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Abstract 

Glaucoma is characterized as a group of eye diseases where the progressive damage of neurons, 

particularly Retinal Ganglion Cells (RGCs), leads to vision loss. This disease affects more than 70 million 

people worldwide, with approximately 10% being bilaterally blind, making it the leading cause of 

irreversible blindness in the world. The initiation and progression of the disease is still unknown, but 

studies have suggested the involvement of particular cell types in the retina that relate to the 

pathogenesis of glaucoma. Single cell RNA sequencing (RNA-seq) analysis is a new technology that 

provides insight into the gene expression profiles of different cell types. In this study, we employed it to 

elucidate the transcriptomic changes in various cell types during glaucoma progression.  

ABCA1-/- mice were used as a normal tension glaucoma model. Single cell RNA-seq experiments were 

conducted on three wild type (WT) and five knockout (KO) retinal tissues. The data of 62,479 cells were 

integrated and major cell types were identified, including Müller glia, astrocytes, microglia and RGCs. 

Ontological analysis suggested strong activation of neuroinflammation and senescence related pathways 

in KO samples, with specific pathways identified affecting certain cell types. Evidence of macrophage 

invasion further suggests a knockout-induced inflammatory response, accompanied by sub-type specific 

RGC degeneration due to excitotoxicity.  

P2Y6-/- mice were used as a high intraocular pressure (IOP) glaucoma model. 105,772 cells from three WT 

and three KO retinal tissues were analysed using single cell RNA-seq, with major cell types identified such 

as RGCs and glial cells. Neuroinflammation and senescence pathways activation was again observed, along 

with angiogenesis, hypoxia and fibrosis activities activated in knockout glial population.  

Overall, our study utilized the power of single cell analysis to improve our understanding of the roles and 

involvement of different cell types under different glaucoma development and progression pathways. We 

propose these specific cell types and mechanisms could be involved in the development of glaucoma 



pathogenesis, thus provided data to support future interests in developing potential therapeutical targets 

in the area. 



Impact Statement 

Glaucoma is a disease which affects more than 70 million people worldwide, with approximately 10% 

being bilaterally blind, making it the leading cause of irreversible blindness in the world. Although some 

risk factors have been identified to increase the likelihood of developing glaucoma (such as age, increase 

in intraocular pressure, family history and genetics), the detailed pathogenesis of glaucoma formation 

and development is still poorly understood, and one of the major acceptable and effective approach to 

treat glaucoma patients currently were methods to prevent glaucoma from progressing further. 

Different cell types within the retina were theorized to participate in different parts of the pathways 

that leads to glaucoma development, but the precise roles of these cell types and how they affect each 

other has yet to be confirmed.   

This study utilizes a cutting-edge technology, single cell RNA-sequencing, to analyse glaucoma mouse 

model tissues. This experimental method allows us to obtain and analyse the transcriptomes of single 

cells, providing a much higher definition in comparison to traditional methods of bulk RNA-seq, which 

averages expression profiles of all cells within the tissue and omits the heterogeneity of the retina. With 

the ability to inspect transcriptomic changes within different cell types when comparing between 

normal and glaucoma conditions, specific pathways and mechanisms activated can be derived from the 

ontological analysis data. This study applies this technique to two different glaucoma models, further 

extending the coverage of understanding among different types of glaucoma. The data obtained from 

this study lays the foundation of single cell glaucoma research in the Ohnuma Lab, which strengthens 

the international collaboration between UCL and University of Yamanashi on the studies about ABCA1 in 

glaucoma development, as well as providing Santen Pharmaceutical Co., Ltd. with valuable insight about 

the roles of different cell types in the pathogenesis of glaucoma. 



The results of this study proposed neuroinflammation and senescence as the potential mechanisms 

which leads to retinal ganglion cells degeneration, and the participation of different cell types such as 

glial cells and immune cells. Data generated and analysed from this analytical study could aid in future 

studies in developing relevant therapeutical targeting of specific cell types and pathways. Further 

investigations and developments could potentially translate to preventative measures or treatments for 

glaucoma, impacting the quality of life of glaucoma patients worldwide.  
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Chapter 1. General Introduction 

1.1 Preface 

The premise of this PhD thesis is to understand the pathogenesis of glaucoma through the use of single 

cell RNA-sequencing analysis. This chapter introduces the current studies and understanding about 

glaucoma, the different types of glaucoma and their characteristics, as well as the risk factors associated 

to the disease with heavy emphasis on genetic factors.  Experimental data from two gene knockout mouse 

models, extensively studied by our Japanese collaborators, were then discussed to suggest their credibility 

as animal models of different types of glaucoma. Experimental methods of the RNA sequencing 

technology are then discussed and demonstrated, particularly with the new advancement in single cell 

RNA sequencing advancement. It concludes with the explanation of the vast variation of cell types found 

in the retina and establish the project goals of utilizing single cell analysis to understand cell type specific 

changes in tissue samples extracted from glaucoma animal models. 

1.2 Glaucoma 

1.2.1 General information 

Glaucoma is characterized as a group of eye diseases where the progressive damage of neurons, 

particularly retinal ganglion cells (RGCs), lead to vision loss. This disease affects more than 70 million 

people worldwide, with approximately 10% being bilaterally blind (Quigley & Broman, 2006), making it 

the leading cause of irreversible blindness in the world. Studies based on population-wide surveys suggest 

less than 50% of patients are aware they have developed glaucoma (Hennis et al., 2007; Leite et al., 2011), 

as the disease can remain asymptomatic for a long time until it progresses into advanced stages. Thus, 

the potential population that can be affected with the disease may be underestimated. However, the 

detailed pathogenesis of glaucoma formation and development is still poorly understood, hence the major 

acceptable and effective approach to treat glaucoma patients were methods mostly to prevent glaucoma 

from progressing further (Schuster et al., 2020). 



1.2.2 Types of Glaucoma 

There are many different types of glaucoma (Casson et al., 2012), characterized by multitudes of factors. 

The most common subgroups can be defined as “open-angle” or “closed-angle” glaucoma, describing the 

relative position between ocular lens and the trabecular meshwork, which formats the fluid passage for 

aqueous humor outflow (Fig.1.2.2). Open angle glaucoma could also be subcategorized based on other 

symptoms, such as the level of Intraocular pressure (IOP) or causes of disease onset.  

With reference to Fig1.2.2A, IOP describes the fluid pressure built within the eye, created by the balance 

between secretion flow of aqueous humor from the ciliary body and its drainage through the trabecular 

meshwork and uveoscleral drainage. Although elevated IOP is a major risk factor for most types of 

glaucoma, there are also subtypes of glaucoma where such elevation is insignificant even though neuronal 

damage had been observed.  

Secondary glaucoma describes glaucoma that occurs after certain clinical trauma or developed as a side 

effect from other underlying medical conditions (such as exfoliation syndrome related glaucoma (XFG)), 

whereas Primary glaucoma develops without a clear cause or origin, thus remain as a major focus for 

research studies. The most common type of glaucoma is Primary Open angle glaucoma (POAG). Over 80% 

of glaucoma patients from the United States suffer from POAG (Primary Open-Angle Glaucoma), with a 

predicted estimation of 3 million people being affected. There are about 480,000 patients diagnosed with 

chronic POAG in England, with potentially over 50% more patients with POAG that have not been 

diagnosed or are unaware. Patients of POAG with elevated IOP experience increase in the accumulation 

of fluid in the anterior chamber, inducing mechanical stress and strain to the rest of the structures of the 

eye, especially compression and deformation of the optic nerve head. Disruption or damage of the most 

common neuronal cell type at the optic nerve head, which are the RGCs, results in irreversible obstruction 

or damage of the axons in the visual pathway (Burgoyne et al., 2005). 



Patients with POAG who experiences glaucoma-like neuronal damage without the abnormal elevation of 

IOP, are classified to suffer from Normal Tension Glaucoma (NTG). NTG are typically associated with 

consistently having IOP under 21 mmHg, while exhibiting glaucomatous phenotypes such as RGC death 

and degeneration, as well as vision loss (Mallick et al., 2016). NTG mostly affects around 0.17%-0.67% 

among the worldwide population (Fujino et al., 2016), but a study in 2004 (Iwase et al., 2004) revealed a 

significantly higher prevalence of NTG in the Japanese population at 3.6%. Understanding of the cause 

and trigger for NTG development remains fairly limited, and whether there are any common pathways or 

mechanisms among different types of glaucoma pathogenesis still remain in question. Chronic patients of 

all kinds of glaucoma may suffer from irreversible retinal damage and vision loss, impacting their quality 

of life significantly. Thus, the better understanding of the disease initiation, development and process is 

crucial to help identify potential therapeutical markers and target molecules. 

Fig1.2.2 A) Anatomy of healthy eye, and aqueous humor formation & drainage pathways. B) Scenario in 
Primary open-angle glaucoma. C) Scenario in Primary closed-angle glaucoma (Weinreb et al., 2014) 



1.2.3 Genetic risk factors of glaucoma 

Glaucoma can also be differentiated based on the age of onset and inheritance form. Some early onset 

glaucoma such as congenital glaucoma exhibits Mendelian inheritance, while other adult-onset glaucoma 

such as POAG, PACG are inherited in more complex traits. This suggests glaucoma can affect all ages, but 

also signifies the importance of genetics in the onset of glaucoma.  

Early onset glaucoma which exhibits autosomal recessive traits allows for the identification of causal 

genes through lineage studies, such as the identification of CYP1B1 and LTBP2 in Congenital glaucoma. (B 

A Bejjani, 2000; Manir Ali, 2009). However, complex traits of other adult-onset glaucoma can be difficult 

to decipher, especially the variations among the human population. 

A study in 2016 (Kapetanakis et al., 2016) conducted systematic review of published data examining the 

relationship between POAG and different demographic factors. As suggested in Fig1.2.3, the prevalence 

of POAG cases increase exponentially with age across all ethnicities, ranging from 0.4-0.8% at the age of 

40, 1.4-5.2% at age 60, and 5.5-25.5% at age 90. Other studies have shown people of African descent have 

a prevalence of POAG 2.8 times higher than that of Europeans, while Asians are 4.2 times more likely to 

have PACG than North Americans (Tham et al., 2014). Family history studies have discovered around half 

of all POAG patients have a positive glaucoma family history, with their closest relatives such as parents, 

siblings and children having a 9-fold increased risk of developing glaucoma in their life (Awadalla et al., 

2015).  

This significant evidence suggests aging as an important factor for glaucoma development, while ethnicity 

or family history contributes to the genetic risk for the susceptibility of having the disease. Thus, the 

studies of genetics and gene expressions in glaucoma patients are exceedingly important in identifying 

these genetic risk factors among the population, and how aging and development are involved in 



triggering the onset of the disease. Genetically modified animal models would hence be effective in 

studying the disease process and phenomenon.  

Fig1.2.3 Estimated prevalence (%) of primary open angle glaucoma with age for men and women combined by 
ethnicity; (A) shows prevalence on the y axis on the normal scale, (B) on the log scale. Coloured lines come from 
regression models adjusting for age (log-linear relationship), fitted separately for White (green), Black (blue), East 
Asian (orange), South Asian (purple), Southeast Asian (navy), Hispanic or Latino (brown), and other or mixed ethnicity 
(pink) groups. Solid lines are given across the age range of available data for each ethnic group. (Kapetanakis et al., 
2016) 

1.2.4 GWAS identification of potential genes association 

To decipher the associations between complex genetic traits with adult-onset glaucoma, scientists have 

been utilizing Genome-Wide Association Studies (GWAS). GWAS performs observational studies to 

identify genome-wide variations and associate them with phenotypic traits. Frequencies of genetic 

variations in similar loci associated with disease phenotypic traits suggests potential roles in disease 

onset or regulation, thus allowing researchers to try investigate nearby genes in the genome to identify 

potential genetic markers associated with such diseases. (Tam et al., 2019) The first GWAS study was 

performed to analyse patients with Age-related Macular Degeneration (AMD), which identified the 

variants in the region near gene CFH being strongly affected (Klein et al., 2005). As the technique and 

approach of GWAS develops over the last 20 years, multiple studies have been applied for different 

diseases, including glaucoma. 



Multiple large-scale GWAS from independent, international cohorts had identified multiple SNPs on 

chromosome 9 nearby the gene encoding ATP-binding cassette transporter 1 (ABCA1) significantly high 

correlation with the glaucoma patients (Chen et al., 2014; Gharahkhani et al., 2021). ABCA1 gene encodes 

the membrane-associated protein, which functions as an efflux pump of cholesterol and phospholipids. 

Other studies have shown association between ABCA1 and other neurodegenerative diseases such as 

AMD (Chen, 2010) and Alzheimer’s disease (Lewandowski et al., 2022; Lupton et al., 2014), while some 

studies suggested linkage between cholesterol level and risks for glaucoma (Kang et al., 2019; Posch-Pertl 

et al., 2022). Thus a direct approach to understand the role of ABCA1 in glaucoma development was 

needed, which lead to a collaboration study with Prof. Shinozaki and Prof. Koizumi from University of 

Yamanashi, where they developed and studied an ABCA1-/- mouse model.  

1.2.5 ABCA1 Mouse Model 

ABCA1 knockout (KO) mouse models were created in the DBA1/lacJ strain by homologous recombination, 

resulting in a 910 base pair deletion at exons 17-22 of the gene, as per the methods in Hamon,2000. 

Glaucoma-like phenotypes were then investigated in ABCA1-/- retinal tissues. Firstly, RGCs condition were 

examined inspecting signals for their marker, Brn3a. Fig1.2.5.1a showed no significant reduction of Brn3a+ 

signals in 3 months old (mo) KO retinae samples, while Fig1.2.5.1b showed a significant reduction in 12mo 

samples. TdT-mediated dUTP nick end labelling (TUNEL), which highlights apoptotic cells, were performed 

as shown in Fig1.2.5.1c. 12mo KO retinal samples showed significant increase in TUNEL+ signals, and these 

signals co-localize with Brn3a+ cells as shown in Fig1.2.5.1d. The abundance of TUNEL+/Brn3a+ cells show 

an age-dependent RGC degeneration under the effect of Abca1 KO, resembling glaucoma phenotype. To 

determine which type of glaucoma does the Abca1-/- mouse resemble, IOP was measured by a rebound 

tonometer on both 3mo and 12mo KO mice. Fig1.2.5.1e suggested no significant reduction in IOP for both 

KO samples, thus signifying the RGC damage induced by the deletion of Abca1 was not caused by IOP 

elevation. Hence, the Abca1-/- mice were considered a mouse model for Normal Tension Glaucoma (NTG).  



As the expression of Abca1 is related to the glaucoma-like phenotype, cells expressing Abca1 would be of 

interest to investigate. Fig1.2.5.2a showed Abca1 expression mostly at the inner surface of the retina, co-

localized with Gfap signal, a marker for astrocytes. Fig1.2.5.2c also labelled co-expression of Abca1 and 

Gfap in human retinal tissues. These findings align with other studies looking at gene expression in both 

mouse and human, consolidating the expression of gene Abca1 is most highly expressed in astrocytes (Y. 

Zhang et al., 2014; Y. Zhang & Wallace, 2015). To consolidate the role of astrocytes in Abca1 mediated 

glaucoma pathogenesis, researchers created and inspected astrocyte-specific Abca1 KO mouse models.  

Astrocyte-specific conditional ABCA1 KO (cKO) was achieved by crossing ABCA1flox/flox mouse line with 

GFAP-Cre mouse. ABCA1flox/flox line was created by flanking exon 45-46 of the gene with a loxP site 

(Timmins et al., 2005). The transgenic construct containing the GFAP promoter and cDNA encoding Cre 

recombinase were present in the GFAP-Cre mouse line (Bajenaru et al., 2002). Offspring of the crossing 

allows for cells expressing GFAP, which are astrocytes in the retina, to express the Cre recombinase which 

eliminates exon 45-46 of ABCA1 and result in the inactivation of the protein in those cells. Efficacy of the 

system was verified by our collaborators.  

Similar to non-specific KO mice, 3mo cKO mice showed no changes in the number of Brn3a+ RGCs 

(Fig1.2.5.3a) or apoptotic cells (Fig1.2.5.3b). However, 12mo cKO mice showed a moderate (~20%) but 

significant reduction in RGC number (Fig1.2.5.3c) and a significantly increase of TUNEL+
 cells (Fig1.2.5.3d). 

IOP again did not vary significantly between WT and KO for both 3mo and 12mo samples (Fig1.2.5.3e). 

Multifocal electroretinograms (mfERG) were used to assess visual function of the mice, and the average 

vusial response of 12mo cKO mice were significantly reduced(Fig1.2.5.3f).  

These findings confirmed the importance of Abca1 expression in retinal astrocytes, and that the astrocyte-

specific KO of the gene results in glaucoma-like phenotypes with insignificant IOP elevation in mice. 

Something noteworthy is that although the association between Abca1 and glaucoma in both mice and 



humans has been highly suggested, the role of IOP regulation by Abca1 in human may be in contradiction. 

Studies have demonstrated through human GWAS the association between loci near Abca1 and risks of 

IOP elevation (Pirro G Hysi, 2014), while Hu et. al provided experimental evidence on the role of IOP 

regulation by Abca1 via the caveolin-1/endothelial NO synthase/NO pathway (Chunchun Hu, 2020). This 

indicates some potential differences between the mode of action of Abca1 within the mouse model 

selected and human patients, and although this study regard Abca1-/- mice as NTG model, its effect and 

significance in astrocyte physiology and glaucoma disease onset may be applicable and be expanded to 

other POAG with elevated IOP in human. Understanding the mechanisms or pathways within astrocytes 

that involve Abca1 is thus crucial to understanding how astrocyte was affected, and how the affected 

astrocytes contribute to apoptosis and degeneration of other cell types in the retina such as RGCs. Thus, 

studying cellular physiology and gene expression of different cell types within the retinal tissue becomes 

very useful and important. 

  



Fig1.2.5.1a: Brn3a signals in retinae from 3 months old WT and KO mice. b: Brn3a signals in retinae from 12 months old WT and 

KO mice. At 3 months old, the number of Brn3a+ cells did not differ between WT and KO, but at 12 months old, Brn3a+ cell 

numbers was reduced. c: TUNEL+ cell number was significantly higher in 12 mo KO mice compared with WT mice. d: TUNEL and 

Brn3a signals were co-localized (arrow); TUNEL+/Brn3a+ cells were abundant in KO mice. (e) KO mice showed no IOP change.  

Fig1.2.5.2(a, b) ABCA1 protein expression patterns in retinal slices of 3 mo WT mice. ABCA1 signals in the retina were colocalized 

with GFAP (arrows) but not with vimentin (Vim), a Müller glia marker. (c) ABCA1 was also expressed in GFAP+ astrocytes in the 

human retina. 

 

  



Fig1.2.5.3 At 3 months of age, cKO mice showed (a) no reduction in Brn3a+ cells and (b) no increase in TUNEL+ cells compared 
with WT mice. cKO mice at 12 months old showed (c) reduced or (d) increased Brn3a+ RGC or apoptotic cell numbers, respectively 
(e) cKO mice showed no IOP changes compared with age-matched WT mice. (f) Impaired ocular function estimated by multifocal 
electroretinograms. Left panels: The three-dimensional plots show averaged visual responses of the second-order kernel (2K 
amplitude). Right: Ocular responses in 12 mo cKO mice were significantly reduced compared with WT mice. 



 1.2.6 P2Y6-/-  model 

ABCA1-/- mouse model data suggested strong evidence and similarity as a NTG model for mice, which 

provides retinal tissue for the study of the pathogenesis of the disease. However, the most common type 

of glaucoma such as POAG involves stronger IOP changes, and the pathways or molecules involve in 

glaucoma triggering or development may differ or share similarities. Studying of different animal models 

of different types of glaucoma could provide the opportunity to understand common shared mechanisms 

that lead to RGC degeneration, which could be beneficial in identifying therapeutical targets that can 

benefit in treating all types of glaucoma.  

Increase in intraocular pressure is due to the imbalance between aqueous humor production and 

drainage. Unusual increase in aqueous humor production or decrease in the rate of its draining away from 

the eye could lead to the building up of fluid, causing the increase in IOP. Nucleotides and its derivatives 

such as adenosine triphosphate (ATP) or Uridine diphosphate (UDP) were suggested to be involved in the 

regulation of IOP, especially as elevated levels of ATP were found in glaucoma patients (Li et al., 2011; 

Markovskaya et al., 2008; X. Zhang et al., 2007). These molecules bind to P2 receptors, which are divided 

into P2X and P2Y subfamilies, and they are found to be expressed in tissues within the eye such as the 

cornea, ciliary processes, trabecular meshwork, photoreceptors, and ganglion cells (Pintor et al., 2004). 

Of these receptors, our collaborators performed extensive studies on the activity of P2Y6 receptors and 

its role on aqueous humor production and IOP level manipulation.  

Their publication in 2017 (Shinozaki et al., 2017) showed the application of UDP, the endogenous agonist 

of P2Y6 receptors, reduced IOP in WT mice by reducing aqueous humor production, similar to the effects 

of Timolol, which is a commercially available beta-blocker drugs used to relieve IOP and treating glaucoma. 

P2Y6 knockout mouse (P2Y6KO) were then created (Bar et al., 2008) and studied, and the application of 

UDP did not change the level of aqueous humor production. P2Y6 KO mice showed chronic IOP elevation  



Fig1.2.6a) IOP reduction after topical application of UDP on the retina. b) Chronic IOP increase in aging 

mice of P2Y6KO mice. c) Retinal thinning, d) RGC degeneration and e) ocular dysfunction observed in aging 

KO mice. (Shinozaki et al., 2017) 



which increases by age, as well as high IOP glaucoma-like phenotypes such as retinal thinning, RGC 

degeneration and ocular dysfunction (Fig1.2.6). Their research provided solid foundation and evidence on 

the role of gene P2Y6 in IOP regulation and aqueous humor production, thus allowing us to use tissues 

from P2Y6KO mouse samples to study the physiological and genetic changes of retinal neurons under the 

pressure of high IOP. 

1.3 RNA-Sequencing technology 

1.3.1 RNA-sequencing 

To perform a comprehensive study of a disease such as glaucoma, where genetics are a risk factor, 

research and study of the genetic information available in patients or disease models are crucial. The 

central dogma of molecular biology suggests the flow of genetic information originates in DNA, which is 

transcribed into RNA and translated into protein (Crick, 1970). The selected expression of a subset of the 

DNA genome in the form of transcripts such as messenger RNA (mRNA) encodes different protein within 

different cell types and tissues, contributing to different functions such as providing structures, facilitate 

signaling, transporting molecules, aiding in identification and involvement in metabolic reactions. The 

collected profile of transcript expression within a cell, known as the transcriptome or expression profile, 

provides insight into its different biological functions and phenotypical behaviour. Thus, the technique or 

technology of quantifying cellular transcriptome allows researchers to explore biological questions such 

as disease development on a molecular level.  

Early genetics study techniques include northern blots, quantitative polymerase chain reaction (qPCR) and 

microarray. These methods, however, comes with limitations such as low throughput, prior knowledge in 

sequence of interest, or limited accuracy in quantifying very lowly or highly expressed genes (Casneuf et 

al., 2007; Kukurba & Montgomery, 2015; Shendure, 2008). Sequence-based approaches of quantifying 



transcriptomes then began to develop, along with the development of high-throughput next-generation 

sequencing (NGS) technology. RNA sequencing (RNA-seq) utilizes NGS by constructing  

complementary DNA (cDNA) libraries from reverse transcription of RNA in much high throughput and 

accuracy. Accompanied by advancement in analytical methods in processing large amount of genetic data, 

i.e. the field of bioinformatics, RNA-Seq workflows revolutionized the complexity and depth of 

transcriptomic studies.  

A typical overview of the wet lab workflow of RNA-seq is shown in Fig1.3.1a. The most common RNA-seq 

experiment begins with the isolation of cells or tissues of interest, then extracting RNA materials usually 

by lysing cell membranes. Depending on the objectives, selection of different kinds of RNA molecules can 

be performed, although most transcriptomic information of interest originates from mRNAs. Selected 

RNAs are then converted into cDNA by reverse transcription and ligated with sequencing adaptors to 

construct the sequencing library. Amplification of the library by polymerase chain reaction (PCR) creates 

more copies of the transcripts which facilitate sequencing using NGS methods.  

Subsequent workflow in RNA-Seq mainly focuses on the application of bioinformatics and computational 

methods to analyse sequencing data, suggested in Fig1.3.1b. Popular NGS platforms such as Illumina 

outputs binary base call (BCL) files which are then converted into FASTQ files, containing individual base 

pair on the reads accompanied with its confidence or quality score. Programs such as FASTQC provides 

insight into statistics about the sequencing runs per sample, and offer options to perform quality control. 

Satisfactory sequencing reads were then aligned to respective reference genome of their species origin, 

namely with algorithms such as STAR (Dobin et al., 2013), TopHat (Trapnell et al., 2009) or Hisat2 (Kim et 

al., 2019). Mapped reads are then assembled into transcripts, either to the reference genome or using de-

novo assembly methods. Quantification of the transcripts were then performed by tools such ass Cufflinks 

(Trapnell et al., 2010), HTSeq (Anders et al., 2013) or featureCounts (Liao et al., 2014), thus creating 



estimates of the expression level of different genes within the cell or tissue. After obtaining expression 

profiles of different conditions, such as cells or tissues from wild-type or diseased model such as knockout 

samples, differential expression can be determined by comparing differences in the levels of gene 

expression. Varieties of packages have been developed to implement different statistical methods of 

comparison, such as DESeq (Love et al., 2014), Cuffdiff2 (Trapnell et al., 2013) or EdgeR (Robinson et al., 

2010). Identification of gene expression differences provided by RNA-seq allows researchers to inspect 

molecular changes under developmental or diseased conditions, and further deduce potential pathways 

or processes affected by performing gene ontology analysis.  

Most generic or common RNA-seq experiments involve tissue samples which contain large number of 

cells, where all RNA molecules are pooled together for sequencing, thus sometimes referred to as “bulk 

RNA-seq”. Although bulk RNA-seq provides great insight and benefits into studying the molecular biology 

of tissue or cell samples as a whole, expression profile obtained from such experiments may only 

represent the average expression of genes among different cell types within the sample. For tissues which 

contain a higher heterogeneity, expression patterns of different cell types may not be obtainable from 

the averaged transcriptome from bulk RNA-seq. In particular, mammalian retina has at least 55 different 

distinct cell subtypes (Masland, 2001), but rod photoreceptors alone take up over 60% of the whole 

population (Lukowski et al., 2019; Macosko et al., 2015b; Menon et al., 2019). Average comparison of bulk 

RNA-seq expression profiles between WT or KO retinal samples will likely be dominated by variations in 

the major cell types, thus making it difficult to study other cell types with a smaller population such as 

astrocytes or RGCs. To further empower the ability to study molecular expression using RNA-seq with a 

higher resolution and individual level, scientists developed the technique of performing single cell RNA-

sequencing.  

  



Fig1.3.1a: Overview of RNA-Seq pipeline. First, RNA is extracted from the biological material of choice 
(e.g., cells, tissues). Second, subsets of RNA molecules are isolated using a specific protocol, such as the 
poly-A selection protocol to enrich for polyadenylated transcripts or a ribo-depletion protocol to remove 
ribosomal RNAs. Next, the RNA is converted to complementary DNA (cDNA) by reverse transcription and 
sequencing adaptors are ligated to the ends of the cDNA fragments. Following amplification by PCR, the 
RNA-Seq library is ready for sequencing. b: Overview of RNA-Seq data analysis. Following typical RNA-Seq 
experiments, reads are first aligned to a reference genome. Second, the reads may be assembled into 
transcripts using reference transcript annotations or de novo assembly approaches. Next, the expression 
level of each gene is estimated by counting the number of reads that align to each exon or full-length 
transcript. Downstream analyses with RNA-Seq data include testing for differential expression between 
samples, detecting allele-specific expression, and identifying expression quantitative trait loci (eQTLs). 
(Kukurba & Montgomery, 2015) 

  



1.3.2 Single cell RNA-sequencing 

1.3.2.1 Overview 

The objective of single cell RNA-sequencing (scRNA) was to obtain transcriptomic data of individual cells 

within a sample, facilitating study of heterogenous systems such as developmental processes or complex 

organs or tissues. The first scRNA experiment was originated from a study by Tang et al., 2009, where they 

obtained the expression profile of a single mouse blastomere. As the technology and science developed 

over the years both in single cell isolation techniques and sequencing efficiency, more cells can be 

obtained per sample while cost per cell decreases, making the technology extremely popular. With a 

larger number and variation of cells being sequenced within each sample, expression distribution among 

different cell types can be deduced, thus answering new biological questions such as cell-specific changes 

under disease conditions, identification of new cell types using novel biomarkers, or understanding 

differentiation pathways and expression markers during early development.  

Fig1.3.2.1 shows the 4 key aspects involved in the scRNA workflow.  Sample preparation is the first and 

perhaps most important step, where complex tissue samples are dissected and dissociated. Most scRNA 

experiments involve dissociation of tissues using enzyme, with the goal to separate cell-cell adhesion 

while preserving cells as intact individuals. Clumps of cells are ideally filtered out to obtain a single cell 

suspension of the dissociated tissue, with the options to perform selection for the desired sub-population 

using techniques such as fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting 

(MACS). Single cells are then separated via different cell capturing methods (further discussion in next 

section), where RNA materials can be obtained individually after cell membrane are lysed. Sequencing 

library is then performed similarly to bulk RNA-seq, except RNA reads from individual cells are tagged with 

unique cell barcode. These barcodes allow for the identification of the origin of the reads in the next step 

during data processing, which facilitate NGS by pooling all RNA reads from different cells in a sample 

together. Sequenced reads are then processed with bioinformatics pipeline, which first involves 



demultiplexing reads using unique cell barcodes to infer their origin. Reads from each cell can then be 

processed as individual bulk RNA-seq sample, such as mapping to genome, transcript assembling and 

quantification. Depending on the number of cells and sequencing depth used in different samples, 

subsequent data analysis involves much more complex methods and algorithms to normalize, quality 

control, cluster and visualize large amount of sequencing data.  

1.3.2.2 Single Cell isolation techniques 

Isolation of single individual cells from suspended cell solution is the hallmark of this technology. 

Experimental techniques of capturing single cells have been evolving exponentially throughout the past 

decade, and the ingenuity of different single cell capturing methods allows for the exponential increase 

in the amount cells captured using each protocol, as suggested by the study shown in Fig.1.3.2.2.1. 

Researchers began isolating single cells manually, then progressed to utilizing microwells, as well as 

microfluidic platforms, until recently where droplet-based methods became popular. With well-based 

platforms, cells are mostly isolated by pipetting or laser capturing (FACS) and sorted into microfluidic 

wells. This method allows researchers to isolate specific subset of cells, either through inspecting 

microscopic images or selected based on cell surface markers. This process is however fairly tedious, and 

the number of captured cells remain very low. Microfluidic platform developed by Fluidigm utilizes 

microfluidic circuits in an integrated chip that captures various single cells in individual reaction chambers 

and carry out reactions to obtain individual RNA reads. They provide a higher throughput than microwells 

and the system is highly automated, as well as imaging capability to assess cell conditions within the 

chamber. However, the chips are relatively expensive due to its intricacy, while the chambers are 

restricted to handle specific cell size ranges. Samples which include cells of various sizes may face issues 

such as clogging up the arrays, resulting in a low capture rate.   



 

Fig1.3.2.1 The successful design of single-cell transcriptomics experiments includes four major phases: (1) During 
sample preparation, cells are physically separated into a single-cell solution from which specific cell types can be 
enriched or excluded (optional). After they have been captured in wells or droplets, single cells are lysed, and the 
RNA is released for subsequent processing. (2) To convert RNA into sequencing-ready libraries, poly(A)-tailed RNA 
molecules are captured on poly(T) oligonucleotides that can contain unique molecular identifier (UMI) sequences 
and single-cell-specific barcodes (5’- and 3’ -biased methods). To allow for subsequent amplification of the RNA by 
PCR or IVT, adaptors or T7 polymerase promoter sequences, respectively, are included in the oligonucleotides. After 
RT into cDNA and second-strand synthesis (optional), the transcriptome is amplified (PCR or IVT). For conversion into 
sequencing libraries, the amplicons are fragmented by enzymatic (e.g., tagmentation) or mechanical (e.g., 
ultrasound) forces. Sequencing adaptors are attached during a final amplification step. Full-length sequencing can 
be carried out, or 5’ or 3’ transcript ends can be selected for sequencing using specific amplification primers 
(optional). For most applications, paired-end sequencing is required. (3) The sequencing reads are demultiplexed on 
the basis of cell-specific barcodes and mapped to the respective reference genome. UMI sequences are used for the 
digital counting of RNA molecules and for correction of amplification biases. The resulting gene-expression 
quantification matrix can subsequently be normalized, and missing values imputed, before informative genes are 
extracted for the analysis. (4) Dimensional-reduction representations guide the estimation of sample heterogeneity 
and the data interpretation. Data analysis can then be tailored to the underlying dataset, which allows cells to be 
clustered into potential cell types and states, or ordered along a predicted trajectory in pseudotime. Eventually, the 
spatial cellular organization can be reconstructed through the interrogation of marker genes (experimentally) or 
through marker-guided computational reconstruction (inference). PC, principal component. (Lafzi et al., 2018) 

  



Figure 1.3.2.2.1 Moore’s law scaling of scRNA-seq experiments development. (A) Key technologies 
allowing jumps in experimental scale. (B) Cell numbers reported in representative publications by 
publication date. (Svensson et al., n.d.)  

Fig1.3.2.2.2: 10X Genomics workflow B: Sample processing workflow within 10X Chromium system. C: 
Sequence library preparation workflow. (10X Genomics) 

  



The more advanced, hence popular, droplet-based method allows the capturing of significantly higher 

number of cells. 10X Genomics achieved so with their “Chromium Single Cell Gene Expression Solution” 

toolkit (Fig.1.3.2.2.2), where dissociated cells from tissue samples are loaded into the machine and 

partitioned into nanoliter-scale Gel Beads-in-Emulsions (GEMs) droplet. Each droplet surface is attached 

with a unique cell barcode with different unique molecular identifier (UMI), along with other enzymes and 

molecules that facilitate the cell membrane lysis and reverse transcription. Reads from each captured cell 

will be tagged by the barcode, and the individual sequencing libraries can be created within the cell. 

Sequencing libraries from different cells can then be pulled together and sequenced in the same lane, 

high-throughput sequencing can be achieved using NGS methods with cells are lysed within relatively 

lower cost per cell.  

1.3.2.3 Single cell data analysis 

As previously mentioned, bulk RNA-seq data are usually processed on a sample level, with analysis 

pipeline consisting of initial quality control, reference genome alignment, transcript assembly and 

quantification. Although analysis of scRNA data also involve these processes to obtain transcript details, 

the complexity and complications in obtaining useful biological information is much higher, due to the 

sheer number of cells involved in each sample and technical related limitations. Thus the development of 

bioinformatics toolkits and algorithms are an active field of research, where extra data processing and 

analysis are involved to fully utilize information provided from scRNA experiments. Fig.1.3.2.3 provides a 

generic schematic of a scRNA analysis pipeline.  

Typical droplet-based scRNA sequencing data analysis first involves demultiplexing reads to identify their 

origin cell, using the unique barcode sequences they are attached to within each individual droplet. Reads 

sharing the same barcode can be treated as a small bulk-RNA seq sample, performed with genome 

alignment, transcript assemble and quantification, until we obtain a massive expression matrix where 

columns represent individual barcoded droplet, rows contain genes detected, and its element represents 



the number of genes detected in each droplet. Different properties due to characteristics and limitations 

of droplet-based scRNA datasets can be inspected from the expression matrix to perform quality control. 

Firstly, defining whether reads from a droplet originate from a single cell is important for constructing the 

dataset. Although droplet-based scRNA-seq aims at capturing only one cell in one droplet, artifacts may 

happen where some droplet captures no cell, while some contains two (named doublets) or more cells 

due to incomplete dissociation. Droplets containing no cell may still capture RNA materials from the 

background (e.g. RNA from dead cells within the solution). Thus, a prefiltering can be applied based on 

number of reads or genes detected within each droplet, where significantly higher or lower amount can 

be discarded as doublets or empty cells respectively. Broken or dying cells usually retain high ratio of 

mitochondrial RNAs in comparison to cytoplasmic RNAs (Bacher & Kendziorski, 2016), thus removing high 

mitochondrial RNA content droplets ensures the dataset only contains fresh living cells that were intact 

at the moment of capture.  

Secondly, accurate transcript quantification is much more challenging for scRNA-seq experiments, as the 

amount of RNA material available per cell is significantly lower than that of a sample in bulk RNA-seq. 

Effects such as amplification bias (unequal amplification of certain genes during PCR procedures), gene 

dropout (observation of moderate or high expression of a gene in one cell but not detected completely in 

another cell), batch effects (technical variability between samples), unwanted biological variations (such 

as different stages of cell-cycle and genders of cells) or background contamination (inclusion of 

background RNA molecules from sample preparation solution) result in a much higher level of technical 

noise in determining the actual transcriptomic profile of different cells. Multitude of approaches are being 

developed to tackle each level of transcript estimation challenges and attempts to normalize gene 

expression. For instance, UMIs are unique sequences attached to individual RNA molecules during library 

construction, such that deduplication can be applied to sequences to remove amplification bias. 

Approaches such as DESeq2, TMM, SCnorm, SAMstrt (Bacher et al., 2017; Katayama et al., 2013; Love et 



al., 2014; Robinson & Oshlack, 2010)attempts to perform within-sample and between-sample 

normalization, while MNN and kBET (Büttner et al., 2018; Haghverdi et al., 2018) corrects batch effects. 

SoupX (Young & Behjati, 2018) estimates ambient RNA contamination using expression profile from empty 

droplets, thus correcting cell transcriptome by removing background RNA profile.  

The filtered and normalized expression matrix provides a “corrected” dataset which represents 

transcriptomic data of different single cells within the sample. It is however still fairly sparse and highly 

dimensional, containing thousands of genes per thousands of cells. To extract informative signals and 

reduce computational power, feature selection and dimensionality reduction are usually implemented. 

Feature selection processes identifies highly variable and informative genes within the dataset, and 

disregard genes that has universal or no expression across all cells such as housekeeping genes. Reduction 

of genes included in the expression matrix can drastically increase computational speed for downstream 

analysis, and is implemented by algorithms such as HVG based approach (Brennecke et al., 2013), FVG by 

Seurat (Satija et al., 2015) or dropout based approach M3Drop (Andrews & Hemberg, 2018). 

Dimensionality reduction is first achieved by Principal Component Analysis (PCA), where the data is 

linearly transformed into dimensions of principal components, such that the first components describe 

the most variance in the data. Higher dimensions in the PC space are then ignored, and performed with 

T-distributed stochastic neighbor embedding (t-SNE, van der Maaten & Hinton, 2008) or Uniform manifold 

approximation and projection (UMAP, Becht et al., 2018) to project data points onto 2 or 3 dimensional 

space for visualization.  

Following these processes allow the data to be easily handled and visualized while preserving biological 

variations among different cells, thus allowing researchers to study the heterogeneity of their samples. 

Separating cells into meaningful subpopulation facilitates the identification of different cell types, thus 

different clustering methods are usually applied. Unsupervised clustering methods are typically used 

initially to identify cells that are similar to each other based on their expression patterns. These methods 



Fig1.3.2.3 A schematic overview of scRNA-seq analysis pipelines. scRNA-seq data are inherently noisy with 

bconfounding factors, such as technical and biological variables. After sequencing, alignment and de-duplication are 

performed to quantify an initial gene expression profile matrix. Next, normalization is performed with raw 
expression data using various statistical methods. Additional QC can be performed when using spike-ins by 
inspecting the mapping ratio to discard low-quality cells. Finally, the normalized matrix is then subjected to main 
analysis through clustering of cells to identify subtypes. Cell trajectories can be inferred based on these data and by 
detecting differentially expressed genes between clusters. (Hwang et al., 2018) 

  



include k-means clustering, hierarchical clustering, density-based clustering and graph-based clustering 

(Andrews & Hemberg, 2018). scRNA-seq data specific methods such as SC3 (Kiselev et al., 2017) and Seurat 

(Satija et al., 2015) were also developed, allowing robust and accurate identification of cell clusters based 

on machine-learning algorithms. Once clusters are identified, differential expression of genes among 

different clusters can be determined, by comparing expression profile of individual clusters with the rest 

of the dataset. Significantly high expression of certain genes, known as markers, may signify their cell 

identity based on previous knowledge of cell markers. Thus, by identifying cell types using differential 

markers, different cell types can be obtained and further studied individually or comparatively. Novel 

markers could also be discovered this way to identify potential subpopulation of previously defined cell 

types.  

1.4 Retinal Cell types 

As our study focuses on the study of glaucoma, an eye disease which majorly affects the retina, 

understanding the role and function of the retina as a tissue, as well as the cell types that exist within the 

retina is essential for single cell study of the disease. The retina is the innermost layer of the eye where 

light reaches after passing through the lens, in which visual perception is formed and transmitted. This 

photosensitive tissue achieves its function by the complex harmony between multiple different cell types. 

Fig1.4 shows the schematic drawing of the major retinal cell types across the layers of the retina. The 

photosensitive cells, rods and cones, react to light stimulus at the outermost layer of the retina. Rod cells 

function mainly in low light intensity environment and provides black and white vision. The three types of 

cone cells function primarily in high light intensity environment and are particularly sensitive to low, 

medium, and high wavelength light which provides colour vision for the detection of red, green and blue 

light respectively, as well as allowing high accuracy vision. Visual signals are cascaded through the inner 

layers where amacrine, bipolar and horizontal cells perform primary processing before reaching the 



retinal ganglion cells (RGCs). RGCs are neurons where the cell bodies are located near the inner surface 

of the retina, while their long axons bundle up to form the optic nerve and reaches the brain by passing 

through the optic nerve head. They are responsible for relaying visual information from the 

photoreceptors to the brain through action potentials, thus damages to the RGCs result in vision loss.  

There are also three types of glial cells found in the human retina, Mϋuller glia, astrocytes, and microglia 

(Glial Cells of the Retina by Helga Kolb – Webvision, n.d.). Müller glia is the most common type of glial cells 

found across the retina, providing both structural and functional support for neurons, including providing 

homeostasis, protection to excessive neurotransmitters and responds to injury (Yurco & Cameron, 2005). 

Astrocytes function similar to Müller glia and are found in vascularized region (Watanabe & Raff, 1988). 

Microglia represent the resident tissue macrophages and play important roles in retinal homeostasis and 

maintaining synaptic structure and function (Rashid et al., 2019; Silverman & Wong, 2018). However, 

trauma and insults to the retina trigger microglia’s inflammatory response and function like macrophages, 

which could lead to enhanced phagocytosis and secretion of neurotoxins (Langmann, 2007). 

Comprehensive studies of retinal cell types using single cell transcriptomic analysis was performed on 

both human (Menon et al., 2019) and mouse (Macosko et al., 2015a) retinae. Other publications further 

utilized scRNA to identify subpopulation of bipolar cells (Shekhar et al., 2016), amacrine cells (Yan et al., 

2020) and RGCs (N. M. Tran et al., 2019a), creating an extensive single cell transcriptomic atlas of the 

retina and provided different novel cell markers. By referencing their findings, future scRNA experiment 

of retinal tissues can easily identify cell type markers, facilitating the research of molecular changes and 

variations in different cell subpopulation during retinal development and disease progression. Further 

research opportunities may be present to studying different regions on the retina, as the proportions and 

distribution of cell type subpopulation may vary depending on the region of sample selected, such as 

closer to the optic nerve head, or further away near the peripheral regions. Studies related to glaucoma 

could focus on the optic nerve head, where astrocytes and RGCs are of the highest concentration. 



Fig1.4 Schematic representation of the major retinal cell types and their organization in the retina.  (Madeira et al., 

2015) 

  



Chapter 2: Materials and Methods 

2.1 Preface 
This project aims at using single cell RNA-sequencing analysis to understand the pathogenesis of 

glaucoma, using gene knockout animal models. This chapter outlines the experimental methods used 

throughout the experimental pipeline of single cell experiment, including animal handling and tissue 

extractions to bioinformatics data analysis methods.  

2.2 Mouse Methods 

2.2.1 Animal housing and treatment 

Animals involved in this study were obtained, housed, cared for, and used following the guidelines 

published by the Physiological Society of Japan, and with approval of the Animal Care Committee 

of Yamanashi University and University College of London. DBA/1J mice were used as WT 

samples, sourced from Japan SLC,INC. ABCA1 knockout mouse model and Astrocyte-specific 

ABCA1 knockout model were created using protocols suggested in Hamon et al., 2000 and 

Karasinska et al., 2013 respectively. Mice were maintained in a pathogen-free, temperature (23 

°C)- and humidity (55%)-controlled facility with a 12-h (6:00 am–6:00 pm) light-dark cycle with 

free access to food and water.  

2.2.2 Eye and Retina dissection 

9-11 months old mice samples were euthanized using CO2 chambers. Their eyeballs were 

dissected and placed in a glass slide with shallow volume of PBS. Using angled-forceps to hold 

the eyeball in position, a small spring scissor was used to create an incision at the cornea-sclera 

divide. The scissor then cuts along the divide around the eyeball until the cornea and iris is lifted 

and the lens is released. The retina is then gently pulled out of the eyecup using angled-forceps, 

carefully separated from the choroid layer, while gently separating at the fovea and preserving 

neurons at the optic nerve head. 



2.2.3 Retina Dissociation 

2.2.3.1 ABCA1 samples 

The Worthington Papain Dissociation System was used to dissociate ABCA1-/- experiment 

tissues into single-cell suspension. Briefly, the retinal tissue was placed in the mixture of 100 μL 

papain solution (20 units/ml with 1mM L-cysteine and 0.5 mM EDTA) and 5 μL of DNase solution 

(2000 units/ml). The mixture was incubated at 37°C for 15 minutes after gentle titration. The 

dissociated cell solution was then diluted with 900 μL of PBS and passed through a 35 μm cell 

filter. Dissociated samples were then counted using LUNA-FL™ Dual Fluorescence Cell Counter 

(Logos Biosystems) to verify quality of dissociation and viability of cell samples.  

2.2.3.2 P2Y6 samples 

Cold dissociation using Bacillus Licheniforms Protease (Sigma-Aldrich) were chosen to dissociate 

P2Y6-/- experiment samples by our Japanese collaborators. Briefly, tissues were digested in 1mL 

of protease solution (5 mM CaCl2, 5 mg/ml Protease, 62.5 U/ml DNase, in 2.0 ml tube) for 10 min 

on ice with shaking, Samples were then pipetted and shaken on ice, then filtered with a 70 μM 

filter and washed with PBS twice with 1mL each. Samples were then centrifuged at x300 g for 7 

min at 4℃, removed with supernatant and refill with PBS twice, which results in a dissociated 

sample that is then inspected using the Trypan blue assay.   

2.2.4 10X Single Cell Chromium system 

Dissociated samples were loaded onto the 10X Chromium controller (10X Genomics), and single 

cell RNA-seq libraries were prepared using the Chromium Single Cell 3’ reagent kits v3. In 

accordance with the manufacturer’s protocol, single cells are captured in nanoliter-scale Gel 

Beads-in-emulsion (GEMs) where cells were lysed. cDNA libraries of each cell were constructed 

by reverse transcription of mRNAs from that were encapsulated within a GEM, and tagged on the 

3’ end with primers including a 16bp cell-specific 10X Barcode and a 12bp read-specific unique 



molecular identifier (UMI). GEMs were then broken up and cDNAs from all cells in a sample were 

pooled, purified and amplified via Polymerase Chain Reaction (PCR). Library quality was ensured 

by using a high-sensitivity D5000 screentape and Qubit 2.0 fluorometer. Each sample is then 

sequenced on the NextSeq 500 systems (Illumina) for paired-end sequencing. 

2.2.5 Genotyping 

Mouse genotyping was performed in accordance with the protocols provided by our Japanese 

collaborators, which utilizes the KAPA2G Fast PCR Kit. Mouse tail of 2-3mm was placed into a 

safe lock tube of 1.5mL, added with 200μl of 50 mM NaOH/H2O and incubated for 15-30mins at 

100oC dry bath. 22 μl of 1M Tris-HCl (pH8.0) was added and mixed with the solution, and 

centrifuged at 12,000 rpm for 1 minute at 25oC. Stock solutions of 100μM primers in TE buffer 

were synthesized by Thermo scientific, and working solution were prepared by diluting with TE 

buffers to make 10μM working solutions. Table2.2.5.1 shows the sequence of the primers for WT 

and KO amplicons, Table2.2.5.2 shows the PCR reaction mixture formula, and Table2.2.5.3 

details the PCR reaction procedures. Resultant sequences should produce 750bp and 540bp in 

length for WT and KO samples respectively, by running the PCR result samples on a 2% agarose 

gel with ethidium bromide at 100 and visualized using a UV transilluminator. 

Primer Sequence 

WT forward TGGGAACTCCTGCTA AAAT 

WT reverse CCATGTGGTGTGTAGACA 

KO forward TTTCTCATAGGGTTGGTCA 

KIO reverse TGCAATCCATCTTGTTCAAT 

Table2.2.5.1 PCR primer sequences. 

  



Table2.2.5.2 PCR reaction mixture. 

Steps Temperature(oC) Time(s) No. Cycles 

1 95 180 1 

2 95 15  

3 55 15 30 

4 72 3  

5 72 60 1 

Table2.2.5.3 PCR thermocycle. 

2.3 Data analysis methods 

2.3.1 Cell ranger 

Cell Ranger is a set of programs developed by 10X Genomics to process sequenced data from 

Chromium single- cell experiments. Upon receiving raw base-calling files (BCL) from the output 

of Illumina sequencing machines, CellRanger mkfastq was applied to demultiplex sequencing 

reads into FASTQ files. CellRanger count then performs splicing-aware alignment (Dobin et al., 

2013) of reads to the GRCm38 mouse genome and UMI counting to remove PCR duplicates. The 

program then employs the EmptyDrops method (L Lun et al., n.d.) to perform cell-calling based 

on levels of RNA content within each cell. The output of CellRanger count includes a web 

summary HTML file which includes basic statistics about the sample run, as well as both “cell-

only” and “unfiltered” sample feature count matrices. The cell-only filtered feature count matrix in 

Reagent Volume (μl) 

KAPA2G Fast Hot Start Readymix 7.5 

10μM primer solution 0.3 

genomeDNA template 1 

H2O 5.3 

Total 15 



the form of 3 tabular files (barcodes – representing columns of individual single cell labelled using 

unique 10X barcodes, features – representing rows of gene identifiers, and matrix – containing 

the sparse matrix of the feature counts) were carried over to R Studio for further analysis. 

2.3.2 Seurat 

The R toolkit package Seurat (v3.1.4; https://github.com/satijalab/seurat) was utilized for 

downstream analysis.  

2.3.2.1 Individual samples of ABCA1 

Firstly, individual samples of ABCA1 experiment were inspected. Seurat object were created in 

RStudio by loading in feature count matrices from the CellRanger pipeline with a pre-filtering of 

minimum 200 features. Gene expression is then “Log-Normalized” by log-transforming the 

product of gene count by a scale factor of 10,000, and linearly scaled per gene such that the 

expression mean across all cells is 0 and that the variance across all cells is 1. The top 2000 

“highest-variable” genes were then chosen for subsequent analysis, by ranking the standardized 

variance obtained from a variance-stabilizing transformation described in Stuart et al., 2019. 

Principal Component Analysis (PCA) was then applied as a tool for linear dimensional reduction, 

as it computes principal components in lower dimensions while preserving data variation. The top 

15 principal component were then used for Seurat’s graph-based clustering approach (Macosko 

et al., 2015b). In brief, the clustering steps involve the construction of a K-nearest neighbour 

(KNN) graph with which the edges are refined using Jaccard similarity and optimized using the 

Louvain algorithm. t-Distributed Stochastic Neighbour Embedding (t-SNE) was applied to 

visualize the clustered dataset by performing non-linear dimensional reduction (van der Maaten & 

Hinton, 2008). Due to the abundance of rod cells present in the retina, clusters expressing high 

levels of rod-markers such as Rho, Sag, Gnat1 or Pde6a were filtered to create “Non-rod” 

subclusters, which were then separately clustered and projected.  



2.3.2.2 ABCA1 sample integration 

Gene expression integration was then performed to allow meaningful comparison between 

sequencing data of different biological samples. 3 WT and 5 ABCA1 KO samples were integrated 

using methods implemented in Seurat’s toolkit, as described in Stuart et.al. Firstly, individual 

samples were log-normalized and feature extracted with the same parameters aforementioned 

(Chapter 2.3.2.1). FindIntegrationAnchors function was applied to a list of all sample data, to 

identify pairs of cells originating from different datasets that suggest to having matching biological 

state. These cells act as “anchors” between datasets, in which IntegrateData function then 

corrects expression levels by removing technical differences and integrate all cell data into a 

single Seurat object (Stuart et al., 2019b). Scaling, PCA and Clustering were then performed on 

the integrated object as mentioned before, but using the top 30 principal components to account 

for the large amount of cells and expression level variation. Uniform Manifold Approximation and 

Projection (UMAP) was used as a non-linear dimensional reduction technique for visualization, 

as it performs better than tSNE when applied to datasets with much more cells. FindAllMarkers 

function was then applied to perform Wilcoxon Rank Sum test on each cluster, identifying 

differentially expressed genes within each cluster in comparison to the rest of the dataset. Retinal 

cell-type specific markers were then identified in the differential expression gene lists, allowing 

the labelling of each clusters.  

2.3.2.3 ABCA1 sub-clustering 

With the interest of studying Müller Glia/ astrocytes, immune cells and RGCs in the context of this 

study, clusters expressing markers of these cell types were isolated and inspected separately. 

Clusters with high expression of Apoe, Clu, Glul and Gpr37 formed the Müller Glia/ astrocyte 

subclusters, while cluster with high expression of C1qa and P2ry12 were suspected to contain 

immune cells such as microglia. Cluster with expression of Chrnb3, Slc17a6, Thy1 and Chrna6 

were labelled as “mixed group” as it contains a mixture of different cell types while containing cells 



expressing RGC markers. PCA, clustering and tSNE were applied to segregated cell clusters 

respectively, and differential expression of subclusters were identified using FindAllMarkers 

function.  

2.3.2.4 P2Y6 samples pre-processing: SoupX 

3 WT and 3 P2Y6 KO mouse retinal tissue were processed by our collaborators in the University 

of Yamanashi, using similar 10X Genomics Single Cell Chromium pipeline as the ABCA1 

experiment. CellRanger outputs of “cell-only” and “unfiltered” sample feature count matrices were 

provided for further analysis.  

Pre-filtering of background contamination was performed using R package SoupX (v1.5.2) using 

a novel method developed and implemented by Young & Behjati, 2018. Briefly, the SoupX algorithm 

estimates background RNA expression profile from non-cell droplets, obtained from exclusive 

cells in “unfiltered” feature matrix that were not in the “cell-only” matrix. SoupX then estimate (or 

manually determine) the fraction of contamination present in the “cell-only” feature matrix, 

attempting to distinguish between RNA expression that originates from actual cell content and 

RNA expression that belongs to background contamination. SoupX then corrects the expression 

profile using the background contamination expression profile and contamination fraction, 

producing a modified feature matrix that can be analysed in subsequent pipeline. Individual 

samples of the P2Y6 experiment were thus cleaned-up using SoupX, and proceeded with the 

aforementioned pipeline of Log-normalization, feature extraction, scaling, PCA, clustering and 

UMAP using Seurat. 

2.3.2.5 P2Y6 samples integration 

SoupX corrected feature matrices of 3 WT and 3 P2Y6 KO retinal samples were integrated using 

the same pipeline as mentioned in Chapter 2.3.2.2. Due to the large amount of cells included in 

the samples, reciprocal PCA (RPCA) (Hao et al., 2021) was used for the FindIntegrationAnchors 



function instead of the default canonical correlation analysis (CCA) (Stuart et al., 2019b) method.  

The top 25 principal components were chosen for linear dimensional reduction. 

2.3.2.6 P2Y6 samples subclustering 

Similar to ABCA1 experiment, cell types of interest: RGCs and glial cells were selected for sub-clustering. 

Clusters with high expression of RGC markers (Nefl, Thy1, Stmn2, Resp18)  and glial cell markers (Glul, Dbi, 

Clu, Apoe) were isolated as separate subset of the integrated data, and processed with PCA, clustering, 

and UMAP projection. Differential expression with each subclusters were identified using the 

FindAllMarkers function.  

2.3.3 Ontological Analysis  

Differential expression gene lists generated from Seurat were usually followed with ontological analysis 

using the InGenuity Pathway Analysis software (Qiagen). “Canonical Pathways” and “Disease and 

Functions” list can be obtained, with p-values signifying the relevance and significance of the related 

pathways, while z-score relates the degree of activation (+) or deactivation (-) of said pathways or 

mechanisms.  

  



Chapter 3: ABCA1-/- Experiment 

3.1 Preface 
The pathogenesis of glaucoma is poorly understood despite it affecting millions of the population around 

the world. Although the phenotype of the disease is defined as the progressive degeneration of the retinal 

ganglion cells (RGCs) on the retina, many studies have suggested roles and involvement of other cell types. 

The use of experimental animal models that show glaucoma phenotype would benefit studies in 

understanding the mechanisms activated during disease development, and changes in survivability or 

behaviour of different cell types.  

In this chapter, we utilized our Normal Tension Glaucoma (NTG) mouse model which knocked out the 

gene ABCA1, developed and provided by our collaborators from the University of Yamanashi in Japan, and 

performed single cell RNA-seq analysis to gain insight and understanding of different cell type behaviours 

and transcriptomic changes. The full experimental pipeline of single cell analysis was implemented, 

starting from sample preparation to bioinformatics data analysis. Computational analysis allowed for the 

identification of different cell types, extracting differential expressions between wild type (WT) and 

knockout (KO) samples, and ontological analysis to predict activated canonical pathways.  

3.2 Tissue sample preparation 

3.2.1 Genotyping 
Wild type (WT) and Abca1-/- (KO) mice were transported from our Japanese collaborator to UCL animal 

facilities. Prior to preparing samples for single cell analysis, genotype of different mice was verified using 

the protocols mentioned in Chapter 2.2.5. Fig3.1 displays the resulting gel imaging, with 750bp fragments 

detected for WT samples and 540bp detected for KO samples.  

Fig3.1: PCR genotyping results for 3 WT and 5 KO samples. 



3.2.2 Tissue dissociation  
3 WT and 5 KO mouse were euthanized, and their retinal tissue were dissected at the UCL Animal facilities 

using protocols as described in Chapter2.2.3.1. To maintain cell viability, intact retinal tissues were placed 

in separate tubes of PBS on ice and transferred to the laboratory at QMUL Genome Center, for sequencing 

by the 10X Genomics Chromium Machine. The tissues were then dissociated on-site using the 

Worthington Papain Dissociation System, filtered and treated with the pre-loading procedures 

recommended by 10X Genomics. The following table summarizes the final loading conditions of each 

sample, and the images display the cell conditions under the LUNA-FL™ Dual Fluorescence Cell Counter. 

Green fluorescent staining patterns signify fresh living cells. All dissociated samples achieved satisfactory 

viability (>90%) and live cell concentration. The targeted number of cells was 4,000 per sample, and triple 

the number of cells were loaded onto each lane in accordance to the recommendations by 10X Genomics 

technicians, supported by their experience with machine uptake from other previous samples. 

Sample Total cell 

concentration 

(1e6 cells/mL) 

Live cell 

concentration 

(1e6 cells/mL) 

Dead cell 

concentration 

(1e5 cells/mL) 

Viability (%) Average cell size 

(μm) 

WT1 2.43 2.32 1.10 95.5 5.6 

WT2 4.01 3.81 2.02 95 7.3 

WT3 4.17 3.93 2.42 94.2 7.9 

KO1 3.43 3.39 4.46 98.7 8.1 

KO2 1.03 0.993 0.442 95.9 7.6 

KO3 2.46 2.33 1.31 94.7 7.9 

KO4 4.82 4.6 2.21 95.4 8.4 

KO5 4.09 3.89 1.95 95.2 6.8 

Table3.2.2: Loading conditions of dissociated retinal cells 



Fig3.2.2.1: Fluorescent Cell counter images of three dissociated wild type mouse retinal cells 

  



Fig3.2.2.2: Fluorescent Cell counter image of five dissociated ABCA1-/- mice retinal cells 



3.3 Data Analysis 

3.3.1 10X Genomics CellRanger output 
The cDNA library of 8 retinal tissue samples constructed by the 10X Genomics Chromium Machine were 

sequenced into digital data. Sequencing data output was then processed through the CellRanger pipeline 

as described in Chapter 2.3.1, where sequencing reads were demultiplexed and aligned to the mouse 

genome. Feature-barcode matrices were then generated, which describes the expression profile of 

sequencing reads captured within each GEL which shares the same cellular barcode. CellRanger then 

employs the cell-calling algorithm based on the EmptyDrops method, to determine whether the 

expression profile described by reads sharing the same barcode is likely to originate from a single cell, 

rather than from an empty GEL or a doublet (GEL that encapsulated two or more cells). 

By calling the default algorithm, the initial estimated number of cells average around 2,500 per sample 

(Fig3.3.1A). This is significantly lower than the target that was intended, and the variation among different 

samples in estimated number of cells and mean reads per cells were substantial. This is likely due to 

photoreceptors being low-expressing cells, as their sole function was to detect and transmit optical 

signals. Due to photoreceptors being overly abundant in the retina, majority of cells from the retinal 

tissues will be regarded as low-expressing cells when compared to other cell types in other tissues. Since 

the default algorithm attempts to remove low-expressing barcodes as they usually represent empty GELs 

with background RNA contamination, it is suggested to have underestimated the number of cells in retinal 

tissue samples. Supported by their past experience working with low-expressing datasets, the technicians 

from 10X Genomics forced the top 9,000 most expressing barcodes to be defined as cells in all samples. 

By slightly overestimating the number of cells, this allowed more room for filtering in subsequent analysis. 

Fig3.3.1B-C shows the mean reads per cell and median number of genes per cell from both the default 

cell-calling algorithm and force-9000 setup, with the latter having a more consistent and comparable 

mean reads per cell across all eight samples.  



Fig3.3.1A) Estimated number of cells, B mean reads per cell and C) median number of genes per cell in 

ABCA1-/- samples. Blue bars show statistics of using the default cell-calling algorithm of CellRanger, 

while orange bars show that of forcing each sample to include 9000 cells.  



The following table summarizes the output from CellRanger for our 8 samples: 

Table3.3.1 CellRanger sequencing output summary of ABCA1-/- experiment samples 

The sequencing results were highly satisfactory, as all the samples achieved over 90% of reads alignment 

to the mouse genome. Cells on average have around 20,000 reads in all samples, while the median genes 

per cells are generally less than 600 even though the sequencing saturation is about 80% or above. 

Contrasting to GELs that capture no cells and only the background RNA contamination, which would have 

low number of reads, genes and sequencing saturation, this data supports the premise that majority of 

the cells in the retina, mainly photoreceptors, has a low variety of genes in their expression profile. 

However, the total genes detected in all samples exceeds 16000, suggesting other cell types in the retina 

which have a more diverse expression profile were detected.  

  

Sample 

Default 
cell-calling  
number of 
cells 

Forced-
9000 
number of 
cells 

Mean 
Reads/Cell 

Median 
Genes/Cell 

Sequencing 
Saturation 
(%) 

Reads 
Mapped to 
Genome 
(%) 

Total 
genes 
detected 

WT1 4483 9000 20719 231 88.1 95.7 16109 

WT2 3676 9000 21126 236 88.5 94.5 16587 

WT3 2113 9000 21756 506 77 93.7 17860 

KO1 1512 9000 19914 256 88.1 94.8 17272 

KO2 2735 9000 20116 291 86 94.2 17138 

KO3 1369 9000 21677 413 82.8 93.6 17345 

KO4 2169 9000 22722 524 79.5 93.2 17905 

KO5 2115 9000 21419 425 81.1 93.7 17308 



3.3.2 Seurat Individual samples  
The eight individual samples were first inspected separately to try discovering different cell-types 

population and its distribution. Individual sample outputs from CellRanger creates the expression profile 

matrix of all cells, which were loaded into RStudio as Seurat objects using the Seurat package. They are 

then processed through the individual sample pipeline as suggested in Chapter 3.3.2.1, involving 

normalization, extraction of top 2000 features and scaling. PCA is then applied for dimensional reduction, 

and the top 15 Principal Components (PCs) were chosen for subsequent analysis, supported by the 

suggestion from an “Elbow plot”. The Elbow plot aids in deciding how many PCs were needed to capture 

majority of the data’s variation, by plotting the standard variation within each PC against increasing 

number of PCs. As suggested from the example Elbow plot of WT1 in Fig 3.3.2.1, increasing PCs above 15 

marginally increases the variance captured in the data, thus 15 PCs were sufficient.  

Fig3.3.2.1 Example Elbow plot of WT1 sample 

Clustering and tSNE were then applied to visualize the 8 samples data in two-dimensional clusters, as 

shown in Fig3.3.2.2-9. Projections from all samples present similar phenomenon, where a large number 

of cells occupy the biggest cluster or area in the plot, while small individual clusters branches off.  

  



Fig3.3.2.2: WT1 tSNE projection 

Fig3.3.2.3: WT2 tSNE projection 



Fig3.3.2.4: WT3 tSNE projection 

Fig3.3.2.5: KO1 tSNE projection 



Fig3.3.2.6: KO2 tSNE projection 

Fig3.3.2.7: KO3 tSNE projection 



Fig3.3.2.8: KO4 tSNE projection 

Fig3.3.2.9: KO5 tSNE projection 



Fig3.3.2.10: Rod cell markers expression in sample (a) WT1, (b) WT2, (c) WT3, (d) KO1, (e) KO2, (f) KO3, (g) KO4, (h) KO5 



Upon inspection of known markers such as Rho, Sag, Gnat1 and Pde6a, the big clusters can be classified 

as rod photoreceptor, which concur with the known fact that this cell type occupies the majority of the 

cell population in the retina. To facilitate the identification of other cell types in a higher definition, cell 

clusters with relatively low expression of rod photoreceptor markers were separated as the “non-rod” 

population. PCA, clustering and tSNE were applied onto the “non-rod” subclusters, creating projection 

plots as shown in Fig3.3.2.11-18. Differentially expressed genes for each subcluster were discovered using 

the FindAllMarkers function, allowing us to label subclusters by identifying high expression of different 

cell type markers. The following table demonstrates the genes used for labeling each major retinal cell 

types, sourced from various supported literatures.  

Table3.3.2.1: Retinal Cell Markers used to identify and label subtypes 

Cell Type Gene Markers 

Amacrine cells Tfap2b, Gad1, Lrrn3, Gad2 

Astrocyte Ndrg2, Aqp4, Slc6a11, Aldoc, Apoe 

Bipolar cells Gng13, Vsx2, Prkca, Isl1, Sebox, Scgn 

Bipolar - Cone Tac3, Vsx1, Gja7 

Bipolar - Rod Glrb, Grm6, Pcp2, Prkca 

Cone cells Arr3, Gngt2, Opn1sw, Cngb3, Gnat2 

Endothelial cells Cldn5, Itgb1, Cxcl12, Pecam1 

Horizontal cells Calb1, Onecut1, Onecut2 

Lens Cryga, Crygf, Lenep 

Immune cells (eg. Microglia/ 
Macrophage) 

P2ry12, C1qa 

Müller Glia Clu, Dkk3, Glul, Vim, Abca8a 

Microglia Hla-dpa1, Hla-dpb1, Hladra 

Photoreceptor Progenitor Arrb1, Prdm1 

Progenitors Hes1, Hes5, Pax6, Vsx2 

Retinal Ganglion Cells Nefl, Stmn2, Vsnl1, Thy1, Resp18, Pou4f1, Opn4 

Rod cells Rho, Sag, Gnat1, Pde6a, Cnga1, Nrl 

Retinal Pigment Epithelium  Rgr, Rpe65, Rrh, Ttr 



Fig3.3.2.11: WT1 non-rod tSNE plot 

Fig3.3.2.12: WT2 non-rod tSNE plot   



Fig3.3.2.13: WT3 non-rod tSNE plot 

Fig3.3.2.14: KO1 non-rod tSNE plot 



Fig3.3.2.15: KO2 non-rod tSNE plot 

Fig3.3.2.16: KO3 non-rod tSNE plot   



Fig3.3.2.17: KO4 non-rod tSNE plot  

Fig3.3.2.18: KO5 non-rod tSNE plot  



3.3.3 Samples Integration 
The inspection of individual samples proved the detection and presence of different retinal cell types 

across all samples. To understand the biological differences between WT and KO samples, the 8 samples 

were integrated to remove batch effects and technical variations, allowing cell types from across the 

samples to be projected and clustered together for comparison.  

Cell expression matrices output form CellRanger for the 8 individual samples were loaded into Seurat and 

analysed using the Integration pipeline as described in the Methods chapter 2.3.2.2. A small filter was 

applied to remove cells with less than 100 features expressed, which are likely GEMs containing only 

background contamination reads.  Following the pipeline of normalization, integration, scaling, PCA, and 

UMAP projection, all 62,479 cells combined from the 8 samples were projected onto a UMAP shown in 

Fig.3.3.3.1 

Using the default algorithm in the FindClusters functions by Seurat, 32 clusters were formed using the top 

20 PCs and a granularity setting of 1.5, shown in Fig3.3.3.3. Number of PCs were chosen based on the 

Elbow plot (Fig3.3.3.2), and the granularity was selected such that graphically separated clusters can be 

well-defined without over segregating large clusters into unnecessary subclusters. Differentially 

expressed genes of different clusters were identified and labelled with the cell type identity based on high 

expression of corresponding cell-markers. Expression of cell-type markers of different clusters were 

summarized in Fig3.3.3.4, and the expression levels were showcased from Fig3.3.3.5 to Fig.3.3.3.8. 6 

unidentified clusters express some markers of progenitors, amacrine and horizontal cells, but since these 

cell types were not the focus of this study, they remained as it is for subsequent analysis.  

Table3.3.3.1-2 shows the cell type distribution of the integrated data, again revealing most cells were rod 

photoreceptors. Distribution of other cell types remained fairly consistent across different samples, 

suggesting the success of the integration process by clustering similar cell types into graphical proximity, 

allowing downstream comparison and analysis to be performed.   



Fig3.3.3.1: UMAP projection of all 62,479 cells from 3 WT and 5 KO samples. 

Fig3.3.3.2 Elbow Plot from PCA of the integrated dataset of ABCA1-/- experiment. 
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Sample No. cells 
(min 100 
features) 

No. 
Rod 

No. 
Cone 

No. 
Müller 
Glia 

No. 
Astrocy
te 

No. 
Bipolar 

No. 
RGC 

No. 
Immun
e Cells 

No. 
RPE 

No. 
Endothelial 
Cells 

WT1 5526 4788 39 140 30 56 2 9 2 21 

WT2 6488 5087 115 140 59 164 18 20 6 11 

WT3 8954 6628 126 217 102 552 38 11 8 15 

KO1 6890 5186 169 151 76 488 14 12 0 9 

KO2 8144 5235 149 113 72 358 32 10 0 12 

KO3 8683 6151 155 171 80 267 15 33 0 8 

KO4 8969 6670 169 175 62 350 31 23 11 11 

KO5 8825 6753 119 224 83 255 6 25 3 7 

Table 3.3.3.1 Cell number counts for different cell types. 

Sample % Rod % Cone % MG % 
Astrocyte 

% 
Bipolar 

% RGC % Immune 
Cells 

% RPE % Endothelial 
Cells 

WT1 86.645 0.706 2.533 0.543 1.013 0.036 0.163 0.036 0.380 

WT2 78.406 1.773 2.158 0.909 2.528 0.277 0.308 0.092 0.170 

WT3 74.023 1.407 2.423 1.139 6.165 0.424 0.123 0.089 0.168 

KO1 75.269 2.453 2.192 1.103 7.083 0.203 0.174 0.000 0.131 

KO2 64.280 1.830 1.388 0.884 4.396 0.393 0.123 0.000 0.147 

KO3 70.840 1.785 1.969 0.921 3.075 0.173 0.380 0.000 0.092 

KO4 74.367 1.884 1.951 0.691 3.902 0.346 0.256 0.123 0.123 

KO5 76.521 1.348 2.538 0.941 2.890 0.068 0.283 0.034 0.079 

Table3.3.3.2 Cell counts in percentage for different cell types. 

Fig3.3.3.4 Dot Plot of the integrated samples, displaying expression level of different cell-type markers by 
different clusters. 

 



 

 

Fig3.3.3.5A-B: Rod cells markers expression. C-F: Cone cell markers expression.  

  



 

 

 

Fig3.3.3.6A-F: Müller Glia cell/ astrocyte markers expression. G-H: Microglia cell markers expression 

  



 

 

 

Fig3.3.3.7A-D: Bipolar cell markers expression. E-H: RGC markers expression 

 

 



 

 

 

Fig3.3.3.8A-D: RPE cell markers expression. E-H: Endothelial cell markers expression 

  



3.3.4 WT vs KO Ontological analysis 
The initial result of the integration pipeline showed success in removing batch effects between different 

samples and allowed cells from both WT and KO samples to be projected into proximity of their respective 

cell types. The differences between the adjusted expression profiles of WT and KO cells shall reflect mainly 

biological differences, making them more comparable. In order to gain initial insight into the biological 

differences, gene expression across all cells in WT samples were averaged and compared against that of 

KO samples. The differential expression gene list of WT vs KO samples was then analysed using Ingenuity 

Pathway Analysis (IPA) to perform ontological analysis. Table3.3.4.1 shows the 50 topmost significantly 

affected Canonical Pathways in KO samples in comparison to WT, ranked by -log(p-value). 

Among the most significantly affected pathways, remarkably many of them are related to 

neuroinflammation, such as “IL-8  Signaling”, “CXCR4 Signaling”, “CCR5 Signaling in Macrophages” and 

“Neuroinflammation Signaling Pathway”. These pathways all have a positive z-score, signifying their 

activation in KO samples. Fig.3.3.4.1 shows the pathway diagram for “Neuroinflammation Signaling 

Pathway”, with multiple downstream mechanisms predicted to be activated, including “Oxidative stress”, 

“Astrogliosis”, “Neurons damage”, “T cell recruitment” and “Microglia activation”. Multiple pro-

inflammatory proteins such as members of the chemokine family were shown to be significantly 

expressed, signifying a strong inflammatory and immune response. Other neuroinflammation related 

pathways such as “Chemokine Signaling”, “TGF-β Signaling” are compiled in Table3.3.4.2, all showing 

significant activation. Thus, evidence of neuroinflammation found in the average expression of cells in 

retinal samples of ABCA-/- were very strong.  

  



Ingenuity Canonical Pathways -log(p-value) z-score 

Osteoarthritis Pathway 13.6 -0.447 

RhoGDI Signaling 13.3 -2.611 

Phototransduction Pathway 13.2 NaN 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 12.1 NaN 

Signaling by Rho Family GTPases 12.1 3.683 

Hepatic Fibrosis Signaling Pathway 11.7 2.216 

EIF2 Signaling 11.3 -1.347 

Androgen Signaling 10.3 1.606 

CREB Signaling in Neurons 9.82 2.449 

IL-8 Signaling 9.78 2.846 

Opioid Signaling Pathway 9.74 2.48 

Cardiac Hypertrophy Signaling 9.68 1.761 

Relaxin Signaling 9.09 1.414 

CXCR4 Signaling 8.89 1.512 

Estrogen Receptor Signaling 8.46 1.664 

Synaptogenesis Signaling Pathway 8.4 3.221 

Role of NFAT in Cardiac Hypertrophy 8.3 1.947 

Ephrin B Signaling 8.25 1.604 

Tec Kinase Signaling 8 1.964 

Axonal Guidance Signaling 7.99 NaN 

Glutamate Receptor Signaling 7.91 2.449 

G Beta Gamma Signaling 7.84 1.732 

Calcium Signaling 7.8 3.024 

Thrombin Signaling 7.68 2.558 

mTOR Signaling 7.56 1.528 

Ephrin Receptor Signaling 7.44 1.768 

Protein Kinase A Signaling 7.34 -0.146 

White Adipose Tissue Browning Pathway 7.27 2.646 

CCR5 Signaling in Macrophages 7.24 1.667 

ILK Signaling 6.82 1.915 

Epithelial Adherens Junction Signaling 6.7 NaN 

Corticotropin Releasing Hormone Signaling 6.65 1.177 

Role of NFAT in Regulation of the Immune Response 6.38 1.177 

GNRH Signaling 6.37 2.6 

GABA Receptor Signaling 5.9 NaN 

Gαq Signaling 5.81 1.569 

GP6 Signaling Pathway 5.78 3 

eNOS Signaling 5.75 1.342 

Endocannabinoid Neuronal Synapse Pathway 5.69 2.449 

Phospholipase C Signaling 5.6 1.219 

Germ Cell-Sertoli Cell Junction Signaling 5.54 NaN 

Neuroinflammation Signaling Pathway 5.34 1.372 

cAMP-mediated signaling 5.29 1.859 

Cardiac Hypertrophy Signaling (Enhanced) 5.27 3.302 

Human Embryonic Stem Cell Pluripotency 5.24 NaN 

Molecular Mechanisms of Cancer 5.17 NaN 

G Protein Signaling Mediated by Tubby 5.13 NaN 

Reelin Signaling in Neurons 5.12 2.041 

Leukocyte Extravasation Signaling 5.08 1.461 

IL-1 Signaling 5.06 1.633 

Table3.3.4.1 Top 50 most significantly affected Canonical Pathways in differential expression between all 

cells from KO vs WT samples. Yellow and green highlights label pathways related to neuroinflammation 

and senescence respectively. 



Fig.3.3.4.1 Neuroinflammation Signalling pathway diagram from IPA, with predicted activation of 

mechanisms such as “microglia activation”, “astrogliosis”, “neurons damage” observed in KO samples.  



Ingenuity Canonical Pathways -log(p-value) z-score 

IL-8 Signaling 9.78 2.846 

CXCR4 Signaling 8.89 1.512 

Role of NFAT in Regulation of the Immune Response 6.38 1.177 

Neuroinflammation Signaling Pathway 5.34 1.372 

Leukocyte Extravasation Signaling 5.08 1.461 

IL-1 Signaling 5.06 1.633 

Chemokine Signaling 3.66 1.5 

PKCθ¸ Signaling in T Lymphocytes 2.28 2.138 

PI3K Signaling in B Lymphocytes 1.87 1.5 

Interferon Signaling 1.82 0.378 

Notch Signaling 1.76 0.447 

IL-6 Signaling 1.65 0.775 

TGF-β Signaling 1.61 1.508 

IL-3 Signaling 1.51 1.508 

IL-15 Production 1.47 1.291 

NF-κB Activation by Viruses 1.41 0.302 

Table3.3.4.2 Neuroinflammation related pathways activated in KO vs WT all cells differential expression. 

 

Table3.3.4.1 also labelled multiple Canonical Pathways with potential relation to cellular senescence being 

significantly activated. Other significantly activated senescence related pathways are shown in Table 

3.3.4.3. In particular, “mTOR signaling” was shown to be significantly activated with a -log(p-value) of 7.56 

and z-score of 1.528. This pathway had been shown to be highly associated with multiple age-related 

diseases including neurodegeneration, as well as senescence. Senescent cells were known to secrete pro-

inflammatory molecules through the process known as senescence-associated secretory phenotype 

(SASP), with related pathways are shown in Table3.3.4.4. There are multiple overlaps between 

neuroinflammation and SASP related pathways, thus this data suggests the potential mechanism of 

senescence-induced neuroinflammation in KO retinal tissues, causing age-dependent phenotype of retinal 

degeneration, which could contribute to our understanding of the pathogenesis of glaucoma.  

  



Ingenuity Canonical Pathways -log(p-value) z-score 

Androgen Signaling 10.3 1.606 

Estrogen Receptor Signaling 8.46 1.664 

Calcium Signaling 7.8 3.024 

Thrombin Signaling 7.68 2.558 

mTOR Signaling 7.56 1.528 

cAMP-mediated signaling 5.29 1.859 

p53 Signaling 3.09 0.277 

AMPK Signaling 2.94 0.655 

BEX2 Signaling Pathway 2.74 1.604 

HMGB1 Signaling 2.28 1.964 

NF-κB Signaling 1.61 1.091 

Senescence Pathway 1.27 0.962 

Table3.3.4.3 Senescence related pathways activated in KO vs WT all cells differential expression. 

Ingenuity Canonical Pathways -log(p-value) z-score 

IL-8 Signaling 9.78 2.846 

CXCR4 Signaling 8.89 1.512 

IL-3 Signaling 1.51 1.508 

CCR3 Signaling in Eosinophils 4.44 1.414 

IL-1 Signaling 5.06 1.633 

BMP signaling pathway 1.31 0.632 

HGF Signaling 1.46 0.577 

eNOS Signaling 5.75 1.342 

VEGF Signaling 2.22 0.832 

Table3.3.4.4 SASP related pathways activated in KO vs WT all cells differential expression. 

 

  



3.3.5 Müller Glia and Astrocyte subclusters 

3.3.5.1 Identifying subclusters 
Müller glia and astrocytes are both classified as macroglia in the retina. Their feature and functions are 

quite similar, thus they share similar expression profile as well as overlapping cell-type markers. Since the 

focus of our studies placed emphasis on astrocytes, distinguishing between Müller glia and astrocytes is 

necessary.  

Although 4 clusters in Fig3.3.3.2 were labelled as “Müller Glia” cell clusters, some of the cell markers were 

common among both cell types. To further investigate and label those cells, cells from the 4 clusters 

(Müller glia – 1, Müller glia – 2, Müller glia – 3 and Müller glia – 4) were isolated to create a subset of the 

dataset with potential Müller glia and astrocytes (MG/A cluster). By applying the Seurat pipeline as 

mentioned in the Methods chapter 2.3.2.3, the MG/A subset was clustered into 9 subclusters using a 

granularity of 0.8, as shown in Fig.3.3.5.1.1. 

Fig3.3.5.1.1 tSNE plot of the MG/A subcluster 



Fig3.3.5.1.2 Müller Glia markers in the MG/A subcluster 

Fig3.3.5.1.3 Astrocytes markers in the MG/A subcluster tSNE plot   



Fig3.3.5.1.4 Violin Plot of Müller glia markers (upper row) and Astrocyte markers (bottom row) expression 
in MG/A subclusters. 

The visualization of MG/A subclusters in Fig3.3.5.1.1 showed distinct segregated regions of cells, hinting 

on the differences in expression profile despite all sharing some level of expression of common Müller 

glia or astrocyte markers. Expression pattern of Müller glia markers (Glul, Rlbp1, Clu, Apoe) and astrocyte 

markers (S100a16, Ndrg2, Mlc1, Aqp4) were further inspected in Fig3.3.5.1.2-3, while the expression 

levels are presented in Fig3.3.5.1.4 as violin plots.  

The combination of all astrocyte specific markers were mostly expressed in subclusters MG/A-1 and 

MG/A-3, while subclusters such as MG/A-4 expressed only S100a16, Ndrg2, MG/A-6 expressed only 

Mlc1,Aqp4 but not the others. Considering Müller glia markers were prominent in all subclusters but 

astrocyte makers were only consistently expressed in MG/A-1 and MG/A-3, these two subclusters were 

categorized as the astrocyte population in our sample, while the others were defined as Müller glia.  

Number of Müller glia and astrocytes were mentioned in Table3.3.3.1. 

As single cell RNA-seq allows us to sequence mRNA from individual cells and create individual expression 

profiles, ontological analysis can be applied by averaging expression profiles of cells within certain cluster 



or cell type. Since we had defined the population of Müller glia and astrocytes from the previous section, 

differential expression gene lists between these two cell types originating from WT and KO samples were 

created and performed ontological analysis using IPA.  

The top 50 most significantly affected Canonical Pathways in KO Müller glia and astrocytes in comparison 

to that of WT were shown in Table3.3.5.2.1 and Table3.3.5.2.2 respectively. Numerous 

neuroinflammation and senescence related pathways were also among the most significantly affected 

pathways. Other neuroinflammation and senescence related pathways were shown in Table3.3.5.2.3 and 

Table 3.3.5.2.4 respectively, with the significance (-log(p-value)) and degree of up/downregulation (z-

score) for both Müller glia and astrocytes displayed together.  

As shown from Table3.3.3.2, astrocytes contribute to about 1% of the cell population in our single cell 

sample. Despite having a smaller sample size in comparison to the entire retinal tissue, strong and 

significant activation of neuroinflammation pathways can be observed in KO astrocytes, including 

“Leukocyte Extravasation Signalling”, “Interferon Signalling” and “Neuroinflammation Signalling 

Pathway”. In contrast, Müller glia has significant but small downregulation in all these pathways except 

“Interferon Signalling”. This suggests astrocytes are the major cell type related to neuroinflammatory 

response in the retina, consolidating the importance of gene ABCA1 and its effects in KO conditions. 



Ingenuity Canonical Pathways -log(p-value) z-score 

Osteoarthritis Pathway 10.5 -1.257 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 10.2 NaN 

Phototransduction Pathway 6.89 NaN 

Synaptogenesis Signaling Pathway 6.42 0.507 

Hepatic Fibrosis Signaling Pathway 6.31 -0.632 

IGF-1 Signaling 5.06 0 

Apelin Endothelial Signaling Pathway 5.05 -1.698 

Relaxin Signaling 5 0 

IL-8 Signaling 4.94 0 

p53 Signaling 4.79 0.277 

Estrogen Receptor Signaling 4.67 -0.686 

Opioid Signaling Pathway 4.65 1.4 

Thrombin Signaling 4.64 0.258 

Cardiac Hypertrophy Signaling 4.45 0.626 

ILK Signaling 4.37 -0.426 

White Adipose Tissue Browning Pathway 4.36 0.728 

GABA Receptor Signaling 4.36 NaN 

Signaling by Rho Family GTPases 4.32 0 

Gα12/13 Signaling 4.31 0 

Endocannabinoid Cancer Inhibition Pathway 4.26 -0.229 

PTEN Signaling 3.96 -1 

Mouse Embryonic Stem Cell Pluripotency 3.94 -0.258 

Acute Phase Response Signaling 3.85 -1 

Calcium Signaling 3.83 1.5 

RhoGDI Signaling 3.82 0.5 

CXCR4 Signaling 3.82 -0.258 

GP6 Signaling Pathway 3.75 1.5 

Adipogenesis pathway 3.63 NaN 

RhoA Signaling 3.58 1.5 

CREB Signaling in Neurons 3.39 1.069 

Role of NFAT in Regulation of the Immune Response 3.35 -0.943 

cAMP-mediated signaling 3.2 1.528 

Molecular Mechanisms of Cancer 3.2 NaN 

Wnt/β-catenin Signaling 3.18 -1.414 

Human Embryonic Stem Cell Pluripotency 3.12 NaN 

Glioma Invasiveness Signaling 3.12 -0.905 

STAT3 Pathway 3.12 1.291 

Actin Cytoskeleton Signaling 3.08 0.447 

Epithelial Adherens Junction Signaling 3 NaN 

NF-κB Signaling 3 1.606 

Apelin Liver Signaling Pathway 2.92 0 

Neuroinflammation Signaling Pathway 2.88 -0.229 

BEX2 Signaling Pathway 2.88 -0.302 

Thyroid Cancer Signaling 2.88 -0.905 

Glutamate Receptor Signaling 2.84 0 

Phospholipase C Signaling 2.84 0.471 

Integrin Signaling 2.84 0.688 

Role of NFAT in Cardiac Hypertrophy 2.82 0.894 

AMPK Signaling 2.82 1.291 

Corticotropin Releasing Hormone Signaling 2.79 -0.535 

 Table3.3.5.2.1 Top 50 most significantly affected Canonical Pathways in differential expression between 

all Müller glia from KO vs WT samples. Yellow and green highlights label pathways related to 

neuroinflammation and senescence respectively. 



Ingenuity Canonical Pathways -log(p-value) z-score 

Osteoarthritis Pathway 9.18 -0.2 

Calcium Signaling 5.77 0.243 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 5.41 NaN 

Corticotropin Releasing Hormone Signaling 5.3 0.243 

White Adipose Tissue Browning Pathway 4.77 0 

CREB Signaling in Neurons 4.69 -0.277 

Synaptogenesis Signaling Pathway 4.57 0.784 

GABA Receptor Signaling 4.44 NaN 

Opioid Signaling Pathway 4.02 0.447 

Neuroinflammation Signaling Pathway 3.61 0.471 

Netrin Signaling 3.29 -0.333 

Phototransduction Pathway 3.24 NaN 

Cardiomyocyte Differentiation via BMP Receptors 3.23 0 

nNOS Signaling in Skeletal Muscle Cells 3.22 NaN 

cAMP-mediated signaling 3.19 -0.728 

Agranulocyte Adhesion and Diapedesis 3.19 NaN 

G-Protein Coupled Receptor Signaling 3.03 NaN 

Relaxin Signaling 2.96 -0.816 

GP6 Signaling Pathway 2.91 0 

Synaptic Long Term Depression 2.85 1.291 

Virus Entry via Endocytic Pathways 2.78 NaN 

Hepatic Fibrosis Signaling Pathway 2.71 0.6 

Role of NFAT in Cardiac Hypertrophy 2.69 0.728 

Apelin Liver Signaling Pathway 2.68 -1.342 

Melanocyte Development and Pigmentation Signaling 2.68 -0.707 

Endocannabinoid Neuronal Synapse Pathway 2.63 0.302 

Actin Cytoskeleton Signaling 2.61 1.069 

TR/RXR Activation 2.49 NaN 

Signaling by Rho Family GTPases 2.47 0.5 

Androgen Signaling 2.42 1.414 

Gustation Pathway 2.41 NaN 

Glutamate Receptor Signaling 2.37 NaN 

ERK5 Signaling 2.36 0 

Caveolar-mediated Endocytosis Signaling 2.33 NaN 

AMPK Signaling 2.31 0 

Type II Diabetes Mellitus Signaling 2.27 -0.447 

Gap Junction Signaling 2.25 NaN 

Endocannabinoid Cancer Inhibition Pathway 2.24 0.577 

RhoGDI Signaling 2.24 -1.155 

Neurotrophin/TRK Signaling 2.22 0.378 

Circadian Rhythm Signaling 2.21 NaN 

Cardiac Hypertrophy Signaling 2.19 -0.535 

Wnt/Ca+ pathway 2.17 0.378 

Glycogen Degradation II 2.09 NaN 

Estrogen Receptor Signaling 2.08 1.091 

Apelin Endothelial Signaling Pathway 2.06 1.667 

p53 Signaling 2.05 -0.816 

ILK Signaling 2.04 0.832 

Breast Cancer Regulation by Stathmin1 2.04 NaN 

Human Embryonic Stem Cell Pluripotency 2.01 NaN 

Table3.3.5.2.2 Top 50 most significantly affected Canonical Pathways in differential expression between 
all astrocytes from KO vs WT samples. Yellow and green highlights label pathways related to 
neuroinflammation and senescence respectively.



Ingenuity Canonical Pathways MG:  
-log(p-value) 

MG:  
z-score 

Astro:  
-log(p-value) 

Astro:  
z-score 

CXCR4 Signaling 3.82 -0.258 1.09 2.121 

Leukocyte Extravasation Signaling 1.55 -2 1.91 1.941 

Chemokine Signaling 1.43 -0.707 0.485 1 

Interferon Signaling 1.56 2.236 1.4 1 

T Cell Exhaustion Signaling Pathway 1.67 -0.302 0 1 

Role of NFAT in Regulation of the Immune 
Response 

3.35 -0.943 1.19 0.905 

IL-8 Signaling 4.94 0 1.23 0.577 

Neuroinflammation Signaling Pathway 2.88 -0.229 3.61 0.471 

Role of Osteoblasts, Osteoclasts and Chondrocytes 
in Rheumatoid Arthritis 

2.67 NaN 1.25 NaN 

Tight Junction Signaling 2.16 NaN 1.08 NaN 

TNFR1 Signaling 1.5 0.447 0.265 NaN 

Virus Entry via Endocytic Pathways 1.87 NaN 2.78 NaN 

Table3.3.5.2.3 Neuroinflammation related canonical pathways affected in Müller glia (MG) and 

astrocytes (Astro) of KO samples, sorted by descending astrocyte z-score.  

Ingenuity Canonical Pathways MG:  
-log(p-value) 

MG:  
z-score 

Astro:  
-log(p-value) 

Astro:  
z-score 

HMGB1 Signaling 2.23 -0.775 0.26 1.633 

Androgen Signaling 1.86 1.134 2.42 1.414 

Estrogen Receptor Signaling 4.67 -0.686 2.08 1.091 

mTOR Signaling 2.56 -0.775 0.46 1 

Thrombin Signaling 4.64 0.258 1.72 0.632 

BEX2 Signaling Pathway 2.88 -0.302 0.807 0.447 

Calcium Signaling 3.83 1.5 5.77 0.243 

AMPK Signaling 2.82 1.291 2.31 0 

Protein Kinase A Signaling 2.51 1.528 1.99 0 

PTEN Signaling 3.96 -1 1.07 -0.378 

cAMP-mediated signaling 3.2 1.528 3.19 -0.728 

p53 Signaling 4.79 0.277 2.05 -0.816 

Table3.3.5.2.4 Senescence related canonical pathways affected in Müller glia (MG) and 

astrocytes (Astro) of KO samples, sorted by descending astrocyte z-score.  

 

  



In the case for senescence, Table3.3.5.2.4 showed some pathways are being upregulated in 

astrocytes, such as “Androgen Signaling”, “Estrogen Receptor Signaling” and “Thrombin 

Signaling”, while others such as “cAMP-mediated signaling”, “p53 Signaling” were slightly 

downregulated. However, up/downregulation of senescence pathways in Müller glia is almost 

opposite to that of astrocytes with high significance and degree. This data shows both Müller glia 

and astrocytes may experience senescence in the KO condition, but the pathways and 

mechanisms of how they are being affected may be different. Cell type specific activation of 

certain pathways could provide important future leads to potential explanation of how different 

cell types respond differently during disease development and progression. 

 

 

  



3.3.6 Retinal Ganglion Cells subclusters 

3.3.6.1 Identifying subcluster 
Retinal ganglion cells (RGCs) have a significantly smaller cell population compared to other cell types. 

Thus, it was much more challenging to define a RGC cluster without over clustering other cell types in the 

main plot. As shown from Fig3.3.3.7E-H, RGC markers mainly express in the “RGC” labelled cluster, as well 

as the surrounding clusters “Unidentified-2” and “Unidentified-6”. To preserve as much RGCs as possible, 

cells from cluster “RGC”, “Unknown-2” and “Unknown-6” were grouped together to perform 

subclustering. 16 subclusters were created with a granulairty of 1.6, projected as the tSNE diagram in 

Fig3.3.6.1.1. 

To determine the RGC population, additional RGC specific markers (Chrn6, Cntnap2, Sncg, Thy1, Resp18, 

Slc17a6, Stmn2, Chrnb3) expression patterns were shown in Fig3.3.6.1.2 and the expression level were 

shown in the violin plot Fig3.3.6.1.3. Data suggested high expression level of RGCs marker genes were 

found in subcluster 11 and 16, thus classified as separate RGC subcluster, RGC-2 and RGC-1 respectively.  

Fig3.3.6.1.1 tSNE subclustering of “RGC”, “Unidentified-2” and “Unidentified-6” from the main plot  



 

Fig3.3.6.1.2 RGC specific markers expression in tSNE subclusters  

 

Fig3.3.6.1.3 Violin Plot of RGC specific markers expression in tSNE subclusters   



3.3.6.2 RGC-subtype ontological analysis 
As the clustering algorithm created 2 sub-clusters of RGCs, expressional differences between the two sub-

clusters as well as difference among WT and KO cells within those clusters became of interest.  

Although both clusters showed expression of typical RGC markers, differential expression between RGC-

1 and RGC-2 showed some specific markers for these RGC sub-types. As shown in Fig.3.3.6.2.1a, RGC-1 

exclusively expressed Baz2b, Gng5, Plpp3, Rps26 while RGC-2 expressed Cartpt, Scd2, Srinc3, Tmem130. 

These novel markers for RGC subtype may help facilitate the identification of the respective RGC subtype 

within in-vivo samples.  

Cells of both RGC-1 and RGC-2 were plotted using tSNE projection in Fig3.3.6.2.1b, while Fig.3.3.6.2.1c-d 

separated these cells by their WT or KO origin respectively. As shown from these figures and Fig.3.3.6.2.1e, 

number of RGCs in RGC-1 was significantly reduced in KO compared to WT (*P<0.01, Wilcoxon rank-sum 

test). This suggests a depletion of a specific RGC subtype under the influence of ABCA1 KO.  

Ontological analysis was performed by comparing KO vs WT cells in RGC-1. Disease and Functions affected 

in the KO population were shown in Table3.3.6.2.1. Functions related to “Neoplasia”, “Degranulation”, 

“Cerebral disorder” and “Neurological disorder” were activated, while pathways related to 

“Axonogenesis”, “Quantity/ Differentiation/ Formation of retinal cells/ neurons” were significantly 

downregulated. This data strongly suggests that RGC-1 experienced degeneration, deterioration, and 

depletion phenotype that is typical in multitude of neurological disease, likely due to the effects of 

neuroinflammation activity and environment within KO retinae.  

  



Fig3.3.6.2.1a) Dot Plot of RGC subtype markers. b) RGCs tSNE plot. c) WT only RGCs. d) KO only RGCs.  
e) RGC-1 and RGC-2 percentage per sample. 

 

Diseases or Functions Annotation p-value z-score 

Neoplasia of cells 1.07E-49 1.475 

Degranulation of cells 8.32E-18 1.221 

Degranulation 6.39E-18 1.1 

Cerebral disorder 2.18E-24 1.056 

Apoptosis 1.01E-54 0.798 

Progressive neurological disorder 1.09E-32 0.363 

Congenital neurological disorder 1.72E-15 0.126 

Synaptic transmission of cells 1.2E-15 -0.111 

Formation of brain 1.11E-30 -0.177 

Differentiation of nervous system 1.65E-30 -0.245 

Formation of retinal cells 1.78E-16 -0.476 

Axonogenesis 1.4E-17 -0.786 

Morphogenesis of neurons 1.2E-31 -0.866 

Neuritogenesis 5.28E-30 -0.866 

Quantity of retinal cells 2.46E-17 -0.902 

Differentiation of neurons 1.17E-24 -0.908 

Development of neurons 3.03E-40 -1.32 

Quantity of cells 1.38E-45 -1.455 

Quantity of neurons 2.83E-28 -1.859 

Quantity of nervous tissue 4.74E-29 -1.877 

Table3.3.6.2.1  Disease and Functions pathway activated in RGC-1 cells of KO samples.  

  



Fig3.3.6.2.2 KEGG analysis for a) enrichment and b) under-enrichment of genes expressed in RGC-1. 

To further consolidate the identity of the RGC subtype experiencing neurodegeneration in the KO model, 

Kyoto Encyclopedia of Genes and Genomes (KEGG)(Kanehisa et al., 2008) was utilized by analyzing the 

highly expressed gene list of RGC-1 cluster. As shown in Fig3.3.6.2.2a, genes such as Grin3a, Gng5 were 

enriched in RGC-1, which belongs to the “Glutamatergic synapse” pathway, while Fig3.3.6.2.2b shows 

genes such as Gabra1, Gngt2 which belongs to the “GABAergic synapse” pathway being under-enriched. 

As genes such as Grin3a were downregulated in KO RGC-1 cells, this data suggests RGC-1 subtype in the 

retina is particularly sensitive to neuronal damage induced by the alteration or malfunction of the 

glutamatergic synapse, such as excitotoxicity induced neurodegeneration and apoptosis.  

  

a b 



3.3.7 Immune cells subcluster 

Ontological data analysis from previous sections suggested strong evidence of neuroinflammation in KO 

retinal tissues, thus piqued the interest of investigating immune response within the scRNA data.  

As suggested by the main integrated data plot in Fig3.3.3.3, an “Immune cell” cluster can be found on the 

top of the plot, distanced away from most of other cell types. To further investigate the composition of 

that cluster, subclustering was performed and projected into the tSNE plot in Fig3.3.7.1A. 5 subclusters 

were created, with KO samples having significantly higher number of cells in all clusters in subclusters 

were created, with KO samples having significantly higher number of cells in all clusters in comparison to 

WT samples, as shown in Fig3.3.7.1B-D.  

Fig3.3.7.1a) tSNE plot of Immune cell cluster. b) Immune cells cluster cell counts. c-d) tSNE plot of Immune 

cell cluster from c) WT and d) KO samples. 



Fig3.3.7.2 Expression levels of P2ry12 and C1qa in Immune Cell cluster of WT and KO samples.  

Fig3.3.7.2 shows the level of expression of signature genes P2ry12 and C1qa from WT and KO samples. 

Previous studies (Jiao et al., 2018; Masuda et al., 2020; van Hove et al., 2019) suggested P2ry12+/C1qa+ 

cells label inactive residential microglia in the retina, while loss of expression of P2ry12 and the 

combinational marker of P2ry12-/C1qa+ suggests the activation of microglia or invasion of active 

macrophages. Observed from the figure, all cells from subcluster-1 expressed both P2ry12 and C1qa. 

However, cells from the rest of the subclusters expressed high level of C1qa but not P2ry12, and majority 

of cells from those subclusters originated form KO samples. Altogether, evidence of macrophage invasion 

and microglia activation from the immune cell cluster provided strong evidence of neuroinflammation 

and immune response activation in ABCA1-/- mouse retinas, potentially contributing to a subtype specific 

RGC apoptosis or degeneration. 

  



3.4 Discussion 

3.4.1 Choice of cell number per samples 

In this experiment, we have successfully established and implemented the full pipeline of single cell RNA-

seq analysis to examine WT and KO mouse retina. Tissue dissociation protocols were refined with multiple 

iteration before applying onto the actual samples, allowing us to achieve a sample viability of over 90% in 

all samples prepared. Thus, it was concerning initially when we received the early stage analysis of the 

sequencing data from 10X CellRanger, as the number of “cells” detected per sample were much lower 

than expected despite a satisfactory sample preparation procedure.  

As suggested by the human protein atlas (Tissue-based map of the human proteome) and the mouse cell 

atlas study (Macosko et al., 2015b), genes expression enriched or elevated in the retinal cell population is 

fairly low in comparison to other tissues in the body. Within the retinal tissue however, number of genes 

expressed may differ depending on the cell type and their functional requirements. Fig3.4.1 shows the 

number of differentially expressed gene detected within different cell types detected in the mouse cell 

atlas study for retinal tissue (Macosko et al., 2015b). Rod photoreceptors expressed the least number of 

enriched genes in comparison to other cell types. However, Fig3.4.2 displaying the number of cells within 

each cell type showed that number of rod photoreceptors in the retina is magnitudes more than the 

others. This distribution was also found in our single cell dataset.  Thus, the majority of the actual cells 

captured in the single cell samples consist of low-expressing rod photoreceptors, in which the default cell 

calling algorithm would have discarded assuming they were empty droplets. Although the focus of our 

study did not include photoreceptors, extremely stringent cell selecting would result in omitting most of 

the cells sequenced in the data, including other cell types which has a lower sequencing depth. Our 

approach of forcing top 9000 cells to be included in subsequent analysis made sure we included majority 

of the cells sequenced, including really low expressing cells, and filter them out once they are labelled   



Fig3.4.1 Number of differentially expressed genes detected in different cell types (Macosko et al., 2015b). 

Fig3.4.2 Number of cells in different cell types (Macosko et al., 2015b). 

irrelevant, such as filtering through percentage of mitochondrial gene expression and clustering them into 

photoreceptor clusters.  

As suggested by Fig.3.2.2.1, the significant increase in number of cells included by forcing 9000 cells in 

comparison to the default cell calling algorithm, the number of mean reads and median genes per cell did 

not receive a significant drop. In fact, sample WT2, KO3 and KO4 has an increase in number of mean reads 



per cell, suggesting default cell calling algorithm ignored large amount of cells which has substantial 

amount of reads sequenced. Subsequent analysis showed that the inclusion of more cells facilitated the 

clustering and identification of different clusters, including the extremely small amount of retinal ganglion 

cells that could have been omitted.  

3.4.2 Challenges in identifying cell clusters 

Rod photoreceptor dominance in the dataset not only affects the estimation of cells and the relevant 

statistics on average reads and genes detected, but also contribute to challenges in identifying cell types 

through biomarkers. Although sample viability was satisfactory, some level of background contamination 

might not be avoidable due to the nature of the single cell capturing technology that 10X Chromium 

system employs. The Drop-seq methods captures cells into droplets, but if there are RNA material 

contamination within the dissociated solution, mostly from the contents of dead cells, droplets may 

include them and be included in the expression profile of the single cell. Due to the high proportions of 

rod photoreceptors, majority of the contamination profile originates from this cell type. Thus expression 

of certain rod photoreceptor markers such as Rhodopsin (Rho) can be found in almost all cells at different 

levels. Estimation and filtering of these background contamination expression profile is hence 

recommended, especially in samples with higher contamination level, which will be demonstrated in the 

next chapter.  

Gene dropout is another limitation that this single cell experiment faces which contributes to the 

challenges of identifying discrete cell types. 10X Genomics’ technology expertise in capturing and 

sequencing large amounts of single cell per sample, but suffer from lower sequencing depth (number of 

genes detected) in comparison to other single cell sequencing methods such microfluidics or microwell 

technology. Gene dropout thus happens when certain genes are observed at moderate or low amount in 



certain cells in a cluster, while other cells have completely no expression detected (Kharchenko et al., 

2014). 

This event is particularly prominent in single cell expression profiling due to the stochastic nature of mRNA 

expression and capturing, which amplifies by the fact that there is comparatively less mRNA expression 

within a single cell in comparison to a full sample in bulk RNA-seq. Since the identification of cell types 

rely on expression of cell type markers, inferring number of cells labelled with certain cell types can be 

difficult if the marker genes were not captured.  

Major example includes expression of ABCA1, the key gene of our experiment, which supposedly is the 

marker for astrocytes. Although genotyping data verified the expression of said gene in WT samples and 

no RNA found in KO samples, extremely limited reads of ABCA1 was detected across all samples. Thus the 

use of combinational markers is significantly important in identifying cell type labels for clusters, and the 

average expression levels of a gene in a cluster can be assumed to deduce expression level of such gene 

in all cells within the cluster. This assumption allows us to define the Müller glia and astrocyte 

subpopulation, as well  as RGCs, microglia and macroglia cells.  

Cell types which share large amount of expression markers also contribute to challenges in distinguishing 

cell types, namely Müller glia and astrocytes. These glial cells were well defined in their functions and 

characteristics within the retina and the nervous system, but their similarities lead to sharing of multiple 

common expression markers such as Vim, Gfap, Glul  or Slc1a3 (Geisert et al., 2009; Lukowski et al., 2019). 

Separation of these cell types should ideally be dictated by unique and specific cell markers that are 

expressed in one type but not the other. However, this is often not possible due to gene dropout 

phenomenon such that these genes are usually not detected at all. Similarly, progenitors at different 

stages of differentiation or cells sharing similar origins such as RGCs, amacrine and horizontal cells also 

faces similar issues, making the labelling process mentioned in Chapter 3.3.6.1 challenging. Labelling was 



eventually achieved by assessing levels of expression of the combinational markers expression, which 

yielded satisfactory results that are comparable with other literatures relating to single cell mouse atlas. 

Future staining or imaging methods would be beneficial to verify validity of combinational markers used, 

but could also be an opportunity to utilize differential expression gene lists created from sub-clustering 

to identify novel cell type markers.   

3.4.3 Neuroinflammation induced RGC loss in KO retina 

Following the clustering analysis of the single cell data, ontological analysis using IPA was performed on 

mutli-level of the dataset. Differentially expressed genes sets between WT and KO samples can be 

obtained on a whole sample level, but also by comparing specific cell types between the two conditions. 

Canonical pathway analysis all showed high levels of neuroinflammation occurring in the KO samples, 

signifying the absence of ABCA1 expression in the astrocytes causes immune and inflammatory response 

in the retina, and activating different related pathways in different cell types. Evidence of 

neuroinflammation in the nervous systems has suggested to contribute to the development of 

Alzheimer’s disease (Heneka et al., 2015), Parkinson’s disease (Grotemeyer et al., 2022; Q. Wang et al., 

2015), where the roles of astrocytes and microglia activation contributes to the inflammatory response 

which leads to toxic functions and neurodegeneration. As the retina is part of the central nervous system, 

connections between neuroinflammatory response and neurodegenerative disease can be insightful to 

investigate. Our data identified specific pathways that are highly activated in these relevant cell types, in 

which pathway such as CXCR4 Signaling were identified to have increased risk for progressive 

supranuclear palsy and Parkinson’s disease (Bonham et al., 2018). Microglia activation was also detected 

as shown in Chapter3.3.7, with an increasing number of macrophages found in KO samples, further 

consolidating the evidence of neuroinflammation and inflammatory response. 



Downstream effect of this mechanism and the effect of the KO can be seen in the changes in number and 

pathways activated in the RGC population. Although the number of RGCs identified were limited, which 

is an accurate representation of the population distribution of this cell type, neurodegenerative pathways 

and related mechanisms were shown to be activated. Depletion in number along with evidence of 

neurodegeneration found in RGC, aligns with the findings of our collaborators studying this ABCA1-/- 

model while additionally providing insights onto cell type specific gene and pathways variations and 

changes. In particular, the identification of injury susceptible RGC subtype invites further investigation on 

relation between astrocyte dysfunction and excitotoxicity related neurodegeneration.   

3.5 Conclusion 

In this chapter, we have implemented and performed the single cell RNA-seq analysis experiment on 3 

WT and 5 ABCA1-/- mouse retinal samples. Successful sample preparation led to satisfactory sequencing 

data, and the full Seurat Integration pipeline was implemented to conduct further bioinformatics analysis 

of the sequencing data. Different cell types of the retina were identified, with focuses on Müller glia, 

astrocytes, retinal ganglion cells (RGCs) and immune cells such as microglia and microglia. Ontological 

analysis suggested activation of neuroinflammation and senescence related pathways in most cell types, 

and further evidence of neuroinflammation was found by the microglia activation and macrophage 

invasion in KO samples. Neurodegeneration pathways were activated in KO RGCs, with a particular 

subtype found with less in number and determined to be more vulnerable to excitotoxicity.  

  



Chapter 4: P2Y6-/- Experiment 

4.1 Preface 
Different types of glaucoma affect different groups of patients around the world, with majority of them 

suffering from Primary Open Angle Glaucoma (POAG). The most prominent feature of this disease involves 

the increase in Intraocular Pressure (IOP), which is the fluidic pressure built up within the eye by balancing 

between aqueous humor production and outflow. The mechanistic relationship between IOP increase and 

retinal damage is still fairly uncertain, thus the animal model supplied by our Japanese collaborators, the 

P2Y6 knockout model (KO), provided an opportunity to study transcriptomic changes in retinal tissues 

affected by substantial increase in IOP.  

In this chapter, we attempted to use single cell RNA-seq to analyse retinal tissue samples of both wild-

type (WT) and P2Y6-/- (KO) mouse. Low viability sample preparation had created highly contaminated 

sequencing data samples, in which we tried to implement different bioinformatics algorithm to estimate 

and remove background contamination expression profile. The data was then proceeded with the rest of 

the single cell data analysis pipeline to filter, normalize, integrate and visualize the dataset, and identified 

major important cell type clusters such as RGCs and Glial cells. 

4.2 Tissue Preparation 
Three WT and three P2Y6-/- (KO) mouse were used for this experiment. Due to limitations during the 

Covid-19 pandemic, KO model mouse were not able to be transported to the UK. Hence the sample 

preparation and 10X Single cell experiment were performed by our collaborator in Japan with accordance 

to the methods mentioned in Chapter 2.2.3.2. Dissociation protocol employed was different from that 

was used in the ABCA1-/- experiment, which yielded sample viability of about 30%-50% among different 

samples. Fig4.2 showed some example images from the Trypan blue assay, suggesting the presence of 

dead and clumpy cells sound in the dissociated samples. These samples were ultimately still proceeded 



for scRNA experiment using the 10X Chromium Single-Cell 3’RNA-seq v3.1 kit and sequenced on the 

Novaseq S4 platform.  

Fig4.2 Example images from Trypan blue assays of dissociated samples for P2Y6-/- experiment. 

4.3 Data Analysis 

4.3.1 10X Genomics CellRanger output 

CellRanger mkfastq output for all samples were obtained from our collaborators. Table4.3.1 summarizes 

the statistics for each sample, with over 95% of reads from all samples were mapped to the mouse 

genome, suggesting a high quality of sequencing. Other information, however, showed interesting 

differences in comparison with ABCA1-/- experiment.  

Fig4.3.1a-c displays the data for estimated number of cells, mean reads per cell and median number of 

genes per cell respectively for all samples. As the scRNA experiments were conducted at 3 different times, 

each with a pair of WT and KO samples, their statistics showed pairwise trends as well with high 

fluctuation between paired samples. The “estimated number of cells” and “mean reads/cell” showed 

inverse relation, suggesting the high number of “cells” are likely due to the inclusion of more empty 

droplets or droplets containing very little RNA content, such as that of background contamination, by the 

default cell-calling algorithm employed by CellRanger. Thus the actual number of single cells per sample 

could be theorized to be the average among all samples (~30,000). This number is still significantly higher 

than that of ABCA1-/-. With consideration of a generally lower viability of samples for the P2Y6-/- 



experiment, there is a higher likelihood that these samples contain high levels of background 

contamination of RNA molecules from dead or dying cells. Thus a stronger and stricter quality control and 

filtering is required to avoid inclusion of low quality, uninformative and contaminated droplets or cells.  

 

Table4.3.1 CellRanger sequencing output summary of P2Y6-/- experiment samples 

Fig4.3.1a) Estimated number of cells, b) mean reads per cell and c) median number of genes per cell in 

P2Y6-/- samples. 

 

4.3.2 SoupX – Contamination estimation and removal 

Estimation of highly contaminated expression profile of single cells droplets can be challenging as it is 

indistinguishable whether RNA materials originated from a single cell, or if it was included in the droplet 

as RNA molecules that were suspending in the dissociated solution. SoupX (Young & Behjati, 2018) is an 

algorithm developed to estimate and remove the transcriptomic profile of background contamination, 

and was applied onto P2Y6-/- samples as prefiltering quality control.  

  

 Estimated no. 
of cells 

Mean 
reads/cell 

Median 
gene/cell 

Sequencing 
saturation (%) 

% Reads mapped 
to genome 

total genes 
detected 

WT1 25989 17494 256 90.2 96 18301 

WT2 14276 34733 481 87.3 96.1 18744 

WT3 48627 10623 229 90.2 96 18971 

KO1 25495 20454 261 90.5 95.7 18600 

KO2 11443 45636 345 91.5 95.8 17683 

KO3 49480 10022 259 87.6 96.1 19181 



4.3.2.1 Unfiltered samples 

Initially, individual samples of the P2Y6-/- experiment were analysed by processing through the Seurat 

pipeline. CellRanger count function creates the expression matrix of filtered cells, which contains rows of 

genes identified, and columns of barcodes belonging to droplets that the cell-calling algorithm identifies 

as “cell”. This matrix is then processed by normalization, top 2000 most variable genes extraction, scaling, 

PCA, clustering using the first 15 PCs and a granularity of 1.5, and ended with a UMAP projection. 

Fig4.3.2.1.1-2 column A shows the UMAP projection for all 6 samples. To assess the level of 

contamination, expression level of rod photoreceptor marker Rho was inspected. As mentioned before, 

they are the cell type that are most abundant in the retina, thus majority of the RNA molecules that 

constitute the background contamination profile should originate from rod photoreceptors.  

Expression levels of Rho in different samples were suggested to be high across all cells in all samples, as 

shown in Fig4.3.2.1.1-2 column B. Alongside with other rod photoreceptor markers, this consolidates the 

suspicion on high background contamination among all samples, as these markers should only exclusively 

express in rod photoreceptors and none in other cell types. SoupX plotMarkerMap function creates the 

plots shown in Fig4.3.2.1.1-2 column C, which indicate the ratio between the level of expression of Rho in 

each cell to the average value across the sample. Cells labelled in green suggests high likelihood that Rho 

expression belongs to the single cell captured in the droplet, i.e. Rod photoreceptors, which corresponds 

to clusters with high expression of Rho in Fig4.3.2.1.1-2 column B. Expression of Rho in other cells are thus 

likely due to background contamination, in which SoupX was then implemented to estimate its level and 

attempt to remove accordingly.  

4.3.2.2 Contamination profile and fraction estimation 

CellRanger count function employs their cell-calling algorithm to produce the “filtered expression matrix” 

of droplets regarded as cells, but also creates a “raw expression matrix” which includes all droplets that 

was sequenced during the 10X experiment. SoupX utilizes both matrices to estimate the expression profile 



 

Fig4.3.2.1.1 Rows: WT samples. Column A: Original unfiltered UMAP projection. Column B: Rho 

expression.   



Fig4.3.2.1.1(cont) Rows: WT samples.  Column C: Rho expression measured by the ratio between 

individual expression and average Rho expression level. Green labels signify the likelihood that Rho 

expression in that droplet belong to the cell. Column D: Rho expression changes after SoupX correction.



Fig4.3.2.1.2 Rows: KO samples. Column A: Original unfiltered UMAP projection. Column B: Rho expression.   



Fig4.3.2.1.2(cont) Rows: KO samples.  Column C: Rho expression measured by the ratio between individual 

expression and average Rho expression level. Green labels signify the likelihood that Rho expression in 

that droplet belong to the cell. Column D: Rho expression changes after SoupX correction.  



of the empty cells, i.e. droplets in the “raw expression matrix” that was not in the “filtered expression 

matrix”. autoEstCont function then estimates the level of contamination (rho, ρ) and predicts the amount 

required to remove the background contamination profile. Fig4.3.2.1.2 shows the estimation of ρ in all 6 

samples, where the solid line represents the likelihood of ρ being accurate, with the most probable value 

labelled at the red line. Besides from WT1, all other samples have a ρ value higher than 0.6, suggesting 

over 60% of expression could be contamination. This could be due to 1) an extremely high level of 

background contamination observed in all cells among all samples, or 2) the background expression profile 

is similar to the expression profile of the majority of cell types, which are the rod photoreceptors. To 

effectively utilize the estimation algorithm of SoupX but also preserve as much biological information 

hidden within the data without over-filtering, a lower peak value (indicated by the blue line in Fig4.3.2.1.2) 

was chosen for the samples as an estimation of the contamination fraction ρ.  

Fig4.3.2.2 Estimation plot produced by autoEstCont function to predict likelihood of contamination 
fraction being a true representation of the sample data. Red line represents maximum likelihood chosen 
by the algorithm, while the blue line represents the conservative value chosen. 



4.3.2.3 Contamination removal 

After determining the contamination factor for each sample, adjustCounts function was applied to remove 

contamination expression from the data. Fig4.3.2.1.1-2 column D showed the changes in expression of 

Rho in all 6 samples after the SoupX correction, with projection coordinates from the previous UMAP. 

Lighter color signifies less to no correction, while the darker color indicates a high level of contamination 

removal. This procedure appropriately conserved expression at regions that would be green in plots from 

column C, which were established to be likely rod photoreceptors, while the other cells received 

correction and contamination removal. Fig4.3.2.3.1-2 left column shows the new UMPA projection of the 

corrected expression matrix after processing through the Seurat analysis pipeline again. The right column 

showed  

expression of Rho from the corrected data, and there were clearly more cells and clusters with lower to 

no expression in comparison to pre-corrected data (Fig4.3.2.1.1-2 column B). Clustering of the post-

correction data also showed more distinctive and well-separated cell clusters with less overlap in 

comparison to pre-correction data, suggesting the SoupX process helped remove common noises and 

background contamination which can facilitate downstream analysis in identifying individual cell types.  

  



Fig4.3.2.3.1 Rows: WT samples. Left column: UMAP projection of SoupX-corrected expression data after 

re-analysed through the Seurat pipeline. Right column: Rho expression of corrected data in the new 

UMAP.  



Fig4.3.2.3.2 Rows: KO samples. Left column: UMAP projection of SoupX-corrected expression data after 

re-analysed through the Seurat pipeline. Right column: Rho expression of corrected data in the new 

UMAP.  



4.3.3 Seurat integration 

4.3.3.1 Pre-filtering 

SoupX-corrected data helped removed gene expression that originates from background contamination, 

and improved clustering ability of the Seurat algorithm. However, no cells were removed in that process, 

and these data points remained in the sample despite likely not containing any useful information after 

the SoupX process. To further refine the population included in these 6 samples, their number of genes 

detected, number of read counts included and percentage of mitochondrial RNA (%MT) were used as 

parameters for further filtering. Table4.3.3.1 showed the values chosen for minimum and maximum 

number of genes detected per cell, and maximum number of reads per cell to remove empty and low 

content cells as well as potential doublets, while maximum %MT limits the inclusion of dead or dying cells. 

A more stringent filter was applied to samples WT3 and KO3 by removing more low-expressing cells, such 

that the average number of genes and reads per cell as well as the total number of cells within these 

samples are more comparable to the others. The resultant average of 17,000 cells per sample were used 

in subsequent Seurat analysis.  

Table4.3.3.1 Filtering values used on SoupX-corrected samples to further remove low quality cells. 

4.3.3.2 All samples Integration 

Filtered and corrected expression profile matrices from the 3 WT and 3 P2Y6KO samples were used for 

the Seurat Integration pipeline, as mentioned in Chapter 2.3.2.5. The total of 105,772 cells were processed 

through the pipeline of normalization, integration, scaling, PCA, then using the top 25 PCs (Fig4.3.3.2.2) 

for clustering and UMAP projection, creating the plot shown in Fig4.3.3.2.3. With reference to suggestions   

 
Min No. of 
genes 

Max No. of 
genes 

Max No. of 
reads 

Max %MT  Initial Cell 
No.  

Filtered Cell 
No. 

% Cells 
removed 

WT1 100 2000 3000 20 25989 20955 19.37 

WT2 100 2000 3000 20 14276 12595 11.78 

WT3 200 1000 2000 20 48627 22681 53.36 

KO1 100 1000 2000 20 25495 18132 28.88 

KO2 100 2000 2200 20 11443 8859 22.58 

KO3 140 1000 1000 20 49480 22550 54.43 



from the developers of Seurat (Tips for integrating, RPCA), reciprocal PCA (RPCA) were used instead of the 

default algorithm canonical correlation analysis (CCA) for integrating larger datasets with more cells. Both 

methods created similar results for datasets that originate from the same 10X platforms and have majority 

of cell types preserved across samples. Computational power and elapsed time for the 

FindIntegrationAnchors function was significantly reduced with RPCA. As suggested by Fig4.3.3.2.1, 

samples from both WT and KO were projected onto overlapping regions, showing effective batch effect 

removal and integration from the process.  

Following repeated testing and evaluation, granularity of 1.1 as a resolution was used for the FindCluster 

function to create 30 different clusters, as shown in Fig4.3.3.2.3. Differential gene expression of each 

cluster was computed, and labelled with their respective cell identity based on high expression of retinal 

cell type markers. Fig4.3.3.2.4 displays the cell cluster expression of different markers by a dot plot, while 

Table4.3.3.2.1-2 tabulates cell types number and distribution across different samples respectively. 

Fig4.3.3.2.5-7 displays the expression level of different cell type markers in the integrated dataset. 

Majority of the cell types were dominated by rod photoreceptors as expected, with other cell types having 

similar relative similar proportions to regular retina and that of ABCA1-/- experiment. Markers belonging 

to different cell types such as amacrine cells, horizontal cells, progenitor cells or cells undergoing cell 

divisions were found in their relative clusters labelled in Fig4.3.3.2.3, which were grouped under the 

“other” cell type label in Table 4.3.3.2.1-2 as they are not the focus of our study.  

Refined subclustering of these cell types can be performed in the future should these cell types become 

relevant to investigating mechanism and expressions related to glaucoma development. Clusters labelled 

as Müller glia and RGCs have a higher percentage in comparison to the ABCA1-/- experiment, due to the 

region in which their markers were highly expressed are bigger and contained more cells. Further 

subclustering and refinement of these specific cell types were performed in the following section to 

identify these cell types more accurately. 



Fig 4.3.3.2.1 UMAP plot of integrated cells from 3 WT and 3 P2Y6-/- dataset 

 

Fig4.3.3.2.2 Elbow Plot from PCA of the integrated dataset of P2Y6-/- experiment. 
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Fig4.3.3.2.4 Dot plot of the integrated P2Y6-/- experiment samples, showcasing expression of differential 

cell type markers in different clusters. 

Samples total No. 
Rod 

No. 
Cone 

No. MG No. 
Bipolar 

No. 
RGC 

No. 
Immune 
cells 

No. 
RPE 

No. 
Endothelium 

No. 
Others 

WT1 20955 11821 827 2035 957 792 138 24 48 4313 

WT2 12595 9035 364 628 397 259 78 12 24 1798 

WT3 22681 12111 985 4258 1197 886 151 3 51 3039 

KO1 18132 9988 864 1871 1101 1110 93 9 20 3076 

KO2 8859 6390 300 613 334 273 56 7 6 880 

KO3 22550 14637 922 1626 2255 1099 218 5 6 1782 

Total  105772 63982 4262 11031 6241 4419 734 60 155 14888 

Table4.3.3.2.1 Cell counts of different cell types from P2Y6-/- experiment samples. “Others” include cell 

types such as amacrine, progenitor, or empty cell clusters which were not the focus of the study. 

Samples %  
Rod 

%  
Cone 

%  
MG 

% 
Bipolar 

% 
RGC 

% Immune 
cells 

% 
RPE 

% 
Endothelium 

% 
Others 

WT1 56.411 3.947 9.711 4.567 3.780 0.659 0.115 0.229 20.582 

WT2 71.735 2.890 4.986 3.152 2.056 0.619 0.095 0.191 14.276 

WT3 53.397 4.343 18.773 5.278 3.906 0.666 0.013 0.225 13.399 

KO1 55.085 4.765 10.319 6.072 6.122 0.513 0.050 0.110 16.964 

KO2 72.130 3.386 6.920 3.770 3.082 0.632 0.079 0.068 9.933 

KO3 64.909 4.089 7.211 10.000 4.874 0.967 0.022 0.027 7.902 

Total  60.490 4.029 10.429 5.900 4.178 0.694 0.057 0.147 14.076 

Table4.3.3.2.2 Cell count distribution of different cell types from P2Y6-/- experiment samples.  

 



Fig4.3.3.2.5A-D: Rod cell markers expression. E-H: Cone cells markers expression.  



Fig4.3.3.2.6A-D: Müller glia markers expression. E-H: RGC cell markers expression. 



Fig4.3.3.2.7A-B: Bipolar cell markers expression. C-D: Immune cell markers expression. E-F RPE cell 

markers expression. G-H Endothelium cell markers expression 



4.3.3.3 Subclustering of RGCs 

With the ABCA1-/- sample, numbers of RGCs were extremely limited due to the small number of cells 

included per sample, and that the population of RGCs within the retina is much lower in comparison to 

other cell types. As our studies focuses on studying glaucoma which primarily affects RGCs, maximizing 

the number of RGCs that can be found from the samples were important. Fig.4.3.3.3.1 showed violin plots 

of cells that expressed RGC cell markers Nefl, Thy1, Stmn2, Resp18. Cells expressing these genes were 

found mostly in cluster 11, hence labelled as the “RGC” cluster, but some were also found in cluster 18. 

As the lists of differentially expressed genes of cluster 18 included markers of RGCs, amacrine cells and 

bipolar cells, the identity of this cluster cannot be precisely defined. To prevent ignoring cells that may be 

RGCs that were not included in cluster 11, cells from both cluster 11 and cluster 18 were separated to 

create their own subset of data.  

Subset data from cluster 11 and 18 were combined and processed through the Seurat analysis pipeline. 

This includes PCA, where the first 15 PCs were used for clustering using a granularity resolution of 0.7, and 

the results were projected as UMAP as shown in Fig4.3.3.3.2.  Expression of RGC markers were once again 

inspected, and those with higher visibility were shown in Fig4.3.3.3.3A-D. These figures suggested the 

subclusters of cells in the middle expressed high levels of RGC markers, thus subcluster 6 was labelled as 

RGCs. Fig 4.3.3.3.2E showed the distribution of subcluster 6 and labelled with WT or KO sample origin. A 

noticeable small cluster of cells below the majority of the RGCs were shown to be only originating from 

KO samples, suggesting those RGCs might have KO specific expression and behaviour which differs from 

that from WT samples. 

  



Fig4.3.3.3.1 RGC cell marker expression plot of integrated dataset. High level of expression was found in 

cluster 11, and some in cluster 18. 

Fig4.3.3.3.2 UMAP Subclustering of cells from cluster 11&18.   



Fig4.3.3.3.3A-D: RGC cell marker expression in subclustering plot. E: Subcluster 6 split by WT and KO. 

 

4.3.3.4 Subclustering of Glial cells 

Identification of Müller glia and astrocytes was attempted using a similar approach. As mentioned 

previously in Chapter 3, Müller glia and astrocytes share common markers, thus the clusters were labelled 

as “Müller glia” in Fig4.3.3.2.3 may also contain astrocytes, in which a more detailed subclustering is 

required to refine the labelling of these glial cell types.  

Fig4.3.3.2.6A-D showed high level of expression of some markers in cluster 5, while a smaller amount was 

also found expressed in cluster 10. Again, to maximize the number of glial cells included, cells from cluster 

5 and 10 were combined and proceeded with subsequent subclustering analysis. Fig4.3.3.4.1 showed the 

UMAP projection created after clustering with a granularity resolution of 0.4 using the top 20 PCs from 

the PCA.  

 



Fig4.3.3.4.1 UMAP subclustering of cells from cluster 5 & 10. 

Fig4.3.3.4.2 Müller glia subcluster UMAP split by cluster origin.  
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Fig4.3.3.4.2 showed the distribution of cells from cluster 5 and 10 of the original clustering. The plot 

showed that majority of cells from cluster 5 belongs to the left area, while most of the cells from cluster 

10 belongs to the right region. To identify cluster and cell type markers, differential expression of each 

cluster compared against the rest of the cells were obtained using FindMarker function. Expression of 

different Müller glia or astrocyte markers are displayed in Fig4.3.3.4.3A-I, with Fig4.3.3.4.3J showing the 

dot plot of genes from the top 2 most expressed genes from each subcluster. Subcluster 1 and 2, which 

are predominantly made up of cells from cluster 10, expressed high levels of rod photoreceptor markers 

such as Pde6g and Rho, and are thus not included in the Müller glia or astrocyte label. Majority of the rest 

of the cells expressed some levels of Glul, Clu, and Apoe, which are known Müller glia or astrocyte markers. 

Interestingly, almost all other subclusters exclusively highly expresses certain Müller glia markers, such as 

Spc25, Vim, Sparc, Gnai2, S100a16 or astrocyte marker Aqp4. As there is a lack of combinational markers 

that indicate specific subclusters to be expressing multiple astrocyte markers, isolating astrocytes from 

the Müller glia population can be difficult without clear exclusive markers. Thus although subcluster 20 

exclusively express high level of Aqp4, further verification is needed to label such cluster as astrocytes 

deterministically.  

  



4.4 Ontological Analysis 

Brief ontological analysis was then performed using differential expression gene lists obtained from three 

comparisons: “ALL” category labelled comparison between all cells from KO samples and that of WT 

samples, “MG” category labelled comparison between all Glial cells (classified in chapter 4.3.3.3) from KO 

and WT samples, and “RGC” labelled such comparison of RGCs from chapter 4.3.3.2. Three differential 

expression gene lists were inputted into IPA, providing data about the canonical pathways that were 

activated. Resultant canonical pathways lists were compared across three categories and vertically 

combined. 

After inspection of the resultant table, pathways related to 4 biological events are listed here. 

“Neuroinflammation” and “Senescence” related pathways were displayed in Table 4.4.1 and Table 4.4.2, 

sorted by descending z-score of the comparison between all cells (ALL). Activation of these pathways were 

found to be high in “ALL” and “MG” category, signifying signs of neuroinflammation and senescence in 

most KO samples, including Müller glia. The activation of neuroinflammation were limited in the RGC 

clusters, while strong activation of senescence related pathways such as “EIF2 signaling”, “SNARE 

signaling” and “Ephrin Receptor signaling” were found with high confidence.  

 “Angiogenesis and Hypoxia” and “Fibrosis” related pathways were displayed in Table 4.4.3 and Table 

4.4.4, sorted by the descending z-score of the comparison between all Müller glia (MG), as these events 

have been related to the roles of Müller glia and astrocytes in the retina under insults and injuries. Indeed, 

strong activation of pathways such as “FAK signaling”, “Signaling by Rho Family GTPases” and “HIF1α 

Signaling” suggests angiogenesis and hypoxia related responses occurring in Müller glia, along with 

activation of “Pulmonary Fibrosis Idiopathic Signaling Pathway”, “Wound Healing Signaling Pathway” and 

“Hepatic Fibrosis Signaling Pathway” suggesting occurrence of fibrosis.  

 



Neuroinflammation 

ALL MG RGC 

 -log(p-
value) z-score 

 -log(p-
value) z-score 

 -log(p-
value) z-score 

Neuropathic Pain Signaling In Dorsal 
Horn Neurons 5.49 2.558 5.49 -0.426 5.55 0.426 

Th2 Pathway 1.94 2.53 1.94 1.897 1.67 0 

IL-3 Signaling 0.652 2.121 0.654 1.414 0.666 -0.707 

IL-17A Signaling in Gastric Cells 1.42 2 1.42 2 1.43 1 

CCR3 Signaling in Eosinophils 5.81 1.89 5.82 0.378 5.88 0.378 

B Cell Receptor Signaling 0 1.886 0 0.943 0 0.728 

Regulation of IL-2 Expression in 
Activated and Anergic T Lymphocytes 0 1.732 0 1.155 0 0.577 

Type I Diabetes Mellitus Signaling 0 1.633 0 1.633 0 -0.816 

Type II Diabetes Mellitus Signaling 2.07 1.633 2.07 0.816 2.11 -2.449 

IL-7 Signaling Pathway 0.672 1.414 0.674 1.414 0.686 0 

CCR5 Signaling in Macrophages 0 1.387 0 0.832 0 -0.277 

B Cell Activating Factor Signaling 1.03 1.342 1.03 1.342 1.05 -0.447 

IL-17 Signaling 0 1.155 0 1.732 0 0.577 

Osteoarthritis Pathway 6.68 0.898 6.68 -0.539 6.34 -0.898 

CD28 Signaling in T Helper Cells 0 0.577 0 0 0 0 

IL-15 Production 2.42 0.471 2.42 1.886 2.46 -0.943 

Natural Killer Cell Signaling 1.02 0.447 1.02 0.447 1.05 0.447 

Production of Nitric Oxide and Reactive 
Oxygen Species in Macrophages 2.77 0.408 2.77 2.858 2.82 -0.816 

Complement System 3.61 0.378 3.61 0.378 2.97 -1.134 

IL-13 Signaling Pathway 0.635 0.302 0.636 1.508 0.65 0.302 

PKCθ Signaling in T Lymphocytes 0 0.277 0 0.277 0 0 

MIF Regulation of Innate Immunity 0.996 0 0.996 2.449 1.01 0 

Th1 Pathway 0.547 0 0.391 0 0.272 0.378 

Neuroinflammation Signaling Pathway 7.84 -0.164 7.84 0.493 7.54 1 

Calcium-induced T Lymphocyte 
Apoptosis 0 -0.302 0 -2.111 0 0.632 

Role of Pattern Recognition Receptors 
in Recognition of Bacteria and Viruses 0.445 -0.333 0.445 -0.333 0.458 -1 

Toll-like Receptor Signaling 0.288 -0.447 0.289 1.342 0.296 1.342 

T Cell Exhaustion Signaling Pathway 0 -0.632 0 -1 0 -1 

T Cell Receptor Signaling 0 -0.655 0 0.218 0 -0.447 

Role of PI3K/AKT Signaling in the 
Pathogenesis of Influenza 0 -1 0 1 0 -1 

Interferon Signaling 1.84 -1.134 1.84 1.134 1.86 0.378 

Table4.4.1 Canonical pathways activation related to neuroinflammation found in “ALL”, “MG” and “RGC”  

KO cells expression profile.  

 

  



Senescence 

ALL MG RGC 

 -log(p-
value) z-score 

 -log(p-
value) z-score 

 -log(p-
value) z-score 

Autophagy 0.385 2.668 0.386 0.728 0.4 0.243 

JAK/STAT Signaling 0.401 2.646 0.401 1.89 0.41 -0.378 

SNARE Signaling Pathway 3.03 2.4 3.03 0.218 3.08 2.4 

Sirtuin Signaling Pathway 0 2.138 0 0.535 0 0 

NAD Signaling Pathway 0.845 2.138 0.845 1.604 0.866 -0.535 

BMP signaling pathway 1.6 2.111 1.6 1.508 1.63 0.905 

IL-1 Signaling 5.88 1.633 5.88 0.816 5.94 1.633 

Pyridoxal 5'-phosphate Salvage 
Pathway 0.68 1.633 0.68 1.633 0.693 -0.816 

ATM Signaling 1.23 1.508 1.23 0.905 1.25 0.302 

CXCR4 Signaling 8.27 1.225 8.28 1.633 8.37 1.225 

Chemokine Signaling 4.24 1.213 4.24 -0.243 4.28 0.243 

IL-6 Signaling 0.836 1.155 0.836 1.732 0.854 0.577 

p70S6K Signaling 0.58 1.155 0.582 1.155 0.595 0.577 

SAPK/JNK Signaling 0 1 0 1.667 0 0.333 

ERB2-ERBB3 Signaling 0.281 1 0.281 1 0.287 0 

TGF-β Signaling 1.63 0.905 1.64 0.905 1.66 0.302 

mTOR Signaling 1.89 0.905 1.89 2.111 1.93 -0.905 

IL-8 Signaling 7.65 0.898 7.66 2.694 7.27 0.365 

PI3K/AKT Signaling 0 0.816 0 1.633 0 1.633 

AMPK Signaling 1.66 0.632 1.67 1.897 1.71 1.265 

GADD45 Signaling 1.52 0.333 1.52 0.333 1.54 -0.333 

NF-κB Signaling 0 0.243 0 2.668 0 -1.213 

Ephrin B Signaling 5.5 0 5.5 0.632 5.55 0.632 

Senescence Pathway 0.821 0 0.821 -0.943 0.851 0 

Ephrin Receptor Signaling 9.13 -0.2 9.13 -0.2 8.71 1.8 

p38 MAPK Signaling 0.767 -0.632 0.77 0 0.785 1.265 

Oxidative Phosphorylation 1.49 -1.604 1.49 -1.604 1.51 -1.604 

EIF2 Signaling 3.31 -1.807 3.31 -1.291 3.37 2.324 

Table4.4.2 Canonical pathways activation related to senescence found in “ALL”, “MG” and “RGC”  KO cells 

expression profile.  

 

  



Angiogenesis and Hypoxia 

ALL MG RGC 

 -log(p-
value) z-score 

 -log(p-
value) 

z-
score 

 -log(p-
value) z-score 

FAK Signaling 1.04 1.706 1.04 3.411 0.924 -0.216 

Signaling by Rho Family GTPases 11.6 1.183 11.6 2.874 11.2 2.197 

Regulation Of The Epithelial 
Mesenchymal Transition By Growth 
Factors Pathway 2.74 0.408 2.74 2.041 2.79 0 

HIF1α Signaling 1.99 1.4 1.99 1.8 2.03 -0.2 

VEGF Signaling 0.721 1 0.721 1.667 0.738 1 

Endothelin-1 Signaling 4.56 0.928 4.56 1.3 4.63 0.186 

Regulation of Actin-based Motility by Rho 4 -0.775 4 1.291 3.59 1.807 

CDC42 Signaling 0 0.775 0 1.291 0 1.291 

RAC Signaling 1.61 0.632 1.61 1.265 1.36 2.53 

Integrin Signaling 2.71 -0.784 2.71 1.177 2.46 -0.2 

Thrombopoietin Signaling 0.75 1.89 0.75 1.134 0.762 -0.378 

VEGF Family Ligand-Receptor Interactions 0.788 1.134 0.79 1.134 0.804 -0.378 

ILK Signaling 1.66 -0.218 1.67 1.091 1.7 0.218 

RHOA Signaling 2.03 0.5 2.04 1 2.07 3 

Erythropoietin Signaling Pathway 0.81 2.183 0.81 0.728 0.833 0.243 

Regulation Of The Epithelial 
Mesenchymal Transition In Development 
Pathway 1.6 1.134 1.6 0.378 1.63 0.378 

WNT/β-catenin Signaling 5.05 0.784 5.05 0 5.12 0.784 

Inhibition of Angiogenesis by TSP1 3.94 0 3.95 0 3.97 -0.707 

Apelin Endothelial Signaling Pathway 7 1.213 7 -0.243 7.08 0.243 

RHOGDI Signaling 9.9 -1 9.91 -1 9.49 -2.2 

Table4.4.3 Canonical pathways activation related to angiogenesis and hypoxia found in “ALL”, “MG” and 

“RGC”  KO cells expression profile.  

Fibrosis 

ALL MG RGC 

 -log(p-
value) z-score 

 -log(p-
value) z-score 

 -log(p-
value) z-score 

Pulmonary Fibrosis Idiopathic Signaling 
Pathway 7.42 0.98 7.43 2.941 7.54 -0.14 

Wound Healing Signaling Pathway 3.05 0.174 3.06 1.567 2.82 -1.061 

Hepatic Fibrosis Signaling Pathway 13.6 0.64 13.6 1.152 13.3 -0.128 

Inhibition of Matrix Metalloproteases 0.81 -2 0.81 1 0.821 -2 

Tumor Microenvironment Pathway 1.4 0.447 1.4 0.894 1.43 1.789 

Apelin Cardiac Fibroblast Signaling 
Pathway 1.63 -1.342 1.63 -1.342 1.64 0.447 

Table4.4.4 Canonical pathways activation related to fibrosis found in “ALL”, “MG” and “RGC” KO cells 

expression profile.  

 



4.5 Discussion 

4.5.1 Sample quality of single cell suspension 

Sample preparation materials and protocols were different for P2Y6-/- experiment in comparison to 

ABCA1-/- experiment, as the procedures were conducted during the pandemic where there was limited 

access to different kits and solutions. Our collaborators in Japan handled the samples and employed a 

different dissociation protocol, which unfortunately yielded less than satisfactory cell viability samples. 

Sample qualities were also varied among samples as 3 sets of experiments were carried out separately for 

3 pair of retinal tissues, causing the original estimation of cell number to range between 11,443-49,480 

cells per sample. Auto-estimation of the contamination fraction by SoupX suggested most of the cells 

contained over 60-90% contaminated expression, implying to distinguish between actual cell expression 

and contamination expression can be very difficult.  

This data demonstrates the importance of refined sample preparation procedures, ensuring the condition 

and viability of tissue samples have to be kept at high standards for drop-seq based single cell RNA-seq 

experiments. Computational algorithms developed by bioinformaticians can provide extensive assistance 

in correcting the artifacts and estimating the actual expression profiles, as demonstrated by SoupX for this 

dataset, whereby expression of background contamination profile were removed and allowed distinctive 

clusters to form more separately. However, these post-sequencing analysis methods rely on statistical 

assumptions, which may not always accurately depict the actual single cell expression profile, thus a 

higher quality sample preparation procedure should be implemented to eliminate the needs for 

downstream data correction. Different levels of parameters used in filtering and correction (such as 

number of cells per sample, contamination fraction, number of reads or genes per cells, and percentage 

of mitochondrial genes) should also be explored to construct a better understanding of the actual 

transcriptomic profile of the samples. 



4.5.2 Potential subtypes of MGs 

Chapter 4.3.3.4 explored the glial cells cluster and created subclustering plots for the data subset. Glial 

cells subclusters on the UMAP were distributed with a main core consist of mostly subcluster 0, while 

other subclusters expands outwards towards different directions. With accordance to the dot plot in 

Fig.4.3.3.4J, subcluster 0 expresses different glial markers at fairly low level but with high percentage 

distributions among all cells within the subcluster, while other subclusters expressed strong and high 

percentage expression of a specific marker gene. This phenomenon observed in the UMAP plot may have 

two interpretations.  

Firstly, the occurrence of these subclusters may be due to gene dropout phenomenon observed in Drop-

seq single cell RNA-sequencing. Subcluster 0 may represent cells where their expression of glial cell 

markers was captured and sequenced, while cells from other subclusters did not have expression of other 

glial makers detected due to low sequencing depth, or “gene-dropout”. Cells from these subclusters 

would have been projected closer to the central subcluster 0 if expression of other glial cell markers were 

detected during sequencing, making them less unique and more similar to other glial cells. Alternatively, 

this projection occurred due to actual expression difference within the same cell type, in which the 

clustering and UMAP algorithm forced them apart by maximizing the variation between cells. This implies 

the separation of different subclusters reflects the biological difference in expression profiles, thus each 

subcluster represent a subtype of glial cells which may have different functions, behaviour or morphology, 

but most importantly their response to injury.  

In fact, the reality represented by this data may be a mixture of both hypotheses, where the differences 

between subclusters are due to both biological difference and sequencing artifacts. Marker genes 

identified with high expression level for each subcluster may provide clues as to the major function and 



roles of the subtype of glial cells in the retina, and their differential expression in KO samples may provide 

insight to the subtype specific response to IOP injury that contributes to glaucoma phenotype.  

4.6 Conclusion 

In this chapter, we have implemented and performed the single cell RNA-seq analysis experiment on 3 

WT and 3 P2Y6-/- mouse retinal samples. Limited viability samples prepared by our collaborators provided 

sequencing data with slightly higher background expression contamination, thus the SoupX algorithm 

package was implemented to estimate contamination level and successfully removed and corrected the 

expression profile of the samples. Full Seurat Integration pipeline was implemented and identified 

different cell type clusters. RGCs and glial cells were selected for subclustering, in which 22 glial cells 

subclusters provided unique subtype markers. Ontological analysis suggested activation of 

neuroinflammation and senescence throughout the KO retina, as well as the glial cell population. 

Additionally, KO glial cells shows activation of pathways related to angiogenesis, hypoxia and fibrosis, 

suggesting its response to injury due to high IOP environment caused by the gene KO.  

  



Chapter 5: Discussion 

5.1 Preface 

The experiments conducted in this project aimed at understanding the pathogenesis and development of 

glaucoma, through the use of single cell transcriptomic analysis on two different glaucoma mouse models. 

This final chapter summarizes the key findings of the experiments, discuss the impact and potentials of 

the analysis, account for limitations and outline future work to build on the findings of this research.  

5.2 Key findings 

5.2.1 Chapter 2: ABCA1-/- glaucoma mouse model 

ABCA1 gene knockout mouse model was used in this experiment as a model for Normal Tension Glaucoma 

(NTG). 3 wild type (WT) and 5 knockout (KO) mouse retinal samples were used to perform 10X Genomics 

single cell RNA-seq analysis, where both wet and dry lab pipelines were implemented. Large single cell 

sequencing data was analysed using Seurat pipeline, creating well-integrated data with visualization and 

clustering to identify different retinal cell types. Ontological analysis was performed by comparing WT and 

KO samples from all cells, Müller glia cluster, astrocyte cluster, retinal ganglion cell cluster and immune 

cell cluster. Neuroinflammation and senescence pathways were activated in KO samples, with specific 

mechanisms identified for different cell types. Activated microglia were identified in the immune cell 

cluster of the KO samples, suggesting a possible invasion of microglia as a form of neuroinflammatory 

response. Neurodegeneration pathways were found to be activated in RGCs clusters, in particularly a 

subtype of RGCs expressing genes enriched in the glutamatergic synapse pathway being more vulnerable 

to injury induced by the effects of the KO.  

5.2.2 Chapter 3: P2Y6-/- glaucoma mouse model  

P2Y6 gene knockout mouse model was used in this experiment as a model for high Intraocular pressure 

(IOP) glaucoma mouse model. Three WT and three P2Y6 KO mouse retinal samples were prepared and 



performed with 10X Genomics single cell RNA-seq experiment by our collaborators. Cell dissociation and 

sample preparation was performed with challenges, leading to a low viability sample with highly 

contaminated sequencing data. SoupX package was first implemented onto each individual samples to 

identify background contamination percentage and profile, to correct expression and remove noisy 

contamination. Huge dataset with high numbers of cells per sample were then integrated using Seurat’s 

integration pipeline after filtering, and implemented clustering algorithms to identify specific cell types 

such as RGCs and Müller glia. Subsequent subclustering were also performed, identifying RGCs accurately 

and suggested different Müller glia subclusters. Ontological analysis was performed by utilizing 

differential expression gene lists, where neuroinflammation and senescence were found activated when 

comparing all KO cells as well as Müller glia to their WT counterpart. Angiogenesis, hypoxia and fibrosis 

related pathways were identified to be strongly activated in KO Müller glia cluster, suggesting its activation 

response under the environmental stress and injury due to increase in IOP.  

5.3 The power of single cell analysis 

The data analysis of retinal tissues from two different glaucoma animal models positively showcased the 

power and impact of single cell transcriptomic analysis. The retina is a complex and heterogeneous tissue 

which performs the function of perceiving optical signals and act as the input for forming vision. This is 

achieved by the harmonious behaviour of different cell types within the retina to perform its tasks of 

perceive, transmit and integrate visual signals, but also maintaining homeostasis. For a complex disease 

such as glaucoma, pathogenesis and pathways of how it develops and progress is still difficult to study, 

due to the complicated nature of the retinal tissue. The deterioration of RGCs from glaucoma patient can 

originate from various different upstream sources, as different factors seem to cause different types of 

glaucoma as well as how their symptoms progress.  



Single cell analysis conducted in this study provided extensive amount of details and data on the 

expression profiles of thousands of cells, and differences between WT and KO can be compared on 

different levels of clustering. Traditional bulk RNA-seq obtains average signals across all cell types within 

the retina, thus expression changes in cell types of small population will not be detected. As demonstrated 

by both experiments, the domination of rod photoreceptors population in the tissue implies differential 

expression signals obtained from bulk RNA-seq comparison between WT and KO would simply reflect 

changes in this cell type.  For our study focus on the heterogenous nature of the glaucoma, constructing 

expression profile variations of multiple cell type which have a way smaller population, such as RGCs, glial 

cells or immune cells, is crucial in understanding their role and contributions to the progression of the 

disease.  

The vast amount of single cell data also implies the potential of the dataset can be further explored in the 

future as our understanding of glaucoma or other retinal diseases progress. Although the focus of this 

study placed heavy emphasis on the aforementioned cell types, other cell types such as amacrine, bipolar, 

progenitors and endothelial cells were also included in these datasets. Single cell definition of this 

sequencing data implies the limit of our understanding of retinal cell types can be pushed further in the 

future, providing markers and expression data of different cell subtypes that may have different roles in 

the pathways that lead to glaucoma progression and development. Progression and development of 

bioinformatics tools can also contribute to discovering more potential on this dataset. SoupX, which is an 

actively updating opensource package, demonstrated its ability to correct contamination artifacts in the 

P2Y6-/- experiment and obtained informative data about clusters of different cell types in the retinal 

samples. As the community and expertise of the field of single cell bioinformatics develop alongside 

computational methodologies, new ways of understanding and analysing the same dataset could provide 

more insight on to affected cell types, differential expressions and downstream affected ontological 

pathways. 



5.4 Pathways activation in ABCA1-/- induced glaucoma-like phenotype 

Sequencing data from the ABCA1-/- experiment strongly suggested high levels of neuroinflammation 

occurring throughout the retina. Ontological analysis showed related pathways activated in all cells, as 

well as particular pathways in Müller glia, astrocytes and retinal ganglion cells. Macrophage invasion 

evidence found in KO samples further suggests the recruitment of activated immune cell types, a strong 

indicator of neuroinflammatory response under the impact of the gene KO. These insults to the retina 

likely result in the degeneration and death of RGCs, leading to the glaucoma phenotype observed in this 

animal model. 

To theorize the mechanism of how the gene KO leads to downstream occurrence of neuroinflammation, 

the actual function of the ABCA1 protein can be further investigated. ATP binding cassette transporter A1 

(ABCA1) is a transmembrane transporter protein, which is also known as cholesterol efflux regulatory 

protein (CERP). Mutation of this gene causes the Tangier disease, a genetic disorder characterized by a 

severe high-density lipoprotein (HDL) deficiency, due to the inability to secrete cholesterol to form such 

compound (Oram, 2000). Multitudes of other diseases related to inflammation such as asthma or 

atherosclerosis also found relation with ABCA1 and its role of cholesterol homeostasis. (Chai et al., 2017; 

Soumian et al., 2005). In the context of glaucoma, observational studies have found patients with 

glaucoma had significantly higher total cholesterol levels than those without (Posch-Pertl, 2021), and 

administration of statin, an inhibitor of biosynthesis of isoprenoids including cholesterol, for five years or 

longer had a 21% lower risk of developing glaucoma (McGwin et al., 2004). Similar to other nervous 

tissues, astrocytes are suggested to be the site of cholesterol synthesis in the retina, thus it is evident that 

the KO of ABCA1 in astrocytes causes disruption to cholesterol homeostasis for the whole retina 

environment.  



To bridge the relation between cholesterol homeostasis disruption and neuroinflammation, we speculate 

it is due to the activation of senescence pathways. Cellular senescence is a stress response triggered by 

molecular damage, where cells stop dividing and enter a state of permanent growth arrest without cell 

death, sometimes leading to the senescence-associated secretory pathway that is associated with 

proinflammatory cytokine release (Birch & Gil, 2020). Senescence related pathways were found to be 

activated in KO samples, with specific pathways such as “Androgen signaling”, “Estrogen receptor 

signaling” and “mTOR signaling” being strongly activated in astrocyte clusters. In particular, studies have 

shown that lysosomal cholesterol activates the mTOR pathway, which is a key regulator of senescence. 

(Castellano et al., 2017; Xu et al., 2014). Cholesterol induced activation of senescence induces the release 

of SASP, thus causing neuroinflammatory phenotypes and neuronal damage. Limbad et al., 2020, reported 

astrocyte senescence promotes glutamate toxicity in cortical neurons, causing cognitive decline related 

to Alzheimer’s disease and related dementias. As for the retina, another study discovered linkage between 

ABCA1 KO and senescence, whereby macrophage specific ABCA1 KO resulted in accelerated senescence 

with accumulation of cholesterol in macrophages and promoted age-related macular degeneration (AMD) 

(Sene et al., 2013).  

To summarize, it is possible that the impaired efflux of cholesterol due to the gene ABCA1 KO causes 

cholesterol homeostasis interference, activating the mTOR pathway which promotes the SASP in 

senescent cells, inducing inflammatory response in the retina, leading to retinal ganglion cell damage and 

degenerative diseases such as glaucoma. Further lab experiments will need to be performed to evaluate 

cholesterol accumulation levels and senescence markers in KO retinal samples. If these results align with 

our hypothesis, it would be insightful to investigate on potential therapeutical solutions for this type of 

glaucoma by targeting either the cholesterol regulation pathway or senescence/ mTOR pathway. Statin, 

a drug to lower cholesterol which is typically known for reducing inflammation, have had suggestions in 

its protective effect against glaucoma development. (Xiao & Gong, 2017), possible due to its effect in 



manipulating cholesterol levels in the retina. Rapamycin, an inhibitor of mTOR, have been shown to 

decrease aging and inhibit cellular senescence (R. Wang et al., 2017). Experimental application of these 

medicines on ABCA1 KO mice would further elicit the details and efficacy on manipulating these pathways 

to control glaucoma pathogenesis.  

It is important to acknowledge that while animal studies offer valuable insights, the translation of findings 

from mouse models to human clinical applications is a complex process. Glaucoma, being a multifaceted 

disease with diverse subtypes and underlying pathways, presents challenges in uncovering mechanisms 

contributing to its development across species. In the study by Hu et al. (Chunchun Hu, 2020), the role of 

ABCA1 in trabecular meshwork tissue was explored, where it governed the permeability of endothelial 

cells within Schlemm's canal. This regulation impacted transendothelial electrical resistance and exhibited 

a potential to reduce intraocular pressure (IOP) by facilitating drainage. It should be noted that our 

research study did not include analysis of the trabecular meshwork or Schlemm's canal tissues, thus 

limiting direct comparisons regarding the involvement of ABCA1 in mouse disease contexts. Moreover, a 

crucial aspect for exploration lies in examining cell-type-specific expression patterns within human tissues, 

including both drainage tissues and retinal neurons. Such experiments would facilitate discovering 

similarities and disparities between mouse and human samples. While previous studies have pursued 

various disease focuses, contextualizing and substantiating the role of ABCA1 in cholesterol homeostasis 

within human astrocytes, particularly within the context of glaucoma, will be essential for the success of 

discovering effective and applicable potential therapeutic targets in the future. 

5.5 Pathways activation in P2Y6-/- induced glaucoma-like phenotype 

Animal experiment data of aged P2Y6-/- mouse showed increase in IOP, leading to RGC death and 

degeneration, representative of the pathogenic phenotype from high IOP related glaucoma. Single cell 

ontological analysis data obtained from this study suggested neuroinflammation and senescence 



pathways being activated when comparing all cells from KO with WT samples, as well as the Müller glia 

cluster. Similar to ABCA1-/- experiment, these mechanisms may be involved in contributing to the 

deterioration of the overall retina health and degeneration of RGCs.  

In addition, strong angiogenesis, hypoxia, and fibrosis related pathways were found activated in the 

Müller glia cluster, as suggested by Table 4.4.3 and 4.4.4. Studies have shown the roles of Müller glia 

include the regulation of neuronal function and blood vessels formation, and its response to stress and 

injury inducing the upregulation of inflammatory responses and activating angiogenesis in the later stages 

of retinal diseases (Fletcher et al., 2021; Hu et al., 2014). Others have compared Müller glia to the 

fibroblasts within neuronal tissues which mediates the tissue-healing responses and activate fibrosis 

(Bringmann & Reichenbach, 2001; Friedlander, 2007; Roy et al., 2016). The response of glial cells to 

environmental stress, such as increase in IOP, is likely to trigger neurodegenerative processes such as 

gliosis, releasing pro-inflammatory cytokines, or even forming scar-like tissues which could lead to 

irreversible damage to the retina, especially the RGCs. Further detailed studies on how these events get 

triggered and progress could potentially uncover therapeutical pathways and targets in which glaucoma 

phenotypes can be inhibited or controlled. Utilizing subtypes of glial cells identified in this study would 

also benefit in identifying markers of glial cell sub-population responsible for reactive behaviour and 

phenotypes.  

Angiogenesis also plays a huge role in controlling IOP through aqueous humor outflow regulation. 

Researchers have shown that Vascular endothelial growth factor (VEGF), a crucial signalling protein for 

the process of angiogenesis, are secreted by trabecular meshwork cells in response to IOP-dependant 

mechanical cues, which modulates the permeability of the endothelial cells of Schlemm’s canal via VEGF 

receptor-2 (VEGFR-2) (Fujimoto, et al., 2015) (Ester Reina-Torres, 2017). The permeability or hydraulic 

conductivity of the Schlemm’s canal inner walls thus regulates aqueous humor outflow and IOP 

homeostasis. Patients administered with anti-VEGF injections were found to have significant reduction in 



outflow facility and elevated IOP (Wen, et al., 2017). P2Y6 gene belongs to the P2y receptors family, which 

can be found in trabecular meshwork and ciliary body tissues as well. More interestingly, some studies 

have suggested P2y receptor to be involved in angiogenesis via VEGFR-2 signalling in human cardiac 

endothelial cells (Sharif M. Rumjahn, 2007) (Martinez, 2022). The VEGF and angiogenesis signalling 

pathway disturbed as shown in our dataset from P2Y6-/- mouse tissues suggest a potential angle to 

approach understanding P2y receptor family’s role in IOP regulation, thus by conducting single cell 

experiment on the tissues involved in the aqueous outflow to identify transcriptomic changes in 

trabecular meshwork tissues and Schlemm’s canal endothelial cells, will provide much more insight and 

value to the area of research.  

Specific neurodegenerative pathways activation in RGCs were also suggested by Table 4.4.3. “RhoA 

Signaling” was highly associated with degenerative disease such as Parkinson’s, Alzheimer’s and 

Huntington’s disease, through the regulation of mitochondrial homeostasis, autophagy and 

neuroinflammation (Schmidt et al., 2022). Meanwhile, Rac1 Signaling also activates autophagy in early 

stages of glaucoma which promotes RGC apoptosis (M. L. Zhang et al., 2020). Strong activation of these 

two pathways found in RGC cluster in our data could provide future leads onto the specific mechanisms 

in which RGCs react to injury and stressful environment, causing the deterioration and degradation 

resembled in glaucoma.  

5.5 Limitations 

5.5.1 Importance of sample preparation 

Both ABCA1-/- and P2Y6-/- experiments provided significant and important results from the sequencing 

data analysis, but the process for quality control and contamination removal was more difficult for the 

latter. During the early stage of my studies, multiple iterations of attempts were made to refine the papain 

dissociation protocol for dissociating mouse retinal tissue into single cell suspension solution. This 



included the concentration of enzymes, incubation time and temperature. Viability assessment was 

performed after different conditions until the optimal conditions were found. This protocol is then applied 

to the retinal tissue samples in the ABCA1-/- experiment and resulted with over 90% viability samples for 

the 10X single cell experiment. Due to unfortunate circumstances with the pandemic conditions, 

limitations in animal transport internationally prohibited the single cell experiment for P2Y6-/- samples to 

be processed in the UK. Dissociation of the samples were performed using a different protocol, and was 

performed with limited time and resources which yielded a much lower viability samples, thus more 

contaminated data samples. Although the subsequent analysis attempted to remove the contamination 

and correct expression profiles, a high viability and effective dissociation of the tissue is still crucial for the 

10X Chromium system. 

Thus, the refinement of the dissociated protocol and careful treatment of the dissociated samples, as well 

as confirmation on the viability of the samples before proceeding is a limiting factor for Drop-seq based 

single cell sequencing experiment such as that of 10X Genomics. There are however on-going developing 

methods which performs chemical fixation such as methanol fixation (Alles et al., 2017) and 

paraformaldehyde-fixation (Phan et al., 2021) which claims to be able to preserve RNA materials and fix 

cells or tissues and yield similar quality single cell sequencing samples. There are also new methods of 

performing single cell analysis which does not involve droplet-based technology, which allows for more 

flexible tolerance to different cell viability or fixation. Novel and cutting-edge technology could potentially 

assist with elevating limitations on sample preparation for single cell experiment in the future.  

5.5.2 Rod photoreceptor filtering 

Throughout the study, the issue with rod photoreceptor dominance in the retinal cell type population has 

been prominent. Although other cell types were identified and was able to be analysed and yield 

conclusive results, over 70% of the dataset was consisting of a cell type that was not as important as the 



other ones in smaller population. Large number of droplets and subsequent sequencing resources were 

occupied by rod photoreceptors, which the other cell types could have benefited from by increasing the 

number of cells captured and the sequencing depth for other cell types of interest. Although the premise 

of a single cell experiment is to capture and identify all cell types within a tissue, for the context of the 

retina as demonstrated from our study, a pre-processing procedure during sample preparation to remove 

rod photoreceptors from the dissociated sample may be a beneficial act to consider. Fluorescence 

activated cell sorting (FACS) or magnetic-associated cell sorting (MACS) are filtering methods utilizing cell 

type surface marker to remove a particular subpopulation within a sample, and studies have been 

performed to isolate rod photoreceptors from adult mouse retina (Eberle et al., 2014; Feodorova et al., 

2015). However, processes such as FACS or MACS will elongate the time for sample preparation, in which 

the cell viability of the samples may be affected and lead to more contamination from dead cell debris 

and RNA materials. Refinement of these protocols for the purpose of single cell analysis methods has to 

be performed to evaluate their efficiency and efficacy, and whether the loss in viability is worthwhile for 

a higher sample population of the non-rod cell types.   

5.5.3 Gene dropout and determination of cell types 

“Gene dropout” in single cell analysis describes the scenario when certain genes are detected in some 

cells but not the others, even if they are the same cell types and should be expressing similar genes. 

“Sequencing depth” or “sequencing saturation” describes the number of genes detected as percentage 

of the number of genes available for detection in the species. Although samples from ABCA1-/- 

experiment has an average sequencing saturation at 84%, while that of P2Y6-/- is at 90%, detection of the 

genes ABCA1 and P2Y6 in their respective WT samples were still difficult, despite verification by 

genotyping. This is likely because sequencing saturation can vary across cells within the sample, and gene 

dropout occur which doesn’t detect genes that were meant to be captured. Detection of other genes may 

not always be guaranteed as well, thus the expression of particular genes are usually inferred by similar 



expression levels by other cells within a certain cluster. But for specific clusters with a smaller population, 

this can pose challenge in identifying their markers and make labelling difficult. Examples include glial cells 

in the retina, where Müller glia and astrocytes share multiple common markers while their specific unique 

markers are not well-defined. Thus, if certain cell type specific marker were not detected, such as GFAP 

for astrocytes, definitive separation between the two types can be difficult, as demonstrated from both 

experiments in this study.  

Combinational markers were used in this study to consolidate the confidence in classifying certain cell 

clusters, which require prior knowledge to these markers from literature studies. Thus, it can be 

challenging to identify novel cell type and their respective markers by solely relying on single cell data 

clustering algorithms. Higher sequencing depth, which other advanced single cell experimental methods 

can achieve, would be beneficial for studies focusing on identifying novel cell types and markers. 

Otherwise, targeted gene expression single cell analysis methods may allow researchers to tag specific 

genes of interest such as well-defined cell markers, to ensure the expression of certain genes of interest 

can be measured, as well as facilitating the identification of specific niche cell types within the tissue.  

5.6 Future work 

5.6.1 Comparison between ABCA1-/- and P2Y6-/- model data 

ABCA1-/- and P2Y6-/- mouse were established as mouse models for NTG and High IOP model glaucoma 

such as Primary open-angle glaucoma (POAG). As the single cell analysis experiment conducted in this 

study generated large amount of mouse sequencing data, it may be beneficial to compare the 

experimental across two experiments. WT data from both experiments contained expression profiles of 

different cell types within a normal mouse retina of similar age, thus these samples can be used as anchors 

for integration to minimize the batch effects across the two experimental conditions. All samples could 

then be corrected to integrate with each other, such that cell types across the two knockout conditions 



can collapse into similar clusters, hence allowing differential expression profile comparison. Cell types and 

subtypes which shares expression pattern and geometric proximity in projections across knockout 

conditions may share commonly activated ontological pathways and functions, thus providing leads into 

the shared mechanisms that ultimately lead to the RGC degeneration observed in different types of 

glaucoma. On the contrary, cell types or expression patterns which differs between the two conditions 

may suggest their individual source and upstream targets of how their pathogenic phenotype originate. 

Common pathways and mechanisms are extremely useful in identifying potential therapeutical targets 

which stops the progression of different types of glaucoma and their phenotype, while the KO condition-

specific pathways would indicate how each type of glaucoma initiate, thus suggesting the targets for 

preventative measures. 

5.6.2 Validation of cell type and expression markers 

Our study of the single cell data utilized clustering algorithms to determine clusters and label identities 

based on differentially expressed markers of each cluster. To relate these cell type markers to their 

physiological appearance and location in the tissue, immunostaining of these marker proteins will provide 

credibility and verification to these findings. For example, novel subtypes such as the RGC-1 subtype 

identified in the ABCA1-/- experiment expressed certain markers which leads to prediction of their 

behaviour to be particularly vulnerable to excitotoxicity. By investigating the markers in the retinal tissue 

and identifying its physiological structure and the connections that this subtype of RGC have, further 

findings could be discovered and predict its role in glaucoma progression. Tran et al., 2019  performed a 

single cell profile study of just mouse RGCs and created a comprehensive molecular atlas of 46 RGC 

subtypes (Fig.5.6.2A), along with hierarchical cluster which predicts their function and morphological 

structures. An early attempt to integrate RGCs from ABCA1-/- data samples into the cell atlas of their 

study is shown in Fig5.6.2B, seemingly suggesting it may belong to a particular subtype. This analysis may 

not be conclusive due to the limited number of RGCs found in our samples, but nonetheless suggest the 



significance of validating the subtypes suggested in our data by referencing other studies or morphological 

staining. Similar analysis could be applied to astrocytes and Müller glia clusters, which could be helpful in 

consolidating exclusive specific markers for the two cell types, as well as differentiating subtypes of Müller 

glia suggested from the P2Y6-/- datasets. 

 

Fig5.6.2A: tSNE projection of the RGC atlas data from Tran et.al. study using Seurat pipeline. B: 
Integration of RGCs from ABCA1-/- datasets into the RGC atlas. 

Moreover, staining for markers found in immune cell types such as activated microglia or macrophage 

would provide strong evidence to support the findings of this study, identifying the patterns and regions 

in which neuroinflammation occurs. Quantification of gene expression related to neuroinflammation, 

senescence using methods such as quantitative polymerase chain reaction (qPCR) and cholesterol staining 

in KO samples could further provide insight onto the relationship between these mechanisms and 

glaucoma development.  

5.6.3 Identification and application of potential drug targets 

As suggested by the previous section 5.4, strong evidence of neuroinflammation occurring in ABCA1-/- 

samples may be related to the disruption of cholesterol regulation in the retinal astrocytes, leading to 

senescence phenotype and release of SASP. Therapeutical drugs which target both cholesterol 

regulation or senescence could be applied onto experimental animal samples and observe their effect 



on the glaucoma phenotype development. Application of these drugs into KO mouse samples should 

present an age-dependent effect in slowing down RGC degeneration. Single cell analysis of retinal 

samples obtained at different age between 3-12 months old, either with or without drug application, 

could provide insightful information on how glaucoma develops and progress, which cell types are 

involved at different stages, and what cell types and pathways do the drugs target.  

5.6.4 Inclusion of other retinal structures 

P2Y6-/- experiment identified cell types and pathways affected in the retina in response to the effect of 

the gene knockout, which presented the phenotype of raised IOP. To complete the understanding of the 

initiation of such phenotype which leads to the degeneration of RGCs in the KO samples, inclusion of cell 

types and structures which control IOP and express P2 receptor family genes would be beneficial. Tissue 

structures near the base of the retina such as the trabecular meshwork, Schlemm’s canal and the ciliary 

body (shown in Fig5.6.3) would benefit from single cell analysis by identifying gene expression changes 

in different cell types under KO conditions, which can provide insights into potential targets for 

preventive therapeutical solutions to prohibit glaucoma initiation.  

Fig5.6.3 : Schematic diagram illustrating the trabecular meshwork aqueous humor production and 
outflow pathway. (Goel, 2010) 



5.6.5 Advanced single cell analysis techniques 

Single cell analysis technology has been developing for the last decade, which is still a young and actively 

progressing field of study. Many variations on the technology continues to emerge in comparison to the 

options available during the beginning of this study. For example, split-pool ligation-based transcriptome 

sequencing (SPLiT-seq, X. Tang et al., 2019) utilizes combinational barcodes added onto well plates does 

not require formation of droplets to capture single cell like in Drop-seq.  The commercialized option 

provided by Parse bioscience claims to sequence more cells and with higher sequencing depth (V. Tran et 

al., n.d.), with less contamination effects. Spatial transcriptomic is also an advanced single cell technology 

which allows the sequencing of single cells with conserved spatial information, allowing the 

reconstruction of expression profiles of different cell types found at their original location in the tissue. 

This technique could benefit the study of glaucoma mouse models as cell types (such as RGCs) have 

uneven distribution structurally on the retina (such as concentration on the optic nerve head), allowing 

easier identification of cell types but also observe structural changes/ damages and migration related 

phenomenon.  

5.7 Conclusion 

This study successfully analysed two gene knockout glaucoma mouse model retinal tissues using single 

cell RNA-sequencing analysis. We identified major evidence of neuroinflammation occurring in ABCA1 KO 

samples, macrophage invasion, and discovered an RGC subtype that is particularly vulnerable. P2Y6 KO 

samples showed activation of neuroinflammation and senescence throughout the retina, while KO glial 

population suggested upregulation of angiogenesis, hypoxia, and fibrosis related signaling pathways.  

Our study demonstrated the effectiveness of utilizing single cell analysis to understand heterogenous 

tissues and diseases that relate to them. This data contains extensive number of resources and potential 

leads for further discovery about the development and progression of glaucoma-like phenotype through 



different pathways and cell types involved, and suggested potential mechanisms that could lead to further 

studies to develop therapeutical strategies in preventing, stopping or treating glaucoma.  

  



Chapter X: Appendices 

X.1 R code for Individual ABCA1-/- experiment samples: WT1 example 
# Loading library ----------------------------------------------------------- 

library(Seurat) 

library(dplyr) 

library(cowplot) 

 

# Loading data ------------------------------------------------------------ 

WT1.data <- Read10X(data.dir = "C:/Alex/UCL-

Opthalmology/SingleCellWork/ABCA1KO/WT1/filtered_feature_bc_matrix/") 

WT1 <- CreateSeuratObject(counts = WT1.data, min.cells = 3, min.features  = 

200, project = "10X_WT1", assay = "RNA") 

 

# Finding percentage of mitochondrial gene expression --------------------- 

mito.genes <- grep(pattern = "^mt-", x = rownames(WT1@assays[["RNA"]]), value 

= TRUE) 

percent.mito <- 

Matrix::colSums(WT1@assays[["RNA"]][mito.genes, ])/Matrix::colSums(WT1@assays

[["RNA"]]) 

WT1 <- AddMetaData(object = WT1, metadata = percent.mito, col.name = 

"percent.mito") 

 

#Violin plot: number of features, number of counts, percentage of mito genes 

VlnPlot(object = WT1, features = c("nFeature_RNA", "nCount_RNA", 

"percent.mito"), ncol = 3) 

#Plotting features against each other 

FeatureScatter(object = WT1, feature1 = "nFeature_RNA", feature2 = 

"percent.mito") 

FeatureScatter(object = WT1, feature1 = "nCount_RNA", feature2 = 

"nFeature_RNA") 

 

# Filter and Normalize ---------------------------------------------------- 

WT1 <- subset(x = WT1, subset = nFeature_RNA > 0 & nFeature_RNA < 2000 & 

nCount_RNA <2000 & percent.mito >  0 & percent.mito < 0.5 ) 

 

#Normalization - Normalize by total expression, multiply by 10,000, log-

transform 

WT1 <- NormalizeData(object = WT1, normalization.method = "LogNormalize", 

scale.factor = 10000) 

 

# Find Variable Feature --------------------------------------------------- 

WT1 <- FindVariableFeatures(WT1, selection.method = "vst", nfeatures = 2000) 

head(x = HVFInfo(object = WT1)) 

 

# Regressing unwanted variation ------------------------------------------- 

all.genes <- rownames(WT1) 

WT1 <- ScaleData(WT1, features = all.genes) 

 

# PCA --------------------------------------------------------------------- 

WT1 <- RunPCA(WT1, features = VariableFeatures(object = WT1)) 

 

# Clustering -------------------------------------------------------------- 

WT1 <- FindNeighbors(WT1, dims = 1:15) 

#a resolution parameter that sets the 'granularity' of the downstream 

clustering, with increased values leading to a greater number of clusters. We 



find that setting this parameter between 0.4-1.2 typically returns good 

results for single cell datasets of around 3K cells. 

WT1 <- FindClusters(WT1, resolution = 1.5) 

 

# TSNE -------------------------------------------------------------------- 

WT1 <- RunTSNE(object = WT1, dims.use = 1:15, do.fast = TRUE, do.label=TRUE) 

# note that you can set do.label=T to help label individual clusters 

DimPlot(object = WT1, reduction = "tsne",label = TRUE, pt.size = 0.5) 

 

 

# UMAP -------------------------------------------------------------------- 

WT1 <- RunUMAP(object = WT1, dims = 1:15, do.fast = TRUE, do.label=TRUE) 

# note that you can set do.label=T to help label individual clusters 

DimPlot(object = WT1, reduction = "umap",label = TRUE, pt.size = 0.5) 

 

 

# CellType-------------------------------------------------------------------

- 

FeaturePlot(object = WT1, features = c("Rho", "Sag", "Gnat1", "Pde6a")) #Rod 

 

FeaturePlot(object = WT1, features = c("Arr3", "Gngt2", "Opn1sw", "Cngb3")) 

#Cone 

 

FeaturePlot(object = WT1, features = c("Gap43", "Sncg", "Nrn1", "Thy1")) 

#RGC, Opn4, Pou4f1 

 

FeaturePlot(object = WT1, features = c("Rlbp1", "Vim", "Glul", "Gpr37")) 

#MüllerGlia, Rgr, S100a1 

 

FeaturePlot(object = WT1, features = c("Dab1", "Gad1", "Calb1", "Gad2")) 

#Amacrine 

 

FeaturePlot(object = WT1, features = c("Calb1", "Onecut1", "Onecut2")) 

#Horizontal 

 

FeaturePlot(object = WT1, features = c("Otx2", "Vsx2", "Prkca","Isl1")) 

#Bipolar 

 

FeaturePlot(object = WT1, features = c("Gfap", "Stat3", "Slc1a3","Slc6a1")) 

#Astrocyte 

 

# Non-Rod subset------------------------------------------------------------- 

WT1_nonrod = subset(WT1, idents = 

c("10","11","7","9","6","12","14","13","0")) 

DimPlot(object = WT1_nonrod, reduction = "tsne") 

 

 

 



X.2 R code of ABCA1-/- experiment samples integration 
#Load in packages 

library(Seurat) 

library(ggplot2) 

library(cowplot) 

library(patchwork) 

 

#Load in datasets 

WT1.data <- Read10X(data.dir = "C:/Alex/UCL-

Opthalmology/SingleCellWork/ABCA1KO/WT1/filtered_feature_bc_matrix/") 

WT1 <- CreateSeuratObject(counts = WT1.data, min.cells = 3, min.features  = 

100, project = "10X_WT1", assay = "RNA") 

 

WT2.data <- Read10X(data.dir = "C:/Alex/UCL-

Opthalmology/SingleCellWork/ABCA1KO/WT2/filtered_feature_bc_matrix/") 

WT2 <- CreateSeuratObject(counts = WT2.data, min.cells = 3, min.features  = 

100, project = "10X_WT2", assay = "RNA") 

 

WT3.data <- Read10X(data.dir = "C:/Alex/UCL-

Opthalmology/SingleCellWork/ABCA1KO/WT3/filtered_feature_bc_matrix/") 

WT3 <- CreateSeuratObject(counts = WT3.data, min.cells = 3, min.features  = 

100, project = "10X_WT3", assay = "RNA") 

 

KO1.data <- Read10X(data.dir = "C:/Alex/UCL-

Opthalmology/SingleCellWork/ABCA1KO/KO1/filtered_feature_bc_matrix/") 

KO1 <- CreateSeuratObject(counts = KO1.data, min.cells = 3, min.features  = 

100, project = "10X_KO1", assay = "RNA") 

 

KO2.data <- Read10X(data.dir = "C:/Alex/UCL-

Opthalmology/SingleCellWork/ABCA1KO/KO2/filtered_feature_bc_matrix/") 

KO2 <- CreateSeuratObject(counts = KO2.data, min.cells = 3, min.features  = 

100, project = "10X_KO2", assay = "RNA") 

 

KO3.data <- Read10X(data.dir = "C:/Alex/UCL-

Opthalmology/SingleCellWork/ABCA1KO/KO3/filtered_feature_bc_matrix/") 

KO3 <- CreateSeuratObject(counts = KO3.data, min.cells = 3, min.features  = 

100, project = "10X_KO3", assay = "RNA") 

 

KO4.data <- Read10X(data.dir = "C:/Alex/UCL-

Opthalmology/SingleCellWork/ABCA1KO/KO4/filtered_feature_bc_matrix/") 

KO4 <- CreateSeuratObject(counts = KO4.data, min.cells = 3, min.features  = 

100, project = "10X_KO4", assay = "RNA") 

 

KO5.data <- Read10X(data.dir = "C:/Alex/UCL-

Opthalmology/SingleCellWork/ABCA1KO/KO5/filtered_feature_bc_matrix/") 

KO5 <- CreateSeuratObject(counts = KO5.data, min.cells = 3, min.features  = 

100, project = "10X_KO5", assay = "RNA") 

 

#Create list to loop through process of NORMALIZATION and FINDING VARIABLES 

ALL.list <- c(WT1,WT2,WT3,KO1,KO3,KO4,KO5) 

 

for (i in 1:length(ALL.list)) { 

  ALL.list[[i]] <- NormalizeData(ALL.list[[i]], verbose = FALSE) 

  ALL.list[[i]] <- FindVariableFeatures(ALL.list[[i]], selection.method = 

"vst",nfeatures = 2000, verbose = FALSE) 

} 



 

#recommended dims 10-50 

ALL.anchors <- FindIntegrationAnchors(object.list = ALL.list, dims = 1:30) 

 

ALL.integrated <- IntegrateData(anchorset = ALL.anchors, dims = 1:30) 

 

DefaultAssay(ALL.integrated) <- "integrated" 

 

ALL.integrated <- ScaleData(ALL.integrated, verbose = FALSE) 

 

#PCA 

ALL.integrated <- RunPCA(ALL.integrated, npcs = 30, verbose = TRUE) 

DimPlot(object = ALL.integrated, reduction = "pca") 

 

#Plot to show variance represented by increasing PCA dimensions.  

#Excess information included from increasing PCA dimensions decreases 

exponentially 

ElbowPlot(object = ALL.integrated) 

 

#UMAP 

ALL.integrated <- RunUMAP(ALL.integrated, reduction = "pca", dims = 1:20) 

 

#Clustering Process 

ALL.integrated <- FindNeighbors(ALL.integrated, dims = 1:20) 

#a resolution parameter that sets the 'granularity' of the downstream 

clustering, with increased values leading to a greater number of clusters. We 

find that setting this parameter between 0.4-1.2 typically returns good 

results for single cell datasets of around 3K cells. 

ALL.integrated <- FindClusters(ALL.integrated, resolution = 1.5) 

 

#Plot UMAP, grouped by original identity 

DimPlot(ALL.integrated, reduction = "umap", label = FALSE, pt.size = 0.5, 

group.by = "orig.ident") 

#Plot UMAP, grouped by clustering algorithm 

DimPlot(ALL.integrated, reduction = "umap", label = TRUE, pt.size = 0.5) 

 

#Differential Expression, find markers in each cluster 

ALL.integrated.markers <- FindAllMarkers(ALL.integrated, only.pos = TRUE, 

min.pct = 0.25, logfc.threshold = 0.25) 

 

#Export markers list as an Excel 

write.csv(ALL.integrated.markers,"ALLint_ClustersRetinalBiomarkers.csv") 

 

#Renaming clusters 

new.cluster.ids <- c("0-Rod","1-Rod","2-Rod","3-Rod","4-Rod","5-

(?)Horizontal/Amacrine","6-Rod","7-Rod","8-(?)Pre-RGC","9-(?)lens","10-

(?)lens","11-Bipolar (cone?)","12-(?)lens","13-Rod","14-MüllerGlia","15-

Contamintant","16-Cone","17-MüllerGlia","18-Bipolar","19-Bipolar Rod","20-

Cone","21-(?)","22-(?)Horizontal/Amacrine","23-Rod","24-Bipolar Rod","25-

MüllerGlia","26-MüllerGlia/Astrocyte","27-Microglia","28-(?)Rod","29-

Endothelial Cells","30-Rod","31-Retinal pigment epithelium") 

names(new.cluster.ids) <- levels(ALL.integrated) 

ALL.integrated.rename <- RenameIdents(ALL.integrated, new.cluster.ids) 

 

#Choosing specific clusters as subset for further investigation if needed 

ALL.MG = subset(ALL.integrated,idents = c(14,17,25,26)) 

ALL.mixedgroup = subset(ALL.integrated,idents = c(8,21,22)) 



 

 

#Plot using specific gene level expression 

# CellType-------------------------------------------------------------------

- 

FeaturePlot(object = ALL.integrated, features = c("rna_Rho", "rna_Sag", 

"rna_Gnat1", "rna_Pde6a")) #Rod 

 

FeaturePlot(object = ALL.integrated, features = c("rna_Arr3", "rna_Gngt2", 

"rna_Opn1sw", "rna_Cngb3")) #Cone 

 

FeaturePlot(object = KO.integrated, features = c("rna_Chrna6", 

"rna_Nrn1","rna_Sncg", 

"rna_Thy1","rna_Resp18","rna_Pou4f1","rna_Slc17a6","rna_Stmn2","rna_Rbpms")) 

#RGC, Opn4, Pou4f1 

 

FeaturePlot(object = ALL.integrated, features = c("rna_Gpr37", "rna_Rgr", 

"rna_Glul", 

"rna_Vim","rna_Rlbp1","rna_Clu","rna_Dkk3","rna_Abca8a","rna_Apoe")) 

#MüllerGlia, Rgr, S100a1 

 

FeaturePlot(object = ALL.integrated, features = c("rna_Tfap2b", "rna_Gad1", 

"rna_Lrrn3", "rna_Gad2")) #Amacrine 

 

FeaturePlot(object = ALL.integrated, features = c("rna_Calb1", "rna_Onecut1", 

"rna_Onecut2")) #Horizontal 

 

FeaturePlot(object = ALL.integrated, features = c("rna_Gng13", "rna_Vsx2", 

"rna_Prkca","rna_Isl1")) #Bipolar 

 

FeaturePlot(object = ALL.integrated, features = 

c("rna_Bhlhb4","rna_Cabp5","rna_Gabrr2","rna_Hcn3","rna_Isl1","rna_Slc17a7")) 

#Bipolar 

 

FeaturePlot(object = ALL.integrated, features = 

c("rna_Glrb","rna_Gria2","rna_Tacr3","rna_Vsx1","rna_Gja7")) #BipolarCone 

 

FeaturePlot(object = ALL.integrated, features = c("rna_Rdh5", "rna_Rgr", 

"rna_Rpe65","rna_Rrh","rna_Ttr")) #Bipolar 

 

FeaturePlot(object = ALL.integrated, features = 

c("Ndrg2","Aqp4","Gfap","S100a16")) #Astrocyte, data specific: S100a16, Espn, 

Cd9, Hes1, Slc1a3 

 

 

#Grouping WT and KO and find markers against each other 

WT.integrated = subset(ALL.integrated, orig.ident == "10X_WT1"|orig.ident 

=="10X_WT2"|orig.ident =="10X_WT3") 

DimPlot(WT.integrated, reduction = "umap", label = TRUE, pt.size = 0.5) 

Idents(WT.integrated) = "WT" 

 

KO.integrated = subset(ALL.integrated, orig.ident == "10X_KO1"|orig.ident 

=="10X_KO2"|orig.ident =="10X_KO3"|orig.ident =="10X_KO4"|orig.ident 

=="10X_KO5") 

DimPlot(KO.integrated, reduction = "umap", label = TRUE, pt.size = 0.5) 

Idents(KO.integrated) = "KO" 

 



ALL.combined <- merge(x= WT.integrated, y = KO.integrated) 

 

ALL.combined.markers <- FindAllMarkers(ALL.combined, only.pos = FALSE, 

min.pct = 0, logfc.threshold = 0) 

 

write.csv(ALL.combined.markers,"ALLint_ALL_WTvsKO_DiffExpList.csv") 

 

 

X.3 R code of SoupX analysis for P2Y6-/- experiment data 
library(Seurat) 

library(ggplot2) 

library(SingleR) 

library(dplyr) 

library(celldex) 

library(RColorBrewer) 

library(SingleCellExperiment) 

library(SoupX) 

memory.limit(size = 9e12) 

 

#Setting directory, following script applies to 1st sample WT1 

workdir = c("C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_WT1","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_WT2","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_WT3","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_KO1","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_KO2","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_KO3") 

workdirvar = 1 

setwd(workdir[workdirvar]) 

projectname  = "P2Y6KO_WT1"   

 

#Raw Seurat Pipeline 

sample.data <- Read10X(data.dir = paste(workdir[workdirvar], 

"/filtered_feature_bc_matrix/", sep="")) 

 

 

sample <- CreateSeuratObject(counts = sample.data, min.cells = 0, 

min.features  = 100, project = projectname, assay = "RNA") 

rm(sample.data) 

 

sample[["percent.mt"]] <- PercentageFeatureSet(sample, pattern = "^mt-") 

VlnPlot(sample, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), 

ncol = 3, group.by = "orig.ident") 

plot1 <- FeatureScatter(sample, feature1 = "nCount_RNA", feature2 = 

"percent.mt") 

plot2 <- FeatureScatter(sample, feature1 = "nCount_RNA", feature2 = 

"nFeature_RNA") 

plot1 + plot2 

sample <- subset(sample, subset = nFeature_RNA > 100 & nFeature_RNA < 2500 & 

nCount_RNA < 10000 & percent.mt < 20) 

 

 

sample <- NormalizeData(object = sample, normalization.method = 

"LogNormalize", scale.factor = 10000) 

sample <- FindVariableFeatures(sample, selection.method = "vst", nfeatures = 

2000) 



all.genes <- rownames(sample) 

sample <- ScaleData(sample, features = all.genes) 

sample <- RunPCA(sample, features = VariableFeatures(object = sample)) 

sample <- FindNeighbors(sample, dims = 1:15) 

sample <- FindClusters(sample, resolution = 1.5) 

sample <- RunUMAP(sample, reduction = "pca", dims = 1:15) 

 

#Transfer and setting cluster info, used to assist SoupX downstream 

clusterinfo = sample@active.ident 

umaploc = sample@reductions[["umap"]]@cell.embeddings 

 

sample_soup = load10X(getwd()) 

sample_soup = setClusters(sample_soup, setNames(clusterinfo, 

rownames(clusterinfo))) #assign cluster from metadata 

sample_soup = setDR(sample_soup, umaploc[colnames(sample_soup$toc),]) 

 

#Visualise the ratio of observed counts for a gene (or set of genes) to this 

expectation value 

RhoBefore = plotMarkerMap(sample_soup,"Rho") 

 

 

#Automated estimation of soup: Rho of sample = 0.06 

sample_soup = autoEstCont(sample_soup) 

 

#Correcting expression profile 

sample_SoupXout = adjustCounts(sample_soup) 

 

 

#Create Seurat cleaned-up object 

sample_cleaned = CreateSeuratObject(sample_SoupXout) 

sample_cleaned <- NormalizeData(object = sample_cleaned, normalization.method 

= "LogNormalize", scale.factor = 10000) 

sample_cleaned <- FindVariableFeatures(sample_cleaned, selection.method = 

"vst", nfeatures = 2000) 

all.genes <- rownames(sample_cleaned) 

sample_cleaned <- ScaleData(sample_cleaned, features = all.genes) 

sample_cleaned <- RunPCA(sample_cleaned, features = VariableFeatures(object = 

sample_cleaned)) 

sample_cleaned <- FindNeighbors(sample_cleaned, dims = 1:15) 

sample_cleaned <- FindClusters(sample_cleaned, resolution = 1.5) 

sample_cleaned <- RunUMAP(sample_cleaned, reduction = "pca", dims = 1:15) 

 

#Plots 

DimPlot(sample, reduction = "umap", label = TRUE, pt.size = 0.6) 

FeaturePlot(object = sample, features = "Rho",cols = c("yellow", "blue")) 

#Rod 

plot(RhoBefore) 

plot(RhoAfter) 

plotChangeMap(sample_soup, sample_SoupXout, "Rho") 

DimPlot(sample_cleaned, reduction = "umap", label = TRUE, pt.size = 0.5) 

FeaturePlot(object = sample_cleaned, features = "Rho",cols = c("yellow", 

"blue")) #Rod 

 

VlnPlot(sample, features = c("nFeature_RNA", "nCount_RNA"), ncol = 2) 

  



X.4 R code of P2Y6-/- experiment data integration 
library(Seurat) 

library(ggplot2) 

library(SingleR) 

library(dplyr) 

library(celldex) 

library(RColorBrewer) 

library(SingleCellExperiment) 

library(SoupX) 

memory.limit(size = 10e12) 

 

#Directories of samples 

workdir = c("C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_WT1","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_WT2","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_WT3","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_KO1","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_KO2","C:/Alex/UCL-

Opthalmology/SingleCellWork/P2Y6KO/P2Y6_KO3") 

 

#Extracting SoupX output 

setwd(workdir[1]) 

load("SoupXpipelineOut.Rdata") 

WT1 = sample_cleaned 

WT1$orig.ident = "P2Y6_WT1" 

 

setwd(workdir[2]) 

load("SoupXpipelineOut.Rdata") 

WT2 = sample_cleaned 

WT2$orig.ident = "P2Y6_WT2" 

 

setwd(workdir[3]) 

load("SoupXpipelineOut.Rdata") 

WT3 = sample_cleaned 

WT3$orig.ident = "P2Y6_WT3" 

 

setwd(workdir[4]) 

load("SoupXpipelineOut.Rdata") 

KO1 = sample_cleaned 

KO1$orig.ident = "P2Y6_KO1" 

 

setwd(workdir[5]) 

load("SoupXpipelineOut.Rdata") 

KO2 = sample_cleaned 

KO2$orig.ident = "P2Y6_KO2" 

 

setwd(workdir[6]) 

load("SoupXpipelineOut.Rdata") 

KO3 = sample_cleaned 

KO3$orig.ident = "P2Y6_KO3" 

 

 

rm(RhoAfter,RhoBefore,sample,sample_cleaned,sample_soup) 

 

#Normalizing each samples 

ALL.list <- c(WT1,WT2,WT3,KO1,KO2,KO3) 



 

for (i in 1:length(ALL.list)) { 

  ALL.list[[i]] <- NormalizeData(ALL.list[[i]], verbose = FALSE) 

  ALL.list[[i]] <- FindVariableFeatures(ALL.list[[i]], selection.method = 

"vst",  

                                             nfeatures = 2000, verbose = 

FALSE) 

} 

 

#Integration 

ALL.anchors <- FindIntegrationAnchors(object.list = ALL.list, dims = 1:50, 

reduction = "rpca" ) 

ALL.integrated <- IntegrateData(anchorset = ALL.anchors, dims = 1:50) 

DefaultAssay(ALL.integrated) <- "integrated" 

 

#Scaling 

ALL.integrated <- ScaleData(ALL.integrated, verbose = FALSE) 

 

#PCA 

ALL.integrated <- RunPCA(ALL.integrated, npcs = 50, verbose = TRUE) 

DimPlot(object = ALL.integrated, reduction = "pca") 

ElbowPlot(object = ALL.integrated, ndims = 50) 

 

#UMAP 

ALL.integrated <- RunUMAP(ALL.integrated, reduction = "pca", dims = 1:25) 

 

 

ALL.overlapPlot <- DimPlot(ALL.integrated, reduction = "umap", group.by = 

"orig.ident") 

ALL.overlapPlot 

 

#Clustering 

ALL.integrated <- FindNeighbors(ALL.integrated, dims = 1:25) 

#a resolution parameter that sets the 'granularity' of the downstream 

clustering, with increased values leading to a greater number of clusters. We 

find that setting this parameter between 0.4-1.2 typically returns good 

results for single cell datasets of around 3K cells. 

ALL.integrated <- FindClusters(ALL.integrated, resolution = 1.1) 

 

#Plots 

DimPlot(ALL.integrated, reduction = "umap", label = FALSE, pt.size = 0.5, 

group.by = "orig.ident", raster = FALSE) 

DimPlot(ALL.integrated, reduction = "umap", label = TRUE, pt.size = 0.5, 

raster = FALSE) 

plot1 <- DimPlot(ALL.integrated, reduction = "umap", label = FALSE, pt.size = 

0.6,raster=FALSE) 

LabelClusters(plot1, id = "ident", color = "black", size = 6, repel = T,  

box.padding = 0.2) 

 

 

ALL.integrated.markers <- FindAllMarkers(ALL.integrated, only.pos = FALSE, 

min.pct = 0, logfc.threshold = 0) 

write.csv(ALL.integrated.markers,"P2Y6_ALLclustermarkeres.csv") 

 

#Cluster renaming after identification 

new.cluster.ids <- c("0-Mito Contam","1-ROD","2-ROD","3-ROD","4-ROD","5-

MÜLLER GLIA","6-BIPOLAR","7-ROD","8-ROD","9-ROD","10-MÜLLER GLIA","11-



RGC","12-ROD","13-CONE","14-ROD","15-ROD","16-ROD","17-ROD","18-

RGC/AMACRINE/BIPOLAR","19-ROD","20-ROD","21-replicating cells","22-

replicating cells","23-IMMUNE CELLS","24-amacrine/bipolar","25-BIPOLAR","26-

PRE PHOTORECEPTORS","27-CONE","28-Endothelium","29-RPE") 

names(new.cluster.ids) <- levels(ALL.integrated) 

ALL.integrated.rename <- RenameIdents(ALL.integrated, new.cluster.ids) 

 

plot1 <- DimPlot(ALL.integrated.rename, reduction = "umap", label = FALSE, 

pt.size = 0.6,raster=FALSE) 

 

LabelClusters(plot1, id = "ident", color = "black", size = 5, repel = T,  

box.padding = 0.8) 

 

#RGC Subset: 11 + 18 ----------------- 

ALL.integrated.mixedgroup = subset(ALL.integrated, idents = c(11,18)) 

 

DimPlot(ALL.integrated.mixedgroup, reduction = "umap", label = FALSE, pt.size 

= 0.6,raster=FALSE) 

 

#MG Subset: 5+10 ----------------- 

 

VlnPlot(object = ALL.integrated, features = 

c("rna_Glul","rna_Dbi","rna_Clu","rna_Apoe")) #RGC, Opn4, Pou4f1 

 

ALL.integrated.MG = subset(ALL.integrated, idents = c(5,10)) 

ALL.integrated.MG[["old.ident"]] <- Idents(object = ALL.integrated.MG) 

DimPlot(ALL.integrated.MG, reduction = "umap", label = FALSE, pt.size = 

0.6,raster=FALSE) 

 

 

#Differential expression 

WT.integrated = subset(ALL.integrated, orig.ident == "P2Y6_WT1"|orig.ident 

=="P2Y6_WT2"|orig.ident =="P2Y6_WT3") 

DimPlot(WT.integrated, reduction = "umap", label = TRUE, pt.size = 0.5) 

Idents(WT.integrated) = "WT" 

 

KO.integrated = subset(ALL.integrated, orig.ident == "P2Y6_KO1"|orig.ident 

=="P2Y6_KO2"|orig.ident =="P2Y6_KO3") 

DimPlot(KO.integrated, reduction = "umap", label = TRUE, pt.size = 0.5) 

Idents(KO.integrated) = "KO" 

 

ALL.combined <- merge(x= WT.integrated, y = KO.integrated) 

 

ALL.combined.markers2 <- FindMarkers(ALL.combined, ident.1 = "KO", ident.2 = 

"WT", only.pos = FALSE, min.pct = 0, logfc.threshold = 0) 

write.csv(ALL.combined.markers2,"P2Y6_ALL_DiffExp2.csv") 
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