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Abstract

Colonic epithelia is regulated by cell-intrinsic and cell-extrinsic cues, both in home-

ostatic tissues and colorectal cancer (CRC), where the tumour microenvironment

closely interacts with mutated epithelia. Our understanding on how these cues

polarise colonic stem cell (CSC) states remains incomplete. Indeed, charting the

interaction between intrinsic and stromal cues requires a systematic study yet to be

found in the literature.

In this work I present my efforts towards computationally studying colonic stem

cell polarisation at single-cell resolution. Leveraging the scalability of organoid

models, my colleagues and I dissected the heterocellular CRC organoid system

presented in Qin & Cardoso Rodriguez et al. [1] using single-cell omic analyses,

resolving complex interaction and polarisation processes.

First, I identified bottlenecks in common mass cytometry (MC) analysis work-

flows benefiting from either increased accessibility or automation; designing the

CyGNAL pipeline and developing a cell-state classifier to tackle these points re-

spectively. I then used single-cell RNA sequencing (scRNA-seq) data to reveal a

shared landscape of CSC polarisation; wherein stromal cues polarise the epithelia

towards slow-cycling revival CSC (revCSC) and oncogenic mutations trap cells in

a hyper-proliferative CSC (proCSC) state. I then developed a method to visualise

single-cell differentation using a novel valley-ridge (VR) score, which can generate

data-driven Waddington-like landscapes that recapitulate differentiation dynamics

of the colonic epithelia. Finally, I explored an approach for holistic inter- and intra-

cellular communication analysis by incorporating literature information as a directed

knowledge graph (KG), showing that low-dimensional representations of the graph

retain biological information and that projected cellular profiles recapitulate their

transcriptomes.

These results reveal a polarisation landscape where CRC epithelia is trapped in

a proCSC state refractory to stromal cues, and broadly show the importance of joint

collaborative wet- and dry-lab work; central towards targeting gaps in the method

space and generating a comprehensive analysis of heterocellular signalling in cancer.
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1.1 Significance and Characteristics of Colorectal

Cancer

Figure 1.1: Canonical Progression Model of CRC. Schematic diagram depicting the
transition from healthy colon, to adenoma, adenocarcinoma, and CRC via the
accumulation of cell-intrinsic somatic oncogenic mutations.

Colorectal cancer (CRC) is generally defined as an adenocarcinoma originating from

the epithelial lining of the colon or rectum. Despite lowered incidence and mortality

rates in recent years [10], CRC is the third most common malignancy worldwide,

claiming over 900,000 lives every year [11].

The canonical model of CRC pathogenesis is the polyp to adenocarcinoma

progression. Originally described at the end of the 20th century by Fearon and

Vogelstein [12] it is understood to present an initial phase where benign hyperpro-

liferative polyps, often harbouring mutations in the Wnt signalling pathway (most

commonly in the APC gene [13]), eventually acquire additional oncogenic mutations

that result in malignant CRC (Figure 1.1). Some of the most common oncogenic

mutations target KRAS, an oncogene that regulates epithelial proliferation, and TP53,

a tumour suppressor that normally acts as a gatekeeper of the hyperproliferative

polyps [12, 14].

Furthermore, the development of CRC also involves the local tumour microen-

vironment (TME), whereby the mutated epithelial cells orchestrate changes in the

local inflammatory and stromal niches [15].

1.1.1 The Colonic Epithelium and its Stem Cells

The intestinal epithelium comprises an epithelial mono-layer lining the lower gas-

trointestinal tract that controls nutrient uptake, coordinates metabolism, and shields

against pathogens. In a homeostatic setting, intestinal epithelia has an extremely
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high turnover rate and is organised as distinct cell populations with absorptive or

secretory functions, supported by continuously proliferating crypts [16]. The colon

and rectum form the distal end of the gastrointestinal tract and, unlike the longer

small intestinal compartment, experience a higher microbial load, lack villi, and

specialise in liquid uptake [17].

At the base of the colonic crypts reside LGR5+ and OLFM4+ colonic stem cells

(CSCs) that give rise to rapidly proliferating transit amplifying (TA) cells (Figure

1.2A). While the specific differentiation trajectories are not yet fully understood, it

seems that an endoplasmic reticulum (ER) stress response marks the shift from a

basal proliferation state into differentiated epithelial states (Figure 1.2A) [18, 19].

Of those differentiated states the most common ones are the enterocytes with an

absorptive (also called colonocytes in the colon), and secretory cells such as; mucus-

secreting goblet cells, hormone-producing enteroendocrine (EEC) cells, and immuno-

modulatory tuft cells.

The delicate balance of spatial and temporal control of cell fate is achieved

by two opposing gradients between the basal and apical folds of the epithelium,

with WNT and NOTCH signalling higher around the CSC-harbouring crypts, and

BMP signalling higher towards the apical areas where absorptive cells are (Figure

1.2A) [16, 20]. Continued epithelial renewal is sustained by the CSC population.

Characterised by their expression of the LGR5 R-spondin receptor, CSCs are primed

to receive converging signalling cues from stromal and intrinsic signals that delineate

areas of cell differentiation and proliferation.

Although this arrangement is kept relatively consistent throughout the lower

gastrointestinal tract, organoid models suggest that the architecture of the homeostatic

crypt in the colon appears to be, unlike that of the small intestine, more dependent

on exogenous stroma-derived WNT ligands and BMP antagonists [21, 22]. This

difference is thought to be driven by secretory cells known as Paneth cells, which

reside at the bottom of the crypts in the small intestine but are absent in the colon.

Paneth cells support nearby stem cells through the secretion of antimicrobial peptides,

WNT and EGF ligands, and juxtacrine NOTCH signalling. In the colon the presence



1.1. Significance and Characteristics of Colorectal Cancer 30

of secretory cells in deeper areas of the crypts has been described [23], but it is

believed that the niche supporting the stem compartment is mostly orchestrated by

the stroma rather than by these Paneth-like deep crypt secretory (DCS) cells.

Figure 1.2: Architecture of Colonic Epithelium. A) Colonic cell types and signalling
gradients regulating stem and differentiated epithelial niches. B) Tissue mor-
phology schematic of homeostatic colonic epithelium and hyperproliferative
colonic polyps. DCS, deep crypt secretory. EEC, enteroendocrine. ER, endo-
plasmic reticulum. TA, transit amplifying.

1.1.2 Colorectal Cancer as a Heterocellular Disease

Genetic alterations in epithelial cells commonly target niche factor signalling hubs

that regulate proliferation and differentiation, enabling the CSC compartment to

decouple from both pro-survival proliferative signals and growth-inhibitory cues

[24]. This results in an emancipated and highly proliferative stem-like state (proCSC)

that expands beyond the bases of the crypts and dominates the colon epithelium, thus

accompanied by a general de-differentiation of the tissue [25] (Figure 1.2B).

Although it is tempting to think that the expansion of the CSC compartment in

CRC is driven by this highly proliferative homogeneous proCSC state, single-cell

studies have revealed the presence of additional stem cell states in both homeostatic

and CRC epithelium [26, 27, 28, 29]. Among them, revival CSCs (revCSC) are

emerging as a target of particular interest in cancer research. A rare population in

the homeostatic intestine, revCSCs are characterised by CLU and ANXA1 expression

and exhibit a less proliferative state that, upon tissue damage, co-opts a phenotype
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reminiscent of foetal intestinal progenitors to replenish the injured epithelium [30].

In the context of CRC, revCSC have been postulated as a putative drug-resistant

state that can, after chemotherapy erodes the dominant proCSC state, drive relapse

in some patients [31, 32]. While the revCSC state has been associated with Hippo

pathway activation via YAP signalling, their exact role in relapse and the mechanisms

driving the balance between revival and proliferative CSCs remain unclear.

A priori a niche-factor independent compartment, the CRC epithelium com-

prised mostly of emancipated CSC and proCSC cells is still able to interact and

remodel surrounding tissues. This interaction with their environment sustains the

view that tumours exist not just as homogeneous clusters of malignant cells, but as a

collection of malignant and non-transformed immune and stromal cells [33]. These

untransformed cells constitute the tumour microenvironment (TME), a key factor in

most cancers that affects prognosis [34] and therefore the subject of intense study in

cancer biology and therapy development.

In their late stage, CRC tumours consist of a complex heterocellular environment

in which stromal and immune compartments have been shown to drive cancer cell

progression [15, 35] and response to therapies [36, 37]. Cancer associated fibroblasts

in particular have been linked with carcinogenesis via secretion of growth factors

like EGF, HGF, VEGF and TGF-β signalling. In addition, they have also been

linked with pro-inflammatory and angiogenic roles, as well as with aiding the CRC

tumour in immune evasion and invasion [38]. Within the immune compartment,

tumour-associated macrophages are highly abundant, but their functional role as part

of the TME is unclear. There is evidence that they both exhibit pro- and anti-tumour

activity, possibly depending on their location within the adenocarcinoma and the

dominance of different macrophage sub-types [39].
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1.2 Organoids as In Vitro Models of Colorectal

Cancer

The complexity of CRC can be modelled and studied in vitro using organoids,

self-organising 3D cellular structures comprising stem and differentiated cells that

mimic elements of in vivo tissue [40, 41, 42]. Mimicking the biology of the in vivo

setting, gut organoids have a basal stem niche from which differentiated states (with

absorptive or secretory functions) derive from; often with an apical lumen within the

organoid that accumulates dead cells [43].

Furthermore, heterotypic settings can be designed wherein colon epithelia

organoids are co-cultured with other cell types to model stromal and immune cell-

cell interactions [4]. Such settings increase the complexity of organoid systems,

allowing for more accurate modelling of in vivo tissue architecture and heterotypic

interactions in vitro.

In the context of CRC, organoids can be used to characterise both the het-

erogeneity of the altered colonic epithelium and its interaction with cells of the

TME. Furthermore, patient-derived organoid (PDO) models are gaining traction as

personalised avatars of human tumours [44, 3].

Figure 1.3: Organoids as CRC Models. Organoids balance the physiological relevance of
in vivo settings with the flexibility of cell lines, allowing for high-throughput
study of complex heterocellular systems such as CRC.
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Organoids provide a balance between experimental flexibility and physiological

relevance. They are complex enough to mimic the heterogeneity of in vivo tissue

while still being amenable to high-throughput applications [45]. This facilitates high

throughput experimentation by allowing for the multiplexing of high numbers of

experimental conditions, with for example our custom mass cytometry platform in

Sufi & Qin et al. reaching up to 126-plex per run [2].

Recent work by our lab [4] has shown how both CRC genetic perturbations

(shApc, KrasG12D/+ and Trp53R172H/–) and TME complexity (heterotypic epithelial

organoid cultures with fibroblasts and/or macrophages) effect the biology of colonic

organoids. Using a custom multivariate mass cytometry platform to analyse post-

translational modification (PTM) signalling networks, Qin et al. [4] found that the

distribution of both cellular subtypes and states within the epithelial population

changed in a similar and synergic way. They found that both oncogenic and stromal

cues resulted in an enrichment of the crypt and stem niches and a reduction of cells

in G0 and apoptotic states. Furthermore, their results suggest that the effects of the

TME on intracellular epithelial signalling pathways might mechanistically differ

from those driven by CRC mutations in the epithelial cells, even if they both share

downstream signalling profiles.

This work, featuring multiple axes of variation and replicates within a single

experiment, highlights the systematic scalability of organoid models. Mature bulk

technologies are not poised to leverage heterogeneous 3D organoids, hence the

rapid emergence of single-cell resolution studies in recent years. Single-cell omic

approaches can deconvolute the different cell types within a heterotypic organoid

system, as well as resolve particular cell states within each type and even capture

cellular interactions within the different compartments [36].
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1.3 Single-Cell Omic Technologies
During this work I leveraged two distinct single-cell technologies to characterise

heterocellular organoid models of CRC; mass cytometry (MC) and single-cell RNA

sequencing (scRNA-seq). They are both part of the broader family of single-cell

omics analyses, which have gained traction in characterising cellular heterogeneity

at both genotypic and phenotypic levels.

The concept of ”omics” is not well defined, but it is commonly understood to

describe analyses pertaining to the study of large-scale biological datasets characteris-

ing sets of biological molecules from living entities. Some of the most common omic

studies are the fields of genomics, epigenomics, transcriptomics, and proteomics.

Omic information can thus be used to infer cross-omic regulatory relationships and

decipher causal relations between genotype and phenotype with the right experimen-

tal settings.

1.3.1 Mass Cytometry (MC)

MC, also known as Cytometry by Time-Of-Flight (CyTOF), is a technology that

merges principles of mass spectometry and flow cytometry to enable single-cell anal-

ysis of protein expression. Like flow cytometry, MC is based on tagged antibodies

that bind to specific epitopes in cells, but it is able to overcome the issue of florescent

spectral overlap by using monoisotopic rare-earth metals instead of fluorophores.

The discrete nature of the monoisotopes compared to the broad emission spectra of

fluorophores allows for the design of antibody panels that can capture up to 1 ·102

features per cell [46].

Resolving total protein level information in single-cells is in itself incredibly

useful, but MC also excels at resolving post-translational modifications (PTMs)

[47]. PTM information often determines a cell’s state in relation to the cell cycle, as

this process is not really regulated at the gene level but rather by a tight control of

different PTM-driven checkpoints [48]. This capability also allows for in-depth study

of intracellular signalling networks, DNA-damage responses, and apoptosis; having

already been used to characterise both cell-state and oncogene- and stroma-driven

signalling changes in murine CRC organoid models [4].
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Coupled with a custom multiplexing platform [2] MC technology can analyse

extremely wide experimental systems covering a large number of conditions and

replicates, which proves especially useful for drug screening applications [3].

However, while powerful in the study of intracellular signalling, mass cytometry

struggles to resolve intercellular communication through the complex extracellular

interactome of ligands and receptors. In contrast, single-cell RNA sequencing tech-

nologies can prove extremely useful for this purpose, especially when combined with

intercellular cell communication databases such as CellChat [49] and CellPhoneDB

[50].

1.3.2 Single-Cell RNA Sequencing (scRNA-seq)

With the advent of next-generation sequencing (NGS) technologies, bulk-based RNA

sequencing approaches were devised that could capture genome-wide transcriptomic

information from a whole sample. This mature technology enabled key discoveries

across a variety of fields, including tissue development and cancer biology, but its

inability to resolve individual cells and their states is a key limitation in systems

with complex transcriptional dynamics and multiple cell types [51]. scRNA-seq

overcame this issue by capturing transcriptomic information at the level of individual

cells. Now, a collection of discrete transcriptomic profiles can be pieced together to

recapitulate continuous differentiation trajectories, or complex heterocellular systems

could now be resolved into their individual cell types [52]. However, while powerful,

scRNA-seq comes with significant technical challenges and costs.

Figure 1.4: Droplet-Based Single-Cell RNA Sequencing. Microfluidics platforms barcode
single-cells via cell-bead droplet encapsulation. Barcoded cells are sequenced
to generate count matrices. NG, next-generation (sequencing). RT, reverse
transcription. UMI, unique molecular identifier.
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Mature and highly optimised microfluidic droplet-based approaches tend to

dominate the commercial market, with 10X Genomics offering commercial products

[53] that perform the best in terms of UMI and gene / cell detection whilst being a

high-throughput application [54].

Droplet-based scRNA-seq methods work by encapsulating individual cells and

uniquely tagged beads into water-in-oil droplets, where the cells and beads constitute

the dispersed phase and the oil forms the continuous phase encapsulating the droplets

[9] (Figure 1.4). During amplification using the poly-A tail capture primers (Figure

1.4), a unique cellular barcode is added and shared across all products from a single

droplet, and a unique molecular identifier (UMI) is also added as a transcript-specific

tag before amplification. Resolving the single-cell level data then relies on only one

cell being present in each droplet, so to avoid duplicates a significant percentage of

droplets are left empty [55]. scRNA-seq methods are also characterised by dropout

effects, as they capture genes with relatively low yields, resulting in sparse and noisy

datasets [56].

Despite their good performance and field dominance, high throughput droplet-

based microfluidic scRNA-seq approaches still represent a significant monetary

burden due to library preparation, which negatively affects scalability and might

even, in extreme cases, jeopardise scientific validity by potentially constraining the

presence or number of replicates [57].

To overcome this burden, there has been an emergence of microfluidic-free

approaches in recent times. Clark et al. recently developed PIP-seq [58], a droplet-

based approach based on vortexer emulsification that aims to reduce costs and

protocol complexity. By contrast, split-pool barcoding approaches do require a

considerable amount of liquid handling steps but promise incredible scalability by

using combinatorial split and pooling steps to uniquely barcode at once all cells

within a sample [59].

In the context of CRC, scRNA-seq has been widely used to describe intestinal

epithelia in situ [52] and even in organoid models, but to date no systematic analysis

of colon epithelia across multiple perturbation axes capturing both CRC oncogenic
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status and changes in the TME has been performed.

Also known as massively parallel methods, NGS transcriptomics requires the

isolation and lysis of cells, reverse transcription of their RNA into cDNA, and

then amplification to generate sequencing libraries (Figure 1.4). Despite being

relatively mature technologies, it is still an advancing field, with costs reduction

following Moore’s Law during the last decade [60]. Emerging third-generation

sequencing technologies [61] are capable of sequencing at the single-molecule level

and generally produce reads that are longer than those of NGS approaches [62, 63].

Able to also measure multiple omic layers [64], they are poised to challenge the more

common NGS technologies in the future.
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1.4 Single-Cell Omic Data Analysis
Single-cell technologies generate omic scale profiles at the resolution of individual

cells, so that complex heterocellular systems like organoids or in vivo tissues can be

profiled. However, these approaches produce extremely high dimensional datasets

due to the large-scale nature of omic data and the single-cell resolution of the

technology. Although the large amount of data generated certainly does present a

technical challenge, it also allows for a myriad of complex analytical approaches

that leverage its complexity and depth to the fullest extent [65, 45].

1.4.1 The Three Axes of Dimensionality

Figure 1.5: The Three Axes of Dimensionality. Omic data presents with unit, feature, and
condition spaces that inform the concept of data meta-dimensionality.

Within the context of omic approaches, data dimensionality can be thought of three

distinct axes; 1) the number of features to be measured, such as genes or proteins, 2)

the number of units whose features are measured, and 3) the number of conditions,

groups of units representing a particular biological setting [45]. Thus, a concept of

meta-dimensionality is useful to refer to all axes at once. The unit of measurement is

dependent on the methodology used, with bulk methods measuring at the level of

whole samples whereas single-cell approaches resolve individual cells. Some spatial

omic methods fall somewhere in between bulk and single-cell approaches, examining

specific regions of a sample containing a small number of cells [66, 67, 68].

Thus, single-cell approaches can generate extremely high-dimensional datasets

due to the large-scale nature of omic data and the single-cell resolution of the

technology. This presents new data analysis challenges that are further compounded
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when applied to highly scalable models such as organoids that allow for high numbers

of conditions to be measured. Machine learning approaches and dimensionality

reduction techniques are thus commonly applied to extract meaningful information

from high dimensional single-cell data, and, while there is still no uncontested

consensus, the more common approaches will be discussed below.

1.4.2 Data Integration

The essence of data integration is the merging of multiple discrete datasets, and

their applications range from batch correction to disjoint cross-modality integration,

where modality refers to different sets of measures generally across different omic

fields.

Of the different types of integration tasks, the most common is between datasets

with feature overlap but different units (cells) being measured. This type of inte-

gration is needed when datasets are acquired as different events, where generating

a combined feature space onto which the cells are projected is relatively straight-

forward (if indeed necessary at all) and the goal is to remove any technical noise

while conserving the biological signal. Data integration approaches range from sim-

ple linear methods like mean-centring adjustment commonly used for batch effect

correction [69], to more complex approaches such as canonical correlation analysis

[70] which uses shared anchors to integrate datasets with partially overlapping fea-

tures. With the later having a tendency towards over-smoothing biological signals,

recent methods like STACAS [71] have been proposed to integrate samples with

heterogeneous cell states that might only partially overlap.

Alternatively, sometimes it is necessary to integrate across datasets joint along

the cell axis but with different feature sets. A quite common occurrence when

dealing with multi-modal techniques, this task can be approached in several ways.

The oldest approaches attempted to map the modalities into a shared feature space

using cross-omic prior knowledge [72], but these have mostly been replaced by

techniques that consider the different modalities to be representations of the same

underlying manifold, thus attempting to align the two spaces with techniques such

as optimal transport while also optionally incorporating prior knowledge [73, 74].
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Finally, the most challenging integration tasks are those in which there is no

overlap between feature or unit spaces. In these cases, integration relies on the

assumption that the cells analysed belong to the same underlying manifold of cell

states (i.e. they are different snapshots of the same biological process being sampled),

and allows for in silico generation of cross-omic integrated space from multiple

disjoint unimodal datasets and atlases [75, 76, 74].

1.4.3 Common Practices for Data Analysis

Analysis of single-cell omic data is a growing and mostly non-standardised field

where a myriad of tools and approaches have been proposed to leverage rich and

high-dimensional single-cell omic datasets. Structurally, it is commonly divided

between pre-processing and downstream analyses, and while there are some general

guidelines and approaches pervasive to the field [77, 78], even very established tenets

like the unsupervised clustering of cells continue to be debated.

Pre-processing of the data encompasses from more upstream tasks such as

sequence alignment and feature normalisation, to further downstream steps like data

integration (Figure 1.6A), commonly done after a certain degree of exploration of

the feature and unit spaces. In the case of scRNA-seq, the first step is to align the

sequenced reads against a transcriptome of reference [79, 80]. This process enables

the generation of a count matrix that represents the unit X feature space, i.e. the gene

expression detected for each gene (feature) on each cell (unit).

Once the cellX f eature matrix has been generated, filtering-based quality con-

trol (QC) is performed, whereby cells that do not meet thresholds set on the feature

space are removed. Commonly, as part of QC protocols doublet and apoptotic or

otherwise compromised cells also get removed. The filtered data is then transformed

and scaled to account for factors that might obscure biological signals, such as

differences in cell metrics or feature detection capabilities and sequencing depth.

These normalisation steps vary according to the data being analysed, so that for mass

cytometry datasets intensities are usually normalised used an inverse hyperbolic sine

transform (asinhx) with a co-factor of 5 [81, 82]. For scRNA-seq the approaches

range from simpler (and seemingly more robust) log-based transformation [83] and
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depth-based normalisation [84], to more complex methods like SCTransform [85]

that use Generalised Linear Methods with Pearson residuals and are able to regress

out unwanted sources of variation.

Feature selection is a common pre-processing step that precedes downstream

analysis. In the sequencing field, feature selection is commonly limited to selecting

highly variable genes, as it is assumed that those will carry relevant biological

information and will also speed up compute time by limiting the large feature space.

In less feature-rich omic technologies, such as mass cytometry, the aim of feature

selection is rather a temporary process wherein certain features are used to determine

a specific metric (such as nested Boolean gating of cell-cycle associated PTMs

to determine cell-state [86, 4]). Often times it is done in conjunction with the

normalisation steps commonly performed upstream (Figure 1.6A).

If relevant, data integration is commonly performed after the QC and normalisa-

tion steps, most commonly with the aim of either removing batch effects between

samples or to generate a shared feature space across modalities [74].

Dimensionality reduction (DR) techniques aim to reduce the complexity of the

the data while still preserving as much information as possible. If we consider that

individual cells belong to a manifold where local structure can be mapped to an

Euclidean space our aim would be to preserve distances between cells both in this

local space but also at the global level across distant points in the manifold. Principal

Component Analysis (PCA) [87, 88] was defined in the pre-computational era of

the early 20th century and is still commonly used due to its simplicity and speed.

However, PCA is only capable of capturing linear relationships, and thus is generally

used as an intermediate DR approach where high dimensional data is compressed to

a feature space of 1 ·101 to 1 ·102. Later DR approaches aim to capture non-linear

relationships and to better reflect the underlying manifold, and include methods like

Diffusion Maps [89], t-SNE [90] and UMAP [91]. While these methods are able to

preserve local distances from the manifold in the embedded space, in recent years

there has been a push towards consistently preserving global manifold structure too.

Methods like PHATE [92] and its multi-scale derivative [93] represent some of those
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efforts that have been developed specifically for the field of single-cell omic data.

Figure 1.6: Common Practices for scRNA-Seq Data Analysis. A) Pre-processing steps
encompass from alignment of sequencing data to normalisation and data integra-
tion methods. B) Single-cell omic data analysis aim to resolve structure in either
the cell or feature spaces. k-NN, k-Nearest Neighbours. LR, ligand-receptor.

Downstream analyses vary in both aims and methods used, so much so that

there is no uncontested gold standard data analysis workflow [94]. Despite this, all

approaches tend to share a common purpose in finding structure in either the feature

space (i.e. genes in scRNA-seq) or the cell space (Figure 1.6B).

Determining structure in the unit (cell) space generally translates to identifying

a cell’s state or type. This is commonly accomplished via unsupervised clustering

methods that group cells based on their location within a k-Nearest Neighbours
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(k-NN) graph that captures their transcriptional similarities. The output of these

community detection algorithms [95, 96] is indeed unsupervised, but clusters are

most commonly presented as annotated entities (sometimes via merging/splitting

of unsupervised clusters) through manual approaches that require prior biological

knowledge and curation based on known cell markers, or through reference mapping

and label transfer from annotated atlases [76]. Clusters are thus discrete groups

of cells (be it types or states), so to attempt and reconstruct the structure of the

continuous biological process being studied, trajectory inference methods such as

Slingshot [97] and PAGA [98] have been developed. These trajectories are mapped

onto an inferred pseudo-time axis, and this process can be further complemented by

RNA velocity. RNA velocity [99] is a method that refers to the usage of splicing

kinetics to model transcriptional dynamics and infer vectors of tanscriptional change

(i.e. the direction and rate of gene expression change) along the manifold of cells.

These vectors can either be used on their own to infer a pseudo-time axis [100], or

act as an input layer for further downstream analyses that attempt to determine cell

fates (as opposed to or in addition to cell states and types) [101].

Compositional analysis refers to the methods used to explain how structure

in the cell space is affected by perturbations under different conditions. The first

single-cell omic studies presented relatively simple experimental designs (due to

high costs and low throughput), and thus their work tended towards the description

of a particular condition. However, as technologies have advanced and costs have

trended downward, more complex experimental designs have emerged where it is

pivotal to model and quantify the effects of perturbations (e.g. mutations and drug

treatments in the context of CRC). Hence the emergence of compositional analysis

methods in recent times, such as Differential Abundance [102, 103], MELD [104],

and TrajectoryNet [105]. Furthermore, there are also a set of approaches to in silico

model perturbations that were not part of the experimental design [106, 107, 108],

but these methods tend to struggle when modelling genes with low expression values.

While trajectory analysis and RNA velocity are extremely useful for determining

cellular dynamics in a differentiation setting, a cell-based metric of pluripotency is



1.4. Single-Cell Omic Data Analysis 44

also of special interest to discern stem cells from differentiated cell fates. To this

end the concept of Signalling Entropy Rate was postulated [109], which argues that

the higher the entropy of a cell’s transcriptomic profile, the less differentiated and

thus higher pluripotency degree it presents. Currently there are several methods

to estimate cell pluripotency from scRNA-seq data, most relying on signalling

entropy rates and computationally faster approximations like the degree of correlation

between the transcriptome and Protein-Protein interaction matrices [110, 111, 112].

Exploring the structure within the feature space is key towards understanding

the biology at a mechanistic (and not just descriptive) level. In the context of scRNA-

seq, structure in the feature space is commonly determined through differential

gene expression (DE), which determines the degree and statistical significance

of changes in a gene’s expression across individual cells or groups of them (e.g

conditions, labelled cell identities or cellular neighbourhoods). The most common

DE methods are pseudo-bulk approaches derived from the mature field of bulk

sequencing [113, 114] or population comparison tests like the Wilcoxon signed-rank

test. These methods are commonly applied to compare clusters, in which case

they generate a list of markers characteristic of each cluster/population, but might

also be used to compare conditions or even cellular neighbourhoods [115]. The

resulting gene markers can then be passed through Gene Ontology [116] and pathway

databases [117, 7, 118], or Gene Set Enrichment Analysis tools [119] to identify

putative biological processes for each cell group.

Much like in the context of cell structure, k-NN graphs of genes can also

be constructed from either interaction databases or gene expression data. These

graphs can then be used to determine gene modules and gene regulatory networks

[120], and represent a relatively unexplored avenue for emerging methods when

compared to the much more common cell-graphs. Cell-to-cell communication

tools also leverage these interaction databases with the aim of inferring cellular

interactions through the co-expression of ligands, receptors, and other interaction

member genes [121]. Methods like CellPhoneDB [50] and CellChat [49] predict

ligand-receptor interactions by identifying clusters of cells that express receiving or
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sending members of the interactions, and can be used together with spatial studies

to refine their predictions [122, 123]. Given the broad diversity in methods for

determining an interaction and the different interaction databases used, ensemble

methods such as LIANA have been designed to aggregate often conflicting cell-cell

communication results [124, 125].

1.4.4 Limitations and New Avenues

Accessibility and scalability advancements to single-cell multiomic technologies are

empowering a complex and multifactorial view of cell identity. This is especially

relevant in the field of cancer research, where our understanding is shifting from the

canonical genotype-driven cancer cell state toward plasticity-driven phenotypes.

However, this nuanced view of cell identity clashes with the concept of cluster

derived cell types, especially those derived from transcriptomic data that could be

argued are better suited to capture a cell’s state. Furthermore, our understanding of

biological processes wherein cells represent individual points along a continuum

is not really suited to discrete cluster-based groups. In response to this necessity,

there has been a series of emerging cluster-free approaches, such as the concept of

cellular neighbourhoods as applied by John Marioni’s lab, or the notion of cellular

archetypes and metacells. The cellular neighbourhood approach was first imple-

mented as miloDA in the context of compositional analysis [103], and has recently

been adapted for DE tasks [115]. They iterate on the concept of clusters defined on

a k-NN graph to that of cellular neighbourhoods; which both contain fewer cells

than a typical cluster and can overlap over the same regions of the graph. Cellular

archetypes and metacells represent a more orthogonal way of tackling the limitations

of cells clusters, as rather than aiming to capture discrete cell types they aim to cap-

ture cell states [126, 127]. Thus, within each metacell state, all cells should ideally

represent the same biological state defined by a unique profile of gene regulatory

programmes and only be distinguished by technical noise. With new methods devel-

oped to address multiomic data and cross-patient integration [128], metacell-based

approaches appear perhaps poised to replace the ubiquitous unsupervised clustering

approaches. This view of cells as landmarks on a continuous landscape is far from a
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novel concept. In the mid 20th century, Conrad H. Waddington illustrated the process

of an epigenetic landscape where pluripotent cells would roll down into valleys of

terminally differentiated states [129]. However, his effort and subsequent ones since

then have mostly been of a rather subjective and artistic nature. Reconstructing such

landscapes from biological data is not an untenable task anymore, as omic profiles

from single-cells can be embedded together and mapped onto a 2D space. Sculpted

by cellular pluripotency metrics, such landscapes have already been proposed, but

used embedding spaces that do not accurately reconstruct a continuous space that cap-

tures global structure and did not leverage information on transcriptional dynamics

[130].

The idea of cell-cell graphs derived from gene or protein data is also central and

common to virtually all single-cell omic analyses, including scRNA-seq and mass

cytometry. k-NN graphs of feature nodes however are a less exploited niche, often

relegated to the study of gene regulatory networks and systems biology approaches.

However constructing such graphs is not a trivial task, for coexpression metrics

generally do not capture gene-gene interactions, most gene regulatory networks

do not account for directionality [131], and curated interaction databases [7] are

not consistently analysed in a directed way. Hence I explore a novel approach of

assembling directed gene-gene knowledge graph (KG)s and then projecting cells into

the graph based on their transcriptional profile, thus treating the cells as signals on a

gene graph. Similar methods with comparable goals are emerging [132], suggesting

a neeed for further method development in this field.
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1.5 Hypothesis and Aims
Organoids represent a robust model able to recapitulate CRC dynamics and its

interaction with the TME. The high dimensional information captured by single-cell

omic approaches and the diverse field of analyses promise the potential of untangling

and describing even the most complex of biological processes. In light of this, I

hypothesise that colon-epithelia polarisation by endogenous and exogenous cues

can be described using single-cell analyses of organoids.

First I present my efforts identifying and solving gaps in the method space

that can facilitate mass cytometry analyses broadly. In Chapter 3 I introduce CyG-

NAL, a workflow that aims to facilitate standard MC data analysis steps for a

non-computational audience. Additionally I also discuss and showcase the use of

machine learning approaches to automate cell-state classification for MC data.

To test the main hypothesis I aim to perform a comprehensive and state-of-

the-art single-cell analysis of CRC organoids to: 1) systematically describe the

colon epithelial stem regulation, and 2) in silico infer mechanisms of regulation that

have been subsequently tested in vitro by colleagues [1]. Chapter 4 presents the

main corpus of results from this analysis. In Chapter 5 I present a novel method

to generate data-driven Waddington-like landscapes that capture the underlying

continuous processes of transition and differentiation, and I demonstrate how they

can be used to model the landscape of colon epithelial stem regulation.

Finally in Chapter 6, I further my aim towards solving a lack of methods for

both intra- and inter-cellular communication analyses by exploring a KG-based

approach to study cell communication in organoid-fibroblasts co-cultures. Appendix

A presents pyKrack a standalone tool and package for computing hierarchy scores

on directed graphs, such as a cell-communication interaction graphs.



Chapter 2

Materials and Methods
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2.1 CyGNAL

CyGNAL Main Folder

Analysis
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Figure 2.1: CyGNAL Directory Tree.
Main steps are in the code
directory, with Input/Output
achieved through the data
and analysis folders.

Written mainly in Python and R, CyGNAL

(CyTOF SiGNalling AnaLysis) is a pipeline

constituted as a series of core scripts within

the code directory. Considered as the main

steps of CyGNAL, these scripts have been

numbered according to the canonical order

within CyGNAL’s workflow. The first script

handles data pre-processing and must always

be run. The second script embeds cells

in a two-dimensional UMAP space. The

third and fourth steps compute the EMD

and DREMI scores, which can then be visu-

alised using either Heatmaps in step 5v1 or

as through PCA in step 5v2.

Python modules containing function

definitions are kept within the aux directory,

while the utils directory contains optional

steps and utility scripts for data handling.

The resulting modular structure allows for

general utility functions used throughout

CyGNAL to be defined once within a sin-

gle file. Data ingestion and egestion is done

through a series of input and output directo-

ries, either specific to each of the main steps

or common for all scripts within the utilities

folder.
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2.1.1 Deployment and Dependencies

CyGNAL is intended to be deployed as a non-standardised pipeline by cloning the

directory to a local machine. However, to minimise any possible dependency issues,

CyGNAL includes a Conda environment YML file. Conda (anaconda.org) is a

package and environment management system that works with multiple programming

languages, including Python and R. Hence, with the included YML file, a software

environment with all of CyGNAL’s R and Python dependencies might be replicated

in a single step.

However, there are cases when the Conda environment fails to solve and a

suitable environment can not be generated, such as when using different compute

architecture. For these instances I have also prepared a containerised distribution

method using Docker [133]. Based on an x86 Debian Linux container, CyGNAL’s

container automates the process of creating a Conda environment with all required

dependencies on platforms with a different architecture like ARM-based Apple

Sillicon.

This container is hosted on Docker Hub and can be pulled from

docker.io/ferranc96/cygnal:one.

Running CyGNAL from the Docker container only requires of two additional

steps:

• Pull CyGNAL from the GitHub repository, place it in your home directory (i.e.

~), and rename the CyGNAL folder to CyGNAL docker.

• Run the following command on the host terminal:

docker run -v ~/CyGNAL docker/:/usr/app/CyGNAL -it

--entrypoint /bin/bash -p 12241-12252:12241-12252

docker.io/ferranc96/cygnal:one.

• Use CyGNAL commands on the container terminal as by running the individ-

ual python scripts in the code directory.

The docker command above runs a live terminal on the container with a Conda

environment that already contains all necessary dependencies. Communication with

anaconda.org
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Function Main Regex Description

rename columns (__[a-z].*$|

__\d.*$|

_\(.*$|

___.*$)

Expression catches badly formatted
channel names with doubled or tripled
underscores, so that the function can
simplify channel names.

filter columns ^\d+[A-Za-z]+$ Pattern that matches a string that starts
with one or more digits followed by
one or more letters until the end of the
line.

Table 2.1: Pre-Processing Regular Expressions. Column renaming and filtering is
achieved via regular expressions for fuzzy text and pattern matching.

the host machine is done via the shared directory in /CyGNAL docker (i.e. where

you will need to input data and fetch CyGNAL’s outputs), with open ports to access

the Heatmap and PCA shinyApps. It is important to note that on first run it will take

some time to pull the image ( 1.5GB), and that alternative container tools such as

Podman (podman.io) should work but are not officially supported.

Furthermore, should the user encounter any issues while using CyGNAL, the

Python script dependency troubleshoot.py should help locate and report to the

user any missing dependencies.

2.1.2 Computation

During the pre-processing step CyGNAL loads in mass cytometry files either as

tab-separated plain text format or in the Flow Cytometry Standard (FCS) format

(FCS)[134]. Intercompatibility between both formats is ensured using the Python

packages fcsparser[135] and fcswrite[136], and the R package flowCore[137]. In

addition to ensuring format consistency and allowing for datasets to be saved in either

format, during the pre-processing step channel names are parsed to; a) eliminate

empty channels; b) clean up double spaces and underscores; and c) ensure each cell

has a unique ID encoded in a new column called “Cell Index”. This is accomplished

using the rename columns and filter columns functions via regular expressions

(Table 2.1).

Finally, this first pre-processing step also writes to disk a panel markers.csv file

containing those columns present in the dataset that were identified as markers (i.e.

podman.io
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where the channel name is composed of an isotope and an antibody or other cellular

marker. The panel markers.csv file can then be used by the user to filter out certain

channels for downstream steps.

CyGNAL’s Universal Manifold Approximation and Projection (UMAP) cal-

culation uses the umap-learn package [91] to embed the cells in a 2-dimensional

space. The embedding is computed using the set of markers defined by the user

in the panel markers.csv file and can be calculated on either just one processed

dataset or a series of datasets as long as they have shared markers in their panel. The

resulting coordinates are appended as a new pair of columns to the original datasets,

facilitating visualisation of this space elsewhere by the user.

EMD stands for Earth Mover’s Distance and is named so because it can be

intuitively thought of as the amount of work required to transform between two piles

of earth, where work refers to the mass of earth to be moved times the distance. Also

known as the 1st Wasserstein distance (W1), it is defined between two 1D arrays of

measured values u and v as:

W1(u,v) =
∫ +∞

−∞
|U −V |

Where U and V are the cumulative distribution functions of u and v respectively.

Applied to the mass cytometry datasets in CyGNAL, I score each marker

(chosen via the panel markers.csv file) based on its distribution of intensities in a

variable dataset (u) when compared to a particular reference (v, either defined from

the sum of all datasets imputed or a particular dataset selected by the user). The

absolute value of the distance metric is then signed based on the median values of

the variable and reference distributions in order to assign a direction to the changes

observed that can then be interpreted in a biological setting (e.g we want know how

much the apoptotic marker cCaspase 3 [D175] changes between a condition and the

control, but also where its median intensities are higher).

Described in Van Djik et al. [138], k-NN conditional Density Resampled Esti-

mate of Mutual Information (DREMI) is a mutual information metric that reflects

how informative the distribution of intensities for marker A is in describing the
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intensities of maker B (i.e. I(A|B) ). Unlike the EMD scores that compares across

conditions then, DREMI is computed on a per condition basis, where each of the

possible combinations of markers in panel markers.csv is scored.

Both the EMD and DREMI scores are computed using the Python package

scprep [139], and the outputs of both scoring systems are saved as plain text files

that can be plotted using CyGNAL’s visualisation steps below.

It is important to note that for calculating the EMD and DREMI scores and

computing the UMAP space, the data is by default normalised using an inverse

hyperbolic asinhx transform with a co-factor of 5. However, the user is prompted

to override the default behaviour if so desired, and the co-factor value can be easily

changed within the various scripts.

2.1.3 Visualisation

CyGNAL automates and allows for the user to visualise both EMD and DREMI

scores in an interactive manner via Shinny-Apps [140].

The Shiny-Apps are contained within R files loaded from the last main scripts

of the CyGNAL workflow. For this, user defined arguments in the python scripts

need to be parsed to the R Shiny server when it is called through bash using Rscript.

The first of the visualisation scripts generates a series of heatmaps using the

ggplot [141] and ComplexHeatmap [142] packages. These heatmaps show the

relevant scores; with the names of the datasets used in the calculation step as

columns in the horizontal axis and the names of the markers in the vertical axis

as rows. Colour ranges, columns, and rows shown can all be tweaked by the user

through the graphical interface. The second of the scripts computes a PCA on the

scores using the FactoMineR package [143], treating each of the datasets used in the

calculation as observations and the scores for the markers (or marker pairs in the

case of DREMI) as variables. In all cases, all plots generated can be saved as images

for later use, and within the PCA Shiny-App the computed PCA coordinates can

also be downloaded to facilitate custom generation of plots elsewhere.
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2.2 Cell-State Random Forest Classifier

2.2.1 Design and Architecture

The cell-state classifier built uses the scikit-learn Python package [144] to train a

Random Forest classification algorithm and assign cell-state labels to mass cytometry

datasets. A Random Forest (RF) algorithm is based on a series of decision trees,

simple non-parametric models that predict the class of an observation by learning de-

cision rules inferred from the data during training. By using a randomised collection

of these trees (i.e., a forest) the RF palliates the tendency of decision trees towards

overfitting while at the same time reducing the variance of the results. This is so

because each of the individual trees sees only a subset of the data, hence they built

different models. Then, being an ensemble method, when each datapoint is passed

through them all, a majority vote decides on the class given.

Hosted in https://github.com/FerranC96/C_StateML, this cell-state RF

classifier consists of two Python scripts and shared auxiliary functions. The first of

the scripts is used to train a model from labelled data and report on its performance

against validation and testing datasets. Default parameters are used for the Random

Forest (except for an increase in the number of decision trees to 480), and the cell-

state classes in the training data are balanced by donwsampling to the least common

state. Pre-trained models are also included in the repository as will be detailed below.

Balancing classes is done to ensure that all cell-state classes are trained using the

same number of cells and so that performance metrics such as F1 scores, which are

vulnerable to imbalanced classes, can be used.

The second script is used to run a saved RF model through new mass cytometry

datasets to label and assign a state to each cell. While designed to work with

unlabelled data, if the input data is already labelled this script also reports on the

model’s performance.

Performance evaluation is reported both as text and in the form of plots, and

consists of; 1) confusion matrices, 2) log losses, 3) precision, recall, and F1 scores

for each class.

https://github.com/FerranC96/C_StateML
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For class c, let:

precisionc =
T Pc

PredPc

where precision is also known as Positive Predictive Value, T Pc is the number of

true positives, and PredPc the number of predicted members in c,

and let

recallc =
T Pc

Pc

where recall is also know as True Positive Rate and Pc is the number of cells in c,

the F1 scores for each class c are defined as the harmonic mean of the precision

and recall of c so that:

F1 = 2
precision · recall

precision+ recall

Before both training and evaluation the data is assumed to be in the form of raw

intensities and gets transformed using an inverse hyperbolic asinhx transform with a

co-factor of 5.

2.2.2 RF Classifier Models

Figure 2.2: Training Random-Forest Cell-State Classifiers. A) 5-marker model trained
with intestinal organoids and, B) structure of a single tree. C) 10-marker
model trained with intestinal organoids and, D) structure of a single tree. E)
Comparison of feature importance between the models. MSS, micro-satellite
stable.

This classifier implementation was used to build two models distinguished by the

features they use and the type of epithelial cells they were trained on.
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Marker Specificity Model
pRB [S807, S811] Proliferating cells 5-marker, 10-marker
pAKT [T308] PTM in the mTOR pathway

(proliferation)
10-marker

pP38 [T180, Y182] PTM promoting β-cat activa-
tion (proliferation)

10-marker

pHH3 [S28] M-phase 5-marker, 10-marker
PLK1 G2/M-phase transition 10-marker
Cyclin B1 G2 5-marker, 10-marker
IdU S-phase 5-marker, 10-marker
Geminin Negative marker of G1. Ex-

pressed in S-phase, G2, and
M-phase

10-marker

cCaspase 3 [D175] Apoptosis 5-marker, 10-marker
cPARP [D214] Apoptosis 10-marker

Table 2.2: Markers Used in the RF Models. Antibody markers and their targets used in
the two cell-state classifier models.

The simpler 5-marker model (Figure 2.2A) uses only 5 cell-state markers and

was trained using a balanced subset of cells from the Small Intestinal murine organoid

time-course experiment in Qin et al. [4]. This model uses the same exact antibody

markers as those used by Qin et al. to label cell-state via manual gates, namely: pRB

[S807/S811], cleaved Caspase 3 [D175], IdU, Cyclin B1, and pHH3 [S28].

The more complex 10-marker model was trained using CRC Patient Derived

Organoids (Figure 2.2C). With an updated panel, the markers used in the latest

models are a set of ten antibodies (the five markers from above plus cPARP [D214],

pAKT [T308], pP38 [T180/Y182], Geminin, and PLK1) with targets specific to each

of the six cell-state classes (Apoptosis, G0, G1, S-phase, G2, and M-phase). The

data used to train this model has been published in Ramos Zapatero & Tong et al. [3]

and belongs to an untreated monoculture replicate of PDO21.

Details on the markers used in the RF models, and the cell-state they are

associated with, can be found in Table 2.2.
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2.3 scRNA-seq Data Analysis
Work presented in this section has already been made public in Qin & Cardoso

Rodriguez et al. [1] (Appendix D). As a joint co-first authored paper, attribution is

shared between Dr. Xiao Qin and myself. While I carried out all of the scRNA-seq

Data Analysis presented in this Thesis, Dr. Xiao Qin was in charge of the murine

colonic organoid culture system and data acquisition via both scRNA-seq and Mass

Cytometry. The exact attribution for specific tasks is detailed in Qin & Cardoso

Rodriguez et al.

Aiming to provide additional context, the section below on scRNA-seq data

acquisition has been included despite Dr. Xiao Qin having carried-out the work. For

details on the organoid platform used and the general experimental setup see Qin &

Cardoso Rodriguez et al. [1].

2.3.1 Data Acquisition

In brief, the organoid heterocellular culture system was dissociated into single-cells,

FAC-Sorted for live cells, counted and fixed with methanol before scRNA-seq library

preparation. For co-cultures, different cell-types were mixed at equal cell numbers

prior to the fixation step. scRNA-seq libraries were generated with the 10X Genomics

Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual Index) and sequenced

with the Illumina NovaSeq 6000 System (2× 150 bp paired-end reads), aiming at

60,000 read pairs per cell and 2,000 cells per cell-type per sample. For more details

see Qin & Cardoso Rodriguez et al. [1].

2.3.2 Data Processing

The Illumina NovaSeq binary base call (BCL) outuput sequence files were converted

to FASTQ files and processed with the 10X Genomics Cell Ranger pipeline version

5.0.1 [145], which provides with a convenient wrapper for Illumina’s bcl2fastq tool

[146], cellranger mkfastq. Prior to alignment, a custom murine GRCm38-based

reference genome was generated using the STAR aligner [79] wrapper cellranger

mkref. By adding the sequences for DsRed and eGFP transgenes present in fi-

broblasts and organoids respectively, cell-type discrimination based on exogenous
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transcripts was facilitated. Then, alignment of the FASTQ files against this custom

reference was performed using the cellranger count pipeline, generating both

unfiltered and pre-filtered feature-barcode matrices.

The resulting feature-barcode matrices were analysed with the R package

Seurat version 4.0.4 [147]. The analysis pipeline encompasses quality control,

data normalisation, data integration, dimensionality reduction, cell clustering, and

analysis of differential gene expression. Genes found in less than 4 cells were

removed during QC and only cells with at least 600 unique genes identified were kept

for downstream analysis. The total number of detected reads per cell typically ranged

from 1,200 to 80,000, with the actual values manually determined based on dataset

sequencing depth and cell-type composition. Cell-type composition was considered

as the macrophages were observed to be captured less efficiently than fibroblast or

epithelial cells. For the integrated epithelial object in used throughout the analysis, an

additional filtering step was performed to remove cells with undetectable expression

for any one of the bona fide pan-epithelial genes Epcam, Krt8, Krt18, Krt19, Cldn7.

Doublet/multiplet filtering was explored using the scDblFinder package [148], which

has been designed to find heterotypic doublets such as those that could be present

in co-culture conditions. However, after the QC pipeline outlined above, the low

number and homogeneous distribution on 2D embeddings of the putative doublets

was not deemed convincing enough to warrant their removal.

The Seurat object, much like its SCE counterparts in R or AnnData objects in

Python, contains multiple layers where different barcodeX f eature matrices can be

stored. This is so it can accommodate for different normalisation methods and for

tools that expect raw or processed gene expression values.

Gene expression values were normalised for total counts, multiplied by a scale

factor of 1 ·104, and the expression values log transformed as X = log2(X +1). The

resulting normalised count matrix was used for methods that rely on the explicit

comparison or visualisation of gene expression.

An alternative normalisation approach was used as described in Hafemeister &

Satija 2019 [85]. Named sctransform (SCT) this method models both biological and
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technical variation using the Pearson residuals from a regularised negative bionamial

regression. The nature of this model allows for certain signals to be regressed out,

such as the percentage of mitochondrial transcripts over the total reads in a cell, or

for differences between cycling cells in different phase of the cell cycle. I computed

SCT normalised count matrices with 6,000 features and regressed out mithoncondrial

content and differences between cell cycle phases.

Cell Cycle scores were computed using the CellCycleScoring function from

Seurat (a wrapper for AddModuleScore) and a curated list of cell cycle genes shown

in C.3. By comparing how well a cell matches the G2 and M-phase signature, versus

a G1 and S-phase signature, cells could be classed into Dividing cells (Mitosis

and G2), Cycling (G1 and Synthesis), and Other (cells with low scores for both

signatures, most likely outside of the cell cycle). Differences between the Dividing

and Cycling groups were also regressed out when computing the SCT normalised

count expression data, as it was deemed that intra-cycle differences were not central

to the biological system being studied. This computation of cell cycle scores used a

custom table of cell cycle genes shown in Sup. Table C.3.

Throughout the study, steps that relied on building a k-NN graph or low-

dimensional representation of the data use either the SCT normalised data or the

SCT-derived integrated representation (see section below).

2.3.3 Integration

Dataset integration was performed using Seurat’s reciprocal PCA (RPCA) imple-

mentation [147] as it has been optimised to handle large datasets. RPCA works

by projecting the individual datasets into an other’s PCA space to identify cellular

anchors with shared neighbourhoods across projections. The integration itself is

described in Stuart et al. [149], so that new expression matrices in the integrated

space are computed based on the difference of expression matrices between anchor

cells. Inherently a pairwise process, integration of multiple datasets is done itera-

tively by pairs accordings to their pairwise distances. In this work I used the SCT

normalised data as the feature space to be integrated and ran default parameters but

for a k.anchor of 12. The integrated object presented in Figure 4.1 was computed
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using all cells from the 20 conditions shown in the figure, resulting in a total of

58,726 cells with the integrated assay limited to 2,000 genes. The integrated object

first presented in Figure 4.2 and found elsewhere across this work was computed

using just the epithelial cells from all conditions, resulting in an object with 29,452

cells limited to 4,000 genes. The respective integrated feature spaces were stored

within the integrated assay of the Seurat object.

The integration pipeline with anchors found via Canonical Correlation Analysis

was also tested, but as described in the literature, it was found to be less computa-

tionally efficient and appeared to smooth out and erase too much biological signal

[149].

When handling the aggregated data from multiple CRC patient cohorts presented

in Joanito et al. [6], where data integration was performed mostly for visualisation

purposes, the methods described above struggled to handle the high number of cells

present (>78,000 cells including projected organoid data). As one of the goals of

this data integration approach was to compare our murine organoids with human

samples, I used scVI [150], a Variational AutoEncoder approach that can be GPU-

accelerated and performs well on inter-species integration tasks [151]. Part of a

broader family of PyTorch-based methods for analysing single-cell omic data [152],

scVI learns a low dimensional latent space that can be used to compute 2-dimensional

embeddings of the data. Able to account for multiple quantitative and categorical

confounding variables, this method can also handle the projection of query datasets

onto an integrated reference. Cross-species data integration was thus achieved by

generating an integrated reference from the human CRC datasets (filtered to the

top 6,000 most variable genes) and projecting into it a humanised version of the

mouse organoid data from Figure 4.2. The integrated human reference was built

using unique patient identifiers as the batch key and controlling for the percentage

of mitochondrial reads in a cell. The resulting latent space was embedded into 30

dimensions. Humanisation of the mouse count matrix was accomplished via the

mousipy package [153], which facilitates the handling of mouse genes with multiple

human orthologues. Untransformed count data was used for the scVI workflow.
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2.3.4 Dimensionality Reduction

To generate the EMD PCA plots shown in Figure 4.1C I used the normalised

gene expression data of all cells of a particular cell-type (organoids, fibroblasts,

or macrophages) stored within the RNA assay of the integrated Seurat object from

Figure 4.1B. EMD scores for the top 6,000 variable genes of each condition were

computed with CyGNAL [154] using the relevant control condition for each cell-type:

WT monoculture for epithelial organoids, fibroblast monoculture for fibroblast cells,

and macrophage monoculture for macrophage cells. The collection of gene-specific

EMD scores for each condition was then used to compute a PCA space where each

dot represent a whole condition.

The standard pipeline for generating single-cell embeddings consisted of com-

puting a set of 50 to 100 principal components (PC) from a normalised count matrix,

from which 2-dimensional PHATE embeddings were generated with default pa-

rameters. PHATE was chosen as the default DR method for visualisation due to

its capacity to capture the global structure in biological settings with important

developmental trajectories [92]. In the context of integrated datasets via scVI, the

30-dimensional latent space was used to generate the PHATE embeddings. This

mid-dimensional PCA space was also used to compute most of the k-NN cell-cell

graphs used throughout the study.

2.3.5 Unsupervised Clustering and Differential Expression

Cell clustering was computed using the Leiden algorithm on the k-NN graph gener-

ated from the integrated epithelial dataset (first 48 PCs), at a series of resolutions

ranging from 0.2 to 0.8. The final cluster annotations were retrospectively defined

by curated cell-type marker expression (Figure 4.2C), inter-cluster relationships on

a multi-resolution clustering tree [155], and cross-condition differential abundance

behaviours (Figure 4.3). Cells from outlier clusters (totalling less than 1% of all

epithelial cells) were excluded from the downstream analysis (Figure 4.2A).

Differentially Expressed (DE) genes between clusters, conditions, and cell

neighbourhoods were identified using Wilcoxon rank-sum tests as implemented in

Seurat’s FindAllMarkers and FindMarkers functions. The Wilcoxon rank-sum test is
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commonly used in the field of scRNA-seq as a non-parametric test, albeit with the

assumption that the samples compared are independent. DE results are presented in

the form of log transformed fold changes in gene expression, with p-values adjusted

for multiplicity of tests.

Heatmaps of selected marker genes were generated with the R package Com-

plexHeatmap [156]. Gene lists in Figures 4.4 were curated from previously reported

markers for colonic epithelial subpopulations and DE genes detected between ep-

ithelial clusters, conditions, and DA neighbourhoods within this study. Gene lists in

Figures B.2, B.1, and B.3 represent DE genes between conditions.

2.3.6 Differential Abundance

Differentially abundant (DA) cell neighbourhoods were identified using the R pack-

age MiloR [103]. Milo works by constructing cellular neighbourhoods on a k-NN

graph. These neighbourhoods can overlap with one another, for cells may belong

to multiple neighbourhoods at once, and act as the basis of Milo’s compositional

analysis. By comparing the composition of these neighbourhoods in terms of a

categorical variable of interest (condition), Milo assigns them an enrichment score

(log Fold Change) according to the relative abundace of cells from the query or

control condition. Significance and regression out of technical and unwanted biolog-

ical variables is achieved though a Generalised Linear Model via the mature edgeR

package [113], and using the SpatialFDR metric (first described in Lun et al. [102]).

DA analysis thus allows for the detection of enrichment and depletion of epithelial

cell states caused by microenvironmental and/or genotypical perturbations in the

organoid system.

For the analysis shown in Figure 4.3A-B I set the DA test threshold at 5%

SpatialFDR. In the context of fibroblast regulation of the colonic epithelia, given

that CD34hi and CD34lo fibroblasts do not differentially regulate epithelial cells

(Figure B.2), all samples of WT organoid+fibroblast co-cultures were grouped and

considered replicates of the query condition regardless of the CD34 status of the

fibroblasts. AK and AKP organoid monocultures were also grouped due to their

similar DE and DA behaviour (Figures 4.4, 4.3C). The DA overview dot plot in Figure
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4.3C was generated by comparing the 17 conditions against the WT monoculture

control (2× replicates). Absence of replicates in this approach results in a lack

of relevance for the SpatialFDR statistic, and the control condition (1st row) was

populated with empty values for visualisation purposes.

The k-NN graphs used by Milo where constructed as detailed in the section

above.

2.3.7 Signature Score Correlations

By gathering more than 50 gene lists from the literature that describe key signalling

pathways and stem-related gut epithelia states [30, 157, 32, 158, 159, 160, 161, 162,

163, 164, 165, 166, 167, 168, 169, 28, 29, 170], I could put the results of this study

in context with a broader corpus of works in varied settings; such as human data,

cancer, or tissue repair processes. Gene lists for different intestinal stem cell-states

were compiled from public datasets, together with transcriptional targets of key

signalling pathways associated with the different stem cell-states. Gene identifiers

where transformed to murine Gene Symbols (to be compared with the features in the

sequencing dataset) by querying BioMart [171]. Metadata for the resulting compiled

list can be found in Sup. Table C.9.

These gene lists were compared with the curated gene signatures for prolifera-

tion, CSC, revCSC, and proCSC cell-states in Figure 4.4, as well as the top DE genes

for each stem cluster (adjusted p-value <0.01, log2FC >0.25, top 24 genes with the

greatest positive log2FC values). UCell scores for each gene set were calculated

using log-normalised gene expression values and z-scored to allow cross-signature

comparison.

The UCell [5] method was used to generate the correlation matrix between gene

signatures in existing literature and cell clusters identified within this study (Figure

4.7A). UCell uses the Wilcoxon rank-sum test, also known as Mann-Whitney U,

and a matrix of ranked genes (by expression) for each cell in the dataset. Given

a list of genes, UCell can then score how well each cell matches their expression.

Unlike Seurat’s AddModuleScore function (and its re-implementaion in scanpy), the

resulting scores are not normalised against a control gene set, making UCell scores
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impervious to dataset composition.

Pearson correlations were computed between the relevant scores (i.e. those

whose context refers to the stem compartment or key signalling pathways) on all cells

of stem and TA clusters and then visualised as a heatmap-like correlation matrix with

the corrplot package [172]. Signatures that did not have a SD deviation of scores

greater than 0.2 across the cells where excluded from the analysis (as they would

equally mark all states present in the dataset), and matrix entries where populated for

significant correlations (confidence level of 0.95). Finally, the matrix was ordered

and grouped via complete linkage hierarchical clustering (k=3).

2.3.8 Signalling Entropy and Pluripotency

Leveraging the concept that cells with a higher potency should have a higher sig-

nalling entropy [109], the pluripotency values for epithelial cells across the different

clusters were estimated using the R package SCENT [110]. Signalling entropy scores

for all epithelial cells in Figure 4.5A were determined via the CCAT approximation

method, which computes a Pearson correlation between a cell’s transcriptome and

the interactome as defined by the built-in net17Jan16 Protein-Protein interaction

network (derived from the Pathway Commons database). As the interaction network

is annotated with NCBI gene IDs, BioMart was used to translate them to MGI gene

symbols.

Being a method that is completely independent of any cell metadata, like clusters

or conditions, the resulting vector of CCAT scores was added as a new metadata

column to the sequencing dataset object and used to quantify pluripotency changes

in Figure 4.5B and as one of the components of the Valley-Ridge score (Chapter 5).

2.3.9 RNA Velocity and Cellular Dynamics

For RNA velocity analysis, loom files were generated from Cell Ranger’s output

using the command line interface tool velocyto [99]. The murine GRCm38 reference

was used, with the GRCm38/mm10 repeat mask assembly and the RepeatMasker

track. RNA velocity was analysed with the Python package scVelo [100] using close

to default parameters. Metadata and PHATE embedding coordinates were exported
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from the relevant Seurat objects to filter and annotate AnnData objects generated

from the loom files made by velocyto. Moments for the velocity estimation were

calculated using the first 50 PCs and 30 neighbours from the AnnData objects. RNA

velocities were computed with the recover dynamics function using the dynamical

model of transcriptional dynamics with default parameters. The velocity stream

embedding (Figure 4.5A) was computed using the integrated object containing

epithelial cells from all conditions. The RNA velocity vector lengths, an estimate

of a cell’s rate of transcriptional change, were computed using cells solely from

the 4 conditions shown in Figure 4.5C. The quantitative comparison in Figure 4.5D

was performed using the Games-Howell pairwise test wrapper from the R package

statsExpressions [173]. All conditions were compared against the WT monoculture

control and all p-values have been corrected for multiplicity with the Holm method.

Initial and terminal macrostates where determined using CellRank [101], which

leverages RNA velocity information to describe cellular dynamics. The matrix of

cell-cell transition probabilities was constructed as a weighted combination of the

transition matrix based on velocity directions (through the VelocityKernel class,

weight of 0.8) and a symmetric transcriptional similarity matrix (through the Connec-

tivityKernel class, weight of 0.2). Macrostates, and their transition probabilities, were

computed using the built-in Generalised Perron Cluster-Cluster Analysis (GPCA)

estimator. To find initial macrostates, inverse velocity vectors are used to assemble

the transition matrix by setting the backward argument to True when computing

the VelocityKernel component. Directed PAGA plots [98, 101] were computed so

that epithelial clusters are represented as nodes shown on top of a low dimensional

embedding and are connected by directed edges whose thickness represents local

velocity flows.

2.3.10 Cell-Cell Communication Analysis

Cell-cell communication inference was performed using the R package CellChat

[49], where stromal-epithelial signalling was analysed across 4 different organoid

genotypes (WT, A, AK, and AKP). CellChat uses a database of interactions between

ligands, receptors, and cofactors. Using cluster annotations and the gene expression
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matrix, interaction probabilities can be inferred between the different populations

using a permutation-based approach. The inferred interactions can the be grouped at

the pathway level, and functional analysis of the clusters can be infered via network

analysis methods.

Epithelial cells were annotated with the clusters previously identified (Figure

4.2A), while the fibroblasts were grouped as a single cluster. A merged CellChat

object was generated to compare relative communication probability of fibroblast-

to-epithelia signalling across the genotypes. Significant ligand-receptor pairs were

identified based on CellChat’s murine cell communication database. Plots displaying

aggregate outgoing and incoming communication probability (Figure 4.6A) were

generated with the netAnalysis signalingRole scatter function. Detected communica-

tion at the pathway and interaction level was accessed with the subsetCommunication

function and probabilities were z-score normalised to allow for cross-pathway or

cross-interaction comparison. The results were visualised with ComplexHeatmap

in Figure 4.6B, the rows of which were manually ordered based on hierarchical

clustering and grouped based on the nature of the interaction. Gene expression of the

ligand-receptor pairs identified above was visualised using Seurat’s Dotplot function

in Figure 4.6C. UCell scores for ligand and receptor genes were calculated for fibrob-

lasts and epithelial cells respectively and quantified in Figure 4.6D. Games-Howell

pairwise test was performed using the R package statsExpressions and all p-values

have been corrected for multiplicity with the Holm method.
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2.4 VR Score and Data-Driven Waddington-like

Landscapes
Work presented in this section has already been made public in Qin & Cardoso

Rodriguez et al. [1]. I am the author behind the Valley-Ridge (VR) score design and

implementation, including the python-based renders of the data-driven Waddington-

like landscapes.

Dr. Jeroen Claus however, kindly rendered the landscapes shown in Figure 6 of

Qin & Cardoso Rodriguez et al. using the professional rendering software SideFX:

Houdini. The exact attribution for specific tasks is detailed in the manuscript [1].

2.4.1 VR Score Computation

The VR score is cell-based metric defined as the weighted sum of the Valley and the

Ridge components (Figure 5.1):

V R = 0.9V +0.1R

where V is the Valley component and R the Ridge component.

The Valley component is computed as

V = med(CCAT )s,c

for each combination of sample (s) and cluster (c).

Let u be scaled representation of the velocity vector length for each cell ( 1
|v|),

and d be the scaled median L1 distance of each cell to all other cells from the same

cluster. d acts a cell centrality metric computed on a k-NN graph of a cluster PHATE

embedding, followed by the calculation of a shortest distance matrix (using the

graphtool software [174]) whereby cells with the lowest median distance would be

at a cluster’s centre whilst those with the highest distance would be at the cluster

periphery. Outliers with a distance over Q99 were set to the median distance. To

allow for inter-cluster comparisons, d was scaled for each cluster to the (0,1) range

with sklearn’s MinMaxScaler [144], whereas u was scaled at a dataset level using
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the same function. The Ridge component is then computed per each cell as

R = med(u)s,c ·d

This definition of the VR score allows the CCAT-based Valley component

to be the driving force for sculpting the landscape and the velocity-driven Ridge

component to predominately define local features at the boundaries between clusters,

producing a tarn-like effect symbolising a state of trapped cells in cluster whose

cells present low velocity vector lengths. In principle, any other dimensionality

reduction technique can be used in place of PHATE [130], and the Valley/Ridge

component can be computed using other metrics underpinning pluripotency and

cell-fate transition. The Ridge component can also be calculated with a distance-free

approach such as α-shapes [175]. Finally, the VR scores could be computed on a per

cell or neighbourhood basis, which would increase landscape resolution and liberate

the method from constraints of cluster definitions (at the expense of increased noise).

2.4.2 VR Landscape Projection

To generate the Waddington-like landscapes in Figure 5.1B, I combine the ability of

PHATE to capture the global structure of single-cell data with the VR score.

Waddington-like landscapes can be visualised directly in Python (Figure 2.3.

Briefly, a low dimensional 34x30 mesh grid was generated from the PHATE embed-

dings, and a 3D surface was rendered by projecting VR scores onto the grid using

the radial basis function interpolation from scipy [176]. The surface of the landscape

was coloured by VR scores and a scatter plot was overlaid where the elevation of

each cell was defined as the weighted sum of its VR score (weight = 0.9), CCAT

value (weight = 0.1), and a constant factor of 0.012 (weight = 1). This added a level

of controlled noise to the scatter plot while ensuring most cells remain above the

interpolated surface.

Finally, external software can also be used to render the data-driven landscapes,

as shown in Qin & Cardoso Rodriguez et al. where we used the 3D rendering

programmes SideFX Houdini and Maxon Redshift (Figure 2.3).
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Figure 2.3: Generation of Waddington-like Landscapes from scRNA-seq Data. Work-
flow for landscape projection using the built-in python-based method or the
alternative approach with Houdini. VR, valley-ridge.

2.5 Knowledge Graphs for Cell Communications

2.5.1 Sources and Assembly

Interaction information found in cell communication databases can be parsed and

formatted as a knowledge graph (KG). To assemble the custom Ligand-Receptor-

Target KG (LRT-KG) I accessed the CellChat [177] and NicheNet [178] databases.

Ligands and receptors were gathered from both databases, whereas transcription-

factor (TF) target genes were extracted from NicheNet’s. Formatted as lists of human

gene symbols, the three categories (ligands, receptors, and targets) were pruned to

ensure there was no overlap between them, simplifying the KG and enhancing its

hierarchical nature.

The KG was assembled as a table of relational triplet entries wherein a head

node interacts with a tail node via a relation edge. This relational information was

obtained from the Reactome database of curated pathways [118]. Assembly of the

KG was thus achieved by iterating through all possible head and head combinations

and creating a relation between them if both were found to belong to the same

pathway level in Reactome’s second level of pathway hierarchies.

The de novo assembled custom LRT-KG was compared with the popular curated

repository of cellular interaction knowledge OmniPath [7], which contains almost

four times the amount of nodes present in the LRT-KG but with a similar number of

relations, resulting in a slightly lowered average degree (Table 2.3). By processing



2.5. Knowledge Graphs for Cell Communications 70

Graph Nodes Edges Pathways Degree Hierarchy

LRT 2507 97054 23 77.43 1
Omnipath 9248 92262 NA 19.95 0.82
Omnipath
(pro-
cessed)

9248 94836 33 20.51 0.78

Table 2.3: Knowledge Graph Characteristics. Table comparing KG metrics between the
LRT-KG and the Omnipath repository. LRT (KG), ligand-receptor-target (KG).

the OmniPath database as detailed above and incorporating the pathway information

from Reactome we observe how the number of distinct pathways present is also

higher than in the LRT-KG, with 33 and 23 unique pathways respectively (Table

2.3).

Hierarchy of the assembled graphs was computed using my python package

pykrack (pypi.org/project/pykrack/), which computes the Krackhardt hier-

archy score for a given directed graph (see Appendix A for more details). The

OmniPath graph is highly hierarchical before and after processing, and the LRT-KG

hierarchical design results in a completely hierarchical tree-like structure (Table 2.3).

2.5.2 Embedding the Knowledge Graph

The table of relational triplets was then used to generate a KG using the MultiDi-

Graph() function from the NetworkX package [179], wherein multiple types of edges

(relations) connect nodes in a directed manner.

The resulting directed KG was then embedded into a lower 50-dimensional

space using the TransR KG embedding algorithm [180] as implemented in the

PyKEEN package [181]. TransR is a knowledge graph embedding approach derived

from the mature TransE algorithm [182] that better encodes complex relational

information.

The embedding space was learnt on GPU compute using an 80:10:10 train, test,

and validation split and otherwise default parameters. To visualise the embedding

the 50-dimensional space was embedded using PHATE (Figure 6.3), or projected as

a graph whose layout was determined via the Fruchterman-Reingold force-directed

pypi.org/project/pykrack/
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algorithm as implemented in NetworkX [183]. Metadata was then added to the node-

based embedding based on the presence of the gene symbols as ligands, receptors

or TF targets in the cell communication databases discussed above (Figure 6.3A).

Furthermore, pathway-level metadata from Reactome was also used to check for the

presence of genes in each of the Reactome pathways (Figure 6.3B).

2.5.3 Wavelet Transform and Data Projection

Through data projection I can evaluate omic profiles of cells as signals on a k-NN

graph derived from the KG embedding. First the k-NN graph is computed using

the sklearn package [144] (n neighbors = 5). Then, on each of the nodes of the

graph a wavelet bank is centred at and diffused at J scales, resulting on a flattened

nodeXwavelets matrix; wherein nodes equal the number of genes in the KG, and

the wavelet bank equals genes times the scale parameter J (with all data shown

using J = 4). A high-level overview of this process is presented in Figure 2.4,

where a single diffusion wavelet is shown centred around a particular node of the

Stanford bunny graph [184] (Figure 2.4A). A bank of wavelets at four scales (J = 4)

is computed for the different nodes of the graph (Figure 2.4B).

This wavelet computation is based on a python script kindly provided by Aarthi

Venkat from Prof. Smita Krishnaswamy’s lab at Yale University (Table C.2), which

implements the wavelet definition from Coifman & Maggioni [89] wherein a diffu-

sion wavelet transform is the difference between two scales of lazy diffusion on a

graph. github

To generate the projected cellXwavelets matrix I compute the dot product be-

tween the nodeXwavelets matrix and the cellX f eature count matrix with the numpy

package [185] (Figure 6.4B). The shared feature axis between the two matrices is

aranged by filtering and reordering the features in the gene count matrix to match

the nodes of the KG.

Resulting in a relatively high dimensional space (with cells on one axis and the

product of features and the wavelet scale J parameter on the other), PCA is applied to

the projected matrix and then a k-NN graph and subsequent PHATE embedding are

computed. The PHATE embedding serves as a useful non-quantitative way to com-
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Figure 2.4: Diffusion on KGs with a Bank of Wavelet Transforms. A) Wavelet transform
is centred on a graph’s node to diffuse a signal. B) Bank of wavelets at multiple
scales is applied to each node in the graph.

pare the projected data with the original count matrix-based embedding (Figure 6.4).

The projected k-NN graph can be used to quantitatively compare and benchmark the

method against a k-NN computed directly from the cellX f eature count matrix (Fig-

ure 6.5. Distances on the k-NN graphs were computed using the shortest path() func-

tion from the graphtools package (github.com/KrishnaswamyLab/graphtools)

and then aggregated at the cluster level by computing the mean distances from and

to each pair of cell clusters (Figure 6.5). To compare these inter-cluster distances

between the gene expression and LRT-KG projection spaces (Tables C.11 and C.12),

the distance matrices were scaled to (0,1) range using the MinMaxScaler() function

from sklearn and substracted to generate a matrix of distance differences (Figure

6.5B). Pearson correlation between the two unscaled distances for each cluster-pair

combination was computed with the scipy package (Figure 6.5C), and so was the

correlation between the distances and the aggregate communication probability score

for each cluster pair as defined by CellChat (Figure 6.5D).

github.com/KrishnaswamyLab/graphtools
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2.6 FAIR Spirit and Reproduceability
Furthering the spirit of shared scientific knowledge and collaborative research em-

bodied by the FAIR principles, data and code used to generate the analyses in Qin &

Cardoso Rodriguez et al. have been made public in various repositories. Further-

more, tools and outputs developed during my project and presented in this thesis

have also been made publicly available aiming to make my research FAIR: Findable,

Accessible, Interoperable and Reusable.

These outputs have been disseminated either as part of peer-reviewed pub-

lications such as CyGNAL in Sufi & Qin et al. [2], as software packages

like pykrack (Appendix A, ferranc96.github.io/pyKrack), in the form

of publicly accessible GitHub repositories (such as github.com/TAPE-Lab/

Qin-CardosoRodriguez-et-al), or even as entries in my personal blog (e.g.

ferranc96.github.io/posts/GSPw23).

For details on the software and tools used to write this thesis and make its

figures see Appendix F. The source code and original figure and data tables used to

generate this thesis are currently part of a private repository that will be made public

once the final version has been approved and entered UCL’s registry (github.com/

FerranC96/FerranCardoso_ThesisPhD).

ferranc96.github.io/pyKrack
github.com/TAPE-Lab/Qin-CardosoRodriguez-et-al
github.com/TAPE-Lab/Qin-CardosoRodriguez-et-al
ferranc96.github.io/posts/GSPw23
github.com/FerranC96/FerranCardoso_ThesisPhD
github.com/FerranC96/FerranCardoso_ThesisPhD
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3.1 Introduction
As outlined in Chapter 1, the Thiol Organoid Barcoding in situ (TOBis) mass

cytometry (MC) platform used to analyse the colorectal cancer (CRC) organoids is

already a mature approach. The effects of both tumour microenvironment (TME)

and genotypical pertubartions in this organoid system were already explored [4],

but data analysis was performed using custom and discrete scripts; encumbering

consistency and reproducibility for future analyses. Furthermore, the manual process

of cell-state annotation added further load to the analysis.

To improve upon this I have designed and developed CyGNAL (CyTOF SiG-

Nalling AnaLysis) [154], a pipeline for MC data analysis with a focus on studying

post-translational modification (PTM) changes across multiple conditions. CyGNAL

aims to streamline and bring to non-computational scientists analyses similar to those

shown in Qin et al. [4], with the addition of dimensionality reduction embeddings

and interactive visualisations. CyGNAL was published as part of Sufi & Qin et

al. [2] in conjunction with an updated TOBis custom mass cytometry platform for

organoids (Appendix E).

The maturity of the platform is also reflected on the properties of the markers

used in the MC panels, with the most robust markers achieving highly binary and

specific staining. Given the importance of cell state changes to perturbations in

the epithelial organoids, either in the form of intrinsic effects such as genotype or

extrinsic in the form of the TME or drug treatments, an automated approach of

labelling and assigning a cell state to each cell in an experiment would facilitate

routine analysis of MC datasets. I thus hypothesise that we can use a machine

learning approach to, using a series of canonical cell state markers, automatically

predict and label the hundreds of thousands of cells captured in an MC experiment.

To this end I aim to develop a Random Forest (RF) classifier. This classifier will be

able to ingest MC data and, using manually gated datasets with cell state labels as

training data, label each of the cells with one of six possible cell states: Apoptosis,

G0, G1, S-phase, G2, and M-phase.
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3.2 CyGNAL: CyTOF Signalling Analysis pipeline
Published and demoed as part of Sufi & Qin et al., CyGNAL is a publicly available

tool that is routinely used to analyse MC datasets both at my group and by external

collaborators [186]. Details on the implementation, code structure and deployment

can be found in Chapter 2. Furthermore, a step-by-step walk-through of the main

CyGNAL steps is detailed in Sufi & Qin et al. [2].

In this section I will present an overview of the tool and will discuss the

relevance of the different scoring systems with regards to MC data in general and

PTM signalling panels in specific. Example outputs from CyGNAL will also be

shown; both for the computational sections (scores and UMAP embedding), and how

they can be further analysed, but also with screenshots of the interactive apps that

constitute CyGNAL’s visualisation steps.

3.2.1 Overview and Capabilities

CyGNAL is a collection of scripts written mainly in Python and R. These scripts have

been built around a unified code base of shared functions and a particular directory

structure to facilitate interoperability between the different steps. Within CyGNAL’s

code directory, the utils folder has optional steps that either complement the main

ones or contain additional utilities for MC data handling.

Distribution of CyGNAL is accomplished as a container hosted in Docker Hub

(hub.docker.com/repository/docker/ferranc96/cygnal). CyGNAL can also be used by

downloading the project’s public repository (from github.com/TAPE-Lab/CyGNAL)

and then installing all required Python and R dependencies via conda using the

provided YML environment file. More details on this process can be found in

Chapter 2.

The tool relies on the computation of two scores, Earth Mover’s Distance (EMD)

and Density Resampled Estimate of Mutual Information (DREMI), to analyse the

intensity of detected antibodies across conditions or other gating-derived metadata

groups (i.e. cell-cycle phase or cell type). EMD (also known as the Wasserstein dis-

tance) is an optimal transport metric that describes the distance between distributions

of detected intensities, and thus is used to compare protein/PTM expression across

https://hub.docker.com/repository/docker/ferranc96/cygnal
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Figure 3.1: CyGNAL MC Analysis. File structure and processing architecture of CyG-
NAL in the context of upstream processing steps. Software environments and
packages are indicated in grey boxes, computational processes are in bold text.
DREMI, Density Resampled Estimate of Mutual Information. EMD, Earth
Mover’s Distance. PCA, Principal Component Analysis. UMAP, Uniform Man-
ifold Approximation and Projection.

experimental conditions. DREMI is a mutual information estimate that can be used

to relate the degree of connectivity across conditions of protein/PTM pairs. More

details on both methods and how they are implemented can be found in Chapter 2.

A general overview of CyGNAL’s structure is shown in Figure 3.1, where the

tool encompasses the bottom two thirds of the diagram.

As CyGNAL uses FCS files or tab-separated plain text files, certain upstream

processes are necessary after data acquisition. Previous to analysing the data in

CyGNAL, the standard operating procedure in our lab is to debarcode the mass

cytometry datasets in MATLAB (using the tool from github.com/zunderlab/

single-cell-debarcoder) and perform initial data pre-processing and quality

github.com/zunderlab/single-cell-debarcoder
github.com/zunderlab/single-cell-debarcoder
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control in Cytobank (www.cytobank.org). In that platform, the single cells are

gated for Gaussian parameters, their DNA content, and uptake of Cisplatin using

manual gates. Gating on cell-state and cell-type specific markers can also be done in

order to both eliminate doublets but also to identify cells belonging to each state or

type; information which can then be used to understand the biological system, but

also train the cell-state classifier.

The CyGNAL workflow starts with a pre-processing step. Here, empty heavy

metal channels with no conjugated antibodies are removed, and the remaining

channels are renamed to reduce the presence of special characters and keep with the

naming conventions of the Fluidigm CyTOF software. A unique cell identifier is

also given to each cell, and experimental metadata can also be embedded within the

main pandas dataframe. Furthermore, a file with updated antibody channel names is

also saved (panel markers.csv), so that the user can select which channels to use in

downstream steps.

Dimensionality reduction via Uniform Manifold Approximation and Projection

(UMAP) [91] can be performed to embed the individual cells on a 2-dimensional

space based on the selected antibodies.

EMD and DREMI scores are computed using the scprep package [139]. Com-

pute time can be reduced by subsetting the panel to channels of interest, and the user

gets prompted to define specific arguments relevant to either computation, such as

defining the variable and reference distributions for the EMD step.

Finally, the computed EMD and DREMI scores can be visualised as heatmaps or

further summarised via PCA to compare profiles across conditions using CyGNAL’s

last two main steps. The visualisation steps load in the default and user-given

parameters and pass them to R Shiny-Apps [140] that host a local server which

automatically opens on the browser.

3.2.2 Use Case and Outputs

CyGNAL is distributed with sample mass cytometry datasets, which originate from

technical replicates of an organoid monoculture experiment. They have been down-

sampled so that they can be hosted on GitHub and distributed with the code itself.

www.cytobank.org
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Figure 3.2: Analysis of Heterocellular Organoid Systems with CyGNAL. A) Pre-
processing steps follow MC data acquisition. B) Computation steps generate
low-dimensional embeddings and scores that can be visualised downstream.
WT, wild-type. A, shApc. AK, shApc and KrasG12D/+. AKP, shApc, KrasG12D/+

and Trp53R172H/–.

The results presented in Figure 3.3 A-C were generated with this sample data.

In Figure 3.2 I present a mass cytometry dataset from Qin et al. [4] to showcase

an example use with heterotypic culture conditions where cell-type-specific analysis

is necessary. The data belongs to the same mouse colon organoid model from Chapter

4 and presents with a similar experimental setup, wherein organoids with different

genotypes where cultured on their own or with macrophages and/or fibroblast cells.

Data was subsequently gated and annotated on cell types and states as described

above and on the original publication [4], and then passed onto CyGNAL for pre-

processing (Figure 3.2A).

Cell state and type markers were then selected using the panel marker file

(pHH3, IdU, cCasp3, pRB, LRIG1, CEACAM1, pan-CK, F4/80, PDPN, RFP, Cy-

clinB1, CD68) to generate a UMAP embedding (Figure 3.2B). This low-dimensional

embedding resolves the three distinct cell-types (Figure 3.2B).

Using the cell-type gates previously drawn on Cytobank, unique cell identifiers
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were used to select only the organoid cells. Computation of EMD and DREMI scores

was then performed on the epithelial compartment, and can be visualised as part of

CyGNAL. Furthermore, in the specific context of PTM network signalling analysis,

EMD and DREMI scores can be used to assemble signalling network diagrams. With

signed EMD used to quantify PTM node intensity and DREMI to score PTM-PTM

edge connectivity, a signalling network can be curated and manually annotated as

shown in Qin et al. [4]. When paired with a well-curated antibody panel and robust

experimental design, TOBis MC allows multiplexed analysis of cell-type–specific

PTM signalling of heterocellular organoids [2].

Using the sample data and with the concatenation of all input files as the refer-

ence for the EMD step, Figure 3.3A demonstrates CyGNAL’s heatmap visualisation.

By selecting not to use a specific reference during the EMD computation step, the

generated scores are useful to compare how antibody expression compares across

each of the individual datasets/conditions. The heatmap ShinyApp lets the user

control the colour scale (automatically set to maximise contrast on the range of EMD

scores), remove antibodies from the heatmap, and reorder the datasets/conditions

shown in the columns. The heatmap shown in Figure 3.3A is an interactive ver-

sion generated with Plotly [187], and shows the corresponding EMD score when

hovering over a cell. Furthermore, a similar non-interactive heatmap is generated

using the ComplexHeatmap [142] package and can be found within its homonymous

Shiny-App tab.

The same data was used when running the PCA Shiny-App in Figure 3.3B-C.

This CyGNAL steps lets the user explore the data by looking at the raw scores (Figure

3.3B) and Pearson correlation between channels. The user can also define parameters

for the Principal Components Analysis, including the number of markers, generate

several types of PCA plots with or without eigenvectors overlaid, and export the

PCA results as plain text. In Figure 3.3D I demonstrate how, despite CyGNAL being

originally designed to handle mass cytometry data, other types of single-cell omic

data like scRNA-seq can also be used. Here I used CyGNAL to compute EMD scores

based on the gene expression of the organoids sequenced in Chapter 4 and generate a
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Figure 3.3: CyGNAL Outputs Interactive Visualisations. A) Screenshot from CyGNAL’s
interactive heatmaps, using computed EMD scores from the example data
provided. B-C) Screenshots from CyGNAL’s interactive PCA computation and
visualisation, using computed EMD scores from the example data provided. D)
Editable vector graphics PCA plot generated using EMD scores from scRNA-
seq data.
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PCA embedding showing how the different conditions compared to the control. Note

that the PCA data in Figure 3.3B-D was generated using EMD scores computed

with a particular dataset/condition as the reference and without centring the PCA

embedding matrix. This application serves as an example of use-cases where there

is a clear control condition against which the other conditions are compared to (like

the WT organoid monoculture in Figure 3.3D).
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3.3 Cell-State Random Forest Classifier

Figure 3.4: Forests of Decision Trees that Resemble Manual Cell-State Gating. A) Pro-
cess of manual cell-state gating from Qin et al. [4]. B) Schematic representation
of a cell-state decision tree with binary logic gates. C) Random forests as an
ensemble of decision trees.

Determining a cell’s state with regards to the cell-cycle phases is central to under-

standing the intestinal epithelium response to perturbations, as shown by Qin et al.

and their observations regarding cell-type specific regulation of cellular states in

response to microenvironmental and oncogenic cues [4].

The cell-state labels are commonly established using manual gating on a biaxial

marker state, wherein a researches draws a boundary separating 2 groups of cells,

essentially thresholding the data based on antibody expression [4] (Figure 3.4A).

However, generating these cell-state labels is a time consuming process, especially

when compounded with the scalability of MC and TOBis ability to perform highly

multiplexed analyses. Issues with user-induced biases are also present, as drawing

the manual gates is a subjective process that might not remain consistent from

experiment to experiment.

Early on my PhD I was exploring the link between PTMs and cell-state when

I noticed that the process of generating the cell-state labels could potentially be
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automated using a classical supervised machine learning approach. Eventually, I

developed a cell-state Random Forest (RF) classifier to automate this process (see

Chapter 2 for more details). The manual gating process naturally resembles the logic

behind a decision tree, as in both a threshold of antibody intensity would result in a

binary classification of cell groups (Figure 3.4A-B). Furthermore, the RF machine

learning approach remains a white box whose internal decision logic can be easily

interpreted, for it consists of a collection of individual decision trees trained on

subsets of the data that are used together in an ensemble approach (Figure 3.4).

3.3.1 5-marker Model Performs Across Model Systems

The first RF model built was trained on data from the murine small intestinal organoid

cultures from Qin et al. [4], consisting of WT organoids along several developmental

time-points (Figure 3.5A). This model used only the 5 markers shown in Figure 3.4A.

Details on building the model and the relative feature importance when training can

be found in Chapter 2.

Testing the 5-marker RF model on a different single time-point small intestinal

organoid dataset also from Qin et al. results in global accuracy for all classes of

0.93. However, F1 scores reveal a big performance drop with the apoptotic class

(Figure 3.5), driven by the low 0.5 precision score when predicting the apoptotic

label. Precision scores otherwise remain above 0.92 for the other labels.

Performance of the classifier drops when testing against the CRC TME colonic

organoid cultures from Qin et al. In this case, subsetting just the organoid cells

from the organoid cultures (Figure 3.5B), we observe a global accuracy of 0.91.

Looking at the classification details (Figure 3.5C) we see a very similar pattern to

the SI LGR5 results; with the apoptotic class presenting the lowest F1-scores (0.6)

characterised by a low precision (0.43). Furthermore, the remaining F1-scores are

also lower overall, with only the S-phase and M-phase classes reaching above 0.9.

When no epithelial filter is applied to the dataset and the model performance

is tested against all cell types (i.e., including also fibroblasts and macrophages)

global accuracy drops down to 0.87. The relatively high global accuracy does not

reflect the failure of the classifier to, yet again, identify the apoptotic cells (Figure
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Figure 3.5: 5-marker RF Cell-State Classifier Benchmarks. A-D) Classification reports
obtained from running the 5-marker RF classifier against data manually labelled
for cell-state from Qin et al. [4]. Performance against an intestinal organoid
dataset is similar to the training data for the model. Performance against epithe-
lial cells only C) or D) all cell-types from unfiltered cells of colonic heterotypic
co-cultures. E) Classification matrix from the results in D). Size and colour
show predicted to real label ratios, numbers show cell count in each matrix entry.
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Figure 3.6: 10-marker RF Cell-State Classifier Benchmarks. A) Building a RF classifier
with an increased number of markers using data from PDOs achieves better
results than the original 5-marker model. B) Performance against chemotherapy-
treated and untreated PDOs. C) Classification matrix from the results in B). Size
and colour show predicted to real label ratios, numbers show cell count in each
matrix entry. MSS, micro-satellite stable.

3.5D). In Figure 3.5E the classification matrix is used to build a dot plot in which

the true labels (“Real state” from gating) are compared against the predicted labels

(“Predicted state”), highlighting how a majority of the cells labelled as apoptotic

are actually G0 cells, explaining the precision of 0.32 for the former class. There is

also some confusion around the G2 cells, as a significant number of these cells are

classified as either G0 or G1.

3.3.2 10-marker Model Improves Apoptotic Classification

Given the 5-marker model limitations when resolving the apoptotic class, I imple-

mented a second model using additional PTM antibodies and cell-state markers

targeting apoptotic cells. This 10-marker model uses a dataset from Ramos Zapatero

& Tong et al. [3] wherein heterotypic patient-derived organoid (PDO) cultures from

different donors were treated with a spectrum of chemotherapies. This data was

generously provided by Dr. Maria Ramos Zapatero.

Results from the updated 10-marker implementation using PDO data show

improved performance when compared to the 5-marker model. Using a technical

replicates of the training data as test we observe how the apoptotic class gets accu-

rately resolved (Figure 3.6A). When benchmarking the model performance against a
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dataset wherein the organoid cells had been treated with SN-38, the active metabolite

of the type I topoisomerase inhibitor Irinotecan [188], we observe a global accuracy

greater than 0.99. The lowest F1-scores, at 0.95, were found for the M-phase label

(Figure 3.6B). This lowered, yet still accurate, prediction performance is driven by

the lower total count of M-phase cells (one order of magnitude smaller than the

other classes), hampering the training for that class and resulting in small number

of non-apoptotic cells to be miss-labeled as M-phase. In contrast with the 5-marker

model results, there is an apparent lack of issues when classifying the apoptotic class,

with only 0.35% of true apoptotic cells being mislabelled (Figure 3.6).
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3.4 Conclusions

In this chapter I have shown how CyGNAL is an accessible workflow to non-

computational users that facilitates data processing and analysis of MC experiments.

The computation of EMD and DREMI scores enables a detailed mechanistic descrip-

tion of changes across conditions, wherein changes in the user defined reference

allows for differential interrogation of the experimental system.

While the scores themselves can be used to build curated mechanistic models as

in Qin et al. [4], CyGNAL also incorporates interactive visualisation modules that can

automatically plot results. The interactive nature of the visualisation steps, coupled

with additional data correlation metrics given during the PCA computation, allows

for both exploratory data analysis and (close to) publication grade results generation

within a single tool. This same PCA computation presents a straightforward way to

summarise changes at the condition level from otherwise information-dense EMD or

DREMI heatmaps.

The incorporation of miscellaneous data handling helper scripts in the utilities

folder exemplifies how user-provided feedback is paramount, while it also signifies

how CyGNAL continuously grows and changes with time. Tools are meant to be

used, and that publications by colleagues such as Michelozzi et al. [186] employed

CyGNAL is a testament to its accessibility.

Originally meant as a simple exercise in curiosity-driven exploration after notic-

ing the correlation between so called PTM and ”cell-state” markers, and empowered

by the tediousness of manually gating the datasets in our lab, the RF cell-state classi-

fier has become a convenient tool to automate cell-state labelling of MC datasets in

relation to cell-cycle phases.

Albeit a very simple model, the nature of the manual gating process (essentially

thresholding on a biaxial space of marker expression) translates well to decision

trees, and this is shown in the relatively strong overall model performance. The

current implementation however, might struggle to generalise to external datasets,

for gating strategies are somewhat of a lab- and individual-specific process.

Where we do observe weak points in the classifier is for those cell-state labels
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whose antibody coverage is not great in the model. For example, in the 5-marker RF

model, apoptotic cell class precision reaches only 0.32 in the most stringent setting

tested (Figure 3.5D). This can be relatively straightforward to address by increasing

the number of antibodies targeting that particular state (Figure 3.6B-C), but this

strategy can not always be employed as the additional marker would both need to be

in the reference data used to train the model and in the query dataset to be labelled.

When possible however, as demonstrated by the the 10-marker RF model built, high

precision and recall scores are accomplished for all cell-state classes even in the

context of cell-cycle disrupting chemotherapy (Figure 3.6B-C).

As described in Chapter 2, both tools are publicly accessible in their respective

GitHub repositories.
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Stromal and Oncogenic Regulation of

Colonic Stem Cell Polarisation
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4.1 Introduction

As presented in Chapter 1, the colonic epithelium is a highly heterogeneous system

with multiple specialised cell types. Supported by the LGR5+ colonic stem cells

(CSCs) of the crypt, its homeostatic regulation relies on intrinsic and extrinsic sig-

nalling cues, the latter of which predominately come from the stromal compartment.

In the context of colorectal cancer (CRC), and under the classical progression model

[12], oncogenic mutations targeting Apc, Kras, Braf, Smad4, and/or Trp53 constitute

intrinsic cues that are sufficient to induce a highly proliferative crypt-progenitor phe-

notype, the hyper-proliferative CSC (proCSC) [25]. Therefore, in both the healthy

colon and CRC a compartment of epithelial cells is maintained in a stem-like state,

although by different mechanisms.

This shared crypt-progenitor phenotype actually represents a broader compart-

ment encompassing more than the canonical LGR5+ CSCs; with recent studies

describing the existence of the CLU+ ANXA1+revival stem cell state (revCSC).

Reminiscent of foetal-like states, revCSC has been described as a small and non-

proliferative compartment involved in tissue regeneration after injury [30, 29] and

suggested as a drug-tolerant persister state in CRC [32].

However, the mechanisms of regulation between the different stem cell states

largely remain unclear. Involvement of cell extrinsic cues in the form of stroma-

secreted ligands, coupled with the association of the TME with CRC progression,

suggest that they must also pay a role in regulating the colonic epithelia. The cell

extrinsic cues involve signalling pathways that overlap with those affected by the

oncogenic mutations, indicating a competition between intrinsic and extrinsic cues

to regulate epithelial polarisation might take place during oncogenesis.

Thus, single-cell omic technologies are perfectly placed to understand polarisa-

tion of the epithelial compartment at a broader level and reveal the regulation of cell

fates by competing cues.

In this chapter I will explore via scRNA-seq data analysis how cell extrinsic

and intrinsic cues co-regulate colonic epithelial fate using a heterocellular organoid

culture system with both environmental and oncogenic perturbations. I will first
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Figure 4.1: Experimental Overview. A) Multivariate scRNA-seq experimental design.
Recombinant WENR ligands were only present in the niche factor control.
B) Single-cell PHATE embedding illustrating epithelial cells, fibroblasts, and
macrophages. C) EMD-based PCA of epithelial, fibroblast, and macrophage
transcriptomes. WENR, WNT3A, EGF, Noggin, and R-Spondin-1.

characterise the different populations found in the heterocellular cultures, identify the

different epithelial cell states and their compositional changes in response to intrinsic

and extrinsic cues. Cellular dynamics approaches will reveal our understanding of

the balance regulating the proCSC and revCSC states, and cell-cell communication

analysis will suggest putative mechanisms of intercellular regulation. Finally, the

findings will be contextualised with the broader literature leveraging published gene

signatures.

The work presented here is part of Qin & Cardoso Rodriguez et al. [1] (Ap-

pendix D), where it is shown accompanied with mass cytometry analyses carried out

by Dr. Xiao Qin and whose results validate the scRNA-seq findings and shed light

on the mechanisms of epithelia stem cell polarisation in this shared landscape.

To directly compare how CRC oncogenic mutations and stromal cells regulate

colonic epithelial differentiation, I performed a multivariate scRNA-seq analysis of

wild-type (WT), shApc (A), shApc and KrasG12D/+ (AK), and shApc, KrasG12D/+ and

Trp53R172H/– (AKP) colonic organoid mono- or co-cultures; with colonic fibroblasts

and/or macrophages (Figure 4.1A). Fibroblasts are established regulators of intestinal
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epithelia [189] and macrophages are the most profuse leukocytes in the colon [190].

A condition with WT organoids cultured with exogenous WNT3A, EGF, Noggin,

and R-Spondin-1 (WENR) (commonly used to grow colonic organoids) was included

as a defined mesenchymal niche factor control.

Following data acquisition and initial pre-processing steps (see Chapter 2),

epithelial cells, fibroblasts, and macrophages were jointly embedded in an integrated

space and visualised by PHATE (Potential of Heat-diffusion for Affinity-based Tra-

jectory Embedding) [92]. This embedding resolves the three distinct cell types

as shown by expression of levels of canonical cell-type markers (Figure 4.1B).

Cell-type-specific transcriptional changes were compared against relevant control

monoculture conditions (WT organoids for the epithelial cells) using the EMD score

(see 2), and then summarised using PCA (Figure 4.1C). Epithelial transcriptomes are

differentially regulated by both CRC mutations (PC1, 26%) and microenvironmental

cues (PC2, 22%), with A, AK, and AKP mutations progressively dysregulating their

transcriptomic profiles. However, we found fibroblasts can only regulate WT and

A epithelial cells (Figure 4.1C). Although WENR ligands are thought to mimic a

healthy stromal niche [191], WT organoids + WENR ligands transcriptionally align

with AK mutant organoids (not WT+fibroblasts as might be expected), indicating this

widely used colonic organoid culture media induces a partial CRC-like transcriptome

in WT epithelia (Figure 4.1C). Colonic fibroblast cells resolved into CD34hi and

CD34lo subpopulations mimicking in vivo stromal heterogeneity [192] (Figure B.1).

CD34hi and CD34lo fibroblasts did not differentially regulate colonic epithelia (Fig-

ure B.2) and were subsequently treated as a heterogenous mesenchymal population.

Bone marrow macrophages on the other hand presented as a continuum of cells

aligned along and axis of inversely correlated expression of complement genes (like

C1q) and Hmox1, see 4.1B), possibly indicating inflammation-related roles to be a

major driver of heterogeneity within the macrophage cells [193]. However, it was

found that fibroblast and macrophage transcriptomes and compositional make-up

were only regulated by co-culture with heterotypic cells but not altered by epithelial

genotypes (Figures B.1, B.3).
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4.2 Organoids Recapitulate Colonic Epithelial States

Figure 4.2: Recapitulation of Colonic Epithelial States. A) PHATE embedding of ep-
ithelial cells from all organoid conditions, coloured by cell-type clusters. B)
Single-cell PHATE embeddings of epithelial cells from WT, WT+Fibroblasts,
WT+WENR, and AK organoids coloured by cluster and overlaid with single-
cell density. C) Expression of bon-fide epithelial markers in agreement with
cluster designations. Colour is scaled average gene expression by cluster, size
is ratio of cells in cluster with detected marker expression. CSC, colonic stem
cell. proCSC, hyper-proliferative CSC. revCSC, revival CSC. DCS, deep crypt
secretory (cell). TA, transit amplifying (cell).

Epithelial cells from all conditions were integrated by reciprocal PCA (RPCA) [147],

projected onto a shared PHATE embedding, and clustered into multiple cell-fates,

including stem populations, transit amplifying (TA) cells, cells under ER stress,

goblet and deep crypt secretory (DCS) cells, and early or late enterocytes (Figure

4.2A).

While this integrated space presents a continuum of cells, density plots of 4 ex-

tremes in our experimental design matrix point towards some degree of polarisation

(Figure 4.2B). The WT monoculture control spans a broad range in the embedding

space and shows high density in the CSC to Enterocyte and Goblet/DCS differentia-
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tion axes. The WT cocultured with fibroblasts appears to show the highest density of

cells around the revCSC state, whereas the AK monoculture is densest around the

proCSC. Finally, the condition with exogenous WENR ligands seems to polarise

both towards proCSC and revCSC.

The multiple epithelial compartments where identified and associated with the

relevant clusters based on their expression of canonical markers of selected colon cell

epithelia cell-types (see Sup. Table C.1 for more epithelial marker genes). Expression

of these genes on the WT monoculture control reveals how the system recapitulates

the basal (stem and TA), secretory, and absorptive compartments (Figure 4.2C). The

stem compartment appears distributed along several clusters (proCSC, CSC, revCSC)

and extends towards the TA cells. A state characterised by a clear ER stress response

gene expression signature lays adjacent to the stem and TA compartments (Figures

4.2A and C).
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4.3 Mutations and Fibroblasts Polarise Epithelia

towards Distinct Cell Fates
Compositional analysis via differential abundance / differentially abundant (DA)

testing [103] is used to identify and quantify effects of perturbations on a system

(see Chapter 2 for more details). DA was thus used to determine the changes induced

by stromal and oncogenic cues compared to the WT mono-culture organoid baseline,

revealing that fibroblasts and CRC mutations have markedly different effects on

epithelial cell-fate determination (Figure 4.3).

Figure 4.3: DA Reveals Oncogenic and Stromal CSC Polarisation. A) Epithelial DA
neighbourhoods in WT organoid and fibroblast co-cultures compared to WT
organoid mono-cultures. Colour indicates log fold-change, size indicates number
of cells in the neighbourhood. B) Epithelial DA neighbourhoods in AK and
AKP organoid mono-cultures compared to WT organoid mono-cultures. Colour
indicates log fold-change, size indicates number of cells in the neighbourhood.
C) Overview of per-cluster epithelial DA changes across organoid cultures.
Colour indicates log fold-change, size indicates number of neighbourhoods. DA,
differential abundance / differentially abundant. FC, fold-change.

Fibroblasts enrich for the revCSC population characterised by high expression

of epithelial progenitor genes Clu, Sox9, Cd44, and Cldn4 (Figures 4.3A, 4.4). In

contrast, A, AK, and AKP mutations progressively polarise epithelia towards a hyper-

proliferative proCSC state (Figure 4.3B). proCSCs express EphB2, Birc5 (Survivin),

Lrig1, Hmgb2, Anxa1, and Rrm2. proCSC are also highly mitotic, expressing Stmn1+,

Mki67+, and Ccnb1+ (Figures 4.2C, 4.4).

Both revCSC and proCSC are present in WT organoids at low levels alongside

traditional LGR5+ CSCs, and these cells were found to also be enriched by A, AK,



4.3. Mutations and Fibroblasts Polarise Epithelia towards Distinct Cell Fates 97

Figure 4.4: Curated Differential GEx Analysis of Epithelial Cells. Heatmap of gene
signatures curated from the literature and DE analysis. Columns are aggregated
by clusters and colour-annotated with metadata labels. Gene colours represent
scaled gene expression. GEx, gene expression.

and AKP genotypes, but to a lesser extent than proCSC (4.3C).

While the DA method employed essentially works at a pairwise level, I aggre-

gated results from multiple comparisons across the experimental matrix (Figure 4.3C)

to show how how fibroblasts can only induce revCSC in WT and shApc epithelia,

but not when cells contain both shApc and KrasG12D/+. Conversely, proCSCs are

enriched in all A, AK, and AKP organoids irrespective of fibroblasts or macrophages;

suggesting oncogenic mutations are dominant over microenvironmental signalling.

WENR ligands polarise WT epithelia towards all stem and TA cell-types, with very

few cells retaining secretory or absorptive identities (Figures 4.3C, 4.2B). While

macrophages can alter epithelial gene expression (Figure 4.4), macrophages do not

regulate the abundance of epithelial cell-types (Figure 4.3C).

In summary, multivariate scRNA-seq revealed that fibroblasts, CRC mutations,

and WENR ligands polarise epithelia towards a de-differentiated progenitor state –

with fibroblasts and oncogenes inducing distinct revCSC and proCSC fates.
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4.4 Epithelial Dynamics Suggest Transitional

Regulation of revCSC
To understand the nature of the epithelial polarisation observed I leveraged methods

that infer transcriptional dynamics from the static snapshots found in the experimental

setup.

The CCAT metric is a measure of cellular pluripotency [110] completely inde-

pendent of cluster and other metadata designations (see Chapter 2). Paired with RNA

velocity information [100], both metrics revealed how the stem clusters present the

highest pluripotency scores and act as origin for the RNA velocity stream embeddings

(Figure 4.5A).

Contrary to proCSC, revCSC shows the lowest pluripotency score of all stem

and TA clusters, and overall CCAT is able to position the clusters along the expected

stem to differentiated states trajectory (Figure 4.5B). RNA velocity [100] vector

lengths were used a metric for the rate of transcriptional change (see Chapter 2)

and reveal how, while the WENR organoids show significantly decreased rates of

change around the proCSC compartment, AK organoids present a 2-fold reduction

of velocity vector lengths across all epithelial compartments (Figure 4.5C-D).

The RNA velocity information was then used to infer transitional processes and

trajectories with CellRank [101]. Determination of initial and terminal macro-states

in the 4 conditions from Figure 4.2B consistently identifies proCSC as the source

of transitional processes within the system (Figure 4.5E). In the WT mono-culture

control the expected differentiation trajectories are recovered, whereas polarisation

towards revCSC by fibroblasts and WENR appears to be a transitionally driven

event from the nearby stem and TA states. In AK organoids the limited amount

of transitions detected are towards the remnants of the secretory and absorptive

populations, yet the proCSC still appear only as source and not a sink (Figure 4.5E),

altogether suggesting that oncogenic mutations reduce epithelial plasticity.
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Figure 4.5: Cellular Dynamics of Epithelial Polarisation. A) Epithelial PHATE coloured
by CCAT score and overlaid with RNA velocity streams (arrows). B) Distribu-
tion of CCAT scores per epithelial cluster. C) Epithelial PHATE coloured by
RNA velocity vector lengths. D) Distribution of RNA velocity vector lengths
per organoid condition (Games-Howell pairwise test with Holm-adjusted p-
values). E) Directed PAGA plots depicting transitions from initial to terminal
macrostates. Colour denotes epithelial cluster, arrow width represents aggregate
RNA velocity flows.
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4.5 Oncogenic Mutations Disrupt Fibroblast to

Epithelia Signalling
As epithelial differentiation cannot be regulated by fibroblasts in the context of shApc

and KrasG12D/+ (Figures 4.3C, 4.4), I hypothesised oncogenic mutations might dis-

rupt stromal-epithelial signalling. To test this, I performed cell-cell communication

analysis with CellChat [49] of WT, A, AK, and AKP organoid-fibroblast co-cultures.

By aggregating incoming and outgoing communication probabilities (a measure

of the degree of expression for ligands and receptors belonging to predicted cell-cell

interactions) I observed high levels of ’outgoing’ signalling from fibroblasts (Figure

4.6A). By contrast, WT epithelia display a dominant ’incoming’ signalling potential

(Figure 4.6A). This dichotomy suggests that heterocellular signalling in the healthy

colon is largely unidirectional from fibroblasts to epithelial cells. The revCSC and

the transcriptionally similar TA clusters are responsible for much of the ’incoming’

signalling potential of WT epithelia, indicating these states are hyper-sensitive to

cell-extrinsic regulation by fibroblasts. In contrast, proCSC are the least receptive of

all epithelial cells, suggesting proCSC are more reliant on cell-intrinsic signalling

(Figure 4.6A).

An overview of stroma-derived interaction changes on the epithelial states

across genotypes revealed that fibroblasts communicate with the organoids both

by juxtacrine and paracrine interactions (Figure 4.6B). Not only is there a loss of

predicted interactions in AK and AKP cells compared to WT organoids (Figure

4.6A), but there are also some signalling pathways that appear missing on the cancer

organoids. For example, WT and A organoids show intact NRG1, EREG, IGF, and

TGF-β signalling with fibroblasts, but these cell-cell interactions are undetectable

in AK and AKP cells. These predicted signalling pathways can be cross-referenced

with the components of the WENR-enriched media to suggest some ligands as WT

homeostatic regulators, such as WNT5A, SEMA3A, TGF-β1, TGF-β2, IGF, NRG1,

EREG, and OSTP (encoded by SPP1).

The observed breakdown in fibroblast to epithelia communications might par-

tially be explained due to the downregulation of epithelial signal receptors in AK
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Figure 4.6: Oncogenic Mutations Disrupt Stromal Communication. A) Outgoing and
incoming communication probability (interaction strength) from fibroblasts to
epithelia across organoid genotypes. Arrow size denotes aggregate fribroblast-
to-epithelia communication probability. B) Paracrine and juxtacrine communica-
tion summarised at the pathway and ligand-receptor interaction level. C) Expres-
sion of individual ligands (expressed by fibroblasts) and receptors (expressed by
epithelia) across organoid genotypes. Colour shows average scaled expression,
size is ratio of cells with detected expression. D) Aggregate UCell [5] scores
for ligand expression on fibroblasts and receptor expression on epithelia across
organoid co-cultures (Games-Howell pairwise test with Holm-adjusted p-values,
n.s not significant).
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and AKP organoids (Figures 4.6C-D), while ligand expression by the fibroblasts

remains unchanged (Figure 4.6D).
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4.6 Characterisation and Relevance of proCSC and

revCSC Identities
As described in Chapter 2, literature signatures for diverse epithelial stem states

and transcriptions targets of key signalling pathways were curated (see C.9) and

compared against our scRNA-seq data using UCell [5]. This analysis revealed

how the fibroblast-induced revCSC are indeed transcriptionally similar to ”foetal”

[158, 159] and “revival” stem cells [30] of the intestinal epithelia (4.7A).

The previously described association between revCSC and Yap and TGF-β was

also recovered by signature correlation, further validating the identity of the revCSC

cluster. This observation, together with the cell-cell communication results, provided

with the initial targets to pursue the mechanistic discovery of master regulators of

the different stem states [1].

In addition, proCSCs are transcriptionally comparable to stem cells observed in

mouse and human CRC (Figure 4.7A), showing a clear link with actively proliferating

stem cell populations. CSC gene signatures are less common in CRC (Figure 4.7A)

and more closely resemble general pan-stem states.

This link between our mouse organoids and CRC patient data was further

explored by comparing the murine organoids with aggregated scRNA-seq data from

several CRC cohorts in Joanito et al. [6]. This resource contains both tumour and

normal tissue samples that could be resolved on an integrated space of their scRNA-

seq profiles (Figure 4.7B). After cross species integration and projection of our

mouse organoid data, one can non-quantitatively observe that WT organoid cells

align with normal tissue, whereas AK organoids align with cancer samples (Figure

4.7C). See Chapter 2 for further details on this process.
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Figure 4.7: Epithelial Stem Cell Signature Comparison. A) Comparison of CSC, proCSC,
and revCSC gene signatures identified in this study with published stem cell
and signalling signatures. Colour denotes Pearson correlation of UCell [5]
scores. B) Epithelial PHATE of integrated CRC cohort from Joanito et al. [6].
Colour marks sample type annotation. C) Projection of our murine WT and AK
organoid data on human PHATE embedding.
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4.7 Conclusions

In this chapter I have shown how scRNA-seq can be used to dissect a cell-type-

specific understanding of heterocellular organoids in cancer. I have provided with

an in-depth description of colonic epithelial differentiation and polarisation of its

stem compartment. Furthermore, in silico predictions regarding the mechanisms

regulating these processes can also be formulated, which can be (and have been

in Qin & Cardoso Rodriguez et al. [1]) functionally validated using alternative

single-cell omic approaches (MC).

On the unperturbed control, WT organoid monocultures recapitulate canonical

differentiation from stem and basal states towards secretory and absorptive compart-

ments. However I was unable to discern between discrete states within the secretory

populations, with data from similar murine small intestinal organoids revealing

the same observation, suggesting a putative limitation of the organoid model when

compared to the in vivo setting.

The finding of a heterogeneous stem compartment that can be so drastically

polarised by stromal and oncogenic perturbations immediately stands out as the

central observation of this study, revealing that fibroblasts and oncogenic mutations

induce distinct epithelial stem cell-fates in colonic epithelia. I found that fibroblasts,

potentially through the secretion of signalling ligands linked with WNT and TGF-β1,

polarise epithelia towards slow-cycling Clu+ revCSCs. In contrast, simultaneous

APC-loss and oncogenic KRASG12D collaboratively block cell-extrinsic regulation of

epithelial plasticity by interrupting stromal-epithelial communication, and polarise

the organoids towards the hyper-proliferative proCSC state. By comparing the

transcriptomic profiles of the stem states with the literature, I was able to validate

both their identity and the link between revCSC and TGF-β1 and YAP signalling,

while also validate the organoid model as a whole.

The addition of WENR-enriched media revealed that exogenous WNT and EGF

ligands can polarise the epithelium towards all stem states, at the expense of the

differentiated cell states. In Qin & Cardoso Rodriguez et al. [1] we experimentally

demonstrate that CRC organoids can still access revival stem cells, but this requires
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high cell-extrinsic activation of YAP via TGF-β1 in parallel with reduced PI3K

signalling.

CCAT scores have been shown to be a powerful metric to determine putative

cellular pluripotency scores, which can then be used in establishing cellular identity

and inform dynamic transitional processes. The CCAT pluripotency metrics and

RNA velocity results are orthogonal methods that both paint a shared picture of

competing transition and differentiation. In this shared landscapes proCSC gives rise

to differentiated states in the unperturbed organoids, but can be polarised towards

alternatives fates like revCSC (via extrinsic cues) or trapped in the proCSC state by

oncogenic mutations.

These results demonstrate that colonic epithelia exist on a continuous differenti-

ation landscape where oncogenic mutations and stromal cues compete for epithelial

identity. However it appears that oncogenic mutations eventually dominate extrinsic

cues by blocking the stromal regulation of cell-fate plasticity.



Chapter 5

Data-driven Landscapes of Colon

Epithelial Plasticity
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5.1 Introduction
More than 60 years ago, Conrad H. Waddington illustrated the process of an epige-

netic landscape where pluripotent cells would roll down into valleys of terminally

differentiated states [129]. Albeit a powerful image of developmental biology, his

effort and subsequent ones since then have mostly been of a rather subjective and

artistic nature. However, reconstructing such landscapes from real biological data is

not an untenable task anymore, as omic profiles from single-cells can be embedded

together and mapped onto a 3D space sculpted by cellular pluripotency metrics

[130].

However, none of those methods appear to leverage embeddings able to capture

transitional processes and global structure. Furthermore, such a Waddington-like

landscape would need to be informed by features at multiple levels: with a coarse

feature informing overall elevation, and local information determining the presence

of troughs and valleys, thus shaping the repertoire of likely downhill transitions.

Here I propose a novel method to generate such data-driven Waddington-like

landscapes using; 1) embeddings that capture global structure (PHATE [92]), 2) a

cellular pluripotency metric to derive coarse landscape elevation (CCAT [110]), and

3) RNA velocity metrics to capture local transciptomic changes (scvelo [100]) that

inform state accessibility (Figure 5.2A).

This work has been published as part of Qin & Cardoso Rodriguez et al. [1], and

the code to compute the VR score and generate the landscapes is publicly available as

a Jupyter Notebook on github.com/TAPE-Lab/Qin-CardosoRodriguez-et-al/

blob/main/Figure7_S7/Landscape.ipynb.

github.com/TAPE-Lab/Qin-CardosoRodriguez-et-al/blob/main/Figure7_S7/Landscape.ipynb
github.com/TAPE-Lab/Qin-CardosoRodriguez-et-al/blob/main/Figure7_S7/Landscape.ipynb
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5.2 The Valley-Ridge Score

Figure 5.1: Workflow for Calculating VR Scores from scRNA-seq Data. A) VR scores
leverage a low-dimensional embedding and are computed from pluripotency
and RNA velocity metrics. B) Computation of VR scores incorporates global
and local components as a weighted sum. VR, valley-ridge. Q99, 99th quantile.

Following with the geographical analogy, PHATE space acts as the longitude and

latitude coordinates whereas we need to define a new metric that combines both

CCAT scores and RNA velocity vector lengths. This metric has been called the

Valley-Ridge (VR) score, in reference of its two components that respectively inform

macro-level and hyper-local features of the landscape (Figure 5.2A).

While these two metrics have already been discussed previously in this work,

here is a small summary of what they entail. CCAT has been defined as an estimate

for a cell’s Signalling Entropy Rate, which has been shown to be a robust metric for

cellular pluripotency [110, 130, 112]. RNA velocity vector lengths are the modulus

of the inferred RNA velocity vectors as determined by a cell’s ratio of spliced



5.2. The Valley-Ridge Score 110

and unspliced mRNA, thus measuring the overall rate of transcriptomic change

undergone by a cell.

Detailed information on the definition and computation of the VR score can

be found in Chapter 2. In brief, the VR score is a cellular metric computed on

a per sample and cluster labels and is defined as the weighted sum of the two

components: CCAT signalling-entropy [110] and RNA velocity vector length [100]

(Figure 5.2B). At a cluster’s centre, the VR score is solely determined by the median

CCAT. However, the VR scores at the cluster periphery are augmented by weighting

the inverse of RNA velocity component and the scaled distance from the cluster

centre to model rates of local transcriptional change. We use the inverse of the

velocity vector length so that transitions substantiated by high RNA velocities do

not locally increase landscape elevation at a cluster’s boundary, with the opposite

happening for low velocity cells.

This method thus reconstructs a data-driven estimate of Waddington-like land-

scapes where the overall altitude captures the differentiation potential of a cell

population, with the valley-ridge topology delineating local plasticity and cell-state

availability.
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5.3 Landscapes of Colonic Epithelia Cell-Fate

Plasticity
Having been described in Chapter 4 and in Qin & Cardoso Rodriguez et al., the

heterocellular murine colonic organoid system represents a suitable candidate to test

the VR landscapes. This system consists of colon epithelia organoids increasingly

accumulating canonical CRC oncogenic mutations, and with various combinations

of microenvironmental perturbations including a stromal component (Figure 5.2A).

The cellular dynamics of this system suggest stromal cues polarise colonic

epithelia towards a slow-cycling revCSC state, comprising lower pluripotency po-

tential than other stem states. There is also some loss of terminally differentiated

states by stromal cues, especially around the absorptive compartment, but this de-

differentiation was not as pronounced as in CRC organoids. Oncogenic mutations

polarise epithelia to the proliferative and highly pluripotent (as determined by CCAT)

proCSC state. Furthermore, RNA velocity vector lengths in CRC organoids were

greatly reduced when compared to the other genotypes (Figure 4.5C-D), suggesting

that normal transitional processes within the epithelia are impeded by oncogenic

mutations. The VR score is a way of visualising all of these processes at once by

generating a purely data-driven VR landscape reminiscent of Waddington own’s

drawing.

When WT colonic epithelia are projected onto this embedding, stem cells

occupy high positions in the landscape, with TA cells descending into a central

valley before diverging into terminally differentiated secretory and absorptive cells

(Figure 5.2B). When WT epithelia communicate with fibroblasts, the TA valley

erodes as cells access revCSC (Figure 5.2B). In contrast, CRC mutations shApc and

KrasG12D/+ re-sculpt the entire landscape, trapping most cells in the proCSC fate by

restricting their differentiation potential (Figure 5.2B).

This landscape projection exemplifies the VR score profile of cellular states such

as proCSC, which are highly pluripotent (Figure 4.5B), yet static in terms of rate of

transcriptional change (Figure 4.5C). proCSC sates appear as high elevation tarn-like

features, surrounded by an obstructive ridge that symbolises the low likelihood of
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Figure 5.2: Fibroblast- and Oncogene-driven Waddington-like Single-cell Landscapes.
A) Epithelial cells from the heterocellular CRC organoid model system are used
to compute VR scores. B) Integrating PHATE and Valley-Ridge (VR) score
enables Waddington-like landscapes of scRNA-seq data, illustrating processes of
CSC polarisation. Landscape colour denotes VR elevation, dot colours represent
epithelial clusters.

transition towards surrounding states. VR landscapes therefore enable us to visualise

how proCSC are a stem cell (high in Waddington space) that rarely differentiate

(trapped in a tarn).

See Chapter 2 for details on the methods used to interpolate the VR scores into

a surface and the pipeline to generate the VR landscapes (Figure 2.3).
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5.4 Conclusions
The VR score presented here synthesises two orthogonal metrics (signalling entropy

rate and transcriptomic rate of change) that when combined are very useful in

visualising transitional processes and plasticity of a system. The multi-scale nature

of the its components, with CCAT determining coarser cluster-level features and

RNA velocity vector lengths more local inter-cluster transitions, proves useful when

reconstructing data-driven Waddington-like landscapes.

When applied to murine organoid perturbation system described in Chapter 4,

the VR landscapes depict a picture of a shared differentiation that can be traversed

through cell-extrinsic ligands or cell-intrinsic oncogenic mutations. In particular,

the increased availability of revCSC in the presence of stromal ligands (Figure 4.3)

can also be observed on the VR landscapes (Figure 5.2B). Furthermore, the collapse

of stromal-to-epithelial communication in cancer organoids (Figure 4.6A) and their

lack of revCSC polarisation (Figure 4.3C) is reflected in the tarn-like topology of the

AK VR landscapes, where the bulk of the organoid appears trapped in the proCSC

state.

By combining the VR score computation and landscape projection into a single

easy to use notebook, I have laid the foundation towards future packaging and

deployment of this tool as an interactive service. By the name of VRland, this tool is

currently available as an annotated Jupyter Notebook in the code repository for Qin &

Cardoso Rodriguez et al. [1] (github.com/TAPE-Lab/Qin-CardosoRodriguez-et-al).



Chapter 6

Knowledge Graphs for Cell

Communications
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6.1 Introduction

Figure 6.1: The Directed Nature of Inter- and Intra-Cellular Communications. Secret-
ing cells interacting with receiving cells via intercellular ligand-receptor interac-
tions, which can then trigger intracellular PTM cascades and gene-regulatory
networks. PTM, post-translational modification. TF, transcription-factor.

Cellular signalling involves a complex series of directed and hierarchical [194]

signal transduction cascades between molecules that dictate a cells response to

extrinsic and intrinsic cues. In the context of inter-cellular paracrine communication,

a secreting cell produces a series of ligands that are captured by receptors on a

receiving cell. The receiving cell then might engage in an intra-cellular signal

transduction cascade orchestrated by PTMs, such as the MAPK cascade [195].

These cascades regulate gene expression downstream of active transcription factors.

With overlapping pathways, feedback loops, and complex settings with multiple cells

engaging in symmetrical or non-symmetrical communications, there is nonetheless a

directional causality-driven signalling information flow (Figure 6.1). This directional

nature can be measured in terms of graph hierarchy scores, and to aid with that

purpose I have developed a python package to compute such scores (Appendix A).

The physical interactions between molecules are often represented as a network

of genes, proteins or even PTMs, described in the manner of a knowledge graph (KG).

These network representations have been extensively explored to model both intra-



6.1. Introduction 116

and inter-cellular communications, but to date they are not consistently analysed

using methods that leverage the underlying directed and hierarchical nature of sig-

nalling processes, often either treating the graph as undirected or analyzing pairwise

relationships between feature detection metrics (such as gene expression) [196, 121].

The field of directed cellular interaction databases already presents with some

established curated resources like OmniPath [7], with a growing number of methods

attempting to model communication in a directed manner [132], describing cell-

cell interactions [197, 198], and even data-driven de novo generation of signal

transduction networks [122].

In this chapter I propose a novel approach for assembling gene-gene graphs that

capture cellular communication by leveraging KG embedding approaches, which

would allow for the encoding of the original directed KG into a simpler non-directed

format amenable to downstream analysis and data projection. I aim to project single-

cell omic profiles into the assembled KGs, thus treating the cells as signals on a gene

graph. The resulting signals can then be considered as another single-cell omic view

of the cells, and used to generate new embeddings or be compared against their gene

expression profiles.

This work was conducted in collaboration with Prof. Smita Krishnaswamy

and Aarthi Venkat at Yale University, under the Yale-UCL Exchange Programme

(https://www.grad.ucl.ac.uk/yale-ucl/).

https://www.grad.ucl.ac.uk/yale-ucl/
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6.2 A Knowledge Graph for Ligands, Receptors and

TF Targets

Figure 6.2: Assembly of KGs for Cell Communications. A) Public databases are used
to assemble a custom KG of ligands, receptors and TF targets. B) Tabular
OmniPath [7] repository can also be assembled as a comparable KG. KG,
knowledge graph. LRT-KG, ligand-receptor-target KG.

Literature information on cell communication interactions is commonly found in

the form of databases used for cell-cell communication analyses, and not in a

directed graph format. Therefore I assembled a custom kg from public databases and

compared it with OmniPath [7], an existing curated repository of directed inter- and

intra- cellular signalling interactions. More details on this process can be found in

Chapter 2.

I gathered information from the CellChat [49] and NicheNet [178] databases

to assemble a directed KG wherein nodes are genes for ligands, receptors or
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transcription-factor (TF) targets (Figure 6.2). This KG aims to capture inter- and

intra-cellular communication; with ligand and receptor nodes describing the rela-

tionship between interacting cells, and the TF targets capturing cellular states and

response to stimuli.

Following the ubiquitous triplet format, I thus encoded the graph as a relational

database where pathways from Reactome [118] were used to annotate and relate the

different gene nodes (Figure 6.2).

The resulting ligand-receptor-target KG (LRT-KG) has over 2,500 nodes linked

by interactions belonging to 23 distinct pathways. To validate broad-scale graph

characteristics this custom graph was compared against the OmniPath resource. The

OmniPath database has multiple layers of relational information between genes (and

other molecules such as PTMs), including directionality, supporting evidence, and

functional information on the nature of the interaction (i.e. activation or inhibition of

receiving interaction member) [7]. Assembled in the same manner as the LRT-KG

object, the OmniPath graph presented with a higher number of gene nodes and

pathways but comparatively less interactions and a lower hierarchy score than the

LRT-KG (Figure 6.2B and Table 2.3).
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6.3 KG Embeddings Preserve Graph and Biological

Information

Figure 6.3: Information Preservation in Low-Dimensional KG Embeddings. A) PHATE
of embedded KG nodes coloured by node-intrinsic properties. B) PHATE of
embedded KG nodes coloured by relational signalling annotations. GPCR, G
protein-coupled receptors.

To capture the complex relational information in a simpler format amenable to

downstream analyses, directed heterogeneous knowledge graphs can be embedded

into low dimensional tabular representations. Methods like the classical TransE [182]

and its derivatives, graph convolutional networks, and hyperbolic embeddings [199],

represent some of different approaches to learn the structure of KGs.

I used the TransR method [180] to embed the LRT-KG into a 50-dimensional

space (Chapter 2), whose PHATE representation suggests that the embedding method

captures topological differences between the distinct node types in the graph (Fig-

ure 6.3A). Node degree also seems to drive some of the topology in the PHATE

representation of the embedding, and it would appear that TF targets are the most

promiscuous nodes with higher degrees, followed by receptor nodes and finally

ligands (Figure 6.3A). However, care must be taken when making these comparisons

for three node classes are imbalanced.

Functional biological information encoded by the edges seems to also be cap-

tured in the embedded graph. Signalling pathways belonging to the Signal Trans-
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duction category in Reactome, which should cover all three types of node in the

LRT-KG, were mapped to gene node embedding. The resulting distribution of path-

ways, occupying discrete and specific regions of PHATE representation (Figure 6.3,

appears to suggest that relational information from the KG is also conserved in the

50-dimensional embedding.
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6.4 Projecting Cells as Signals on the KG

Figure 6.4: Projection of GEx Profiles on the LRT-KG. A) scRNA-seq datasets of WT
organoid and fibroblast co-cultures are used for the projection. B) Wavelet
diffusion is applied to the LRT-KG to generate a nodeXwavelets matrix onto
which the sequencing data is projected. Colours on PHATE plots represent cell
clusters.

Using a WT organoid and fibroblast co-culture scRNA-seq dataset from Chapter 4

(Figure 6.4A) I could explore the usefulness of the LRT-KG embedding to describe

a cell’s gene expression (GEx) profile as projected on a cell communication graph.

That particular dataset was employed because I had previously established,

using cell-cell communication analysis tools and subsequent MC validation by Dr.

Xiao Qin [1] (see Chapter 4 for Figure 4.6A), that the fibroblast cells engage in active

communication with the organoid cells, in particular toward the revCSC state and

adjacent areas of the colonic stem compartment.

When the transcriptomic data is used to generate a PHATE embedding the two

distinct cell types are easily resolved, and so are the heterogeneous cell states within

the colonic organoid epithelia (Figure 6.4A).

To project these cellular GEx profiles on the LRT-KG I first applied a diffusion
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wavelet transform to a k-NN representation of the LRT-KG embedding, thus generat-

ing a nodeXwavelets matrix where the first axis corresponds to the gene nodes of

the LRT-KG (Figure 6.4B).

Leveraging the shared feature axis between the nodeXwavelets and scRNA-seq

cellXgene, I used the dot product (·) operation to project the transcriptomic data

as a cellXwavelets matrix representation (Figure 6.4B). The projected data can be

treated as the scRNA-seq count matrix from above to compute cell-cell k-NN graphs

and two-dimensional embeddings.

The resulting projection seems to non-quantitatively resemble the GEx profile

on a PHATE space, wherein cell type is easily resolved. There appears however that

there is some signal loss during the projection process, for epithelial heterogeneity is

reduced (Figure 6.4B).

To quantitatively asses the projection results I not only compared it with the

GEx data but also with the interaction strength predictions between cluster pairs in

the data (see Chapter 2 for more details).

Average distances between cluster pairs in the LRT-KG projected space and the

GEx space were computed based on their k-NN representations (Figure 6.5A) and

found to be highly correlated (Figure 6.5B). A weak positive correlation (R = 0.42)

between interacting cluster pairs and their distances was observed both in the GEx

and highly similar projected spaces (Figure 6.5C).

Finally, the inter-cluster distance matrices (Sup. Tables C.11 and C.12) were

scaled and subtracted to compare the differences between the GEx and projected

profiles. Results revealed no distance shortening after projection between the highly

interacting fibroblast and revCSC or TA clusters. Instead, projection lowered relative

distances around the secretory cells and magnifying distances between the TA and

ER stress states (Figure 6.5D).

In summary these results suggest an insufficient diffusion step prior to data

projection, as shown by the similarities between the GEx and projected spaces, and

a small degree of signal loss, eroding some the transcriptomic signal unique to

secretory cells.
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Figure 6.5: Comparison of GEx and LRT-KG Projected Profiles. A) Inter-cluster dis-
tances are computed on GEx and projected spaces. B) Correlation between the
two distance spaces. C) Correlation between cell-cell communication interaction
scores and the distance spaces. Colour annotations reflect highly interacting
cluster pairs. D) Scaled differences between the two cluster spaces. Cells are
coloured according to the distance difference between a pair of cluster. R, Pear-
son correlation score.

6.5 Conclusions

In this chapter I have assembled a knowledge graph for cell communication that

captures relational information between ligands, receptors and downstream targets

of transcriptional factors. The assembled LRT-KG is comparable in size and graph

characteristics to the curated OmniPath database, albeit with a lower number of

nodes but enhanced hierarchical structure due to the reductionist approach of limiting

signalling flow into a single direction from secreting to receiving cells and the latter’s

intra-cellular responses.

From this complex heterogeneous directed LRT-KG, methods like TransR can
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learn a lower-dimensional embedding that captures the original node characteristics

of the graph and even biological information in the form of signalling pathways

encoded in the relations between nodes. The resulting LRT-KG embedding is a

relatively simple tabular representation of the cellular communications LRT-KG onto

which we can project the transcriptomic profile of cells via wavelet diffusion.

Projection results revealed similar PHATE embeddings and high inter-cluster

distance correlation between the gene expression and projection spaces, suggesting

that the diffusion process within the graph is not of a sufficient degree and remains too

reliant on the graph’s nodes rather than on its structure. While the similarities with

the GEx profile do validate the projection approach, and some degree of correlation

between both spaces was expected, the lacking diffusion step results in the projected

space being unable to differentially capture inter-cellular communications between

the interacting stromal and epithelial cells of WT organoid and fibroblast co-cultures.



Chapter 7

Discussion and Future Perspectives

7.1 Building Accessible and Automated Tools for MC

Data Analysis
In this work I have shown CyGNAL’s capabilities, describing in detail its design and

inner mechanisms, and outlining its usefulness with regards to the analysis of MC

datasets.

The main testament for the usefulness of the tool is the fact that it has become

a part of routine MC analyses in our lab. With its support for plain text to FCS

inter-compatibility (Chapter 2 and Figure 3.1), users can seamlessly integrate with

MC platforms such as Cytobank. Given that the user only needs to run simple Python

commands on the terminal to use CyGNAL, it has been readily adopted in day-to-day

lab use even by users with no advanced computing experience. As I have shown in

Chapters 2 and 3, CyGNAL is able to perform a comprehensive analysis of changes

occurring across multiple conditions of the often wide MC experimental systems.

Designed for the study of PTM signalling changes, CyGNAL’s computation of EMD

and DREMI scores resolves marker intensity and connectivity changes (Figure 3.2).

The intuitive and customisable interactive Shiny-Apps allow for exploratory and

close to publication-grade visualisation of the results (Figure 3.3). Tools are meant to

be used, and that publications by colleagues such as Michelozzi et al. [186] employed

CyGNAL is a testament to its relevance.

Originally meant as a simple exercise in curiosity-driven exploration after notic-
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ing the correlation between so called PTM and ’cell-state’ markers, and empowered

by the tediousness of manually gating the datasets in our lab, the RF cell-state classi-

fier has become a convenient tool to automate cell-state labelling of MC datasets in

relation to cell-cycle phases.

Built around a simple Random Forest (RF) architecture, the RF classifier ben-

efits from the fundamental gate-like logic of both decision trees and the manual

cell-state gating process (Figure 3.4). However, I expect the classifier to suffer

from generalisation issues when dealing with external data labelled using different

workflows. Furthermore, even if it leverages fuzzy logic to match channel names

from the model to the input data, the classifier still relies on matching markers found

in both the training and test datasets. While the markers dedicated to apoptosis and

cell-cycle phases generally belong to the less variable portions of MC panel design

(Table 2.2), this can still pose an inconvenience when deploying the model. However,

I have also shown how weak points such as low performance for apoptotic class

prediction using the 5-marker MC model (Figure 3.5), can be effectively addressed

by just the addition of an additional apoptotic marker to the panel design (Figure

3.5A). Furthermore, the model seems resilient to cell-type composition and even to

broad cell-state changes induced by chemotherapy (Figure 3.5B-C).

Hearkening back to the link between PTMs and cell-cycle, the 10-marker MC

model also reveals how certain PTMs prove more informative when training than

bona fide ’cell-state’ markers (Figure 2.2E). Furthermore, discrepancies between

expected cell-state and PTM correlations from the literature and feature importance

rankings have anecdotally been used to validate under-performing antibodies with

high unspecific background staining.

Both these tools remain under continuous support, and I aim to eventually merge

both code bases and integrate automated cell-state classification into CyGNAL using

pre-built classifier models or allowing for the generation of new models based on

specific user-provided labelled data. CyGNAL could also be augmented by the

addition of PHATE [92] as an alternative DR step, implementing a new Shiny-App to

visualise the embeddings and overlay user-selected metadata or antibody intensities.
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7.2 Charting Stromal and Oncogenic Regulation of

CSC Polarisation
Single-cell technologies can describe cell-cell communications and cell-type tran-

sitions in complex organoid settings and in vivo tissues [45, 49, 29]. As shown in

Qin et al. [4], a heterocellular colonic epithelia organoid system can be employed in

experimental designs covering the effects of both intrinsic CRC oncogenic mutations

and extrinsic environmental cues. However, the directed and limited nature of the

MC antibody panels used in Qin et al. [4] presented with a limiting factor towards

a detailed description of colonic organoid epithelial polarisation by intrinsic and

extrinsic cues.

Therefore, in Chapters 4 and 5 I have employed a multiplexed scRNA-seq

analysis of heterocellular CRC organoid cultures (Figure 4.1) to chart a continuous

landscape of intrinsic and extrinsic regulation of CSC states. I have found that

stromal cues transition the epithelia towards the revCSC state, oncogenic signalling

pushes the organoid towards proCSC, and exogenous ligands overlapping with both

stromal and oncogenic signalling cues can polarise towards both states at once

(Figure 4.3). I have also developed a method to capture these transitional processes,

the valley-ridge (VR) score (Figure 5.1), and established a workflow to project it onto

Waddington-like data-driven landscapes (Figure 2.3). The work presented in this

thesis was paired with complementary MC experiments in Qin & Cardoso Rodriguez

et al. [1], where we interrogated colonic stem cell regulation at scale to functionally

understand the polarisation mechanisms (Appendix D).

First, I have shown that transcriptomic profiles of epithelial, fibroblast and

macrophage cells from the heterocellular cultures can be used to describe inter-type

heterogeneity and recapitulate the distinct epithelial compartments (Figures 4.1 &

4.2). The observed Cd34 high and low fibroblast populations are reminiscent of in

situ intestinal fibroblast heterogeneity, wherein Cd34 expressing fibroblast from the

bottom of the crypts support the intestinal stem niche [200] whereas Cd34 low fibrob-

last are found above the crypt’s bottoms and help maintain the BMP gradient needed

for epithelial differentiation [192]. While I observed some transcriptional differences
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between these two fibroblast populations (Sup. Figure B.1), their regulation of the

epithelial compartment remained consistent (Sup. Figure B.2), possibly due to shared

secreted signalling between the two. Myeloid macrophage transcriptomes formed a

continuum trajectory of putative inflammation-related roles (Sup. Figure B.3), unlike

the distinct fibroblast and epithelial populations. However, neither macrophages as a

whole nor the extremes of their transcriptional continuum differentially regulated the

epithelial cells.

The healthy small intestinal and colonic epithelia is supported by a stem cell

niche at the bottom of the crypts regulated by both intrinsic and stroma-secreted

signalling gradients. These traditional colonic stem cell (CSC) however, are not the

sole stem cell state, with less common low-proliferative revival CSC (revCSC) being

able to replenish the CSC niche and repair the epithelial tissue in response to tissue

damage [30]. Here I have shown how these revCSC are enriched by stromal WNT

and TGF-β when WT organoids are co-cultured with fibroblasts (Figures 4.3A &

4.6B), and how revCSC also resemble public descriptions of the same population

and a “foetal”-like state [158] (Figure 4.7A).

The gradient of organoids with accumulating oncogenic mutations revealed

how a hyper-proliferative CSC (proCSC) state is enriched in CRC organoids (Figure

4.3B). These cells are present in lower numbers in WT and shApc organoids, but

quickly dominate the landscape of stunted absorptive and secretory differentiation

in the shApc and KrasG12D/+ (AK), and shApc, KrasG12D/+ and Trp53R172H/– (AKP)

colonic organoids (Figure 4.3C). proCSC were found to be transcriptionally similar

to other cells from mouse models and human CRC (Figure 4.7A).

With a clear differential regulation by extrinsic stromal cues and intrinsic

oncogenic signalling, polarisation of WT colonic epithelia towards both proCSC and

revCSC could nonetheless be achieved via exogenous WENR added to the culture

media (Figure 4.3C). These findings, together with subsequent MC validation [1]

of the signalling hubs identified via cell-cell communication analysis, suggest that

both states are part of a shared polarisation landscape with overlapping signalling

pathways that compete to establish colonic epithelial cell-fate. In this context, the
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observed breakdown of fibroblast-to epithelia communications in CRC organoids

(at least partly due to downregulation of key signalling receptors by the epithelial

cells) seems to suggest that intrinsic oncogenic cues dominate extrinsic stromal cues

(Figure 4.6). The interplay between the two with regard to proCSC and revCSC

polarisation is explored further in Qin & Cardoso Rodriguez et al. [1], where we

established that TGF-β can induce revCSC-like cells in CRC organoids in the context

of low PI3K signalling, supporting the suggested role of revCSC as a drug-resistant

state in CRC that can drive relapse after chemotherapy [32, 3].

In silico analysis of cellular dynamics identifies revCSC as a terminal cell-fate

(Figure 4.5E), suggesting that polarisation of the colonic epithelia towards revCSC

is achieved via plasticity-driven transitional processes from adjacent cell-states. In

contrast, proCSC is consistently identified as an initial population (Figure 4.5) whose

dominance of the epithelia seems to be achieved due to its high proliferative potential.

Therefore, I postulated that cellular pluripotency scores and rates of transcrip-

tomic change could capture the cellular dynamics of such systems, providing for an

avenue towards generation of data-driven Waddington-like landscapes of cellular

differentiation and plasticity. The valley-ridge (VR) score described in Chapter 5

synthesises both CCAT and RNA velocity vector length metrics to capture coarse

pluripotency changes and global transcriptomic structure with PHATE. Finer details

at a local level capture the availability of cell-states as determined by RNA velocity

(Figure 5.1). The methodology presented also incorporates with a landscape pro-

jection pipeline (Figure 2.3). The VR landscapes reconstruct the shared landscape

of colonic stem cell polarisation, presenting revCSC as an accessible epithelial fate

in the presence of stromal ligands, whereas intrinsic oncogenic signalling trap the

organoid in a highly pluripotent yet isolated proCSC fate, refractory to stromal

signals that otherwise would polarise the cells towards revCSC (Figure 5.2).

The work presented in these two chapters presents with some notable limitations,

such as a lack of non-organoid in situ validation: with the only effort towards

validating the findings being achieved via in silico signature matching and data

integration (Figure 4.7). Furthermore, non-paracrine stromal regulation, specially
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given the well-known role of fibroblasts as extra-cellular matrix re-modellers, has not

been deeply explored in this study. It is also worth noting that a line of normal murine

intestinal fibroblasts was used in the organoid co-cultures, rather than pairing the

CRC organoids with cancer-associated fibroblasts. This later point will be addressed

in subsequent studies at the lab by attempting to match patient-derived organoids

with cancer-associated fibroblasts from the same donor. Further work regarding

the cross-validation with human data of the proCSC and revCSC cell identities and

functional characteristics is being carried out as part of the peer-review process of

the work presented in Qin & Cardoso Rodriguez et al. [1]. Furthermore, additional

improvements to the VR score and landscape generation will be implemented during

the later stages of my project. Aiming to increase the tool’s accessibility and ease of

use, the current Jupyter Notebook format will be adapted to the nbdev framework

(https://nbdev.fast.ai/). VR landscapes will be packaged as a tool, VR Land

(github.com/FerranC96/VRland), which will be distributed as an interactive web-

app to facilitate the exploration of the 3-dimensional landscapes generated.

In conclusion, these results describe fibroblasts as key stromal regulators of

the colonic stem compartment, orientating epithelial stem cell fate via secreted

WNT and TGF-β . Stromal regulation competes with, and is ultimately trumped

by, the proCSC-enriching organoid-intrinsic oncogenic cues. Further understanding

concerning the regulation of proCSC and revCSC fates might suggest new avenues

for cancer therapies. Indeed, given that revCSC has already been described as a drug-

tolerant persister state [32], blocking the plastic processes controlling its accessibility

might be a valid strategy to limit the emergence of chemotherapy resistance.

https://nbdev.fast.ai/
github.com/FerranC96/VRland
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7.3 Knowledge Graphs for Cell Communication

While cellular communications are commonly understood to be a complex process

both at the inter- and intra-cellular levels, there is a lack of tools aiming to capture

the causal and directed nature of the process. Coupled with emerging multi-modal

approaches that could measure gene and protein expression, including PTMs, meth-

ods capturing both paracrine secreted signalling and cell-state responses to extrinsic

cues should describe a holistic view of cellular communications.

In Chapter 6 I have assembled a directed and hierarchical ligand-receptor-target

KG (LRT-KG) from publicly available databases that aims to capture the cellular sig-

nalling occurring both between interacting cells and within a cell receiving extrinsic

cues (Figure 6.1). Aiming to apply this new method to study cell communications

within the WT organoid and fibroblast co-culture in a holistic manner, the assembled

KG has a complexity comparable to the curated OmniPath database (Figure 6.2,

Table 2.3). Nonetheless, I have shown that knowledge graph embedding approaches

can learn a simpler tabular representation of the KG that conserves the biological

information encoded within it; including relational information between the gene

nodes regarding pathway annotations (Figure 6.3).

Using a wavelet-based diffusion step and projecting the scRNA-seq organoid

co-culture data (Figures 2.4 & 6.4), I have successfully shown that projected cel-

lular profiles diffused on the KG preserve the information encoded in the original

transcriptomic data representation. However, the projected profiles appear to be too

similar to the gene expression (GEx) data (Figure 6.4). Indeed, when inter-cluster

distances are computed, no significant change was detected between the original

and projected views; with fibroblasts and revCSCs, found to be closely interacting

by cell-cell communication, remaining at comparable proximity to their prior GEx

profiles (Figure 6.5).

Most likely explained by an insufficient diffusion process, alternative ap-

proaches are being explored in conjunction with my collaborators at Yale University;

such as the work on directed scattering transforms presented at the Graph Signal

Processing Workshop 2023 (https://ferranc96.github.io/posts/GSPw23/).

https://ferranc96.github.io/posts/GSPw23/
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With a robust diffusion process, the method performance could also be bench-

marked by leveraging spatial data as done by alternative cell-cell communication

approaches [197]. Multi-modal data could also be projected on a modality-agnostic

feature-feature KG with both protein and gene nodes. This approach should be able

to more confidently call inter-cellular interactions via ligand-receptor expression,

and intra-cellular responses via PTM profiles and expression of transcription factor

targets.

In summary, a balance between limiting signal loss (determined by the nodes

in the KG) and adequate diffusion approaches (ensuring sufficient information on

the graph structure itself is captured during data projection) is necessary for such a

holistic cell communication method to perform adequately. It would appear then,

that the current implementation requires of further work on the later point. Published

approaches exist to tackle similar problems [132, 198], but the aim of treating the

cells as signals to be compared on a gene-gene graph (or other omic features), remains

to my knowledge unique to the efforts presented here and worth pursuing specially

considering multi-modal profiles could be projected on such feature-feature KGs.



Appendix A

pyKrack

A.1 Introduction
Biological signalling can be modelled as a directed network, where nodes represent

genes/proteins and edges represent signalling interactions.

The hierarchy of such a network can be quantified using various metrics, in-

cluding the Krackhardt hierarchy score. This score measures the degree to which

the network exhibits a perfect hierarchy, with higher scores indicating a greater

hierarchy.

In R the sna package presents methods to compute graph hierarchy including

Krackhardt’s score, and there are other hierarchy scores implemented in Python such

as Flow Hierarchy Score [201]. However, despite its utility, there is currently no

native implementation of the Krackhardt hierarchy score in Python.

A.1.1 Krackhardt Hierarchy Score

The Krackhard hierarchy score was introduced by David Krackhardt [Krackhardt,

David. (1994). Graph Theoretical Dimensions of Informal Organization. Computa-

tional Organization Theory. 89], where he defined it as:

The graph hierarchy condition states that in a digraph D, for each pair of

points where one (Pi) can reach another (Pj), the second (Pj) can’t reach

the first (Pi). For example, in a formal organization chart a high level

employee can reach through the chain of command her subordinate’s

subordinate. If the formal organization is working ”properly”, this lower
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level employee can’t simultaneously reach the high level employee. To

measure the degree of hierarchy of digraph D, a new digraph Dr must be

created. Dr is defined as the reachability digraph of D. Each point in D

exists in Dr; moreover, the line (Pi,Pj) exists in Dr if and only if Pi can

reach Pj in D. If D is graph hierarchic, then Dr will have no symmetric

lines in it (i.e. if the line (Pi,Pj) exists in Dr then the line (Pj,Pi) does

not).

The degree of hierarchy then is defined as

GraphHierarchy = 1− [V/MaxV ]

where V is the number of unordered pairs of points in Dr that are symmetrically

linked and MaxV the number of unordered pairs of points in Dr where Pi is linked

to P j or viceversa.

A.2 Hierarchy Computation
Based on the definition above, I wrote a small Python package to compute the

Krackhardt hierarchy score. Built around a main function that computes the hierarchy

score (Listing A.2), the pykrack package (ferranc96.github.io/pyKrack) also

includes a helper function to describe general properties of a directed graph and

computes an alternative hierarchy score.

1

2 def compute_hierarchy(G, metric="pykrack"):

3 """

4 Compute one of the possible hierarchy scores

5

6 Parameters

7 ----------

8 G

9 Directed NetworkX graph

10 metric : str

11 Type of hierarchy metric to compute. Accepted types are:

12 ’pykrack ’ for this module ’s implementation of the Krackhardt score.

13 ’rsnakrack ’ for the sna implementation in R.

14 ’hierarchy_flow ’ for the Luo and Magee 2011 as implemented in the

NetworkX package.

ferranc96.github.io/pyKrack
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15

16 Returns

17 -------

18 score : float

19 One of the possible hierarchy scores

20 """

21

22 #Ensure Graph is DirectedGraph

23 if not G.is_directed ():

24 raise Exception

25 #Ensure Graph is of DiGraph () format

26 G = nx.DiGraph(G)

27

28 if metric == "pykrack": #Python implementation

29 #Compute transitive closure of graph to get the reachability graph

30 #[contains an edge (i,j) if there is a path from i to j in the

original graph]

31 acyclic = 0

32 try:

33 nx.find_cycle(G)

34 except:

35 print("Acyclic graph")

36 acyclic = 1

37 if acyclic == 1:

38 Gr = nx.transitive_closure_dag(G)

39 else:

40 Gr = nx.transitive_closure(G, reflexive=None)

41 symmetric_dyads = 0

42 non_null_dyads = 0

43 n = len(Gr.nodes ())

44 #Count the number of non -null symmetric dyads

45 for pair in product(Gr.nodes(), Gr.nodes()):

46 if Gr.has_edge(pair[0],pair [1]) or Gr.has_edge(pair[1],pair [0]): #

Non -null dyad

47 non_null_dyads +=1

48 if Gr.has_edge(pair[0],pair [1]) == Gr.has_edge(pair[1],pair

[0]): #Symmetric!

49 symmetric_dyads +=1

50 #Raise exception if graph has no edges!

51 if non_null_dyads == 0:

52 raise Exception

53 score = 1 - (symmetric_dyads / non_null_dyads)

54

55 elif metric == "rsnakrack": #R implementation from the sna package

56 try:

57 base = importr("base")
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58 sna = importr("sna")

59 score = sna.hierarchy(nx.to_numpy_array(G), measure="krackhardt")

[0]

60 except:

61 print("R package sna was not found. Please install manually!")

62 print("Computing hierarchy flow instead")

63 snafail_flag = 1

64 score = nx.flow_hierarchy(G)

65

66 elif metric == "hierarchy_flow": #Networkx ’s hierarchy flow implementation

67 score = nx.flow_hierarchy(G)

68

69 # elif metric == "all": #This will eventually return a dict with all

metrics

70

71 else: # metric argument broken

72 raise Exception

73

74

75 return score

Listing A.1: Main pyKrack function. The compute hierarchy function takes in a directed

graph and computes its hierarchy flow score or the Krackhardt hierarchy score

using an existing R implementation or a novel one in Python.

A.3 Notebook-Centric Implementation
This package has been implemented using the nbdev framework (nbdev.fast.ai).

This technology allows for a notebook-centric approach to software development and

distribution, including automation of documentation sites to continuous integration

actions that automate package releases.

I have leveraged nbdev to publish this tool as a package in Pypi (pypi.org/

project/pykrack), and as a technology demonstrator for an upcoming deployment

of the VR score landscapes.

nbdev.fast.ai
pypi.org/project/pykrack
pypi.org/project/pykrack
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Supplementary Figures

B.1 Figures related to Chapter 4

Figure B.1: Fibroblast DE Analysis. Differential gene expression analysis of fibroblasts
regulated by epithelial organoids and macrophages.
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Figure B.2: Epithelial DE Analysis by Fibroblast-Subtype. Differential gene expression
analysis of WT colonic organoids co-cultured with unsorted, CD34hi, CD34lo,
and a 1:1 mix of CD34hi:CD34hi colonic fibroblasts.

Figure B.3: Macrophages DE Analysis. Differential gene expression analysis of
macrophages regulated by epithelial organoids and fibroblasts



Appendix C

Supplementary Tables

C.1 Gene Data
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Table C.1: Colonic Epithelia Gene Markers (1/2). Markers of epithelial populations and
organoid genotypes. Derived from literature and DE analysis of our data.

Gene Annotation
Lgr5 CSC

Pla2g2a CSC
Lrig1 CSC

Smoc2 CSC
Aqp5 CSC
Agr2 CSC
Cenpa proCSC
Hmgb2 proCSC
Birc5 proCSC

Tuba1b proCSC
Ube2c proCSC
Rrm2 proCSC
Hells proCSC
Cdk1 proCSC
Ephb2 proCSC
Anxa1 revCSC
Ly6a revCSC
Clu revCSC

Basp1 revCSC
Areg revCSC
Ccn1 revCSC
Ccn2 revCSC

Ankrd1 revCSC
Ctla2a revCSC

Pmepa1 revCSC
Marcksl1 revCSC

Cldn4 revCSC
F3 revCSC
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Table C.2: Colonic Epithelia Gene Markers (2/2).

Gene Annotation
Ecm1 revCSC
Sox9 revCSC
Cd44 revCSC
Itga2 revCSC
Fn1 revCSC

Stmn1 Replication
Ccnd1 Replication
Mki67 Replication
Ccnb1 Replication
Hspa5 ER stress
Ddit3 ER stress
Atf3 ER stress
Atf4 ER stress
Tff3 Secretory

Atoh1 Secretory
Muc2 Secretory

Spink4 Secretory
Reg4 Secretory
Fabp2 Absorptive
Aldob Absorptive
Apoa1 Absorptive
Fabp1 Absorptive
Apoa4 Absorptive
Msln WT˙A

Lgals2 WT˙A
Rps4l WT˙A
Gsta3 WT˙A
Hopx A˙AK˙AKP

pEGFP A˙AK˙AKP
Wfdc2 A˙AK˙AKP
Ly6c1 A˙AK˙AKP
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Table C.3: Cell-Cycle Gene Lists (1/6). Table of cell-cycle genes adapted from Tirosh et
al. [8] and Macosko et al. [9], the former using a human melanoma cell line and
the later both human and mouse models to link gene expression with cell cycle
phases. The original tables provided in the publication were pooled together,
duplicated genes were dropped, and human symbols were translated to mouse
using BioMart. Finally, genes whose expression could not be detected in any of
the mouse organoid experiments were dropped from the list. The resulting table
contains 98 genes associated with S-phase, 248 with both G2 and M-phase, and
202 with G1.

S-phase G2 & M-phase G1
Abcc5 Ahi1 1700009N14Rik

Abhd10 Akirin2 2700049A03Rik
Asf1b Ankrd40 Acd

ATAD2 Anln Acyp1
Bbs2 Anp32b Adamts1
Bivm Anp32e Agfg1
Blm Ap3d1 Agpat3
Bmi1 Arhgap19 Ak6
Brca1 Arl4a Akap13
Brip1 Arl6ip1 Amd1
Cald1 Armc1 Amd2
Calm2 Asxl1 Ankrd10
Casp2 Atf7ip Anp32e

Ccdc14 Atl2 Antxr1
Ccdc150 Aurka Apex2
Ccdc84 Aurkb Arglu1
Cdc45 Bclaf1 Bag3
Cdc7 Birc2 Bard1
Cdca5 Birc5 BC048507

Cdkn2aip Bora Brd7
Cenpm Brd8 Btbd3
Cenpq Bub1 Capn7
Cers6 Bub3 Casp2
Chml Cadm1 Casp8ap2
Coq9 Casp3 Cbx3
Cpne8 Cbx5 Ccne1
Crebzf Ccdc107 Ccne2
Crls1 Ccdc88a Cdc25a

Depdc7 Ccdc90b Cdc42
Dhfr Ccna2 Cdc6
Dna2 Ccnb2 Cdca7

Dnajb4 Ccnf Cdca7l
Donson Cdc16 Cdk7
Dscc1 Cdc20 Cdkn3

Dync1li2 Cdc25b Cep57
E2f8 Cdc25c Cep70

Eif4ebp2 Cdc27 Chaf1a
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Table C.4: Cell-Cycle gene lists (2/6).

S-phase G2 & M-phase G1
Ercc5 Cdc42ep1 Chaf1b
Esco2 Cdca2 Clspn
Exo1 Cdca3 Cnih4
Ezh2 Cdca8 Crebzf
Fanca Cdk1 Ctr9
Fanci Cdkn1b Ctsd
Fen1 Cdkn2c Cwc15
Gclm Cdr2 Dcp1a

Gm13547 Cenpa Dctn6
Hells Cenpe Dexi
Ints7 Cenpf Dis3
Kat2a Cenpl Dkc1
Kat2b Cep350 Dnajb6
Lmo4 Cep55 Dnajc3
Lyrm7 Cfd Donson

Man1a2 Cflar Dscc1
Map3k2 Chek2 Dsp

Mastl Cit Dtl
Mbd4 Ckap2 Dynll1
Mcm8 Ckap2l E2f1

MLF1IP Ckap5 Eif2a
Mycbp2 Cks1b Eif4e

Nab1 Cks2 Elp3
Nfe2l2 Cnot10 Esd
Nsun3 Cntrob Fam122a
Nt5dc1 Ctcf Fam189b
Nup160 Ctnna1 Flad1

Ogt Ctnnd1 Fopnl
Orc3 Cyth2 Foxk2

Osgin2 Dcaf7 Fxr1
Phip Depdc1a G3bp1
Phtf1 Depdc1b Gata2
Phtf2 Dhx8 Gins2

Pkmyt1 Diaph3 Gins3
Pola1 Dlgap5 Gm12666
Prim1 Dnajb1 Gm45713
Ptar1 Dr1 Gm49369

Rad18 Dzip3 Gmnn
Rad51 E2f5 Gnb1

Rad51ap1 Ect2 Grpel1
Rbbp8 Entpd5 Gspt1
Reep1 Espl1 Gtf3c4
Rfc2 Fadd Hells
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Table C.5: Cell-Cycle gene lists (3/6).

S-phase G2 & M-phase G1
Rhobtb3 Fam83d Hif1a

Rmi1 Fan1 Hmg20b
Rpa2 Fancd2 Hmgcr
Rrm1 Foxm1 Hoxb4
Rrm2 Fyn Hras
Rsrc2 G2e3 Hsd17b11

Sap30bp Gabpb1 Hsf2
Slc38a2 Gadd45a Hspa8

Sp1 Gas1 Ilf2
Srsf5 Gas2l3 Insr
Svip Gm10184 Ints8

Top2a Gm28635 Ivns1abp
Ttll7 Got1 Jmjd1c
Tyms Grk6 Kdm5b
Ube2t Gtse1 Kif5b
Ubl3 Haus8 Kpnb1
Usp1 Hcfc1 Kras
Zwint Hint3 Larp1

Hipk2 Larp7
Hjurp Lnpep

Hmg20b Lrif1
Hmgb2 Luc7l3
Hmgb3 Lyar
Hmmr Mcm2

Hp1bp3 Mcm4
Hps4 Mcm5

Hs2st1 Mcm6
Hspa13 Mdm1
Hspa8 Med31
Ifnar1 Morf4l2
Iqgap3 Mri1
Katna1 Mrpl19
Kctd9 Mrps18b

Kdm4a Mrps2
Kif11 Msh2
Kif14 Msl1
Kif20b Mtpn
Kif22 Nasp
Kif23 Ncoa3
Kif2c Nfia
Kif5b Nfic
Kifc1 Nktr

Kifc5b Npat
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Table C.6: Cell-Cycle gene lists (4/6).

S-phase G2 & M-phase G1
Klf6 Nucks1
Klf9 Nufip2

Kpna2 Nup37
Lbr Nup43

Lix1l Odf2
Lmna Opn3

Lmnb1 Orc1
Mad2l1 Osbpl6
Mcm4 Pak1ip1
Mdc1 Pank2
Melk Pbk
Mgat2 Pcdh7
Mid1 Pcf11

Mis18bp1 Pcna
Mki67 Plcxd1
Mnd1 Plin3
Mzt1 Pms1

Ncapd2 Pnn
Ncapd3 POLD3
Ncaph Ppp2ca
Ncoa5 Ppp2r2a
Ndc80 Ppp6r3
Neil3 Prc1
Nek2 Psen1
Nfic Pttg1

Nipbl Rab23
Nmb Rad21
Nr3c1 Recql4

Nucks1 Rheb
Nuf2 Rmi2

Numa1 Rnf113a1
Nup35 Rnf113a2
Nup98 Rnpc3
Nusap1 Rpl13a
Odf2 Sec62
Pbk Skp2

Pcf11 Slbp
Pif1 Slc25a36

Pknox1 Slc39a10
Plk1 Snupn

Poc1a Srsf3
Polq Srsf7

Pom121 Ssr3
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Table C.7: Cell-Cycle gene lists (5/6).

S-phase G2 & M-phase G1
Ppp1r10 Stag1
Ppp1r2 Syncrip
Prpsap1 Taf15
Prr11 Taf9

Psmd11 Tcerg1
Psmg3 Tipin
Psrc1 Tle3

Ptp4a1 Tmem138
Ptpn9 Tob2
Pwp1 Top1
Qrich1 Topbp1
Rad51c Tra2a
Rangap1 Troap
Rbm8a Tsc22d1

Rbm8a2 Ttc14
Rcan1 Tulp4
Rccd1 Ube2d3
Rdh11 Ubr7
Rere Uhrf1

Rnf126 Ung
Rnf141 Usp53
Rnps1 Vangl1
Rrp1 Vcl

Sap30 Vps72
Sephs1 Wdr76
Sfpq Wipf2

Shcbp1 Wwc1
Ska3 Yy1

Smarcb1 Zbtb7a
Smarcd1 Zcchc10

Smc4 Zfp24
Spag5 Zfp281
Sptbn1 Zfp367

Srf Zfp593
Srsf3 Zmynd19
Ss18 Zranb2
Stat1
Stil

Stk17b
Suclg2
Tacc3
Tfap2a
Thrap3
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Table C.8: Cell-Cycle gene lists (6/6).

S-phase G2 & M-phase G1
Timp1
Tle3

Tmem138
Tmpo
Tnpo1
Tnpo2

Tomm34
Top2a
Tpx2
Traip

Trim59
Trip13
Trmt2a
Tsg101

Tsn
Ttf2
Ttk

Tuba1a
Tubb2a
Tubb4b
Tubb5
Tubd1
Txndc9
Txnrd1
Uaca

Ube2c
Ube2d3
Usp13
Usp16
Vangl1
Vps25
Vta1
Wsb1

Ywhah
Zc3hc1
Zfp207

Zfx
Zmym1
Znhit2
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Table C.9: Literature Gene Signatures (1/2). Metadata for the literature gene signatures
characterising the various stem cell states in intestinal and colon epithelia, as
well as certain key signalling pathways.

Name Genes Context Species Reference
lgr52MEX3A 91 CSC Human Alvarez et al. 2022
lgr5MEX3A 6 CSC Human Alvarez et al. 2022

Ssc1AYYAZ19 50 CSC Mouse Ayyaz et al. 2019
Ssc2bAYYAZ19 50 CSC Mouse Ayyaz et al. 2019

StemBUES22 9 CSC Mouse Bues et al. 2022
ProgenstemDALERBA11 4 CSC Human Dalerba et al. 2011

IscGREGORIEFF15 9 CSC Mouse Gregorieff et al. 2015
IscHAN20 5 CSC Mouse Han et al. 2020

IscLI17 38 CSC Human Li et al. 2017
StemcorrLI17 7 CSC Human Li et al. 2017
StemtaLI17 36 CSC Human Li et al. 2017

hEphb2MERLOS11 28 CSC Human Merlos et al. 2011
hLgr5MERLOS11 50 CSC Human Merlos et al. 2011

IscMERLOS11 49 CSC Mouse Merlos et al. 2011
Lgr5MERLOS11 103 CSC Mouse Merlos et al. 2011
Lgr5MOURAO19 98 CSC Mouse Mourao et al. 2019

munozLGR5MEX3A 139 CSC Mouse Muñoz et al. 2012
StemtaPELKA21 79 CSC Human Pelka et al. 2021

StemtasecPELKA21 94 CSC Human Pelka et al. 2021
OWNdecluststem 24 CSC Mouse Qin & Cardoso et al. 2023

OWNsigstem 6 CSC Mouse Qin & Cardoso et al. 2023
eecMEX3A 13 Other Human Alvarez et al. 2022

gobletMEX3A 6 Other Human Alvarez et al. 2022
labelMEX3A 58 Other Human Alvarez et al. 2022

mucsecMEX3A 13 Other Human Alvarez et al. 2022
panethMEX3A 12 Other Human Alvarez et al. 2022

secPROGMEX3A 11 Other Human Alvarez et al. 2022
Ssc2aAYYAZ19 50 Other Mouse Ayyaz et al. 2019
Ssc2AYYAZ19 50 Other Mouse Ayyaz et al. 2019

ImmatureDALERBA11 5 Other Human Dalerba et al. 2011
iCMS2 288 Other Human Joanito et al. 2022
iCMS 58 Other Human Joanito et al. 2022

cryptPROLIFMEX3A 269 proCSC Human Alvarez et al. 2022
ki67MEX3A 62 proCSC Human Alvarez et al. 2022

CancerDALERBA11 3 proCSC Human Dalerba et al. 2011
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Table C.10: Literature gene signature (2/2).

Name Genes Context Species Reference
ProlifDALERBA11 3 proCSC Human Dalerba et al. 2011

TumourLI17 9 proCSC Human Li et al. 2017
hProlifMERLOS11 176 proCSC Human Merlos et al. 2011
ProlifMERLOS11 258 proCSC Mouse Merlos et al. 2011

StemtaprolifPELKA21 89 proCSC Human Pelka et al. 2021
OWNdecluststemO 24 proCSC Mouse Qin & Cardoso et al. 2023

OWNsigprolif 4 proCSC Mouse Qin & Cardoso et al. 2023
OWNsigstemO 9 proCSC Mouse Qin & Cardoso et al. 2023
mex3aMEX3A 83 revCSC Human Alvarez et al. 2022
revSCMEX3A 5 revCSC Human Alvarez et al. 2022

Ssc2cAYYAZ19 50 revCSC Mouse Ayyaz et al. 2019
mex3aBARRIGAMEX3A 93 revCSC Mouse Barriga et al. 2017

RsBUES22 6 revCSC Mouse Bues et al. 2022
epiHrCANELLAS22 92 revCSC Human Cañellas et al. 2022

RegenscgGIL22 265 revCSC Mouse Gil Vazquez et al. 2022
RepGREGORIEFF15 8 revCSC Mouse Gregorieff et al. 2015

FetalHAN20 5 revCSC Mouse Han et al. 2020
RevscHAN20 4 revCSC Mouse Han et al. 2020

mustataFETALMEX3A 56 revCSC Mouse Mustata et al. 2013
OWNdecluststemS 24 revCSC Mouse Qin & Cardoso et al. 2023

OWNsigstemS 18 revCSC Mouse Qin & Cardoso et al. 2023
FetalYUI18 1184 revCSC Mouse Yui et al. 2018
yapMEX3A 8 Signalling Mouse Alvarez et al. 2022

MapkGO 23 Signalling Human Gene Ontology term
Pi3kGO 37 Signalling Human Gene Ontology term

YapGREGORIEFF15 24 Signalling Mouse Gregorieff et al. 2015
KrasGSEA 45 Signalling Human GSEA
WntHAN20 7 Signalling Mouse Han et al. 2020
YapHAN20 6 Signalling Mouse Han et al. 2020
MapkKEGG 155 Signalling Human KEGG
TgfbKEGG 80 Signalling Human KEGG
TgfbLI17 33 Signalling Human Li et al. 2017
WntLI17 18 Signalling Human Li et al. 2017

WntMORRAL20 60 Signalling Human Morral et al. 2020
Notch1MOURAO19 289 Signalling Mouse Mourao et al. 2019
OWNwntreceptors 17 Signalling Mouse Qin & Cardoso et al. 2023

YapWANG18 21 Signalling Human Wang et al. 2018
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C.2 Knowledge Graph Data
1 def CalculateWavelets(self ,use_reduced=False ,J=-1,epsilon =1e-3):

2

3 # assert(self.P)

4

5 if J == -1:

6 J = int(np.log(self.N))

7 self.J = J

8

9 I = np.eye(self.N)

10 self.wavelets = [I]

11 P_j = np.linalg.matrix_power(self.P,2)

12

13 print("Calculating Wavelets Using J = " + str(J))

14

15 if use_reduced:

16 #assert(self.N < 3000)

17 Psi_j_tilde = column_subset(I-P_j , epsilon=epsilon)

18 self.wavelets += [Psi_j_tilde]

19 for i in tqdm(range(2,J)):

20 P_j_new = np.linalg.matrix_power(P_j ,2)

21 Psi_j = P_j - P_j_new

22 P_j = P_j_new

23 self.wavelets += [column_subset(Psi_j ,1e-3)]

24 else:

25 self.wavelets += [I-P_j]

26 for i in tqdm(range(2,J)):

27 P_j_new = np.linalg.matrix_power(P_j ,2)

28 Psi_j = P_j - P_j_new

29 P_j = P_j_new

30 self.wavelets += [Psi_j]

Listing C.1: Wavelet module. Function to compute the wavelet difussion transform. Part

of a broader script kindly provided by Aarthi Venkat from Prof. Smita

Krishnaswamy’s lab at Yale University.



C.2. Knowledge Graph Data 151

Ta
bl

e
C

.1
1:

G
E

x
Sp

ac
e

D
is

ta
nc

es
.G

Ex
sp

ac
e

in
te

r-
cl

us
te

rd
is

ta
nc

es
in

th
e

W
T

or
ga

no
id

an
d

fib
ro

bl
as

tc
o-

cu
ltu

re
.C

el
ls

ar
e

co
lo

ur
ed

ac
co

rd
in

g
to

th
ei

r
re

la
tiv

e
di

st
an

ce
va

lu
es

.

E
R

St
re

ss
E

.E
nt

er
o.

L
.E

nt
er

o.
Se

cr
et

.
pr

oC
SC

C
SC

TA
2

re
vC

SC
TA

1
Fi

br
ob

la
st

E
R

St
re

ss
0.

00
00

00
0.

13
41

36
0.

08
72

32
0.

14
42

13
0.

16
12

09
0.

15
40

01
0.

55
39

33
0.

12
96

71
0.

18
78

44
0.

75
99

04
E

.E
nt

er
o.

0.
13

41
36

0.
00

00
00

0.
11

00
47

0.
16

66
65

0.
18

52
58

0.
17

78
77

0.
58

09
09

0.
15

31
92

0.
21

13
84

0.
79

72
88

L
.E

nt
er

o.
0.

08
72

32
0.

11
00

47
0.

00
00

00
0.

11
66

84
0.

13
99

93
0.

13
20

73
0.

54
30

32
0.

10
60

04
0.

16
46

87
0.

79
03

59
Se

cr
et

.
0.

14
42

13
0.

16
66

65
0.

11
66

84
0.

00
00

00
0.

19
75

54
0.

18
93

56
0.

60
40

88
0.

16
27

43
0.

22
14

62
0.

86
46

52
pr

oC
SC

0.
16

12
09

0.
18

52
58

0.
13

99
93

0.
19

75
54

0.
00

00
00

0.
20

33
34

0.
59

69
04

0.
18

03
19

0.
23

79
57

0.
77

60
85

C
SC

0.
15

40
01

0.
17

78
77

0.
13

20
73

0.
18

93
56

0.
20

33
34

0.
00

00
00

0.
59

25
24

0.
17

31
65

0.
23

09
62

0.
78

11
64

TA
2

0.
55

39
33

0.
58

09
09

0.
54

30
32

0.
60

40
88

0.
59

69
04

0.
59

25
24

0.
00

00
00

0.
57

39
83

0.
63

02
85

1.
00

00
00

re
vC

SC
0.

12
96

71
0.

15
31

92
0.

10
60

04
0.

16
27

43
0.

18
03

19
0.

17
31

65
0.

57
39

83
0.

00
00

00
0.

20
67

25
0.

78
72

10
TA

1
0.

18
78

44
0.

21
13

84
0.

16
46

87
0.

22
14

62
0.

23
79

57
0.

23
09

62
0.

63
02

85
0.

20
67

25
0.

00
00

00
0.

83
51

37
Fi

br
ob

la
st

0.
75

99
04

0.
79

72
88

0.
79

03
59

0.
86

46
52

0.
77

60
85

0.
78

11
64

1.
00

00
00

0.
78

72
10

0.
83

51
37

0.
00

00
00



C.2. Knowledge Graph Data 152

Ta
bl

e
C

.1
2:

L
R

T-
K

G
Pr

oj
ec

tio
n

Sp
ac

e
D

is
ta

nc
es

.P
ro

je
ct

ed
L

R
T-

K
G

in
te

r-
cl

us
te

rd
is

ta
nc

es
in

th
e

W
T

or
ga

no
id

an
d

fib
ro

bl
as

tc
o-

cu
ltu

re
.C

el
ls

ar
e

co
lo

ur
ed

ac
co

rd
in

g
to

th
ei

rr
el

at
iv

e
di

st
an

ce
va

lu
es

.

E
R

St
re

ss
E

.E
nt

er
o.

L
.E

nt
er

o.
Se

cr
et

.
pr

oC
SC

C
SC

TA
2

re
vC

SC
TA

1
Fi

br
ob

la
st

E
R

St
re

ss
0.

00
00

00
0.

21
55

63
0.

14
51

90
0.

13
98

18
0.

20
18

97
0.

21
80

83
0.

63
21

05
0.

19
88

38
0.

27
75

80
0.

80
39

68
E

.E
nt

er
o.

0.
21

55
63

0.
00

00
00

0.
15

39
77

0.
14

70
12

0.
21

19
75

0.
22

74
20

0.
64

74
68

0.
20

90
10

0.
28

70
32

0.
82

83
09

L
.E

nt
er

o.
0.

14
51

90
0.

15
39

77
0.

00
00

00
0.

07
40

63
0.

14
37

24
0.

15
91

09
0.

58
75

39
0.

13
85

59
0.

21
74

04
0.

80
29

99
Se

cr
et

.
0.

13
98

18
0.

14
70

12
0.

07
40

63
0.

00
00

00
0.

13
83

64
0.

15
32

22
0.

58
34

33
0.

13
28

27
0.

21
16

76
0.

80
37

92
pr

oC
SC

0.
20

18
97

0.
21

19
75

0.
14

37
24

0.
13

83
64

0.
00

00
00

0.
21

08
23

0.
62

14
95

0.
19

48
30

0.
27

19
29

0.
76

11
76

C
SC

0.
21

80
83

0.
22

74
20

0.
15

91
09

0.
15

32
22

0.
21

08
23

0.
00

00
00

0.
64

08
03

0.
21

12
21

0.
28

85
02

0.
79

05
91

TA
2

0.
63

21
05

0.
64

74
68

0.
58

75
39

0.
58

34
33

0.
62

14
95

0.
64

08
03

0.
00

00
00

0.
62

72
42

0.
70

30
30

1.
00

00
00

re
vC

SC
0.

19
88

38
0.

20
90

10
0.

13
85

59
0.

13
28

27
0.

19
48

30
0.

21
12

21
0.

62
72

42
0.

00
00

00
0.

27
03

69
0.

80
74

21
TA

1
0.

27
75

80
0.

28
70

32
0.

21
74

04
0.

21
16

76
0.

27
19

29
0.

28
85

02
0.

70
30

30
0.

27
03

69
0.

00
00

00
0.

87
35

86
Fi

br
ob

la
st

0.
80

39
68

0.
82

83
09

0.
80

29
99

0.
80

37
92

0.
76

11
76

0.
79

05
91

1.
00

00
00

0.
80

74
21

0.
87

35
86

0.
00

00
00



Appendix D

Qin & Cardoso Rodriguez et al., 2023



A Single-cell Perturbation Landscape of Colonic
Stem Cell Polarisation
Xiao Qin 1*, Ferran Cardoso Rodriguez 1*, Jahangir Sufi 1, Petra Vlckova 1, Jeroen Claus 2, and Christopher J.
Tape 1,�

1Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.; 2Phospho Biomedical
Animation, The Greenhouse Studio 6, London, N17 9QU, UK.; *These authors contributed equally to this work.

Cancer cells are regulated by oncogenic muta-
tions and microenvironmental signals, yet these pro-
cesses are often studied separately. To function-
ally map how cell-intrinsic and cell-extrinsic cues
co-regulate cell-fate in colorectal cancer (CRC), we
performed a systematic single-cell analysis of 1,071
colonic organoid cultures regulated by 1) CRC onco-
genic mutations, 2) microenvironmental fibroblasts
and macrophages, 3) stromal ligands, and 4) sig-
nalling inhibitors. Multiplexed single-cell analysis
revealed a stepwise epithelial differentiation land-
scape dictated by combinations of oncogenes and
stromal ligands, spanning from fibroblast-induced
Clusterin (CLU)+ revival colonic stem cells (revCSC)
to oncogene-driven LRIG1+ hyper-proliferative CSC
(proCSC). The transition from revCSC to proCSC is
regulated by decreasing WNT3A and TGF-β-driven
YAP signalling and increasing KRASG12D or stro-
mal EGF/Epiregulin-activated MAPK/PI3K flux. We
find APC-loss and KRASG12D collaboratively limit ac-
cess to revCSC and disrupt stromal-epithelial com-
munication – trapping epithelia in the proCSC fate.
These results reveal that oncogenic mutations domi-
nate homeostatic differentiation by obstructing cell-
extrinsic regulation of cell-fate plasticity.

Correspondence: c.tape@ucl.ac.uk

Highlights
• 1,071-condition single-cell transition map of colonic

stem cell polarisation regulated by oncogenic and
mircoenvironmental cues.

• Fibroblasts polarise WT colonic epithelia towards
Clu+ revCSC via TGF-β1 and YAP signalling.

• APC-loss and KRASG12D drive a Birc5+, Lrig1+, and
Ephb2+ proCSC fate via MAPK and PI3K.

• Oncogenic mutations disrupt stromal regulation of
epithelial plasticity, trapping cells in the proCSC fate.

Introduction
The intestinal epithelium comprises multiple cell-types
fulfilling the functions of nutrient absorption, waste elimi-
nation, and barrier protection [1]. In the healthy colon, a
subpopulation of epithelial cells are maintained in a mul-
tipotent stem cell state by the pericryptal mesenchymal

niche [2]. Stromal fibroblasts secrete paracrine ligands
including WNT, EGF, Noggin, and R-Spondin-1 to main-
tain epithelial stemness and guide differentiation towards
secretory and absorptive cells along the crypt [3]. In
colorectal cancer (CRC), oncogenic mutations targeting
Apc, Kras, Braf, Smad4, and/or Trp53 cell-autonomously
induce a crypt-progenitor phenotype in CRC cells [4].
Thus, in both the healthy colon and CRC, a subpopula-
tion of epithelial cells are maintained in a stem-like state
– albeit by different mechanisms.

Colonic epithelial stem cells are traditionally described
as LGR5+ OLFM4+ crypt base progenitors [5]. How-
ever, recent single-cell studies of intestinal epithelia have
identified additional multipotent cell-types, most notably
Clusterin (CLU)+ ’revival’ or ’foetal’ stem cells [6]. Revival
stem cells can be induced following tissue damage to
repopulate all epithelial cell-types but are otherwise rare
in the homeostatic intestine [7]. Revival-like stem cells
have also been implicated in CRC initiation [8], can be
observed in developed CRC tumours in a patient-specific
manner [9], and are emerging as putative drug-tolerant
persister cells in CRC [10]. However, how combinations
of oncogenic signals and microenvironmental cues reg-
ulate the polarisation of epithelia towards traditional or
revival stem cells is unclear.

The CRC tumour microenvironment (TME) is a hetero-
cellular system where cell-intrinsic oncogenic mutations
and cell-extrinsic stromal and immunological signalling
cues co-regulate epithelial cancer cells [11]. Stromal
ligands and oncogenic mutations can activate common
intracellular signalling pathways in colonic epithelia [12].
Canonically, both stromal WNT/R-Spondin-1 ligands and
APC-loss hyper-activate β-catenin signalling, whereas
EGF and KRAS/BRAF mutations stimulate the MAPK
pathway [1]. As a consequence of their overlapping
signalling mechanisms, oncogenic mutations must com-
pete with stromal ligands during oncogenesis – yet how
cell-intrinsic and cell-extrinsic cues co-regulate epithelial
cell-fate remains elusive.

Here we describe a functional single-cell study explor-
ing how cell-extrinsic and cell-intrinsic cues co-regulate
colonic epithelial fate. Parallel perturbation analysis of
>1,000 heterocellular organoid cultures using single-cell
RNA-sequencing (scRNA-seq) and highly-multiplexed
thiol-reactive organoid barcoding in situ (TOBis) mass
cytometry (MC) [13] revealed that fibroblasts and onco-
genic mutations induce distinct epithelial stem cell-fates
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in colonic epithelia. We find that fibroblasts polarise
epithelia towards slow-cycling CLU+ revival stem cells
via TGF-β1 and YAP, whereas APC-loss, KRASG12D,
and/or exogenous Epiregulin (EREG) shift cells towards
a LRIG1+ hyper-proliferative fate that is dependent on
PI3K signalling. APC-loss and KRASG12D collaboratively
block cell-extrinsic regulation of epithelial plasticity by
interrupting stromal-epithelial communication, trapping
CRC cells in a cancerous state. Despite the dominance
of oncogenes over epithelial plasticity, we find that CRC
organoids can still access revival stem cells, but this re-
quires high cell-extrinsic activation of YAP via TGF-β1 in
parallel with reduced PI3K signalling.

These results demonstrate that colonic epithelia exist on
a continuous differentiation landscape where oncogenic
mutations and stromal cues compete for epithelial iden-
tity – but oncogenes eventually dominate by blocking the
stromal regulation of cell-fate plasticity.

Results
Oncogenic and Stromal Cues Differentially Regulate
Colonic Epithelia
To directly compare how CRC oncogenic mutations
and stromal cells regulate colonic epithelial differenti-
ation, we performed a multivariate scRNA-seq analy-
sis of wild-type (WT), shApc (A), shApc and KrasG12D/+

(AK), and shApc, KrasG12D/+ and Trp53R172H/– (AKP)
colonic organoids, in monoculture or co-cultured with
colonic fibroblasts and/or macrophages (Figure 1A). Fi-
broblasts are established regulators of intestinal epithelia
[14] and macrophages are the most profuse leukocytes
in the colon [15]. WT epithelia cultured with exogenous
WNT3A, EGF, Noggin, and R-Spondin-1 (WENR) (com-
monly used to grow colonic organoids) were included as
a defined mesenchymal niche factor control.

Following scRNA-seq, epithelial cells, fibroblasts, and
macrophages were resolved by Leiden clustering [16],
visualised by PHATE (Potential of Heat-diffusion for
Affinity-based Trajectory Embedding) [17] (Figure 1B),
and cell-type-specific transcriptional changes were sum-
marised by principal component analysis (PCA) (Figure
1C). Epithelial transcriptomes are differentially regulated
by both CRC mutations (PC1, 26%) and microenviron-
mental cues (PC2, 22%), with A, AK, and AKP mutations
progressively dysregulating their transcriptomic profiles.
However, we found fibroblasts can only regulate WT and
A epithelial cells (Figure 1C). Although WENR ligands
are thought to mimic a healthy stromal niche [18], WT
organoids + WENR ligands transcriptionally align with
AK mutant organoids (not WT+fibroblasts as might be
expected), indicating this widely used colonic organoid
culture media induces a partial CRC-like transcriptome
in WT epithelia (Figure 1C).

Colonic fibroblasts clustered into CD34hi and CD34lo sub-
populations mimicking in vivo stromal heterogeneity [19,

20] (Figure S1A). CD34hi and CD34lo fibroblasts did not
differentially regulate colonic epithelia (Figure S1B) and
were subsequently treated as a heterogenous mesenchy-
mal population. We found fibroblast and macrophage
transcriptomes were only regulated by co-culture with
heterotypic cells but not altered by epithelial genotypes
(Figures 1C, S1C-D).

Oncogenic Mutations and Fibroblasts Polarise Ep-
ithelia Towards Distinct Stem Cell-Fates
Epithelial cells from all conditions were integrated by
reciprocal PCA (RPCA) [16], projected onto a shared
PHATE embedding, and clustered into multiple cell-fates,
including stem populations, transit amplifying (TA) cells,
cells under ER stress, goblet and deep crypt secretory
(DCS) cells, and early or late enterocytes (Figure 1D).
Stem clusters contain high signalling entropy (indicative
of pluripotency) [21] and act as origins for RNA velocity
streams [22] that transition towards differentiated cells
(Figures 1E, S2E).

Differential abundance testing [23] of co-culture and CRC
monoculture conditions against WT monocultures re-
vealed that fibroblasts, macrophages, and CRC muta-
tions have markedly different effects on epithelial cell-
fate determination (Figure 1F-H). Fibroblasts enrich a
distinct stem cell population characterised by high ex-
pression of epithelial progenitor genes Clu, Sox9, Cd44,
and Cldn4 (Figures 1I). These fibroblast-induced stem
cells are transcriptionally similar to ’foetal’ [24, 25] or ’re-
vival’ stem cells (revSCs) [7] of the small intestine (S2A)
and are hereafter referred to as ’revival colonic stem
cells’ (revCSC).

In contrast, A, AK, and AKP mutations progressively po-
larise epithelia towards a hyper-proliferative colonic stem
cell-fate, hereafter named proCSC (Figure 1G, H). proC-
SCs express EphB2, Birc5 (Survivin), Lrig1, Hmgb2,
and Rrm2 and are highly mitotic (Stmn1+, Mki67+, and
Ccnb1+) (Figure 1I). In addition, proCSCs are transcrip-
tionally comparable to stem cells observed in mouse and
human CRC (Figure S2A). Both revCSC and proCSC
are present in WT organoids at low levels alongside tra-
ditional Lgr5+ colonic stem cells, hereafter named CSC
(Figure S2B). We found CSC are also enriched by A,
AK, and AKP genotypes, but to a lesser extent than
proCSC, and CSC gene signatures are less common in
CRC (Figure S2A).

We found that fibroblasts can only induce revCSC in
WT and shApc epithelia, but not when cells contain both
shApc and KrasG12D/+ (Figure 1H). Conversely, proCSCs
are enriched in all A, AK, and AKP organoids irrespective
of fibroblasts or macrophages, suggesting oncogenic mu-
tations are dominant over microenvironmental signalling.
WENR ligands hyper-polarise WT epithelia towards all
stem and TA cell-types, with very few cells retaining se-
cretory or absorptive identities (Figures 1H-I, S2B). WT
epithelia also show higher RNA velocity vector lengths
relative to CRC cells (Figure S2C-D), suggesting that
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Figure 1. Oncogenes and Fibroblasts Differentially Regulate Colonic Epithelia. A) Multivariate scRNA-seq experimental design. WENR ligands were removed from
all experimental conditions except for the niche factor control to ensure cell-cell signalling was not dominated by exogenous recombinant proteins (see Methods). B)
Single-cell PHATE embedding illustrating epithelial cells, fibroblasts, and macrophages. C) PCAs of epithelial, fibroblast, and macrophage transcriptomes regulated by
by organoid genotype and microenvironment. D) PHATE embedding of 29,452 epithelial cells from the 17 organoid conditions coloured by cell-type clusters. E) Epithelial
PHATE coloured by CCAT score and overlaid with velocity streams (arrows). F) Epithelial PHATE overlaid with differentially abundant (DA) neighbourhoods in WT
organoid + fibroblast co-cultures compared with WT organoid monocultures. G) Epithelial PHATE overlaid with DA neighbourhoods in AK/AKP organoid monocultures
compared with WT organoid monocultures. H) Dot plot of epithelial clusters across organoid cultures coloured by log fold-change (Log FC) in neighbourhood abundance
and sized by the number of neighbourhoods detected. I) Gene expression signatures of epithelial clusters. WENR, WNT3A, EGF, Noggin, and R-Spondin-1. CSC,
colonic stem cell. proCSC, hyper-proliferative CSC. revCSC, revival CSC. DCS, deep crypt secretory cell. CCAT, correlation of connectome and transcriptome. TA,
Transit amplifying cell.
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oncogenic mutations reduce epithelial plasticity. While
macrophages can alter epithelial gene expression (Fig-
ure 1C), macrophages do not regulate the abundance
of epithelial cell-types (Figure 1H). In summary, multi-
variate scRNA-seq revealed that fibroblasts, CRC mu-
tations, and WENR ligands polarise epithelia towards a
de-differentiated progenitor state – with fibroblasts and
oncogenes inducing distinct revCSC and proCSC fates.

WNT3A Polarises Epithelia to revCSC and Onco-
genic Mutations to proCSC
Multivariate scRNA-seq demonstrated that cell-extrinsic
ligands and cell-intrinsic mutations differentially regu-
late epithelial cell-fate, but could not describe how in-
dividual ligands and mutations co-regulate differentia-
tion. To functionally explore epithelial polarisation, we
performed a highly-multiplexed TOBis MC [12] combi-
natorial study focusing on the three axes hypothesised
to regulate epithelial cell-fate: 1) microenvironment (+/-
fibroblasts), 2) stroma-mimicking ligands (+/- WNT3A,
+/- EGF, +/- Noggin, +/- R-Spondin-1), and 3) oncogenic
mutations (+/- shApc, +/- KrasG12D/+, +/- Trp53R172H/–)
(Figure 2A). Each organoid culture was performed in
triplicate, barcoded in situ using 126-plex TOBis [13],
pooled, dissociated into single cells, stained with a panel
of 45 rare-earth metal-labelled antibodies (spanning ep-
ithelial differentiation markers identified by scRNA-seq,
cell-state markers, and PTM signalling nodes [12]) (Ta-
ble S1), and analysed by MC. Following debarcoding
[26], QC, and cell-type-specific gating, we obtained 6
million cells from 390 organoid/fibroblast cultures (570
cell-type-specific single-cell datasets) (Figure 2B-D).

In agreement with scRNA-seq, analysis of 360 epithe-
lial single-cell profiles confirmed that fibroblasts induce
CLU+ revCSC in WT epithelia (Figures 2C,E, S3A),
whereas oncogenic mutations induce hyper-proliferative
LRIG1+, EPHB2+, and SURVIVIN+ proCSC while block-
ing access to revCSC (Figures 2B, E, S3A).

The effect of WENR ligands on epithelial differentiation
is highly dependent on genotype (Figure 2D, F). For
example, when WT or A organoids are treated with R-
Spondin-1 alone, no distinct shift in cell-signalling or
cell-state is observed. However, when K (KrasG12D/+) or
KP (KrasG12D/+, Trp53R172H/–) cells are treated with R-
Spondin-1, they undergo a dramatic S-phase entry and
phenocopy AK and AKP genotypes (Figures 2F, S3B).
This suggests that KRASG12D fundamentally rewires how
epithelial cells respond to canonical β-catenin signalling
(via stromal R-Spondin-1 or APC-loss) to bias epithe-
lia towards proCSC. By contrast, WNT3A upregulates
CLU in WT, A, K, and KP epithelia but only shows a
very minor effect on cells containing both shApc and
KrasG12D/+ (Figures 2F, S3C), indicating that APC-loss
and oncogenic KRAS dominate over epithelial response
to exogenous cues, blocking access to revCSC and en-
trapping epithelia in the proCSC fate.

Despite their origin as stroma-mimicking cues, we found

that WENR ligands regulate epithelia very differently
from fibroblasts (Figure S3D-F). Purified WNT3A en-
riches quiescent revCSCs with low mitogenic PTM sig-
nalling activity. Conversely, fibroblasts induce SOX9+,
pRB [S807/S811]+ revCSCs with high levels of MAPK
(pERK1/2 [T202/Y204], pMKK3/6 [S189/S207], pMAP-
KAPK2 [T334], and pP90RSK [T359]) and TGF-β (pS-
MAD2/3 [S465/S467]) signalling (Figure S3F). This sug-
gests that fibroblast-induced revCSCs are distinct from
those regulated by WNT3A alone and that the commu-
nication between stromal and epithelial cells is more
diverse than just WENR ligands.

Oncogenic Mutations and Stromal Ligands Regulate
Epithelia Across a Continuous Differentiation Trajec-
tory
To understand how organoid monocultures are regulated
by WENR ligands, we analysed WT, A, K, AK, KP, and
AKP organoids treated +/- WNT3A, EGF, Noggin, and
R-Spondin-1 (180 single-cell profiles). This analysis re-
vealed that colonic epithelial differentiation exists on a
multivariate continuum where stromal ligands and onco-
genic cues compete for epithelial fate (Figure 3A). We
observed a clear fate-transition trajectory of epithelial dif-
ferentiation dictated by oncogenes and ligands, spanning
from WNT3A-driven WT revCSC, through an equilibrium
of balanced stem cell identities and enterocyte differenti-
ation, to oncogene-dominant proCSC (Figures 3A, S4A-
B). Crucially, WNT3A can drive epithelia towards the
revCSC fate when only one oncogenic-driver is present,
but the combination of APC-loss and KRASG12D traps
epithelia in the proCSC state that is largely unresponsive
to all WENR ligands (Figure 3A).

We found that the regulation of revCSC by WNT3A is also
heavily influenced by parallel EGF signalling. For exam-
ple, WNT3A alone leads to quiescent CLU+ revCSC in
WT epithelia, but if WNT3A is combined with EGF, cells
maintain cell-cycle activity and achieve an equilibrium of
stem identities (Figures 2F, S4B). The transition between
revCSC and equilibrium can be clearly observed across
a WNT3A vs EGF gradient and fine-tuned by altering
the ratio between EGF and WNT3A concentrations (Fig-
ure S4C-F). This suggests that the access to revCSC is
controlled by competing signalling flux downstream of
WNT3A and EGF.

Consistent with the hypothesis that revCSC and proCSC
are regulated by different signalling pathways, TOBis
MC demonstrated that revCSCs have low cell-cycle ac-
tivity and high pGSK-3β [S9], whereas epithelia in the
equilibrium state display activated pNDRG1 [T346] and
pMKK3/6 [S189/S207]. In contrast, proCSC lose cy-
tokeratin expression and have very high levels of PI3K
signalling (e.g. pAKT [T308], pPKCα [T497], and p4E-
BP1 [T37/T46]) (Figure 3B). The continuous regulation of
epithelia by CRC mutations and ligands can be orthog-
onally depicted in a genotype-anchored scaffold map
[27], where revCSC-enriched WT+WNT3A transition into
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Figure 2. Regulation of Colonic Epithelia by Epithelial Genotypes, Fibroblasts, and WENR Ligands. A) TOBis MC multidimensional array comprising epithelial
genotypes, fibroblasts, and WENR ligands (570 single-cell datasets). B-E) EMD-PHATE of 360 organoid cultures coloured by genotype, microenvironment, WENR
ligands, and EMD scores of epithelial cell markers. One dot = one condition. F) Relative expression of epithelial markers, PTMs, and cell-state markers regulated by
genotypes, fibroblasts, and/or WENR ligands. One column = one condition. MC, mass cytometry. Fib., fibroblasts. Ap., Apoptotic.

proCSC-dominant K+R-Spondin-1 and AK conditions in
a stepwise manner (Figure 3C). The regulation of epithe-
lial stem cell-fate by WENR ligands can be described by
simple genotype-specific Boolean logic models (Figure
3D). These models reveal that while WT epithelia are
highly sensitive to cell-extrinsic reprogramming, shApc
and KrasG12D/+ progressively limit epithelial plasticity and
cell-intrinsically trap epithelia in the proCSC fate.

Oncogenic Mutations Inhibit Fibroblast-Epithelia Sig-
nalling
As epithelial differentiation cannot be regulated by fi-
broblasts in the context of shApc and KrasG12D/+ (Fig-
ures 1H, 2C), we hypothesised oncogenic mutations
might disrupt stromal-epithelial signalling. To test this,

we performed ligand-receptor cell-cell communication
analysis [28] of WT, A, AK, and AKP organoid+fibroblast
co-culture scRNA-seq datasets.

Given their established role in microenvironmental cell-
cell communication, fibroblasts unsurprisingly demon-
strate high ’outgoing’ signalling (i.e., express numerous
ligands and extracellular matrix (ECM) components). By
contrast, WT epithelia display a dominant ’incoming’ sig-
nalling potential (i.e., express many receptors) (Figure
4A). This dichotomy suggests that heterocellular sig-
nalling in the healthy colon is largely unidirectional from
fibroblasts to epithelial cells. We found that revCSC
and the closely affiliated TA 1 and TA 2 clusters are re-
sponsible for much of the ’incoming’ signalling potential
of WT epithelia, indicating these cell-types are hyper-
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Figure 3. Stepwise Transition from revCSC to proCSC Regulated by Oncogenic Mutations and Ligands. A) EMD-PHATE of 180 organoid single-cell datasets
regulated by epithelial genotype and WENR ligands. One dot = one condition. B) EMD-PHATE coloured by EMD scores of revCSC, equilibrium, and proCSC markers.
C) Epithelial genotype scaffold maps with organoid monoculture landmarks and genotype+ligand overlays. D) Boolean logic models for genotype-specific regulation of
colonic stem cells (CSC) by WENR ligands. revCSC, revival CSC. Equilb., equilibrium. proCSC, hyper-proliferative CSC. RS1, R-Spondin-1.

sensitive to cell-extrinsic regulation by fibroblasts. In con-
trast, proCSC are the least receptive of all epithelial cells,
suggesting proCSC are more reliant on cell-intrinsic sig-
nalling (Figure 4A).

Cell-cell communication analysis revealed that fibrob-
lasts form putative paracrine and juxtacrine interactions
with WT and A cells, which are often lost in AK and
AKP genotypes (Figure 4B). For example, WT and A
organoids show intact NRG1, EREG, IGF, and TGF-β
signalling with fibroblasts, but these cell-cell interactions
are undetectable in AK and AKP cells, due to the down-
regulation of epithelial signal receptors (Figures 4B-C,
S5A-C).

Ligand-receptor analysis is increasingly used to generate
putative cell-cell communication models in heterocellular
systems [29], yet these computational hypotheses are
rarely experimentally validated. To functionally test how
oncogenic mutations regulate stromal-epithelial commu-
nication, we performed a systematic TOBis MC study of
epithelial differentiation, cell-state, and PTM signalling

in WT, A, K, KP, AK, and AKP organoids treated with
stromal ligands identified by ligand-receptor analysis as
WT homeostatic regulators (WNT5A, SEMA3A, TGF-β1,
TGF-β2, IGF, NRG1, EREG, and OPN (Spp1)) (Figure
4B-C).

Single-cell MC analysis of 204 organoid cultures re-
vealed that WT and A epithelia can be polarised to-
wards revCSC by WNT3A or TGF-β1, whereas ERBB
signalling via EGF, EREG, or NRG1 pushed cells towards
the proCSC fate. This suggests that stem cell polarisa-
tion can be recapitulated by fibroblast-secreted ligands
independent of stromal-epithelial contact or fibroblast-
driven ECM remodelling. In contrast, ligands fail to regu-
late epithelia containing both shApc and KrasG12D/+ (Fig-
ures 4D, S5D-F). The resistance to external signalling
cues of AK/AKP epithelia mimics the diminishing stromal-
epithelial communication predicted by ligand-receptor
analysis (Figure 4A-C) and is reminiscent of their unre-
sponsiveness to WENR ligands (Figure 3D). Collectively,
this analysis suggests that the combination of APC-loss
and oncogenic KRASG12D decouple epithelial cells from
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Figure 4. Oncogenic Mutations Disrupt Stromal-epithelial Communication. A) Outgoing and incoming communication probability (interaction strength) from
fibroblasts to epithelia across organoid genotypes. B-C) Predicted paracrine and juxtacrine communication summarised at the pathway and ligand-receptor interaction
level. D) EMD-PCA of epithelial regulation by exogenous ligands across the genotypes (138 single-cell datasets). One dot = one condition. SD, standard deviation of the
distribution of EMD scores for each genotype.

homeostatic intercellular signalling – with CRC cells be-
coming ’bad listeners’ in the tissue microenvironment.

revCSC and proCSC are Regulated by Competing
Signalling Pathways
As epithelial cells are co-regulated by cell-intrinsic and
cell-extrinsic cues across an integrated differentiation
trajectory, we hypothesised different signalling pathways
might compete to control epithelial cell-fate. To deter-
mine the signalling hubs regulating revCSC and proCSC
polarisation, we performed an extensive single-cell cue-
signal-response perturbation assay spanning: 1) CRC
oncogenic mutations (shApc and KrasG12D/+), 2) stem
cell polarisation ligands (WNT3A, EREG, and TGF-β1),
and 3) inhibitors targeting: β-catenin (ICG-001), GSK-3β
(CHIR99021), MEK (Trametinib), PI3K (GDC-0941), FAK
(PF-573228), SRC (Dasatinib), YAP (CA3), and SMAD3
(SIS3) (Figure 5A).

Analysis of 432 single-cell MC organoid profiles con-

firmed that WT, A, and K epithelia can be polarised to-
wards revCSC by WNT3A or TGF-β1 and to proCSC
by EREG. However, organoids containing both shApc
and KrasG12D/+ showed limited response to ligands and
largely retained their proCSC identify (Figures 5B-E,
S6A-B). While the ligand-effect is genotype-specific, sig-
nalling inhibitors can disrupt the polarisation of proCSC
and revCSC across all genotypes, with several interest-
ing examples of ligands and inhibitors collaborating to
regulate epithelial cell-fates (Figures 5D, S6D-K).

To rank the polarisation of proCSC and revCSC by geno-
types, ligands, and inhibitors across a shared regula-
tion landscape, we established a relative stemness (RS)
score by calculating the single-cell expression ratio be-
tween LRIG1 and CLU for each organoid culture (Figure
5F). In this space, WT+TGF-β1 have a low RS score,
indicating enrichment of CLU+ revCSCs, whereas AK
have a high RS score and are dominated by LRIG1+

proCSCs (Figures 5F, S6C). The differential polarisation
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Figure 5. revCSC and proCSC are Regulated by Competing Signalling Nodes. A) Cue-signal-response organoid array experimental design. B-E) EMD-PHATE
of 432 organoid cultures coloured by genotype, ligand, inhibitor, and EMD scores of epithelial cell markers. One dot = one condition. F) Ranked relative stemness
score (log2-transformed single-cell expression ratio between LRIG1 and CLU) across all conditions in the cue-signal-response array annotated by epithelial genotypes,
exogenous ligands, and organoid cell-state. Error bars = SD. G) EMD scores for CLU and LRIG1 across WT organoid culture conditions. H) EMD scores for CLU and
LRIG1 across AK organoid culture conditions. (**, p < 0.01; ***, p < 0.001; ****, p < 0.0001. n.s., not significant. Ordinary one-way ANOVA with Holm-Šídák’s multiple
comparisons test between untreated and ligand controls. Two-tailed unpaired t-test for inhibitor treatments). Error bars represent SD.

of proCSC and revCSC can therefore be captured using
shifts in the RS score (Figure 5F).

Surprisingly, SMAD inhibition did not alter TGF-β1 reg-
ulation of revCSC (Figure S6F). However, both TGF-β1
and WNT3A regulation of revCSC could be partially re-
versed by YAP inhibition, suggesting revCSC is a YAP-
dependent cell-fate (Figures S2A, 5F-G, and S6G). In
contrast, although treating AK organoids with either TGF-
β1 or PI3Ki alone caused a decrease in RS score (with

the epithelial population still dominated by proCSCs), we
found treatment of AK organoids with PI3Ki and TGF-
β1 enabled epithelia to enter a revCSC-dominant state.
This suggests that CRC cells can access revCSC, but the
transition requires high TGF-β1 and low PI3K signalling
(Figures 5F, 5H, and S6I). Collectively, the single-cell cue-
signal-response perturbation array revealed that colonic
stem cell plasticity is generally resilient, but cells can
transition between revCSC and proCSC by re-balancing
competing signalling flux in YAP, PI3K and MAPK path-
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ways, even in CRC organoids. We found that YAP is a
central regulator of revCSC, while PI3K and MAPK are
important for maintaining the proCSC identity.

Single-cell Landscape of Colonic Epithelial Cell-fate
Plasticity
In 1957, C.H. Waddington published his famous illustra-
tion of cellular differentiation, depicting pluripotent cells
rolling down a landscape into valleys of terminal differen-
tiation [30]. While an evocative metaphor in developmen-
tal biology, this conceptual model has not been clearly
demonstrated with real data. However, recent computa-
tional advances in global-structure embeddings [17], dif-
ferentiation potency metrics [21], and local differentiation-
rate predictions [22] now provide the component ele-
ments to reconstruct Waddington-like embeddings from
scRNA-seq data.

To visualise single-cell colonic epithelial differentiation on
a Waddington-like landscape, we combined the global
cellular relationships captured by PHATE [17] as ’longi-
tude and latitude’ axes, with an integrated Valley-Ridge
(VR) score to represent pluripotent ’altitude’. The VR
score is defined as the sum of two components per clus-
ter: CCAT signalling-entropy [21] and RNA velocity [22].
At a cluster’s centre, the VR score is solely determined
by the median CCAT. However, the VR scores at the clus-
ter periphery were augmented by weighting the inverse
of RNA velocity component and the scaled distance from
the cluster centre to model rates of local transcriptional
change. This method reconstructs a data-driven esti-
mate of Waddington-like landscapes where the altitude
captures the differentiation potential of a cell population,
with the valley-ridge topology delineating local plasticity
(Figure 6A).

When WT colonic epithelia are projected onto this em-
bedding, stem cells occupy high positions in the land-
scape, with TA cells descending into a central valley be-
fore diverging into terminally differentiated secretory and
absorptive cells. When WT epithelia communicate with
fibroblasts, the TA valley erodes as cells access revCSC.
In contrast, CRC mutations shApc and KrasG12D/+ re-
sculpt the entire landscape, trapping most cells in the
proCSC fate by restricting their differentiation potential
(Figure 6A).

The functional perturbation experiments described in
this study support a signalling model that underpins
each landscape (Figure 6B). In homeostatic WT epithe-
lia, WNT3A, EREG, and R-Spondin-1 drive balanced
β-catenin, MAPK, PI3K, and YAP signalling to enable an
equilibrium of stem and terminally differentiated cell-fates.
When exposed to fibroblast-derived TGF-β1, WT cells
become dominated by the YAP signalling flux, have mini-
mal MAPK and PI3K activity, and are therefore polarised
towards revCSC. By contrast, APC-loss and KRASG12D

hyper-activate cell-intrinsic β-catenin, MAPK, and PI3K
signalling, while simultaneously downregulating recep-
tor expression to decouple epithelia from cell-extrinsic

regulation. This limits CRC access to revCSC and traps
cells in the proCSC fate. CRC cells can only escape
proCSC through high TGF-β1 and low PI3K – tipping
the signalling balance back towards revCSC. These ob-
servations demonstrate that colonic epithelia exist on an
integrated differentiation landscape that can be traversed
by co-regulating core signalling hubs, either through cell-
intrinsic mutations or cell-extrinsic ligands.

Discussion
Single-cell technologies can describe cell-type-specific
regulation of differentiation and cell-cell communica-
tion [31, 32, 33]. In this study, we utilised both multi-
plexed scRNA-seq and high-throughput MC to function-
ally map how oncogenic mutations and stromal cues
co-regulate colonic epithelia across a continuous polar-
isation landscape. By analysing >1,000 organoid cul-
tures at single-cell resolution, we identify a stepwise cell-
fate trajectory spanning from fibroblast-induced revCSC
through an equilibrium of balanced differentiation to
oncogene-driven proCSC. While scRNA-seq provides
in-depth description of colonic epithelial differentiation
and proCSC/revCSC polarisation, multiplexed TOBis MC
allows comprehensive functional interrogation of cell-
intrinsic and -extrinsic cues regulating each cell-fate.

The intestinal stroma comprises a heterogenous pop-
ulation of fibroblasts that regulate the intestinal stem
cell niche [2]. In the colonic epithelium, CD34hi fibrob-
lasts located at the crypt bottom are a major source of
WNT2B, GREM1, and R-Spondin-1, contributing to both
homeostatic stem cell maintenance and tissue regenera-
tion following injury [19]. In contrast, CD34lo fibroblasts
reside around upper crypts, show lower expression of
WNT2B/GREM1 but higher expression of BMPs, thereby
providing a permissive environment for epithelial differen-
tiation [7, 20]. The fibroblasts used in this study contain
both CD34hi and CD34lo cells – mimicking in vivo het-
erogeneity (Figure 1B). Both CD34hi and CD34lo fibrob-
last subpopulations showed comparable polarisation of
revCSC (Figure S1B), suggesting the stromal-epithelial
communication in organoid co-cultures may be domi-
nated by TGF-β1 signalling (Figure 6B). While this study
uses healthy colonic fibroblasts to model homeostatic
signalling, it is possible cancer associated fibroblasts
(CAFs) will communicate differently with epithelial cells,
particularly in CRC. Future cell-cell communication stud-
ies between CAF sub-types [34] and defined epithelial
genotypes could uncover exceptions to the signalling
models described here and therefore provide novel av-
enues for therapeutic intervention in CRC.

WNT3A is considered a canonical WNT ligand that
activates APC/β-catenin signalling, promotes cell pro-
liferation, and reinforces stem cell identity in the in-
testinal epithelium [35]. It is therefore widely used
in colonic organoid culture to compensate for the ab-
sence of Paneth cell-derived WNT3A compared with
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Figure 6. Fibroblast- and Oncogene-driven Waddington-like Single-cell Landscapes. A) Integrating PHATE and Valley-Ridge (VR) score enables Waddington-like
embeddings of scRNA-seq data. Landscapes illustrate how WT epithelia differentiate from high signalling-entropy stem cells, through TA cells, into secretory and
absorptive cells. Fibroblasts enable WT epithelia to access revCSC while retaining secretory and absorptive differentiation. In contrast, shApc and KrasG12D/+ limit
differentiation and trap cells in the proCSC state. B) Data-driven signalling models underpinning the transition from revCSC to proCSC. Arrow colour indicates pathway
activation (black on, grey off), while arrow weight depicts relative signalling flux.

the small intestine [36]. Surprisingly, we found WNT3A
alone polarised WT epithelia towards the slow-cycling
revCSC fate. Moreover, shApc cannot induce revCSC
cell-autonomously, indicating revCSC is not immediately
downstream of canonical APC/β-catenin signalling (Fig-
ure S3A). Our data suggests that WNT3A drives the po-
larisation to revCSC via YAP (not β-catenin) (Figure 5G),
and homeostatic differentiation requires balanced EGF
and WNT3A signalling (Figure S4E-F). WT organoids cul-
tured with WENR ligands are enriched for both proCSC
and revCSC while depleted of secretory cells and ente-
rocytes (Figures 1H, S2B). Collectively, these observa-
tions confirmed that organoid cell-fates can be fine-tuned
via competing signalling pathways and organoid culture
media should be carefully considered when modelling
cell-types of interest (Figures 3A, S4C-F).

proCSC are enriched in CRC organoids and are tran-
scriptionally similar to cells found in human and mouse
CRC (Figure S2A). However, we demonstrated that
proCSC are also present in WT epithelia and highly
enriched in WT organoids cultured with WENR ligands.
We therefore do not consider proCSC to be cancer stem
cells. Rather than establishing an entirely new cancer-
specific cell-fate, our study suggests that oncogenic mu-
tations cell-intrinsically polarise cells to an extreme yet
pre-existing proCSC state, while simultaneously disrupt-
ing cell-extrinsic regulation of plasticity – trapping cells
as proCSC. These results describe cancer as a chronic,
unidirectional shift in de-differentiation.

This study charts a continuous polarisation trajectory
between revCSC and proCSC in colonic epithelia. In
the healthy small intestine, revival stem cells have been
demonstrated to act as multipotent stem cells that can
be mobilised to replenish traditional LGR5+ stem cells in
response to tissue damage [7]. Small intestinal revival
stem cells are found in the homeostatic small intestine in
vivo [8, 33] and resemble an early ’foetal’ stem cell-fate
[24, 25]. Here we show that in colonic epithelia, revCSC
are enriched by fibroblast-derived WNT3A and TGF-β
via epithelial YAP, but only in the context of low PI3K and
MAPK signalling. Our work and others now collectively
suggest that fibroblasts are master regulators of revival
stem cells in both the small intestine and colon.

Although revCSC are most easily accessible in WT ep-
ithelia, multiple studies have suggested revCSC also
have an important role in CRC [9]. revCSC are candi-
dates for early tumour initiating cells [8] and may confer
WNT-inhibitor resistance in CRC [37]. A recent study
in human CRC organoids also demonstrated that can-
cer cells can escape chemotherapy by adopting a slow-
proliferating Mex3a+ state driven by a low-EGF and
high TGF-β culture environment [10]. Our results con-
firmed that TGF-β can induce revCSC-like cells in CRC
organoids, but this process is rare (Figure S3C) and re-
quires low PI3K signalling (Figure 5F). Moreover, we
recently demonstrated that cancer associated fibrob-
lasts (CAFs) can also induce a revCSC-like state in
CRC patient-derived organoids (PDOs) that protects
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CRC cells from chemotherapies including fluorouracil,
oxaliplatin, and irinotecan [38]. In this model, CAF-
chemoprotection can also be overcome by inhibiting
YAP signalling – further demonstrating the central role of
YAP in revCSC identity. However, CAF-chemoprotection
is highly patient-specific, indicating only certain cell-
states can be polarised to revCSC in CRC. Collectively,
our results and others suggest fibroblast-induced revC-
SCs may represent an important ’drug-tolerant persister’
(DTP) state in CRC. Given that targeting cell-plasticity
is an emerging area of cancer therapies [39], future
studies could target CRC DTP cells by combining YAP
inhibitors (to block access to DTP revCSC) with standard
chemotherapies (to kill proCSC).

In summary, through single-cell perturbation analysis
of >1,000 organoid cultures, we charted a continuous
landscape of cell-intrinsic and -extrinsic regulation of
colonic stem cell polarisation. We found that colonic
stem cell polarity is regulated by competing YAP and
PI3K signalling flux, with stromal TGF-β pushing epithe-
lia towards revCSC and CRC mutations trapping epithe-
lia as proCSC. We conclude that cell-fate plasticity is
a hallmark of colonic oncogenesis, and that cells can
rapidly traverse the colonic differentiation landscape via
combinations of oncogenic and stromal signalling.

Methods
Colonic Organoid Culture
Wild-type murine colonic organoids and CRC organoids
carrying oncogenic mutations (shApc (A), KrasG12D/+ (K),
shApc and KrasG12D/+ (AK), KrasG12D/+ and Trp53R172H/–

(KP), and shApc, KrasG12D/+ and Trp53R172H/– (AKP))
were a kind gift from Lukas Dow (Cornell Univer-
sity) [40]. shApc was induced by Doxycycline treat-
ment at 1 µg mL−1 and the efficiency of Apc knock-
down was monitored with EGFP expression. Organoid
base medium was made up of advanced DMEM/F-12
(Thermo 12634010) supplemented with 2 mM l-glutamine
(Thermo 25030081), 1 mM N-acetyl-l-cysteine (Sigma
A9165), 10 mM HEPES (Sigma H3375), 1× B-27 Supple-
ment (Thermo 17504044), 1× N-2 Supplement (Thermo
17502048), and 1× HyClone Penicillin Streptomycin So-
lution (Fisher SV30010). Colonic organoids were cul-
tured in organoid base medium further supplemented
with 100 ng mL−1 murine WNT3A (mWNT3A, Pepro-
tech 315-20), 50 ng mL−1 mEGF (Thermo PMG8041),
50 ng mL−1 mNoggin (Peprotech 250-38), 500 ng mL−1

mR-Spondin-1 (Peprotech 315-32), and 10 mM nicoti-
namide (Sigma N0636). WENR ligands were excluded
from all experimental conditions throughout this study
unless otherwise stated to ensure cell-cell signalling was
not dominated by exogenous recombinant proteins.

For the WENR permutation experiment (Figures 2, 3, S3,
and S4), colonic organoids were starved of mWNT3A,
mEGF, mNoggin, and mR-Spondin-1 (WENR) for 6 h,
split at a ratio of 1:3 (WT, A) or 1:6 (K, KP, AK, and

AKP), and seeded as monocultures or fibroblast co-
cultures at 5,000 fibroblasts per µL of Matrigel. The
cultures were incubated with organoid base medium sup-
plemented with 1× Insulin-Transferrin-Selenium-Sodium
Pyruvate (ITS-A) (Thermo 51300044) and 10 mM nicoti-
namide (Sigma N0636) in addition to the combinations
of mWNT3A (100 ng mL−1), mEGF (50 ng mL−1), mNog-
gin (50 ng mL−1), and mR-Spondin-1 (500 ng mL−1) as
described in Figure 2. The cells were cultured for 48 h
prior to TOBis MC analysis (see below).

For the WNT-EGF competition experiment (Figure S4C-
F), WT colonic organoids were starved of mWNT3A,
mEGF, mNoggin, and mR-Spondin-1 (WENR) for 6 h
and split at a ratio of 1:3 and seeded as monocultures.
WNT3A ranged from 0 to 100 ng mL−1 (0, 10, 20, 50,
100 ng mL−1) and / or EGF ranged from 0 to 50 ng mL−1

(0, 10, 25, 40, 50 ng mL−1) were added to the culture
to capture their differential polarisation of revCSC and
proCSC. The cells were cultured for 48 h prior to TOBis
MC analysis (see below).

For the CellChat follow-up experiment (Figures 4D,
S5D-F), colonic organoids were starved of mWNT3A,
mEGF, mNoggin, and mR-Spondin-1 (WENR) for 6
h, split at a ratio of 1:3 (WT, A) or 1:6 (K, KP, AK,
and AKP), and seeded as monocultures. The cells
were incubated with organoid base medium supple-
mented with 1× ITS-A (Thermo 51300044), 10 mM

nicotinamide (Sigma N0636), and the signalling lig-
ands identified from the ligand-receptor analysis (Fig-
ure 4C): murine WNT5A (250 ng mL−1, R&D Systems
645-WN-010/CF), murine SEMA3A (250 ng mL−1, R&D
Systems 5926-S3-025/CF), human TGF-β2 (1 ng mL−1,
BioLegend 583301), murine TGF-β1 (1 ng mL−1, BioLe-
gend 763102), murine IGF1 (100 ng mL−1, Cell Guidance
Systems GFM5-10), murine NRG1 (100 ng mL−1, R&D
Systems 9875-NR-050), murine EREG (500 ng mL−1,
R&D Systems 1068-EP-050/CF), and murine OPN
(400 ng mL−1, BioLegend 763604). Organoids treated
with WNT3A (100 ng mL−1) or EGF (50 ng mL−1) were
included as positive controls. The cells were cultured for
48 h prior to TOBis MC analysis (see below).

For the cue-signal-response MC array (Figures 5, S6),
colonic organoids were starved of mWNT3A, mEGF,
mNoggin, and mR-Spondin-1 (WENR) for 6 h, split at
a ratio of 1:3 (WT, A) or 1:6 (K, AK), and seeded as
monocultures. The cells were incubated with organoid
base medium supplemented with 1× ITS-A, 10 mM

nicotinamide, with or without signalling ligands: murine
WNT3A (100 ng mL−1), murine EREG (500 ng mL−1),
murine TGF-β1 (2 ng mL−1). For each ligand condition,
signalling inhibitors were added at the following concen-
trations: CA3 (YAP inhibitor, 2 µM, Sigma SML2647),
CHIR99021 (GSK-3β inhibitor, 3 µM, Cell Guidance Sys-
tems SM13-1), ICG-001 (CBP/β-Catenin inhibitor, 2 µM,
Cayman Chemical 16257), Dasatinib (SRC inhibitor,
50 nM, Cell Guidance Systems SM45-20), Trametinib
(MEK inhibitor, 50 nM, Cayman Chemical 16292), GDC-
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0941 (PI3K inhibitor, 1 µM, Selleck Chemical 50-851-6),
PF-573228 (FAK inhibitor, 2.5 µM, Cayman Chemical
CAY14924), and SIS3 (SMAD3 inhibitor, 3 µM, Cayman
Chemical 15945). The cells were cultured for 48 h prior
to TOBis MC analysis (see below).

Heterocellular Organoid Culture
The heterocellular organoid cultures were established
as previously described [12]. Briefly, organoids were
starved of mWNT3A, mEGF, mNoggin, and mR-Spondin-
1 (WENR) for 6 h prior to the experiment and pas-
saged at a ratio of 1:2.5; colonic fibroblasts (isolated,
immortalised, and characterised in [12]) were seeded
at 6,000 cells per µL for monoculture, 5,000 cells per
µL for two-way co-cultures, and 4,000 cells per µL for
three-way co-cultures; primary bone marrow-derived
macrophages were seeded at 9,000 cells per µL for
monoculture, 8,000 cells per µL for two-way co-cultures,
and 7,000 cells per µL for three-way co-cultures. The
cells were mixed in Matrigel and seeded at 7× 40 µL
droplets per well in 6-well plates (for scRNA-seq) or
1× 50 µL droplet per well in 48-well plates (for TOBis
MC). Unless otherwise specified, each microenviron-
ment culture was maintained in WENR-free advanced
DMEM/F-12 (Thermo 12634010) supplemented with
2 mM l-glutamine (Thermo 25030081), 1 mM N-acetyl-l-
cysteine (Sigma A9165), 10 mM HEPES (Sigma H3375),
1× B-27 Supplement (Thermo 17504044), 1× N-2 Sup-
plement (Thermo 17502048), 1× Insulin-Transferrin-
Selenium-Sodium Pyruvate (ITS-A, Thermo 51300044)
and 1× HyClone penicillin streptomycin solution (Fisher
SV30010) for 48 h prior to TOBis MC analysis (see be-
low).

scRNA-seq Data Acquisition
To prepare single-cell suspensions from the heterocel-
luar organoid cultures, cells were removed from Matrigel
using ice-cold PBS, collected with a benchtop centrifuge,
and incubated with TrypLE™ Express Enzyme (Thermo
12604013) for 7 to 10 min at 37 °C. The cells were then
washed with ice-cold advanced DMEM/F-12 (Thermo
12634010) and filtered through a 35-µm cell strainer
(Fisher 10585801). For FACS sorting, eBioscience™
Fixable Viability Dye eFluor™ 780 (FVD780, Thermo
65-0865-14) was used to label dead cells, while FITC
anti-mouse CD66a (CEACAM1) antibody (Clone: MAb-
CC1; BioLegend 134518) was used to stain epithelial
cells, and APC anti-mouse CD45 antibody (Clone: BM8;
BioLegend 123116) was used to stain macrophages.
The gating of fibroblasts was based on their endogenous
DsRed expression [12]. The collected cells were counted
with a Countess II automated cell counter (Thermo
Fisher) and examined for viability (samples with >90%
viable cells were passed onto scRNA-seq library con-
struction). To preserve RNA in the samples and to min-
imise technical variations, cells were fixed in ice-cold
methanol immediately after counting as per the 10X Ge-
nomics instruction. For co-cultures, different cell-types

were mixed at equal cell numbers prior to the fixation
step. The methanol-fixed cells were stored at −20 °C
for up to 2 weeks before they were rehydrated and pro-
cessed using the 10X Genomics Chromium Controller.
scRNA-seq libraries were generated with the 10X Ge-
nomics Chromium Next GEM Single Cell 3’ Reagent
Kits v3.1 (Dual Index) and sequenced with the Illumina
NovaSeq 6000 System (2× 150 bp paired-end reads),
aiming at 60,000 read pairs per cell and 2,000 cells per
cell-type per sample.

scRNA-seq Data Processing
Raw binary base call (BCL) sequence files were con-
verted to FASTQ files and processed with the 10X Ge-
nomics Cell Ranger pipeline version 5.0.1. The FASTQ
files were then aligned to a custom GRCm38 reference
genome containing the sequences of DsRed and eGFP
transgenes present in fibroblasts and organoids respec-
tively, generating pre-filtered feature-barcode matrices.

The gene count matrices were analysed with the R pack-
age Seurat version 4.0.4 [16]. The analysis pipeline
encompasses quality control, data normalisation, data
integration, dimensionality reduction, cell clustering, and
analysis of differential gene expression. Genes found
in less than 4 cells were removed during QC and only
cells with > 600 unique genes identified were kept for
downstream analysis. The total number of detected se-
quences typically ranged from 1,200 to 80,000 per cell,
and the actual values were manually determined based
on cell-type composition and sequencing depth. For
the integrated epithelial object in Figure 1D, an addi-
tional filtering step was performed to remove cells with
undetectable expression for any one of the bona fide
pan-epithelial genes Epcam, Krt8, Krt18, Krt19, Cldn7.
Cell-cycle regression was performed using the sctrans-
form function. Log-normalised gene expression values
(RNA assay) were used for downstream analysis if not
otherwise stated.

Dataset integration was performed using Seurat’s recip-
rocal PCA (RPCA) implementation [16] (k.anchor=12)
as it has been optimised to handle large datasets. The
integrated object in Figure 1B was computed using all
cells from the 20 conditions shown in Figure 1A (inte-
grated object limited to 2,000 genes across 58,726 cells).
The integrated object in Figure 1D was computed using
just the epithelial cells from all conditions (4,000 genes,
29,452 cells).

For dimensionality reduction (DR), the first 50 principal
components (PC) was computed from the integrated as-
says to generate 2-dimensional PHATE embeddings with
default parameters (Table S2). PHATE was chosen as
the standard DR method for the study due to its capacity
to capture the global structure in biological systems with
important developmental trajectories [17].

Cell clustering was computed using the Leiden algorithm
on the kNN graph generated from the integrated epithe-
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lial dataset (first 48 PCs), at a series of resolutions rang-
ing from 0.2 to 0.8. The final cluster annotations were
retrospectively defined by common cell-type marker ex-
pression, inter-cluster relationships on a multi-resolution
clustering tree [41], and cross-condition differential abun-
dance behaviours (see below). Cells from outlier clus-
ters (totalling less than 1% of all epithelial cells) were
excluded from the downstream analysis.

Differentially expressed (DE) genes between clusters,
conditions, and cell neighbourhoods were identified us-
ing Wilcoxon rank-sum test implemented by Seurat’s
FindAllMarkers and FindMarkers functions.

scRNA-seq Data Analysis
To generate the EMD-PCAs in Figure 1C, log-normalised
gene expression data of all cells of a particular cell-
type (epithelial cells, fibroblasts, or macrophages) were
exported from the integrated object. EMD scores for
the top 6,000 variable genes of each condition were
calculated with CyGNAL [42] using the WT monoculture
control as the reference.

Differentially abundant (DA) cell neighbourhoods were
identified using the R package MiloR [23], which enabled
the detection of enrichment and depletion of cell clus-
ters caused by microenvironmental and/or genotypical
perturbations. Given that CD34hi and CD34lo fibroblasts
do not differentially regulate epithelial cells (Figure S1B),
all samples of WT organoid+fibroblast co-cultures were
grouped and considered replicates of the query con-
dition regardless of the CD34 status of the fibroblasts,
with the DA test threshold set at 5% SpatialFDR (Fig-
ure 1F). Similarly, AK and AKP organoid monocultures
were grouped due to their similar DE and DA behaviour
(Figure 1G). The DA overview dot plot in Figure 1H was
generated by comparing the 17 conditions against the
WT monoculture control (2× replicates).

Heatmaps of selected marker genes were generated
with the R package ComplexHeatmap [43] across the
manuscript. Gene lists in Figures 1I and Figure S1B were
curated from previously reported markers for colonic ep-
ithelial subpopulations and DE genes detected between
epithelial clusters, conditions, and DA neighbourhoods
within this study. Gene lists in For S1B-D represent DE
genes between conditions.

The UCell [44] method was used to generate the correla-
tion matrix between gene signatures in existing literature
and cell clusters identified within this study (Figure S2A).
Gene lists for different intestinal stem cell-states were
compiled from public datasets, together with transcrip-
tional targets of key signalling pathways encoding the
different stem cell-states (Table S3). These gene lists
were compared with the curated gene signatures for
proliferation, CSC, revCSC, and proCSC cell-states in
Figure 1I, as well as the top DE genes for each stem
cluster (adjusted p-value < 0.01, log2FC > 0.25, top 24
genes with the greatest positive log2FC values) (Table

S3). UCell scores for each gene set were calculated
using Log-normalised gene expression values and z-
scored to allow cross-signature comparison. Pearson
correlations were computed between the scores on all
cells of stem and TA clusters and then visualised as a
correlation heatmap, grouped via complete linkage hier-
archical clustering, only showing significant correlations
(conf.level = 0.95).

Leveraging the concept that cells with a higher potency
should have a higher signalling entropy [45], the pluripo-
tency values for epithelial cells across the different clus-
ters were estimated using the R package SCENT [21].
Signalling entropy scores for all epithelial cells were com-
puted with the CCAT (correlation of connectome and
transcriptome) approximation method using a murinised
version of the built-in net17Jan16 Protein-Protein inter-
action network.

For RNA velocity analysis, loom files were generated
from Cell Ranger’s output using the Python package ve-
locyto [46] (reference genome: GRCm38, repeat mask
assembly: GRCm38/mm10, track: RepeatMasker). RNA
velocity was analysed with the Python package scVelo
[22] using default parameters unless otherwise specified
(Table S2). Metadata and PHATE embedding coordi-
nates were exported from the relevant Seurat objects to
filter and annotate anndata objects generated from the
loom files made by velocyto. Moments for the velocity
estimation were calculated using the first 50 PCs and
30 neighbours from the anndata objects. RNA veloci-
ties were computed with the recover_dynamics function
using the dynamical model of transcriptional dynamics
with default parameters. The velocity stream embedding
(Figure 1E) was computed using the integrated object
containing epithelial cells from all conditions. The RNA
velocity vector lengths, an estimate of a cell’s differenti-
ation rate, were computed using cells solely from the 4
conditions shown in Figure S2B-D. The quantitative com-
parison in Figure S2D was performed using the Games-
Howell pairwise test wrapper from the R package stat-
sExpressions [47]. All conditions were compared against
the WT monoculture control and all p-values have been
corrected for multiplicity with the Holm method.

Ligand-receptor expression analysis was performed us-
ing the R package CellChat [28], where stromal-epithelial
signalling was analysed across 4 different organoid geno-
types (WT, A, AK, and AKP). Epithelial cells were an-
notated with the clusters previously identified (Figure
1D), while the fibroblasts were grouped as a single clus-
ter. A merged CellChat object was generated to com-
pare relative communication probability of fibroblast-to-
epithelia signalling across the genotypes. Significant
ligand-receptor pairs were identified based on CellChat’s
murine cell communication database. Plots displaying
aggregate outgoing and incoming communication proba-
bility (Figure 4A) were generated with the netAnalysis_-
signalingRole_scatter function. Detected communica-
tion at the pathway and interaction level was accessed
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with the subsetCommunication function and probabili-
ties were z-score normalised to allow for cross-pathway
or cross-interaction comparison. The results were visu-
alised with ComplexHeatmap in Figure 4B-C, the rows of
which were manually ordered based on hierarchical clus-
tering and grouped based on the nature of the interaction.
Gene expression of the ligand-receptor pairs identified
above was visualised using Seurat’s Dotplot function in
Figure S5A. UCell scores for ligand and receptor genes
were calculated for fibroblasts and epithelial cells respec-
tively. Games-Howell pairwise test was performed using
the R package statsExpressions and all p-values have
been corrected for multiplicity with the Holm method.

TOBis MC
TOBis MC of organoid cultures was performed as pre-
viously described [13]. Briefly, the cultures were incu-
bated with 25 µM 1275-iodo-2’-deoxyuridine (127IdU) for
30 min to label S-phase cells, treated with a cocktail
of protease (Sigma P8340) and phosphatase inhibitors
(Sigma 4906845001) to protect protein and phospho-
rylation epitopes, and fixed with 4% (w/v) PFA for 1
h at 37 °C. The cells were washed twice with PBS,
incubated in 250 nM 194/8cisplatin (Fluidigm 201194/8)
for 10 min to stain dead cells, and washed twice with
PBS to remove residual cisplatin. TOBis barcodes were
added to the cells and incubated overnight at 4 °C. The
following day, unbound barcodes were quenched with
reduced glutathione (Sigma G6529) and washed from
the cultures. TOBis-barcoded organoids from each
condition were removed from Matrigel in a freshly pre-
pared dissociation buffer containing 0.5 mg mL−1 Dis-
pase II (Thermo 17105041), 0.2 mg mL−1 Collagenase
IV (Thermo 17104019) and 0.2 mg mL−1 DNase I (Sigma
DN25), pooled into a single master tube and dissociated
into single cells with a gentleMACS Octo Dissociator
(Miltenyi 130-096-427). Following dissociation, the cells
were washed, filtered, and stained for extracellular epi-
topes with rare earth metal-labelled antibodies (Table
S1). The cells were then permeabilised with 0.1% (v/v)
Triton X-100 followed by 50% (v/v) methanol. Once per-
meabilised, the cells were stained with a panel of metal
antibodies against intracellular proteins and PTMs (Ta-
ble S1). For each cell, we measured cell-type markers
(epithelia: CEACAM-1, Pan-cytokeratin (Pan-CK), GFP;
fibroblasts: PDPN, RFP, mCherry), epithelial differen-
tiation markers identified by scRNA-seq (CLU, CD44,
SOX9, SURVIVIN, LRIG1, EPHB2, C-MYC, and FABP2),
cell-state markers (pRB [S807/S811], IdU, pHH3 [S28],
Cyclin B1, and cCaspase3 [D175] [13]), and >20 PTMs
spanning multiple cell-signalling pathways. The cells
were washed and incubated in DNA intercalator 191/193Ir
(Fluidigm 201192A) overnight before MC single-cell data
acquisition and analysis.

MC Data Acquisition and Analysis
TOBis MC data were acquired and analysed as previ-
ously described [13]. For Fluidigm Helios acquisitions,

stained cells were washed into Maxpar Water (Fluidigm
201069) containing 2 mM EDTA, diluted to 0.8–1.2×106

cells mL−1 and spiked with EQ Four Element Calibration
Beads (Fluidigm 201078). The cells were then loaded
into a Super Sampler (Victorian Airships). For CyTOF
XT acquisitions, stained cells were wash into Maxpar
Cell Acquisition Solution Plus (Fluidigm 201244) con-
taining 2 mM EDTA, diluted to 0.8–1.2×106 cells mL−1

and spiked with EQ™ Six Element Calibration Beads
(Fluidigm 201245).

After data acquisition, raw MC data were normalised
and exported as standard FCS file(s). Multiplexed TOBis
experiments were debarcoded into individual conditions
(https://github.com/zunderlab/single-cell-debarcoder),
imported into Cytobank (http://www.cytobank.org/), and
gated with Gaussian parameters, DNA/cisplatin, and
cell-type markers to remove debris, identify live cells,
and remove doublets respectively. The fully gated
datasets were further processed with our MC data
analysis pipeline, CyGNAL (https://github.com/TAPE-
Lab/CyGNAL) [42]. Earth mover’s distance (EMD) [48]
was used to quantify node intensity of each marker.
Unless otherwise specified, EMD scores were calculated
with WT untreated controls (concatenated replicates) as
the reference.

PHATE [17] embeddings were calculated with raw/z-
scored EMD scores or arcsinh-transformed single-
cell MC data using the python package phate
(https://github.com/KrishnaswamyLab/PHATE) with pa-
rameters specified in Table S2. EMD heatmaps were
generated with the R package ComplexHeatmap [43]
and further annotated in OmniGraffle Professional
across the manuscript. For the WENR permutation ex-
periment (Figures 2, 3, S3, and S4), EMD scores for
revCSC and proCSC markers (Figure S3A), percentages
of S-phase cells (Figure S3B) and CLU+ cells (Figure
S3C) were plotted and analysed with GraphPad Prism
7 (ordinary one-way ANOVA with Holm-Šídák’s multiple
comparisons test for Figure S3A, unpaired two-tailed t-
tests for Figure S3B-C). For the cue-signal-response per-
turbation array (Figures 5, S6), EMD scores for CLU and
LRIG1 were calculated for selected conditions and anal-
ysed with GraphPad Prism 7 (ordinary one-way ANOVA
with Holm-Šídák’s multiple comparisons or unpaired two-
tailed t-tests for Figure 5G, H).

Force-directed Scaffold Maps [27] (Figure 3C)
were constructed using the R package Scaffold
(https://github.com/nolanlab/scaffold). Landmark popula-
tions (WT, A, K, KP, AK, AKP organoid monocultures)
were manually gated and exported from Cytobank
with all data arcsinh transformed (cofactor = 5). The
parameters used in the Scaffold analysis were specified
in Table S2.

The Boolean logic models of CSC regulation by WENR
ligands (Figure 3D) were compiled in OmniGraffle Pro-
fessional.
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The relative stemness (RS) score (Figure 5F) was gener-
ated by calculating ratios between arcsinh-transformed
LRIG1 and CLU MC measurements for single cells, fol-
lowed by log2 normalisation, and then summarised at
the replicate and condition level. RS score heatmap
(Figure S6B) was generated with the R package Com-
plexHeatmap [43] and further annotated in OmniGraffle
Professional.

Valley-Ridge (VR) Score
The VR score was defined as the weighted sum of the
Valley (weight = 0.9) and the Ridge (weight = 0.1) com-
ponents, and was computed on a per sample and per
cluster basis (Figure S7A). The Valley component equals
the median CCAT value of each sample-cluster combi-
nation. To calculate the Ridge component, the inverse of
the velocities was first computed and scaled to a range
between 0 and 1. A cell centrality distance was then
calculated for cells in each cluster by first building a kNN
graph of a cluster’s cells from the PHATE embeddings
(Table S2), followed by the calculation of a distance ma-
trix using graphtool’s shortest_path function [49]. The
median distance for each cell to all other cells was then
calculated, whereby cells with the lowest distance would
be at a cluster’s centre whilst those with the highest
distance would be at the cluster periphery. To allow inter-
cluster comparisons, outliers with a distance over Q99
were set to the median distance value before scaling
to (0,1). Finally, the Ridge component was computed
per sample-cluster as the product of the median scaled
inverse velocities and the cell’s scaled centrality distance
(Figure S7A).

This definition of the VR score allows the CCAT-driven
Valley component to be the driving force for sculpting
the landscape and the velocity-driven Ridge component
to predominately define the barriers around clusters –
producing a tarn-like effect symbolising a state of trapped
cells. In principle, any other dimensionality reduction
technique can be used in place of PHATE [50], and
the Valley/Ridge component can be computed using
other metrics underpinning pluripotency and cell-fate
transition. The Ridge component can also be calculated
with a distance-free approach such as α-shapes [51].
Finally, the VR scores can be computed on a per cell
or neighbourhood basis, which will increase landscape
resolution and liberate the method from constraints of
cluster definitions (at the expense of increased noise).

Waddington-like Landscape
To generate the Waddington-like landscapes in Figure
6A, we combine the ability of PHATE to capture the
global structure of single-cell data with the VR score
(described above) (Figure S7A-B).

Waddington-like landscapes can be visualised directly
in Python (Figure S7B, C). Briefly, a low dimensional
34x30 mesh grid was generated from the PHATE em-
beddings, and a 3D surface was rendered by projecting

VR scores onto the grid using the radial basis function
interpolation from scipy [52] (Table S2). The surface of
the landscape was coloured by VR scores and a scatter
plot was overlaid where the elevation of each cell was
defined as the weighted sum of its VR score (weight =
0.9), CCAT value (weight = 0.1), and a constant factor
of 0.012 (weight = 1). This added a level of controlled
noise to the scatter plot while ensuring most cells remain
above the interpolated surface (Figure S7C).

These landscapes can also be visualised in SideFX Hou-
dini 19.5 (http://www.sidefx.com) and rendered using
Maxon Redshift 3.5 (http://www.redshift3d.com) (Fig-
ures 6A, S7B). VR scores and scRNA-seq metadata
were imported and points were positioned in z- and x-
axes according to their PHATE scores. This PHATE
distribution was then transformed in the y-axis accord-
ing to each cell’s VR score. The PHATE-transformed
2D distribution was used as a deformation lattice to in-
fluence nearby points on a polygonal grid, and its dif-
ference from the VR-transformed 3D distribution was
used to drive deformation of this polygonal grid into
a Waddington-like landscape. The VR-transformed
data was then projected back onto the Waddington-like
landscape to avoid intersections between positions of
data points and landscape topology. A video tutorial
to visualise Waddington-like embeddings using Hou-
dini is available at: https://entagma.com/houdini-tutorial-
waddington-landscape/.

Data Availability
Raw scRNA-seq data and BioSample metadata
have been deposited at Sequence Read Archive (SRA)
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA883610).
Raw and processed MC data are avail-
able as a Community Cytobank project
(https://community.cytobank.org/cytobank/experiments#
project-id=1460). Aligned scRNA-seq count matrices,
spliced/unspliced RNA count matrices, integrated
Seurat objects, integrated MC dataframes, and
Houdini project files can be accessed at Zenodo
(https://doi.org/10.5281/zenodo.7586958). All analysis
scripts to reproduce figure plots together with a
notebook explaining pre-processing and QC steps
for scRNA-seq analysis are available at GitHub
(https://github.com/TAPE-Lab/Qin-CardosoRodriguez-
et-al).
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Supplementary Information
Supplementary Figures

Figure S1. Single-cell Characterisation of the Heterocellular Organoid Model. Related to Figure 1. A) Mass cytometry (MC)
analysis of primary murine colon fibroblasts showing stromal markers CD34, PDGFRα, and CD90. B) scRNA-seq analysis of WT
colonic organoids co-cultured with unsorted, CD34hi, CD34lo, and a 1:1 mix of CD34hi:CD34hi colonic fibroblasts. C) Differential
gene expression analysis of fibroblasts regulated by epithelial organoids and macrophages. D) Differential gene expression
analysis of macrophages regulated by epithelial organoids and fibroblasts.
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Figure S2. Epithelial Stem Cell Signatures. Related to Figure 1. A) Comparison of gene signatures of CSC, proCSC, and
revCSC identified in this study with published stem cell signatures. B) Single-cell PHATE embeddings of epithelial cells from WT,
WT+Fibroblasts, WT+WENR, and AK organoids coloured by cluster and overlaid with single-cell density. C) Single-cell PHATE
embeddings coloured by RNA velocity vector lengths. D) RNA velocity vector lengths of organoid conditions (Games-Howell
pairwise test with Holm-adjusted p-values). E) CCAT scores of epithelial clusters. CSC, colonic stem cell. proCSC, hyper-
proliferative CSC. revCSC, revival CSC. TA, transit amplifying cell. DCS, deep crypt secretory cell. Entero., enterocyte. Boxplots
show min/max and quartiles. Red dot marks the mean value.
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Figure S3. Epithelial Regulation by Organoid Genotypes, WENR Ligands, and Fibroblasts. Related to Figure 2. A)
EMD scores for CLU, LRIG1, EPHB2, and SURVIVIN across organoid culture conditions (**, p < 0.01; ***, p < 0.001; ****, p <
0.0001. Ordinary one-way ANOVA with Holm-Šídák’s multiple comparisons test). Error bars represent standard deviation (SD). B)
Percentage of S-phase cells in organoids cultured with or without R-Spondin-1 across genotypes (***, p < 0.001; ****, p < 0.0001.
Unpaired two-tailed t-test). Error bars represent SD. C) Percentage of revCSC in organoids cultured with or without WNT3A across
genotypes (***, p < 0.001. Unpaired two-tailed t-test). Error bars represent SD. D-F) EMD-PHATE of WT organoids cultured with or
without fibroblasts and WENR ligands coloured by microenvironment, ligands, and EMD scores for selected markers. One dot =
one condition. revCSC, revival colonic stem cell. proCSC, hyper-proliferative colonic stem cell.
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Figure S4. Stepwise Regulation of Epithelial Differentiation. Related to Figure 3. A) EMD-PHATE of organoid monocultures
+/-WENR ligands coloured by organoid genotypes. Inserts: single-cell PHATE overlaid with arcsinh-transformed measurements
of CLU or LRIG1 for WT+WNT3A versus AKP monoculture respectively. B) EMD-PHATE of organoid monocultures +/-WENR
ligands annotated by organoid genotype and culture conditions. C) EMD-PHATE of WT organoids cultured with a gradient of either
WNT3A or EGF coloured by WNT3A or EGF concentrations (ng mL−1). D) The PHATE embedding in C) coloured by EMD scores
for selected markers. E) EMD-PHATE of WT organoids cultured with varying combinations of WNT3A and EGF coloured by the
ratio between EGF and WNT3A concentrations. F) The PHATE embedding in E) coloured by EMD scores for selected markers.
Equilb., Equilibrium.
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Figure S5. Ligand-receptor Expression Analysis. Related to Figure 4. A) Average scaled expression of ligands (expressed by
fibroblasts) and receptors (expressed by epithelia) across organoid genotypes. B) Ligand expression (UCell scores) by fibroblasts
in co-cultures across organoid genotypes (Games-Howell pairwise test, n.s not significant). C) Receptor expression (UCell scores)
by epithelia in co-cultures across organoid genotypes (Games-Howell pairwise test with Holm-adjusted p-values). D-E) EMD-PCA
of epithelial cells regulated by exogenous ligands. F) PCA from D) coloured by EMD scores for CLU and LRIG1. Boxplots show
min/max and quartiles. Red dot marks the mean value.
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Figure S6. Signal Perturbation Analysis. Related to Figure 5. A) EMD-PHATE embedding of organoid cultures treated with
ligands alone from the cue-signal-response array annotated with experimental metadata. One dot = one condition. B) PHATE
embedding from A) coloured by EMD scores for CLU and LRIG1. C) Heatmap of relative stemness scores (log2-transformed
single-cell expression ratio between LRIG1 and CLU) of 432 organoid cultures from the cue-signal-response array. D-K) EMD-
PHATE embeddings of organoid culture subsets from the cue-signal-response array focusing on each inhibitor.
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Figure S7. Generation of Waddington-like Landscapes from scRNA-seq Data. Related to Figure 6. A) Workflow for
calculating VR scores from scRNA-seq data. B) Workflow for visualising PHATE and VR scores as 3D landscapes with either
Python (left) or Houdini (right). RBF, radial basis function. C) PHATE and VR score landscapes visualised in Python.
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Appendix F

Colophon

This Thesis has been written with LATEXand its figures assembled using the FOSS

vector graphics editor Inkscape (inkscape.org). Resources used for making figures

include plots generated from code (R and Python), de novo drawn graphics, and

graphics altered from the open source Bioicons resource (bioicons.com).

The Thesis is currently hosted in GitHub as a private repository. However,

once the sections of work currently under revision at Cell are part of the public

domain, I will make the repository public. Code availability covers all chapters and

is distributed along multiple GitHub repositories.

inkscape.org
bioicons.com
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Kolb, Alexandra-Chloé Villani, Cory M. Johannessen, Aleksandr Y. Andreev,

Eliezer M. Van Allen, Monica Bertagnolli, Peter K. Sorger, Ryan J. Sullivan,

Keith T. Flaherty, Dennie T. Frederick, Judit Jané-Valbuena, Charles H. Yoon,
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Hommes, Hans Clevers, Vanesa Muncan, and Gijs R. van den Brink. ER

Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation

of the Unfolded Protein Response. Cell Reports, 3(4):1128–1139, April 2013.

[19] Olivia I. Coleman and Dirk Haller. ER Stress and the UPR in Shaping

Intestinal Tissue Homeostasis and Immunity. Frontiers in Immunology, 10,

2019.

[20] Joep Beumer and Hans Clevers. Cell fate specification and differentiation

in the adult mammalian intestine. Nature Reviews Molecular Cell Biology,

22(1):39–53, January 2021. Number: 1 Publisher: Nature Publishing Group.

[21] Toshiro Sato, Daniel E. Stange, Marc Ferrante, Robert G. J. Vries, Johan

H. van Es, Stieneke van den Brink, Winan J. van Houdt, Apollo Pronk,



Bibliography 206

Joost van Gorp, Peter D. Siersema, and Hans Clevers. Long-term Expansion

of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma,

and Barrett’s Epithelium. Gastroenterology, 141(5):1762–1772, November

2011. Publisher: Elsevier.

[22] Ayano Kondo and Klaus H. Kaestner. Emerging diverse roles of telocytes.

Development, 146(14):dev175018, July 2019.

[23] Nobuo Sasaki, Norman Sachs, Kay Wiebrands, Saskia I. J. Ellenbroek, Ar-

ianna Fumagalli, Anna Lyubimova, Harry Begthel, Maaike van den Born,

Johan H. van Es, Wouter R. Karthaus, Vivian S. W. Li, Carmen López-Iglesias,
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Hernando-Momblona, Adrià Cañellas-Socias, Sara Cano-Crespo, Marta Sevil-

lano, Carme Cortina, Diana Stork, Clara Morral, Gemma Turon, Felipe Slebe,
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Soucheray, André Mateus, Askar A. Kleefeldt, Anthony Hill, Luz Garcia-

Alonso, Frank Stein, Nevan J. Krogan, Mikhail M. Savitski, Danielle L.

Swaney, Juan A. Vizcaı́no, Kyung-Min Noh, and Pedro Beltrao. The func-

tional landscape of the human phosphoproteome. Nature Biotechnology, pages

1–9, December 2019.

[48] Sabine A. G. Cuijpers and Alfred C. O. Vertegaal. Guiding Mitotic Progression

by Crosstalk between Post-translational Modifications. Trends in Biochemical

Sciences, 43(4):251–268, April 2018.

[49] Suoqin Jin, Christian F. Guerrero-Juarez, Lihua Zhang, Ivan Chang, Raul

Ramos, Chen-Hsiang Kuan, Peggy Myung, Maksim V. Plikus, and Qing Nie.

Inference and analysis of cell-cell communication using CellChat. Nature

Communications, 12(1):1088, February 2021. Number: 1 Publisher: Nature

Publishing Group.

[50] Mirjana Efremova, Miquel Vento-Tormo, Sarah A. Teichmann, and Roser

Vento-Tormo. CellPhoneDB: inferring cell–cell communication from com-



Bibliography 211

bined expression of multi-subunit ligand–receptor complexes. Nature Proto-

cols, pages 1–23, February 2020. Publisher: Nature Publishing Group.

[51] Xinmin Li and Cun-Yu Wang. From bulk, single-cell to spatial RNA se-

quencing. International Journal of Oral Science, 13(1):1–6, November 2021.

Number: 1 Publisher: Nature Publishing Group.

[52] Adam L. Haber, Moshe Biton, Noga Rogel, Rebecca H. Herbst, Karthik

Shekhar, Christopher Smillie, Grace Burgin, Toni M. Delorey, Michael R.

Howitt, Yarden Katz, Itay Tirosh, Semir Beyaz, Danielle Dionne, Mei Zhang,

Raktima Raychowdhury, Wendy S. Garrett, Orit Rozenblatt-Rosen, Hai Ning

Shi, Omer Yilmaz, Ramnik J. Xavier, and Aviv Regev. A single-cell survey of

the small intestinal epithelium. Nature, 551(7680):333–339, November 2017.

[53] Jacob O. Kitzman. Haplotypes drop by drop. Nature Biotechnology, 34(3):296–

298, March 2016. Number: 3 Publisher: Nature Publishing Group.

[54] Jiarui Ding, Xian Adiconis, Sean K. Simmons, Monika S. Kowalczyk,

Cynthia C. Hession, Nemanja D. Marjanovic, Travis K. Hughes, Marc H.

Wadsworth, Tyler Burks, Lan T. Nguyen, John Y. H. Kwon, Boaz Barak,

William Ge, Amanda J. Kedaigle, Shaina Carroll, Shuqiang Li, Nir Hacohen,

Orit Rozenblatt-Rosen, Alex K. Shalek, Alexandra-Chloé Villani, Aviv Regev,
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