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Abstract

This thesis presents contributions to the field of quantitative MRI (qMRI) computa-

tional experimental design (CED).

qMRI experiments are constructed from experimental ‘building blocks’ (e.g. acqui-

sition protocol, model selection, parameter estimation) which, when combined, map

tissue properties to quantitative biomarkers. Each of these blocks presents experi-

mental choices: which acquisition protocol, which model, which parameter estimation

method. Together, these choices form experimental designs. CED is the in-silico pro-

cess by which such designs are tailored to suit specific imaging applications. This

work addresses three limitations with current CED practices.

The first is that they are too narrow in their scope: they are unduly focused

on acquisition protocol. qMRI is underpinned by model fitting, which relies on an

appropriate choice of signal model and fitting method. This choice cannot be taken

for granted: model fitting both depends on and influences the quality of the acquired

data. This work argues that CED should not focus on acquisition protocol alone, but

rather consider all experimental components in an end-to-end, holistic manner.

The second limitation relates to the experimental evaluation metrics currently used

in CED. Experiments are assessed on their ability to generate close-to-groundtruth

biomarker estimates, rather than on these estimates’ ability to solve real-world tasks

(e.g. tissue classification); there is a disconnect between evaluation and application.

This work address this by proposing a CED method which assesses experiments on

their task performance, and validates its assessments on two clinical datasets.

The final limitation relates to the parameter estimation methods available to CED.

Existing methods are task-agnostic; they cannot be tailored to the needs of a specific

qMRI experiment. This work takes advantage of machine learning techniques to, for

the first time, make this possible: by changing training labels, parameter estimation

performance is shown to be adjusted in a task-specific manner.
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Impact statement

Magnetic resonance imaging (MRI) is a vital tool in modern clinical practice, offering

non-invasive insight into a wide range of pathologies. Conventional MRI produces

qualitative images, which are only sensitive to differences in tissue properties. In

contrast, qMRI generates quantitative image ‘maps’ which not only record tissue

differences but also measure tissue properties.

The information contained within such maps (not just what they measure, but

also the accuracy and precision of those measurements) depends strongly on how a

qMRI experiment is designed. There is no one-size-fits-all ‘best’ qMRI experiment;

each use-case necessitates its own ‘experimental design’ process. To date, this process

has focused on qMRI’s tissue-property-measurement ability; qMRI experiments are

optimised to generate high-accuracy measurements of underlying tissue properties.

This thesis argues that this approach is ill-suited to many qMRI applications. In

clinical contexts, qMRI measurements are prized for their sensitivity to differences in

tissue properties; their numerical value - how accurately they measure tissue proper-

ties - is of secondary importance. In light of this observation, this work makes the

case for explicitly task-driven experimental design: adjusting qMRI experiments to

maximise utility (e.g. clinical diagnosis) rather than numerical measurement.

This insight and analysis has impact both inside and outside academia. In aca-

demic research contexts, it represents a paradigm-shift in the purpose of qMRI exper-

imental design. This should lead to the development of a new family of (potentially

commercialisable) computational methods built around task-driven qMRI experimen-

tal design.

Outside academia, in clinical contexts, this thesis’ theoretical contributions should

lead to a rethink of what qMRI can, and should, offer. Making qMRI experiments

task-driven has the greatest impact in non-research contexts, where qMRI techniques

become (i) more useful and therefore (ii) more widely used.
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The theoretical contributions presented throughout this thesis are supported by

computational tools which actually perform task-driven experimental design. These

tools have been made publicly available, and should enable both academics and clin-

icians to apply and develop task-driven experimental design practices suited to their

own qMRI applications.
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Chapter 1

Computational experimental design
for quantitative MRI

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Current practice . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Choice of acquisition protocol (𝜃𝑎𝑐𝑞) . . . . . . . . . . . . . 20

1.2.2 Choice of signal model (𝜃𝑚𝑜𝑑) . . . . . . . . . . . . . . . . . 22

1.2.3 Choice of parameter estimation method (𝜃𝑒𝑠𝑡) . . . . . . . . 23

1.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Limitations of current practice . . . . . . . . . . . . . . . 24

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 Introduction

Magnetic resonance imaging (MRI) is a vital tool in modern clinical practice, offering
non-invasive insight which has revolutionised fields as diverse as oncology [1], cardi-
ology [2] and neurology [3]. One of MRI’s key strengths is its programmability and
sensitivity to a wide range of biological phenomena. With the right software settings,
MRI experiments can produce a near-limitless number of different image contrasts,
enabling end-users to design imaging protocols that best-serve their specific experi-
mental needs.

This flexibility presents a natural optimisation problem: selecting the MRI settings
that produce the best, most useful, images. The simplest solution to this problem is
empirical: multiple experiments are performed, each with different settings, and the
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resulting datasets are used to evaluate a task of interest (e.g. clinical diagnosis). The
experimental settings which result in the greatest ‘task performance’ are selected as
optimal.

Unfortunately, this process is time- and data-intensive; it is rarely feasible to
evaluate more than a few different experimental settings in this way. Experimental
designers may therefore wish to create shortlists of high-quality candidate experi-
ments for subsequent empirical evaluation. This need has driven the development of
computational experimental design (CED), which attempts to solve the experimental
design optimisation problem in-silico, minimizing the need for real-world data.

This work focuses on the application of CED methods to quantitative magnetic
resonance imaging (qMRI). qMRI is best understood by comparison with its ‘con-
ventional’ qualitative counterpart. Conventional MRI describes experiments which
output qualitative images: voxel intensities are dimensionless and image contrast re-
flects only relative information between nearby structures. These experiments use
magnetic resonance (MR) scanners as cameras, acquiring images which show differ-
ences in tissue properties. In contrast, qMRI experiments acquire stacks of spatially-
corresponding conventional MR images, and exploit the intensity relationships across
these stacks to extract quantitative measures of tissue properties. This is achieved by
introducing signal models which relate tissue-dependant model parameters to MR sig-
nals1 and experimental settings. Settings are chosen, data is acquired, and parameters
are estimated by fitting the signal model. In this way, scanners are converted from
qualitative cameras into measurement devices, capable of quantifying tissue proper-
ties2.

1For the purposes of qMRI CED, this Thesis treats MR scanners as imaging ‘black boxes’,
controlled by acquisition settings 𝜃𝑎𝑐𝑞, which output fully-reconstructed noisy spatial maps. In
this context, MR ‘signals’ refer to post-reconstruction voxel intensities (magnitudes). A detailed
description of MR acquisition and reconstruction processes is readily available elsewhere [4].

2In clinical contexts, qMRI parameter estimates act as biomarkers, defined as ‘characteristics
that are measured as indicators of normal biological processes, pathogenic processes or responses to
an exposure or intervention, including therapeutic interventions’ [5].
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Figure 1-1: Overview of conventional and quantitative MRI

In conventional MRI, CED requires two components: a way to relate image acqui-
sition settings and tissue properties to images (a forward model, or 𝐹𝑀), and a way
to assess the quality of these images (a quality metric, or 𝑄). An exemplar forward
model is the system of Bloch equations that describe MRI signal generation, and a
corresponding quality metric could be the contrast-to-noise ratio (CNR) between two
tissues of interest. In this example, computational experimental design might consist
of (a) proposing acquisition settings 𝜃𝑎𝑐𝑞, (b) using the forward model 𝐹𝑀 to predict
associated images 𝐼, (c) using the objective function 𝑂𝐹 to assess these images via
quality metric 𝑄, (d) adjusting the acquisition, and (e) iteratively repeating (a)-(d)
until 𝑄 (image CNR) is maximised. This process is illustrated in Figure 1-2.

Figure 1-2: The computational experimental design algorithm in conventional MRI
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In quantitative MRI, the CED process is more complicated. The qMRI forward
model subsumes three experimental choices: not just which acquisition settings (𝜃𝑎𝑐𝑞)
to use, but also which signal model to fit (𝜃𝑚𝑜𝑑) and which parameter estimation
method to apply (𝜃𝑒𝑠𝑡). This thesis will describe the process by which these three
choices have been made to date, critique it, and present actionable improvements
to it. This work will, where necessary, base its analysis on diffusion MRI (dMRI), a
widely used3 form of qMRI, without loss of generality. dMRI quantifies the movement
of water molecules over the typical length scales of cell microstructure4.

1.2 Current practice

The three qMRI experimental design choices described above have historically been
guided by the observation that, unlike in conventional MRI, qMRI experimental
outputs (i.e. parameter estimates) relate to physically meaningful tissue properties.
Therefore, qMRI CED need not rely on relative quality metrics like image CNR, but
can rather target an objective metric: faithful reproduction of ‘groundtruth’ tissue
properties. An extensive literature exists on this subject.

1.2.1 Choice of acquisition protocol (𝜃𝑎𝑐𝑞)

The first analytical framework for optimising qMRI acquisition schemes was proposed
by Weiss et al. in the context of measuring spin-lattice relaxation (T1) [6]. This
work derived an approximate analytic relationship between 𝜃𝑎𝑐𝑞 and the variance of
associated T1 estimates, valid at signal-to-noise ratios (SNRs) greater than 7, which
was used to optimise 𝜃𝑎𝑐𝑞. Seven years later, a similar approach was applied by Wang
et al. to more complex T1 multi-flip-angle experiments [7].

A significant advance in the field was made by Bain in 1990, again in the context
of measuring T1 [8]. Bain proposed minimising biomarker variance by maximising
the partial derivative of the acquired signal with respect to the biomarker of interest.
In Bain’s framework, the optimal 𝜃𝑎𝑐𝑞 would be the one at which the acquired signal
𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 is most sensitive to changes in signal model parameters 𝑃 . At these 𝜃𝑎𝑐𝑞, the
ratio of ∆𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑,𝜖 (changes in signal due to noise 𝜖) to ∆𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑,𝑃 (changes in signal
due to differences in 𝑃 ) is minimised, and associated information-loss is reduced.

This approach was subsequently formalised within the framework of the Cramér-
Rao Lower Bound (CRLB) by Jones et al. [9] in 1996. CRLB, which is described in
detail in Appendix B, uses similar partial-derivative-maximising concepts to provide a
𝜃𝑒𝑠𝑡-independent lower bound on biomarker variance. It is cheap to compute for even

3604 Web of Science results for ‘diffusion MRI’ published in 2022, as of April 2023.
4See Appendix C for more details.
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complex signal models, and has seen widespread use in a range of qMRI applications:
T1 [10, 11, 12, 13], spin-spin relaxation (T2) [14, 15, 12, 13], magnetisation transfer
(MT) [16, 17], and, since Brihuega-Moreno et al. [18]’s 2003 work, to dMRI. Following
a comprehensive experimental design paper by Alexander et al. [19], it has become
the most common data sampling optimisation tool within this field [20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. For a signal model with 𝑛𝑃 parameters,
CRLB generates an 𝑛 × 𝑛 covariance matrix between each 𝑃 (as per equation B.3).
When it comes to ‘minimizing’ this matrix, a range of minimisation targets have been
used: a weighted sum of its diagonal elements [16, 19, 13, 21, 23, 27, 37, 29, 31, 32, 35],
its determinant [10, 26, 32, 33], specific diagonal elements [14, 15, 11, 36, 18, 22], an
application-specific weighted-sum of specific elements [12, 17, 25, 30, 34], and a non-
linear function of specific elements [20].

A range of non-CRLB numerical methods have also been applied to optimising
𝜃𝑎𝑐𝑞. Xing et al. [38] proposed using the SNR of qMRI parameter maps (‘DNR’)
as an optimisation metric in the context of the apparent diffusion coefficient (ADC)
dMRI model. They derived an analytic expression for this ratio, and decomposed it
into terms relating to acquisition noise 𝜖 and qMRI ‘sensitivity’, which relates 𝜃𝑎𝑐𝑞 to
biomarker variance. Once derived, this sensitivity is straightforward to optimise for
specific expected qMRI parameter values. Armitage et al. [39] extended this method
to account for a range of parameter values, corresponding to multiple tissue types,
by iterating over 𝜃𝑎𝑐𝑞 until a target ‘DNR’ was achieved across all tissues.

Elsewhere, in contexts where analytic relations between 𝜃𝑎𝑐𝑞 and biomarker error
are not available, Monte Carlo optimisation methods have been applied. These meth-
ods iteratively minimise a loss function which depends either on 𝜃𝑎𝑐𝑞 or parameter
estimates 𝑃 .

𝜃𝑎𝑐𝑞-based methods construct loss functions based on theoretically-derived (or in-
tuited) notions of what constitutes ‘good’ qMRI acquisition protocols; these loss func-
tions are minimised without reference to the associated qMRI biomarker estimates.
Hasan et al. [40] contains a broad review of such methods in the context of diffusion
tensor imaging (DTI) which, in contrast to the dMRI models discussed elsewhere in
this thesis, encodes directional diffusion information in a diffusion tensor. In the con-
text of DTI, an exemplar 𝜃𝑎𝑐𝑞-based Monte Carlo method is described by Jones et al.
[41]: minimising the Coloumbic ‘force’ between the vector directions being acquired.

In contrast, 𝑃 -dependant Monte Carlo methods explicitly minimise errors associ-
ated with qMRI parameter estimation. This is achieved by (a) simulating synthetic
qMRI data for which parameter ground-truths are known, (b) sampling this data
using an acquisition protocol of interest, (c) fitting a signal model to this data, and
(d) assessing the protocol by analysing the resulting parameter estimates. This pro-
tocol assessment has generally consisted of calculating bias and/or variance (often
combined into root mean squared error (RMSE)) of the parameter estimates with
respect to reference groundtruths [42, 43, 44, 45, 46].
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1.2.2 Choice of signal model (𝜃𝑚𝑜𝑑)

The primary tension in qMRI model selection is the mismatch between (a) the com-
plexity of the biological interactions that generate qMRI signals and (b) the relatively-
low information content of the acquired data. This data can only support signal
models which are gross simplifications of the underlying generative process. qMRI
model selection has historically searched for the ‘least simplistic’ signal model, the
one which best approximates the complex generative process. This search has usually
relied on tools borrowed from the field of statistical model selection.

In most qMRI experiments, the number of acquired signals 𝑛𝑆 is at most one or
two orders of magnitude greater than the number of signal model parameters 𝑛𝑃 ,
and assessing models on goodness-of-fit (e.g. fitting residuals) poses challenges; high
dimensional signal models (large 𝑛𝑃 ) are able to improve goodness-of-fit by simply
overfitting noise. For this reason, goodness-of-fit measures are commonly regularised
by introducing terms which penalise 𝑛𝑃 , as in the Akaike Information Criterion (AIC)
or the Bayesian Information Criterion (BIC) [47].

The AIC is defined as:

AIC = −2 lnℒ(𝑃 , 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑) + 2𝑛𝑃 (1.1)

where ℒ is the likelihood of the best-fit parameters 𝑃 . A smaller AIC corresponds
to a better model: the negative likelihood term ℒ (encoding goodness-of-fit) is regu-
larised by the positive model-complexity term 2𝑛𝑃 . The BIC is structured similarly,
but differs in its model-complexity term [47]:

BIC = −2 lnℒ(𝑃 , 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑) + 𝑛𝑃 ln𝑛𝑆 (1.2)

Both tools are data-driven: (i) qMRI data is acquired, (ii) maximum-likelihood
parameter estimates are calculated for a range of signal models, and (iii) the models
are ranked by either their AIC [48, 49, 50, 51, 52, 53] or BIC [54, 37, 49, 51] values.

An alternative, less common, model selection approach is cross-validation: select-
ing a model on its ability to predict unseen data. Ferizi et al. applied this technique,
in combination with BIC, by fitting candidate signal models to 75% of acquired data
and comparing the held-out data to the best-fit predictions [54]. In contrast, Rokem
et al. took a test-retest approach: acquiring two scans of the same subject, and
comparing a model’s best-fit from one scan to the noisy data from the second [55].

22



1.2.3 Choice of parameter estimation method (𝜃𝑒𝑠𝑡)

Parameter estimation is the process by which qMRI data is mapped to signal model
parameter values which ‘best represent’ it. This involves (i) defining the mapping
of interest (i.e. deciding what is meant by ‘best represent’) and (ii) computing this
mapping for a particular noisy signal. As discussed above, the mapping of interest
in qMRI is from data to groundtruth tissue properties which, outside of the machine
learning (ML) contexts discussed in Chapter 4, is inaccessible. Instead, it is commonly
approximated by a proxy mapping such as maximum likelihood estimation (MLE),
which finds the parameter values associated with the highest probability of observing
a particular qMRI signal. MLE can be straightforwardly performed using iterative
algorithms available in many software packages; consequently, comparatively little
attention has been paid to optimising 𝜃𝑒𝑠𝑡.

Nonetheless, MLE’s limitations5 have led to the development of a range of com-
peting parameter estimation methods [32, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68].
These estimators have historically been assessed on either (i) their approximation of
the mapping of interest or (ii) their generation of the proxy mapping of choice.

Approximating the mapping of interest

This assessment paradigm compares qMRI parameter estimates to reference groundtruth
values. These values, which are generally obtained in silico by synthesising testing
data from known generative groundtruths6, are used to calculate a range of quality
metrics: RMSE [58, 60, 61], median error [62], mean absolute error [59, 63, 64, 65, 66],
signal-space residuals [66], coefficient of variation [66], standard deviation of absolute
error [63], and correlation with groundtruth [59].

Generating the proxy mapping

This form of assessment does not rely on parameter groundtruths. Rather, it evaluates
how consistently an estimator is able to reproduce a chosen proxy mapping, such
as MLE, without assessing that mapping’s relation to underlying tissue properties.
This assessment, which is generally applied to in vivo data, relies on a range of
quality metrics: goodness-of-fit [60, 68, 69], intra-subject test-retest reliability [62,

5See Chapter 4 for a detailed discussion of limitations that have led to the development of machine
learning parameter estimation methods. A notable MRI-specific limitation, not discussed elsewhere
in this thesis, relates to the noise model assumptions underpinning MLE. Most model-fitting algo-
rithms, when applied using default settings, assume the data being fit to has been corrupted by
Gaussian noise (as described in Section 2.1). In reality, qMRI signals are subject to Rician noise
[56]; this difference leads to biased MLE estimates at low SNRs [57].

6In some cases, as in Golkov et al. [58] and Liu et al. [59], groundtruth-like reference values are
generated by calculating MLE estimates on super-sampled in vivo data.
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64, 65], inter-subject region-of-interest (ROI) homogeneity [61, 62], intra-subject ROI
homogeneity [62], intra-subject inter-ROI heterogeneity [60, 65], and consistency in
inter-reader ROI means [61].

1.2.4 Summary

qMRI CED guides three experimental choices: acquisition protocol, signal model, and
parameter estimation method. In making these choices, the existing orthodoxy can
be summarised by (a) the quality metrics used, (b) the relative importance ascribed
to each choice, and (c) the order in which they are made.

Quality metrics are based on viewing qMRI experiments as tissue-measurement
tasks: experimental outputs (parameter estimates) are assessed on their similarity to
tissue property ‘groundtruths’; experiments are designed to minimise associated bias
and/or variance.

More attention is paid to optimising acquisition protocol than signal model or
parameter estimation. Low-bias signal model selection is trivialised by data-driven
information metrics, and, up until the recent interest in ML techniques, the limited
choices available in parameter estimators left little scope for optimisation.

The three qMRI experimental design choices are made sequentially : a model is
chosen, an estimation method is selected, and only then is an acquisition protocol
optimised. In the case of CRLB, the most popular protocol-optimisation technique,
the interaction between acquisition protocol and parameter estimation is ignored.

1.3 Limitations of current practice

These approaches have two broad limitations.

The first relates to the quality metrics described above. In research settings, qMRI
is used to gain new insight into tissue properties, and in this context it is appropriate
to assess experiments on their ability to generate close-to-groundtruth parameter
estimates. The issue arises in clinical settings, where qMRI is useful not for its
measurement properties but for its high sensitivity and specificity in distinguishing
tissues in different states of pathology. In these contexts, existing quality metrics
manifest a disconnect between evaluation and application; qMRI CED should instead
employ quality metrics which directly target task performance.

The second limitation relates to the overall CED process, as it exists today: the
three experimental choices are made sequentially, often in isolation, without consid-
ering the complex non-linear interactions between them. The true value of a qMRI
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experiment, its task performance, depends on an appropriate combination of acquisi-
tion, model, and estimation. It is not meaningful to optimise any one of these choices
without simultaneously considering the interaction with the other two.

1.4 Contributions

In light of these limitations, this thesis presents four contributions to the field of
qMRI CED:

1. A conceptual re-framing of the purpose of CED, away from tissue measurement
fidelity to a broader notion of task performance maximisation. This theoretical
contribution is underpinned by a computational implementation, which shows
how a qMRI experiment can be assessed on its ability to perform a clinical task
(pathology subtyping).

2. A clinical validation of the previously described computational implementation,
showing that by modelling the interactions between the three qMRI CED ex-
perimental choices, clinical task performance can be accurately and reliably
predicted in silico.

3. A novel ML-based parameter estimation method, which, by complementing
existing estimation methods, provides an additional tool for qMRI CED to
maximise task performance.

4. An implementation of a ‘task performance comparison’ between traditional pa-
rameter estimation and a range of recently-introduced ML-based methods. This
not only elucidates the trade-offs between these competing approaches, but also
provides a blueprint for how to make experimental design choices in any qMRI
CED context.

These contributions are described, sequentially, in the following four chapters.
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Chapter 2

Re-imagining the problem: holistic &
task-driven
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framework for task-driven experimental design, 2021, ISMRM Annual Meeting
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2.1 Theoretical background

Magnetic resonance imaging, in all its forms, produces spatial maps. In conventional
MRI, these maps are qualitative: the numerical value (intensity) corresponding to a
spatial location (voxel) is only meaningful in the context of the other voxels in the
same map. Contrast is the only store of information in such maps (‘images’), and is
therefore the only target for optimisation during experimental design.

In contrast, the maps produced by qMRI experiments are quantitative, and in-
formation is stored in two forms: not just relative contrast but also absolute value.
Voxel intensities have units and encode physically meaningful tissue properties.

Two key assumptions underpin the generation of these dual-information maps.
The first is that a deterministic relationship ℳ exists between tissue properties 𝑇
and acquisition settings 𝜃𝑎𝑐𝑞, such that (with a suitably chosen 𝜃𝑎𝑐𝑞) different tissues
will generate different signals:

𝑆𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 = ℳ(𝜃𝑎𝑐𝑞, 𝑇 ) (2.1)

The second assumption is that ℳ can be approximated by a simplified signal
model 𝑀 , parameterised by 𝑃 :

𝑆𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 = ℳ(𝜃𝑎𝑐𝑞, 𝑇 ) ≈𝑀(𝜃𝑎𝑐𝑞, 𝑃 ) (2.2)

Now consider the acquired qMRI signal 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑:

𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 = ℳ(𝜃𝑎𝑐𝑞, 𝑇 ) + 𝜖 ≡ 𝑆𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 + 𝜖 (2.3)

where 𝜖 is a noise instantiation that corrupts 𝑆𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐. Under the above as-
sumptions, fitting 𝑀 to 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 generates parameter estimates 𝑃 which contain in-
formation about 𝑇 . This fitting is traditionally performed via MLE, which maximises
a likelihood function ℒ describing the probability 𝒫 of observing 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 given some
parameters 𝑃 :
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ℒ(𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑, 𝜃𝑎𝑐𝑞|𝑃 ) =
𝑛𝑆∏︁
𝑖=1

𝒫(𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑,𝑖, 𝜃𝑎𝑐𝑞|𝑃 ) (2.4)

where 𝑖 indexes the 𝑛𝑆 signals contained within 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑, and it is assumed each
𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑,𝑖 is drawn independently from the same noise distribution. MLE identifies
the 𝑃 which maximises ℒ:

𝑃 = argmax
𝑃

ℒ(𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑|𝑃 ) (2.5)

𝜃!"#

𝑆
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Figure 2-1: The parameter estimation problem, visualised for a simple linear model.

Under a Gaussian noise model1, this maximization simplifies to the commonly-
used non-linear least squares (NLLS):

𝑃 = argmin
𝑃

𝑛𝑆∑︁
𝑖=1

‖𝑀(𝜃𝑎𝑐𝑞, 𝑃 )𝑖 − 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑,𝑖‖2 (2.6)

More generally, the model fitting process (parameter estimation) can be thought
of as a minimization of a difference metric 𝒟 between 𝑃 and a desired ‘target’ 𝑃𝑡𝑎𝑟𝑔𝑒𝑡:

argmin
𝑃

𝒟(𝑃 ;𝑃𝑡𝑎𝑟𝑔𝑒𝑡) (2.7)

1As noted in Chapter 1 footnote 5, qMRI data is generally Rician, rather than Gaussian, dis-
tributed; these distributions converge at high SNRs, and a Gaussian approximation is commonly
employed during parameter estimation.
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where

𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = Φ(𝑇 ; 𝜃𝑒𝑠𝑡, 𝜃𝑚𝑜𝑑, 𝜃𝑎𝑐𝑞) (2.8)

and Φ is a lossy transform which depends on experimental settings 𝜃. In other
words, by minimizing the difference between 𝑃 and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡, parameter estimates are
generated which encode information about tissue properties 𝑇 . Performing this fitting
process at every spatial location within an MR image generates a spatially-encoded
parameter map, which stores 𝑇 -derived information at every location2.

This information takes two forms: relative contrast, which relates to differences
in 𝑇 ; and absolute value, which relates to numerical values of 𝑇 . These two forms
of information are usually related but are, in general, distinct: an ‘ADC parameter
map’3 may give biased diffusivity measurements whilst still reliably distinguishing
tissues with different diffusivities.

Three experimental settings affect the information content of qMRI parameter
maps: signal model (𝜃𝑚𝑜𝑑), parameter estimation method (𝜃𝑒𝑠𝑡), and acquisition pro-
tocol (𝜃𝑎𝑐𝑞). In general terms, the aim of qMRI experimental design is to adjust
these experimental settings to maximise the information encoded by the resulting
experiment.

This leads to two fundamental questions which underpin qMRI CED: (i) which
form of information should be prioritised? and (ii) how should this be done?

2.2 Status quo: sequential & measurement-driven

To date, qMRI CED has focused exclusively on encoding the second, absolute, form
of information. In other words, 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑇 ; acquisition settings, signal models,
and estimation methods have been chosen so as to produce 𝑃 which are accurate
measurements of underlying tissue properties 𝑇 , rather than highly contrasting ones.

In pursuit of this tissue-measurement goal, qMRI CED has followed a sequen-
tial 3-step process: tissue characterisation, then model fitting selection, and finally
acquisition optimisation.

2See Appendix F for a concrete example which grounds the notation introduced above.
3ADC refers to apparent diffusivity coefficient, a highly simplified approximation of the mean

diffusivity of H protons within a dMRI voxel; see Appendix C for more details.
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2.2.1 Tissue characterisation

For 𝑃 to accurately measure 𝑇 , it is generally assumed4 that𝑀 should well-approximate
ℳ. To this end, a range of 𝑀 are compared, and the ‘best-matching’ one is selected.

High quality experimental data underpins this comparison. Such data, which may
be oversampled with respect to routine qMRI acquisitions, is acquired in such a way
as to contain as much information on ℳ as possible. A number of candidate 𝑀 are
fit to it, and the quality of fit is assessed using an information-theoretic quality metric
(𝑄𝑚𝑜𝑑) such as AIC or BIC. The model which best fits the data is selected.

Figure 2-2: Tissue categorisation: choosing a signal model.

2.2.2 Model fitting selection

Having chosen a signal model, an accompanying parameter estimation method is
selected. A range of candidate methods are proposed and compared. The test dataset
underpinning this comparison generally contains reference ‘groundtruth’ 𝑃 values
(𝑃𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ) against which each method’s 𝑃 can be assessed. These groundtruths
are often obtained by generating synthetic test data from known 𝑃 . The method
which minimises a difference-based quality metric (𝑄𝑒𝑠𝑡), such as RMSE, between 𝑃
and 𝑃𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ is selected.

4This is not, in general, true. A highly-simplified model, which ‘averages out’ multiple confound-
ing tissue property interactions, may accurately predict some elements of 𝑇 .
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Figure 2-3: Model fitting selection: choosing a parameter estimation method.

2.2.3 Acquisition optimisation

Finally, acquisition settings are determined. In some cases, 𝜃𝑎𝑐𝑞 are selected (inde-
pendently of 𝜃𝑒𝑠𝑡) by optimising a CRLB-derived metric. In others, candidate 𝜃𝑎𝑐𝑞 are
explicitly proposed and compared; each 𝜃𝑎𝑐𝑞 is used to generate synthetic test data,
and the 𝑃 corresponding to the previously-selected 𝜃𝑚𝑜𝑑 and 𝜃𝑒𝑠𝑡 are assessed against
𝑃𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ, using quality metrics (𝑄𝑒𝑠𝑡) similar to those employed in model fitting
selection. The acquisition settings that optimise this metric are selected.
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Figure 2-4: Acquisition optimisation: choosing acquisition settings.

2.3 A new approach: holistic & task-driven

The experimental design process described above is characterised by (a) its focus
on encoding absolute (rather than relative) information content and (b) the linear,
sequential nature by which 𝜃𝑚𝑜𝑑, 𝜃𝑒𝑠𝑡, and 𝜃𝑎𝑐𝑞 are selected.

However, both of these properties are ill-suited to experimental contexts involv-
ing tasks, such as tissue classification, where experimental outcome is measured in
terms of effect size rather than measurement accuracy. In such settings, model pa-
rameters 𝑃 should be treated as task-specific biomarkers, rather than tissue-specific
measurements.

Implementing this change would correspond to a simple adjustment of 𝑃𝑡𝑎𝑟𝑔𝑒𝑡

(Equation 2.8), the parameter estimates an ideal qMRI experiment would generate.
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The updated 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 contains more relative information about 𝑇 , even if this comes
at the cost of reduced absolute information. In the example of tissue classification, Φ
becomes the transform that maximises differences between tissues of interest, rather
than maximising tissue property measurement accuracy.

This should not be a groundbreaking argument, as gold-standard non-computational
qMRI techniques are similarly task-driven: experimental designs are assessed on their
ability to correctly classify subjects with known diagnoses [67, 70]. Despite this, no
CED task-driven framework exists.

Indeed, current CED approaches are fundamentally incompatible with task-specific
Φ. Not only must quality metrics change (e.g. from RMSE to task performance),
but the way in which these metrics are assessed must fundamentally change too.
Sequential assessment only makes sense in a world of low-bias 𝑃𝑡𝑎𝑟𝑔𝑒𝑡; if there is no
universally optimal 𝑀 , 𝜃𝑚𝑜𝑑 cannot be evaluated independently of 𝜃𝑒𝑠𝑡 or 𝜃𝑎𝑐𝑞. It is
the interaction between these three experimental choices that must be assessed on its
associated task performance.

In light of this, this thesis present a new qMRI CED theoretical framework, shown
in Figure 2-5.

Figure 2-5: A novel qMRI CED paradigm.

In this framework, CED optimises the forward model 𝐹𝑀 which maps tissue
properties and experimental design choices to task performance:

𝐹𝑀 : 𝑇, 𝜃𝑎𝑐𝑞, 𝜃𝑚𝑜𝑑, 𝜃𝑒𝑠𝑡 → 𝑄𝑡𝑎𝑠𝑘 (2.9)

where 𝑄𝑡𝑎𝑠𝑘 is a task-specific task performance quality metric. 𝐹𝑀 subsumes
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all experimental design choices, and explicitly assesses the interaction between these
choices. This CED framework is flexible and backwards-compatible: if the task is
defined as ‘tissue measurement’, 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 can be simply reverted to 𝑇 .

2.4 Proof of concept implementation

In what follows, a proof of concept implementation (the ‘pipeline’) of this theoretical
framework is proposed, implemented, and evaluated.

2.4.1 Proposal

Given a quantitative task and set of experimental design choices, the pipeline pre-
dicts task performance using quantitative summary metrics. For classification tasks,
these metrics are typically receiver operating characteristic (ROC) curves and their
associated area under the curve (AUC). The pipeline accommodates other metrics
that may be more appropriate for a given application.

The pipeline mimics, in-silico, empirical task-driven assessment: gathering real-
world data and measuring sensitivity and specificity. Its structure is shown in Figure
2-6; it takes three inputs: a quantitative task (I1), a characterisation of relevant tis-
sue(s) (I2), and a candidate experimental design (I3). The pipeline combines these
inputs to predict associated task performance. It simulates complete qMRI experi-
ments: noisy qMRI data is synthesised (P1), qMRI model parameters are estimated
(P2), and task performance is evaluated (P3).

Inputs

I1: A quantitative parameter-driven task, characterised by an operational defini-
tion and quantitative performance metric.
Example: Classification of tissue as either healthy or diseased, based on qMRI
parameter estimates: a parameter is chosen, a threshold is set, and a tissue is diag-
nosed based on its estimated model parameter(s). Task performance is measured
by the AUC of an ROC curve computed across a patient population (by sweeping
the parameter threshold across all values).

I2: Characterisation of the tissues involved in the quantitative task (I1).
Example: The ‘ground-truth’ qMRI model that has been deemed to most-faithfully
represent the underlying tissue; associated empirical parameter values (e.g. mean
& standard deviation) of each tissue type.
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Figure 2-6: Graphical overview of proposed CED assessment pipeline.

I3: Candidate experimental design choices.
Example: qMRI acquisition protocol, qMRI model (may differ from the ‘ground-
truth’ model in I2), parameter(s) selected for classification, parameter-estimation
method, SNR (from echo time, repetition time, number of repetitions, average size
of ROI), etc.

Simulation

P1: Data synthesis.
Example: A large number, sufficient to reduce sampling errors (e.g. 10,000),
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of qMRI signals are synthesised according to I2 for each tissue type (healthy,
diseased), using the designated model, drawing from the associated parameter
distribution. Each qMRI signal is sampled and corrupted with Rician noise as
detailed in I3.

P2: Parameter estimation.
Example: Each sampled noisy signal is analysed using the specified fitting method
(I3) to generate parameter estimates.

P3: Task evaluation.
Example: The task (I1) is evaluated for the complete set of parameter estimates
(P2), and an ROC curve is generated.

Output

O1: Task performance.
Example: AUC computed from ROC curves output as summary metric of I1 task
performance associated with I3 experimental design and I2 tissue.

In this way, for a given I1-I3, the pipeline outputs a prediction of associated
task performance. If a wide range of competing candidate experimental settings are
assessed, the pipeline’s task performance predictions can be used to select the optimal
experimental design.

2.4.2 Implementation

The proposed pipeline was implemented in MATLAB 2019a (The Math Works Inc.)
and applied to two exemplar qMRI experiments (E1 & E2). These experiments
consisted of subtyping : classifying tissues as belonging to one of two disease stages.
The task performance associated with such experiments is the ability to correctly
classify unknown tissue.

E1 and E2 were chosen to correspond to different tasks within the same tissue,
so as to demonstrate the advantages the pipeline offers over the task-agnostic status
quo. For both experiments, a range of candidate 𝜃𝑚𝑜𝑑 and 𝜃𝑒𝑠𝑡 were proposed and
associated task performance assessed. Any situation where the optimal choice of
model or fitting method is found to be task-specific represents a failure of current
task-agnostic CED approaches.
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Clinical context

Spondyloarthritis (SpA) was chosen as the clinical context for E1 and E2, as dMRI
is increasingly being used as a tool for assessing its disease state [71, 72, 73]. SpA, an
inflammatory disease which affects the bone and joints, is characterised by a range
of abnormalities which include subchondral bone marrow oedema near the sacroiliac
joint (SIJ) margins [74]. These inflammatory lesions, which can be subtyped as either
‘active’ or ‘chronic’, have been found to be well-described by the intravoxel incoherent
motion (IVIM) dMRI model5, with IVIM parameter estimates being sensitive to
changes in pathology [50, 73].

Methods

Both E1 and E2 involve classifying tissues as belonging to one of two SpA subtypes;
E1 differentiates healthy tissue from ‘chronic’ lesions, whereas E2 compares ‘chronic’
lesions to ‘active’ ones.

Synthetic qMRI data corresponding to each subtype was generated (𝜃𝑎𝑐𝑞) and sig-
nal model (𝜃𝑚𝑜𝑑) parameters were estimated (𝜃𝑒𝑠𝑡). The resulting parameter estimates
were used to classify the tissue. This classification was assessed with ROC curves and
associated AUC. Data was synthesised from the IVIM model [75]:

𝑆(𝑏)

𝑆0

= 𝑓𝑒−𝑏(𝐷𝑓𝑎𝑠𝑡+𝐷𝑠𝑙𝑜𝑤) + (1− 𝑓)𝑒−𝑏𝐷𝑠𝑙𝑜𝑤 (2.10)

where 𝑆(𝑏) is the MRI signal at diffusion weighting 𝑏, 𝑆0 is the signal at 𝑏 = 0, 𝑓
is the perfusion fraction, 𝐷𝑓𝑎𝑠𝑡 is the pseudo-diffusivity of perfusing water, and 𝐷𝑠𝑙𝑜𝑤

is the diffusivity of non-perfusing water.

Experimental settings are shown in Table 2.1: to simplify analysis of results, tissue
parameters were chosen such that only one IVIM parameter varied between subtypes
per task.

Dataset Task Tissue Generative
model 𝑓

𝐷𝑠𝑙𝑜𝑤

(10−3 𝑚𝑚2/𝑠)
𝐷𝑓𝑎𝑠𝑡

(10−3 𝑚𝑚2/𝑠)
Effective
SNR

Sampling
(𝑠/𝑚𝑚2)

Model & fitting
method

Simulated
E1 Healthy Intravoxel

incoherent
motion (IVIM)

0.09 0.35 123

20

0, 10, 20,
40, 80, 100,
200, 400,
600

IVIM: sNLLS &
bcNLLS
ADC: wLS

Chronic 0.12 0.35 123

E2 Active 0.12 0.60 123
Chronic 0.12 0.46 123

Table 2.1: Experimental settings. Synthetic signals were generated from the IVIM
model. Both IVIM and ADC parameters were estimated from IVIM-synthesised data.

5See Appendix C.
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Rician noise was added at 𝑆𝑁𝑅 = 20, defined as:

𝑆𝑛𝑜𝑖𝑠𝑦(𝑏) =
√︁
𝒩 (𝑆𝑛𝑜𝑖𝑠𝑒𝑓𝑟𝑒𝑒(𝑏), 𝜎2)2 +𝒩 (0, 𝜎2)2); 𝑆𝑁𝑅 =

𝑆0

𝜎
(2.11)

where 𝑆𝑛𝑜𝑖𝑠𝑒𝑓𝑟𝑒𝑒 is the noise-free IVIM signal, 𝑆0 is the noise-free signal at 𝑏 = 0,
and 𝒩 (𝜇, 𝜎2) is a Gaussian distribution of mean 𝜇 and standard deviation 𝜎.

Data was sampled at 9 b-values representative of typical SpA dMRI acquisition.
Two models were fit to this data: IVIM and ADC.

IVIM fitting

The signal was normalised by 𝑆0 and IVIM fitting was performed with either seg-
mented non-linear least squares (sNLLS) [70] or bound-constrained non-linear least
squares (bcNLLS) [70]: 𝑓 ∈ [0, 1],𝐷𝑓𝑎𝑠𝑡 ∈ [0, 500]10−3𝑚𝑚2/𝑠,𝐷𝑠𝑙𝑜𝑤 ∈ [0, 10]10−3𝑚𝑚2/𝑠;
fitting was seeded with mean parameter values across tissues within each dataset to
mimic real-world experiments in which individual patient classification is not known.
In the case of two-step sNLLS fitting, 𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is chosen in light of expected tissue
properties; in this instance, 𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 50𝑠/𝑚𝑚2.

ADC fitting

Fitting was was also performed using the ADC model, defined as:

𝑆(𝑏)

𝑆0

= 𝑒−𝑏𝐴𝐷𝐶 (2.12)

where 𝑆(𝑏) is the MRI signal at diffusion weighting 𝑏, 𝑆0 is the signal at 𝑏 = 0,
and ADC is the apparent diffusion coefficient.

This model was fit on the log-transformed signal using weighted least-squares
(WLS) linear regression [8], a single-shot non-iterative method for obtaining maxi-
mum likelihood estimates.

2.4.3 Results

Figure 2-7 shows the advantages the pipeline offers over existing CED assessment
methods. It demonstrates that, within a single disease, different classification tasks
may be best served by different (a) models and (b) model fitting methods.

Regarding model selection, both ADC and IVIM models are sensitive to changes
in tissue microstructure (𝐴𝑈𝐶 > 0.5) in both E1 and E2. Within E1, where tissues
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Figure 2-7: ROC curves and associated AUC values for two exemplar classification
tasks, together with the distributions of parameter estimates underlying these ROC
curves. Despite IVIM being the generative model for both tasks, it is outperformed
by ADC in Task E2. Within IVIM, sNLLS outperforms bcNLLS in Task E1; the
opposite is true in Task E2.

differ by their perfusion fraction, ADC is less sensitive to population differences than
IVIM (𝐴𝑈𝐶𝐴𝐷𝐶 < 𝐴𝑈𝐶𝐼𝑉 𝐼𝑀 , 𝐶𝑁𝑅𝐴𝑈𝐶 < 𝐶𝑁𝑅𝐼𝑉 𝐼𝑀). In contrast, in E2, where
signal differences arise from variation in 𝐷𝑠𝑙𝑜𝑤, the biased ADC model outperforms
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the ground truth generative model (IVIM). ADC, being the ‘incorrect’ model, gives
upward-biased estimates of diffusivity, but results in improved classification perfor-
mance (𝐴𝑈𝐶𝐴𝐷𝐶 > 𝐴𝑈𝐶𝐼𝑉 𝐼𝑀), due primarily to its lower parameter estimation vari-
ance (𝜎2

𝐴𝐷𝐶 < 𝜎2
𝐼𝑉 𝐼𝑀). The upward bias does not adversely affect task performance

as it is consistent across tissue types. These results demonstrate that (a) in general,
biased models may outperform unbiased ones and (b) optimal model selection may
vary, within a single tissue type, depending on the task of interest; model selection
should not be task-agnostic.

With regard to parameter estimation, the optimal IVIM fitting method varies
slightly between tasks (sNLLS for E1 and bcNLLS for E2). This result arises from
the fact that fitting method performance varies across model parameters; the best
method for estimating 𝑓 (as needed in E1) may differ from that for estimating 𝐷𝑠𝑙𝑜𝑤

(as per E2). Figure 2-8 reveals the source of these differences.

Figure 2-8: Comparison of sNLLS and bcNLLS fitting methods within tasks E1 and
E2. The top panels show the distributions of IVIM parameter estimates; the bottom
row shows the correlation between sNLLS and bcNLLS parameter estimates. The
difference in fitting method performance is most pronounced in E1, where bcNLLS
results in on-average higher 𝑓 than sNLLS.
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2.5 Discussion and conclusions

This chapter has introduced the notion of 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 and 𝜑, the information-rich parame-
ter estimates produced by an ‘ideal’ qMRI experiment. This has enabled an analysis
of the CED status quo: setting 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑇 and, in so doing, the prioritization of
absolute information at the expense of relative contrast.

The central argument of this chapter is that this choice of 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 is inappropriate
for qMRI contexts, such as clinical classification, where outcome is measured in terms
of effect size rather than measurement accuracy. In such settings, 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 should be ad-
justed to maximise task performance, rather than minimise measurement error. This
mimics real-world task-driven experimental design, where clinical data is acquired
and used to assess experimental settings.

To this end, this chapter has proposed and implemented a computational pipeline
for assessing experimental designs on their task performance, rather than parameter
estimation, capabilities. This method addresses limitations of current approaches
to CED assessment, which rely on task-agnostic measures of parameter-estimation
accuracy or precision, thereby providing indirect, potentially unreliable, predictions
of task sensitivity and specificity. In contrast, by explicitly simulating the interactions
between myriad experimental design choices, the proposed method is able to directly
predict task performance.

Two exemplar dMRI experiments (E1 and E2) were used to demonstrate that
traditional parameter-estimation CED metrics lead to sub-optimal dMRI task per-
formance. The fact that optimal model selection and fitting method varies across
tasks, within pathology, is evidence of a failure of current practice. Assessed on
parameter-estimation performance alone, IVIM outperforms ADC; yet, in Task E2,
ADC yields higher task performance. Assessed on parameter-estimation performance,
sNLLS outperforms bcNLLS [67, 66]; yet, in Task E2, bcNLLS is the optimal IVIM
parameter estimation algorithm. Task-agnostic parameter-estimation metrics, such
as bias or variance, are thus shown to be unreliable predictors of task performance.
Task-specific assessment, which directly measures experimental outcome, is required
to reliably assess experimental designs. Such assessment is inaccessible within current
CED practice.

2.5.1 Relation to existing work

There is at present no similar CED framework for task-driven assessment. The clos-
est to this approach is a method of MRI protocol optimisation driven by statistical
decision theory [76]. The authors argue for a task-driven approach to protocol optimi-
sation. However, their approach differs from the one presented here in an important
way. Theirs maximises task performance via acquired MRI signals, which provide
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an indirect measure of the underlying difference in tissue properties. In contrast,
the newly-proposed approach assesses task performance by directly considering the
properties of interest: qMRI parameter estimates. Since tissue properties are esti-
mated from measured MRI signals by means of model fitting, the choice of model and
fitting methodology impacts task performance and is therefore explicitly assessed by
the proposed method.

The proposed pipeline mimics, in-silico, the gold-standard method used to as-
sess task-driven experimental designs: acquiring rich, super-sampled clinical datasets
which are successively sub-sampled, with each reduced dataset assessed on its as-
sociated task performance [67, 70]. These methods are data-intensive and may be
impractical for many applications. The proposed framework offers a computational
alternative that (i) makes task-driven experimental assessment more accessible and
(ii) can be used to narrow the search space of experimental design choices before
real data is required, thereby informing, focusing, and substantially shortening, any
subsequent task-driven clinical evaluation and validation.

2.5.2 Use-cases and broader scope

The proposed method produces assessment metrics for experimental designs, and it is
left to the end-user to decide what to do with these metrics. The simplest use-case is
experimental design selection: a range of plausible experimental settings are assessed,
and the task-optimal experimental design is chosen from this set. Another use-case
is optimisation, whether manual or automated: experimental settings are repeatedly
adjusted and assessed; changes that improve task performance are retained, leading
to iterative optimisation.

Regardless of use-case, the framework can be applied to a broad range of quan-
titative MRI contexts; the pipeline is compatible with any quantitative model-based
task-driven application (e.g. fat fraction mapping [77]) for which a quantitative task
(I1), well-characterised tissue properties (I2), and the ability to generate synthetic
signal (I3) are available.

Furthermore, E1 and E2 have used AUC as a summary task-performance metric
due to the availability of clinical values to validate against. However, the framework’s
intermediate output - a distribution of parameter estimates, used here to generate
ROC curves for binary classification - mimics ‘real’ qMRI outputs and can be assessed
as such, regardless of qMRI task.
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2.5.3 Limitations and next steps

One limitation of the proposed approach is that it requires clear knowledge of the
relationship between tissue properties and the underlying pathology of interest (i.e.
I2). Whilst this knowledge may not currently exist for all clinical use-cases, it is a
natural by-product of ongoing basic research; the pipeline provides a proof-of-concept
computational framework to exploit these relationships.

Another potential limitation is the reliance on simulation. Simulation approxi-
mates the biophysical processes that underpin qMRI data acquisition. It is unclear
how reliable the pipeline’s task-performance predictions are: can they be trusted to
match those that would be obtained by combining 𝜃𝑎𝑐𝑞, 𝜃𝑚𝑜𝑑, and 𝜃𝑒𝑠𝑡 and performing
the qMRI experiment in-vivo? This question is answered in Chapter 3.
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Chapter 3

Validating the method: in-silico vs.
in-vivo

Contents
3.1 Validation of proof-of-concept . . . . . . . . . . . . . . . . 44

3.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Discussion and conclusions . . . . . . . . . . . . . . . . . . 48

3.2.1 Implications & outlook . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

This chapter is adapted from:

• Epstein SC, Bray TJP, Hall-Craggs MA, Zhang H, Task-driven assessment of
experimental designs in diffusion MRI: a computational framework, 2021, PLOS
ONE 16(10): e0258442

• Epstein SC, Bray TJP, Hall-Craggs M and Zhang H, Towards a computational
framework for task-driven experimental design, 2021, ISMRM Annual Meeting
2021

3.1 Validation of proof-of-concept

In the previous chapter, a case was made for reframing qMRI CED in terms of
task performance maximisation, and a proof-of-concept computational implementa-
tion (the ‘pipeline’) was presented. This chapter takes this implementation one step
further, and assesses its value in real clinical contexts.
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As discussed in Chapter 1, non-computational experimental design assesses ex-
perimental designs by implementing them: acquiring data, testing it, and making an
empirical judgement on its quality. CED approaches mimic some (or all) aspects of
this process in-silico and, in so doing, promise a reduction in costly data acquisition;
the pipeline proposed in Chapter 2 does this mimicry holistically and in a task-driven
manner.

For this mimicry to be useful, it must replace the ‘real thing’: going out and ac-
quiring real data. In other words, the in-silico outputs (task performance predictions)
must match those that would be obtained from in-vivo experiments. This chapter de-
scribes validation experiments which test this correspondence by directly comparing
the proposed pipeline’s output to associated real-world task performance metrics.

3.1.1 Implementation

Two qMRI datasets were identified for which performance on a classification task was
either published or could be computed. For each dataset, the proposed pipeline mir-
rored real-world experimental design choices (𝜃𝑎𝑐𝑞, 𝜃𝑚𝑜𝑑, 𝜃𝑒𝑠𝑡) and was used to make
in-silico predictions of task performance. These predictions, made without access
to any acquired data, were compared against the in-vivo task performance metrics.
Agreement between prediction and in-vivo observation validates the pipeline’s useful-
ness in qMRI CED assessment.

Clinical context

For consistency with Chapter 2, SpA-related validation datasets were selected.

Methods

The first dataset (‘Zhao’) consists of 41 patients split across three SpA subtypes [73]
and reported ROC/AUC curves for three classifcation tasks (V1-V3). The second
dataset (‘Bray’) is comprised of 28 patients split across two SpA subtypes [50] and
analysed for one task (V4). The four classification tasks represented by the two
datasets are described in Table 3.1.
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Dataset Task Tissue Generative
model 𝑓

𝐷𝑠𝑙𝑜𝑤

(10−3 𝑚𝑚2/𝑠)
𝐷𝑓𝑎𝑠𝑡

(10−3 𝑚𝑚2/𝑠)
Effective
SNR

Sampling
(𝑠/𝑚𝑚2)

Model & fitting
method

Zhao

V1 Chronic

Intravoxel
incoherent
motion (IVIM)

0.12± 0.02 0.35± 0.11 124.7± 13.7

150.6

0, 10, 20,
30, 50, 80,
100, 200,
400, 800

IVIM: sNLLS

Healthy 0.09± 0.02 0.34± 0.09 122.7± 18.3

V2 Active 0.12± 0.03 0.99± 0.39 123.9± 19.9
Chronic 0.12± 0.02 0.35± 0.11 124.7± 13.68

V3 Active 0.12± 0.03 0.99± 0.39 123.9± 19.9
Healthy 0.09± 0.02 0.34± 0.09 122.7± 18.3

Bray V4 Inflamed 0.07± 0.08 1.91± 0.56 24.2± 28.5 56.3 0, 50, 100,
300, 600

IVIM: bcNLLS
ADC: wLSNormal 0.05± 0.04 0.92± 0.26 44.6± 35.2

Table 3.1: Computational pipeline settings for V1-4. Synthetic signals were generated
using parameters drawn from normal distributions taken from Zhao [73] or Bray [50].
Effective SNR for V4 was calculated from Bray’s 𝑏 = 0 images, and, for Tasks V1-3,
adjusted by mean ROI size and acquisition differences (echo time, voxel size, number
of repetitions, etc.) between Bray and Zhao’s experiments, reported [50] and [73]
respectively. In V4, ADC values were estimated from IVIM-synthesised data.

Synthetic qMRI data corresponding to each subtype were generated, from the
IVIM model, using in-vivo-matched acquisition protocols (𝜃𝑎𝑐𝑞) and signal model
(𝜃𝑚𝑜𝑑) parameters were estimated (𝜃𝑒𝑠𝑡). For each validation task, the resulting pa-
rameter estimates were used to classify the tissue. This classification was assessed
with ROC curves and associated AUCs.

IVIM tissue parameters were drawn from Gaussian distributions representing SpA
lesions relevant to each classification task, and Rician noise (as defined in Equation
2.11) was added at SNRs commensurate with each real-world acquisition.

As before, both the IVIM and ADC models were fit to the data using the tech-
niques described in Section 2.4.2. In the case of two-step sNLLS fitting, 𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
should be adjusted based on expected tissue properties; in this instance, we repli-
cated Zhao’s choice of 𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 200𝑠/𝑚𝑚2.

The in-silico ROC/AUC predictions were validated across multiple microstruc-
tural models (IVIM, ADC) and model parameters (𝐷𝑓𝑎𝑠𝑡, 𝐷𝑠𝑙𝑜𝑤, 𝑓 , 𝐴𝐷𝐶) in two
ways. Firstly, large patient populations (1000 x clinical dataset size) were simulated
to obtain numerically robust task performance predictions. Secondly, to quantify
agreement between these results and the smaller clinical datasets, these large datasets
were repeatedly sub-sampled, each time matching real-world patient numbers. The
resulting distribution of sub-sampled task performance metrics was compared to the
in-vivo AUC.

3.1.2 Results

Figure 3-1 compares V1-V3 task performance predictions to ground-truth clinical
ROC curves, and shows that our pipeline accurately predicts (a) the qualitative form
of the ROC curves, (b) the relative task performance of different experimental set-
tings, and (c) the absolute task performance (AUC) of each experimental design.
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These findings are replicated for Task V4 in Figure 3-2.
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Figure 3-1: Simulated (first column) vs. clinical (middle column) ROC curves for
Zhao’s dataset (V1-V3). The third column compares clinical AUC values (vertical
lines) to simulated AUC values (distributions) when sub-sampling simulated data
to match clinical study sizes. All ROC curves are qualitatively similar; the relative
performances (AUC values) of different IVIM parameters are equal; all AUC values
are in numerical agreement once clinical sample size is considered.
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Figure 3-2: Simulated (first column) vs clinical (middle column) ROC curves for
Bray’s dataset (V4). The third column compares clinical AUC values (vertical lines)
to simulated AUC values (distributions) when sub-sampling simulated data to match
clinical study sizes. As in Figure 3-1, ROC curves are qualitatively similar; the
relative performance (AUC values) of dMRI models are equal; all AUC values are in
numerical agreement once clinical sample size is accounted for.

3.2 Discussion and conclusions

This chapter validates the task-performance predictions of the computational pipeline
proposed in Chapter 2 by comparing them to those obtained in-vivo.

Four validation experiments (V1-V4) were extracted from two datasets, and the
task performance associated with experimental choices (𝜃𝑚𝑜𝑑, 𝜃𝑒𝑠𝑡, and 𝜃𝑎𝑐𝑞) were
predicted and compared to those obtained in-vivo. Qualitative and quantitative
agreement across all validation experiments shows that the proposed pipeline’s task-
performance predictions are accurate and reliable. This has three consequences.
Firstly, the pipeline can be used to differentiate, between a set of candidate exper-
imental settings, the single experimental design which maximises task performance.
Secondly, it can be used to iteratively adjust experimental design parameters, such
as acquisition time, until specific, clinically-required task performance is achieved.
Thirdly, it validates the results of E1 and E2 in Chapter 2, which demonstrated the
benefits of task-driven CED approaches.

3.2.1 Implications & outlook

As described in Chapter 2, the pipeline simply assesses candidate experimental de-
signs. In its pre-validation proof-of-concept state, it was presented as a tool for
experimental design selection or iterative optimisation. The validation results pre-
sented here enable a third use-case: calculating acquisition-time requirements. The
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fact that task-performance predictions are quantitatively accurate mean that the 𝜃𝑎𝑐𝑞
required for a specified task performance (e.g. <10% false-positive-rate) could be
determined in-silico. Such calculations are not possible with existing task-agnostic
assessment methods.

The proposed in-silico task-specific assessment promises improved experimental
design selection and optimisation: all experimental choices, from data acquisition
to analysis, can be analysed and compared without the need for expensive, time-
consuming data acquisition. Model fitting methods can be assessed in a more mean-
ingful, task-specific manner. Traditionally unfavoured, high-bias models, can be con-
sidered, assessed, and selected.

Although the pipeline can simply replace the assessment stage in current CED
practice, it naturally lends itself to being incorporated into an overarching task-driven
CED framework: combining the proposal of candidate experimental designs with
computational optimisation, using the presented work as an accurate, task-specific
optimisation metric.

3.2.2 Next steps

So far, this thesis has (i) proposed a re-framing of the purpose of qMRI experiments,
away from tissue measurement and towards task performance, (ii) developed a cor-
responding proof-of-concept CED pipeline, (iii) validated the associated task perfor-
mance predictions, and, in so doing, (iv) presented a demonstrably-useful in-silico
framework for making task-driven qMRI experimental design choices.

Now that we have a tool to make optimal choices, this thesis turns to improving
the choices themselves. Rather than focus on 𝜃𝑎𝑐𝑞 (protocol optimisation) or 𝜃𝑚𝑜𝑑

(model development), Chapter 4 analyses 𝜃𝑒𝑠𝑡, the methods by which 𝑃 are extracted
from 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑. What follows is an analysis of existing parameter estimation methods,
and a proposal for a novel approach which slots naturally into the task-driven pipeline
described thus far.
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Chapter 4

Improving parameter estimation: a
novel deep learning method
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This chapter is adapted from:

• Epstein SC, Bray TJP, Hall-Craggs MA and Zhang H, Choice of training
label matters: how to best use deep learning for quantitative MRI parameter
estimation, 2022, arXiv:2205.05587

• Epstein SC, Bray TJP, Hall-Craggs MA and Zhang H, Quantitative MRI pa-
rameter estimation with supervised deep learning: MLE-derived labels outper-
form groundtruth labels, 2022, ISMRM Annual Meeting 2022

qMRI promises many advantages over its conventional imaging counterpart: in-
creased sensitivity, specificity, reproducibility, interpretabilty, and tissue insight. And
yet, conventional MRI remains more popular in clinical contexts.
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A significant barrier to widepsread qMRI adoption is the increased acquisition
and post-processing cost. One of the largest time and resource bottlenecks in post-
processing is parameter estimation: fitting the qMRI signal model 𝑀 to the acquired
data. Traditionally, each voxel has required its own independent model fit: solving
for the parameters that best described the single voxel’s data. The computational
cost of this curve-fitting process, which scales with both voxel number and model
complexity, has become a bottleneck for modern qMRI experiments.

Accelerating curve fitting with deep learning (DL) was first proposed more than 30
years ago [78], but has only recently gained popularity within the qMRI community
[60, 61, 58, 59, 79]. Just like traditional methods, DL relies on model fitting, but the
model being fitted is a fundamentally different one. Instead of fitting a qMRI signal
model to a single voxel of interest (i.e. curve fitting), DL methods fit (‘train’) a deep
neural network (DNN) model to an ensemble of training voxels. This model maps a
single voxel’s signal to its corresponding qMRI parameters; the unknowns in its fitting
are network weights, rather than qMRI parameters. Once this DNN model has been
fitted to (‘trained on’) the training data, parameter estimation is reduced to simply
applying it to new unseen data, one voxel at a time. This approach offers two broad
advantages over traditional fitting: (i) computational cost is amortised: despite being
more computationally expensive than one-voxel signal model fitting, DL training only
needs to be performed once, for any number of voxels; once trained, networks provide
near-instantaneous parameter estimates on new data, and (ii) computational cost is
front-loaded: model training can be performed away from the clinic, before patient
data is acquired.

To date, most DL qMRI fitting methods have been implemented within a super-
vised learning framework [60, 80, 58, 59, 79, 81, 82, 83]. This approach trains DNNs
to predict groundtruth qMRI model parameters from noisy qMRI signals. When
compared to conventional fitting, this approach has been found to produce high bias,
low variance parameter estimates [84, 83].

An alternative class of DL methods has also been proposed, sometimes referred
to as unsupervised learning [61, 85], but more accurately described as self-supervised
[86]. In this framework, training labels are not explicitly provided, but are instead
extracted by the network from its training input. This label generation is designed
such that the network learns to predict signal model parameters corresponding to
noise-free signals that most-closely approximate noisy inputs. This self-supervised
approach has been found to produce similar results to conventional non-DL fitting, i.e.
lower bias and higher variance than its groundtruth-labelled supervised alternative
[61, 84].

From an information theoretic standpoint, the comparison between supervised and
self-supervised performance raises an obvious still unanswered question. How can it
be that supervised methods, which provide strictly more information during training
than their self-supervised counterparts, produce more biased parameter estimates?
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This chapter answers this question by showing that this apparent limitation of
supervised approaches stems purely from the selection of groundtruth training labels.
By training on labels which are deliberately not groundtruth, this work shows that
the low-bias parameter estimation previously associated with self-supervised methods
can be replicated – and improved on – within a supervised learning framework.

This approach sets the stage for a single, unifying, deep learning parameter esti-
mation framework, based on supervised learning, where trade-offs between bias and
variance can be made, on a task-specific basis, by careful adjustment of training label.

4.1 Existing parameter estimation methods

Before introducing the novel parameter-estimation method which underpins this frame-
work, it is necessary to describe the existing methods it complements. In keeping with
machine learning conventions, the mathematical notation used in this chapter differs
from that used in Chapters 2 and 3. Within this notation, qMRI produces quantita-
tive spatial maps by extracting biomarkers 𝑦 from MR data 𝑥.

4.1.1 Conventional fitting (MLE)

This method, described in detail in Section 2.1, extracts biomarkers by performing
a voxelwise model fit every time new data is acquired. An appropriate signal model
𝑀 is required, parameterised by 𝑛𝑦 parameters of interest; for each combination of
𝑦, the probability of observing the acquired data 𝑥 subject to noise model 𝜖 is known
as the likelihood ℒ. The model parameters 𝑦 which maximise ℒ are assumed to best
represent the tissue contained within the voxel of interest:

𝑦 = argmax
𝑦

ℒ(𝑥, 𝑧|𝑦, 𝜖) (4.1)

for sampling scheme 𝑧1. This optimisation can be equivalently expressed as a min-
imisation of some loss function 𝐿𝑀𝐿𝐸:

𝑦 = argmin
𝑦

𝐿𝑀𝐿𝐸(𝑥, 𝑧|𝑦, 𝜖) (4.2)

Each of these minimisations has 𝑛𝑦 unknowns, which are solved independently
across different voxels; the computational cost scales linearly with the number of

1Note that within the CED notation used throughout this Thesis, 𝑧 is subsumed by 𝜃𝑎𝑐𝑞.
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voxels 𝑛𝑣.

Developments in qMRI acquisition and analysis have led to increased (a) image
spatial resolution (i.e. greater 𝑛𝑣) and (b) model complexity (i.e. greater 𝑛𝑦), such
that conventional MLE fitting has become increasingly computationally expensive.

4.1.2 Existing deep learning methods

DL approaches address this by reframing 𝑛𝑣 independent problems into a single global
model fit: learning the function ℱ that maps any 𝑥 to its corresponding groundtruth
𝑦𝑔𝑡:

𝑦𝑔𝑡 = ℱ(𝑥) (4.3)

Deep neural networks aim to approximate this function by composing a large but
finite number of building-block functions2, parametrised by 𝑛𝑤 network parameters
𝑤 (‘weights’):

𝑦 = ℱ𝑎𝑝𝑝𝑟𝑜𝑥(𝑥|𝑤) (4.4)

In this context, model fitting (‘training’), is performed over network parameters
𝑤 and involves minimising ℱ𝑎𝑝𝑝𝑟𝑜𝑥’s mean training loss 𝐿 over a large set of training
examples X; the trained network is defined by the best-fit parameters 𝑤.

𝑤 = argmin
𝑤

𝐿(ℱ𝑎𝑝𝑝𝑟𝑜𝑥(𝑥|𝑤),X) (4.5)

where the best-fit function ℱ becomes:

ℱ𝑎𝑝𝑝𝑟𝑜𝑥 = ℱ𝑎𝑝𝑝𝑟𝑜𝑥(𝑥|𝑤) (4.6)

Such that qMRI parameter estimates are obtained from:

𝑦 = ℱ𝑎𝑝𝑝𝑟𝑜𝑥(𝑥) (4.7)

The fitting problem described by Equation 4.5, whilst more computationally ex-
pensive to solve than any individual voxel (𝑛𝑣 = 1) MLE, is only tackled once; once

2See Appendix D for a brief introduction to DNNs.
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ℱ𝑎𝑝𝑝𝑟𝑜𝑥 is learnt, it can be applied at negligible cost to new, unseen, data. This
promise of rapid, zero-cost parameter estimation has led to the development of two
broad classes of DL-based parameter estimation methods.

Figure 4-1: Graphical comparison between conventional fitting (MLE) and deep learn-
ing parameter estimation, showing a 2D simplification of high-dimensional optimisa-
tion process. The black arrows represent iterative steps towards the minimum of a
loss functions, shown as a red star. MLE optimises a loss (defined in qMRI parame-
ter space 𝑌 ) independently for each acquired voxels. Deep learning optimises a loss
(defined in ‘weight’-space 𝑊 ) averaged over all training voxels.

SupervisedGT methods approximate ℱ by defining the training loss 𝐿𝐺𝑇 as the dif-
ference between noise-free labels (groundtruth parameter values) and network outputs
(noise-free parameter estimates), calculated in the parameter space 𝑌 :

SupervisedGT training loss ≡ 𝐿𝐺𝑇 =

𝑛𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

‖𝒲 · (𝑦𝑖 − 𝑦𝑔𝑡,𝑖)‖2 (4.8)
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where 𝑛𝑡𝑟𝑎𝑖𝑛 is the number of training samples and 𝒲 is a tunable weight matrix
which accounts for magnitude differences in signal model parameters. 𝒲 is generally
a diagonal matrix, with each diagonal element 𝒲𝑖𝑖 corresponding to the relative
weighting of qMRI parameter 𝑦𝑖; setting 𝒲 as the identity matrix equally weights all
parameters in the training loss.

These methods produce higher bias, lower variance parameter estimation than
conventional MLE fitting [83, 84] and, by adjusting 𝒲 , can be tailored to selectively
boost estimation performance on a subset of the parameter space 𝑌 .

In contrast, Self-supervised methods compute training loss 𝐿𝑆𝑆 within the signal
space 𝑋, by minimising the difference between network inputs (noisy signals) and a
filtered representation of network outputs (noise-free signal estimates):

Self-supervised training loss ≡ 𝐿𝑆𝑆 =

𝑛𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

‖𝑀(𝑧|𝑦𝑖)− 𝑥𝑖‖2 (4.9)

where 𝑀 is the qMRI signal model defined in Equation 2.2.

These methods, which perform similarly to conventional MLE fitting, produce lower
bias, higher variance parameter estimation than SupervisedGT [61, 84]. Unlike SupervisedGT,
the relative loss weighting of different signal model parameters is limited by sampling
scheme 𝑧.

Under Gaussian noise conditions, single-voxel Self-supervised loss (i.e. minimising
the sum of squared differences between a noisy signal and its noise-free signal estimate)
is indistinguishable from the corresponding objective function in conventional fitting.

In contrast, under the Rician noise conditions encountered in MRI acquisition,
Self-supervised training loss no longer matches conventional fitting. Indeed, the sum
of squared errors between noisy signals and noise-free estimates is not an accurate
difference metric in the presence of Rician noise.

To summarise: existing supervised DL techniques are associated with high estima-
tion bias, low variance, and end-user flexibility; in contrast, self-supervised methods
have lower bias, higher variance, but are limited by the fact that their loss is calculated
in the signal space 𝑋.

4.2 Proposed parameter estimation method

In light of the limitation of existing DL-based methods, this thesis proposes SupervisedMLE,
a novel parameter estimation method which combines the advantages of SupervisedGT
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and Self-supervised methods. This method is compared to existing techniques in Fig
4-2.

This method mimics Self-supervised ’s low-bias performance by learning a regu-
larised form of conventional MLE, but does so in the parameter space 𝑌 , within a
supervised learning framework. This addresses the limitations of Self-supervised : Ri-
cian noise modelling is incorporated, and parameter loss weighting is not limited by
sampling scheme 𝑧.

This method learns ℱ𝑎𝑝𝑝𝑟𝑜𝑥 by defining the training loss 𝐿𝑀𝐿𝐸 as the difference
between network predictions and pre-computed conventional MLE labels. These labels
act as proxies for the groundtruth parameters we wish to estimate:

SupervisedMLE training loss ≡ 𝐿𝑀𝐿𝐸 =

𝑛𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

‖𝑊 · (𝑦𝑖 − 𝑦𝑀𝐿𝐸,𝑖)‖2 (4.10)

The proposed method offers one final advantage over Self-supervised approaches.
In addition to the parameter estimation improvements relating to noise model cor-
rection and parameter loss weighting, it naturally interfaces with SupervisedGT. In
so doing, it presents the opportunity to combine low-bias and low-variance methods
into a single, tunable hybrid approach, by a simple weighted sum of each method’s
loss function:

Hybrid training loss = 𝛼𝐿𝑀𝐿𝐸 + (1− 𝛼)𝐿𝐺𝑇 (4.11)

for 0 ≤ 𝛼 ≤ 1.

4.3 Comparison to existing methods

The proposed method was trained and tested on both simulated and in-vivo data.
Its parameter estimation performance was compared to the other methods described
above, and a proof-of-concept ‘hybrid’ training loss was implemented and evaluated.

4.3.1 Implementation

Three classes of network were investigated and compared: SupervisedGT, Self-supervised,
and SupervisedMLE, as described in Fig 4-2. Additionally, to control for differences in
loss function weighting between supervised and unsupervised methods, Self-supervised
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Figure 4-2: Comparison between the proposed method (SupervisedMLE) and existing
supervised and self-supervised approaches.

was converted into supervised form by training SupervisedMLE on Gaussian-model
based MLE labels. The models are summarised in Table 4.1.

Network name Loss space Label Label noise model
SupervisedGT 𝑌 Groundtruth N/A
Self-supervised 𝑋 N/A N/A
SupervisedMLE, Rician 𝑌 MLE Rician
SupervisedMLE, Gaussian 𝑌 MLE Gaussian

Table 4.1: Summary of evaluated parameter estimation networks. 𝑌 denotes param-
eter space; 𝑋 denotes signal space.

All networks were trained and tested on the same datasets; differences in perfor-
mance can be attributed solely to differences in loss function formulation and training
label selection.

57



Signal model

As in Chapters 2 and 3, the IVIM model was investigated as an exemplar 4-parameter
non-linear qMRI model, which poses a non-trivial model fitting problem has been
extensively discussed in the DL qMRI literature [60, 61, 85, 87, 88]:

𝑆(𝑏|𝑆0, 𝑓,𝐷𝑠𝑙𝑜𝑤, 𝐷𝑓𝑎𝑠𝑡) = 𝑆0(𝑓𝑒
−𝑏(𝐷𝑓𝑎𝑠𝑡+𝐷𝑠𝑙𝑜𝑤) + (1− 𝑓)𝑒−𝑏𝐷𝑠𝑙𝑜𝑤) (4.12)

where 𝑆 corresponds to the signal model 𝑀 , 𝑏 corresponds to the sampling scheme 𝑧,
and [𝑆0, 𝑓,𝐷𝑠𝑙𝑜𝑤, 𝐷𝑓𝑎𝑠𝑡] corresponds to the parameter-vector 𝑦. In physical terms, 𝑆0

is an intensity normalisation factor, 𝑓 is a perfusion fraction, 𝐷𝑠𝑙𝑜𝑤 is the diffusivity
of non-perfusing water, and 𝐷𝑓𝑎𝑠𝑡 is the pseudo-diffusivity of perfusing water.

Network architecture

Network architecture was harmonised across all network variants, and represents com-
mon choices made in the qMRI literature [61]: 3 fully connected hidden layers, each
with a number of nodes matching the number of signal samples 𝑧 (i.e. b-values), and
an output layer with a number of nodes matching the number of model parameters.
Wider (150 nodes per layer) and deeper (10 hidden layers) networks were investigated
and found to have equivalent performance, during both training and testing, at the
cost of increased training time. All networks were implemented in Pytorch 1.9.0 with
exponential linear unit activation (ELU) functions [89]; ELU performance is similar
to ReLU, but is more robust to poor network weight initialisation.

Training data

Training datasets were generated at SNR = [15, 30] to investigate parameter estima-
tion performance at both high and low noise levels. At each SNR, 100,000 noise-free
signals were generated from uniform IVIM parameter distributions (𝑆0 ∈ [0.8, 1.2],
𝑓 ∈ [0.1, 0.5], 𝐷𝑠𝑙𝑜𝑤 ∈ [0.4, 3.0]10−3𝑚𝑚2/𝑠, 𝐷𝑓𝑎𝑠𝑡 ∈ [10, 150]10−3𝑚𝑚2/𝑠, repre-
senting realistic tissue values), sampling them with a real-world acquisition pro-
tocol [73] (𝑏 = [0, 10, 20, 30, 50, 80, 100, 200, 400, 800] 𝑠/𝑚𝑚2), and adding Rician
noise. Training data generative parameters were drawn from uniform, rather than
in-vivo, parameter distributions to minimise bias in network parameter estimation
[83]. Data were split 80/20 between training and validation. MLE labels were cal-
culated using a bound-constrained non-linear fitting algorithm, implemented with
scipy.optimise.minimize, using either Rician log-likelihood or sum of squared errors
as fitting objective function. This algorithm was initialised with groundtruth values
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to improve fitting robustness and avoid local minima. Training/validation samples
associated with ‘poor’ MLE labels (defined as lying on the boundary of the bound-
constrained estimation space) were held out during training and ignored during vali-
dation.

Network training

Network training was performed using an Adam optimiser (learning rate = 0.001, be-
tas = (0.9, 0.999), weight decay = 0) as follows: SupervisedGT (at SNR 30) was trained
16 times on the same data, each time initialising with different network weights, to
improve robustness to local minima during training. From this set of trained net-
works, a single SupervisedGT network was selected on the basis of validation loss.
The trained weights of this selected network were subsequently used to initialise all
other networks; in this way, any differences in network performance could be solely
attributed to differences in training label selection and training loss formulation. In
the case of supervised loss formulations, the inter-parameter weight vector 𝒲 was
chosen as the inverse of each parameter’s mean value over the training set, to obtain
equal loss weighting across all four IVIM parameters.

Testing data and rationale

Networks were tested on both synthetic and real qMRI data. The synthetic approach
offers (a) known parameter groundtruths to assess estimation against, (b) arbitrarily
large datasets, and (c) tunable data distributions, but is based on possibly simplified
qmri signals. This approach was used to assess parameter estimation performance in
a controlled, rigorous manner; real data was subsequently used to validate the trends
observed in silico.

Unlike synthetic data, in-vivo datasets do not contain ‘groundtruth’ values against
which parameter estimates can be readily assessed. The qMRI literature contains a
range of validation strategies, compiled in Appendix E, to address this deficit. This
work employs the strategy described in Section E.2.1 which, at the cost of signifi-
cantly increased acquisition cost, most-closely mimics synthetic testing3: extracting
reference pseudo-‘groundtruths’ from super-sampled in-vivo data.

Synthetic data was generated with sampling, parameter distributions, and noise
levels matching those used in network training. The IVIM parameter space in which
the networks were trained was uniformly sub-divided 10 times in each dimension,
to analyse estimation performance as a function of parameter value. At each point
in the parameter space, 500 corresponding noisy signals were generated and used to

3Excluding ex-vivo histology, discussed in Appendix E, which was not feasible in the context of
human pelvic tissue.
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test network performance (against generative groundtruth), accounting for variation
under noise repetition.

Real data was acquired from the pelvis of a healthy volunteer on a wide-bore
3.0T clinical system (Ingenia, Philips, Amsterdam, Netherlands), 5 slices, 224 x 224
matrix, voxel size = 1.56 x 1.56 x 7mm, TE = 76ms, TR = 516ms, scan time = 44s per
10 b-values listed in section 4.3.1. For the purposes of assessing parameter estimation
methods, we obtained gold standard voxelwise IVIM parameter estimates from a
supersampled dataset (16-fold repetition of the above acquisition, within a single
scanning session, generating 160 b-values, total scan time = 11m44s). Conventional
MLE was performed on this supersampled data to produce best-guess ‘groundtruth’
parameters. During testing, the supersampled dataset was split into 16 distinct 10
b-value acquisitions, each corresponding to a single realistic clinical acquisition. All
images were visually confirmed to be free from motion artefacts. The mismatch
in parameter distributions between this in-vivo data (highly non-uniform) and the
previously-described synthetic data (uniform by construction) limited the scope for
validating our in-silico results. To address this, a final synthetic testing dataset was
generated from the in-vivo MLE-derived ‘groundtruth’ parameters, and was used for
direct comparison between real and simulated data.

Evaluation metrics

Parameter estimation performance was evaluated using 3 key metrics: (1) mean bias
with respect to groundtruth, (2) mean standard deviation under noise repetition, and
(3) RMSE with respect to groundtruth. RMSE is the most commonly used metric to
evaluate estimation performance [61, 60], but is limited in its ability to disentangle
accuracy and precision; to this end, mean bias and standard deviation were used as
more specific measures of network performance.

It is important to note that all methods were assessed with respect to groundtruth
qMRI parameters, even those trained on MLE labels. For these methods, the training
and validation loss (MLE-based) differed from the reported testing loss (groundtruth-
based).

4.3.2 Results

Synthetic data

The relative performance of all previously-discussed parameter estimation methods is
summarised in Figures 4-3 and 4-4. These figures show the bias, variance (represented
by its square root: standard deviation), and RMSE of parameter estimates with
respect to groundtruth values, reported for each model parameter as a function of its
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value over the synthetic test dataset; each plotted point represents an average over
500 noise instantiations and a marginalisation over all non-visualised parameters.
Marginalisation was required for visualisation of a 4-dimensional parameter space; as
described below, this representation was confirmed to be representative of the entire,
non-marginalised space.
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Figure 4-3: Parameter estimation performance at low SNR (15) as a function of
groundtruth parameter 𝑌 . Performance summarised by bias & RMSE with respect
to groundtruth and standard deviation with respect to noise repetition. Conven-
tional MLE fitting is provided as a non-DNN reference standard. For the sake of
visualisation, each plotted point represents marginalisation over all non-specified 𝑌
dimensions.

In keeping with previously reported results, this work shows a bias/variance
trade-off between different parameter estimation methods. Conventional MLE fit-
ting is provided as a reference (plotted in black). Approaches which, on a theoretical
level, approximate conventional MLE (Self-supervised and SupervisedMLE, plotted in
red), are generally associated with low bias, high variance, and high RMSE, whereas
groundtruth-labelled supervised methods (plotted in blue) exhibit lower variance and
RMSE at the cost of increased bias.

Increases in bias, if consistent across parameter space 𝑌 , do not necessarily reduce
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Figure 4-4: Parameter estimation performance, visualised as in Figure 4-3, but for
high SNR (30) data.

sensitivity to differences in underlying tissue properties. However, 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐺𝑇 is
shown to be associated with bias that varies significantly as a function of groundtruth
parameter values. This results in a reduction in information content, visualised as
the gradient of the bias plots (top row) in Fig 4-3. The more negative the gradient,
the more parameter estimates are concentrated in the centre of the parameter esti-
mation space 𝑋, and the lower the ability of the method to distinguish differences
in tissue properties. This information loss can be seen in Fig 4-5, which compares
𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐺𝑇 to conventional MLE fitting, and shows the compression in 𝑋 over the
groundtruth parameter-space 𝑋.

Clinical data

The above trends, found in simulation, were also observed in real-world data. Fig
4-6 shows the bias, variance, and RMSE of parameter estimates with respect to
‘groundtruth’ values (obtained from the supersampled dataset described in §4.3.1).
The 𝑥 axes of these plots correspond to these reference values. To aid visualisation,
10 uniform bins were constructed along each parameter dimension, into which clinical
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Figure 4-5: Comparison between SupervisedGT and reference conventional MLE fit-
ting, expressed in terms of estimation bias and information compression at low SNR
(15). Arrows represent the mean mapping from 𝑌 to 𝑌 , averaged over noise, as a
function of parameter space 𝑌 . For the sake of visualisation, each plotted point rep-
resents marginalisation over all non-specified 𝑌 dimensions.

voxels were assigned based on their ‘groundtruth’ parameter values. Fig 4-6 plots the
mean bias, standard deviation, and RMSE associated with each bin as a function of
the bin’s central value, together with the distribution of voxels across the 10 bins.

By calculating the variance of the 16 𝑏 = 0 images, the SNR of this clinical dataset
was found to be ∼15; Fig 4-3 is therefore the relevant point of comparison. It can
be readily seen that the trends observed in simulated data, described in §4.3.2, are
replicated for 𝑓 < 0.40, 𝐷𝑠𝑙𝑜𝑤 < 1.5, and the entire range of 𝐷𝑓𝑎𝑠𝑡, namely the regions
of parameter-space which are well-represented in the real-world data. Fig 4-7 confirms
that divergence outside of these ranges is due to under-representation in the in vivo
test data; the apparent divergences can be replicated in-silico by matching real-world
parameter distributions.

Fig 4-8 contains exemplar parameter maps from the clinical test data, and shows
the real-world implications of the trends summarised in Figures 4-3 and 4-6: 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐺𝑇 ’s
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low-variance, low-RMSE parameter estimation results in artificially smooth IVIM
maps biased towards mean parameter values.
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Figure 4-6: In-vivo parameter estimation performance of networks trained on low
SNR (15) synthetic data, as a function of supersampling-derived reference parameter
values. The first three rows summarise performance by showing bias & RMSE with
respect to reference value and standard deviation with respect to noise repetition,
marginalised over all non-specified 𝑌 dimensions. The bottom row shows the distri-
bution of reference parameter values across the parameter range being visualised.
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Figure 4-7: Parameter estimation performance of networks trained on low SNR (15)
synthetic data, tested on a synthetic dataset matching the distribution of in vivo
reference parameter values. The first three rows summarise performance by showing
bias & RMSE with respect to groundtruth value and standard deviation with respect
to noise repetition, marginalised over all non-specified 𝑌 dimensions. The bottom row
shows the distribution of groundtruth parameter values across the parameter range,
which matches the in vivo dataset by construction.

Advantages offered by the proposed method

The proposed method occupies the low-bias side of the bias-variance trade-off dis-
cussed in §4.3.1, and offers four broad advantages over the competing method in this
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Figure 4-8: Parameter estimation performance of networks on real-world test data,
visualised as spatial maps. Groundtruth maps are taken as the maximum likelihood
parameter estimates associated with the complete 160 b-value dataset, whereas net-
work predictions are obtained from a single 10 b-value subsample.

space (Self-supervised): (i) flexibility in choosing inter-parameter loss weighting 𝒲 ,
(ii) incorporation of non-Gaussian (e.g. Rician) noise models, (iii) compatibility with
complex, non-differentiable signal models 𝑀 , and (iv) ability to interface with low-
variance methods, to produce a hybrid approach tunable to the needs of the task at
hand. These advantages are analysed in turn.

(i) Choice of inter-parameter loss weighting 𝒲

By computing loss in parameter-space 𝑌 , the proposed method has total flexibility
in adjusting the relative contribution of different 𝑦 in the training loss function. In
contrast, since Self-supervised calculates training loss in 𝑋, the relative weighting de-
pends on the acquisition protocol 𝑧. Fig 4-9 compares the proposed method - weighted
so as to not discriminate between different model parameters - with variants designed
to overweight single parameters by a factor of 106. The potential advantages offered
by this selective weighting are seen in the estimation 𝐷𝑓𝑎𝑠𝑡, where this approach leads
to a small increase in both precision and accuracy. This parameter-specific weighting
is not available within a Self-supervised framework.

In light of the differences arising from inter-parameter loss weighting, subsequent
analysis uses SupervisedMLE, Gaussian as a proxy for Self-supervised ; both methods en-
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code the same regularised MLE fitting, but differ in their inter-parameter weighting.
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Figure 4-9: Comparison between SupervisedMLE, Rician, as described above, and vari-
ants which differ in their inter-parameter loss weighting 𝒲 , at low SNR (15). Each
column compares SupervisedMLE, Rician to a different network variant, uniquely trained
to overweight the single relevant signal model parameter. For the sake of visualisation,
each plotted point represents marginalisation over all non-specified 𝑌 dimensions.

(ii) Incorporation of Rician noise modelling

By pre-computing MLE labels using conventional parameter estimation methods,
the proposed method is able to incorporate accurate Rician noise modelling. Compar-
ison between SupervisedMLE, Rician and SupervisedMLE, Gaussian shows the effect of the
choice of noise model; these differences are most pronounced at low SNR (Fig 4-3) and
high 𝐷𝑠𝑙𝑜𝑤, when the Gaussian approximation of Rician noise is known to break down.
In this regime, the proposed method gives less biased, more informative 𝐷𝑠𝑙𝑜𝑤 esti-
mates, replicating conventional MLE performance at a fraction of the computational
cost. At high 𝐷𝑠𝑙𝑜𝑤, it has a flatter, more information-rich, 𝐷𝑠𝑙𝑜𝑤 bias curve than all
other DL methods. The information loss associated with incorrect noise modelling is
further visualised in Fig 4-10, which shows the compression in 𝐷𝑠𝑙𝑜𝑤 estimates 𝑋 over
the groundtruth parameter-space 𝑋. As expected, this compression is most apparent
at high values of 𝐷𝑠𝑙𝑜𝑤, when the signal is more likely to approach the Rician noise
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Figure 4-10: Comparison of the information content captured by SupervisedMLE meth-
ods, as a function of the noise model used in computing MLE labels, at low SNR (15).
Arrows represent the mean mapping from 𝑌 to 𝑌 , averaged over noise, as a function
of parameter space 𝑌 . For the sake of visualisation, each plotted point represents
marginalisation over all non-specified 𝑌 dimensions.

(iii) Compatibility with complex signal models

An additional advantage of computing training loss in parameter-space 𝑌 is that
DNN networks are signal model agnostic: network training does not require explicit
calculation of 𝑀 . This approach is advantageous when working with complex signal
models, as made clear by comparison with Self-supervised methods. In contrast with
the proposed approach, Self-supervised methods embed 𝑀 between network output
and training loss (see Fig 4-2). During DNN training, network parameters 𝑝 are
updated by computing partial derivatives of the training loss; this process requires the
loss to be expressed in a differentiable form. By embedding 𝑀 in the loss formulation,
Self-supervised methods thus limit themselves to signal models that can be expressed
in an explicitly differentiable form. In contrast, the proposed method does not rely
on computing 𝑀 during training, and is therefore compatible with a wider range of
complex qMRI signal models.

(iv) Tunable network approach

As discussed above, this work shows a clear bias/variance trade-off between dif-
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ferent parameter estimation methods. The optimal choice of method depends on the
task at hand [90], and may not lie at either extreme of this trade-off. Therefore,
it would be advantageous to be able to combine low-bias and low-variance methods
into a single, hybrid approach, with performance tunable by the relative contribution
of each constituent method. The proposed method, which interfaces naturally with
𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐺𝑇 , offers exactly that. An example of this approach is shown in Fig 4-11:
training loss has been weighted equally between groundtruth and MLE labels, and,
as expected, the resulting network performance lies in the middle ground between
these two extremes.
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Figure 4-11: Proof of concept of a hybrid parameter estimation method, formed by
training a supervised network with an equally-weighted sum of SupervisedMLE, Rician

and SupervisedGT loss functions, at low SNR (15). For the sake of visualisation, each
plotted point represents marginalisation over all non-specified 𝑌 dimensions.

Comparison with conventional fitting

Comparison between the proposed method (SupervisedMLE, Rician) and conventional
fitting (MLE, Rician) highlights additional advantages offered by our approach. Firstly,
Figs 4-3 and 4-4 demonstrate qualitatively similar performance between these meth-
ods across the entire parameter space. The fact that the proposed method, which
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offers near-instantaneous parameter estimation, produces similar parameter estimates
to well-understood conventional MLE methods justifies its adoption in and of itself.
However, it not only mimics but indeed in many cases outperforms (lower bias, vari-
ance, and RMSE) the very same method used to compute those labels. This finding
not only motivates its use, but also confirms that DL methods are able to exploit
information shared between training samples beyond what would be possible by con-
sidering each sample in isolation.

A note on RMSE

RMSE is a poor summary measure of network performance. It is heavily skewed by
outliers, and thus favours methods which give parameter estimates consistently close
to mean parameter values. Such estimates, as in the case of 𝐷𝑓𝑎𝑠𝑡, may contain very
little information (Fig 4-5) despite being associated with low RMSE. Accordingly, this
work strongly recommends that RMSE be discontinued as a single summary metric for
parameter estimation performance: it must always be accompanied by bias, variance,
and ideally an analysis of information content.

Justification of parameter marginalisation

The above analysis has been largely based on Figs 4-3 and 4-4, which show parameter
estimation performance marginalised over 3 dimensions of 𝑋. This choice, made to
aid visualisation, was validated against higher dimensional representations of the same
data.

Fig 4-12 compares SupervisedMLE, Rician and SupervisedGroundtruth performance across
the entire qMRI parameter space. It can be seen that trends observed in Fig 4-3 are
replicated here; attention is drawn to two such examples. Firstly, Fig 4-3 suggests that
SupervisedGroundtruth produces lower 𝑓 standard deviation than SupervisedMLE, Rician;
Fig 4-12 confirms this to be the case across all test data. In contrast, Fig 4-3 sug-
gests that SupervisedGroundtruth produces higher 𝐷𝑠𝑙𝑜𝑤 bias at low 𝐷𝑠𝑙𝑜𝑤 and lower bias
at high 𝐷𝑠𝑙𝑜𝑤; Fig 4-12 confirms a spread of bias differences across the test data:
some favouring one method, and others the other. This effect is explored in Fig 4-
13, which compares 𝐷𝑠𝑙𝑜𝑤 estimation performance as a function of 𝑓 and 𝐷𝑓𝑎𝑠𝑡 at
two specific (non-marginalised) groundtruth 𝐷𝑠𝑙𝑜𝑤 values (0.69, 2.71). As expected
from the marginalised representation in Fig 4-3, at low 𝐷𝑠𝑙𝑜𝑤 SupervisedGroundtruth

produces higher bias across the entire 𝑓 -𝐷𝑓𝑎𝑠𝑡 parameter space, whereas at high 𝐷𝑠𝑙𝑜𝑤

the opposite is true.

Despite this, it is important to note the limitations of marginalisation. Fig 4-13
also shows that the relative performance of SupervisedMLE, Rician and SupervisedGroundtruth

varies across all parameter-space dimensions. Consider 𝐷𝑠𝑙𝑜𝑤 = 0.69, where Fig 4-3
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shows similar marginalised RMSE for these methods. In fact, by visualising this dif-
ference as a function of 𝑓 and 𝐷𝑓𝑎𝑠𝑡, we reveal two distinct regions: high 𝑓/low 𝐷𝑓𝑎𝑠𝑡

(where SupervisedMLE, Rician produces lower RMSE), and elsewhere (where it produces
higher RMSE). This highlights (i) the potential pitfalls of producing summary results
by marginalising across entire parameter spaces and (ii) the need to choose parameter-
estimation methods appropriate for the specific parameter combinations relevant to
the tissues being investigated [90].
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Figure 4-12: Non-marginalised comparison of parameter estimation performance be-
tween SupervisedMLE, Rician and SupervisedGroundtruth at low SNR (15). Colour intensity
represents density of distribution across all 𝑋 and all noise repetitions.
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Figure 4-13: Differences in performance (bias, standard deviation, RMSE) between
SupervisedMLE, Rician and SupervisedGroundtruth for two groundtruth values of 𝐷𝑠𝑙𝑜𝑤 at
low SNR (15). The outermost columns (left and right) correspond to𝐷𝑠𝑙𝑜𝑤 = 0.69 and
𝐷𝑠𝑙𝑜𝑤 = 2.71 respectively, and show mean performance under noise repetition, with-
out marginalisation. The central column reproduces the corresponding marginalised
representation from Fig 4-3.

4.4 Discussion and conclusions

This work draws inspiration from state-of-the-art supervised and self-supervised qMRI
parameter estimation methods to propose a novel DNN approach which combines
their respective strengths. In keeping with previous work, a bias/variance trade-off is
observed between existing methods; supervised training produces low variance under
noise, whereas self-supervised leads to low bias with respect to groundtruth.

The increased bias of supervised DNNs is counter-intuitive: when labels are avail-
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able, these methods have access to more information, and should therefore outper-
form, non-labelled alternatives. In light of this, this work proposes that the high
bias associated with these supervised methods stems from the nature of the addi-
tional information they receive: groundtruth training labels. By careful adjustment
of these labels, this work shows that the low-bias performance previously limited to
self-supervised approaches can be achieved within a supervised learning framework.

This framework forms the basis of a novel low-bias supervised learning approach to
qMRI parameter estimation: training on conventionally-derived maximum likelihood
parameter estimates4. This method offers four clear advantages to competing non-
supervised low-bias DNN approaches: (i) flexibility in choosing inter-parameter loss
weighting, which enables network performance to be boosted for qMRI parameters
of interest; (ii) incorporation of Rician noise modelling, which improves parameter
estimation at low SNR; (iii) separation between signal model and training loss, which
enables the estimation of non-differentiable qMRI signal models; and, crucially, (iv)
ability to interface with existing supervised low-variance approaches, to produce a
tunable hybrid parameter estimation method.

4.4.1 Implications & outlook

This final point - interfacing with complementary groundtruth-labelled methods -
constitutes the key contribution of this work: unifying low-bias and low-variance
parameter estimation under a single supervised learning umbrella. When faced with
a parameter estimation problem, we no longer need to choose between extremes of the
bias/variance trade-off; rather, we can tune DNN parameter estimation performance
to the specific needs of the task at hand.

This hybrid approach is a perfect match for the task-driven qMRI CED paradigm
presented in Chapters 2 and 3; 𝜃𝑒𝑠𝑡 can for the first time be adjusted smoothly on a
task-by-task basis.

4.4.2 Next steps

Combined, the contributions presented in the thesis thus far give us the basic tools
needed to realise the vision of task-driven qMRI computational experimental design.

4This work has focused on voxelwise DL parameter estimation methods: networks which map one
signal curve to its corresponding parameter estimate. There are, however, alternatives: convolutional
neural network methods which map spatially-related clusters of qMRI signals to corresponding
clusters of parameter estimates [91, 92, 93]. The proposed MLE training label approach could be
incorporated into such methods, and it is left to future work to investigate the effect this would have
on parameter estimation performance.
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In Chapter 5, the novel parameter estimation method introduced above is com-
bined with the task driven pipeline proposed in Chapter 2 and validated in Chapter
3. Conventional parameter estimators are assessed against their ML counterparts on
the metric that truly matters: task performance. This demonstration of 𝜃𝑒𝑠𝑡 assess-
ment, comparison, and selection can serve as a blueprint for those convinced by the
argument that, as a qMRI field, we should implement task-driven CED.
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Chapter 5

A blueprint for task-driven
experimental design: choosing
experimental settings
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This chapter is adapted from:

• Epstein SC, Bray TJP, Hall-Craggs M and Zhang H, Do deep learning-based
qMRI parameter estimators improve clinical task performance?, 2023, ISMRM
Annual Meeting 2023

This thesis has (i) made the case for task-driven qMRI CED and (ii) provided
two key tools necessary for its implementation: a holistic computational pipeline,
described in Chapters 2 and 3; and a low-bias parameter estimator, described in
Chapter 4. This chapter combines these tools and concepts, and provides a blueprint
for performing task-driven computational experimental design in the real world.
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5.1 A blueprint for task-driven qMRI CED

qMRI experiments are defined by three experimental settings: acquisition protocol
(𝜃𝑎𝑐𝑞), signal model (𝜃𝑚𝑜𝑑), and parameter estimation method (𝜃𝑒𝑠𝑡). Appropriate
selection of these settings leads to improved experimental utility (‘task performance’).
Selection requires assessment, which, in light of the settings’ interactions with each
other, should be performed holistically.

This assessment/selection process involves:

1. Identifying a qMRI task to be tackled, such as disease classification or tissue
property measurement.

2. Choosing a quantitative quality metric by which this task’s performance can be
assessed and optimised.

3. Defining a population of interest which describes the tissues that one expects
to encounter when tackling the task; the experimental choices are optimised for
this population.

4. Proposing a range of plausible experimental settings (𝜃𝑎𝑐𝑞, 𝜃𝑚𝑜𝑑, 𝜃𝑒𝑠𝑡) which,
when combined, produce candidate experimental designs.

5. Predicting the task performance associated with each of these candidate exper-
imental designs, using the pipeline described in Chapter 2.

6. Selecting the experimental design associated with the largest task performance.

5.2 Two worked examples: selecting parameter esti-
mators

What follows are two worked examples (labelled ‘W1’ and ‘W2’) of the CED pro-
cess described above. For simplicity and clarity, their scope is limited to selecting a
parameter estimation method (𝜃𝑒𝑠𝑡) in the context of pre-selected signal model and
acquisition protocol.

W1 and W2 serve not only as exemplars of task-driven CED, but also represent the
first time DL-based qMRI parameter estimation methods have been assessed against
their conventional counterparts on their ability to solve real-world clinical tasks.
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5.2.1 Identifying a qMRI task

The qMRI tasks to be tackled involve classifying SpA lesions using dMRI; W1 and
W2 correspond to E1 and E2 described in Section 2.4.2. W1 involves classifying
suspected SpA lesions as either ‘healthy’ or ‘chronic’, and W2 consists of classifying
lesions as ‘active’ or ‘chronic’.

This classification is performed by acquiring diffusion-weighted data, fitting the
IVIM dMRI model to that data, and classifying tissues based on their best-fit param-
eter estimates: the perfusion fraction 𝑓 in the case of W1, and the diffusivity 𝐷𝑠𝑙𝑜𝑤

in the case of W2.

5.2.2 Choosing a quality metric

The AUC of the ROC curve associated with the chosen IVIM parameter is selected
as the task-performance quality metric for both tasks.

5.2.3 Defining a population of interest

The generative IVIM parameters associated with the tissue populations of interest
are listed in Table 5.1.

Task Tissue Signal
model 𝑓

𝐷𝑠𝑙𝑜𝑤

(10−3𝑚𝑚2/𝑠)
𝐷𝑓𝑎𝑠𝑡

(10−3𝑚𝑚2/𝑠)
SNR Sampling (𝑠/𝑚𝑚2)

Parameter
of interest

Quality
metric

W1 Healthy

IVIM

0.09 0.35 123

20 0, 10, 20, 40, 80,
100, 200, 400, 600 𝑓 AUCChronic 0.12 0.35 123

W2 Active 0.12 0.60 123
Chronic 0.12 0.46 123

Table 5.1: Experimental settings associated with the worked examples W1 and W2.

5.2.4 Proposing plausible experimental settings

Acquisition protocol and signal model are fixed as detailed in Table 5.1. For both
W1 and W2, five parameter estimation methods (𝜃𝑒𝑠𝑡) are combined with these pre-
determined settings:

1. 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝑀𝐿𝐸

A supervised DL parameter estimation method trained on MLE-derived labels.

2. 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐺𝑇

A supervised DL parameter estimation method trained on groundtruth gener-
ative labels.
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3. 𝑆𝑒𝑙𝑓 -𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑
A self-supervised DL parameter estimation method trained without explicit
labels.

4. 𝑏𝑐𝑁𝐿𝐿𝑆
An iterative MLE-like method which places explicit bound-constraints on the
estimated model parameters.

5. 𝑠𝑁𝐿𝐿𝑆
A regularised two-step ‘segmented’ MLE-like method specific to the IVIM model.
The first step fits an ADC model to data above a threshold diffusion weight-
ing. This high-diffusion-weighted data retains signal from only the ‘slow’, non-
perfusing IVIM water compartment1. The IVIM parameter estimate 𝐷𝑠𝑙𝑜𝑤 is
subsequently fixed to this ADC value, and bcNLLS is performed on the three
remaining IVIM parameters.

Detailed descriptions of these methods are found in Chapters 2 and 4.

5.2.5 Computing task performance

Following the pipeline outlined in Chapter 2, 25,000 noisy IVIM signals were synthe-
sised for each task’s SpA subtypes. The IVIM model was fit to these signals using
the 5 aforementioned parameter estimation methods.

The resulting IVIM parameter estimates were used to calculate ROC curves for
the classification task. Each method’s task performance was summarised by the
ROC-derived AUC metric.

5.2.6 Selecting the best-performing experimental design

The simulated ROC curves and associated AUC values are shown in Figure 5-1. In
both tasks, the parameter estimator associated with the highest task performance is
𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐺𝑇 . This method is selected for experimental use.

5.3 Looking beyond a summary quality metric

The worked examples above demonstrate the most basic implementation of task-
driven CED: identifying the experimental settings that maximise task performance.

1See Appendix C for more details.
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Figure 5-1: ROC curves and associated AUC values for W1 and W2.

However, the simulation framework introduced in Chapter 2 additionally gives insight
into why certain experimental settings outperform others.

Figure 5-2 shows the noise-induced distribution of parameter estimates on which
Figure 5-1 is based. W1 and W2, being classification tasks, rely on being able to
distinguish the two distributions represented by solid and dashed lines. In both
tasks, conventional estimators (bcNLLS and sNLLS) are associated with broader
(higher variance) distributions than DL methods.

The analysis presented in Chapter 4 predicts two classes of DL method: (i)
𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝑀𝐿𝐸 and 𝑆𝑒𝑙𝑓 -𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 (higher variance, lower absolute and relative
bias), and (ii) 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐺𝑇 (lower variance, higher absolute and relative bias); Fig-
ure 5-2 confirms this trend. In these tasks, 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐺𝑇 achieves the highest task
performance by minimising variance under noise (𝜎), despite below-average inter-
distribution mean separation (∆𝜇).

The fourth step of CED - proposing plausible experimental designs - is crucial for
obtaining high-quality qMRI experiments yet prone to user error. The task-driven
pipeline, as presented in Chapter 2, can only assess the experimental settings it is
provided with. If users input a selection of poor experimental settings, the pipeline will
necessarily output a ‘bad’ experimental design. Insight into why certain experimental
settings succeed - or, more importantly, fail - can guide the selection of good candidate
experimental designs.
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Figure 5-2: Distribution of parameter estimates underpinning the ROC curves shown
in Figure 5-1.

5.4 What next?

This chapter has combined the tools introduced in Chapters 2-4 to demonstrate two
real-world worked examples of task-driven qMRI CED. This not only provides a
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blueprint for task-driven qMRI CED but also evaluates, for the first time, DL pa-
rameter estimators’ classification performance and validates the trends observed in
Chapter 4.

Chapter 6 goes one step further, by not only highlighting the key theoretical and
practical contributions presented throughout this thesis, but also reflecting on how
they may be further refined and expanded upon, cementing task-driven optimisation
as the default qMRI CED paradigm.
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Chapter 6

Conclusions and outlook

Contents
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6.1 Thesis summary

This thesis contributes to the field of quantitative magnetic resonance imaging (qMRI)
computational experimental design (CED). qMRI CED assesses qMRI experimental
designs in-silico, enabling the selection of ‘good’ qMRI experiments without costly
in-vivo data acquisition.

This work (i) identifies two broad limitations with the qMRI CED status quo and
(ii) presents four contributions to address these shortcomings.
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6.1.1 qMRI CED limitations

The first limitation relates to the quality metrics used to assess qMRI experimental
designs. Existing metrics evaluate qMRI experimental outputs (parameter estimates)
on their similarity to tissue-property-derived ‘groundtruths’. This approach is moti-
vated by viewing qMRI as simply ‘tissue measurement’, but does not match common
clinical use-cases: performing tasks, such as differentiating between tissues in dif-
ferent states of pathology. The ‘quality’, or usefulness, of the parameter estimates
arising from such task-based experiments depends on effect size rather than numerical
accuracy; task-agnostic groundtruth-based metrics are fundamentally inappropriate.

The second limitation relates to the piecemeal, sequential nature by which CED
is performed. qMRI experiments combine three experimental settings: acquisition
protocol, signal model, and parameter estimation method. As things stands, CED
determines these settings sequentially without accounting for how they interact with
each other. The overall quality of a qMRI experiment - whether that be task perfor-
mance or tissue measurement - depends on these interactions, and its assessment and
optimisation is limited by evaluating experimental settings in isolation.

6.1.2 Thesis contributions

Chapters 2-5 outline four distinct contributions aimed at addressing these shortcom-
ings.

Reimagining the problem: holistic and task-driven

Chapter 2 presents a theoretical analysis of CED, introducing the notion of 𝑃𝑡𝑎𝑟𝑔𝑒𝑡,
the parameter estimates produced by an ‘ideal’ qMRI experiment. These are used
to re-frame CED’s purpose: from tissue measurement fidelity to task performance
maximisation. The case is made that setting 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑇 , as is standard in current
CED practice, is not appropriate for all qMRI experiments; 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 should instead
be adjusted on an experiment-by-experiment basis to reflect the qMRI ‘task’ being
performed. Furthermore, it is argued that assessing an experiment’s parameter esti-
mates (i.e. determining how close they are to 𝑃𝑡𝑎𝑟𝑔𝑒𝑡) should explicitly account for the
interactions between all components of an experiment. A computational tool which
addresses both shortcomings is proposed and implemented: a pipeline which (i) en-
ables 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 to be adjusted task-specifically and (ii) evaluates experiments’ ability
to generate close-to-𝑃𝑡𝑎𝑟𝑔𝑒𝑡 estimates holistically. Two exemplar qMRI experiments
are used to demonstrate the value of this approach by contrasting it to traditional
task-agnostic CED methods.
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Validating the method: in-silico vs. in-vivo

Chapter 3 validates the aforementioned pipeline’s task performance predictions on
in-vivo data. Four qMRI experimental tasks, spanning two clinical datasets, are
identified and replicated in-silico. The pipeline’s predictions are shown to match -
both qualitatively and quantitatively - the ‘real-world’ task performance. This result,
which confirms that the pipeline is able to evaluate experimental designs without
needing to acquire costly in-vivo data, has three practical consequences. Firstly, that
the pipeline could be used to select the best experimental design from a shortlist of
candidate experimental settings. Secondly, it motivates the pipeline’s further devel-
opment into an optimisation framework, where experimental settings are iteratively
adjusted to maximise task performance. Finally, it validates the demonstration, found
in Chapter 2, that task-driven CED approaches outperform task-agnostic ones.

Chapters 2 and 3, between them, provide a framework which address both CED
qMRI limitations: task-driven assessment metrics are introduced, and a reliable holis-
tic way of evaluating them is presented. The remainder of the thesis builds on this
framework, improving it and demonstrating how it may be applied in the real world.

Improving parameter estimation: a novel deep learning method

The pipeline introduced in Chapter 2 and validated in Chapter 3 can only generate ex-
periments as good as the candidate settings given as input to it. Limitations with one
of these settings - choice of parameter estimation method - are addressed in Chapter 4,
by introducing a novel DNN-based parameter estimator. This method is inspired by
a theoretical analysis of existing parameter estimation methods, which highlights the
bias-variance trade-off that underpins existing parameter estimators. This trade-off
motivates the proposed method’s formulation: a supervised DNN trained on non-
groundtruth independently-computed MLE labels. This estimator, when evaluated
on both in-silico and in-vivo data, is shown to occupy the ‘low-bias’ side of the afore-
mentioned trade-off, without the compromises associated with competing methods in
this space. The Chapter concludes by demonstrating a proof-of-concept application
of this method to a hybrid, tunable, and task-driven estimator, designed to unlock
the full potential of the pipeline introduced in Chapter 2.

A blueprint for task-driven experimental design: choosing experimental
settings

Chapter 5 contains the final two contributions of the thesis. The first is the com-
bination and distillation of the tools developed throughout the preceding Chapters
into an end-to-end implementation of task-driven CED. This provides a generalisable
blueprint applicable to any qMRI experiment for which the relationship between tis-
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sue properties and qMRI biomarkers is known. The second contribution is the first
demonstration of the suitability of DL estimators for clinical classification tasks, un-
derpinned by analysis which validates the bias-variance trends described in Chapter
4.

6.2 Outlook

The central message of this thesis, and its most fundamental contribution, is contained
in the first half of Chapter 2: a theoretical re-framing of qMRI, away from measuring
tissue properties and towards a more general notion of implementing ‘tasks’. The
work which follows, presented in Chapters 3-5, represents only the beginning of what
could be achieved with task-driven CED. Outlined below are some areas in which
the work presented in this thesis could be expanded to exploit this exciting, new,
task-centric paradigm.

6.2.1 Assessment vs. optimisation

The pipeline presented in Chapter 2 and validated in Chapter 3 performs one func-
tion: provided with an experimental design, it predicts qMRI task performance. It
does not give explicit insight into either (i) whether this performance is ‘good’ or
(ii) how it might be improved. The pipeline’s use-cases highlighted throughout this
thesis involve evaluating a range of user-supplied candidate experiments, from which
the best is selected. Optimising these experiments, i.e. adjusting them to improve
their performance, is beyond the pipeline’s scope. Chapter 5 shows how insight into
manual optimisation strategies may be gained by moving beyond ‘summary’ task
performance metrics, but this process is neither automated nor independent of the
user’s choice of candidate experimental settings. These limitations could be addressed
by incorporating the pipeline into a self-contained optimisation framework, in which
experimental designs are automatically adjusted and improved.

The complex interactions between 𝜃𝑚𝑜𝑑, 𝜃𝑒𝑠𝑡, and 𝜃𝑎𝑐𝑞, which themselves motivate
the need for a holistic CED approach, render experimental optimisation challeng-
ing: the partial derivatives of task performance with respect to 𝜃 are analytically
intractable. This sets the stage for a machine-learning-based optimisation approach,
perhaps implemented within a reinforcement learning (RL) framework: the assess-
ment pipeline presented in this thesis would act as the RL environment, the RL agent
would adjust experimental design settings, leading to changes in RL state (task per-
formance), used to guide subsequent algorithm iterations.

An ML optimization strategy would also motivate a significant adjustment in the
CED pipeline’s structure. The simulation of parameter estimation and task evaluation
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could be combined and replaced by a new ‘task-solving’ network. This network would
map input data (e.g. signal intensities) to task outputs (e.g. tissue classification),
bypassing model selection, parameter estimation, and biomarker selection. It would
be trained, in conjunction with the RL optimizer, to determine truly data-driven
optimal experimental settings.

6.2.2 Pipeline scope

Throughout this Thesis, MR scanners have been treated as outputting spatially-
mapped signal intensities, as per 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 in Equation 2.3. Whilst appropriate for
most ‘off-the-shelf’ qMRI experiments, this treatment conceals the time-series nature
of acquired data (known as ‘k-space’). Modern scanners perform extensive processing,
controlled by user-selected hyperparameters, to convert this k-space data into out-
putted 𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑. Developing the pipeline to simulate some, or all, of this in-scanner
processing would enable the assessment and optimization of the associated hyperpa-
rameters and lead to further-improved qMRI CED.

6.2.3 Pipeline validation

Another avenue for future work is to expand the validation work described in Chapter
3. To demonstrate the reliability of in-silico task performance predictions, this thesis
has relied on pre-existing in-vivo datasets not originally designed for CED validation
studies. This has limited the scope of the validation to analysing differences in qMRI
post-processing (𝜃𝑚𝑜𝑑 and 𝜃𝑒𝑠𝑡) rather than data acquisition (𝜃𝑎𝑐𝑞). Future validation
studies could exploit bespoke in-vivo datasets, acquired with a wide range of 𝜃𝑎𝑐𝑞,
to provide additional evidence that the assessment pipeline reliably predicts task
performance across a wide range of candidate experimental designs.

6.2.4 Tunable parameter estimator

Along similar lines, there is significant scope for further testing and validation of the
hybrid parameter estimator described in Chapter 4. This method defines a tunable
training loss which enables a parameter estimation network to straddle the inter-
estimator bias-variance trade-off discussed above. A proof-of-concept version of this
method is presented, implemented for a single value of the tunable parameter 𝛼;
following the general theme of this thesis, this work could be expanded by training
a range of estimators, each with a different 𝛼, and repeat the tasks ‘W1’ and ‘W2’
described in Chapter 5 to find the estimator which maximises task performance.
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6.2.5 Hyperparameter optimisation

The parameter estimation networks presented in Chapter 4 share many structural
properties: number of neurons, number of layers, activation functions, optimization
algorithms, et cetera. This commonality was a deliberate choice in the context of
Chapter 4, which controlled as many inter-network differences as possible to isolate the
effect of changing training loss. This shared structure was taken from the DNN qMRI
literature; it is possible, indeed probable, that parameter estimation performance
could be improved by network-specific structural optimization.

6.2.6 Patch-based parameter estimation

Chapter 4 reports bias-variance trade-offs in voxelwise DNN estimators; whether these
trends extend to patch-based convolutional neural networks (CNNs) remains as yet
unknown. CNNs map spatially-related clusters of qMRI signals to corresponding
clusters of parameter estimates. Such networks are compatible with all DNN training
approaches described in this thesis and present an obvious test-case for the general-
isability of adjusting network training labels.

6.2.7 Computational tool utility

The highest-impact opportunity for further work lies in making the computational
tools developed in this thesis usable, accessible, and useful to the people who actually
design qMRI experiments. This work could follow two streams.

The first involves pure software engineering: adapting the codebase that under-
pins this thesis (publicly available, fully documented, here and here) into a software
package usable by clinicians with limited technical expertise. The development of this
package could incorporate an implementation of the RL-based optimization frame-
work described above.

The second stream involves expanding the functionality of Chapter 2’s assess-
ment pipeline to make it more attractive to end-users. Possible extensions include:
explicit calculation of acquisition time, allowing users to determine either minimum
acquisition time for given task performance, or maximum performance for given ac-
quisition time; an interactive ‘simulator’ which visually displays trade-offs between
a range of pre-computed experimental setting combinations; and an extension from
voxelwise simulation to whole-organ, whole-slice, or whole-volume imaging, providing
a qualitative ‘feel’ for the kinds of visual contrast generated by different experimental
designs.

87

https://github.com/seancepstein/taskDrivenExperimentalDesign
https://github.com/seancepstein/training_labels


6.2.8 Final thoughts

This thesis has made the case, and set the stage, for task-driven qMRI CED. Its
central argument is simple: qMRI is a tool which should be adjusted to its intended
use, whatever that may be. The contributions presented in Chapters 2-5 demonstrate
various ways in which this adjustment may be achieved. This chapter has suggested
avenues for further development and consolidation into useful, user-friendly tools.
It is the author’s hope that the work presented in this thesis will mark the first
step towards qMRI experiments being routinely designed - and tailored - for specific
experimental tasks.
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Appendix B

Cramér-Rao Lower Bound (CRLB)

The Cramér-Rao Lower Bound (CRLB) provides a surrogate measure for biomarker
variance arising from stochastic noise.

Consider the set of all unbiased estimators which, under noise-free conditions, are
able to perfectly invert a qMRI forward model to reconstruct ground-truth biomarker
estimates. Once noise is introduced to the system, such estimators will necessarily
produce some variance in their estimates. The CRLB provides the minimum noise-
induced variance achievable by any of these estimators.

Specifically, the CRLB is derived from the Fisher Information matrix (FIM), which
itself is a measure of the information that an observable variable (MRI signal) con-
tains about a latent variable upon which it depends (qMRI biomarker). The FIM
contains information about how the log-likelihood of an observed signal varies with
the underlying latent variables; it is defined as the variance of the score 𝑆:

𝑆 =
𝜕𝐿(𝑋; 𝜃)

𝜕𝜃
(B.1)

where 𝐿(𝑋; 𝜃) is the log-likelihood of 𝑋 (observed MRI signal) given 𝜃 (qMRI
biomarkers) under noise. The FIM (ℐ) is the variance of the score, evaluated at the
maximum likelihood estimate, i.e. at the true, unbiased estimate of 𝜃:

ℐ𝑖,𝑗 = 𝐸[(𝑆 − 𝑆)2|𝜃] = 𝐸[𝑆2|𝜃] = −𝐸
[︂
𝜕2𝐿(𝑋; 𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗

⃒⃒⃒⃒
𝜃

]︂
(B.2)

where 𝐸 represents the expectation and 𝐸[𝑆|𝜃] = 0 [94, p. 116].

The FIM gives the curvature of the log-likelihood surface at the maximum like-
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lihood estimate. If ℐ𝑖,𝑗 is large, the log-likelihood varies rapidly with 𝜃𝑖, 𝜃𝑗, i.e.
𝐿(𝑋; 𝜃 ̸= 𝜃𝑀𝐿𝐸) ∼ 𝐿(𝑋; 𝜃𝑀𝐿𝐸) for a small range of 𝜃: there is low uncertainty
in estimates of the latent variable 𝜃. Conversely, if ℐ𝑖,𝑗 is low, there is a large range
𝜃𝑖, 𝜃𝑗 for which 𝐿(𝑋; 𝜃 ̸= 𝜃𝑀𝐿𝐸) ∼ 𝐿(𝑋; 𝜃𝑀𝐿𝐸), and there is high uncertainty in
estimates of 𝜃.

The CRLB is defined as the inverse of the FIM:

𝑉 𝑎𝑟(𝜃𝑖,𝑗) ≥
1

ℐ𝑖,𝑗

≡ 𝐶𝑅𝐿𝐵 (B.3)

A large ℐ𝑖,𝑗 encodes a large log-likelihood curvature at the maximum likelihood
estimate and, consequently, a low minimum variance achievable by a perfect unbiased
estimator.
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Appendix C

Diffusion MRI and the Intravoxel
Incoherent Motion model

Contents
C.1 Apparent Diffusion Coefficient . . . . . . . . . . . . . . . . 94

C.2 Intravoxel Incoherent Motion . . . . . . . . . . . . . . . . 95

Diffusion MRI (dMRI) is a form of quantitative magnetic resonance imaging
(qMRI) which exploits the self-diffusive properties of water molecules. Self-diffusion
describes the random-walk Brownian motion of molecules within a fluid in the absence
of (i) a chemical potential gradient and (ii) external interactions.

dMRI relies on the fact that as water molecules self-diffuse through tissue, they
are in fact not free of external interactions; their motion is restricted by intracellular
structures (“microstructure”), and their self-diffusion is limited. This self-diffusive
disruption encodes information about tissue microstructure, and dMRI experiments
are designed to capture this information.

dMRI cannot, unfortunately, track the random-walk motion of individual water
molecules. Rather, the dMRI signal 𝑆 is a sum of the signals 𝑆𝑖 of all the 𝑁 molecules
within a voxel1:

𝑆 =
𝑁∑︁
𝑖

𝑆𝑖 (C.1)

dMRI experiments encode microstructural information in 𝑆 by introducing molecular-
motion-dependant phase terms to the constituent 𝑆𝑖. As individual molecular paths

1For simplicity, ‘water molecule’ is used interchangeably with H proton; it is assumed that any
signal arising from fat has been suppressed, as is common in dMRI acquisition.
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diverge over time, so does their accrued phase; the resulting intra-molecular incoher-
ence attenuates the measured signal 𝑆.

Consider the signal arising from a voxel containing 𝑁 water molecules following
random-walk trajectories 𝑟𝑖(𝑡). Suppose we apply two sequential spatially-dependant
phase terms to each molecule’s signal 𝑆𝑖:

𝑆 =
𝑁∑︁
𝑖

𝑆𝑖

∫︁ 𝛼

0

𝑒𝑖𝜑(𝑟𝑖(𝑡))𝑑𝑡

∫︁ 2𝛼+𝛽

𝛼+𝛽

𝑒𝑖−𝜑(𝑟𝑖(𝑡))𝑑𝑡 (C.2)

where 𝛼 and 𝛽 are user-selected time constants, such that the two phase accruals
(a) have the same spatial dependence and (b) are equal in magnitude but opposite in
sign.

Stationary molecules (constant 𝑟𝑖(𝑡)) are unaffected by this sequence: the first
phase addition (𝜑) is cancelled out by the subsequent phase removal (−𝜑). In contrast,
the 𝑆𝑖 of self-diffusing molecules acquires a net phase which encodes the random path
𝑟(0 ⩽ 𝑡 ⩾ 2𝛼 + 𝛽) they have taken.

The summation that underpins the voxelwise signal 𝑆 is attenuated by the mag-
nitude and relative incoherence of the phase acquired by each constituent water
molecule. In the simplest terms, the more ‘restrictive’ the microstructure within
a voxel, the shorter the random-walk of the associated water molecules, the smaller
the (and more coherent) the acquired phase, and the smaller the attenuation.

C.1 Apparent Diffusion Coefficient

This relationship forms the basis of the apparent diffusion coefficient (ADC) dMRI
model:

𝑆(𝑏)

𝑆0

= 𝑒−𝑏𝐷𝐴𝐷𝐶 (C.3)

where 𝑏(𝛼, 𝛽, 𝜑), the diffusion weighting, is an independent variable which relates
signal attenuation to the molecular trajectories 𝑟(𝑡); 𝐷𝐴𝐷𝐶 is a measure of water
diffusivity which depends on the magnitude and coherence of the phase accrued across
a voxel of interest; and 𝑆0 is the signal measured for 𝑏 = 0, i.e. zero phase accrual.
An ADC dMRI experiment consists of acquiring 𝑆(𝑏) at multiple 𝑏-values, and fitting
the model parameters (𝑆0 and 𝐷𝐴𝐷𝐶) to the resulting data. Larger best-fit ADC
estimates (𝐷𝐴𝐷𝐶) correspond to faster signal attenuation and imply less restricted
diffusion.
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C.2 Intravoxel Incoherent Motion

The microstructure that dMRI experiments probe is micrometer-scale, whilst dMRI
voxels are millimeters across. Each voxel may therefore contain a wide range of
different microstructural environments, each restricting water molecules in its own
unique way. The ADC model averages out these differences by assuming that all
molecules in voxel can be described by the same 𝐷𝐴𝐷𝐶 .

More complex dMRI models address this simplification by introducing the concept
of signal compartments. The single voxelwise summation described in Equation C.1
is decomposed into multiple summations:

𝑆 =
𝑛∑︁
𝑗

𝑁∑︁
𝑖

𝑆𝑖,𝑗 (C.4)

where 𝑗 refers to a signal compartment which groups water molecules experiencing
similar microstructural environments. A simple extension of the ADC model into a
multi-compartment one results in:

𝑆(𝑏)

𝑆0

=
𝑛∑︁
𝑗

𝛾𝑗𝑒
−𝑏𝐷𝑗 (C.5)

where 𝐷𝑗 is a measure of the diffusivity of the molecules in the 𝑗th compartment,
and the volume fraction 𝛾𝑗 describes the proportion of the voxel’s water molecules
that experience the 𝑗th compartment’s microstructural environment.

The intravoxel incoherent motion (IVIM) model [75], referred to throughout this
thesis, is a two-compartment (𝑛 = 2) extension of ADC which accounts for a non-
diffusive source of motion detected by dMRI experiments:

𝑆(𝑏)

𝑆0

= 𝛾1𝑒
−𝑏𝐷1 + 𝛾2𝑒

−𝑏𝐷2 (C.6)

The first compartment (𝑗 = 1) is equivalent to ADC: voxelwise averaging of all
self-diffusive incoherence effects, summarised by diffusivity 𝐷1.

The second compartment (𝑗 = 2) models microcirculation: water which not only
self-diffuses, but also flows in the capillary network within the voxel of interest. The
capillaries that form this network are oriented quasi-randomly; as water molecules
move along them, their path 𝑟𝑡 resembles Brownian motion, albeit much faster than
what arises from self-diffusion. Much like in ADC, this motion leads to exponential

95



attenuation described by 𝐷2 ≫ 𝐷1.

To reflect this biophysical insight, throughout this thesis Equation C.6 has been
rewritten as:

𝑆(𝑏)

𝑆0

= 𝑓𝑒−𝑏(𝐷𝑓𝑎𝑠𝑡+𝐷𝑠𝑙𝑜𝑤) + (1− 𝑓)𝑒−𝑏𝐷𝑠𝑙𝑜𝑤 (C.7)

where the perfusion fraction 𝑓 (i.e. 𝛾2) refers to the fraction of water molecules in
circulating in the capillary network; 𝐷𝑠𝑙𝑜𝑤 (i.e. 𝐷1) refers to the mean diffusivity of
non-microcirculating water molecules; and 𝐷𝑓𝑎𝑠𝑡 (i.e. 𝐷2 −𝐷1) refers to the pseudo-
diffusivity attributed to capillary-mediated translation motion.
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Appendix D

A brief introduction to deep neural
networks used in qMRI parameter
estimation
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The deep learning (DL) parameter estimators discussed throughout this thesis are
DNNs. This appendix provides a brief introduction to qMRI parameter estimation
DNNs, intended to provide some basic theoretical background to Chapter 4.

D.1 Anatomy of a DNN

Deep neural networks 𝒩 are, in general, many-to-one functions:

𝒩 (𝑥|𝜑,𝑤) = 𝑦 (D.1)
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which, parameterised by 𝜑 and 𝑤, map inputs 𝑥 to outputs 𝑦.

These functions are generated by combining small building block functions (𝜓(𝑥|𝑤)),
known as neurons. 𝒩 ’s structure parameter 𝜑 describes the form and arrangement of
these neurons, whilst the weighting parameter 𝑤 describes the constituent neurons’
own parameterisation.

Consider a simple neuron 𝜓(𝑥|𝑤):

𝜓(𝑥|𝑤) = 𝑥+ 𝑤 (D.2)

which returns its input 𝑥 biased by a constant term 𝑤. Combining three such neurons
in series produces a simple network:

𝒩 (𝑥|𝜑,𝑤) = 𝜓(3)(𝜓(2)(𝜓(1)(𝑥|𝑤(1))|𝑤(2))|𝑤(3)) = ((𝑥+ 𝑤(1)) + 𝑤(2)) + 𝑤(3) (D.3)

which adds 3 constants (𝑤(1), 𝑤(2), 𝑤(3)) to an input 𝑥. The structure parameter 𝜑
describes the number of neurons (three), their form (constant bias), and how they are
combined (in series). The weighting parameter 𝑤 describes the the constants being
added by each neuron. This simple network can be visualised as a series of connected
layers :

𝑥𝑖 𝑎
(1)
𝑖 𝑎

(2)
𝑖 𝑎

(3)
𝑖

𝑦𝑖

input
layer hidden layers

output
layer

Figure D-1: A simple network.

where 𝑖 refers to the 𝑖th element of 𝑥 and 𝑎
(1)
𝑖 = 𝜓(1)(𝑥𝑖|𝑤(1)) = 𝑥𝑖 + 𝑤(1) is known

as the activity of 𝜓(1) [95]. The network’s input 𝑥 is known as the input layer, the
output 𝑦 as the output layer, and the structure that connects them as the network’s
hidden layers. For 𝑥, 𝑦 ∈ R3:

98
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𝑎
(1)
1

𝑎
(1)
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𝑎
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(2)
1

𝑎
(2)
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𝑎
(2)
3

𝑎
(3)
1

𝑎
(3)
2

𝑎
(3)
3

𝑦1

𝑦2

𝑦3

input
layer hidden layers

output
layer

Figure D-2: A simple network of ‘width’ 3.

the network 𝒩 adds 𝑤(1) + 𝑤(2) + 𝑤(3) to each element of 𝑥.

𝒩 encodes a mapping, from input-space 𝑋 to output-space 𝑌 , which can be
adjusted by changing the values of 𝑤. In this example, 𝑁 can only encode addition,
no matter the choice of 𝑤. The chosen structure parameter 𝜑 has severely limited
this 𝑁 ’s ability to encode more complex - and potentially useful - functions.

The parameter estimation DNNs described in Chapter 4, which encode complex
non-linear functions, differ in two important ways from the toy example given above:
(i) the nature of the neurons that underpin them and (ii) how these neurons are
connected to each other.

D.2 Neurons

Neurons 𝜓(𝑥|𝑤) convert inputs to activities; in the example above this consists of a
simple bias operation applied to a single input. In contrast, the parameter estimation
networks discussed in this thesis contain neurons which convert multiple inputs into
single outputs. This is achieved by compositing three conceptually-distinct opera-
tions: weighted summation, bias, and rescaling.

D.2.1 Weighted summation

The first operation performed by each neuron is computing a weighted sum of its
inputs:

𝛼𝑗
𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 =

𝐼∑︁
𝑖=1

𝜔𝑗
𝑖 𝑎

𝑗−1
𝑖 (D.4)
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where 𝑎𝑗−1 is the 𝑗th neuron’s input (i.e. the output of the 𝑗-1th neuron) and 𝐼 is its
dimensionality, indexed by 𝑖. The weights 𝜔𝑗

𝑖 are adjustable parameters which, much
like the constants 𝑤(1)-𝑤(3) above, control neuron’s behaviour.

D.2.2 Bias

The second operation adds a bias 𝑏 to the weighted sum computed above:

𝛼𝑗 = 𝛼𝑗
𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 + 𝑏𝑗 (D.5)

and yields 𝛼𝑗, the 𝑗th neuron’s activation. The bias 𝑏 is, just like 𝑤𝑗
𝑖 , an adjustable

parameter which controls each neuron’s performance.

D.2.3 Rescaling

The final operation involves rescaling the activation 𝛼𝑗 to generate the activity 𝑎𝑗:

𝑎𝑗 = 𝑓(𝛼𝑗) (D.6)

where 𝑓 , known as the activation function, is user-defined and, unlike 𝑤, generally
not adjusted during training (see below). Activation functions introduce non-linearity
into 𝜓(𝑥|𝑤), enabling 𝑁 to represent non-linear functions of 𝑥.

DNNs employ a wide range of activation functions; the parameter estimators
implemented in Chapter 4 employ the exponential linear unit activation (ELU) acti-
vation function [89]:

ELU(𝑥) =

{︃
𝑥, if 𝑥 > 0

𝛾(𝑒𝑥 − 1), otherwise
(D.7)

D.2.4 Bringing it all together

Combining these three operations gives an overall definition of the neuron 𝜓(𝑥|𝑤):

𝜓(𝑥|𝑤) = 𝑎(𝑥|𝑤) = 𝑓(𝑏+
𝐼∑︁

𝑖=1

𝜔𝑖𝑥𝑖|𝛾) (D.8)
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where the network weights 𝑤 describe 𝛽, 𝛾, and 𝜔1.

D.3 Connections

DNNs are composed of large numbers of such neurons. Individual neurons’ inputs and
outputs are linked by a layered network structure. Neurons occupying different layers
may be connected, whereby the output of one neuron is provided as input to another.
Neurons within the same layer are never connected to each other. The number of
neurons within a layer is known as that layer’s width. The number of layers within a
network is known as that network’s depth. Any layers lying between input and output
are known as hidden; the term ‘deep’ in Deep Neural Network refers to DNNs having
depth of more than one hidden layer.

The parameter-estimation DNNs described throughout this thesis are connected
sequentially (layers are arranged in series, such that neuronal connections are only
formed between adjacent layers) and fully (all neurons within a layer are connected
to all other neurons in adjacent layers).

An example of such a network, similar to those described in Chapter 4, is visualised
in Figure D-3.

𝑥1

𝑥2

𝑥3

𝑥4

𝑎
(1)
1

𝑎
(1)
2

𝑎
(1)
3

𝑎
(1)
4

𝑎
(2)
1

𝑎
(2)
2

𝑎
(2)
3

𝑎
(2)
4

𝑎
(3)
1

𝑎
(3)
2

𝑎
(3)
3

𝑎
(3)
4

𝑦1

𝑦2

input
layer hidden layers

output
layer

Figure D-3: A basic parameter estimator.

This network takes a four-dimensional input (𝑥); each dimension (𝑥1 to 𝑥4) is
passed to each of the four neurons (𝑎(1)1 to 𝑎

(1)
4 ) in the first hidden layer. These

neurons are each parameterised by 5 tunable parameters: four weighting terms 𝜔 and
one bias term 𝑏.

1Note that, for simplicity, 𝛼 is here subsumed by the weighting parameter 𝑤 rather than, as is
more common, the structure parameter 𝜑.
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The first hidden layer generates four outputs (activities 𝑎11 to 𝑎14) which are passed
to each of the four neurons in the second hidden layer. This process is repeated for the
third, and final, hidden layer. The output layer contains two neurons. Each of these
neurons computes its activation in the same way as the hidden layers that precede it:
weighted summation, biasing, rescaling.

In this way, this network combines 14 non-linear functions (three hidden layers of
width 4, plus one output layer of width 2), parameterised by 70 tunable terms2 (14
neurons, each controlled by 4 weight terms and 1 bias), to convert a four-dimensional
input into a two-dimensional output.

This network ‘becomes’ a qMRI parameter estimator if (i) it is provided qMRI
signals as inputs 𝑥 and (ii) its outputs 𝑦 are interpreted as qMRI model parameters.
Using the notation from Section 2.1, the network 𝒩 becomes:

𝒩 (𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑) = 𝑃 (D.9)

The quality of this estimator - that is, how well it maps signals to meaningful
parameter estimates - depends on both its structure 𝜑 (i.e. its capacity to encode this
mapping) and its weights 𝑤 (i.e. its tuning to this specific mapping).

The remainder of this appendix considers cases where network performance is
not limited by structure parameter 𝜑, but rather depends exclusively on the tunable
network weights 𝑤. Network training attempts to determine the optimal 𝑤.

D.4 Training & inference

DNN training is the process by which 𝒩 ’s weighting parameter 𝑤 is adjusted to
maximise network performance. In the context of qMRI, using notation introduced
in Chapter 2, a maximally-performing network is one which converts qMRI signals
𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 into desired parameter predictions 𝑃𝑡𝑎𝑟𝑔𝑒𝑡.

More generally, such a network can be expressed as:

𝒩 (𝑥|𝜑,𝑤𝑡𝑎𝑟𝑔𝑒𝑡) = 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 (D.10)

where 𝑤𝑡𝑎𝑟𝑔𝑒𝑡 are the network weights which generate ‘ideal’ predictions 𝑦𝑡𝑎𝑟𝑔𝑒𝑡
from network inputs 𝑥.

2Note that the scaling factor 𝛾 is not included in this count. It is normally considered a structure
parameter 𝜑 as it is kept constant during training.
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The training process approximates 𝑤𝑡𝑎𝑟𝑔𝑒𝑡 with learned weights 𝑤𝑡𝑟𝑎𝑖𝑛 by exploiting
a training set of network inputs (𝑥𝑡𝑟𝑎𝑖𝑛). Each member of this training set is associated
with an ‘ideal’ network output 𝑦𝑡𝑎𝑟𝑔𝑒𝑡, either implicitly (e.g. Self-supervised in Chapter
4) or explicitly (e.g. SupervisedGT, also in Chapter 4).

Each element of 𝑥𝑡𝑟𝑎𝑖𝑛 is input to the network, generating outputs 𝑦𝑡𝑟𝑎𝑖𝑛. A loss
function 𝐿, which evaluates the distance between 𝑦𝑡𝑟𝑎𝑖𝑛 and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡, is then iteratively
minimised over the entire training set:

𝑤𝑡𝑟𝑎𝑖𝑛 = argmin
𝑤

∑︁
𝑥𝑡𝑟𝑎𝑖𝑛

𝐿(𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡|𝑤) (D.11)

The weights 𝑤𝑡𝑟𝑎𝑖𝑛 obtained by this process parameterise the network which, when
evaluated over the entire training set, generates predictions which are closest to the
supplied training data’s ‘ideal’ network outputs.

The network is now trained, and ready for inference: application to unseen data.
With an appropriate choice of 𝑥𝑡𝑟𝑎𝑖𝑛, the learned parameters 𝑤𝑡𝑟𝑎𝑖𝑛 encode a mapping
which generalises and produces useful outputs for inputs not encountered during
training.

The mechanics of the optimisation procedure described in Equation D.11 are be-
yond the scope of this Appendix. For the purposes of Chapter 4, what is important
is that network weights - and therefore network predictions - depend heavily on both
how 𝐿 is formulated, and on how 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 is defined.

103



Appendix E

In-vivo parameter estimation
validation strategies

Contents
E.1 Additional data (different modality) . . . . . . . . . . . . 105

E.1.1 Reference for comparison: histology (ex-vivo) . . . . . . . . 105

E.2 Additional data (same modality) . . . . . . . . . . . . . . 105

E.2.1 Reference for comparison: super-sampled dataset . . . . . . 106

E.2.2 Self consistency: super-sampled dataset . . . . . . . . . . . 106

E.2.3 Self consistency: repeat acquisition . . . . . . . . . . . . . . 106

E.3 No additional data . . . . . . . . . . . . . . . . . . . . . . . 106

E.3.1 Self consistency: intra-subject, intra-ROI . . . . . . . . . . 107

E.3.2 Task performance: intra-subject, inter-ROI . . . . . . . . . 107

E.3.3 Self consistency: inter-subject, inter-ROI . . . . . . . . . . . 107

E.3.4 Intrinsic quality assessment . . . . . . . . . . . . . . . . . . 107

E.3.5 Similarity assessment . . . . . . . . . . . . . . . . . . . . . . 108

E.3.6 Network training robustness . . . . . . . . . . . . . . . . . . 108

The process of assessing parameter estimators can be thought of as involving
three steps: (i) posing an ‘assessment question’, (ii) defining a metric that answers
this question, and finally (iii) describing a way to evaluate this metric.

When using in-silico qMRI test data, which has been simulated from known gen-
erative groundtruths, an example of this three-step process might be:

1. Posing an ‘assessment question’
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• Does the parameter estimator provide accurate estimates of the generative
qMRI parameters?

2. Defining a metric that answers this question

• Mean difference between groundtruth and estimate.

3. Describing a way to evaluate this metric

• Calculate parameter estimates for entire dataset; calculate pairwise dif-
ference between groundtruth and estimate; compute mean of these differ-
ences.

Unlike synthetic data, in-vivo datasets do not contain ‘groundtruth’ values usable
as reference during assessment. What follows is a list of existing in-vivo qMRI assess-
ment strategies which attempt to bypass this limitation, compiled here for reference.

E.1 Additional data (different modality)

These methods supplement their qMRI test data with non-MRI datasets (associated
with the same tissue(s)) which provide independent measurements of qMRI biomark-
ers.

E.1.1 Reference for comparison: histology (ex-vivo)

Assessment question: Do qMRI parameter estimates match independent mea-
sures of tissue properties?

Rationale: Agreement suggests information reliability.

Assessment criterion: Qualitative agreement [79], Spearman’s rank [96].

Example implementation: Acquire qMRI data → dissect tissue → measure qMRI
biomarker from histology → register histology to qMRI data

E.2 Additional data (same modality)

These methods supplement their qMRI test data with additional qMRI data acquisi-
tions of the same tissue(s).
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E.2.1 Reference for comparison: super-sampled dataset

Assessment question: Do real-world parameter estimates match those obtained
when acquisition setting limitations are removed/reduced?

Rationale: Super-sampled acquisitions are information-rich and, combined with
maximum likelihood estimation, provide reliable reference for comparison.

Assessment criterion: RMSE between estimates and super-sample-derived MLE
estimates [58, 97, 98, 99].

Example implementation: Acquire supersampled data → calculate MLE pa-
rameter estimates → sub-sample data to match 𝜃𝑎𝑐𝑞 of interest → compare
sub-sampled estimates with super-sampled reference

E.2.2 Self consistency: super-sampled dataset

Assessment question: Are parameter estimates robust to noise and sampling
scheme?

Rationale: Reliable techniques should give consistent parameter estimates.

Assessment criterion: Variance [100], ROI mean agreement [101], estimated signal
agreement via Bland-Altmann plots and correlation coefficients [101].

Example implementation: Acquire supersampled data → randomly subsample
data to match 𝜃𝑎𝑐𝑞 of interest → compare parameter estimates across subsamples

E.2.3 Self consistency: repeat acquisition

Assessment question: Are parameter estimates robust to noise?

Rationale: Reliable techniques should give consistent parameter estimates.

Assessment criterion: Median voxelwise standard deviation [98], ROI mean agree-
ment [102]

Example implementation: Acquire multiple acquisitions of the same tissue →
compare parameter estimates across acquisitions

E.3 No additional data

These methods forego independent references for comparison, and therefore do not
require supplementary test data.
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E.3.1 Self consistency: intra-subject, intra-ROI

Assessment question: Are parameter estimates consistent across similar tissues?

Rationale: Reliable techniques should give consistent parameter estimates.

Assessment criterion: Ratio of mean parameter value to standard deviation [85,
96, 101, 103]

Example implementation: Draw ROIs of homogeneous anatomies → compare
parameter estimate consistency within each ROI.

E.3.2 Task performance: intra-subject, inter-ROI

Assessment question: Are parameter estimates sensitive to tissue differences?

Rationale: Useful techniques must be sensitive to changes in underlying tissue
properties.

Assessment criterion: Percentage difference [102, 103], Student’s t-test [60], ROC
curves [98].

Example implementation: Draw ROIs of different anatomies within subjects →
compare parameter estimates between different ROIs.

E.3.3 Self consistency: inter-subject, inter-ROI

Assessment question: Are similar-tissue parameter estimates consistent across
subjects/acquisitions?

Rationale: Reliable techniques should give consistent parameter estimates.

Assessment criterion: intraclass correlation coefficient of ROI mean parameter
values for a range of matched tissues across multiple subjects [61].

Example implementation: Draw ROIs of equivalent anatomies across multiple
subjects → compare matched parameter estimates.

E.3.4 Intrinsic quality assessment

Assessment question: Do parameter estimates well-represent the acquired signal?

Rationale: Parameter estimates should describe the signal they are obtained from.
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Assessment criterion: RMSE signal residuals [60], correlation between model pa-
rameters (lower is better, such that each parameter encodes unique information)
[102], visual assessment of parameter map [100].

Example implementation: Evaluate parameter estimates → assess stand-alone
quality of fit.

E.3.5 Similarity assessment

Assessment question: Do parameter estimates agree with those generated by
another method?

Rationale: Cheap methods can replace more expensive ones if they generate similar
parameter estimates.

Assessment criterion: Student’s t-test [60].

Example implementation: Evaluate parameter estimates using multiple methods
→ compare results across methods.

E.3.6 Network training robustness

Assessment question: Are machine learning methods robust to changes in training
and testing data?

Rationale: Reliable techniques should not depend stochastically on selection of
training/testing data.

Assessment criterion: Signal residuals [98].

Example implementation: Train networks repeatedly, each time randomising
the split between training and testing data → compare quality of fit across
repetitions.
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Appendix F

Notation describing qMRI acquisition

Section 2.1 introduces, in general terms, notation used to describe qMRI experiments;
this Appendix grounds this notation by providing a concrete example: acquiring
dMRI parameter maps of subchondral bone marrow. This exemplar experiment con-
sists of (i) acquiring 10 spatial maps (‘images’) of the tissue, each associated with
a distinct diffusion weighting (‘b-value’ [4, p. 624]) and (ii) fitting the IVIM signal
model to each spatial location shared across these images, generating three dMRI
parameter maps (one for each IVIM parameter).

What follows is a reproduction of the key equations found in Section 2.1; in each
case, new notation is related to the simple experiment described above.

𝑆𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 = ℳ(𝜃𝑎𝑐𝑞, 𝑇 ) ≈𝑀(𝜃𝑎𝑐𝑞, 𝑃 ) (F.1)

• 𝑆𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 is a 10-by-1 vector containing voxel intensities across the 10 recorded
b-values. This vector is deterministic - and is never measured directly - as it
precedes the addition of noise inherent to the imaging system.

• ℳ is a function which encodes the deterministic relationship between acquisi-
tion settings 𝜃𝑎𝑐𝑞 and tissue properties 𝑇 . This function underpins the genera-
tion of voxel intensities and its form is, in general, unknown.

• 𝜃𝑎𝑐𝑞 is the set of experimental instructions which encode the acquisition of qMRI
data; in this example, this subsumes the 10 diffusion-weighted b-values, the
properties of the scanning hardware (make, model, coils used, etc.) as well as
software (acquisition program, gradient timings, directions, etc.). 𝜃𝑎𝑐𝑞 is the
known independent variable in data acquisition.

• 𝑇 is the set of tissue properties which, via interactions amongst themselves and
with the scanner, lead to differences in voxel intensities; in this example, this
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subsumes the number and distribution of protons within the sample, its cellular
structure, chemical environment(s), etc.; 𝑇 is, in the case of biological tissue,
unknown.

• 𝑀 is a function, known as the signal model, which encodes the deterministic
relationship between 𝜃𝑎𝑐𝑞 and its parameters 𝑃 . It predicts voxel intensities
and, in this example, is the IVIM model.

• 𝑃 is a 3-by-1 vector which describes the values taken by the 3 parameters of
the IVIM model.

𝑆𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 = ℳ(𝜃𝑎𝑐𝑞, 𝑇 ) + 𝜖 ≡ 𝑆𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 + 𝜖 (F.2)

• 𝜖 is a 10-by-1 vector containing noise instantiations, drawn from a Rician dis-
tribution, associated with the 10 voxel intensities 𝑆𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐.

𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = Φ(𝑇 ; 𝜃𝑒𝑠𝑡, 𝜃𝑚𝑜𝑑, 𝜃𝑎𝑐𝑞) (F.3)

• 𝜃𝑒𝑠𝑡 is the set of experimental instructions which encode the process of parameter
estimation; in this example, as in Chapter 2, this may describe bcNLLS and
the hyperparameters that determine its implementation.

• 𝜃𝑚𝑜𝑑 is the set of experimental instructions which encode the choice of signal
model; this may in general vary across an image (on an anatomy-by-anatomy
basis) but in this example describes the IVIM model for all voxels.

• 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 is a 3-by-1 vector which describes an experimental designer’s ‘ideal’ pa-
rameter estimates for a given tissue 𝑇 and experimental settings 𝜃; in this
example, this may correspond to IVIM parameters which give low-bias approx-
imations of the bone marrow’s perfusion fraction1.

• Φ is a function which maps tissue properties 𝑇 to corresponding user-defined
‘ideal’ parameter estimates 𝑃𝑡𝑎𝑟𝑔𝑒𝑡, for a given experimental design. When deal-
ing with in-vivo data, this function has poorly-defined inputs (𝑇 is unknown)
and cannot be computed directly. In such cases it is approximated by the
methods described in Appendix E.

argmin
𝑃

𝒟(𝑃 ;𝑃𝑡𝑎𝑟𝑔𝑒𝑡) (F.4)

1See Appendix C for a description of this signal model 𝑀 .
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• 𝑃 is a 3-by-1 vector which describes a specific 𝑃 : the best-fit parameter esti-
mates taken by the 3 parameters of the IVIM model.
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