-based

methods.
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2.5.4 Equilibrium Models

Equilibrium models are machine learning models where part of the computation

does not have an analytic expression but is instead defined implicitly as the solution

of a parametric equilibrium problem. For example let hw : X 7→ R be an equilibrium

model acting on the input space X with parameters w = (w1,w2), we can write

hw(x) = w⊤
1 z(x,w2), z(x,w2) = φ(z(x,w2),w2,x), (2.11)

where φ is a parametric map which depends both on the input x ∈ X and weights w2

and z(x,w2) is the equilibrium representation associated to x. Note that optimizing w

on a given training set is equivalent to solving a bilevel optimization problem with

one equilibrium problem per training example at the lower-level.

This class of models has been originally explored in some recurrent and graph

neural networks (Almeida, 1987; Pineda, 1987; Scarselli et al., 2008) and has been

recently popularized by Bai et al. (2019), who introduced deep equilibrium models

(DEQs), where the map in the equilibrium problem is structured as one or multiple

layers in a deep neural network. As noted in the paper, these “equilibrium layers” are

equivalent to having an infinite sequence of weight-tied standard neural layers whose

activation converge to a fixed-point. The advantage of the equilibrium formulation is

that the forward pass can be sped-up using faster root-finding algorithms, and deriva-

tives can be taken implicitly by applying another root-finding method. Using implicit

derivatives reduces the memory cost, which contrary to standard backpropagation,

does not increase with depth (or with the number of root-finding iterations in this

case). DEQs have been motivated by observing that the hidden activations of many

deep sequence models converge towards an equilibrium. However, there are also

evidences that even weight-tied deep sequence models have oscillating activations

(Lan et al., 2019). The first application of DEQs was language modeling (Bai et al.,

2019), but they have also been applied to vision tasks (Bai et al., 2020) and on graph

neural networks (Gu et al., 2020).

Bai et al. (2019) utilize the Broyden method, a quasi Newton method, both

to compute the fixed point in the forward pass and to solve the linear system in
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the backward pass. This method requires to store the approximation of the inverse

Jacobian also during inference of φ(·,w2,x), which could be problematic for large

states z. However, in principle, the Broyden method can be substituted by any

converging and potentially cheaper root-finding method. Vanilla DEQs exhibit

an increasing number of root-finding solver iterations during training, which is a

symptom of instability and greatly increases training and inference time compared

to standard deep networks. To address this issue, Winston and Kolter (2020) use

monotone operator theory to construct φ to have a unique fixed point that can be

found via operator splitting methods with linear iteration complexity, while Bai et al.

(2021) add a regularizer term involving the Jacobian of φ .



Chapter 3

Deterministic Hypergradient

Approximation

3.1 Introduction

The principal goal of this chapter is to study the degree of approximation to the

hypergradient of certain deterministic iterative schemes based on iterative or implicit

differentiation. In the rest of the introduction we present the bilevel framework,

alongside some relevant examples in machine learning. We then outline the gradient

approximation methods and highlight our main contributions.

The bilevel framework. We consider the following bilevel problem.

min
λ∈Λ

f (λ ) := E(w(λ ),λ )

with w(λ ) = Φ(w(λ ),λ ),
(3.1)

where Λ is a closed convex subset of Rn and the functions E : Rd ×Λ → R and

Φ : Rd × Λ → Rd are continuously differentiable on open sets containing their

domain. We assume that the lower-level problem in (3.1) (which is a fixed point-

equation) admits a unique solution. However, in general, explicitly computing such

solution is either impossible or expensive. When f is differentiable, this issue affects

the evaluation of the hypergradient ∇ f (λ ), which at best can only be approximately

computed.
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A prototypical example of the bilevel problem (3.1) is

min
λ∈Λ

f (λ ) := E(w(λ ),λ ))

with w(λ ) = argmin
u∈Rd

L(u,λ ),
(3.2)

where L : Rd ×Λ → R is a loss function, twice continuously differentiable and

strictly convex w.r.t. the first variable. Indeed, since w(λ ) is the unique point

which satisfies the equation ∇1L(w(λ ),λ ) = 0, then if we let Φ(w,λ ) = w −

α(λ )∇1L(w,λ ), i.e. the gradient descent update where α : Λ → R++ is any dif-

ferentiable function that outputs the step size, then problem (3.2) and problem (3.1)

are equivalent. Specific examples of problem (3.2), which include hyperparameter

optimization and meta-learning, are discussed in Section 3.4.1.

Other instances of the bilevel problem (3.1), which are not of the special form of

problem (3.2), arise in the context of so-called equilibrium models (EQM). Notably,

these comprise some types of connectionist models employed in domains with

structured data. Stable recurrent neural networks (Miller and Hardt, 2019), graph

neural networks (Scarselli et al., 2008) and the formulations by Bai et al. (2019)

belong to this class. EQM differ from standard (deep) neural networks in that the

internal representations are given by fixed points of learnable dynamics rather than

compositions of a finite number of layers. The learning problem for such type of

models can be written as

min
λ=(γ,θ)∈Λ

f (λ ) :=
n

∑
i=1

Ei(wi(γ),θ),

with wi(γ) = φi(wi(γ),γ), for 1 ≤ i ≤ n,

(3.3)

where the operators φi :Rd ×Λ→Rd (here Φ= (φi)
n
i=1) are associated to the training

points xi’s, and the error functions Ei are the losses incurred by a standard supervised

algorithm on the transformed dataset {wi(γ),yi}n
i=1. A specific example is discussed

in Section 3.4.2.

In this chapter, we present a unified analysis which allows to quantitatively com-
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pare popular methods to approximate ∇ f (λ ) in the general setting of problem (3.1).

The strategies we consider can be divided in two categories:

1. Iterative Differentiation (ITD) (Maclaurin et al., 2015; Franceschi et al., 2017,

2018; Finn et al., 2017). One defines the sequence of functions ft(λ ) =

E(wt(λ ),λ ), where wt(λ ) are the fixed-point iterates generated by the map

Φ(·,λ ). Then ∇ f (λ ) is approximated by ∇ ft(λ ), which in turn is computed

using forward (FMAD) or reverse (RMAD) mode automatic differentiation

(Griewank and Walther, 2008).

2. Approximate Implicit Differentiation (AID) (Pedregosa, 2016; Rajeswaran

et al., 2019; Lorraine et al., 2020). First, an (implicit) equation for ∇ f (λ ) is

obtained through the implicit function theorem. Then, this equation is approxi-

mately solved by using a two stage scheme. We analyse two specific methods

in this class: the fixed-point method (Lorraine et al., 2020), also referred

to as recurrent backpropagation in the context of recurrent neural networks

(Almeida, 1987; Pineda, 1987), and the conjugate gradient method (Pedregosa,

2016).

Both schemes can be efficiently implemented using automatic differentiation

(Griewank and Walther, 2008; Baydin et al., 2018) achieving similar cost in time,

while ITD has usually a larger memory cost than AID1.

Contributions. Although there is a vast amount of literature on the two hypergradient

approximation strategies previously described, it remains unclear whether it is better

to use one or the other. In this chapter, we shed some light over this issue both

theoretically and experimentally. Specifically our contributions are the following:

• We provide iteration complexity results for ITD and AID when the mapping

defining the fixed point equation is a contraction. In particular, we prove

non-asymptotic linear rates for the approximation errors of both approaches.

• We make a theoretical and numerical comparison among different ITD and

AID strategies considering several experimental scenarios.
1This is true when ITD is implemented using RMAD, which is the standard approach when λ is

high dimensional.
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We note that, to the best of our knowledge, non-asymptoptic rates of convergence for

AID were only recently given in the case of meta-learning (Rajeswaran et al., 2019).

Furthermore, we are not aware of any previous results about non-asymptotic rates of

convergence for ITD.

3.2 Related Work

Iterative differentiation for functions defined implicitly has been extensively studied

in the automatic differentiation literature. In particular (Griewank and Walther, 2008,

Chap. 15) derives asymptotic linear rates for ITD under the assumption that Φ(·,λ )

is a contraction. Another attempt to theoretically analyse ITD is made by Franceschi

et al. (2018) in the context of the bilevel problem (3.2). There, the authors provide

sufficient conditions for the asymptotic convergence of the set of minimizers of the

approximate problem to the set of minimizers of the bilevel problem. In contrast,

in this chapter, we give rates for the convergence of the approximate hypergradient

∇ ft(λ ) to the true one (i.e. ∇ f (λ )). ITD is also considered in Shaban et al. (2019)

where ∇ ft(λ ) is approximated via a procedure which is reminiscent of truncated

backpropagation. The authors bound the norm of the difference between ∇ ft(λ ) and

its truncated version as a function of the truncation steps. This is different from our

analysis which directly considers the problem of estimating the gradient of f .

In the case of AID, an asymptotic analysis is presented in Pedregosa (2016),

where the author proves the convergence of an inexact gradient projection algorithm

for the minimization of the function f defined in problem (3.2), using increasingly

accurate estimates of ∇ f (λ ). Whereas Rajeswaran et al. (2019) present complexity

results in the setting of meta-learning with biased regularization. Here, we extend

this line of work by providing complexity results for AID in the more general setting

of problem (3.1).

We also mention the papers by Amos and Kolter (2017) and Amos (2019),

which present techniques to differentiate through the solutions of quadratic and cone

programs respectively. Using such techniques allows one to treat these optimization

problems as layers of a neural network and to use backpropagation for the end-to-end
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training of the resulting learning model. In the former work, the gradient is obtained

by implicitly differentiating through the KKT conditions of the lower-level problem,

while the latter performs implicit differentiation on the residual map of Minty’s

parametrization.

A different approach to solve bilevel problems of the form (3.2) is presented

by Mehra and Hamm (2019), who consider a sequence of “single level” objectives

involving a quadratic regularization term penalizing violations of the lower-level first-

order stationary conditions. The authors provide asymptotic convergence guarantees

for the method, as the regularization parameter tends to infinity, and show that it

outperforms both ITD and AID on different settings where the lower-level problem

is non-convex.

All previously mentioned works except Griewank and Walther (2008) consider

bilevel problems of the form (3.2). Another exception is Liao et al. (2018), which

proposes two improvements to recurrent backpropagation, one based on conjugate

gradient on the normal equations, and another based on Neumann series approxima-

tion of the inverse.

3.3 Iteration Complexity Analysis

In this section we establish non-asymptotic bounds on the hypergradient (i.e. ∇ f (λ ))

approximation errors for both ITD and AID schemes. In particular, after proving

some basic results on the gradient of f and w(·) in problem (3.1), In Section 3.3.1 we

address the iteration complexity of ITD, while in Section 3.3.2, after giving a general

bound for AID, we focus on two popular implementations of the AID scheme: one

based on the conjugate gradient method and the other on the fixed-point method.

Major results are proved in Appendix A.1.

Referring to problem (3.1), we group the assumptions as follows. Assump-

tion 3.3.1 is general while 3.3.5 and 3.3.9 are specific to ITD and AID respectively.

All these assumptions are satisfied for several important machine learning

settings. In particular, they are satisfied for problems in form (3.2), where As-

sumption 3.3.1(iv) is satisfied, L(·,λ ) is strongly convex and Lipschitz smooth, and
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∇2
1L(·,λ ), ∇12L(·,λ ), are Lipschitz Continuous. This is true for many problems

with smooth objectives at both upper and lower levels and L2 regularization at

the lower-level, and in all the experiments in Section 3.4.1. Furthermore, all the

assumptions are verified for some of the experiments with equilibrium models in

Section 3.4.2.

Assumption 3.3.1. For every λ ∈ Λ,

(i) w(λ ) is the unique fixed point of Φ(·,λ ).

(ii) I −∂1Φ(w(λ ),λ ) is invertible.

(iii) ∂1Φ(·,λ ), ∂2Φ(·,λ ) are Lipschitz continuous with constants ν1,λ ,ν2,λ respec-

tively.

(iv) ∇1E(·,λ ), ∇2E(·,λ ) are Lipschitz continuous with constants µ1,λ , µ2,λ re-

spectively.

A direct consequence of Assumption 3.3.1(i)-(ii) and of the implicit function

theorem is that w(·) and f (·) are differentiable.

Lemma 3.3.2. (Differentiability of f ). Consider problem (3.1) and suppose that

Assumption 3.3.1(i)-(ii) hold. Then w(·) and f (·) are differentiable on an open set

containing Λ and, ∀λ ∈ Λ

w′(λ ) = (I −∂1Φ(w(λ ),λ ))−1
∂2Φ(w(λ ),λ ), (3.4)

∇ f (λ ) = ∇2E(w(λ ),λ )+w′(λ )⊤∇1E(w(λ ),λ ). (3.5)

Proof. The function G(w,λ ) := w−Φ(w,λ ) is continuously differentiable on an

open set containing Rd ×Λ. Then, we have for any λ ∈ Λ

∂1G(w(λ ),λ ) = I −∂1Φ(w(λ ),λ ),

which is invertible due to Assumption 3.3.1(ii). Thus, since G(w(λ ),λ ) = 0, the

implicit function theorem (Lang, 2012, Theorem 5.9) yields that w(λ ) is continuously
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differentiable with derivative

w′(λ ) = ∂1G(w(λ ),λ )−1
∂2G(w(λ ),λ )

= (I −∂1Φ(w(λ ),λ ))−1
∂2Φ(w(λ ),λ ).

Finally, (3.4) follows from the chain rule for differentiation.

Corollary 3.3.3. Suppose that in problem (3.2), the function L : Rd ×Λ → R is

twice continuously differentiable and strongly convex w.r.t. the first variable. Let

α : Λ → R++ be a differentiable function. Then Lemma 3.3.2 holds and

(∀λ ∈ Λ) w′(λ ) =−∇
2
1L(w,λ )−1

∇
2
21L(w(λ ),λ ).

Proof. Define Φ(w,λ ) = w−α(λ )∇1L(w,λ ). Then, Fermat’s rule for the lower-

level problem in (3.2) yields that w(λ ) is the fixed point for Φ(·,λ ), while

I − ∂1Φ(w(λ ),λ ) is invertible since I − ∂1Φ(w(λ ),λ ) = α(λ )∇2
1L(w,λ ) with

α(λ ) ̸= 0 and ∇2
1L(w,λ ) positive definite due to the strong convexity of L(·,λ ).

Therefore, Theorem 3.3.2 applies and, since ∂2Φ(w(λ ),λ )=−α(λ )∇2
21L(w(λ ),λ ),

(3.4) yields w′(λ ) =−α(λ )
α(λ )∇

2
1L(w,λ )−1∇2

21L(w(λ ),λ ).

Before starting with the study of ITD and AID, we give a lemma which intro-

duces three additional constants that will occur in the complexity bounds.

Lemma 3.3.4. Let λ ∈ Λ and Dλ = ∥w(λ )∥. Then there exist LE,λ ,LΦ,λ ∈ R+ s.t.

sup
∥w∥≤2Dλ

∥∇1E(w,λ )∥ ≤ LE,λ , sup
∥w∥≤2Dλ

∥∂2Φ(w,λ )∥ ≤ LΦ,λ

Proof. The proof follows by noting that, since the closed ball of radius 2Dλ is

compact, its image through the continuous functions ∇1E(·,λ ) and ∂2Φ(·,λ ) is also

compact, and so bounded.

3.3.1 Iterative Differentiation

In this section we replace w(λ ) in (3.1) by the t-th iterate of Φ(·,λ ), for which we

additionally require the following.
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Assumption 3.3.5. For every λ ∈ Λ, Φ(·,λ ) is a contraction with constant qλ ∈

(0,1).

The approximation of the hypergradient ∇ f (λ ) is then obtained as follows.

Algorithm 3.3.1 Iterative Differentiation (ITD)

1. Let t ∈ N, set w0(λ ) = 0, and compute,

for i = 1,2, . . . t⌊
wi(λ ) = Φ(wi−1(λ ),λ ).

2. Set ft(λ ) = E(wt(λ ),λ ).

3. Compute ∇ ft(λ ) using automatic differentiation.

Assumption 3.3.5 looks quite restrictive, however it is satisfied in a number of

interesting cases:

(a) In the setting of the bilevel optimization problem (3.2), suppose that for every

λ ∈Λ, L(·,λ ) is τL(λ )-strongly convex and LL(λ )-Lipschitz smooth for some

continuously differentiable functions τL : Λ → R++, and LL : Λ → R++. Set

κ(λ ) = LL(λ )/τL(λ ),

α(λ ) =
2

τL(λ )+LL(λ )
, and qλ =

κ(λ )−1
κ(λ )+1

. (3.6)

Then, Φ(w,λ ) = w−α(λ )∇1L(w,λ ) is a contraction w.r.t. w with constant

qλ (see Appendix A.2).

(b) For strongly convex quadratic functions, accelerated methods like Nesterov’s

(Nesterov, 1983) or heavy-ball (Polyak, 1987) can be formulated as fixed-point

iterations of a contraction in the norm defined by a suitable positive definite

matrix.

(c) In certain graph and recurrent neural networks of the form (3.3), where the tran-

sition function is assumed to be a contraction (Scarselli et al., 2008; Almeida,

1987; Pineda, 1987).

The following lemma is a simple consequence of the theory on Neumann series

and shows that Assumption 3.3.5 is stronger than Assumption 3.3.1(i)-(ii).
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Lemma 3.3.6. Let Assumption 3.3.5 be satisfied. Then, for every λ ∈ Λ, Φ(·,λ ) has

a unique fixed point and, for every w ∈ Rd , I −∂1Φ(w,λ ) is invertible and

∥(I −∂1Φ(w,λ ))−1∥ ≤ 1
1−qλ

.

In particular, (i) and (ii) in Assumption 3.3.1 hold.

Proof. Let λ ∈ Λ and w ∈ Rd . Since Φ(·,λ ) is Lipschitz continuous with constant

qλ , it follows that

∥∂1Φ(w,λ )∥ ≤ qλ < 1.

Therefore,
∞

∑
k=0

∥∂1Φ(w,λ )∥k ≤
∞

∑
k=0

qk
λ
=

1
1−qλ

.

Thus, I − ∂1Φ(w,λ ) is invertible, ∑
∞
k=0 ∂1Φ(w,λ )k = (I − ∂1Φ(w,λ ))−1 and the

bound follows.

With Assumption 3.3.5 in force and if wt(λ ) is defined as at point 1 in Algo-

rithm 3.3.1, we have the following proposition that is essential for the final bound.

The proof is given in Appendix A.1.

Proposition 3.3.7. Suppose that Assumptions 3.3.1(iii) and 3.3.5 hold and let t ∈ N,

with t ≥ 1. Moreover, for every λ ∈ Λ, let wt(λ ) be computed by Algorithm 3.3.1 and

let Dλ and LΦ,λ be as in Lemma 3.3.4. Then, wt(·) is differentiable and, for every

λ ∈ Λ,

∥w′
t(λ )−w′(λ )∥ ≤

(
ν2,λ +ν1,λ

LΦ,λ

1−qλ

)
Dλ tqt−1

λ
+

LΦ,λ

1−qλ

qt
λ
. (3.7)

Leveraging Proposition 3.3.7, we give the main result of this section, which is

also proven in Appendix A.1.

Theorem 3.3.8. (ITD bound) Suppose that Assumptions 3.3.1(iii)-(iv) and 3.3.5

hold and let t ∈N with t ≥ 1. Moreover, for every λ ∈ Λ, let wt(λ ) and ft be defined

according to Algorithm 3.3.1 and let Dλ ,LE,λ , and LΦ,λ be as in Lemma 3.3.4. Then,
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ft is differentiable and, for every λ ∈ Λ,

∥∇ ft(λ )−∇ f (λ )∥ ≤
(

c1(λ )+ c2(λ )
t

qλ

+ c3(λ )
)

qt
λ
, (3.8)

where

c1(λ ) =

(
µ2,λ +

µ1,λ LΦ,λ

1−qλ

)
Dλ ,

c2(λ ) =

(
ν2,λ +

ν1,λ LΦ,λ

1−qλ

)
LE,λ Dλ ,

c3(λ ) =
LE,λ LΦ,λ

1−qλ

.

In this generality this is a new result that provides a non-asymptotic linear rate

of convergence for the gradient of ft towards that of f .

3.3.2 Approximate Implicit Differentiation

In this section we study another approach to approximate the gradient of f . We

derive from (3.4) and (3.5) that

∇ f (λ ) = ∇2E(w(λ ),λ )+∂2Φ(w(λ ),λ )⊤v(λ ) (3.9)

where v(λ ) is the solution of the linear system

(I −∂1Φ(w(λ ),λ )⊤)v = ∇1E(w(λ ),λ ). (3.10)

However, in the above formulas w(λ ) is usually not known explicitly or is expensive

to compute exactly. To solve this issue ∇ f (λ ) is estimated as in Algorithm 3.3.2.

Note that, unlike ITD, this procedure is agnostic about the algorithms used

to compute the sequences wt(λ ) and vk(λ ). Interestingly, in the context of prob-

lem (3.2), choosing Φ(w,λ ) = w−∇1L(w,λ ) in Algorithm 3.3.2 yields the same

procedure studied by Pedregosa (2016).

The number of iterations t and k in Algorithm 3.3.2 give a direct way of

trading off accuracy and speed. To quantify this trade off we consider the following
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Algorithm 3.3.2 Approximate Implicit Differentiation (AID)

1. Let t ∈ N and compute wt(λ ) by t steps of an algorithm converging to w(λ ),
starting from w0(λ ) = 0.

2. Compute vk(λ ) after k steps of a solver for the system

(I −∂1Φ(wt(λ ),λ )
⊤)v = ∇1E(wt(λ ),λ ), (3.11)

with solution v̂(λ ).

3. Compute the approximate gradient as

∇̂ f (λ ) :=∇2E(wt(λ ),λ )+∂2Φ(wt(λ ),λ )
⊤vk(λ ).

assumptions.

Assumption 3.3.9. Let wt(λ ),vk(λ ), v̂(λ ) be as in Algorithm 3.3.2. For every λ ∈ Λ

(i) ∀w ∈ Rd , I −∂1Φ(w,λ ) is invertible.

(ii) ∥wt(λ )−w(λ )∥ ≤ ρλ (t)∥w(λ )∥, ρλ (t)≤ 1, and ρλ (t)→ 0 as t →+∞.

(iii) ∥vk(λ )− v̂(λ )∥ ≤ σλ (k)∥v̂(λ )∥ and σλ (k)→ 0 as k →+∞.

If Assumption 3.3.9(i) holds, then, for every λ ∈ Λ, since the map w 7→

∥(I −∂1Φ(w,λ ))−1∥ is continuous, we have

sup
∥w∥≤2Dλ

∥(I −∂1Φ(w,λ ))−1∥ ≤ 1
µ̂λ

<+∞, (3.12)

for some µ̂λ > 0. We note that, in view of Lemma 3.3.6, Assumption 3.3.5 implies

Assumption 3.3.9(i) (which in turn implies Assumption 3.3.1(ii)) and in (3.12) one

can take µ̂λ = 1−qλ . We stress that, Assumption 3.3.9(ii)-(iii) are general and do

not specify the type of algorithms solving the fixed-point equation w = Φ(w,λ ) and

the liner system (3.11). It is only required that such algorithms have explicit rates of

convergence ρλ (t) and σλ (k) respectively. Finally, we note that Assumption 3.3.9(ii)

is less restrictive than Assumption 3.3.5 and encompasses the procedure at point 1 in

Algorithm 3.3.1: indeed in such case 3.3.9(ii) holds with ρλ (t) = qt
λ

.

It is also worth noting that the AID procedure requires only to store the last

lower-level iterate, i.e. wt(λ ). This is a considerable advantage over ITD, which
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instead requires to store the entire lower-level optimization trajectory (wi(λ ))0≤i≤t ,

if implemented using RMAD.

The iteration complexity bound for AID is given below. This is a general bound

which depends on the rate of convergence ρλ (t) of the sequence (wt(λ ))t∈N and the

rate of convergence σλ (k) of the sequence (vk(λ ))k∈N.

Theorem 3.3.10. (AID bound) Suppose that Assumptions 3.3.1(i)(iii)(iv) and

3.3.9(i)–(iii) hold. Let λ ∈ Λ, t ∈ N, k ∈ N. Let Dλ ,LE,λ , and LΦ,λ be as in

Lemma 3.3.4 and let µ̂λ be defined according to (3.12). Let ∇̂ f (λ ) be defined as in

Algorithm 3.3.2 and let ∆̂ = ∥∇̂ f (λ )−∇ f (λ )∥. Then,

∆̂ ≤

(
µ2,λ +

µ1,λ LΦ,λ

µ̂λ

+
ν2,λ LE,λ

µ̂λ

+
ν1,λ LΦ,λ LE,λ

µ̂2
λ

)
Dλ ρλ (t)+

LΦ,λ LE,λ

µ̂λ

σλ (k).

(3.13)

Furthermore, if Assumption 3.3.5 holds, then µ̂λ = 1−qλ and

∆̂ ≤
(

c1(λ )+
c2(λ )

1−qλ

)
ρλ (t)+ c3(λ )σλ (k), (3.14)

where c1(λ ), c2(λ ) and c3(λ ) are defined in Theorem 3.3.8.

Theorem 3.3.10 provides a non-asymptotic rate of convergence for ∇̂ f which

contrasts with the asymptotic result given in Pedregosa (2016). In this respect,

making Assumption 3.3.9(i) instead of the weaker Assumption 3.3.1(ii) is critical.

Depending on the choice of the solver for the linear system (3.11) different AID

methods are obtained. In the following we consider two cases.

AID with the Conjugate Gradient Method (AID-CG). For the sake of brevity

we set Âλ = I −∂1Φ(wt(λ ),λ )
⊤ and b̂λ = ∇1E(wt(λ ),λ ). Then, the linear system

(3.11) is equivalent to the following minimization problem

min
v∈Rd

1
2
∥Âλ v− b̂λ∥2, (3.15)
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which, if ∂1Φ(wt(λ ),λ ) is symmetric (so that Âλ is also symmetric) is in turn

equivalent to

min
v∈Rd

1
2

v⊤Âλ v− v⊤b̂λ . (3.16)

Several first order methods solving problems (3.15) or (3.16) satisfy assump-

tion 3.3.9(iii) with linear rates and require only Jacobian-vector products. In par-

ticular, for the symmetric case (3.16), the conjugate gradient method features the

following linear rate

∥vk(λ )− vt(λ )∥ ≤ 2
√

κ(Âλ )


√

κ(Âλ )−1√
κ(Âλ )+1

k

∥v0(λ )−vt(λ )∥, (3.17)

where κ(Âλ ) is the condition number of Âλ . In the setting of case (a) outlined in

Section 3.3.1, Âλ = α(λ )∇2
1L(wt(λ ),λ ) and

τL(λ )I ≼ ∇
2
1L(wt(λ ),λ )≼ LL(λ )I.

Therefore, the condition number of Âλ satisfies κ(Âλ )≤ LL(λ )/τL(λ ) = κ(λ ) and

hence √
κ(Âλ )−1√
κ(Âλ )+1

≤
√

κ(λ )−1√
κ(λ )+1

≤ κ(λ )−1
κ(λ )+1

= qλ . (3.18)

AID with the Fixed-Point Method (AID-FP). In this paragraph we make a spe-

cific choice for the sequence (vk(λ ))k∈N in Assumption 3.3.9(iii). We let Assump-

tion 3.3.5 be satisfied and consider the following algorithm. For every λ ∈ Λ and

t ∈ N, we choose v0(λ ) = 0 ∈ Rd and,

for k = 1,2, . . .⌊
vk(λ ) = ∂1Φ(wt(λ ),λ )

⊤vk−1(λ )+∇1E(wt(λ ),λ ).
(3.19)

In such case the rate of convergence σλ (k) is linear. More precisely, since
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∥∂1Φ(wt(λ ),λ )∥ ≤ qλ < 1 (from Assumption 3.3.5), then the mapping

T : v 7→ ∂1Φ(wt(λ ),λ )v+∇1E(wt(λ ),λ )

is a contraction with constant qλ . Moreover, the fixed-point of T is the solution of

(3.11). Therefore, ∥vk(λ )− v̂(λ )∥ ≤ qk
λ
∥v0(λ )− v̂(λ )∥. In the end the following

result holds.

Theorem 3.3.11. If Assumption 3.3.5 holds and (vk(λ ))k∈N is defined according to

(3.19), then Assumption 3.3.9(iii) is satisfied with σλ (k) = qk
λ

.

Now, plugging the rate σλ (k) = qk
λ

into the general bound (3.14) yields

∆̂ ≤
(

c1(λ )+
c2(λ )

1−qλ

)
ρλ (t)+ c3(λ )qk

λ
. (3.20)

However, an analysis similar to the one in Section 3.3.1 shows that the above

result can be slightly improved as follows.

Theorem 3.3.12. (AID-FP bound) Suppose that Assumptions 3.3.1(i)(iii)(iv) and

Assumption 3.3.5 hold. Suppose also that (3.19) holds. Let ∇̂ f (λ ) be defined

according to Algorithm 3.3.2 and ∆̂ = ∥∇̂ f (λ )−∇ f (λ )∥. Then, for every t,k ∈ N,

∆̂ ≤
(

c1(λ )+ c2(λ )
1−qk

λ

1−qλ

)
ρλ (t)+ c3(λ )qk

λ
, (3.21)

where c1(λ ), c2(λ ) and c3(λ ) are given in Theorem 3.3.8.

We end this section with a discussion about the consequences of the presented

results.

3.3.3 Remarks

Theorem 3.3.10 shows that Algorithm 3.3.2 computes an approximate gradient

of f with a linear convergence rate (in t and k), provided that the solvers for the

lower-level problem and the linear system converge linearly. Furthermore, under

Assumption 3.3.5, both AID-FP and ITD converge linearly. However, if in Algo-

rithm 3.3.2 we define wt(λ ) as at point 1 in Algorithm 3.3.1 (so that ρλ (t) = qt
λ

),
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and take k = t, then the bound for AID-FP (3.21) is lower than that of ITD (3.8),

since qλ (1−qt
λ
)/(1−qλ ) = ∑

t
i=1 qi

λ
< t for every t ≥ 1. This suggests that AID-FP

converges faster than ITD.

We now discuss the choice of the algorithm to solve the linear system (3.11)

in Algorithm 3.3.2. Theorem 3.3.12 provides a bound for AID-FP, which considers

procedure (3.19). However, we see from (3.14) in Theorem 3.3.10 that a solver

for the linear system with rate of convergence σλ (k) faster than qk
λ

may give a

better bound. The above discussion, together with (3.17) and (3.18), proves that

AID-CG has a better asymptotic rate than AID-FP for instances of problem (3.2)

where the lower-level objective L(·,λ ) is Lipschitz smooth and strongly convex

(case (a) outlined in Section 3.3.1).

Finally, we note that both ITD and AID consider the initialization w0(λ ) = 0.

However, in a gradient-based bilevel optimization algorithm, it might be more

convenient to use a warm start strategy where w0(λ ) is set based on previous upper-

level iterations. Our analysis can be applied also in this case, but the related upper

bounds will depend on the upper-level dynamics. This aspect makes it difficult to

theoretically analyse the benefit of a warm start strategy, as noted in Chapter 5.

3.4 Experiments

In the first part of this section we focus on the hypergradient approximation error and

show that the upper bounds presented in the previous section give a good estimate of

the actual convergence behavior of ITD and AID strategies on a variety of settings.

In the second part we present a series of experiments pertaining optimization on

both the settings of hyperparameter optimization, as in problem (3.2), and learning

equilibrium models, as in problem (3.3). The algorithms have been implemented2 in

PyTorch (Paszke et al., 2019a). In the following, we shorthand AID-FP and AID-CG

with FP and CG, respectively.

2The code is freely available at the following link.
https://github.com/prolearner/hypertorch

https://github.com/prolearner/hypertorch
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3.4.1 Hypergradient Approximation

In this section, we consider several problems of type (3.2) with synthetic generated

data (see Appendix A.3.1 for more details) where D = (X ,y) and D′ = (X ′,y′) are

the training and validation sets respectively, with X ∈ Rne×p, X ′ ∈ Rn′e×p, being

ne,n′e the number of examples in each set and p the number of features. Specifically

we consider the following settings, which are representative instances of relevant

bilevel problems in machine learning.

Logistic Regression with L2 Regularization (LR). This setting is similar to

the one in Pedregosa (2016), but we introduce multiple regularization parameters:

f (λ ) = ∑
(x,y)∈D′

ψ(yx⊤w(λ )),

w(λ ) = argmin
w∈Rp

∑
(x,y)∈D

ψ(yx⊤w)+
1
2

w⊤diag(λ )w,

where λ ∈ Rp
++, ψ(x) = log(1+ e−x) and diag(λ ) is the diagonal matrix formed by

the elements of λ .

Kernel Ridge Regression (KRR). We extend the setting presented by Pe-

dregosa (2016) considering a p-dimensional Gaussian kernel parameter γ in place of

the usual one:
f (β ,γ) =

1
2
∥y′−K′(γ)w(β ,γ)∥2,

w(β ,γ) = argmin
w∈Rne

1
2

w⊤ (K(γ)+β I)w−w⊤y,
(3.22)

where β ∈ (0,∞), γ ∈ Rp
++ and K′(γ), K(γ) are respectively the validation and

training kernel matrices (see Appendix A.3.1).

Biased Regularization (BR). Inspired by Denevi et al. (2019a); Rajeswaran

et al. (2019), we consider the following.

f (λ ) =
1
2
∥X ′w(λ )− y′∥2,

w(λ ) = argmin
w∈Rp

1
2
∥Xw− y∥2 +

β

2
∥w−λ∥2,

where β ∈ R++ and λ ∈ Rp.
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Hyper-representation (HR). The last setting, reminiscent of (Franceschi et al.,

2018; Bertinetto et al., 2019), concerns learning a (common) linear transformation

of the data and is formulated as

f (H) =
1
2
∥X ′Hw(H)− y′∥2

w(H) = argmin
w∈Rd

1
2
∥XHw− y∥2 +

β

2
∥w∥2

where H ∈ Rp×d and β ∈ R++.

LR and KRR are high dimensional extensions of classical hyperparameter opti-

mization problems, while BR and HR, are typically encountered in multi-task/meta-

learning as single task objectives3. Note that Assumption 3.3.5 (i.e. Φ(·,λ ) is a

contraction) can be satisfied for each of the aforesaid scenarios, since they all belong

to case (a) of Section 3.3.1 (KRR, BR and HR also to case (b)).

We solve the lower-level problem in the same way for both ITD and AID

methods. In particular, in LR we use the gradient descent method with optimal step

size as in case (a) of Section 3.3.1, while for the other cases we use the heavy-ball

method with optimal step size and momentum constants. Note that this last method

is not a contraction in the original norm, but only in a suitable norm depending on

the lower-level problem itself. To compute the exact hypergradient, we differentiate

f (λ ) directly using RMAD for KRR, BR and HR, where the closed form expression

for w(λ ) is available, while for LR we use CG with t = k = 2000 in place of the

(unavailable) analytic gradient.

Figure 3.1 shows how the approximation error is affected by the number of

lower-level iterations t. As suggested by the iteration complexity bounds in Sec-

tion 3.3, all the approximations, after a certain number of iterations, converge linearly

to the true hypergradient4. Furthermore, in line with our analysis (see Section 3.3.3),

CG gives the best gradient estimate (on average), followed by FP, while ITD per-

forms the worst. For HR, the error of all the methods increases significantly at the

3In multi-task/meta-learning the upper-level objectives are averaged over multiple tasks and the
hypergradient is simply the average of the single task one.

4The asymptotic error can be quite large probably due to numerical errors (more details in
Appendix A.3).
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Figure 3.1: Convergence of different hypergradient approximations, where g(λ ) is equal
to ∇ ft(λ ) for ITD and to ∇̂ f (λ ) for CG and FP. Mean and standard deviation
(shaded areas) are computed over 20 values of λ sampled uniformly from
[λmin,λmax]

n.

beginning, which can be explained by the fact that the heavy ball method is not a

contraction in the original norm and may diverge at first. CG k = 10 outperforms FP

k = 10 on 3 out of 4 settings, but both remain far from convergence.

3.4.2 Bilevel Optimization

In this section, we aim to solve instances of the bilevel problem (3.1) in which λ has

a high dimensionality.

Kernel Ridge Regression on Parkinson. We take f (β ,γ) as defined in prob-

lem (3.22) where the data is taken from the UCI Parkinson dataset (Little et al.,

2008), containing 195 biomedical voice measurements (22 features) from people

with Parkinson’s disease. To avoid projections, we replace β and γ respectively
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with exp(β ) and exp(γ) in the RHS of the two equations in (3.22). We split the data

randomly into three equal parts to make the train, validation and test sets.

Logistic Regression on 20 Newsgroups5. This dataset contains 18000 news

divided in 20 topics and the features consist in 101631 tf-idf sparse vectors. We split

the data randomly into three equal parts for training, validation and testing. We aim

to solve the bilevel problem

min
λ∈Rp

CE(X ′w(λ ),y′)

w(λ ) = argmin
w∈Rp×c

CE(Xw,y)+
1

2cp

c

∑
i=1

p

∑
j=1

exp(λ j)w2
i j

where CE is the average cross-entropy loss, c = 20 and p = 101631. To improve

the performance, we use warm-starts on the lower-level problem, i.e. we take

w0(λi) = wt(λi−1) for all methods, where (λi)
s
i=1 are the upper-level iterates.

Training Data Optimization on Fashion MNIST. Similarly to Maclaurin et al.

(2015), we optimize the features of a set of 10 training points, each with a different

class label on the Fashion MNIST dataset (Xiao et al., 2017). More specifically we

define the bilevel problem as

min
X∈Rc×p

CE(X ′w(X),y′)

w(X) = arg min
w∈Rp×c

CE(Xw,y)+
β

2cp
∥w∥2

where β = 1, c = 10, p = 784, y = (0, . . . ,c)⊤ and (X ′,y′) contains the training set.

We solve each problem using (hyper)gradient descent with fixed step size

selected via grid search (additional details are provided in Appendix A.3.2). The

results in Table 3.1 show the upper-level objective and test accuracy both computed

on the approximate lower-level solution wt(λ ) after bilevel optimization6.

For Parkinson and Fashion MNIST, there is little difference among the methods

for a fixed t. For 20 newsgroup, CG k = t reaches the lowest objective value, followed

5http://qwone.com/ jason/20Newsgroups/
6For completeness, we also report in the Appendix (Table A.1) the upper-level objective and test

accuracy both computed on the exact lower-level solution w(λ ).
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Table 3.1: Objective (test accuracy) values after s gradient descent steps where s is
1000, 500 and 4000 for Parkinson, 20 newsgroup and Fashion MNIST
respectively. Test accuracy values are in %. kr = 10 for Parkinson and 20
newsgroup while for Fashion MNIST kr = 5.

Parkinson
t = 100 t = 150

ITD 2.39 (75.8) 2.11 (69.7)
FP k = t 2.37 (81.8) 2.20 (77.3)
CG k = t 2.37 (78.8) 2.20 (77.3)
FP k = kr 2.71 (80.3) 2.60 (78.8)
CG k = kr 2.33 (77.3) 2.02 (77.3)

20 newsgroup
t = 10 t = 25 t = 50

1.08 (61.3) 0.97 (62.8) 0.89 (64.2)
1.03 (62.1) 1.02 (62.3) 0.84 (64.4)
0.93 (63.7) 0.78 (63.3) 0.64 (63.1)

− 0.94 (63.6) 0.97 (63.0)
− 0.82 (64.3) 0.75 (64.2)

Fashion MNIST
t = 5 t = 10

ITD 0.41 (84.1) 0.43 (83.8)
FP k = t 0.41 (84.1) 0.43 (83.8)
CG k = t 0.42 (83.9) 0.42 (84.0)
FP k = kr − 0.42 (83.9)
CG k = kr − 0.42 (84.0)

by CG k = 10. We recall that for ITD we have cost in memory which is linear in

t and that, in the case of 20 newsgroups for some t between 50 and 100, this cost

exceeded the 11GB on the GPU. AID methods instead, require little memory and, by

setting k < t, yield similar or even better performance at a lower computation time.

Finally, we stress that since the upper-level objective is non-convex, possibly with

several minima, gradient descent with a more precise estimate of the hypergradient

may get more easily trapped in a bad local minimum.

Equilibrium Models. This experiment investigates the behavior of the hyper-

gradient approximation methods on a simple instance of EQM (see problem (3.3))

on non-structured data. EQM are an attractive class of models due to their mathe-

matical simplicity, enhanced interpretability and memory efficiency. A number of

works (Miller and Hardt, 2019; Bai et al., 2019) have recently shown that EQMs can

perform on par with standard deep nets on a variety of complex tasks, renewing the

interest in these kinds of models.

We use a subset of ne = 5000 instances randomly sampled from the MNIST

dataset as training data and employ a multiclass logistic classifier paired with a
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Figure 3.2: Experiments on EQM problems. Mean (solid or dashed lines) and point-wise
minimum-maximum range (shaded regions) across 5 random seeds that only
control the initialization of λ . The estimated hypergradient g(λ ) is equal to
∇ ft(λ ) for ITD and ∇̂ f (λ ) for AID. We used t = k = 20 for all methods and
Nesterov momentum for optimizing λ , applying a projection operator at each
iteration except for the methods marked with †. When performing projection, the
curves produced by the three approximation schemes mostly overlap, indicating
essentially the same performance (although at a different computational cost).

cross-entropy loss. We picked a small training set and purposefully avoided stochas-

tic optimization methods to better focus on issues related to the computation of

the hypergradients itself, avoiding the introduction of other sources of noise. We

parametrize φi as

φi(wi,γ) = tanh(Awi +Bxi + c) for 1 ≤ i ≤ ne (3.23)

where xi ∈ Rp is the i-th example, wi ∈ Rh and γ = (A,B,C) ∈ Rh×h ×Rh×p ×Rh.

Such a model may be viewed as a (infinite layers) feed-forward neural network with

tied weights or as a recurrent neural network with static inputs. Imposing ∥A∥< 1
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ensures that the transition functions (3.23), and hence Φ, are contractions. This

can be achieved during optimization by projecting the singular values of A onto the

interval [0,1− ε] for ε > 0. We note that regularizing the norm of ∂1φi or adding L1

or L∞ penalty terms on A may encourage, but does not strictly enforce, ∥A∥< 1.

We conducted a series of experiments to ascertain the importance of the con-

tractiveness of the map Φ, as well as to understand which of the analysed methods

is to be preferred in this setting. Since here ∂1Φ is not symmetric, the conjugate

gradient method must be applied on the normal equations of problem (3.15). We set

h = 200 and use t = 20 fixed-point iterations to solve the lower-level problem in all

the experiments. The first three plots of Figure 3.2 report training objectives, test

accuracies and norms of the estimated hypergradient for each of the three methods,

either applying or not the constraint on A, while the last explores the sensitivity

of the methods to the choice of the learning rate. Unconstrained runs are marked

with †. Referring to the bottom right plot, it is clear (large shaded regions) that not

constraining the spectral norm results in unstable behavior of the “memory-less” AID

methods (green and blue lines) for all but a few learning rates, while ITD (violet), as

expected, suffers comparatively less. On the contrary, when ∥A∥< 1 is enforced, all

the approximation methods are successful and stable, with FP to be preferred being

faster than CG on the normal equations and requiring substantially less memory than

ITD. As a side note, referring to the two plots at the top of Figure 3.2, we observe

that projecting onto the spectral ball acts as powerful regularizer, in line with the

findings of Sedghi et al. (2019).

Equilibrium Models with Convolutions. At last, we report a series of experi-

ments on equilibrium models quite similar to those of the last paragraph, but with

convolutional and max-pooling operators in place of the affinities of Equation (3.23).

In particular, we model the learnable dynamics with parameters γ = (K,K′,c) as

φi(wi,γ) = tanh
(
K ⋆wi +µ2×2(K′ ⋆ xi)+ c

)
(3.24)

where wi ∈ Rh×14×14 are the state feature maps, ⋆ denotes multichannel bi-

dimensional cross-correlation, K and K′ contain h 3×3 convolutional kernels each
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Figure 3.3: Experiments with convolutional EQMs. Mean (solid line) and point-wise
minimum-maximum range (shaded region) across 5 random seeds. The seed
only controls the initialization of λ . The estimated hypergradient g(λ ) is equal
to ∇ ft(λ ) for ITD and ∇̂ f (λ ) for AID. We used t = k = 20 for all methods and
Nesterov momentum (1500 iterations) for optimizing λ , applying a projector
operator at each iteration except for the methods marked with †. Note that in
the first three plots the step-size for the unconstrained experiments is smaller, to
prevent divergence.

and µ2×2 denotes the max-pooling operator with a 2×2 field and stride of 2. The

state feature maps are passed through a max-pooling operator before being flattened

and fed to a multiclass logistic classifier. We set h = 10 for all the experiments.

We use the results and the code of Sedghi et al. (2019) to efficiently perform the

projection of the linear operator associated to K into the unit spectral ball7. Data and

optimization method for the upper objective are the same as the previous experiments.

The results, reported in Figure 3.3, show similar behaviors of those of the

previous experiments with non-convolutional fixed point map, albeit with larger

differences among the methods, especially for the experiments without projection

7Specifically, we project onto ∥c(K)∥ ≤ 0.999, where c(K) is an h× h matrix of doubly block
circulant matrices; see Sedghi et al. (2019) for details.
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Figure 3.4: Images of two samples of the states filter maps wi ∈ R10×14×14 for a three and
a six from the MNIST dataset, learned with the fixed-point method and with
projection. Each of the ten rows represents a filter and the x-axis proceeds with
the iterations of the EQM dynamics (for a total of t = 20 iterations). The states
are initialized to 0 (black images on the left) and then the mapping (3.24) is
iterated 20 times to approximately reach the fixed point representation (rightmost
images).

(denoted by † in the figure). The statistical performances of the contractive convolu-

tional EQM exceeds abundantly those given by simpler dynamics of (3.23), with the

fixed-point method (red line) being slightly better than the others. We show some

visual examples of the learned dynamics in Figure 3.4, where we plot the 10 bi-

dimensional state filter maps as the iterations of (3.24) proceed. Interestingly, when

the projection is not performed, optimization with the fixed-point scheme to compute

the hypergradient (akin to recurrent backpropagation, see green shaded region in the
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rightmost plot of Figure 3.3) does not reliably converge for all the probed values of

the step-size, indicating once more the importance of the contractiveness assumption

for AID methods. Finally, note that regularizing the norm of ∂1φi or adding L1 or L∞

penalty terms on the matrix of the state-wise linear transformation may encourage,

but does not strictly enforce, such condition. This may in part explain some diffi-

culties encountered in training EQM-like models, e.g. in the context of relational

learning (graph neural networks).

3.5 Discussion
In this chapter, we studied a general class of bilevel problems where at the lower-

level we seek for a solution to a parametric fixed point equation. This formulation

encompasses several learning algorithms recently considered in the literature. We

established results on the iteration complexity of two strategies to compute the

hypergradient (ITD and AID) under the assumption that the fixed point equation is

defined by a contraction mapping. Our practical experience with these methods on

a number of bilevel problems indicates that there is a trade-off between them, with

AID based on the conjugate gradient method being preferable due to a potentiality

better approximation of the hypergradient and lower space complexity. When the

contraction assumption is not satisfied, however, our experiments on equilibrium

models suggest that ITD is more reliable than AID methods.



Chapter 4

Stochastic Hypergradient

Approximation

4.1 Introduction
In this chapter we study the following stochastic bilevel problem.

min
λ∈Λ

f (λ ) := E[Ê(w(λ ),λ ,ξ )]

with w(λ ) = E[Φ̂(w(λ ),λ ,ζ )],
(4.1)

where Λ ⊆Rn is closed and convex, Ê : Rd ×Λ×Ξ →R, Φ̂ : Rd ×Λ×Z →Rd and

ξ , ζ are two independent random variables with values in Ξ and Z, respectively. We

also define

E(w,λ ) := E[Ê(w,λ ,ξ )], Φ(w,λ ) := E[Φ̂(w,λ ,ξ )],

In dealing with problem (4.1), one critical issue is to devise efficient algorithms

to compute the (hyper) gradient of the function f , so as to allow using gradient based

approaches to find a solution. The computation of the hypergradient via approximate

implicit differentiation (AID) (Pedregosa, 2016) requires one to solve two subprob-

lems: (i) the lower-level problem in (4.1) and (ii) a linear system which arises from

the implicit expression for ∇ f (λ ). However, especially in large scale scenarios,

solving those subproblems exactly might either be impossible or too expensive,
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hence, iterative approximation methods are often used. In Chapter 3, under the

assumption that, for every λ ∈ Λ, the mapping Φ(·,λ ) in (4.1) is a contraction, a

comprehensive analysis of the iteration complexity of the hypergradient computation

for several popular deterministic algorithms was provided. Here instead, we address

such iteration complexity for stochastic methods. This study is of fundamental

importance since in many practical scenarios Φ(w,λ ) and/or E(w,λ ) are expensive

to compute, e.g., when they have a sum structure with many terms. In this situation

stochastic approaches become the method of choice. For example, in large scale

hyperparameter optimization and neural architecture search (Maclaurin et al., 2015;

Lorraine et al., 2020; Liu et al., 2018), solving the lower-level problem requires mini-

mizing a training objective over a large dataset, which is usually done approximately

through SGD and its extensions. This chapter’s contributions can be summarized as

follows.

• We devise a stochastic estimator ∇̂ f (λ ) of the true gradient, based on the

AID technique, together with an explicit bound for the related mean square

error. The bound is agnostic with respect to the stochastic methods solving the

related subproblems, so that can be applied to several algorithmic solutions;

see Theorem 4.4.5.

• We study the convergence of a general stochastic fixed-point iteration method

which extends and improves previous analysis of SGD for strongly convex

functions and can be applied to solve both subproblems associated to the AID

approach. These results, which are interesting in their own right, are given in

Theorems 4.5.2 and 4.5.3.

Proofs of the results presented in the chapter can be found in Appendix B.

4.2 Related Work
Pedregosa (2016) introduced an efficient class of deterministic methods to compute

the hypergradient through AID together with asymptotic convergence results. Ra-

jeswaran et al. (2019); Grazzi et al. (2020) extended this analysis providing iteration
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complexity bounds. AID methods require to iteratively evaluate Φ and its derivatives.

In this chapter, we extend these methods by replacing those exact evaluations with

unbiased stochastic approximations and provide iteration complexity bounds in this

scenario.

Another class of methods (ITD) computes the hypergradient by differentiating

through the inner optimization scheme (Maclaurin et al., 2015; Franceschi et al.,

2017, 2018). Iteration complexity results for the deterministic case are given in

Grazzi et al. (2020). Here, we focus entirely on AID methods, leaving the investiga-

tion of stochastic ITD methods for future work.

An interesting special case of the bilevel problem (4.1) is when f (λ ) =minw E(w,λ ).

This scenario occurs for example in regularized meta-learning, where the properties

of a simple stochastic hypergradient estimator have been studied extensively (Denevi

et al., 2019a,b; Zhou et al., 2019). In this setting, Ablin et al. (2020) analyze, among

others, implicit differentiation techniques for approximating the gradient of f , in-

cluding stochastic approaches. However, the proposed estimator assumes to solve

the related linear system exactly, which is often impractical. In this chapter, we focus

on the more general setting of bilevel problem (4.1), devising algorithmic solutions

that are fully stochastic, in the sense that also the subproblem involving the linear

system is solved by a stochastic method.

Finally, stochastic algorithms for hypergradient computation in bilevel optimization

problems have been studied in (Couellan and Wang, 2016; Ghadimi and Wang,

2018). There, the authors provide convergence rates for a whole bilevel optimization

procedure using stochastic oracles both from the upper-level and the lower-level ob-

jectives. In particular, the method used by Ghadimi and Wang (2018) to approximate

the hypergradient can be seen as a special case of our method with two particular

choices of the stochastic solvers.1

1Specifically they use SGD with decreasing step sizes for the lower-level problem (which is a
minimization problem) and, for the linear system, a stochastic routine derived from the Neumann
series approximation of the matrix inverse.
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4.3 Stochastic Implicit Differentiation
In this section we describe a general method for generating a stochastic approxima-

tion of the (hyper)gradient of f in (4.1). A special case of (4.1), which often occurs

in machine learning, is

min
λ∈Λ

f (λ ) := E(w(λ ),λ )

with w(λ ) = argminwE[L̂(w,λ ,ζ )],
(4.2)

where w 7→ E[L̂(w,λ ,ζ )] is strongly convex and Lipschitz smooth for every λ ∈ Λ.

Indeed, (4.2) follows from (4.1) and the definition of E by choosing Φ̂(w,λ ,ζ ) =

w−αλ ∇L̂(w,λ ,ζ ), for any αλ > 0. Consider the following assumptions.

Assumption 4.3.1. The set Λ ⊆Rm is closed and convex and the mappings Φ : Rd ×

Rm → Rd and E : Rd ×Rm → R are differentiable. For every λ ∈ Λ, we assume

(i) Φ(·,λ ) is a contraction, i.e., ∥∂1Φ(w,λ )∥ ≤ qλ for some qλ < 1 ∀w ∈ Rd .

(ii) ∂1Φ(·,λ ),∂2Φ(·,λ ) are Lipschitz continuous with constants ν1,λ ,ν2,λ respec-

tively.

(iii) ∇1E(·,λ ),∇2E(·,λ ) are Lipschitz continuous with constants µ1,λ ,µ2,λ respec-

tively.

(iv) E(·,λ ) is Lipschitz continuous with constant LE,λ .

Similar assumptions are also considered and discussed in Chapter 3. Here we

add Assumption 4.3.1(iv), which is necessary to bound ∥∇1E(wt(λ ),λ )∥, where

wt(λ ) is given by a stochastic algorithm without making assumptions on the algo-

rithms iterates. Assumption 4.3.1(iv) is satisfied e.g. for the cross-entropy loss but

not for the square loss at the upper-level.

As we showed in Chapter 3, under Assumption 4.3.1, Φ(·,λ ) has a unique fixed

point w(λ ) and the hypergradient is given by

∇ f (λ ) = ∇2E(w(λ ),λ )+∂2Φ(w(λ ),λ )⊤v(w(λ ),λ ), (4.3)
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where

v(w,λ ) :=
(

I −∂1Φ(w,λ )⊤
)−1

∇1E(w,λ ). (4.4)

This formula follows by differentiating the fixed point conditions for the lower-

level problem and noting that, because of Assumption 4.3.1(i), I − ∂1Φ(w,λ )⊤ is

invertible (see Lemma 3.3.6). We also consider the following properties for Φ̂ and Ê.

Assumption 4.3.2. The random variables ζ and ξ take values in measurable spaces

Ξ and Z and Φ̂ : Rd ×Λ×Z 7→ Rd , Ê : Rd ×Λ×Ξ 7→ R are measurable functions,

differentiable w.r.t. the first two arguments in an open set containing Rd ×Λ, and,

for all w ∈ Rd , λ ∈ Λ:

(i) E[Φ̂(w,λ ,ζ )]=Φ(w,λ ), E[Ê(w,λ ,ξ )]=E(w,λ ) and we can exchange deriva-

tives with expectations when taking derivatives on both sides.

(ii) V[Φ̂(w,λ ,ζ )]≤ σ1,λ +σ2,λ∥Φ(w,λ )−w∥2 for some σ1,λ ,σ2,λ ≥ 0.

(iii) V[∂1Φ̂(w,λ ,ζ )]≤ σ ′
1,λ , V[∂2Φ̂(w,λ ,ζ )]≤ σ ′

2,λ for some σ ′
1,λ ,σ

′
2,λ ≥ 0.

(iv) V[∇1Ê(w,λ ,ξ )]≤ σ̂1,λ , V[∇2Ê(w,λ ,ξ )]≤ σ̂2,λ for some σ̂1,λ , σ̂2,λ ≥ 0.

Assumption 4.3.2 is satisfied in many cases. In particular, if Φ̂ is the gradient

descent map on a few examples and Ê is the loss on a few validation examples and

ζ , ξ select the indices of those examples (over a finite set of indices), the assumption

is generally satisfied. In this scenario, Assumption 4.3.2(ii)(iii) map directly to

equivalent assumptions on the variance of the stochastic estimator of the gradient

and hessian of the loss function with σ ′
2,λ = 0 if λ is a regularization parameter. The

assumption is satisfied for every experiment in Sections 4.7 and 4.8.

To approximate ∇ f (λ ), we use mini-batch estimators ∇ĒJ and ∂2Φ̄J

each with J samples, to estimate ∇E and ∂2Φ respectively2. In particular,

∇iĒJ(wt(λ ),λ ) =
1
J ∑

J
j=1 ∇iÊ(wt(λ ),λ ,ξ j) for i ∈ {1,2} and ∂2Φ̄J(wt(λ ),λ ) =

1
J ∑

J
j=1 ∂2Φ̂(wt(λ ),λ ,ζ

′
j). Furthermore, motivated by (4.3)-(4.4), we consider to

have at our disposal two stochastic solvers exploiting Φ̂: one for the lower-level

2For simplicity we use the same number of samples (J) for all the estimators. However, we
observe that if e.g. λ is the regularization parameter at the lower-level, then σ ′

2,λ = 0 and hence only
one sample (J = 1) is needed to estimate ∂2Φ.
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problem in (4.1) which generates a stochastic process wt(λ ) estimating w(λ ) and

another for the linear system

(I −∂1Φ(w,λ )⊤)v = ∇1ĒJ(w,λ ), with w ∈ Rd, (4.5)

generating a stochastic process vk(w,λ ) approximating the solution v̄(w,λ ) of (4.5).

Then, the stochastic approximation to the hypergradient is defined as

∇̂ f (λ ) := ∇2ĒJ(wt(λ ),λ )+∂2Φ̄J(wt(λ ),λ )
⊤vk(wt(λ ),λ ). (4.6)

Algorithm 4.3.1 Stochastic Implicit Differentiation (SID)
Requires: t,k,J,λ .

1. Let t ∈ N and compute wt(λ ) by t steps of a stochastic algorithm that approxi-
mates w(λ ).

2. Compute ∇iĒJ(wt(λ ),λ ) =
1
J ∑

J
j=1 ∇iÊ(wt(λ ),λ ,ξ j), where (ξ j)1≤ j≤J are

i.i.d. copies of ξ and i ∈ {1,2}.

3. Let k ∈ N and Compute vk(wt(λ ),λ ) by k steps of a stochastic solver for the
linear system

(I −∂1Φ(wt(λ ),λ )
⊤)v = ∇1ĒJ(wt(λ ),λ ). (4.7)

4. Compute the approximate hypergradient as

∇̂ f (λ ) := ∇2ĒJ(wt(λ ),λ )+∂2Φ̄J(wt(λ ),λ )
⊤vk(wt(λ ),λ ).

where ∂2Φ̄J(wt(λ ),λ ) = 1
J ∑

J
j=1 ∂2Φ̂(wt(λ ),λ ,ζ

′
j) and (ζ ′

j)1≤ j≤J are
i.i.d. copies of ζ .

The procedure, which we call SID, is summarized in Algorithm 4.3.1. In

Section 4.6 we will give a way to generate the stochastic processes (wt(λ ))t∈N and

(vk(w,λ ))k∈N.
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4.4 Convergence of Stochastic Implicit Differentiation

In this section, we provide an upper bound to the mean squared error of the hyper-

gradient approximation:

MSE
∇̂ f := E[∥∇̂ f (λ )−∇ f (λ )∥2], (4.8)

where ∇̂ f (λ ) is given by SID (Algorithm 5.2.1). In particular, we show that when

the mini-batch size J, the number of lower-level and linear system iterations t and k

tend to infinity, and the algorithms to solve the lower-level problem and the linear

system converge in mean square error, then the mean square error of ∇̂ f (λ ) tends

to zero. Moreover, using stochastic fixed-point iteration solvers with decreasing

stepsizes and setting t = k = J we have MSE
∇̂ f = O(1/t).

We require the stochastic procedures at point 1 and 3 of Algorithm 4.3.1 to

have non-asymptotic convergence rates in mean square3. This is the content of the

following assumption.

Assumption 4.4.1. For every w ∈ Rd , λ ∈ Λ, t,k,J ≥ 1, j ∈ {1, . . . ,J}, the random

variables vk(w,λ ), wt(λ ), ζ ′
j, are mutually independent, wt(λ ) is independent of ξ j

and

E[∥wt(λ )−w(λ )∥2]≤ ρλ (t), E[∥vk(w,λ )− v̄(w,λ )∥2]≤ σλ (k),

where ρλ : N 7→ R+ and σλ : N 7→ R+.

In order to analyze the quantity in (4.8), we start with the standard bias-variance

decomposition (see Lemma B.4.3) as follows

MSE
∇̂ f =∥E[∇̂ f (λ )]−∇ f (λ )∥2︸ ︷︷ ︸

bias

+V[∇̂ f (λ )]︸ ︷︷ ︸
variance

. (4.9)

3Exact rates are derived in Section 4.5
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Then, using the law of total variance, we can write the useful decomposition

V[∇̂ f (λ )] = E[V[∇̂ f (λ ) |wt(λ )]]︸ ︷︷ ︸
variance I

+V[E[∇̂ f (λ ) |wt(λ )]]︸ ︷︷ ︸
variance II

. (4.10)

These decompositions allows us to analyze bias and variance separately and to

decouple the randomness of the lower level solver from the one on the linear system

and minibatch estimators, thus simplifying the analysis.

In the following three theorems we will bound the bias and the variance terms

of the MSE. After that we state the final MSE bound in Theorem 4.4.5.

Theorem 4.4.2 (Bias upper bounds). Suppose that Assumptions 4.3.1,4.3.2 and

4.4.1 are satisfied. Let λ ∈Λ, t,k ∈N. Let ∆̂w := ∥wt(λ )−w(λ )∥, then the following

hold.

(i)
∥∥E[∇̂ f (λ ) |wt(λ )]−∇ f (λ )

∥∥ ≤ c1∆̂w +LΦ,λ

√
σλ (k)+ν2,λ ∆̂w

√
σλ (k).

(ii) ∥E[∇̂ f (λ )]−∇ f (λ )∥ ≤ c1
√

ρλ (t)+LΦ,λ

√
σλ (k)+ν2,λ

√
ρλ (t)

√
σλ (k),

where

c1 = µ2,λ +
µ1,λ LΦ,λ +ν2,λ LE,λ

1−qλ

+
ν1,λ LE,λ LΦ,λ

(1−qλ )
2 , LΦ,λ = ∂2Φ(w(λ ),λ ).

The proof is in Appendix B.1.1.

Theorem 4.4.3 (Variance I bound). Suppose that Assumptions 4.3.1,4.3.2 and 4.4.1

are satisfied. Let λ ∈ Λ, t,k ∈ N. Then

E[V[∇̂ f (λ ) |wt(λ )]]≤

(
σ̂2,λ +4

σ ′
2,λ (L

2
E,λ + σ̂1,λ )+L2

Φ,λ σ̂1,λ

(1−qλ )
2

)
2
J

+8(L2
Φ,λ +σ

′
2,λ )σλ (k)+8ν

2
2,λ ρλ (t)

(
σλ (k)+

σ̂1,λ

J(1−qλ )
2

)
,

where LΦ,λ is defined as in Theorem 4.4.2.

The proof is in Appendix B.1.2.
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Theorem 4.4.4 (Variance II bound). Suppose that Assumptions 4.3.1,4.3.2 and

4.4.1 are satisfied. Let λ ∈ Λ, and t,k ∈ N. Then

V[E[∇̂ f (λ ) |wt(λ )]]≤ 3
(
c2

1ρλ (t)+L2
Φ,λ σλ (k)+ν

2
2,λ ρλ (t)σλ (k)

)
,

where c1 and LΦ,λ are defined as in Theorem 4.4.2.

Proof. We get V[E[∇̂ f (λ ) |wt(λ )]] ≤ E
[
∥E[∇̂ f (λ ) |wt(λ )]−∇ f (λ )∥2] from the

property of the variance (Lemma B.4.3(ii)). The statement follows from Theo-

rem 4.4.2(i), the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), then taking the total

expectation and finally using Assumption 4.4.1.

Theorem 4.4.5 (MSE bound for SID). Suppose that Assumptions 4.3.1,4.3.2 and

4.4.1 are satisfied. Let λ ∈ Λ, and t,k,J ∈ N. Then, if we use Algorithm 5.2.1, we

have

MSE
∇̂ f ≤

(
σ̂2,λ +4

σ ′
2,λ (L

2
E,λ + σ̂1,λ )+L2

Φ,λ σ̂1,λ

(1−qλ )
2

)
2
J
+

(
6c2

1 +
8ν2

2,λ σ̂1,λ

(1−qλ )
2

)
ρλ (t)

+
(

14L2
Φ,λ +8σ

′
2,λ

)
σλ (k)+14ν

2
2,λ ρλ (t)σλ (k),

where c1 and LΦ,λ are defined in Theorem 4.4.2. In particular, if limt→∞ ρλ (t) =

limk→∞ σλ (k) = 0, then

lim
t,k,J→∞

MSE
∇̂ f = 0

Proof. Follows from (4.9)-(4.10) and summing bounds in Theorems 4.4.2(ii), 4.4.3,

and 4.4.4.

We will show in Section 4.6 that by using the stochastic fixed point iteration

solvers with carefully chosen decreasing stepsizes, we have ρλ (t) = O(1/t) and

σλ (k) = O(1/k) and hence, by setting t = k = J we can achieve MSE
∇̂ f = O(1/t)

(Corollary 4.6.2).

4.5 Stochastic Fixed-Point Iterations
In this section we address the convergence of stochastic fixed-point iteration methods

which can be applied similarly to solve both subproblems in Algorithm 4.3.1 (see
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Section 4.6). We consider the general situation of computing the fixed point of

a contraction mapping which is accessible only through a stochastic oracle. The

results are inspired by the analysis of the SGD algorithm for strongly convex and

Lipschitz smooth functions given in (Bottou et al., 2018), but extended to our more

general setting. Indeed, by a more accurate computation of the contraction constant

of the gradient descent mapping, we are able to improve the convergence rates and

increase the stepsizes given in the above cited paper. See Corollary 4.5.7 and the

subsequent remark. We stress that the significance of the results presented in this

section goes beyond the bilevel setting (4.1) and may be of interest per se. Proofs

are in Appendix B.2

In line with the assumptions in Bottou et al. (2018) for the case of stochastic

minimization of a strongly convex and Lipschitz smooth function, we make the

following assumption.

Assumption 4.5.1. Let ζ be a random variable with values in a measurable space

Z . Let T : Rd 7→ Rd and T̂ : Rd ×Z 7→ Rd be such that

(i) ∀w1,w2 ∈ Rd , ∥T (w1)−T (w2)∥ ≤ q∥w1 −w2∥, with q < 1.

(ii) ∀w ∈ Rd , E[T̂ (w,ζ )] = T (w)

(iii) ∀w ∈ Rd , V[T̂ (w,ζ )]≤ σ1 +σ2∥T (w)−w∥2.

Since T is a contraction, there exists a unique w∗ ∈ Rd such that

w∗ = T (w∗). (4.11)

We consider the following random process which corresponds to a stochastic version

of the Krasnoselskii-Mann iteration for contractive operators. Let (ζt)t∈N be a

sequence of independent copies of ζ . Then, starting from w0 ∈ Rd we set

(∀ t ∈ N) wt+1 = wt +ηt(T̂ (wt ,ζt)−wt). (4.12)

The following two results provide non-asymptotic convergence rates for the

procedure (4.12) for two different strategies about the step-sizes ηt .
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Theorem 4.5.2 (Constant step-size). Let Assumption 4.5.1 hold and suppose that

ηt = η ∈ R++, for every t ∈ N, and that

η ≤ 1
1+σ2

.

Let (wt)t∈N be generated according to algorithm (4.12) and set MSEwt :=

E[∥wt −w∗∥2]. Then, for all t ∈ N,

MSEwt ≤ (1−η(1−q2))t
(

MSEw0 −
ησ1

1−q2

)
+

ησ1

1−q2 . (4.13)

In particular, limt→∞ MSEwt ≤ ησ1/(1−q2).

Theorem 4.5.3 (Decreasing step-sizes). Let Assumption 4.5.1 hold and suppose that

for every t ∈ N

ηt ≤
1

1+σ2
,

∞

∑
t=1

ηt = ∞,
∞

∑
t=1

η
2
t < ∞. (4.14)

Let (wt)t∈N be generated according to Algorithm (4.12). Then

wt → w∗ P-a.s.

Moreover, if ηt = β/(γ + t), with β > 1/(1−q2) and γ ≥ β (1+σ2), then we have

E[∥wt −w∗∥2]≤ 1
γ + t

max
{

γE[∥w0 −w∗∥2],
β 2σ1

β (1−q2)−1

}
(4.15)

We will now comment on the choice of the stepsizes in algorithm (4.12). The-

orem 4.5.2 and 4.5.3 suggest that it may be convenient to start the algorithm with

a constant stepsize. Then, once reached a mean square error approximately less

than ησ1/(1−q2), the stepsizes should change regime and start decreasing accord-

ing to Theorem 4.5.3. More precisely, in the first phase it is recommended to set

η = 1/(1+σ2) in order to maximize the stepsize. Then, the second phase should be

initialized with w0 such that MSEw0 ≤ σ1/[(1+σ2)(1−q2)] and γ = β (1+σ2) so



4.5. Stochastic Fixed-Point Iterations 100

that

γE[∥w0 −w∗∥2]≤ β 2σ1

β (1−q2)−1
.

In this situation, c will be dominated by its second term, which is minimized when

β = 2/(1−q2). Similar suggestions are made in (Bottou et al., 2018).

In the following, partly inspired by the analysis of Nguyen et al. (2019), we

show that, with an additional Lipschitz assumption on T̂ , which is commonly verified

in practice, Assumption 4.5.1(iii) on the variance of the estimator is satisfied. The

following Assumption 4.5.4 is an extension of Assumption 2 in (Nguyen et al., 2019).

Assumption 4.5.4. There exists LT̂ ≥ 0 such that, for every w1,w2 ∈Rd and ∀z ∈ Z

∥T̂ (w1,z)− T̂ (w2,z)∥ ≤ LT̂∥w1 −w2∥.

Theorem 4.5.5. Suppose that Assumption 4.5.4 and Assumption 4.5.1(i)(ii) hold.

Then Assumption 4.5.1(iii) holds. In particular, for every w ∈ Rd ,

V[T̂ (w,ζ )]≤ 2V[T̂ (w∗,ζ )]︸ ︷︷ ︸
σ1

+2
L2

T̂
+q2

(1−q)2︸ ︷︷ ︸
σ2

∥T (w)−w∥2.

We now discuss the popular case of SGD and make a comparison with the

related results by Bottou et al. (2018). We assume that T̂ (w,ζ ) = w−α∇L̂(w,ζ ),

for a suitable α > 0. With this choice, algorithm (4.12) becomes

(∀ t ∈ N) wt+1 = wt −ηtα∇1L(wt ,ζt), (4.16)

which is exactly stochastic gradient descent. We have the following assumption.

Assumption 4.5.6. L̂ : Rd ×Z → R is twice continuously differentiable w.r.t. the

first variable. Let L(w) := E[L̂(w,ζ )].

(i) L(w) is τ strongly convex and L-smooth
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(ii) ∀w ∈ Rd , V[∇L̂(w,ζ )]≤ σ ′
1 +σ ′

2∥∇L(w)∥2.

Corollary 4.5.7. Let Assumption 4.5.6 hold and let (wt)t∈N be generated according

to algorithm (4.16) with ηt = η ≤ 1/(1+σ ′
2). Then

E[∥wt −w∗∥2]≤ rt
1
(
E[∥w0 −w∗∥2]− r2

)
+ r2, (4.17)

where

r1 :=


1− ητ

L

(
2− τ

L

)
if α = 1/L

1−4
ητL

(L+ τ)2 if α = 2/(L+ τ).

r2 :=


=

ησ ′
1

τ(2L− τ)
if α = 1/L

ησ ′
1

τL
if α = 2/(L+ τ).

Moreover, let ηt = β/(γ + t), where

β >


L2

τ(2L− τ)
if α = 1/L

(L+ τ)2

4τL
if α = 2/(L+ τ)

(4.18)

and γ ≥ β (1+σ ′
2). Then, for all t ∈ N, we have

E[∥wt −w∗∥2]≤ max{γE[∥w0 −w∗∥2],r3}
γ + t

, (4.19)

where

r3 :=


β 2σ ′

1
βτ(2L− τ)−L2 if α = 1/L

4β 2σ ′
1

4βτL− (L+ τ)2 if α = 2/(L+ τ).

Remark 4.5.8. In (Bottou et al., 2018), under Assumption 4.5.6 a rate equal to
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(4.17) is obtained, but with α = 1/L and

r1 = 1−η
τ

L
and r2 =

ησ ′
1

2τ
. (4.20)

We see then, that Corollary 4.5.7 provides better rates. Also, our analysis allows

choosing the larger (and optimal) stepsize 2/(L+ τ).

Remark 4.5.9. In Assumption 4.5.6, suppose that ζ takes values in Z = {1, . . . ,n}

with uniform distribution and that for every i ∈ {1, . . . ,n}, L̂(·, i) is strongly convex

with modulus τ . This is, for instance, the case of the regularized empirical risk

functional,

L̂(w, i) = ψ(yiw⊤xi)+
τ

2
∥w∥2, (4.21)

where (xi,yi)1≤i≤n ∈ (Rd ×{1,2})n is the training set. Then, if the loss function ψ

is Lipschitz continuous with constant Lip(ψ), as is the case, e.g., of the logistic loss,

we have

V[∇L̂(w, i)] = Vi∼U [Z][ψ
′(yiw⊤xi)yixi]≤ Lip(ψ)2Ei∼U [Z][∥xi∥2],

so that Assumption 4.5.6(ii) is satisfied with σ ′
2 = 0.

4.6 Solvers for Lower-Level Problem and Linear Sys-

tem
We are now ready to show how to generate the sequences wt(λ ) and vk(wt(λ ),λ )

required by Algorithm 4.3.1. Let ζ , ξ be random variables with values in Z and Ξ.

Let (ζt)t∈N and (ζ̂t)t∈N be independent copies of ζ and let (ηλ ,t)t∈N be a sequence

of stepsizes.

For every w ∈ Rd we let v0(w,λ ) = 0, w0 : Λ → Rd , and, for k, t ∈ N,

wt+1(λ ) := wt(λ )+ηλ ,t(Φ̂(wt(λ ),λ ,ζt)−wt(λ )), (4.22)

vk+1(w,λ ) := vk(w,λ )+ηλ ,k(Ψ̂w(vk(w,λ ),λ , ζ̂k)− vk(w,λ )), (4.23)
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where Ψ̂w(v,λ ,z) := ∂1Φ̂(w,λ ,z)⊤v+∇1ĒJ(w,λ ), ĒJ(w,λ )= (1/J)∑
J
j=1 Ê(w,λ ,ξ j)

and (ξ j)1≤ j≤J being i.i.d. copies of the random variable ξ ∈ Ξ.

Note that to reduce the number of hyperparameters of the method, we use the

same sequence of stepsizes (ηλ ,t)t∈N for both the LL and LS problems. This choice

might not be optimal and results in more conservative step sizes. If ∇1ĒJ(w,λ ) is

computed once beforehand, and the Jacobian-vector product in Ψ̂w is computed

using reverse mode automatic differentiation, the costs of evaluating Ψ̂w and Φ̂ are

of the same order of magnitude. Furthermore, thanks to the definition of Ψ̂, we

can solve both subproblems in Algorithm 4.3.1 using the procedure described in

Section 4.5. In particular, as illustrated by the following theorem, we can obtain

similar convergence guarantees for both (4.22) and (4.23).

Theorem 4.6.1. Let Assumption 4.3.1(i), 4.3.2 hold. Let wt(λ ) and vk(w,λ ) be

defined as in (4.22) and (4.23). Assume ∑
∞
t=0 ηλ ,t =+∞ and ∑

∞
t=0 η2

λ ,t <+∞. Then,

for every λ ∈ Λ, w ∈ Rd , we have

lim
t→∞

wt(λ ) = w(λ ), lim
k→∞

vk(w,λ ) = v̄(w,λ ) P-a.s.

Moreover, let σ̃2 := max{2σ ′
1,λ/(1 − q)2,σ2,λ} and ηλ ,t := β/(γ + t) with β >

1/(1−q2
λ
) and γ ≥ β (1+ σ̃2). Then for every w ∈ Rd , t,k > 0

E[∥wt(λ )−w(λ )∥2]≤
dw,λ

γ + t
E[∥vk(w,λ )− v̄(w,λ )∥2]≤

dv,λ

γ + k
(4.24)

where

dw,λ := max

{
γ∥w(λ )∥2,

β 2σ1,λ

β (1−q2
λ
)−1

}
,

dv,λ := max

{
L2

E,λ + σ̂1,λ

(1−qλ )
2 γ,

2(L2
E,λ + σ̂1,λ )σ

′
1,λ

(1−qλ )
2

β 2

β (1−q2
λ
)−1

}
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Alternatively, with constant step size ηt = η ≤ 1/(1+ σ̃2) we have

E[∥wt(λ )−w(λ )∥2]≤ (1−η(1−q2
λ
))t∥w(λ )∥2 +

ησ1,λ

1−q2
λ

(4.25)

E[∥vk(w,λ )− v̄(w,λ )∥2]≤ (1−η(1−q2
λ
))k

L2
E,λ + σ̂1,λ

(1−qλ )
2 (4.26)

+
η

1−q2
λ

2(L2
E,λ + σ̂1,λ )σ

′
1,λ

(1−qλ )
2 (4.27)

Proof is in Appendix B.3.1.

Corollary 4.6.2. Suppose that Assumptions 4.3.1,4.3.2 are satisfied and suppose

that ∇̂ f (λ ) is computed via Algorithm 5.2.1 with t = k = J ∈ N and LL/LS stepsizes

(η j) j∈N chosen according to the decreasing case of Theorem 4.6.1. Then, we obtain

MSE
∇̂ f ≤

cb + cv

t
, (4.28)

where

cb = 3c2
1dw,λ +3L2

Φ,λ dv,λ +3ν
2
2,λ dw,λ dv,λ

cv = σ̂2,λ +8
σ ′

2,λ (L
2
E,λ + σ̂1,λ )+L2

Φ,λ σ̂1,λ

(1−qλ )
2 +

(
3c2

1 +
8ν2

2,λ σ̂1,λ

(1−qλ )
2

)
dw,λ

+(11L2
Φ,λ +8σ

′
2,λ )dv,λ +11ν

2
2,λ dv,λ dw,λ ,

(4.29)

and dw,λ , dv,λ are defined in Theorem 4.6.1, while c1 and LΦ,λ are defined in Theo-

rem 4.4.2.

Crucially, typical bilevel problems in machine learning come in the form of (4.2),

where the lower-level objective L(w,λ ) := E[L̂(w,λ ,ζ )] is Lipschitz smooth and

strongly convex w.r.t. w. In this scenario, there is a vast amount of stochastic methods

in literature (see e.g. Bottou et al. (2018) for a survey) achieving convergence rates

in expectations of the kind provided in Theorem 4.6.1 or even better. For example,

when L(w,λ ) has a finite sum structure, as in the case of the regularized empirical

risk, exploiting variance reduction techniques makes the convergence rate ρλ (t)

linear. One can easily see that since the linear system can be seen as positive definite
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quadratic optimization problem, the same techniques can be applied also to this

problem obtaining linear σλ (k).

4.7 Preliminary Experiment
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Figure 4.1: Experiment with a single regularization parameter. Convergence of three variants
of SID for 4 choices of the regularization hyperparameter λ ∈ R++. Here, 2
epochs refer, in the Batch version, to one iteration on the lower-level problem
plus one iteration on the linear system, whereas, in the Stochastic versions, they
refer to 100 iterations on the lower-level problem plus 100 iterations on the
linear system. The plot shows mean (solid lines) and std (shaded regions) over 5
runs, which vary the train/validation splits and, for the stochastic methods, the
order and composition of the mini-batches.

In this section we present a preliminary experiment evaluating the effectiveness

of the SID method for estimating the hypergradient of f in a real data scenario. In

Section 4.8.1 we provide additional experiments on more realistic scenarios and with

additional SID variants. We focus on a hyperparameter optimization problem where
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Figure 4.2: Experiment with multiple regularization parameters. Convergence of three
variants of SID for several choices of the regularization hyperparameter λ ∈Rd

++.
The plot shows mean (solid lines) and std (shaded regions) over 10 runs. For
each run, λi = eεi , where εi ∼ U [−2,2] for every i ∈ {1, . . . ,d}. Epochs are
defined as in Figure 4.1.

we want to optimize the regularization parameter(s) in regularized logistic regression.

Specifically, we consider a binary classification problem with the aim to distinguish

between odd and even numbers in the MNIST dataset. Referring to problem (4.2),

we set

f (λ ) =
ntr+nval

∑
i=ntr+1

ψ(yix⊤i w(λ )),

w(λ ) = arg min
w∈Rd

ntr

∑
i=1

ψ(yix⊤i w)+R(w,λ ),

where ψ(u) = log(1 + e−u) is the logistic loss, (xi,yi)1≤i≤ntr+nval ∈ (Rp ×

{0,1})ntr+nval are training and validation examples, and R(w,λ ) is set according

to either of the two situations below

• one regularization parameter:
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R(w,λ ) = λ

2 ∥w∥2, λ ∈ R++

• multiple regularization parameters:

R(w,λ ) = 1
2w⊤diag(λ )w where diag(λ ) is the diagonal matrix formed by the

elements of λ ∈ Rd
++.

We set ntr = nval = 5000, i.e., we pick 10000 examples from the MNIST training

set, and we group them into a training and a validation set of equal size. We set

Φ to be the full gradient descent map on the lower-level objective, with optimal

choice for the stepsize4. This map is a contraction because the lower objective

is strongly convex and Lipschitz-smooth. We test the following three variants

of SID (Algorithm 4.3.1), where we always solve the lower-level problem with t

iterations of the procedure (4.22) and the linear system with k = t iterations of the

algorithm (4.23). However, we make different choices for ηλ ,t and the estimator Φ̂.

Batch. This variant of Algorithm 4.3.1 corresponds to the (deterministic)

gradient descent algorithm with constant stepsize. We set tBatch = kBatch = 30 and,

for every t = 0, . . . , tBatch, ηλ ,t = ηλ ,k = 1 and Φ̂(w,λ ,ζ ) = Φ(w,λ ).

Stoch const. For this variant, Φ̂(w,λ ,ζ ) corresponds to one step of stochas-

tic gradient descent on a randomly sampled minibatch of 50 examples. Thus,

tStoch const = tBatch × 100, kStoch const = kBatch × 100, and we pick ηλ ,t = ηλ ,k = 1,

for t = 0, . . . , tStoch const.

Stoch dec. For this variant the estimator Φ̂ is the same as for the Stoch const

strategy, but we use decreasing stepsizes. More precisely, ηλ ,t = ηλ ,k = βλ/(γλ + t)

with βλ = 2/(1− q2
λ
) and γλ = βλ . Moreover, as before, tStoch dec = tBatch × 100,

kStoch dec = kBatch ×100.

We note that the Batch strategy is exactly the fixed point method described in

Chapter 3, which converges linearly to the true hypergradient. Moreover, for the

stochastic versions, we set Ê(w,λ ,ξ ) = E(w,λ ), and we can write Φ̂(w,λ ,ζ ) =

Φ1(w,ζ ) +Φ2(w,λ ), so that we are in the case discussed in Remark 4.5.9 and

hence, σ2 = σ ′
2,λ = 0. In this situation we can see that the Stoch dec version of

4We set the stepsize equal to two divided by the sum of the Lipschitz and strong convexity
constants of the lower-level objective. This gives the optimal contraction rate qλ .
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Algorithm 4.3.1 converges in expectation to the true hypergradient even when J = 1

which is the value we use, whereas, according to Corollary 4.5.7, the Stoch const

version can possibly approach the true hypergradient in a first phase (at linear rate),

but ultimately might not converge to it.

In Figures 4.1 and 4.2 we show the squared error between the approximate and

the true hypergradient (∇̂ f (λ ) and ∇ f (λ ) respectively) for the two regularization

choices described above5. In both figures we can see the effectiveness of the proposed

SID method (and especially the Stoch dec variant) against its deterministic version

(AID) studied in Chapter 3.

4.8 Experiments
In this section we provide additional experiments in two of the settings outlined

in Chapter 3. In addition to the three methods considered in Section 4.7, we also

test variants of the algorithm which use a mixed Stochastic/Batch strategy for the

solution of the two subproblems as well as variants for which t ̸= k. To have a fair

comparison, each method computes the approximate hypergradient using the same

number of epochs. We report the differences among the methods in Table 4.1.

Table 4.1: Differences among the methods used in the experiments. The column % epochs,
provides percentages of epochs used to solve the lower level problem (LL) and
the linear system (LS), while the column algorithm indicates which method is
used for each of the two subproblems: gradient descent (GD), stochastic gradient
descent with constant step size (SGD const) and stochastic gradient descent with
decreasing step sizes (SGD dec).

Method % epochs (LL, LS) algorithm (LL, LS)

Batch 50, 50 GD, GD
Stoch const 50, 50 SGD const, SGD const
Stoch dec 50, 50 SGD const, SGD const
Stoch/Batch 50, 50 SGD dec, GD
Batch/Stoch 50, 50 GD, SGD dec
Batch 75%/25% 75, 25 GD, GD
Stoch const 75%/25% 75, 25 SGD const, SGD const
Stoch dec 75%/25% 75, 25 SGD dec, SGD dec

5Since for regularized logistic regression, the hypergradient is not available in closed form, we
compute it by using the Batch version with t = k = 2000 (4000 epochs in total).
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For each method we set J = 1 and the number of iterations for the lower-level

problem and linear system (t and k) in Algorithm 4.3.1 as follows.

t = round
(

% epochs LL
100

× total # of epochs×ntr ÷batch size LL
)

k = round
(

% epochs LS
100

× total # of epochs×ntr ÷batch size LS
)

where % epochs LL/LS is the corresponding value in Table 4.1, ntr is the number of

examples in the training set and batch size LL (batch size LS) is the batch size used

to solve the lower-level problem (linear system). The total number of epochs and ntr

depend on the setting and are the same for all methods.

4.8.1 Hypergradient Approximation on MNIST

We consider the following multinomial logistic regression setting on the MNIST

dataset.

f (λ ) =
ntr+nval

∑
i=ntr+1

CE(yi,W (λ )xi),

W (λ ) = arg min
W∈Rc×d

ntr

∑
i=1

CE(yi,Wxi)+R(w,λ ),

where c is the number of classes (10 for MNIST), CE is the cross entropy loss,

(xi,yi)1≤i≤ntr+nval ∈ (Rd ×{1, . . . ,c})ntr+nval are training and validation examples,

and R(w,λ ) is set according to either of the two situations below

• one regularization parameter:

R(w,λ ) = λ

2 ∥w∥2, λ ∈ R++

• multiple regularization parameters (one per feature):

R(w,λ ) = 1
2 ∑

c
i=1 ∑

d
j=1 λ jw2

i j where λ ∈ Rd
++.

In this scenario we take into account the whole MNIST training set containing 60

thousand examples, which we split in half to make the train and validation sets, i.e.

ntr = nval = 30000. The batch size for the stochastic variants is 300. Figure 4.3 shows

the results. Even in this setting, the pure stochastic variants have a clear advantage
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over the Batch algorithm. We also note that the mixed strategies perform worse than

the pure stochastic strategies and that there is no particular gain in allocating more

epochs to solve the lower-level problem.

4.8.2 Bilevel Optimization on Twenty Newsgroups

Here we replicate the setting of Chapter 3 where multiple regularization parame-

ters are optimized on the twenty newsgroup dataset. In particular, the lower-level

objective is the L2 regularized cross-entropy loss with one regularization parame-

ter per feature computed on the training set, while the upper-level objective is the

unregularized cross-entropy loss computed on the validation set.

Differently from the previous experiments, which focused only on hypergradi-

ents, in this case we address the problem of minimizing the upper-level objective

f (λ ). To minimize f (λ ) we use the SGD optimizer provided by PyTorch setting

the learning rate to 103. The approximate hypergradient is provided by one of the

methods in Table 4.1 with a total budget of 20 epochs, meaning that each method

exploits approximately 20 times the number of examples in the training set to com-

pute the hypergradient. Similarly to the experiment in Chapter 3, we also warm-start

the lower-level problem with the solution found at the previous upper-level iteration,

which significantly improves the performance. We note that each method starts by

computing an approximation of w(λ0) which may provide different values of the

considered metrics, even at the beginning of the procedure (see Figure 4.4).

We halve the original training set to generate the training and validation sets,

i.e. ntr = nval = 5657, and we use mini-batches of dimension 50 for the stochastic

variants. Moreover, we use the provided test set to compute the test performance

metrics.

The performances varying the number of upper-level iterations are shown in

Figure 4.4. We can see that the pure stochastic variants outperform both the Batch

and mixed methods. Furthermore, using the same number of epochs to solve the

lower-level problem and the linear system appears to be the best strategy. In Table 4.2

we present the performance of the three main methods after completion of the bilevel

optimization procedure.
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Table 4.2: Final performance metrics on the twenty newsgroup dataset, averaged over 5
trials. The metrics for the first three rows are obtained after 100 iterations of SGD
on the upper-level objective. The last row is the result for the conjugate gradient
method obtained in Chapter 3 where we select the best upper-level learning rate
and perform 500 upper-level iterations.

Method upper-level iter. val. loss test acc. (%)

Batch k = t = 10 100 1.30 57.5
Stoch dec. k = t = 1131 100 0.92 64.1
Stoch const. k = t = 1131 100 0.91 64.1

Batch k = t = 10 500 0.93 63.7

4.9 Discussion
In this chapter we studied a stochastic method for the approximation of the hyper-

gradient in bilevel problems defined through a fixed-point equation of a contraction

mapping. Specifically, we presented a stochastic version of the approximate implicit

differentiation technique (AID), which is one of the most effective solutions for

hypergradient computation as shown in Chapter 3. Our strategy (SID) estimates the

hypergradient with the aid of two stochastic solvers in place of the deterministic

solvers used in AID, and can use large mini-batches to estimate ∇E and ∂2Φ. We

presented a formal description and a theoretical analysis of SID, ultimately providing

a bound for the mean square error of the corresponding hypergradient estimator. As

a byproduct of the analysis, we provided an extension of the SGD algorithm for

stochastic fixed-point equations. We have also conducted numerical experiments

which confirm that using stochastic instead of deterministic solvers in SID can indeed

yield a more accurate hypergradient approximation.

We believe that our analysis of stochastic fixed-point algorithms can be further

extended to include variance reduction strategies and other advances commonly used

for SGD. A good starting point for this extension can be the work by Gorbunov et al.

(2020), which provides a unified theory for SGD methods in the strongly convex

setting.
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Figure 4.3: Experiments with a single (first 4 images) and multiple (last image) regulariza-
tion parameters. The plots show mean (solid lines) and std (shaded regions) over
5 (first 4 images) and 10 (last image) runs. Each run varies the train/validation
splits and, for the stochastic methods, the order and composition of the mini-
batches. In addition, for each run in the last image, λi = eεi , where εi ∼U [−2,2]
for every i ∈ {1, . . . ,d}. All methods use the same total computational budget.
The first five use the same total number of epochs for solving the lower-level
problem and the associated linear system. Whereas the last three methods – la-
beled with 75%/25% – dedicate 3/4 of epochs to solve the lower-level problem
and only 1/4 for the linear system.
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Figure 4.4: Performance metrics for multinomial logistic regression on twenty newsgroups.
All methods compute the hypergradient in 20 epochs: methods labeled as
75%/25% compute the lower-level solution in 15 epochs and the solution for
the linear system in 5, while the others solve both problems in 10 epochs. The
plots show mean (solid line) and max-min (shaded region) over 5 runs varying
both the train validation split and the mini-batch sampling of the stochastic
algorithms. The starting point is the same for all methods and is set to λ0 = 0 as
in Chapter 3.



Chapter 5

Optimal Sample Complexity for a

Gradient-Based Bilevel Method

without Warm-Start

5.1 Introduction

In this chapter, as in Chapter 4, we consider the following stochastic bilevel problem

min
λ∈Λ

f (λ ) := E[Ê(w(λ ),λ ,ξ )]

with w(λ ) = E[Φ̂(w(λ ),λ ,ζ )],
(5.1)

where Λ ⊆ Rn is closed and convex, Ê : Rd ×Λ×Ξ → R and Φ̂ : Rd ×Λ×Z →

Rd , and ξ and ζ are two independent random variables with values in Ξ and Z,

respectively. In the following we refer to the problem of finding the fixed point

w(λ ) of (5.1) as the lower-level (LL) problem, whereas we call the upper-level (UL)

problem, that of minimizing f . We also define

E(w,λ ) := E[Ê(w,λ ,ξ )], Φ(w,λ ) := E[Φ̂(w,λ ,ξ )],

and we assume that Φ(·,λ ) is a contraction, i.e. Lipschitz continuous with Lipschitz

constant less than one. An important special case of the LL problem in (5.1), which
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is the one usually considered in the related literature, is when

w(λ ) = argmin
w∈Rd

E[L̂(w,λ ,ζ )]. (5.2)

In this case, provided that the objective L(w,λ ) := E[L̂(w,λ ,ζ )] is strongly convex

and Lipschitz smooth, there always exists a sufficiently small η > 0 such that the

gradient descent map

Φ(w,λ ) := w−η∇1L(w,λ ), (5.3)

is a contraction with respect to w.

In dealing with Problem (5.1), we analyse gradient-based methods which exploit

approximations of the hypergradient, i.e. the gradient of f in (5.1). As shown in

Chapter 3, the contraction assumption guarantees that Φ(·,λ ) has a unique fixed

point w(λ ) and the hypergradient, thanks to the implicit function theorem (Lang,

2012, Theorem 5.9), always exists and is given by

∇ f (λ ) = ∇2E(w(λ ),λ )+∂2Φ(w(λ ),λ )⊤v(w(λ ),λ ), (5.4)

where v(w,λ ) is the solution of the linear system

(I −∂1Φ(w,λ )⊤)v = ∇1E(w,λ ), (LS)

which is given by v(w,λ ) :=
(
I −∂1Φ(w,λ )⊤

)−1
∇1E(w,λ ).

Computing the hypergradient exactly can be impossible or very expensive

since it requires to compute the LL and LS solutions w(λ ) and v(w(λ ),λ ). This is

especially true in large-scale machine learning applications where the number of

UL and LL parameters m and d can be very large. Furthermore, in cases such as

hyperparameter optimization, where E is the average loss over the validation set

while Φ is defined in (5.3) with L being the loss over the training set, if the dataset

is large, E, Φ and their derivatives can become very expensive to compute. For

this reason, relying on stochastic estimators (Ê and Φ̂) using only a mini-batch of

examples becomes crucial for devising scalable methods.
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To address these issues, approximate implicit differentiation (AID) methods

(Pedregosa, 2016; Rajeswaran et al., 2019; Lorraine et al., 2020), compute the hy-

pergradient by using approximate solutions for the LL and LS problems. Iterative

differentiation methods (ITD) (Maclaurin et al., 2015; Franceschi et al., 2017, 2018;

Finn et al., 2017) instead directly differentiate the lower-level solver. The conver-

gence of those methods to the true hypergradient has been addressed in Chapter 3

for AID and ITD methods in the deterministic case and in Chapter 4 for stochastic

AID methods.

By contrast, in this chapter we study the convergence rate of a full bilevel

procedure to solve Problem (5.1), based on SID: the general AID stochastic method

presented in Chapter 4. Such type of study was started by Ghadimi and Wang

(2018) and was later followed by several works which we discuss more in detail

in Section 5.3. Concerning ITD-based methods, we note that similar results were

proved only in the deterministic setting (Ji et al., 2021, 2022).

Warm-start. A common procedure to improve the overall performance of bilevel

algorithms is that of using as a starting point for the LL (or LS) solver at the current

UL iteration, the LL (or LS) approximate solution found at the previous UL iteration

(Hong et al., 2020; Guo and Yang, 2021; Huang and Huang, 2021; Chen et al.,

2021). This strategy, which is called warm-start, reduces the number of LL (or

LS) iterations needed by the bilevel procedure and is thought to be fundamental

to achieve the optimal sample complexity (Arbel and Mairal, 2021). Moreover,

warm-start is sometimes accompanied by the use of large mini-batches (Ji et al.,

2021; Arbel and Mairal, 2021), i.e. averages of many samples, to estimate gradients

or Jacobians. Large mini-batches allow to reduce the number of UL iteration but

increase the cost per iteration and ultimately achieve the same sample complexity up

to log terms.

In spite of the above advantages, warm-start presents a major downside: it is

not suitable in applications where it is expensive to store the whole LL solution,

such as meta-learning. Indeed, meta-learning consists in leveraging “common

properties” between a set of learning tasks in order to facilitate the learning process.
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We consider a meta-training set of T tasks. Each task i ∈ {1, . . . ,T} relies on a

training and a validation set which we denote by Dtr
i and Dval

i , respectively. The

meta-learning optimization problem is a bilevel problem where the UL objective has

the form f (λ ) = ∑
T
i=1 fi(λ ) with fi(λ ) :=L(wi(λ ),λ ;Dval

i ) and the LL solution can

be written as

w(λ ) = argmin
w∈RT×d

T

∑
i=1

L(wi,λ ;Dtr
i ), (5.5)

where L, λ and wi (the i-th row of w) are the loss function, the meta-parameters, and

task-specific parameters of the i-th task, respectively. For example, in (Franceschi

et al., 2018) wi and λ are the parameters of the last linear layer and the representation

part of a neural network, respectively. Note that the minimization in (5.5) can be

performed separately for each task. Therefore, when T is large, a common strategy

is that of solving, at each UL iteration, only a small random subset of tasks.

In this context using warm-start is problematic. Indeed, if task j is sampled at

iteration s, applying warm-start consistently would require using, as a starting point

for the LL optimization, the solution for that same task j at iteration s−1. However,

the task j might not be among the sampled tasks at iteration s− 1. A possible

remedy would be to warm-start by using the last available approximate solution

of the LL problem for task j, which may have been computed too many iterations

before the current one, ultimately making the warm-start procedure ineffective (see

experiments in Section 5.6.2). In addition, the above strategy would need to keep

the approximate solutions for all the previous tasks in memory and eventually for

all the T tasks, which might be too costly when T and d are large. Indeed, in

Section 5.6.2 we consider a problem in which the variable w occupies 122 GB of

memory. Moreover, from the theoretical point of view, this requires a novel analysis

to handle the related delays. This discussion suggests that the warm-start strategy

currently considered in literature is not well suited for meta-learning, and indeed is

never used in meta-learning experiments.

We note that similar issues arise also for equilibrium models when dealing

with large datasets. Indeed, in the bilevel formulation of equilibrium models (see

Chapter 3) the LL problem consists in finding a fixed point representation for each
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training example and ultimately yields a separable structure as in meta-learning.

Contributions. In this chapter we show that a bilevel procedure that does not rely

on warm-start can achieve optimal sample complexity, improving that by Ghadimi

and Wang (2018). Specifically, we make the following contributions.

• We analyse the sample complexity of the bilevel procedure in Algorithm 5.2.2

(BSGM) which combines projected inexact gradient descent with the hypergra-

dient estimator computed via SID, i.e. the procedure described in Chapter 4.

In particular, we prove, without any convexity assumptions on f , that BSGM

achieves the optimal and near-optimal sample complexities of O(ε−2) (with

a finite horizon) and Õ(ε−2), to reach an ε-stationary point of Problem (5.1).

In addition, it obtains near-optimal complexity of Õ(ε−1) for the determin-

istic case. We stress that these results are achieved without warm-start, al-

though with a reasonable additional assumption (see Remark 5.4.4(iv) and

Remark 5.5.9).

• We extend previous theoretical analyses by considering the more general case

where the LL problem is a fixed-point equation instead of a minimization

problem and relaxing some of the assumptions. In particular, we cover the

case where λ is subject to constraints (i.e. when Λ ̸= Rm), which are often

needed to satisfy the other assumptions of the analysis, but neglected by some

of the previous works. We also extend the scope of applicability of the method

by including e.g. non-Lipschitz LL losses, like the square loss, in problems of

type (5.2).

• We evaluate the empirical performance of our method against other methods

using warm-start on three instances of the bi-level problem (5.1). Specifically,

we provide experiments on equilibrium models and meta-learning showing

that warm-start is ineffective and increases the memory cost. We also perform

a data poisoning experiment which shows that warm-start can be beneficial,

although our method remains competitive. We provide the code at https:

//github.com/CSML-IIT-UCL/bioptexps

https://github.com/CSML-IIT-UCL/bioptexps
https://github.com/CSML-IIT-UCL/bioptexps
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Organization. In Section 5.2 we describe the bilevel procedure. We discuss closely

related works in Section 5.3. In Section 5.4 we state our assumptions and some

properties of the bilevel problem. In Section 5.5 we first study the convergence

of the projected inexact gradient method with controllable mean square error on

the gradient, and then combine this analysis with the one in Section 4.4 to derive

the desired complexity results for Algorithm 5.2.2. We present the experiments in

Section 5.6.

5.2 Bilevel Stochastic Gradient Method (BSGM)
We study the simple double-loop procedure in Algorithm 5.2.2 (BSGM). BSGM

uses projected inexact gradient updates for the UL problem, where the (biased)

hypergradient estimator is provided by Algorithm 5.2.1 (SID), which is a special-

ization of Algorithm 4.3.1 in Chapter 4, with stochastic fixed point iterations used

to solve the LL and LS problems. SID computes the hypergradient by first solving

the LL problem (Step 1), then it computes the estimator of the partial gradients of

the UL function E using mini-batches of size J (Step 2). After this it computes

an approximate solution to the LS (Step 3). Finally, it combines the LL and LS

solutions together with min-batch estimators of ∇2E and ∂2Φ computed using a

mini-batch of size J to give the final hypergradient estimator (Step 4). We remark

that the samplings performed at all the four steps have to be mutually independent.

Moreover, to solve the LL and LS problems we use simple stochastic fixed-point

iterations which reduce to stochastic gradient descent in LL problems of type (5.2).

We use the same sequence of step sizes ηi for both the LL and LS solvers and the

same batch size J for both ∇E and ∂2Φ to simplify the analysis and to reduce the

number of configuration parameters of the method. While this choice still achieves

optimal sample complexity, it may be suboptimal in practice.

5.3 Comparison with Related Work
Several gradient-based algorithms, together with sample complexity rates have been

recently introduced for stochastic bilevel problems with LL of type (5.2). They all

follow a structure similar to Algorithm 5.2.2, where each UL update uses one (or
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Algorithm 5.2.1 Stochastic Implicit Differentiation (SID)
Requires: t,k,J,λ ,w0,(ηi)

∞
i=0.

1. LL Solver:

for i = 0,1, . . . t −1⌊
wi+1(λ ) = wi(λ )+ηi(Φ̂(wi(λ ),λ ,ζi)−wi(λ ))

(5.6)

where (ζi)0≤i≤t−1 are i.i.d. copies of ζ .

2. Compute ∇iĒJ(wt(λ ),λ ) =
1
J ∑

J
j=1 ∇iÊ(wt(λ ),λ ,ξ j), where (ξ j)1≤ j≤J are

i.i.d. copies of ξ and i ∈ {1,2}.

3. LS Solver:

for i = 0,1, . . .k−1⌊
vi+1(wt(λ ),λ ) = vi(wt(λ ),λ )+ηi(Ψ̂wt(λ )(vi(wt(λ ),λ ),λ , ζ̂i)

−vi(wt(λ ),λ ))

(5.7)

where Ψ̂w(v,λ ,z) := ∂1Φ̂(w,λ ,z)⊤v + ∇1ĒJ(w,λ ), (ζ̂i)0≤i≤k−1 are
i.i.d. copies of ζ .

4. Compute the approximate hypergradient as

∇̂ f (λ ) :=∇2ĒJ(wt(λ ),λ )+∂2Φ̄J(wt(λ ),λ )
⊤vk(wt(λ ),λ ).

where ∂2Φ̄J(wt(λ ),λ ) = 1
J ∑

J
j=1 ∂2Φ̂(wt(λ ),λ ,ζ

′
j) and (ζ ′

j)1≤ j≤J are
i.i.d. copies of ζ .

Algorithm 5.2.2 Bilevel Stochastic Gradient Method (BSGM)
Requires: λ0,w0,α,{η j},{ts},{Js}.
for s = 0,1, . . . ,S−1

1. Compute ∇̂ f (λs) using Algorithm 5.2.1 (SID) with t = ts,k = ts,J = Js,λ = λs,
{ηi}= {η j}, and w0 = w0, v0 = 0 (no warm-start).

2. λs+1 = PΛ(λs −α∇̂ f (λs))

more for variance reduction methods) hypergradient estimator computed using a

variant of Algorithm 5.2.1 with different LL and LS solvers. The algorithms mainly

differ in how they compute the LL, LS and UL updates (e.g. in the choice of the step

sizes ηt,s,αs, mini-batch sizes, and whether they use variance reduction techniques),
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Table 5.1: Sample complexity (SC) of stochastic bilevel optimization methods for finding
an ε-stationary point of Problem (5.1) with LL of type (5.2). BS-LL is the LL
mini-batch size, i.e. the one used to approximate Φ in the LL solver. WS indicates
the use of warm-start, e.g. Y, N means that warm-start is used for the LL problem
but not for the LS. ts and ks denote the number of iterations for the LL and LS
problems respectively, while αs and ηt,s are the stepsize respectively for the UL
and LL problems at the s-th UL iteration and t-th LL iteration. L f is the Lipschitz
constant of ∇ f , S is the total number of UL iteration and ESI means that the LS
estimator is given by an exact single sample LL hessian inverse. The last 7 results
are obtained under additional expected smoothness assumptions (Arjevani et al.,
2022).

Algorithm SC BS-LL WS ts ks αs ηt,s

BSA (Ghadimi and Wang, 2018) O(ε−3) Θ(1) N, N Θ(
√

s) Θ(log(
√

s)) Θ(1/
√

S) Θ(1/t)
TTSA (Hong et al., 2020) Õ(ε−2.5) Θ(1) Y, N 1 Θ(log(

√
s)) Θ(S−2/5) Θ(S−3/5)

stocBiO (Ji et al., 2021) Õ(ε−2) Θ(S) Y, N Θ(1) Θ(log(
√

s)) ≤ 1/4L f Θ(1)
SMB (Guo et al., 2021) Õ(ε−2) Θ(1) Y, N 1 Θ(log(

√
s)) Θ(1/

√
S) Θ(1/

√
S)

saBiAdam (Huang and Huang, 2021) Õ(ε−2) Θ(1) Y, N 1 Θ(log(
√

s)) Θ(1/
√

s) Θ(1/
√

s)
ALSET (Chen et al., 2021) Õ(ε−2) Θ(1) Y, N 1 Θ(log(

√
S)) Θ(1/

√
S) Θ(1/

√
S)

Amigo (Arbel and Mairal, 2021) O(ε−2) Θ(S) Y, Y Θ(1) Θ(1) ≤ 1/L f Θ(1)
BSGM-1 (Ours) Õ(ε−2) Θ(1) N, N Θ(s) Θ(s) ≤ 1/L f Θ(1/t)
BSGM-2 (Ours) O(ε−2) Θ(1) N, N Θ(S) Θ(S) ≤ 1/L f Θ(1/t)

STABLE (Chen et al., 2022) O(ε−2) Θ(1) Y, N 1 ESI Θ(1/
√

S) Θ(1/
√

S)
FSLA (Li et al., 2022) O(ε−2) Θ(1) Y, Y 1 1 Θ(1/

√
s) Θ(1/

√
s)

STABLE-VR (Guo and Yang, 2021) Õ(ε−1.5) Θ(1) Y, N 1 ESI Θ(s−1/3) Θ(s−1/3)

SUSTAIN (Khanduri et al., 2021) Õ(ε−1.5) Θ(1) Y, N 1 Θ(log(
√

s)) Θ(s−1/3) Θ(s−1/3)

VR-saBiAdam (Huang and Huang, 2021) Õ(ε−1.5) Θ(1) Y, N 1 Θ(log(
√

s)) Θ(s−1/3) Θ(s−1/3)

MRBO (Yang et al., 2021) Õ(ε−1.5) Θ(1) Y, N 1 Θ(log(S)) Θ(s−1/3) Θ(s−1/3)

VRBO (Yang et al., 2021) Õ(ε−1.5) Θ(
√

S) Y, N Θ(1) Θ(log(
√

S)) Θ(1) Θ(1)

in the number of LL and LS iterations ts, ks, and in the use of warm-start. These

differences are summarized in Table 5.1.

Ghadimi and Wang (2018) introduce the first convergence analysis for a simple

double-loop procedure, both in the deterministic and stochastic settings. Their

algorithm uses (stochastic) gradient descent both at the upper and lower levels

(SGD-SGD) and approximates the LS solution using an estimator based on truncated

Neumann series (with ks elements). In the stochastic setting, this procedure needs

O(ε−3) samples to reach an ε-stationary point. This sample complexity is achieved

by increasing the number of LL and LS iterations, i.e. at the s-th UL iteration it sets

ts = Θ(
√

s) and ks = Θ(log(
√

s)).

Differently from this seminal work, all subsequent ones warm-start the LL

problem to improve the sample complexity, since this allows them to choose ts =Θ(1)

or even ts = 1, the latter case is also referred to as single-loop. Warm-start combined
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with the simple SGD-SGD strategy can improve the O(ε−3) sample complexity by

carefully selecting the UL and LL stepsize, i.e. using two timescale (Hong et al.,

2020) or single timescale (Chen et al., 2021) stepsizes, or by employing larger and

ε-dependent mini-batches (Ji et al., 2021). Warm-starting also the LS can further

improve the sample-complexity to O(ε−2) (Arbel and Mairal, 2021). The complexity

O(ε−2) is optimal, since the optimal sample complexity of methods using unbiased

stochastic gradient oracles with bounded variance on smooth functions is Ω(ε−2),

and this lower bound is also valid for bilevel problems of type (5.1)1 (also with LL

of type (5.2)).

Chen et al. (2022); Khanduri et al. (2021); Guo and Yang (2021); Huang

and Huang (2021) achieve the best-known sample complexity of Õ(ε−1.5) using

variance reduction techniques2. Li et al. (2022) introduce the first fully single loop

algorithm where both the LL and LS are warm-started and solved with one iteration,

although it achieves a sample complexity of O(ε−2) while using variance reduction.

Variance reduction techniques require additional algorithmic parameters and need

expected smoothness assumptions to guarantee convergence (Arjevani et al., 2022).

Furthermore, they increase the cost per iteration compared to the SGD-SGD strategy

since they require two stochastic samples per iteration to estimate gradients instead

of one. For these reasons, we do not investigate these kinds of techniques in the

present work.

Except for Chen et al. (2022); Guo and Yang (2021), all methods discussed in

this section and ours are also computationally efficient, since they only require gradi-

ents and Hessian-vector products. Hessian-vector products have a cost comparable

to gradients thanks to automatic differentiation. Chen et al. (2022); Guo and Yang

(2021) further rely on operations like inversions and projections of the LL Hessian.

These can be too costly with a large number (d) of LL variables, which can make it

impractical even to compute the full Hessian.

All the aforementioned works study smooth bilevel problems with LL of

1We can easily see this when E(w,λ ) = g(λ ) and Ê(w,λ ,ξ ) = ĝ(λ ,ξ ) where g : Λ 7→ R is
Lipschitz smooth and ĝ is an unbiased estimate of g whose gradient w.r.t. λ has bounded variance.

2Chen et al. (2022) uses variance reduction only on the LL Hessian updates (see eq. (12)).
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type (5.2) and with a twice differentiable and strongly convex LL objective. At

last, we mention two lines of work which consider different bilevel formulations:

(Bertrand et al., 2020, 2022a), which study the error of hypergradient approximation

methods for certain non-smooth bilevel problems, and (Liu et al., 2020, 2022; Arbel

and Mairal, 2022), which analyse algorithms to tackle bilevel problems with more

than one LL solution.

The sample complexity improvement that our method achieves compared to

Ghadimi and Wang (2018), i.e. from O(ε−3) to O(ε−2), is possible because our

hypergradient estimator (SID) uses mini-batches of size Θ(ε−1) (instead of Θ(1))

to estimate ∇E and ∂2Φ and a stochastic solver with decreasing step-sizes (instead

of the truncated Neumann series inverse estimator) also to solve the LS problem

(similar to the LL solver). This allows SID to have O(ε−1) mean squared error (see

Corollary 4.6.2), while the hypergradient estimator in Ghadimi and Wang (2018)

achieves O(ε−1) only for the bias, while the variance does not vanish. Consequently,

we can use a more aggressive UL step-size (constant instead of decreasing), which

reduces the number of UL iterations from O(ε−2) to O(ε−1).

Among the methods using warm-start, Amigo (Arbel and Mairal, 2021) is

the most similar to ours. Indeed, it achieves the same O(ε−2) optimal sample

complexity as BSGM. Also, the number of UL iterations and the size of the mini-

batch to estimate ∇E and ∂2Φ is O(ε−1), as for our method. The main differences

with respect to BSGM are in the use of (i) the warm-start procedure in the LL and

LS problems, which in general decreases the complexity, (ii) mini-batch sizes of

the order of Θ(ε−1) to estimate Φ (in the LL), ∂1Φ (in the LS), which increase the

complexity, contrasting with our choice of taking just one sample for estimating

the same quantities. Overall, (i)-(ii) balance out and ultimately give the same total

complexity.

We note that our improvement over point (ii) is necessary to achieve the optimal

sample complexity. Indeed, if one istead carries out the analysis by using (ii),

constant step-sizes for the LS and LL, and setting ks, ts = Θ(log(S)), only suboptimal

complexity of O(ε−2 log(ε−1)) is achieved, because mini-batches of size Θ(ε−1)
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are used 2S(1+ log(S)) (instead of just 2S) times in S UL iterations.

For the deterministic case, we improve the rate of Ghadimi and Wang (2018)

from O(ε−5/4) to O(ε−1 log(ε−1)) by setting ts = Θ(κ log(s)) (and also ks) instead

of ts = ⌈(s+1)1/4/2⌉, where κ = (1−q)−1 and q is the contraction constant defined

in Assumption 5.4.1(i). Ji et al. (2021); Arbel and Mairal (2021) have an improved

complexity of O(ε−1), obtained by using warm-start and setting ts,ks = Θ̃(κ), where

κ corresponds to the LL condition number.

Finally, note that warm-start makes it possible to set ts and ks with no depen-

dence on ε both in the deterministic and stochastic settings, improving the sample

complexity (by removing a log factor) in the former case. However, in the stochastic

case the complexity does not improve because solving the LL and LS problems can-

not have lower complexity than O(ε−1), which is that of the sample mean estimation

error. Such complexity is already achieved by our stochastic fixed-point iteration

solvers with decreasing step-sizes and no warm-start.

5.4 Assumptions and Preliminary Results
We hereby state all the assumptions used for the analysis, discuss them and outline

in a lemma some useful smoothness properties of the bilevel problem. Note that

differently from Chapters 3 and 4 here we have assumptions holding uniformly for

every λ ∈ Λ. Therefore, when such assumptions are satisfied, the constants might be

much larger than in the assumptions of the previous chapters.

Assumption 5.4.1. The set Λ ⊆Rm is closed and convex and the mappings Φ : Rd ×

Λ → Rd and E : Rd ×Λ → R are differentiable in an open set containing Rd ×Λ.

For every λ ∈ Λ:

(i) Φ(·,λ ) is a contraction, i.e., ∥∂1Φ(w,λ )∥ ≤ q for q < 1 and ∀w ∈ Rd .

(ii) ∥∂iΦ(w(λ ),λ )−∂iΦ(w,λ )∥ ≤ νi∥w(λ )−w∥ for i ∈ {1,2}, ∀w ∈ Rd .

(iii) ∥∇iE(w(λ ),λ )−∇iE(w,λ )∥ ≤ µi∥w(λ )−w∥ for i ∈ {1,2}, ∀w ∈ Rd .

(iv) E(·,λ ) is Lipschitz cont. on Rd with constant LE .

Assumption 5.4.2. Let w0 : Λ → Rd . For every w∗ ∈ {w(λ ) |λ ∈ Λ}, λ ∈ Λ:
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(i) ∇1E(w∗, ·),∇2E(w∗, ·) are Lipschitz cont. with constants µ̄1, µ̄2 respectively.

(ii) ∂1Φ(w∗, ·), ∂2Φ(w∗, ·) are Lipschitz cont. with constants ν̄1, ν̄2 respectively.

(iii) ∥w(λ )−w0(λ )∥ ≤ B for some B ≥ 0.

(iv) ∥∂2Φ(w(λ ),λ )∥ ≤ LΦ for some LΦ ≥ 0.

Assumption 5.4.3. The random variables ζ and ξ take values in measurable spaces

Ξ and Z and Φ̂ : Rd ×Λ×Z 7→ Rd , Ê : Rd ×Λ×Ξ 7→ R are measurable functions,

differentiable w.r.t. the first two arguments in an open set containing Rd ×Λ, and,

for all w ∈ Rd , λ ∈ Λ:

(i) E[Φ̂(w,λ ,ζ )]=Φ(w,λ ), E[Ê(w,λ ,ξ )]=E(w,λ ) and we can exchange deriva-

tives with expectations when taking derivatives on both sides.

(ii) V[Φ̂(w,λ ,ζ )]≤ σ1 +σ2∥Φ(w,λ )−w∥2 for some σ1,σ2 ≥ 0.

(iii) V[∂1Φ̂(w,λ ,ζ )]≤ σ ′
1, V[∂2Φ̂(w,λ ,ζ )]≤ σ ′

2 for some σ ′
1,σ

′
2 ≥ 0.

(iv) V[∇1Ê(w,λ ,ξ )]≤ σ̂1, V[∇2Ê(w,λ ,ξ )]≤ σ̂2,E for some σ̂1, σ̂2,E ≥ 0.

Assumptions 5.4.1, 5.4.2 and 5.4.3 are similar to the ones in (Ghadimi and

Wang, 2018) and subsequent works, but extended to the bilevel fixed point for-

mulation and sometimes weakened. Assumptions 5.4.1 and 5.4.3 are sufficient to

obtain meaningful upper bounds on the mean square error of the SID estimator

(Algorithm 5.2.1), while Assumption 5.4.2 enables us to derive the convergence rates

of the bilevel procedure in Algorithm 5.2.2. The deterministic case can be studied by

setting, in Assumption 5.4.3, σ1 = σ2 = σ ′
1 = σ ′

2 = σ̂1 = σ̂2,E = 0.

Remark 5.4.4.

(i) Although the majority of recent works set Λ = Rm, many bilevel problems

satisfy the assumptions above only when Λ ̸= Rm. E.g., when λ is a scalar

regularization parameter in the LL objective and Φ is the gradient descent

map, λ has to be bounded from below away from zero for Φ(·,λ ) to always be

a contraction (Assumption 5.4.1(i)). Also, when Λ and {w0(λ ) |λ ∈ Λ} are

bounded and closed, and Assumption 5.4.1(i) is satisfied, then 5.4.2(iii)(iv) are
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satisfied because w(·) is continuous in Λ. Our analysis directly considers the

case Λ ⊆ Rm, which includes the others.

(ii) The Lipschitz assumption on E (5.4.1(iv)) is needed to upper bound

∥∇1E(wt(λ ),λ )∥. Otherwise, this is difficult to achieve since, in the stochastic

setting, we have no control on the LL iterates wt(λ ). This assumption can be

relaxed in the deterministic case.

(iii) Assumption 5.4.2(iv) is weaker than the one commonly used in related works,

which requires the partial Jacobian ∂2Φ(w,λ ) to be bounded uniformly on

Rd ×Λ. By contrast, we assume only the boundedness on the solution path

{(w(λ ),λ ) |λ ∈ Λ}. This allows to extend to scope of applicability of the

method. For example, when λ ∈ [λmin,λmax] is the L2-regularization pa-

rameter multiplying (1/2)∥w∥2 in the LL objective, Φ is the gradient de-

scent map and w0(λ ) = 0, then ∥∂2Φ(w,λ )∥ = ∥w∥ which is unbounded,

while ∥∂2Φ(w(λ ),λ )∥= ∥w(λ )∥ is bounded since w(·) is differentiable (from

5.4.1(i)) and therefore continuous in [λmin,λmax] which is a bounded and closed

set.

(iv) Assumption 5.4.2(iii) uniformly bounds the distance of the LL solution w(λ )

from the starting point of the LL solver w0(λ ). A similar assumption (with

w0(λ ) = 0) is stated implicitly also in (Ghadimi and Wang, 2018) (See

e.g. definition of M in eq. (2.28)). 5.4.2(iii) is not needed when using

warm-start (see also Remark 5.5.9), although it is satisfied when Λ and

{w0(λ ) |λ ∈ Λ} are bounded and closed and 5.4.1(i) holds, but also in some

cases where Λ is unbounded. For example in meta-learning, when λ is the

bias in the LL regularization, i.e. Λ = Rd , Φ(w,λ ) = (1−ηγ)w−η∇L(w)+

ηγλ with L L-smooth, w0(λ ) = λ and η > 0 being the LL step-size, we

have w(λ ) = λ − γ−1∇L(w(λ )) which implies supλ∈Rd∥w(λ )∥ = ∞ while

supλ∈Rd∥w(λ )−w0(λ )∥ ≤ γ−1L.

(v) Assumption 5.4.3(ii) is more general than the corresponding one in (Ghadimi

and Wang, 2018), which is a bound on the variance on the LL gradient

estimator recovered by setting σ2 = 0 and Φ̂(w,λ ,ξ ) = w−∇1L̂(w,λ ,ξ )



5.5. Convergence of BSGM 127

with ∇1L̂(w,λ ,ξ ) being an unbiased estimator of the LL gradient. Having

σ2 > 0 allows the variance to grow away from the fixed point, which occurs for

example when the unregularized loss in the LL Problem (5.2) is not Lipschitz

(like for the square loss).

Remark 5.4.5. Variance reduction methods (Chen et al., 2022; Guo and Yang,

2021; Khanduri et al., 2021; Huang and Huang, 2021) require also an expected

smoothness assumption on ∇Ê, Φ̂ and ∂ Φ̂ (often satisfied in practice). See (Arjevani

et al., 2022). A random function g(·,ξ ), where ξ is the random variable, meets

the expected smoothness assumption if E[∥g(x1,ξ )−g(x2,ξ )∥]2 ≤ L̃2
g∥x1 − x2∥2, for

every x1,x2, where L̃g ≥ 0.

The existence of the hypergradient ∇ f (λ ) is guaranteed by the fact that Φ

and E are differentiable and that Φ(·,λ ) is a contraction (Assumption 5.4.1(i)).

Furthermore, we have the following properties for the bilevel problem.

Lemma 5.4.6 (Smoothness properties of the bilevel problem). Under Assump-

tions 5.4.1 and 5.4.2(i)(ii)(iv) the following statements hold.

(i) ∥w′(λ )∥ ≤ Lw := LΦ

1−q for every λ ∈ Λ.

(ii) w′(·) is Lipschitz continuous with constant

Lw′ =
ν̄2

1−q
+

LΦ

(1−q)2

(
ν2 + ν̄1 +

ν1LΦ

1−q

)
.

(iii) ∇ f (·) is Lipschitz continuous with constant

L f = µ̄2 +LELw′ +
LΦ

1−q

(
µ2 + µ̄1 +

µ1LΦ

1−q

)
.

The proof is in Appendix C.1. See Lemma 2.2 in Ghadimi and Wang (2018) for

the special case of Problem (5.1) with LL of type (5.2).

5.5 Convergence of BSGM
In this section, we first derive convergence rates of the projected inexact gradient

method for L-smooth possibly non-convex objectives (Section 5.5.1). Then, we
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combine this result with the mean square error upper bounds in Chapter 4 (Sec-

tions 4.4 and 4.6) to obtain in Section 5.5.2, the desired convergence rate and sample

complexity for BSGM (Algorithm 5.2.2).

5.5.1 Projected Inexact Gradient Method

Let f : Λ 7→ R, be an L-smooth function on the convex set Λ ⊆ Rm. We consider the

following projected inexact gradient descent algorithm

λ0 ∈ Λ

for s = 0,1, . . .⌊
λs+1 = PΛ

(
λs −α∇̂ f (λs)

)
,

(5.8)

where PΛ is the projection onto Λ, α > 0 is the step-size and ∇̂ f (λs) is s stochastic

estimator of the gradient. We stress that we do not assume that ∇̂ f (λs) is unbiased.

Definition 5.5.1 (Proximal Gradient Mapping). The proximal gradient mapping

of f is

Gα(λ ) := α
−1 (λ −PΛ(λ −α∇ f (λ ))) .

The above gradient mapping is commonly used in constrained non-convex opti-

mization as a replacement of the gradient for the characterization of stationary points

(see e.g. (Drusvyatskiy and Lewis, 2018)). Indeed, λ ∗ is a stationary point if and only

if Gα(λ
∗) = 0 and in the unconstrained case (i.e. Λ =Rm) we have Gα(λ ) = ∇ f (λ ).

Since the algorithm is stochastic we provide guarantees in expectation. In particular,

we bound 1
S ∑

S−1
s=0 E[∥Gα(λs)∥2]. Note that this quantity is always greater than or

equal to mins<SE[∥Gα(λs)∥2] (at least one of the iterates satisfies the bound).

The following theorem and corollary provide such upper bounds which have a

linear dependence on the average MSE of ∇̂ f (λs). A similar setting is studied also

by Dvurechensky (2017) where they consider inexact gradients but with a different

error model. Schmidt et al. (2011) provide a similar result in the convex case.

Theorem 5.5.2. Let Λ ⊆ Rm be convex and closed, f : Λ 7→ R be L-smooth and

{λs}s be a sequence generated by Algorithm (5.8). Furthermore, let ∆ f := f (λ0)−
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minλ f (λ ), c> 0, δs := ∥∇ f (λs)− ∇̂ f (λs)∥ and 0<α < 2/[L(1+c)]. Then ∀S ∈N

1
S

S−1

∑
s=0

∥Gα(λs)∥2 ≤ 1
S

[
4∆ f

cαL(1+ c))
+2
(

1+
1

cαLc

)S−1

∑
s=0

δ
2
s

]
,

where cα = α(2−αL(1+ c)).

Proof. Since the projection is a firmly non-expansive operator, i.e. ∀γ,β ∈ Rn,

∥PΛ(γ)−PΛ(β )∥2 +∥γ −PΛ(γ)−β +PΛ(β )∥2 ≤ ∥γ −β∥2,

which yields, by expanding the second term in the Left hand side

2∥PΛ(γ)−PΛ(β )∥2 +∥γ −β∥2 −2(γ −β )⊤(PΛ(γ)−PΛ(β ))≤ ∥γ −β∥2,

and, after simplifying

∥PΛ(γ)−PΛ(β )∥2 ≤ (γ −β )⊤(PΛ(γ)−PΛ(β )).

In particular, substituting γ = λs and β = λs −α∇̂ f (λs) we get

∥λs −λs+1∥2 ≤ α∇̂ f (λs)
⊤(λs −λs+1). (5.9)

Now, it follows from the Lipschitz smoothness of f that for every γ,β ∈ Λ

f (β )≤ f (γ)+∇ f (γ)⊤(β − γ)+
L
2
∥β − γ∥.

Then substituting γ = λs and β = λs+1, and letting c′ = Lc with c > 0, we obtain

f (λs+1)≤ f (λs)− (∇ f (λs)∓ ∇̂ f (λs))
⊤(λs −λs+1)+

L
2
∥λs −λs+1∥2

≤ f (λs)− (∇ f (λs)− ∇̂ f (λs))
⊤(λs −λs+1)+

(
L
2
− 1

α

)
∥λs −λs+1∥2

≤ f (λs)+
1

2c′
∥∇ f (λs)− ∇̂ f (λs))∥2 +

(
L+ c′

2
− 1

α

)
∥λs −λs+1∥2

≤ f (λs)+
1

2c′
∥∇ f (λs)− ∇̂ f (λs)∥2 −η∥λs −λs+1∥2,
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where we used eq. (5.9) for the second line, the Young inequality a⊤b ≤

(1/2c′)∥a∥2+(c′/2)∥b∥2 in the third line, and the definition η := 1/α − (L+c′)/2,

which is positive due to the assumption on α , in the last line. Rearranging the terms

we get

∥λs −λs+1∥2 ≤ 1
η

(
f (λs)− f (λs+1)+

1
2c′

∥∇ f (λs)− ∇̂ f (λs)∥2
)
. (5.10)

Furthermore, let λ̄s := PΛ(λs −α∇ f (λs)). Then, we have that

∥λs+1 − λ̄s∥2 = ∥PΛ(λs −α∇̂ f (λs))−PΛ(λs −α∇ f (λs))∥2

≤ α
2∥∇̂ f (λs)−∇ f (λs)∥2,

(5.11)

where we used the fact that the projection is 1-Lipschitz.

Now, recalling the definition of Gα(λ ) we have that Gα(λs) = α−1(λs − λ̄s)

and hence, using the inequalities (5.10) and (5.11), we have

∥Gα(λs)∥2 = α
−2∥λs ∓λs+1 − λ̄s∥2

≤ 2α
−2 (∥λs −λs+1∥2 +∥λs+1 − λ̄s∥2)

≤ 2
ηα2

(
f (λs)− f (λs+1)+

1
2c′

∥∇̂ f (λs)−∇ f (λs)∥2
)

+2∥∇̂ f (λs)−∇ f (λs)∥2

=
2

ηα2 ( f (λs)− f (λs+1))+
(
2+(ηc′)−1

α
−2)∥∇̂ f (λs)−∇ f (λs)∥2.

Summing the inequalities over s and noting that − f (λs)≤− minλ f (λ ) we get

S−1

∑
s=0

∥Gα(λs)∥2 ≤
2∆ f

ηα2 +
(
2+(ηc′)−1

α
−2)S−1

∑
s=0

∥∇̂ f (λs)−∇ f (λs)∥2.

Finally, dividing both sides of the above inequality by S, recalling the definition of

η , δs and c′, (5.5.3) follows.
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Corollary 5.5.3. Under the same assumptions of Theorem 5.5.2 we have

1
S

S−1

∑
s=0

E[∥Gα(λs)∥2]≤ 1
S

[
4∆ f

cαL(1+ c))
+2
(

1+
1

cαLc

)S−1

∑
s=0

MSE
∇̂ f (λs)

]
,

where cα = α(2−αL(1+ c)). Consequently, setting c = 1/2, for any α ≤ 1/L we

have
1
S

S−1

∑
s=0

E[∥Gα(λs)∥2]≤ 1
Sα

[
8∆ f +

10
L

S−1

∑
s=0

MSE
∇̂ f (λs)

]
.

We recall that MSE
∇̂ f := E[∥∇̂ f (λ )−∇ f (λ )∥2].

Proof. Follows by taking expectation of the inequality in the statement of Theo-

rem 5.5.2

Remark 5.5.4. Note that if the error term ∑
S−1
s=0 MSE

∇̂ f (λs)
grows sub-linearly

with S, Corollary 5.5.3 provides useful convergence rates. In particular, when

∑
∞
s=0 MSE

∇̂ f (λs)
< ∞, we have a convergence rate of O(1/S), which matches the op-

timal rate of (exact) gradient descent on smooth and possibly non-convex objectives.

5.5.2 Bilevel Convergence Rates and Sample Complexity

Here, we finally prove the convergence and sample complexity of Algorithm 5.2.2

by combining the results of the previous section with the bounds on the MSE of the

hypergradient estimator obtained in Section 4.4.

Definition 5.5.5 (Sample Complexity). An algorithm which solves the stochastic

bilevel problem in (5.1) has sample complexity N if the total number of samples of ζ

and ξ is equal to N. For Algorithm 5.2.2, this corresponds to the total number of

evaluations of ∇Ê,Φ̂,∂ Φ̂⊤v.

In the following theorem we establish the sample complexity of Algorithm 5.2.2

for ts = ⌈c3(s+1)⌉ and ts = ⌈c3S⌉ (finite horizon), where c3 > 0 is an additional

hyperparameter that can be tuned empirically.

Theorem 5.5.6 (Stochastic BSGM). Suppose that Λ ⊆ Rm and Assumptions 5.4.1,

5.4.2, 5.4.3 are satisfied. Assume that the bilevel Problem (5.1) is solved by Al-

gorithm 5.2.2 with α ≤ 1/L f and (η j) j∈N are decreasing and chosen according
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to Theorem 4.6.1, where L f is defined in Lemma 5.4.6. Let λ0 ∈ Λ, Gα(λ ) :=

α−1 (λ −PΛ(λ −α∇ f (λ ))) be the proximal gradient mapping, c3 > 0, and cb and

cv be the defined in Corollary 4.6.2. Then the following hold.

(i) Suppose that for every s ∈ N ts = ks = Js = ⌈c3(s+1)⌉. Then for every S ∈ N

we have

1
S

S−1

∑
s=0

E[∥Gα(λs)∥2]≤ 1
Sα

[
8∆ f +

10
L f

cb + cv

c3
(log(S)+1)

]
.

Moreover, after Õ(ε−2) samples there exists s∗ ≤ S − 1 such that

E[∥Gα(λs∗)∥2]≤ ε .

(ii) Finite horizon. Let S ∈N, and suppose that for s = 0, . . . ,S−1, ts = ks = Js =

⌈c3S⌉. Then we have

1
S

S−1

∑
s=0

E[∥Gα(λs)∥2]≤ 1
Sα

[
8∆ f +

10
L f

cb + cv

c3

]
.

Moreover, after O(ε−2) samples there exists s∗ ≤ S − 1 such that

E[∥Gα(λs∗)∥2]≤ ε .

Proof. We first compute N, i.e. the total number of samples used in S iterations. At

the s-th iteration, Algorithm 5.2.2 requires executing Algorithm 5.2.1 which uses

ts+ks+Js copies of ζ , for evaluating Φ̂, ∂1Φ̂⊤v, and ∂2Φ̂⊤v, and additional Js copies

of ξ for evaluating ∇Ê. Thus, the s-th UL iteration requires 4⌈c3(s+1)⌉ and 4⌈c3S⌉

samples for case (i) and (ii) respectively. Hence, we have

(i) : 2c3S2 ≤ N = 4
S−1

∑
s=0

⌈c3(s+1)⌉ ≤ 4(c3 +1)S2.

(ii) : 4c3S2 ≤ N = 4⌈c3S⌉
S−1

∑
s=0

1 ≤ 4(c3 +1)S2.

This implies that in both cases N = Θ(S2) or equivalently S = Θ(
√

N).
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(i): Corollary 4.6.2, with ts = ⌈c3(s+1)⌉, yields

S−1

∑
s=0

MSE
∇̂ f (λs)

≤ (cb + cv)
S−1

∑
s=0

1
c3(s+1)

≤ cb + cv

c3
(log(S)+1).

Since ∇ f is L f -Lipschitz continuous, thanks to Lemma 5.4.6 we can apply

Corollary 5.5.3 and obtain (i). Therefore, we have 1
S ∑

S−1
s=0 E[∥Gα(λs)∥2] ≤ ε in a

number of UL iterations S = Õ(ε−1). Since we proved N = Θ(S2), the sample

complexity result for case (i) follows.

(ii): Similarly to the case (i), we apply Corollary 4.6.2 with ts = ⌈c3S⌉ obtaining

S−1

∑
s=0

MSE
∇̂ f (λs)

≤ (cb + cv)
S−1

∑
s=0

1
c3S

=
cb + cv

c3
.

Since ∇ f is L f -Lipschitz, thanks to Lemma 5.4.6, we derive (ii) from Corollary 5.5.3.

Therefore, in this case we have 1
S ∑

S−1
s=0 E[∥Gα(λs)∥2] ≤ ε in a number of UL

iterations S = O(ε−1). Since N = Θ(S2), the sample complexity result for case (ii)

follows.

In the following theorem we derive rates for Algorithm 5.2.2 in the deterministic

case, i.e. when the variance of Φ̂ ∂ Φ̂ and ∇Ê is zero. In this case we will show that

the LL and LS solvers in Algorithm 5.2.1 can be implemented with constant step

size and with Js = 1, to obtain the near-optimal sample complexity of Õ(ε−1).

Theorem 5.5.7 (Deterministic BSGM). Suppose that Λ ⊆ Rm and Assump-

tions 5.4.1, 5.4.2, 5.4.3 are satisfied with σ1 = σ2 = σ ′
1 = σ ′

2 = σ̂1 = σ̂2,E = 0,

hence Φ̂ = Φ and Ê = E. Assume that the bilevel Problem (5.1) is solved

by Algorithm 5.2.2 with α ≤ 1/L f with L f defined in Lemma 5.4.6, η j = 1,

ts = ks = ⌈c3 log(s+1)⌉ and Js = 1, and c3 ≥ 1/ log(1/q) > 0. Let λ0 ∈ Λ and

Gα(λ ) := α−1 (λ −PΛ(λ −α∇ f (λ ))) be the proximal gradient mapping. Then

1
S

S−1

∑
s=0

∥Gα(λs)∥2 ≤ 1
Sα

[
8∆ f +

5Cπ2

3L f

]
,
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where

C := 3
(

µ2 +
µ1LΦ +ν2LE

1−q
+

ν1LELΦ

(1−q)2

)2

B2 +3L2
Φ

L2
E

(1−q)2 +3ν
2
2

B2L2
E

(1−q)2 .

Also, after O(ε−1 log(ε−1)) samples there exists s∗ ≤ S−1 such that ∥G(λs∗)∥2 ≤ ε .

Proof. Similarly to the proof of Theorem 5.5.6, but with Js = 1, we obtain a number

of samples in S iterations which is N = ∑
S−1
s=0 2(ts + 1) = 2∑

S
s=1⌈c3 log(s)⌉ + 1.

Hence, if S > 1

N ≥ 2c3

S

∑
s=⌈S/2⌉

log(s)≥ c3(S/2−1) log(S/2),

N ≤ 2c3S log

(
1
S

S

∑
s=1

s

)
+4S ≤ 4S

[
c3 log

(
S+1

2

)
+1
]
.

Therefore, N = Θ(S log(S)) = Θ̃(S).

Since in the deterministic case V[∇̂ f (λ )] = 0 and E[∇̂ f (λ )] = ∇̂ f (λ ), Theo-

rem 4.4.2(ii) and setting J = 1 yields

∥∇̂ f (λs)−∇ f (λs)∥2

≤ 3
(

µ2 +
µ1LΦ +ν2LE

1−q
+

ν1LELΦ

(1−q)2

)2

ρλ (ts)+3L2
Φσλ (ks)+3ν

2
2 ρλ (ts)σλ (ks).

(5.12)

Now we note that, in view of last result of Theorem 4.6.1, we have

ρλ (ts) = q2tsB2, σλ (ks) = q2ks
L2

E
(1−q)2 .

Consequently, since ts = ks and q2x ≤ qx with x ≥ 1, we get

∥∇̂ f (λs)−∇ f (λs)∥2 ≤Cq2ts,

where C incorporates all the constants occurring in (5.12).

Recall that ts = ⌈c3 log(s+1)⌉ and c3 ≥ 1/ log(1/q)> 0. From the change of
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base formula we have

ts ≥ c3 log(1/q) logq(1/(s+1))≥ logq(1/(s+1)),

since logq(1/(s+1))≥ 0 due to q < 1, s ≥ 0. Consequently,

q2ts ≤ q2logq(1/(s+1)) =
1

(s+1)2 .

Hence, we can bound the sum of squared errors as follows.

S−1

∑
s=0

∥∇̂ f (λs)−∇ f (λs)∥2 ≤
S−1

∑
s=0

C
(s+1)2 ≤

S

∑
s=1

C
s2 ≤ Cπ2

6
.

Using this result in combination with Corollary 5.5.3 we obtain (5.5.7). Therefore,

we have 1
S ∑

S−1
s=0 E[∥Gα(λs)∥2]≤ ε in a number of UL iterations S = O(ε−1). Since

we proved that N = Θ(S log(S)) = Θ̃(S) we obtain the final sample complexity.

Remark 5.5.8 (Dependency on the contraction constant). By setting for the stochastic

case ηt = β/(γ + t) with β = 2/(1−q2) and γ = β (1+ σ̃2) in Algorithm 5.2.1 and

α = 1/L f , c3 = Θ(1) in Algorithm 5.2.2, and for the deterministic case α = 1/L f ,

c3 = Θ(κ) in Algorithm 5.2.2, we obtain a sample complexity of O(ε−2κ16) and

O(ε−1 log(ε−1)κ5) respectively for the stochastic case of Theorem 5.5.6(i) and the

deterministic case of Theorem 5.5.7 where κ = (1−q)−1. For LL problems of type

(5.2) with Lipschitz smooth and strongly convex loss, by appropriately setting η

in (5.3), κ is proportional to the condition number of the LL problem. In compar-

ison, Amigo (Arbel and Mairal, 2021) reaches a sample complexity of O(ε−2κ9)

(stochastic) and O(ε−1κ4) (deterministic). However, we note that for the deter-

ministic case by setting ts = ks = Θ(κ log(κs)) we obtain a sample complexity of

O(ε−1κ4 log(κε−1)), which is worse than warm-start only for the log factor. Finally,

we note that (Arbel and Mairal, 2021) have a stronger assumption, which in our

setting can be formulated as ∥∂2Φ(w,λ )∥ ≤ LΦ ∀w ∈ Rd,λ ∈ Λ. If we make such

assumption (which implies Assumption 5.4.2(iv)), use different stepsizes in the LL and

LS, i.e. ηt = β/(γ + t) with β = 2/(1−q2), γ = β (1+σ ′
2) (LL) or γ = β (1+ σ̃2)
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(LS) in Algorithm 5.2.1 and set ts = ks = Js = Θ(κ3S) (i.e. c3 = Θ(κ3)) we also

obtain a stochastic complexity of O(ε−2κ9).

Remark 5.5.9 (An advantage of warm-start). Our sample complexity results as

well as those in Ghadimi and Wang (2018) depend on the constant B, defined in

Assumption 5.4.2(iii) such that ∥w0(λ )−w(λ )∥ ≤ B ∀λ ∈ Λ. Instead, warm-start

complexity bounds do not require such assumption and instead depend only on the

quantity ∥w0(λ0)−w(λ0)∥, which can be much smaller than B; see e.g. (Arbel and

Mairal, 2021). Although our method matches the sample complexity of warm-start

approaches in the parameter ε , this aspect may lead to better bounds for warm-start,

thus explaining why it is generally advantageous in practice.

5.6 Experiments
We design the experiments with the following goals. Firstly, we assess the diffi-

culties of applying warm-start and the effect of different upper-level batch sizes

in a classification problem involving equilibrium models and in a meta-learning

problem. In both settings the lower-level problem can be divided into several smaller

sub-problems. Secondly, we compare our method with others achieving near-optimal

sample complexity in a data poisoning experiment. All methods have been imple-

mented in PyTorch (Paszke et al., 2019b) and the experiments have been executed

on a GTX 1080 Ti GPU with 11GB of dedicated memory.

5.6.1 Equilibrium models

We consider a variation of the equilibrium models experiment presented in Sec-

tion 3.4.2. In particular, we consider a multi-class classification problem with the

following bilevel formulation:

min
λ∈Λ

n

∑
i=1

CE(θw(λ )i +b,yi)

with w(λ )i = tanh(Aw(λ )i +BXi + c) ∀i ∈ {1, . . . ,n}
(5.13)

where CE is the cross-entropy loss, (X ,y) ∈ Rn×p ×{1, . . . ,c}n is the training set,

λ = (θ ,b,A,B,c), Λ = {θ ∈ Rc×d : ∥θ∥∞ ≤ 1}×Rc ×{A ∈ Rd×d : ∥A∥ ≤ 0.5}×
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Figure 5.1: Equilibrium Models on MNIST. Results show mean (solid, dashed and dotted
lines) and max-min (shaded region) over 5 seeds varying the randomness in the
mini-batches and the initialization. BSGM is the method in Algorithm 5.2.2
while BSGM+WS is the variant with warm-start on the LL. BS indicates the
mini-batch size used while methods with Det in the name use the whole training
set of 60K examples.

Rd×p×Rd and w(λ )i ∈Rd is the fixed point representation for i-th training example.

The constraint on A, guarantees that for all i, the map w 7→ tanh(Aw+Bxi + c) is a

contraction with Lipschitz constant not greater than 0.5. We perform this experiments

using the whole MNIST training set, hence n = 6× 104, p = 784,c = 10, and set

d = 200.
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We compare variants of BSGM (Algorithm 5.2.2) with different batch sizes (Js

in Algorithm 5.2.2), which in this case indicates the number of training examples

used to estimate the gradients of the UL objective. We also evaluate an extension

of BSGM which uses warm-start only on the LL problem (similar to StochBIO (Ji

et al., 2021)). Note that when using warm-start, all the fixed point representations

computed by the algorithm are stored in memory to be used in the future. When

the ratio between the number of examples n and the batch size is large, this can

greatly increase the memory cost of the algorithm compared to the procedure without

warm-start. For this particular problem, this cost is manageable since it amounts

to storing a total of nd = 12×106 floats, which correspond to 48 MB of memory,

but for higher values of d and n it quickly becomes prohibitive, as we show in the

meta-learning experiment.

Let λ0 = (θ0,b0,A0,B0,c0) be the hyperparameters at initialization, we set b0 =

0, and we sample each coordinate of θ0,A0,B0, and c0 from a Gaussian distribution

with zero mean and standard deviation 0.01. In Algorithm 5.2.2 we also set w0(λ ) =

0, ts = ks = 2, and α = 0.5. Since computing the map w 7→ tanh(Aw+Bxi + c) is

relatively cheap, we use deterministic solvers with step-size 1 for the LL and LS

of each training example. To evaluate the UL parameters found by the algorithms,

we compute an accurate approximation of the LL solution and the hypergradient on

all training examples by running the LL and LS solver for 20 steps. The proximal

gradient map is computed according to (5.5.1) with α = 1.

Results are shown in Figure 5.1, where we compare three key performance mea-

sures of the different methods versus time and number of epochs. When comparing

methods using the same batch size we can see that using warm-start improves the

performance in terms of the norm of the proximal gradient map, i.e. the quantity

that we can control theoretically. However, this effect decreases with smaller batch

sizes since more UL iterations can pass until the same example is sampled twice.

Furthermore, train and test accuracy are similar for methods with the same batch size,

regardless of the use of warm-start. Finally, we note that decreasing the mini-batch

consistently improves the performance in terms of number of epochs while, thanks
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to the parallelism of the GPU, the performance with batch size equal to 600 and

6000 are similar.

5.6.2 Meta-learning

We perform a meta-learning experiment on Mini-Imagenet (Vinyals et al., 2016),

a popular few-shot classification benchmark. Mini-Imagenet contains 100 classes

from Imagenet which are split into 64, 16, 20 for the meta-train, meta-validation and

meta-test sets respectively. A task is constructed by selecting some images from c

randomly selected classes. Each image is downsampled to 84×84 pixels. Similarly

to Franceschi et al. (2018), we evaluate an hyper-representation model where the

UL parameters are the parameters of the representation layers of a convolutional

neural network (CNN), shared across tasks, while the task-specific LL parameters

are the parameters of the last linear layer. The CNN is composed by stacking 4

blocks, each made by a 3×3 convolutions with 32 output channels followed by a

batch normalization layer.

We evaluate the performance of Algorithm 5.2.2 where the network parameters

λ0 are initialized using the default random initialization in PyTorch, w0(λ ) = 0,

α = 0.2, η j = 0.05, ts = 10, and different batch sizes Js = {8,16,32}. The batch

size in this case corresponds to the number of tasks at each UL iteration. Using

warm start in this setting may require to save the last linear layer for all tasks, hence

n×d × c floats, where n is the number of tasks and d × c are the number of weights

in the last linear layer. A meta-training task is constructed by selecting c = 5 classes

out of 64, hence the number of tasks is n = 7,624,512. Moreover, we set d = 800.

Thus, storing the last layer for all tasks would require 122GB of storage, which

largely exceeds our GPU memory. Furthermore, the ratio between n and batch size

is very high and this is likely to make make the effect of using warm-start negligible.

Results are shown in Figure 5.2, where we see that methods with smaller batch-

sizes converge faster despite requiring a higher number of UL iterations. Furthermore,

since during meta-training we see only 50,000 tasks, we also implemented the

method using warm-start by storing the approximate solutions to all previously

sampled tasks to be used as initialization when they are sampled again. We run
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Figure 5.2: 5-way 5-shot classification on Mini-Imagenet. The plot show mean (solid
lines) and max−min (shaded region) over 5 runs. Values are the average
accuracy over 1000 meta-train/meta-test tasks computed after 10 steps of the
LL solver. At the end of training all methods have seen a total of 50K tasks.

the method with mini-batch size equal to 8 and for 5 seeds and observed that all

metrics essentially overlap the ones without warm-start, while the memory cost

increases by 0.8 GB. These experiments suggest that warm-start may be ineffective

in meta-learning problems, as mentioned in the introduction. Indeed, in this setting

we observed that each task is sampled at most 3 times in a total of 6,250 iterations.

5.6.3 Data poisoning

We consider the data poisoning scenario where a malicious agent or attacker aims at

decreasing the performance of a machine learning model by corrupting its training

dataset. In particular, the attacker adds noise to some of the training examples. How-

ever, this noise must be small in magnitude to avoid for the attack to be uncovered.

Specifically, we consider an image classification problem on the MNIST dataset

where (X ,y)∈Rn×p×{1, . . . ,c}n, and (X ′,y′)∈Rn′×p×{1, . . . ,c}n are the training

and validation sets, and p = 784, c = 10, n = 45,000 and n′ = 15,000 are the

number of features, classes, training examples and validation examples respectively.

Furthermore, we randomly select I ⊆ {1, . . . ,n} to be the indices of the corrupted

training examples such that |I|= 9,000. The attacker finds the noise λ by solving
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the following bilevel optimization problem.

max
λ∈Λ

1
n′

n′

∑
i=i

CE(w(λ )⊤X ′
i ,y

′
i)

with w(λ ) = argmin
w∈Rp×c

1
n

n

∑
i=1

CE(w⊤(Xi +λi),yi)+
0.1
p
∥w∥2,

(5.14)

where CE is the cross-entropy loss, Λ = {λ ∈Rn×p |λi ∈B2(0,5) ∀i ∈ I,λi = 0 ∀i ∈

{1, . . . ,n}/I} and B2(0,5) is the p-dimensional L2-ball centered in 0 with radius 5.

Note that the LL problem is both strongly convex and Lipschitz smooth.

Baselines. We compare our method with StochBIO (Ji et al., 2021), Amigo

(Arbel and Mairal, 2021), ALSET (Chen et al., 2022), which achieve (near) optimal

sample complexity. We also consider ALSET†, i.e. a variant of ALSET where the

LS problem is solved using warm-start and only one iteration. All baselines have

been implemented as extensions to Algorithm 5.2.2 specialized to LL problems of

type (5.2), which differ only in the use of warm-start and in the number of iterations

and batch-sizes used. Except for ALSET†-DET, which is the deterministic version of

ALSET† and computes the LL objective exactly, all other methods use mini-batches

of size 90 to estimate the LL objective and its derivatives. We found this value to

be sufficiently large for Amigo and StochBIO to perform well. The UL objective is

instead always computed using all 15K validation examples. To fairly evaluate the

different bilevel optimization methods, the linear model used for the final evaluation

is trained by 1000 steps of gradient descent on the LL objective

1
n

n

∑
i=1

CE(w⊤(Xi +λ
∗),yi)+

0.1
p
∥w∥2,

where λ ∗ is the output of the bilevel optimization method.

Random Search. Bilevel optimization methods have several configuration

parameters which greatly affect the performance, e.g. the number of iterations for

the LL and LS solvers, step sizes for the UL, LL and LS. Theoretical values for these

parameters are often too conservative, hence they are usually set via manual search

which is hard to reproduce and may be suboptimal. Thus, for a better comparison,
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we set a total budget of 2M single-sample gradients and Hessian-vector products, so

that each algorithm uses the same number of samples3, and perform a random search

with 200 random configuration parameters to select the configurations achieving the

lowest accuracy on the validation set. Values and ranges of the random search are

shown in Table 5.2. Note that to reduce the number of configuration parameters we

keep them unchanged across UL and LL/LS iterations. For our method, we observed

that using fixed instead of decreasing stepsizes for the LL/LS does not affect the top

performances after the random search. Furthermore, we set k = t and ηLL = ηLS

only for our method and all the others which use warm-start both for the LL and LS

problems, which seems to improve performance4.

Results. In Table 5.3 we show the results. Our method (BSGM) outperforms

all the single-loop bilevel optimization methods (ALSET† and ALSET). However,

methods using warm-start only in the LL (StochBIO) and both in LL and LS (Amigo)

outperform BSGM, albeit not by a large margin. To aid reproducibility, we report in

Table 5.4 the best configuration parameters of each method.

Method WS t k J α ηLL ηLS

StochBIO Y,N [10 : 104] [10 : 104] k [103 : 109] [10−4 : 10] [10−4 : 10]
Amigo Y,Y [10 : 104] t t [103 : 109] [10−4 : 10] ηLL
BSGM (ours) N,N [10 : 104] t t [103 : 109] [10−4 : 10] ηLL
ALSET†-DET Y,Y 1 1 1 [103 : 109] [10−4 : 10] ηLL
ALSET† Y,Y 1 1 1 [103 : 109] [10−4 : 10] ηLL
ALSET Y,N 1 [10 : 104] 1 [103 : 109] [10−4 : 10] [10−4 : 10]

Table 5.2: Configurations parameters for the random search. The WS column
indicates whether warm-start is used (Y) or not (N) for the LL (first entry)
and LS (second entry). t, k and J are respectively the number of iteration
for the LL and LS and the batch size, while α , ηLL, and ηLS are the
step sizes for the UL, LL and LS respectively. Configuration parameters
are sampled according to the log-uniform distribution over the specified
ranges. For all methods we set λ0 = 0.

3We do not account for the difference in computational cost between gradients and Hessian
vector-products. The latter are usually more costly in practice.

4Indeed, we observed that using k ̸= t and ηLL ̸= ηLS for BSGM and Amigo does not improve and
usually decreases the performance of the best methods, while setting k = t and ηLL = ηLS decreases
the performance of StochBiO.
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Method Test (Val) Best Test (Top 10) Val (Top 10)

StochBIO 76.78 (73.57) 79.97 ± 1.92 77.33 ± 2.28
Amigo 78.01 (75.09) 79.29 ± 0.94 76.27 ± 0.93
BSGM (ours) 78.05 (75.05) 80.90 ± 1.33 78.16 ± 1.48
ALSET†-DET 83.03 (80.30) 86.13 ± 1.38 84.10 ± 1.73
ALSET† 90.75 (89.99) 90.66 ± 0.13 90.19 ± 0.15
ALSET 90.89 (90.49) 90.99 ± 0.11 90.65 ± 0.10

Table 5.3: Data-poisoning Accuracy (Lower is better). We report values for best
and top 10 best performing parameter configurations selected via random
search. For the top 10 results we report mean ± standard deviation.
ALSET†-DET is the best performing deterministic method, all the others
are stochastic.

Method Test (Val) Acc t k J α ηLL ηLS

StochBIO 76.78 (73.57) 418 2477 k 1.0×106 5.4×10−3 1.3×10−2

Amigo 78.01 (75.09) 155 t t 1.0×107 1.1×10−2 LL sz
BSGM (ours) 78.05 (75.05) 287 t t 4.0×108 9.0×10−2 LL sz
ALSET†-DET 83.03 (80.30) 1 1 1 1.8×105 5.6×10−1 LL sz
ALSET† 90.75 (89.99) 1 1 1 1.6×106 5.3×10−2 3.9×10−1

ALSET 90.89 (90.49) 1 85 1 5.5×108 2.0×10−2 2.7×10−1

Table 5.4: Best configuration parameters. Configuration parameters with lowest
validation accuracy among 200 random configurations for each method.

5.7 Discussion
In this chapter, we studied bilevel optimization problems where the upper-level

objective is smooth and the lower-level solution is the fixed point of a smooth

contraction mapping. In particular, we presented BSGM (Algorithm 5.2.2), a bilevel

optimization procedure based on inexact gradient descent, where the inexact gradient

is computed via SID (Algorithm 5.2.1). SID uses stochastic fixed-point iterations to

solve both the lower-level problem and the linear system and estimates ∇E and ∂2Φ

using large mini-batches. We proved that, even without the use of warm-start on the

lower-level problem and the linear system, BSGM achieves optimal and near-optimal

sample complexity in the stochastic and deterministic bilevel setting respectively.

We stress that in recent literature, warm-start was thought to be crucial to achieve the

optimal sample complexity. We also showed that, when compared to methods using
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warm-start, our approach yields a simplified and modular analysis which does not

deal with the interactions between upper-level and lower-level iterates. Moreover,

we showed empirically the inconvenience of the warm-start strategy on equilibrium

models and meta-learning. Finally, we compared our method with several bilevel

methods relying on warm-start on a data-poisoning experiment.



Chapter 6

Conclusions

In this thesis, we studied the theoretical properties of efficient bilevel optimization

methods. In particular, we considered the bilevel framework where the aim is to find

the minimum of a function which depends on the solution of a parametric fixed-point

equation. Such framework provides a bird’s eye view of several learning problems

such as hyperparameter optimization, meta-learning, poisoning attacks and equilib-

rium models, allowing us to focus on general (hyper)gradient-based methods that

rely only on exact gradients and Jacobian-vector products, which can be efficiently

computed via automatic differentiation. The presence of an implicit function in the

objective makes computing gradients and performing gradient-based optimization

a rather difficult task, which requires additional approximations compared to more

standard objectives for which exact derivatives can be easily computed. Our main

contribution was to derive rates of convergence for deterministic and stochastic

hypergradient approximation methods and finally for an entire bilevel optimization

procedure, when the fixed-point equation is a contraction and all functions involved

are smooth.

In particular, in Chapter 3, we proved deterministic non-asymptotic convergence

rates for two hypergradient approximation techniques: iterative differentiation (ITD)

and approximate implicit differentiation (AID). In particular, we showed that both

converge linearly to the true hypergradient although the upper bound for the ITD

error converges slower than that of the AID error and this translates into slower

convergence also in practice. Furthermore, we showed that in deep equilibrium
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models when the contraction assumption is not satisfied, ITD is generally more

stable than AID.

In Chapter 4, we studied stochastic implicit differentiation (SID), the stochastic

version of AID, which relies on unbiased estimators of gradients and Jacobian-vector

products in place of the exact quantities. We proved that using large mini-batch

sizes twice per upper-level iteration and decreasing step-sizes at the lower-level we

achieve a rate of convergence of O(1/t) where t is the size of the mini-batch and the

number of iterations for the lower-level and linear system solvers.

Finally, in Chapter 5, we proved that a simple projected inexact gradient descent

algorithm with the hypergradient estimated using SID achieves optimal non-convex

sample complexity to solve the whole bilevel problem. A key feature of our algorithm

is that it does not warm-start the lower-level problem and the linear system, which

was previously thought essential to achieve optimal sample complexity. Also, we

showed that for meta-learning and deep equilibrium models, applying warm-start

is either not practical or not beneficial, while for data poisoning attacks it can be

advantageous, although our method remains competitive.

6.1 Future Work

In the future, it would be valuable to extend the ideas presented here to other

challenging machine learning scenarios not covered by our theoretical analysis. One

of the most interesting directions would be to cover the important case where a

neural network is trained at the lower-level, which yields a non-convex lower-level

minimization problem. To tackle this scenario, the contraction assumption must be

removed and the lower-level problem might have multiple solutions, which makes

the hypergradient not well-defined. Some recent works design principled methods for

bilevel problems having (just) a convex minimization problem (hence with possibly

multiple solutions forming a convex set) at the lower-level (Liu et al., 2020, 2022;

Sow et al., 2022), which is not the case for neural networks, while Vicol et al.

(2022) study the effect of the implicit bias originated by the use of warm-start and
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approximate hypergradients in over-parametrized1 quadratic bilevel problems. We

believe that further exploration of over-parametrized bilevel problems, taking also

into account the specific structure and weights initialization of neural networks,

could be an interesting research direction. A possible starting point could be the

work by Allen-Zhu et al. (2019) (and references therein) on the linear convergence of

SGD and GD on over-parameterized and randomly initialized deep neural networks.

As we mentioned also in the experimental section of Chapter 5, gradient-based

bilevel optimization methods are applied to very different problems and usually

depend heavily on at least 3 algorithmic parameters often chosen by hand, e.g. the

upper-level, lower-level and linear system step sizes and optionally the number of

iterations. This makes it difficult to fairly compare bilevel strategies empirically.

Since the topic has gained substantial popularity, we believe it would be useful to

design more standardized benchmarks for bilevel methods, covering a wide range of

applications in machine learning and with a fairly simple and reproducible procedure

to select the algorithmic parameters, such as random search. At the beginning, it

might be advantageous to include only settings where the lower-level is strongly

convex, since problems of this kind have been studied the most.

1Having more parameters than training/validation examples.



Appendix A

Appendix for Chapter 3

This Appendix is organized as follows.

• Appendix A.1 presents the proofs of the results stated in Section 3.3.

• In Appendix A.2 we specialize the bounds in Section 3.3 in the case where

the lower-level solution can be written as the fixed point of a one step gradient

descent map.

• Appendix A.3 presents the details of the experiments in Section 3.4 and

additional results.

A.1 Proofs of the Results in Section 3.3
In this section we provide complete proofs of the results presented in the main

body, which are restated here for the convenience of the reader. We also report few

necessary additional results.

In the following technical lemma we give two results which are fundamental

for the proofs of the ITD bound (Theorem 3.3.8) and the AID-FP bound (Theo-

rem 3.3.12). The first result is standard (see Polyak (1987) Lemma 1, Section 2.2).

Lemma A.1.1. Let (uk)k∈N and (τk)k∈N be two sequences of real non-negative

numbers and let q ∈ [0,∞). Suppose that, for every k ∈ N, with k ≥ 1,

uk ≤ quk−1 + τk−1. (A.1)
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Then, the following hold.

(i) If (τk)k∈N ≡ τ , then uk ≤ qku0 + τ(1−qk)/(1−q).

(ii) If, for every integer k ≥ 1, τk ≤ qτk−1, then uk ≤ qku0 + kqk−1τ0.

Proof. Let k ∈ N, with k ≥ 1. Then, we have

uk ≤ quk−1 + τk−1

≤ q(quk−2 + τk−2)+ τk−1

= q2uk−2 +(τk−1 +qτk−2)

...

≤ qku0 +
k−1

∑
i=0

qi
τk−1−i. (A.2)

(i): Suppose that (τk)k∈N ≡ τ . Then it follows from (A.2) that uk ≤ qku0 +

τ ∑
k−1
i=0 qi = qku0 + τ(1−qk)/(1−q).

(ii): Suppose that, for every integer k ≥ 1, τk ≤ qτk−1. Then, for every integer

k, i with i ≤ k−1, we have τk−1−i ≤ qk−1−iτ0, which substituted into (A.2) yields

uk ≤ qku0 +
k−1

∑
i=0

qiqk−1−i
τ0

and (ii) follows.

Proposition 3.3.7. Suppose that Assumptions 3.3.1(iii) and 3.3.5 hold and let t ∈ N,

with t ≥ 1. Moreover, for every λ ∈ Λ, let wt(λ ) be computed by Algorithm 3.3.1 and

let Dλ and LΦ,λ be as in Lemma 3.3.4. Then, wt(·) is differentiable and, for every

λ ∈ Λ,

∥w′
t(λ )−w′(λ )∥ ≤

(
ν2,λ +ν1,λ

LΦ,λ

1−qλ

)
Dλ tqt−1

λ
+

LΦ,λ

1−qλ

qt
λ
. (3.7)

Proof. We assume that (wt(λ ))t∈N is defined through the iteration

wt(λ ) = Φ(wt−1(λ ),λ ) (A.3)
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starting from w0(λ ) = 0 ∈ Rd . Let t ∈ N with t ≥ 1. Then, the mapping λ 7→ wt(λ )

is differentiable since, in view of (1), it is a composition of differentiable functions,

whereas w′(λ ) exists due to Theorem 3.3.2. Differentiating the lower-level equation

in (3.1) and the recursive equation in (A.3), we get

w′
t(λ ) = ∂1Φ(wt−1(λ ),λ )w′

t−1(λ )+∂2Φ(wt−1(λ ),λ )

w′(λ ) = ∂1Φ(w(λ ),λ )w′(λ )+∂2Φ(w(λ ),λ ). (A.4)

Therefore, we get

∥w′
t(λ )−w′(λ )∥ ≤∥∂1Φ(wt−1(λ ),λ )−∂1Φ(w(λ ),λ )∥∥w′(λ )∥

+∥∂1Φ(wt−1(λ ),λ )∥∥w′
t−1(λ )−w′(λ )∥

+∥∂2Φ(wt−1(λ ),λ )−∂2Φ(w(λ ),λ )∥

and hence, we derive from Assumption 3.3.1(iii), Assumption 3.3.5, equation (3.4)

and Lemmas 3.3.4 and 3.3.6, that

∥w′
t(λ )−w′(λ )∥ ≤(ν2,λ +ν1,λ LΦ,λ/(1−qλ ))∥wt−1(λ )−w(λ )∥

+qλ∥w′
t−1(λ )−w′(λ )∥.

Then, setting p := ν2,λ + ν1,λ LΦ,λ/(1 − qλ ), ∆t := ∥wt(λ )−w(λ )∥ and ∆′
t :=

∥w′
t(λ )−w′(λ )∥, we get

∆t ≤ qλ ∆t−1 and ∆
′
t ≤ qλ ∆

′
t−1 + p∆t−1.

Therefore, it follows from Lemma A.1.1(ii) (with ut = ∆′
t and τt = p∆t) that

∆
′
t ≤ qt

λ
∆
′
0 + tqt−1

λ
p∆0 ≤

LΦ,λ

1−qλ

qt
λ
+ pDλ tqt−1

λ
,

where in the last inequality we used the bounds (see (A.4) and Lemmas 3.3.4 and
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3.3.6)

∆0 = ∥w(λ )−w0(λ )∥= ∥w(λ )∥= Dλ

∆
′
0 = ∥w′(λ )−w′

0(λ )∥= ∥w′(λ )∥ ≤
LΦ,λ

1−qλ

. (A.5)

Recalling the definitions of p and ∆′
t , (3.7) follows.

Theorem 3.3.8. (ITD bound) Suppose that Assumptions 3.3.1(iii)-(iv) and 3.3.5

hold and let t ∈N with t ≥ 1. Moreover, for every λ ∈ Λ, let wt(λ ) and ft be defined

according to Algorithm 3.3.1 and let Dλ ,LE,λ , and LΦ,λ be as in Lemma 3.3.4. Then,

ft is differentiable and, for every λ ∈ Λ,

∥∇ ft(λ )−∇ f (λ )∥ ≤
(

c1(λ )+ c2(λ )
t

qλ

+ c3(λ )
)

qt
λ
, (3.8)

where

c1(λ ) =

(
µ2,λ +

µ1,λ LΦ,λ

1−qλ

)
Dλ ,

c2(λ ) =

(
ν2,λ +

ν1,λ LΦ,λ

1−qλ

)
LE,λ Dλ ,

c3(λ ) =
LE,λ LΦ,λ

1−qλ

.

Proof. It follows from the definitions of ft and f in Algorithm 3.3.1 and (3.1)

respectively and the chain rule for differentiation that

∇ ft(λ ) = ∇2E(wt(λ ),λ )+w′
t(λ )

⊤
∇1E(wt(λ ),λ )

∇ f (λ ) = ∇2E(w(λ ),λ )+w′(λ )⊤∇1E(w(λ ),λ ).
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Therefore,

∥∇ ft(λ )−∇ f (λ )∥

≤ ∥∇2E(wt(λ ),λ )−∇2E(w(λ ),λ )∥

+∥w′(λ )∥∥∇1E(wt(λ ),λ )−∇1E(w(λ ),λ )∥

+∥w′
t(λ )−w′(λ )∥∥∇1E(wt(λ ),λ )∥.

Now, we note that ∥wt(λ )∥ ≤ ∥wt(λ )−w(λ )∥+∥w(λ )∥ ≤ (qt
λ
+1)∥w(λ )∥ ≤ 2Dλ .

Therefore, it follows from Assumption 3.3.1(iv) and Lemmas 3.3.4 and 3.3.6 that

∥∇ ft(λ )−∇ f (λ )∥ ≤
(
µ2,λ +µ1,λ LΦ,λ/(1−qλ )

)
qt

λ
Dλ

+LE,λ∥w′(λ )−w′
t(λ )∥,

where we used ∥wt(λ )−w(λ )∥ ≤ qt
λ
∥w0(λ )−w(λ )∥= qt

λ
∥w(λ )∥= qt

λ
Dλ . Then,

(3.8) follows from Proposition 3.3.7.

Now we address the proofs related to the AID method described in Section 3.3.2.

Theorem 3.3.10. (AID bound) Suppose that Assumptions 3.3.1(i)(iii)(iv) and

3.3.9(i)–(iii) hold. Let λ ∈ Λ, t ∈ N, k ∈ N. Let Dλ ,LE,λ , and LΦ,λ be as in

Lemma 3.3.4 and let µ̂λ be defined according to (3.12). Let ∇̂ f (λ ) be defined as in

Algorithm 3.3.2 and let ∆̂ = ∥∇̂ f (λ )−∇ f (λ )∥. Then,

∆̂ ≤

(
µ2,λ +

µ1,λ LΦ,λ

µ̂λ

+
ν2,λ LE,λ

µ̂λ

+
ν1,λ LΦ,λ LE,λ

µ̂2
λ

)
Dλ ρλ (t)+

LΦ,λ LE,λ

µ̂λ

σλ (k).

(3.13)

Furthermore, if Assumption 3.3.5 holds, then µ̂λ = 1−qλ and

∆̂ ≤
(

c1(λ )+
c2(λ )

1−qλ

)
ρλ (t)+ c3(λ )σλ (k), (3.14)

where c1(λ ), c2(λ ) and c3(λ ) are defined in Theorem 3.3.8.
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Proof. For the sake of brevity we set

Âλ = I −∂1Φ(wt(λ ),λ )
⊤, Aλ = I −∂1Φ(w(λ ),λ )⊤,

Ẑλ = ∂2Φ(wt(λ ),λ ), Zλ = ∂2Φ(w(λ ),λ ),

b̂λ = ∇1E(wt(λ ),λ ), bλ = ∇1E(w(λ ),λ ),

ĉλ = ∇2E(wt(λ ),λ ), cλ = ∇2E(w(λ ),λ ).

It follows form Assumption 3.3.9(ii) that ∥wt(λ )−w(λ )∥ ≤ ρλ (t)∥w(λ )∥ =

ρλ (t)Dλ ≤ Dλ and hence ∥wt(λ )∥ ≤ ∥wt(λ )−w(λ )∥+ ∥w(λ )∥ ≤ 2Dλ . Then

the following upper bounds related to the above quantities follow from Assump-

tions 3.3.1(iii)-(iv), equation (3.12) and Lemma 3.3.4.

∥Âλ−Aλ∥ ≤ ν1,λ ρλ (t)Dλ , ∥Ẑλ−Zλ∥ ≤ ν2,λ ρλ (t)Dλ ,

∥b̂λ −bλ∥ ≤ µ1,λ ρλ (t)Dλ , ∥ĉλ − cλ∥ ≤ µ2,λ ρλ (t)Dλ ,

∥Â−1
λ
∥,∥A−1

λ
∥ ≤ 1

µ̂λ

, ∥Ẑλ∥ ≤ LΦ,λ , ∥b̂λ∥,∥bλ∥ ≤ LE,λ .

Now, setting v̂(λ ) = Â−1
λ

b̂λ and v(λ ) = A−1
λ

bλ , ∇̂ f (λ )1 and (3.9) can be written as

∇̂ f (λ ) = ĉλ + Ẑ⊤
λ

vk(λ ), ∇ f (λ ) = cλ +Z⊤
λ

v(λ ).

1See point 3 in Algorithm 3.3.2.
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Then, we have

∥∇̂ f (λ )−∇ f (λ )∥= ∥ĉλ + Ẑ⊤
λ

vk(λ )− cλ −Z⊤
λ

v(λ )∥

≤ ∥ĉλ − cλ∥

+∥Ẑ⊤
λ

vk(λ )− Ẑ⊤
λ

v(λ )+ Ẑ⊤
λ

v(λ )−Z⊤
λ

v(λ )∥

≤ ∥ĉλ − cλ∥

+∥Ẑλ∥∥vk(λ )− v(λ )∥+∥Ẑλ −Zλ∥∥v(λ )∥

≤ ∥ĉλ − cλ∥

+∥Ẑλ∥∥vk(λ )− v(λ )∥+∥Ẑλ −Zλ∥∥A−1
λ
∥∥bλ∥

≤
(

µ2,λ +
ν2,λ LE,λ

µ̂λ

)
ρλ (t)Dλ +LΦ,λ∥vk(λ )− v(λ )∥.

Moreover, it follows from 3.3.9(iii) that

∥vk(λ )− v(λ )∥ ≤ ∥vk(λ )− v̂(λ )∥+∥v̂(λ )− v(λ )∥

≤ σλ (k)
LE,λ

µ̂λ

+∥v̂(λ )− v(λ )∥.

Finally, we have

∥v̂(λ )− v(λ )∥ ≤ ∥Â−1
λ

b̂λ − Â−1
λ

bλ + Â−1
λ

bλ −A−1
λ

bλ∥

≤ ∥Â−1
λ
∥∥b̂λ −bλ∥+∥bλ∥∥Â−1

λ
−A−1

λ
∥

≤
µ1,λ ρλ (t)Dλ

µ̂λ

+LE,λ∥Â−1
λ

−A−1
λ
∥

≤
µ1,λ ρλ (t)Dλ

µ̂λ

+LE,λ∥Â−1
λ
∥∥Aλ − Âλ∥∥A−1

λ
∥

≤
µ1,λ ρλ (t)Dλ

µ̂λ

+
LE,λ ν1,λ ρλ (t)Dλ

µ̂2
λ

.

Combining all together we get (3.13). As regards the second part of the statement, if

Assumption 3.3.5 is satisfied, then, in view of Lemma 3.3.6, we can take µ̂λ = 1−qλ

in (3.12) and obtain (3.14).

The following two propositions allow us to derive the refined iteration complex-
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ity bound for AID-FP.

Proposition A.1.2. Suppose that (3.19) holds. Let λ ∈ Λ, t ∈ N. Let ut,0(λ ) = 0 ∈

Rd×n and for every integer k ≥ 1,

ut,k(λ ) = ∂1Φ(wt(λ ),λ )ut,k−1(λ )+∂2Φ(wt(λ ),λ ).

Then, for every k ∈ N,

ut,k(λ )
⊤

∇1E(wt(λ ),λ ) = ∂2Φ(wt(λ ),λ )
⊤vk(λ ). (A.6)

Proof. We set Y = ∂1Φ(wt(λ ),λ ) ∈ Rd×d , C = ∂2Φ(wt(λ ),λ ) ∈ Rd×n, and b =

∇1E(wt(λ ),λ ) ∈ Rd . Let k ∈ N, k ≥ 1. Then,

ut,k(λ ) = Yut,k−1(λ )+C

= Y 2ut,k−2(λ )+(1+Y )C
...

= Y kut,0(λ )+
k−1

∑
i=0

Y iC

=
k−1

∑
i=0

Y iC.

In the same way, it follows from (3.19) that vk(λ ) =Y⊤vt,k−1(λ )+b = ∑
k−1
i=0 (Y

⊤)ib.

Therefore, we have

ut,k(λ )
⊤b =C⊤

(
k−1

∑
i=0

Y i

)⊤

b

=C⊤
k−1

∑
s=i

(Y⊤)ib

=C⊤vk(λ )

and the statement follows.
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Using Proposition A.1.2, for AID-FP we can write

∇̂ f (λ )=∇2E(wt(λ ),λ )+ut,k(λ )
⊤

∇1E(wt(λ ),λ ). (A.7)

Then a result similar to Proposition 3.3.7 can be derived.

Proposition A.1.3. Suppose that Assumption 3.3.1(i)(iii) and Assumption 3.3.5 hold.

Let λ ∈ Λ and (ut,k(λ ))k∈N be defined as in Proposition A.1.2. Then, for every

t,k ∈ N, with t ≥ 1,

∥ut,k(λ )−w′(λ )∥ ≤
(

ν2,λ +ν1,λ
LΦ,λ

(1−qλ )

)
Dλ (1−qk

λ
)

1−qλ

ρλ (t)+
LΦ,λ

1−qλ

qk
λ
.

Proof. Let t,k ∈ N, with t,k ≥ 1. Recalling that

ut,k(λ ) = ∂1Φ(wt(λ ),λ )ut,k−1(λ )+∂2Φ(wt(λ ),λ )

w′(λ ) = ∂1Φ(w(λ ),λ )w′(λ )+∂2Φ(w(λ ),λ )

we can bound the norm of the difference as follows

∥ut,k(λ )−w′(λ )∥

≤∥∂1Φ(wt(λ ),λ )−∂1Φ(w(λ ),λ )∥∥w′(λ )∥

+∥∂1Φ(wt(λ ),λ )∥∥ut,k−1(λ )−w′(λ )∥

+∥∂2Φ(wt(λ ),λ )−∂2Φ(w(λ ),λ )∥

≤(ν2,λ +ν1,λ LΦ,λ/(1−qλ ))∥wt(λ )−w(λ )∥

+qλ∥ut,k−1(λ )−w′(λ )∥,

which gives a recursive inequality. Then, setting p := ν2,λ + ν1,λ LΦ,λ/(1− qλ ),

∆t := ∥wt(λ )−w(λ )∥ and ∆̂′
k := ∥ut,k(λ )−w′(λ )∥, we have

∆̂
′
k ≤ qλ ∆̂

′
k−1 + p∆t .
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Therefore, it follows from Lemma A.1.1(i) with τ = p∆t , that

∆̂
′
k ≤ qk

λ
∆̂
′
0 + p∆t

1−qk
λ

1−qλ

≤
LΦ,λ

1−qλ

qk
λ
+ pDλ ρλ (t)

1−qk
λ

1−qλ

,

where in the last inequality we used Assumption 3.3.9(ii) and (see (A.5)) ∆̂′
0 =

∥ut,0(λ )−w′(λ )∥= ∥w′(λ )∥ ≤ LΦ,λ/(1−qλ ). The statement follows.

Theorem 3.3.12. (AID-FP bound) Suppose that Assumptions 3.3.1(i)(iii)(iv) and

Assumption 3.3.5 hold. Suppose also that (3.19) holds. Let ∇̂ f (λ ) be defined

according to Algorithm 3.3.2 and ∆̂ = ∥∇̂ f (λ )−∇ f (λ )∥. Then, for every t,k ∈ N,

∆̂ ≤
(

c1(λ )+ c2(λ )
1−qk

λ

1−qλ

)
ρλ (t)+ c3(λ )qk

λ
, (3.21)

where c1(λ ), c2(λ ) and c3(λ ) are given in Theorem 3.3.8.

Proof. Let t ∈ N with t ≥ 1 and let (ut,k(λ ))k∈N be defined as in Proposition A.1.2.

Then, the difference between exact and approximate gradients can be bound as

follows

∥∇̂ f (λ )−∇ f (λ )∥

≤∥∇2E(wt(λ ),λ )−∇2E(w(λ ),λ )∥

+∥w′(λ )∥∥∇1E(wt(λ ),λ )−∇1E(w(λ ),λ )∥

+∥w′(λ )−ut,k(λ )∥∥∇1E(wt(λ ),λ )∥.

Now note that ∥wt(λ )∥ ≤ ∥wt(λ )−w(λ )∥+∥w(λ )∥ ≤ (ρλ (t)+1)∥w(λ )∥ ≤ 2Dλ .

Then it follows from the assumptions and Lemmas 3.3.6 and 3.3.4 that

∥∇ f (λ )− ∇̂ f (λ )∥ ≤
(

µ2,λ +
µ1,λ LΦ,λ

1−qλ

)
ρλ (t)Dλ

+LE,λ∥ut,k(λ )−w′(λ )∥,

and the last term can be bounded using Proposition A.1.3.
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A.2 Gradient Descent as a Contraction Map
Consider problem (3.2) and take

Φ(w,λ ) = w−α(λ )∇1L(w,λ ),

where ℓ : Rd ×Λ → R is twice continuously differentiable and, for every λ ∈ Λ,

(i) ℓ(·,λ ) is τL(λ )-strongly convex and LL(λ )-Lipschitz smooth, with τL(λ )> 0

and LL(λ )> 0.

(ii) α : Λ ⊂ Rn → R++ is differentiable.

Then, if α(λ ) ∈ (0,2/LL(λ )), Φ(·,λ ) is a contraction with constant qλ = max{1−

α(λ )τL(λ ),α(λ )LL(λ )− 1}. The optimal choice of the step-size leads to set

α(λ ) = 2/(LL(λ )+ τL(λ )) giving

qλ =
LL(λ )− τL(λ )

LL(λ )+ τL(λ )
=

κ(λ )−1
κ(λ )+1

,

where κ(λ ) = LL(λ )/τL(λ ) is the condition number of the lower-level problem in

(3.2). Note that, for every t ∈ N and λ ∈ Λ,

τL(λ )I ≼ ∇
2
1ℓ(wt(λ ),λ )≼ LL(λ )I (A.8)

hence the condition number of ∇2
1ℓ(wt(λ ),λ ) is smaller than κ(λ ).

We can write the derivatives of Φ as:

∂2Φ(w,λ ) =−∇1L(w,λ )∇α(λ )⊤−α(λ )∇2
21L(w,λ ) (A.9)

∂1Φ(w,λ ) = I −α(λ )∇2
1L(w,λ ) (A.10)

Remark A.2.1. When evaluated in (w(λ ),λ ), one does not need ∇α(λ ) for (A.9),

because the first term on the r.h.s of eq. (A.9) is 0:

∂2Φ(w(λ ),λ ) =−α(λ )∇2
21L(w(λ ),λ ).
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From the remark it follows that ∥∂2Φ(w(λ ),λ )∥= α(λ )∥∇2
21L(w(λ ),λ )∥

Furthermore, if we assume ∇2
1L(·,λ ) is ρ̂1,λ -Lipschitz and ∇2

21L(·,λ ) is

ρ̂2,λ -Lipschitz then, calling ∆∂1Φ := ∥∂1Φ(w1,λ )−∂1Φ(w2,λ )∥ and ∆∂2Φ :=

∥∂2Φ(w1,λ )−∂2Φ(w2,λ )∥ we have:

∆∂1Φ = ∥α(λ )
(
∇

2
1L(w1,λ )−∇

2
1L(w2,λ )

)
∥ ≤ α(λ )ρ̂1,λ∥w1 −w2∥,

and

∆∂2Φ=∥(∇1L(w1,λ )−∇1L(w2,λ ))∇α(λ )⊤+α(λ )
(
∇

2
21L(w1,λ )−∇

2
21L(w2,λ )

)
∥

≤ (LL(λ )∥∇α(λ )∥+α(λ )ρ̂2,λ )∥w1 −w2∥.

Thus, Assumption 3.3.1(iii) holds with ν1,λ =α(λ )ρ̂1,λ and ν2,λ =LL(λ )∥∇α(λ )∥+

α(λ )ρ̂2,λ . Moreover, if we pick LL,λ such that ∥∇2
21L(w(λ ),λ )∥ ≤ LL,λ , then The-

orems 3.3.8,3.3.10 and 3.3.12 hold with

qλ = max{1−α(λ )τL(λ ),α(λ )LL(λ )−1}

c1(λ ) :=
(

µ2,λ +
µ1,λ α(λ )LL,λ

1−qλ

)
Dλ

c2(λ ) :=
(
LL(λ )∥∇α(λ )∥+α(λ )ρ̂2,λ

)
LE,λ Dλ

+
ρ̂1,λ α(λ )2LL,λ LE,λ Dλ

1−qλ

c3(λ ) :=
LE,λ α(λ )∥∇2

21L(w(λ ),λ )∥
(1−qλ )

.

Given Remark A.2.1 and to avoid additional complexity of the algorithm,

we can consider replacing ∂2Φ(w,λ ) with ∂̂2Φ(w,λ ) = −α(λ )∇2
21L(w,λ ) in the

expression for both ∇ ft(λ ) and ∇̂ f (λ ). We apply this change in all the experiments

of case (3.2).
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A.3 Additional Details on the Experiments

A.3.1 Hypergradient Approximation

In this section we provide additional details for the experiments in Section 3.4.1.

We define the train and validation kernel matrices in (3.22) as follows:

K′(γ)i, j = exp
[
−
(
X ′

i −X j
)⊤ diag(γ)

(
X ′

i −X j
)]

K(γ)i, j = exp
[
−
(
Xi −X j

)⊤ diag(γ)
(
Xi −X j

)]
.

We generate synthetic data by sampling each element of X and X ′ from a normal

distribution. y (and in the same way y′) is subsequently obtained in the following

ways for the different settings outlined in Section 3.4.1.

y = sign(Xw∗+mε) (LR)

y = Xw∗+mε (KRR)

y = X(w∗+b∗)+mε (BR)

y = XH∗w∗+mε (HR)

where sign is the element wise sign function, each element of ε , w∗ and H∗ is

sampled from a normal distribution, b∗ = 12, and m = 0.1. X ,X ′ have dimension

50×100 while H is a 100×200 matrix. The results in Figure 3.1 report mean and

std over 20 values of λ such that λi ∼ U(λmin,λmax) for 1 ≤ i ≤ n where U is the

uniform distribution on the interval [λmin, λmax] which is [0.01,10], [0.0005,0.005],

[−5,5] and [−1,1] respectively for LR, KRR, BR, HR. Furthermore, we set β = 1

for BR and β = 10 for HR. λmin, λmax and β are selected as to make the expected

lower-level problem difficult (qλ close to 1).

We note that in Figure 3.1 the asymptotic error for KRR, BR and HR is con-

siderably large. We suspect that this is due to the numerical error made by the

hypergradient approximation procedures being larger than the one made when com-

puting the exact hypergradient using the closed form expression of w(λ ). Indeed,

2Where 1 ∈ Rd is a vector with all its components set to one.
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we have observed that using double precision halves the asymptotic error, but we did

not investigate further. Our theoretical analysis does not take this source of error into

account since it assumes infinite precision arithmetic.

A.3.2 Bilevel Optimization

This section contains the details and some additional results on the experiments in

Section 3.4.2 on problems of type (3.2)3.

The average cross-entropy in 20 newsgroups and Fashion MNIST is defined as

CE(Z,y) =− 1
|y|

|y|

∑
k=1

c

∑
i=1

δi,yk log

(
eZki

∑
c
j=1 eZk j

)

where Zk ∈ Rc yk ∈ {0, . . . ,c} are respectively the prediction scores and the class

label for the k-th example, δi,yk equals 1 when i = yk and 0 otherwise and |y| is the

number of examples.

To solve the upper-level problem we use gradient descent with fixed step-size

where the gradient is estimated using ITD or AID methods. In particular, we generate

the sequence (λi)
s
i as follows:

λi = λi−1 −ζ g(λi−1)

where g(λ ) = ∇ ft(λ ) for ITD and g(λ ) = ∇̂ f (λ ) for AID are computed respec-

tively using Algorithm 3.3.1 and Algorithm 3.3.2 with t and k fixed throughout the

optimization.

All methods compute wt(λ ) using t-steps of the same algorithm solving the

lower-level problem in (3.2). In particular, we use heavy ball with optimal constants

for Parkinson and gradient descent with step-size manually chosen for the other

two settings where it is harder to compute the optimal one. Specifically, we set the

step-size to 103 for 20 newsgroups and 104 for Fashion MNIST4.

The initial parameter λ0 is set to (β0,γ0) = (0,− log(p)1)5 for Parkinson, 0 ∈
3This includes all the settings except equilibrium models.
4Note that in this case the step-size is constant w.r.t. λ whereas the optimal one would vary with

λ .
5Where 1 ∈ Rp is a vector with all its components set to one.
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Rp for 20 newsgroup and X0 = 0 ∈ Rc×p for Fashion MNIST. Furthermore, the

regularization parameter β is set to 1 for Fashion MNIST.

We choose the step-size ζ with a grid search over 30 values in a suitable interval

for each problem, choosing the one bringing the lowest value of the approximate

objective ft(λs) = E(wt(λs),λs) where s is equal to 1000, 500, 4000 for Parkinson,

20 newsgroups and Fashion MNIST respectively. The grid search values are spaced

evenly in log scale inside the intervals [10−6,10], [10−4,104] and [10−10,10−2]

respectively for Parkinson, 20 newsgroups and Fashion MNIST.

We note that the results In Table 3.1 report the value of the approximate objective

ft(λs)=E(wt(λs),λs) and the test accuracy (computed on wt(λs)). For completeness,

in Table A.1 we report f (λs) = E(w(λs),λs)) and the test accuracy (computed on

w(λs)) where w(λs) is computed using RMAD (exploiting the closed form of w(λs))

for Parkinson and using 2000 steps of gradient descent starting from w0(λ ) = 0 for

20 newsgroups and Fashion MNIST.

Table A.1: The values of f (λs) and test accuracy (in percentage) are displayed after s
gradient descent steps, where s is 1000, 500 and 4000 for Parkinson, 20 news
and Fashion MNIST respectively. kr = 10 for Parkinson and 20 news while for
Fashion MNIST kr = 5.

Parkinson

t = 100 t = 150

ITD 2.39 (75.8) 2.11 (69.7)
FP k = t 2.36 (81.8) 2.19 (77.3)
CG k = t 2.20 (78.8) 2.19 (77.3)
FP k = kr 2.71 (80.3) 2.60 (78.8)
CG k = kr 2.17 (78.8) 1.99 (77.3)

20 newsgroup

t = 10 t = 25 t = 50

1.155 (59.4) 1.082 (61.1) 1.058 (61.6)
1.155 (59.5) 1.083 (61.1) 1.058 (61.6)
0.983 (62.9) 0.955 (62.9) 0.946 (63.5)
1.155 (59.5) 1.078 (61.7) 1.160 (59.1)
0.983 (62.9) 0.989 (62.6) 1.001 (62.3)

Fashion MNIST

t = 5 t = 10

ITD 0.497 (84.1) 0.431 (83.8)
FP k = t 0.497 (84.1) 0.431 (83.8)
CG k = t 0.522 (83.8) 0.424 (84.0)
FP k = kr 0.497 (84.1) 0.426 (83.9)
CG k = kr 0.522 (83.8) 0.424 (84.0)
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Appendix for Chapter 4

This appendix is organized as follows. Appendices B.1 and B.2 contain the proofs

for the results presented in the chapter. In Appendix B.4 we provide statements and

proofs for some standard lemmas which are instrumental for the main results.

B.1 Proofs of Section 4.4
We start by proving two lemmas.

Lemma B.1.1. Let Assumption 4.3.1 be satisfied. Then, for every w ∈ Rd

∥v(w(λ ),λ )− v(w,λ )∥ ≤
(

ν1,λ LE,λ

(1−qλ )
2 +

µ1,λ

1−qλ

)
∥w(λ )−w∥. (B.1)

Proof. Let A1 := (I −∂1Φ(w(λ ),λ )⊤) and A2 = (I −∂1Φ(w,λ )⊤). Then it follows

from Lemma B.4.8 that

∥v(w(λ ),λ )− v(w,λ )∥

≤ ∥∇1E(w(λ ),λ )∥∥A−1
1 −A−1

2 ∥+µ1,λ∥A−1
2 ∥∥w(λ )−w∥

≤ ∥∇1E(w(λ ),λ )∥∥A−1
1 (A2 −A1)A−1

2 ∥+
µ1,λ

1−qλ

∥w(λ )−w∥

≤
(

ν1,λ

(1−qλ )
2∥∇1E(w(λ ),λ )∥+

µ1,λ

1−qλ

)
∥w(λ )−w∥.

Moreover, Assumption 4.3.1 yields that ∥∇1E(w(λ ),λ )∥ ≤ LE,λ . Hence, the state-

ment follows.



B.1. Proofs of Section 4.4 164

Lemma B.1.2. Let Assumption 4.3.1 be satisfied. Then, for every w ∈ Rd

∥v(w,λ )∥ ≤ ∥(I −∂1Φ(w,λ )⊤)−1∥∥∇1E(w,λ )∥ ≤
LE,λ

1−qλ

. (B.2)

Proof. It follows from the definition of v(w,λ ) and Assumptions 4.3.1(i) and

4.3.1(iv)

B.1.1 Proof of Theorem 4.4.2

Proof. (i): Using the definition of ∇̂ f (λ ) and the fact that ζ ′
j and vk(wt(λ ),λ ) are

independent random variables, we get

E[∇̂ f (λ ) |wt(λ )] = ∇2E(wt(λ ),λ )+∂2Φ(wt(λ ),λ )
⊤E[vk(wt(λ ),λ ) |wt(λ )].

Consequently, recalling the hypergradient equation, we have,

∥∥E[∇̂ f (λ ) |wt(λ )]−∇ f (λ )
∥∥

≤ ∥∇2E(w(λ ),λ )−∇2E(wt(λ ),λ )∥

+
∥∥∂2Φ(w(λ ),λ )⊤v(w(λ ),λ )−∂2Φ(wt(λ ),λ )

⊤E[vk(wt(λ ),λ ) |wt(λ )]
∥∥

≤ ∥∇2E(w(λ ),λ )−∇2E(wt(λ ),λ )∥

+∥∂2Φ(w(λ ),λ )∥∥v(w(λ ),λ )−E[vk(wt(λ ),λ ) |wt(λ )]∥

+∥∂2Φ(w(λ ),λ )−∂2Φ(wt(λ ),λ )∥∥E[vk(wt(λ ),λ ) |wt(λ )]∥. (B.3)

Now, concerning the term ∥v(w(λ ),λ )−E[vk(wt(λ ),λ ) |wt(λ )]∥ in the above in-

equality, we have

∥v(w(λ ),λ )−E[vk(wt(λ ),λ ) |wt(λ )]∥

≤ ∥v(w(λ ),λ )− v(wt(λ ),λ )∥+∥v(wt(λ ),λ )−E[vk(wt(λ ),λ ) |wt(λ )]∥. (B.4)

Since E[v̄(wt(λ ),λ ) |wt(λ )] = v(wt(λ ),λ ) we have

∥v(wt(λ ),λ )−E[vk(wt(λ ),λ ) |wt(λ )]∥= ∥E[v̄(wt(λ ),λ )− vk(wt(λ ),λ ) |wt(λ )]∥
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Moreover, using Jensen inequality and Assumption 4.4.1 we obtain

∥E[v̄(wt(λ ),λ )− vk(wt(λ ),λ ) |wt(λ )]∥

=
√
∥E[v̄(wt(λ ),λ )− vk(wt(λ ),λ ) |wt(λ )]∥2 (B.5)

≤
√
E[∥v̄(wt(λ ),λ )− vk(wt(λ ),λ )∥2 |wt(λ )]

≤
√

σλ (k). (B.6)

Therefore, using Lemma B.1.1, (B.4) yields

∥v(w(λ ),λ )−E[vk(wt(λ ),λ ) |wt(λ )]∥ ≤
(

ν1,λ LE,λ

(1−qλ )
2 +

µ1,λ

1−qλ

)
∥w(λ )−wt(λ )∥

+
√

σλ (k). (B.7)

In addition, it follows from (B.4)-(B.6) and lemma B.1.2 that

∥E[vk(wt(λ ),λ ) |wt(λ )]∥

≤ ∥v(wt(λ ),λ )∥+∥v(wt(λ ),λ )−E[vk(wt(λ ),λ ) |wt(λ )]∥

≤
LE,λ

1−qλ

+
√

σλ (k). (B.8)

Finally, combining (B.3), (B.7), and (B.8), and using Assumption 4.3.1, (i) follows.

Then, since

∥E[∇̂ f (λ )]−∇ f (λ )∥=
∥∥E[E[∇̂ f (λ ) |wt(λ )]−∇ f (λ )

]∥∥
≤ E

[∥∥E[∇̂ f (λ ) |wt(λ )]−∇ f (λ )
∥∥],

(ii) follows by taking the expectation in (i), using Assumption 4.4.1 and that E[∆̂w] =√
(E[∆̂w])2 ≤

√
E[∆̂2

w]≤
√

ρλ (t).
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B.1.2 Proof of Theorem 4.4.3

Proof. Let Ẽ[·] := E[ · |wt(λ )], Ṽ[·] := V[ · |wt(λ )], b2 := Ṽ[∇2ĒJ(wt(λ ),λ )] and

b1 := ∂2Φ(wt(λ ),λ )
⊤vk(wt(λ ),λ ). Then,

Ṽ[∇̂ f (λ )]

= Ẽ
[
∥∇̂ f (λ )− Ẽ[∇̂ f (λ )]∥2]

≤ 2Ẽ
[
∥∂2Φ(wt(λ ),λ )

⊤Ẽ[vk(wt(λ ),λ )]∓b1 −∂ Φ̄J(λ )
⊤vk(wt(λ ),λ )∥2]+2b2

≤ 2∥∂2Φ(wt(λ ),λ )∥2Ẽ
[
∥vk(wt(λ ),λ )− Ẽ[vk(wt(λ ),λ )]∥2]

+2Ẽ
[
∥vk(wt(λ ),λ )∥2]Ẽ[∥∂ Φ̄J(λ )−∂2Φ(wt(λ ),λ )∥2]+2b2.

= 2∥∂2Φ(wt(λ ),λ )∥2︸ ︷︷ ︸
a1

Ṽ[vk(wt(λ ),λ )]︸ ︷︷ ︸
a2

+2 Ẽ
[
∥vk(wt(λ ),λ )∥2]︸ ︷︷ ︸

a3

Ṽ[∂2Φ̄J(λ )]+2b2,

where for the last inequality we used that ζ ′
i ⊥⊥ vk(wt(λ ),λ ) |wt(λ ) and, in virtue

of Lemma B.4.7, that

Ẽ
[
∆
⊤
v ∂2Φ(wt(λ ),λ )(∂2Φ̄J(wt(λ ),λ ,ζ )−∂2Φ(wt(λ ),λ ))

⊤vk(wt(λ ),λ )
]
= 0,

where ∆v := vk(wt(λ ),λ )− Ẽ[vk(wt(λ ),λ )]. In the following, we will bound each

term of the inequality in order.

a1 = ∥∂2Φ(wt(λ ),λ )∓∂2Φ(w(λ ),λ )∥2

≤ 2∥∂2Φ(w(λ ),λ )∥2 +2∥∂2Φ(w(λ ),λ )−∂2Φ(wt(λ ),λ )∥2

≤ 2L2
Φ,λ +2ν

2
2,λ∥w(λ )−wt(λ )∥2.

Then, applying Assumption 4.4.1, and Lemma B.4.3(ii)

a2 = Ṽ[vk(wt(λ ),λ )]≤ Ẽ[∥vk(wt(λ ),λ )∓ v̄(wt(λ ),λ )− v(wt(λ ),λ )∥2]

≤ 2σλ (k)+2
σ̂1,λ

J(1−qλ )
2 ,
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where in the last inequality, recalling Assumption 4.3.2(iv), we used

Ẽ
[
∥v(wt(λ ),λ )− v̄(wt(λ ),λ )∥2]≤

∥(I −∂1Φ(wt(λ ),λ )
⊤)−1∥2Ẽ[∥∇1E(wt(λ ),λ )−∇1ĒJ(wt(λ ),λ )∥2]≤

∥(I −∂1Φ(wt(λ ),λ )
⊤)−1∥2Ṽ[∇1ĒJ(wt(λ ),λ )]≤

σ̂1,λ

J(1−qλ )
2 .

(B.9)

Furthermore, exploiting Assumption 4.3.1 and 4.4.1, and Lemma B.1.2,

a3 = Ẽ
[
∥vk(wt(λ ),λ )∓ v̄(wt(λ ),λ )∓ v(wt(λ ),λ )∥2]

≤ 2∥v(wt(λ ),λ )∥2 +4Ẽ
[
∥v(wt(λ ),λ )− v̄(wt(λ ),λ )∥2]

+4Ẽ
[
∥v̄(wt(λ ),λ )− vk(wt(λ ),λ )∥2]

≤ 2
L2

E,λ

(1−qλ )
2 +4

σ̂1,λ

J(1−qλ )
2 +4σλ (k),

where we used (B.9) in the last inequality. Using the formula for the variance of the

sum of independent random variables and Assumption 4.3.2 we have

Ṽ[∂ Φ̄J(λ )]≤
σ ′

2,λ

J
, Ṽ[∇2ĒJ(wt(λ ),λ )]≤

σ̂2,λ

J
.

Combining the previous bounds together and defining ∆̂w := ∥w(λ )−wt(λ )∥ and

simplifying some terms knowing that J > 1 we get that

Ṽ[∇̂ f (λ )]≤

(
σ̂2,λ +4

σ ′
2,λ (L

2
E,λ + σ̂1,λ )+L2

Φ,λ σ̂1,λ

(1−qλ )
2

)
2
J
+8(L2

Φ,λ +σ
′
2,λ )σλ (k)

+8ν
2
2,λ ∆

2
w

(
σλ (k)+

σ̂1,λ

J(1−qλ )
2

)
.

The proof is completed by taking the total expectation on both sides of the inequality

above.
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B.2 Proofs of Section 4.5

Theorem 4.1 (Constant step-size). Let Assumption 4.5.1 hold and suppose that

ηt = η ∈ R++, for every t ∈ N, and that

η ≤ 1
1+σ2

.

Let (wt)t∈N be generated according to algorithm (4.12) and set MSEwt :=

E[∥wt −w∗∥2]. Then, for all t ∈ N,

MSEwt ≤ (1−η(1−q2))t
(

MSEw0 −
ησ1

1−q2

)
+

ησ1

1−q2 . (16)

In particular, limt→∞ MSEwt ≤ ησ1/(1−q2).

Proof. Let Wt be the σ -algebra generated by w0,w1, · · · ,wt . Then

E[∥wt+1 −w∗∥2 |Wt ] = E[∥wt −w∗+η(T̂ (wt ,ζt)−wt)∥2 |Wk]

= ∥wt −w∗∥2 +η
2E[∥(T̂ (wt ,ζt)∓T (wt)−wt)∥2 |Wk]

+2η(wt −w∗)⊤(T (wt)−wt)

= ∥wt −w∗∥2 +η
2∥T (wt)−wt∥2 +η

2V[T̂ (wt ,ζt) |Wt ]

+2η(wt −w∗)⊤(T (wt)−wt)

≤ ∥wt −w∗∥2 +η
2(1+σ2)∥T (wt)∓w∗−wt∥2 +η

2
σ1

+2η(wt −w∗)⊤(T (wt)∓w∗−wt)

≤ (1−2η +η
2(1+σ2))∥wt −w∗∥2

+η
2(1+σ2)∥T (wt)−w∗∥2 +η

2
σ1

+η(1−η(1+σ2))2(wt −w∗)⊤(T (wt)−w∗).

Furthermore, since ∥T (wt)−w∗∥ ≤ q∥wt −w∗∥ and 2ab ≤ a2 +b2, we have that

2(wt −w∗)⊤(T (wt)−w∗)≤ 2∥wt −w∗∥∥T (wt)−w∗∥ ≤ (1+q2)∥wt −w∗∥2.
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From the upper bound on the step size we have that η(1−η(1+σ2))≥ 0, hence:

E[∥wt+1 −w∗∥2 |Wt ]≤ (1−2η)∥wt −w∗∥2 +η
2(1+σ2)(1+q2)∥wt −w∗∥2

+η
2
σ1 +η(1+q2)∥wt −w∗∥2

−η
2(1+σ2)(1+q2)∥wt −w∗∥2

≤ (1−η(1−q2))∥wt −w∗∥2 +η
2
σ1.

Taking total expectations we get

E[∥wt+1 −w∗∥2]≤ (1−η(1−q2))E[∥wt −w∗∥2]+η
2
σ1

and subtracting ησ1/(1−q2) from both sides we obtain

E[∥wt+1 −w∗∥2]− ησ1

1−q2 ≤ (1−η(1−q2))

(
E[∥wt −w∗∥2]− ησ1

1−q2

)
.

Now the statement follows by applying the above inequality recursively.

Theorem 4.2 (Decreasing step-sizes). Let Assumption 4.5.1 hold and suppose that

for every t ∈ N

ηt ≤
1

1+σ2
,

∞

∑
t=1

ηt = ∞,
∞

∑
t=1

η
2
t < ∞. (20)

Let (wt)t∈N be generated according to Algorithm (4.12). Then

wt → w∗ P-a.s.

Moreover, if ηt = β/(γ + t), with β > 1/(1−q2) and γ ≥ β (1+σ2), then we have

E[∥wt −w∗∥2]≤ c
γ + t

, (21)

where

c := max
{

γE[∥w0 −w∗∥2],
β 2σ1

β (1−q2)−1

}
.
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Proof. As in the proof of Theorem 4.5.2 we get

(∀ t ∈ N) E[∥wt+1 −w∗∥2 |Wt ]≤ (1−ηt(1−q2))∥wt −w∗∥2 +η
2
t σ1. (B.10)

Taking total expectations we obtain

(∀ t ∈ N) E[∥wt+1 −w∗∥2]≤ (1−ηt(1−q2))E[∥wt −w∗∥2]+η
2
t σ1, (B.11)

which can be equivalently written as

(∀ t ∈ N) (1−q2)ηtE[∥wt −w∗∥2]≤ E[∥wt −w∗∥2]−E[∥wt+1 −w∗∥2]+η
2
t σ1.

Since the right-hand side is summable (being the sum of a telescopic series and a

summable series), we have

(1−q2)
∞

∑
t=0

ηtE[∥wt −w∗∥2]≤ E[∥w0 −w∗∥2]+σ1

+∞

∑
t=0

η
2
t <+∞. (B.12)

Now, it follows from (B.10) that (∥wt −w∗∥2)t∈N is an almost supermartingale

(in the sense of Robbins and Siegmund (1971)), hence ∥wt −w∗∥2 → ζ P-a.s. for

some positive random variable ζ . Since ∑
+∞

t=0 ηt = +∞, it follows from (B.12)

that liminft→+∞E[∥wt −w∗∥2] = 0. Then Fatou’s lemma yields that E[ζ ] ≤

liminft→+∞E[∥wt −w∗∥2] = 0. Thus, since ζ is positive, ζ = 0 P-a.s. and hence

xt → x∗ P-a.s.

Concerning the second part of the statement, it is easy to see that the sequence

(ηt)t∈N satisfies the assumptions (4.14). We can thus apply eq. (B.11) at each

iteration. Let ∆t := E[∥wt −w∗∥2], from the definition of c we have that for t = 0

∆0 ≤ c/γ . Now, suppose that (4.15) holds at step t. We want to prove that it holds at
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t +1. Defining ξ := γ + t, it follows from (B.11) that

∆t+1 ≤
ξ −β (1−q2)

ξ

c
ξ
+

β 2σ1

ξ 2

=
(ξ −1)

ξ 2 c− (β (1−q2)−1)c−β 2σ1

ξ 2︸ ︷︷ ︸
≥0 by the definition of c and β

≤ c
ξ +1

=
c

γ + t +1
,

where the last inequality derives from ξ 2 ≥ (ξ −1)(ξ +1).

Theorem 4.5.5. Suppose that Assumption 4.5.4 and Assumption 4.5.1(i)(ii) hold.

Then Assumption 4.5.1(iii) holds. In particular, for every w ∈ Rd ,

V[T̂ (w,ζ )]≤ 2V[T̂ (w∗,ζ )]︸ ︷︷ ︸
σ1

+2
L2

T̂
+q2

(1−q)2︸ ︷︷ ︸
σ2

∥T (w)−w∥2.

Proof. Let w ∈ Rd . Then by Assumption 4.5.1-(ii) and the inequality ∥a+b∥2 ≤

2∥a∥2 +2∥b∥2 we get

V[T̂ (w,ζ )] = E[∥T̂ (w,ζ )∓ T̂ (w∗,ζ )−T (w)∥2]

≤ 2E[∥T̂ (w,ζ )− T̂ (w∗,ζ )∥2]+2E[∥T̂ (w∗,ζ )−T (w)∥2]

≤ 2E[∥T̂ (w,ζ )− T̂ (w∗,ζ )∥2]+2V[T̂ (w∗,ζ )]+2∥T (w∗)−T (w)∥2.

Therefore, leveraging Assumption 4.5.1-(i) and Assumption 4.5.4 we have

V[T̂ (w,ζ )]≤ 2(L2
T̂ +q2)∥w−w∗∥2 +2V[T̂ (w∗,ζ )].

Finally, note that ∥w−w∗∥ ≤ ∥w−T (w)∥ + ∥T (w)−w∗∥ = ∥w−T (w)∥ +

∥T (w)−T (w∗)∥≤∥w−T (w)∥+q∥w−w∗∥. Hence, ∥w−w∗∥≤∥w−T (w)∥/(1−

q). The statement follows.
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B.3 Proofs of Section 4.6

B.3.1 Proof of Theorem 4.6.1

Proof. The statement follows by applying Theorem 4.5.2 and 4.5.3 with T̂ =

Φ̂(·,λ , ·) and T̂ = Ψ̂w(·,λ , ·). To that purpose, in view of those theorems it is

sufficient to verify Assumption 4.5.1. This is immediate for Φ̂(·,λ , ·), due to As-

sumptions 4.3.1(i) and 4.3.2. Further, applying 4.3.2(ii) gives the first inequal-

ity in (4.24) and (4.25). Concerning Ψ̂w(·,λ , ·), let Ẽ[·] = E[· | (ξ j)1≤ j≤J] and

Ṽ[·] = V[· | (ξ j)1≤ j≤J]. It follows from Assumptions 4.3.1(i) and 4.3.2(i), that,

Ẽ[Ψ̂w(v,λ ,ζ )] = ∂1Φ(w,λ )v+∇1ĒJ(w,λ ) =: Ψw(v,λ ).

Since ∥∂1Ψw(v,λ )∥ = ∥∂1Φ(w,λ )∥ ≤ qλ , Ψw(·,λ ) is a contraction with constant

qλ and Assumptions 4.5.1(i)-(ii) are satisfied. From Assumption 4.3.2

Ṽ[Ψ̂w(v,λ ,ζ )]≤ ∥v∥2
σ
′
1,λ , (B.13)

and

∥v∥ ≤ ∥Ψw(v,λ )− v∥+∥Ψw(v,λ )∥

≤ ∥Ψw(v,λ )− v∥+∥∂1Φ(w,λ )⊤v+∇1ĒJ(w,λ )∥

≤ ∥Ψw(v,λ )− v∥+qλ∥v∥+∥∇1ĒJ(w,λ )∥.

It follows that

∥v∥ ≤ 1
1−qλ

(∥Ψw(v,λ )− v∥+∥∇1ĒJ(w,λ )∥) . (B.14)

Hence, combining (B.13) and (B.14) we obtain

Ṽ[Ψw(v,λ ,ζ )]≤
2σ ′

1,λ

(1−qλ )
2∥Ψw(v,λ )− v∥2 +

2∥∇1ĒJ(w,λ )∥2σ ′
1,λ

(1−qλ )
2 ,
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which satisfies Assumption 4.5.1(iii). Thus, we can apply Theorem 4.5.2 and 4.5.3

to obtain results on vk(w,λ ) which hold conditioned to (ξ j)
J
j=1. The bounds in the

second inequality of (4.24) and in (4.27) are finally obtained by taking the total

expectation and noting that

E[∥∇1ĒJ(w,λ )∥2] = ∥∇1E(w,λ )∥2+V[∇1ĒJ(w,λ )]≤L2
E,λ +σ̂1,λ/J ≤L2

E,λ +σ̂1,λ .

B.4 Standard Lemmas
Lemma B.4.1. Let X be a random vector with values in Rd and suppose that

E[∥X∥2]<+∞. Then E[X ] exists in Rd and ∥E[X ]∥2 ≤ E[∥X∥2].

Proof. It follows from Hölder’s inequality that E[∥X∥]≤ E[∥X∥2]. Therefore, X is

Bochner integrable with respect to P and ∥E[X ]∥ ≤ E[∥X∥]. Hence, using Jensen’s

inequality we have ∥E[X ]∥2 ≤ (E[∥X∥])2 ≤ E[∥X∥2] and the statement follows.

Definition B.4.2. Let X be a random vector with value in Rd such that E[∥X∥2]<

+∞. Then the variance of X is

V[X ] := E[∥X −E[X ]∥2] (B.15)

Lemma B.4.3 (Properties of the variance). Let X and Y be two independent random

variables with values in Rd and let A be a random matrix with values in Rn×d which

is independent on X. We also assume that X ,Y , and A have finite second moment.

Then the following hold.

(i) V[X ] = E[∥X∥2]−∥E[X ]∥2,

(ii) For every x ∈ Rd , E[∥X − x∥2] = V[X ] + ∥E[X ]− x∥2. Hence, V[X ] =

minx∈Rd E[∥X − x∥2],

(iii) V[X +Y ] = V[X ]+V[Y ],

(iv) V[AX ]≤ V[A]V[X ]+∥E[A]∥2V[X ]+∥E[X ]∥2V[A].
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Proof. (i)-(ii): Let x ∈ Rd . Then, ∥X − x∥2 = ∥X −E[X ]∥2 +∥E[X ]− x∥2 +2(X −

E[X ])⊤(E[X ]− x). Hence, taking the expectation we get E[∥X − x∥2] = V[X ] +

∥E[X ]− x∥2. Therefore, E[∥X − x∥2]≥V[X ] and for x =E[X ] we get E[∥X − x∥2] =

V[X ]. Finally, for x = 0 we get (i).

(iii): Let X̄ := E[X ] and Ȳ := E[Y ], we have

V[X +Y ] = E[∥X − X̄ +Y − Ȳ∥2]

= E[∥X − X̄∥2]+E[∥Y − Ȳ∥2]+2E[X − X̄ ]⊤E[Y − Ȳ ]

= E[∥X − X̄∥2]+E[∥Y − Ȳ∥2]

Recalling the definition of V[X ] the statement follows.

(iv): Let Ā := E[A] and X̄ := E[X ]. Then,

V[AX ] = E[∥AX −E[A]E[X ]∥2]

= E[∥AX −AX̄ +AX̄ − ĀX̄∥2]

= E[∥A(X − X̄)+(A− Ā)X̄∥2]

= E[∥A(X − X̄)∥2]+E[∥(A− Ā)X̄∥2]

+2E[(X − X̄)⊤A⊤(A− Ā)X̄ ]

= E[∥A(X − X̄)∥2]+E[∥(A− Ā)X̄∥2]

+2E[(X − X̄)⊤]E[A⊤(A− Ā)X̄ ]

= E[∥(A− Ā+ Ā)(X − X̄)∥2]+E[∥(A− Ā)X̄∥2]

= E[∥(A− Ā)(X − X̄)∥2]+E[∥(A− Ā)X̄∥2]+E[∥Ā(X − X̄)∥2]

+2E[(X − X̄)⊤(A− Ā)⊤Ā(X − X̄)]

= E[∥(A− Ā)(X − X̄)∥2]+E[∥(A− Ā)X̄∥2]+E[∥Ā(X − X̄)∥2]

+2E[(X − X̄)⊤E[A− Ā |X ]⊤Ā(X − X̄)]

≤ E[∥A− Ā∥2]E[∥X − X̄∥2]

+E[∥A− Ā∥2]∥X̄∥2 +∥Ā∥2E[∥X − X̄)∥2]

In the above equalities we have used the independence of A and X in the formulas
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E[AX ] = E[A]E[X ], E[(X − X̄)⊤A⊤(A− ĀX̄)] = E[(X − X̄)⊤]E[A⊤(A− ĀX̄)], and

E[(X − X̄)⊤(A− Ā)⊤Ā(X − X̄) |X ] = (X − X̄)⊤E[(A− Ā)⊤ |X ]Ā(X − X̄).

Lemma B.4.4. Let f :Z ⊂Rn 7→Rm be an L-Lipschitz function, with L> 0, meaning

that

∥ f (x)− f (y)∥ ≤ L∥x− y∥ ∀x,y ∈ Z

Let X be a random variable with finite variance. Then, we have that

V[ f (X)]≤ L2V[X ] (B.16)

Proof. We have

V[ f (X)] = E[∥ f (X)−E[ f (X)]∥2]

= E[∥ f (X)− f (E[X)])∥2]−∥ f (E[X ])−E[ f (X)]∥2

≤ E[∥ f (X)− f (E[X)])∥2]

≤ L2E[∥X −E[X ]∥2] = L2V[X ].

Definition B.4.5. (Conditional Variance). Let X be a random variable with values

in Rd and Y be a random variable with values in a measurable space Y . We call

conditional variance of X given Y the quantity

V[X |Y ] := E[∥X −E[X |Y ]∥2 |Y ].

Lemma B.4.6. (Law of total variance) Let X and Y be two random variables, we

can prove that

V[X ] = E[V[X |Y ]]+V[E[X |Y ]] (B.17)
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Proof.

V[X ] = E[∥X −E[X ]∥2]

(var. prop.) =⇒ = E[∥X∥2]−∥E[X ]∥2

(tot. expect.) =⇒ = E[E[∥X∥2 |Y ]]−∥E[E[X |Y ]]∥2

(var. prop.) =⇒ = E[V[X |Y ]+∥E[X |Y ]∥2]−∥E[E[X |Y ]]∥2

= E[V[X |Y ]]+
(
E[∥E[X |Y ]∥2]−∥E[E[X |Y ]]∥2)

recognizing that the term inside the parenthesis is the conditional variance of E[X |Y ]

gives the result.

Lemma B.4.7. Let ζ and η be two independent random variables with values

in Z and Y respectively. Let ψ : Y → Rm×n,φ : Z → Rn×p, and ϕ : Y → Rp×q

matrix-valued measurable functions. Then

E[ψ(η)(φ(ζ )−E[φ(ζ )])ϕ(η)] = 0 (B.18)

Proof. Since, for every y∈Y , B 7→ψ(y)Bϕ(y) is linear and ζ and η are independent,

we have

E[ψ(η)(ψ(ζ )−E[ψ(ζ )])ϕ(η) |η ] = ψ(η)E
[
φ(ζ )−E[φ(ζ )]

]
ϕ(η) = 0.

Taking the expectation the statement follows.

Lemma B.4.8. Let A be a square matrix such that ∥A∥ ≤ q < 1 Then, I −A is

invertible and

∥(I −A)−1∥ ≤ 1
1−q

.

Proof. Since ∥A∥ ≤ q < 1,

∞

∑
k=0

∥A∥k ≤
∞

∑
k=0

qk =
1

1−q
.
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Thus, the series ∑
∞
k=0 Ak is convergent, say to B, and

(I −A)
k

∑
i=0

Ai =
k

∑
i=0

Ai(I −A) =
k

∑
i=0

Ai −
k+1

∑
i=0

Ai + I → I, (B.19)

so that (I −A)B = B(I −A) = I. Therefore, I −A is invertible with inverse B and

hence ∥(I −A)−1∥ ≤ ∑
∞
k=0∥A∥k ≤ 1/(1−q).



Appendix C

Appendix for Chapter 5

C.1 Proof of Lemma 5.4.6

To prove (i), recall that w′(λ ) =
(
I −∂1Φ(w(λ ),λ )

)−1
∂2Φ(w(λ ),λ ), hence

∥w′(λ )∥= ∥
(
I −∂1Φ(w(λ ),λ )

)−1
∂2Φ(w(λ ),λ )∥

≤ ∥
(
I −∂1Φ(w(λ ),λ )

)−1∥∥∂2Φ(w(λ ),λ )∥

≤
∞

∑
i=0

∥∂1Φ(w(λ ),λ )∥i∥∂2Φ(w(λ ),λ )∥

≤
∞

∑
i=0

qiLΦ =
LΦ

1−q
,

where in the second inequality we used the properties of Neumann series and in the

last inequality we used Assumption 5.4.1(i) and 5.4.2(iv).

Next we prove (ii). Let A(λ ) = I −∂1Φ(w(λ ),λ ) For every λ ∈ Λ

∥A(λ1)−A(λ2)∥= ∥∂1Φ(w(λ1),λ1)−∂1Φ(w(λ2),λ2)∥

≤ ∥∂1Φ(w(λ2),λ1)−∂1Φ(w(λ2),λ2)∥

+∥∂1Φ(w(λ1),λ1)−∂1Φ(w(λ2),λ1)∥

≤ ν̄1∥λ1 −λ2∥+ν1∥w(λ1)−w(λ2)∥

≤
(

ν̄1 +
ν1LΦ

1−q

)
∥λ1 −λ2∥,

where we used Assumption 5.4.1(ii) and 5.4.2(ii) in the second inequality and (i) in
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the last inequality. Consequently, for every λ1,λ2 ∈ Λ

∥w′(λ1)−w′(λ2)∥ ≤ ∥A(λ1)
−1∥∥∂2Φ((w(λ1),λ1)−∂2Φ((w(λ2),λ2)∥

+∥∂2Φ((w(λ1),λ1)∥∥A(λ1)
−1∥∥A(λ1)−A(λ2)∥∥A(λ2)

−1∥

≤ ∥A(λ1)
−1∥∥∂2Φ((w(λ1),λ2)−∂2Φ((w(λ2),λ2)∥

+∥A(λ1)
−1∥∥∂2Φ((w(λ1),λ1)−∂2Φ((w(λ1),λ2)∥

+∥∂2Φ((w(λ1),λ1)∥∥A(λ1)
−1∥∥A(λ1)−A(λ2)∥∥A(λ2)

−1∥

≤

[
ν2LΦ/(1−q)+ ν̄2

1−q
+

LΦ

(1−q)2

(
ν̄1 +

ν1LΦ

1−q

)]
∥λ1 −λ2∥.

To prove (iii) instead, let

∇̄ f (w,λ ) := ∇2E(w,λ )+∂2Φ(w,λ )
[
I −∂1Φ(w,λ )⊤

]−1
∇1E(w,λ ) (C.1)

Note that ∇ f (λ ) = ∇̄ f (w(λ ),λ ). We have that for every λ1,λ2 ∈ Λ

∥∇ f (λ1)−∇ f (λ2)∥ ≤ ∥∇ f (λ1)− ∇̄ f (w(λ1),λ2)∥+∥∇ f (λ2)− ∇̄ f (w(λ1),λ2)∥

(C.2)

We bound the two terms of the RHS of (C.2) as follows.

∥∇ f (λ1)− ∇̄ f (w(λ1),λ2)∥ ≤ ∥∇2E(w(λ1),λ1)−∇2E(w(λ1),λ2))∥+

+∥w′(λ1)∥∥∇1E(w(λ1),λ1)−∇1E(w(λ1),λ2))∥

≤
(
µ̄2 +

LΦµ̄1

1−q

)
∥λ1 −λ2∥,

∥∇ f (λ2)− ∇̄ f (w(λ1),λ2)∥ ≤ ∥∇2E(w(λ2),λ2)−∇2E(w(λ1),λ2))∥

+∥w′(λ2)∥∥∇1E(w(λ2),λ2)−∇1E(w(λ1),λ2))∥

+∥∇1E(w(λ1),λ2)∥∥w′(λ2)−w′(λ1)∥

≤
(

LELw′ +
µ2LΦ

1−q
+

µ1L2
Φ

(1−q)2

)
∥λ1 −λ2∥.

Summing the two inequalities above we obtain the final result.
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équations intégrales. Fundamenta mathematicae, 3(1):133–181, 1922.

F. Bao, G. Wu, C. Li, J. Zhu, and B. Zhang. Stability and generalization of bilevel

programming in hyperparameter optimization. Advances in Neural Information

Processing Systems, 34:4529–4541, 2021.



BIBLIOGRAPHY 182

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differ-

entiation in machine learning: a survey. Journal of machine learning research, 18

(153), 2018.

Y. Bengio. Practical recommendations for gradient-based training of deep architec-

tures. In Neural networks: Tricks of the trade, pages 437–478. Springer, 2012.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal

of Machine Learning Research, 13(Feb):281–305, 2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter
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