
Optimal transport for Latent
variable models

Benoit Gaujac

Department of Computer Science

University College London

This dissertation is submitted for the degree of

Doctor of Philosophy

Declaration

I, Benoit Gaujac, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been

indicated in the thesis.

Abstract

Generative models are probabilistic models which aim at approximating the process

by which a given dataset is generated. They are well suited to the unsupervised

learning setup and constitute intuitive and powerful models providing an interpretable

representation of the data. However, learning even simple generative models can be

challenging in the traditional Maximum Likelihood framework, due to the inflexibility

of the training objective used. Motivated by its topological properties, we will show in

this thesis how methods based on Optimal Transport can overcome these difficulties

and offer competitive alternatives. Firstly, we show that training generative models

that combine both discrete and continuous latent variables can be significantly more

effective when using Optimal Transport methods. Such intuitive models are highly

motivated by the structure of many real-world datasets but remain hard to train

with the most common likelihood-based method, often resulting in the collapse

of the discrete latent variables. Secondly, we propose a novel approach based on

Optimal Transport to training models with fully Markovian deep-latent hierarchies.

Probabilistic models with deep latent-variable structures have powerful modelling

capacity, but common approaches often fail to leverage deep-latent hierarchies

without complex inference and optimisation schemes. Our method successfully

leverages the whole hierarchy of the models and shows competitive generative

performance while learning smooth latent manifolds through every layers of the

latent hierarchy. Finally, we introduce a new training objective to improve the

learning of interpretable and disentangled representation of the data. Our method

achieves competitive disentanglement relative to state-of-the-art techniques whilst

improving the reconstruction and generation performances of the models.

Impact statement

The research presented in this thesis has great potential to benefit both the academia

world and commercial organizations. Much of the work has been published at major

machine learning conferences [Gaujac et al., 2021a,b].

In this thesis, we investigated the advantages of using Optimal-Transport-based

methods to train generative models. It contributed to further deepen our understand-

ing of the limits of the classic likelihood-based methods in settings that have recently

seen a renew of interest by the academic community. Especially, the methods pre-

sented in the subsequent chapters will likely open the doors to alternative approaches

in areas such as discrete latent modeling, deep-hierarchical latent-modeling, and

representation and disentanglement learning.

Outside academia, a growing number of commercial organisations make use of deep

generative modeling to analyse and interpret their data, making the understanding of

current methods and the development of alternatives very valuable. The omnipresence

of discrete data in real world applications makes the method proposed in Chapter 2

likely beneficial for the industry with a better modeling of the data. Many commercial

applications also rely on powerful models learned from huge amounts of data without

supervision. These applications will only be successful if they offer competitive

performances at low computational costs, highlighting the benefits of the approach

introduced in Chapter 3. Alongside the growing adoption of generative models in

commercial applications, organisations have seen an increasing scrutiny over the

implication of such models in our daily life. In Chapter 4 we developed a method that

offers more interpretable representation with more control over the way information

is encoded.

Contents

Notations 11

Introduction 13

1 Foundations 21

1.1 Generative models . 21

1.1.1 Latent variable models . 22

1.1.2 Maximum Likelihood . 23

1.2 Optimal Transport . 29

1.2.1 Continuous Optimal Transport 29

1.2.2 Wasserstein distance . 31

1.3 Wasserstein Autoencoder . 34

1.3.1 Formulation . 34

1.3.2 Objective surgery . 36

2 Improving Gaussian mixture latent variable model convergence by

using Optimal Transport methods 42

2.1 Introduction . 43

2.2 Gaussian mixture Wasserstein Autoencoders 44

2.2.1 The difficulty of training GM-VAEs 45

2.2.2 Optimal Transport facilitates training of GM-LVMs 47

2.3 Results . 51

2.3.1 Ablation study of the learned latent manifold 52

2.3.2 Generative performances . 53

2.4 Conclusions . 59

CONTENTS 6

3 Learning deep latent Hierarchies by Stacking Wasserstein Autoen-

coders 60

3.1 Introduction . 61

3.2 Stacked WAE . 63

3.2.1 Generative models with deep latent hierarchies 63

3.2.2 Wasserstein Autoencoders . 65

3.2.3 Stacking WAEs for deep latent variable modelling 67

3.3 Experiments . 69

3.3.1 MNIST . 69

3.3.2 Real world datasets . 79

3.4 Conclusion . 84

4 Learning disentangled representations with the Wasserstein Au-

toencoder 85

4.1 Introduction . 86

4.2 Importance of Total correlation in disentanglement 88

4.2.1 Total correlation . 88

4.2.2 Total correlation in ELBO . 89

4.3 Is WAE naturally good at disentangling? 90

4.3.1 WAE . 90

4.3.2 TCWAE . 91

4.3.3 Estimators . 92

4.4 Experiments . 93

4.4.1 Quantitative analysis: disentanglement on toy datasets 93

4.4.2 Qualitative analysis: disentanglement on real-world datasets . 106

4.5 Conclusion . 110

Conclusion 111

A Foundations 128

A.0.1 Discrete Optimal Transport 128

A.0.2 Topology of the Wasserstein distance 129

CONTENTS 7

B TCWAE 131

B.1 Implementation details . 131

B.2 Quantitative experiments . 133

B.3 Qualitative experiments . 135

List of Figures

1.1 Optimal Transport . 30

1.2 Schematic view of VAE and WAE reconstructions 39

2.1 GM-LVM graphical model . 45

2.2 GM-VAE training curves . 47

2.3 Latent manifold analysis . 53

2.4 Model reconstructions and samples 54

2.5 Latent interpolations . 55

2.6 GM-VAE pretraining . 56

2.7 Visualization of the variational distributions 58

3.1 Deep graphical models . 63

3.2 Models reconstructions . 71

3.3 Models samples . 72

3.4 Latent interpolations . 73

3.5 MNIST layer-wise reconstructions . 76

3.6 Latent spaces visualisation . 77

3.7 Layer-wise KL . 78

3.8 Residual network . 80

3.9 SVHN layer-wise reconstructions . 82

3.10 CelebA layer-wise reconstructions . 83

4.1 Heat maps of reconstruction and disentanglement scores 94

4.2 Disentanglement versus γ violin plots on dSprites 95

4.3 Disentanglement versus γ violin plots on 3D shapes 96

LIST OF FIGURES 9

4.4 Disentanglement versus γ violin plots on smallNORB 96

4.5 Ablation of the reconstruction cost 98

4.6 Ablation of the mutual-information term 99

4.7 Models comparisons . 99

4.8 Active latent traversals . 102

4.9 dSprites reconstructions and samples 103

4.10 3D Shapes reconstructions and samples 104

4.11 smallNORB reconstructions and samples 105

4.12 3D chairs latent traversals . 106

4.13 3D chairs reconstructions . 107

4.14 3D chairs samples . 108

4.15 CelebA latent traversals . 109

B.1 Additional Latent traversals for 3D chairs 136

B.2 CelebA reconstructions . 137

B.3 CelebA samples . 138

B.4 Additional latent traversals for CelebA 139

List of Tables

3.1 MSE scores. 74

3.2 Models architectures. 81

4.1 Reconstruction and disentanglement scores 101

4.2 MSE and FID scores . 110

B.1 Ground-truth generative-factors. 131

B.2 Networks architectures . 134

B.3 Discriminator setup . 134

B.4 β range . 134

B.5 γ setup . 135

Notations

Notations

• Z?: Z/{0}. In this thesis, we only consider Z = N or Z = R.

• R+: Positive real numbers.

• 0d, 1d: null and unit vector on Rd.

• Id: identity matrix of size d× d.

• diag(u): d× d matrix whose diagonal is u and zero elsewhere, where u ∈ Rd.

• u>: transpose of u.

• ·: canonical dot product.

• �: element-wise multiplication.

• ‖·‖Lm : Lm norm, m ∈ N?, on the Euclidean space Rd.

• δx0 : Dirac centered at x0.

• Ω: probability space.

• ω: element of Ω.

• µ: reference Lebesgue measure.

• Calligraphic letters refer to sets, e.g. X

• Capital letters refer to random variable on Ω, e.g. X : Ω→ X .

Notations 12

• ⊥: independence for random variables.

• Lower case letters refer to the realisation of random variables, e.g. x = X(ω).

• P(X): set of probability distributions on X .

• P(X × Y): set of join probability distributions on X × Y .

• P(P,Q): set of couplings with marginal P ∈ P(X) and Q ∈ P(Y) respectively.

• P (X): distribution of X.

• p(x): density of X w.r.t. µ.

• P (X|Z): distribution of X conditioned on Z.

• P (X|Z = z): distribution of X conditioned on the realisation Z = z. Also

denoted as P (X|z).

• p(x|Z = z): density of X conditioned on the realisation Z = z. Also denoted

as p(x|z).

Introduction

Understanding the intrinsic structure of a given dataset of interest is at the center of

the machine learning community effort. Indeed, capturing this information is key to

answering most questions that arise when studying datasets composed of random

variables, and for tackling challenges that emerge when working with real-world data.

Machine learning approaches can be broadly divided in three categories: supervised

learning, unsupervised learning and reinforcement learning.

Supervised learning methods use both the data and the desired output to learn

the conditional distribution of the outputs given the inputs. Supervised learning

methods were the first ones to present human-level performances in common tasks

such as classification and regression. Since, they have been used in wide range of

applications such as image classification, object detection, machine translation and

speech recognition. Two important models for supervised learning are convolutional

neural networks (CNNs) and recurrent neural networks (RNNs). CNNs [Krizhevsky

et al., 2012, Simonyan and Zisserman, 2015, He et al., 2016] are a type of deep neural

networks that are specifically designed for processing data that can be represented

on a grid, such as images or videos. They are obtained by stacking convolutional

layers, each layer capturing patterns on different scales. RNNs are a type of deep

neural network that are specifically designed for processing data that has a sequential

structure, such as text or audio. RNNs work by learning to store information from

previous inputs in a recurrent hidden state vector h, and then using this information

to make predictions about future input sequences. As with CNNs, they are built by

stacking specifically designed layers [Hochreiter and Schmidhuber, 1997, Cho et al.,

2014] that can learn to extract information from the previously generated inputs

and use it to both generate the next set of inputs and pass down the extracted

Introduction 14

information to the next layers. Recently, transformer models such as Devlin et al.

[2018] have shown human-level performances on a wide variety of tasks.

In reinforcement learning, an agent interacts with a known or unknown envi-

ronment in order to maximize a cumulative reward. The environment provides a

feedback for each action taken by the agent allowing the agent to learn the optimal

set of actions for this specific environment to achieve maximal reward. Applications

of reinforcement learning algorithms vary and often involve complex interaction be-

tween the agent and the environment such as games, robotic control and autonomous

driving.We can distinguish 3 main families of reinforcement learning methods. First,

policy gradient methods are a type of deep reinforcement learning methods that

directly optimize the policy of an agent. The policy of an agent is a function that

maps from the internal state of the agent to the action taken by agent. Policy

gradient methods Williams [1992] work by estimating the gradient of the expected

reward with respect to the policy, and then using this gradient to update the policy.

Policy gradient methods are relatively simple to implement, and they can be effective

in a variety of domains. However, they can be computationally expensive, and they

can be difficult to train for large and complex problems. Value-based methods [Mnih

et al., 2013] are another type of deep reinforcement learning method that estimates

the value of a state or a state-action pair. The value of a state is the expected reward

that an agent can expect to receive from that state, given its policy. Value-based

methods work by estimating the value function, and then using this estimate to make

decisions. Value-based methods are typically more efficient than policy gradient

methods, and they can be more effective for large and complex problems. However,

they can be more difficult to train, and they can be less robust to noise. Advantage

actor-critic methods [Mnih et al., 2016, Schulman et al., 2017] are a type of deep

reinforcement learning methods that combines the advantages of policy gradient

methods and value-based methods. Advantage actor-critic methods estimate the

advantage function, which is the difference between the value of a state-action pair

and the value of the current state. The advantage function is used to update the

policy, and the value function is used to make decisions. Advantage actor-critic

methods are typically more efficient than policy gradient methods, and they can

Introduction 15

be more effective for large and complex problems. They are also more robust to

noise than value-based methods. In reinforcement learning, an agent interacts with

a known or unknown environment in order to maximize a cumulative reward. The

environment provides a feedback for each action taken by the agent allowing the

agent to learn the optimal set of actions for this specific environment to achieve

maximal reward. Applications of reinforcement learning algorithms are varied and

often involve complex interaction between the agent and the environment such as

games, robotic control and autonomous driving.We can distinguish 3 main families

of reinforcement learning methods. First, policy gradient methods are a type of

deep reinforcement learning methods that directly optimize the policy of an agent.

The policy of an agent is a function that maps from the internal state of the agent

to the action taken by agent. Policy gradient methods Williams [1992] work by

estimating the gradient of the expected reward with respect to the policy, and then

using this gradient to update the policy. Policy gradient methods are relatively

simple to implement, and they can be effective in a variety of domains. However, they

can be computationally expensive, and they can be difficult to train for large and

complex problems. Value-based methods [Mnih et al., 2013] are another type of deep

reinforcement learning method that estimates the value of a state or a state-action

pair. The value of a state is the expected reward that an agent can expect to

receive from that state, given its policy. Value-based methods work by estimating

the value function, and then using this estimate to make decisions. Value-based

methods are typically more efficient than policy gradient methods, and they can be

more effective for large and complex problems. However, they can be more difficult

to train, and they can be less robust to noise. Advantage actor-critic methods

[Mnih et al., 2016, Schulman et al., 2017] are a type of deep reinforcement learning

methods that combines the advantages of policy gradient methods and value-based

methods. Advantage actor-critic methods estimate the advantage function, which is

the difference between the value of a state-action pair and the value of the current

state. The advantage function is used to update the policy, and the value function is

used to make decisions. Advantage actor-critic methods are typically more efficient

than policy gradient methods, and they can be more effective for large and complex

Introduction 16

problems. They are also more robust to noise than value-based methods.

Finally, and most relevant for this thesis, unsupervised learning methods have

only access to the data without any guidance on the desired outputs as opposed to

supervised learning. Since no explicit information is given to the model, unsupervised

learning tasks are often considered more challenging than their supervised counter-

parts. Historically, these methods have been popular for tasks involving summarizing

and explaining the data such as clustering or density estimation. More recently,

using these methods to learn the process by which a set of data has been generated

has been at the center of the machine learning community effort. Indeed, it not

only allows for the generation of new data but also helps to capture and understand

the intrinsic structure of the dataset at hand. The generative models introduced by

these methods have been widely used in areas where large unlabelled dataset are

available, from Natural Language Processing (NLP) and image generation to image

in-painting and representation learning. Amongst the different type of generative

models, we can find:

• Variational Autoencoders (VAEs) [Kingma and Welling, 2014, Rezende et al.,

2014] are probabilistic models that are trained to efficiently encode the data

information into a compressed internal or latent representation. In order to

learn the encoder distribution, VAEs also learn to reconstruct the data from

the latent representation using a decoder network.

• Generative Adversarial Networks (GANs) [Radford et al., 2016, Brock et al.,

2019] consist of two neural networks, a generator and a discriminator. The

generator is responsible for creating new data samples, while the discriminator

is responsible for distinguishing between real and fake data samples. The

two networks are trained adversarially, meaning that they compete against

each other. The generator tries to create data samples that are so realistic

that the discriminator cannot distinguish them from real data samples. The

discriminator, on the other hand, tries to become better at distinguishing

between real and fake data samples. While GANs have been shown to be very

effective at generating realistic data samples, but they can be difficult to train.

Introduction 17

GANs can also be unstable, meaning that they can sometimes generate data

samples that are not very realistic.

• Autoregressive models [Van den Oord et al., 2016c,a, Radford et al., 2018] are a

type of deep generative model that generates data one sample at a time. Each

sample is generated based on the previous samples. Autoregressive models can

be used to generate text, music, and other types of data. Autoregressive models

can be slow to generate data points and difficult to scale to large datasets.

• Flow-based generative models [Dinh et al., 2014, 2016b, Kingma and Dhariwal,

2018] are a type of deep generative model that uses normalizing flows to trans-

form the latent distribution to the data distribution. The latent distribution

is typically a simple distribution, such as a Gaussian distribution and the

generative flow transforms the latent distribution into the data distribution a

using a series of invertible transformations. While very expressive, Flow-based

models can be computationally expensive to train.

• Diffusion-based models [Ho et al., 2020, Song et al., 2021, Dhariwal and Nichol,

2022] are a type of deep generative models that generates data by gradually

denoising an initial random sample. Diffusion models work by recursively

add noise to the available training data (also known as the forward diffusion

process) and then reversing the process (known as denoising or the reverse

diffusion process) to recover the data. Diffusion-based models are typically

more efficient at large scale than both flow-based and autoregressive models.

In this work, we assume that the data are noisy observations of hidden random

variables that live in a low-dimensional space. These models are often referred

to as latent-variable models. The support of the hidden variables, or the latent

manifold, can be seen as a compact and efficient representation of the observed

data. The representations encoded in the latent manifold can be used for many

downstream tasks such as semantic classification or data visualisation. However,

finding the optimal model that matches the data generation process is hard, if not

impossible, and often requires approximations. Maximum likelihood (ML) have been

Introduction 18

designed to train parametric latent-variable models by maximizing the likelihood

of the observations under the model distribution. Amongst these, VAE [Kingma

and Welling, 2014, Rezende et al., 2014] is a popular method that maximizes the

Evidence Lower Bound (ELBO) of the model likelihood. Both VAEs and variants

have shown impressive results. Yet it remains intrinsically ill-defined and inflexible.

Recently, Optimal Transport (OT) has been suggested as a likelihood-free method

showing competitive performances with appealing properties that could overcome

the difficulties encountered by likelihood-based methods.

The main challenges and problems tackled in this work are central questions in

the machine learning community. Training powerful generative models is a common

challenge in the unsupervised learning setting as no explicit information on the

desired behavior is given to the model. For example, while latent-variable models

with discrete latent variable are ones of the most simple models to describe dataset

split into a known number of discrete classes, their training is challenging when using

the common ML approach. A second aspect we looked at was the models themselves,

and especially how to improve the expressiveness and interpretability of generative

models. One solution to increase the models expressiveness is to increase the depth of

their latent variables. For example, models with deep-latent hierarchies are believed

to be able to capture a powerful representation of the data as each latent layer of

the hierarchy can encode the information at different scale. Another approach would

be to introduce explicit control on the way the latent variables encode the data.

For example, encouraging disentanglement of the latent variable has been show to

produce more robust and semantically meaningful latent representations.

In Chapter 1, we introduce the foundations of generative modelling. We first

present the theory underpinning probabilistic generative modelling, latent-variable

models and the popular ML approach, focusing on VAE [Kingma and Welling, 2014,

Rezende et al., 2014]. We then give an overview of the OT problem, starting with the

discrete case before moving on to the continuous case which is of more interest in this

work. Finally, we review the recently introduced Wasserstein Autoencoder (WAE)

[Tolstikhin et al., 2018, Bousquet et al., 2017]. This is a likelihood-free method based

on the OT framework that shows interesting geometric properties and promising

Introduction 19

results when training latent-variable models.

In Chapter 2 we quantitatively show how WAEs are appealing alternatives to VAEs

when working with discrete-latent models in a fully unsupervised setting. Generative

models with both discrete and continuous latent variables, such as Gaussian mixture

latent-variable models (GL-LVMs), have long been of interest for the machine learning

community because of the sheer number of real-world applications with discrete

classes in the data. However, classic approximate variational-inference methods

which rely on gradient descent algorithms are not suited to the discrete setting. For

example, it has been well documented that the modes of the discrete-latent variables

collapse. Solutions to this include using specially designed models [Jang et al., 2017,

Maddison et al., 2017, Van den Oord et al., 2017, Johnson et al., 2016] and training

methods [Eslami et al., 2016, Lawson et al., 2018]. Another alternative is to simply

add back some supervision by introducing a subset of labelled data [Kingma et al.,

2014]. Motivated by the weak topology induced by the Wasserstein distance on the

space of the model distributions, we show that WAEs are better suited to learning

discrete-latent models than the likelihood-based VAEs. Specifically, we show that

GM-LVMs can be trained with WAE in an unsupervised fashion with qualitatively

better latent representation, motivating further the value of the OT approach to

generative modelling [Gaujac et al., 2021a].

In Chapter 3, we present StWAE, a new training objective specially designed for

deep-latent hierarchical generative models. Such models are highly expressive models

that aim to encode the data with a latent hierarchy. Their deep-latent structures

are believed to provide the practitioner with an intuitive and explainable latent

representation while improving at the same time the generative performance of the

model. While increasing the depth of the latent hierarchy has long been used as a

means to increase the expressiveness of generative models, training latent-variable

models with deep latent hierarchy remains challenging. State-of-the-art methods rely

on highly tailored inference and generative network designs [Sønderby et al., 2016,

Bachman, 2016, Kingma et al., 2016, Vahdat and Kautz, 2020] as well as complex

training schemes [Kingma et al., 2016, Maaløe et al., 2019, Yoshida and Miyato,

2017, Vahdat and Kautz, 2020]. Instead, StWAE is an OT-based approach, building

Introduction 20

on the WAE of Tolstikhin et al. [2018], Bousquet et al. [2017] for learning expressive

deep-latent hierarchical models. StWAE is derived by stacking WAEs in each latent

layer, introducing an inference distribution at each level of the hierarchy that maps

the information up to the next layer. We quantitatively show that by doing so,

StWAE is able to leverage all of its hierarchy and to encode the information up to its

deepest latent layer. Moreover, the simple first order Markovian structure of StWAE

reduces the computational cost of the model whilst providing a qualitatively more

interpretable latent representation.

While StWAE was focused on training deep-latent hierarchical generative models,

it showed promising capabilities at learning interpretable latent representations. In

Chapter 4, we introduce the Total Correlation Wasserstein Autoencoder (TCWAE),

an OT-based method for learning disentangle latent representations. Disentanglement

learning seeks to learn a semantically meaningful representation of the data by using

statistically independent latent variables, each encoding for a unique underlying

generative factor Bengio et al. [2013]. Not only do such methods improve the

interpretability of the learned representation but also offer more control over how

the model encodes information. Additionally, it is argued that disentangled latent

representations improve the performance and robustness of the model Bengio et al.

[2013], van Steenkiste et al. [2019]. By leveraging the decomposition of the Kullback-

Leibler (KL) divergence, TCWAE presents an explicit dependency on the Total

Correlation of the aggregated posterior, which has been shown to play an important

role in the disentanglement of the latent representation.

We conclude with a review of the contributions of this thesis and discuss the

potential direction for future work.

Chapter 1

Foundations

In this chapter, we lay out the background knowledge and technical concepts needed

to understand the remainder of the dissertation. We start by introducing generative

modelling and the Maximum Likelihood principle, providing an intuitive method to

train such generative models. We then present the Optimal Transport problem and

introduce an Optimal Transport based framework for learning generative models

that offers a powerful alternative to the likelihood approach.

1.1 Generative models

Generative models are probabilistic models that are trained to replicate the process

by which a set of data is generated. To do so, one assumes that the data at hand, or

observations, are i.i.d. realisations of a random variable X, defined on probability

space Ω, living in X , with probability distribution PX . In most of the cases, it is

assumed that PX is continuous w.r.t. the Lebesgue reference measure µ with its

density denoted pX = dPX
dµ

. However, this data distribution is generally unknown,

with only a sub-set of variables observable and only a finite set of samples available.

The goal is then to learn the data distribution by approximating it with a model

or likelihood distribution P ≈ PX . This is achieved by defining a divergence or loss

function, L, on the probability space and finding the optimal element P ? in the

1.1. Generative models 22

model distribution space P(X) that minimizes this loss:

P ? = arg min
P∈P(X)

L
(
PX , P

)
(1.1)

Often, the model distributions are parametric functions. We will denote the model

parameters by θ for the remainder of this work. Only deterministic parameters are

being considered in this thesis, as opposed to the Bayesian approach where parameters

are themselves random variables. The objective of generative modelling boils down

in this case to learning the parameters θ? that result in the best approximation of

the data distribution:

θ? = arg min
θ
L
(
PX , Pθ

)
(1.2)

1.1.1 Latent variable models

Latent variable models are a class of probabilistic models where only a sub-set of

variables is observed. The likelihood distribution then refers to the marginal of the

joint distribution, P (X,Z) over the observed variables X. It is implicitly defined by

integrating or marginalizing over the latent variables:

p(x) =

∫
Z
p(x, z) dz =

∫
Z
p(x|z)p(z) dz (1.3)

The distribution P (Z) is referred to as the prior distribution whilst the conditional

distribution P (X|Z) as the generative model. Even though the integral in Equa-

tion (1.3) is intractable in many cases, it is often easy to sample from the generative

model. Assuming one can sample easily from both the prior and the conditional

generative model, sampling from the model can be straightforward by first sampling

z from the prior and then x from the generative model conditioned on the sampled z.

When working with latent variable models, one can only hope to learn the

marginal of the joint model distribution over the observed variables as the ground

truth data distribution is only accessible through samples, and in many cases only a

finite set of samples.

1.1. Generative models 23

Often, the observed variables are high dimensional whilst the latent space lies

in a low dimension space. The latent variables can be seen as a compact and

efficient representation of the high dimensional observations. The generative model

P (X|Z) maps the latent variables to the observations whilst the posterior, P (Z|X),

provides the inverse mapping. In some applications, latent variables are used to

extract semantically meaningful information about the observed data, for example by

encoding the factors of variation in a statistically independent manner (see Chapter

4).

1.1.2 Maximum Likelihood

A popular method for training latent variable models is the Maximum Likelihood (ML)

approach. In the ML approach, the loss function L in Equation (1.1) is the Kullback-

Liebler (KL) divergence. The optimization problem defined in Equation (1.2) is then

equivalent to maximizing the loglikelihood of the model P (X):

min
P∈P(X)

KL
(
PX ‖ P

)
= min

P∈P(X)
E
PX

(
log

pX(X)

p(X)

)
= min

P∈P(X)
E
PX

(
log pX(X)

)
− E

PX

(
log p(X)

)
= max

P∈P(X)
E
PX

(
log p(X)

)
(1.4)

In the case of finite samples x1, . . . , xM
i.i.d∼ PX , with parametric model Pθ, the maxi-

mization problem (1.4) becomes:

θML def
= arg max

θ

1

M

∑
m

log pθ(xm) (1.5)

where θMLE is the Maximum Likelihood Estimator (MLE).

In Information Theory, the KL divergence between two distributions P1 and P2

represents the average number of extra bits required to encode samples coming from P1

when using P2. In other words, the ML approach seeks to find the model distribution

that requires the less amount of extra bits to encode the data. An equivalent

interpretation of the ML method can be drawn from the last line of Equation (1.4):

1.1. Generative models 24

the ML maximises the negative cross-entropy of the model distribution under the

data distribution. The cross-entropy quantifies the number of bits needed when

encoding the data with the model distribution instead of the data distribution [Kraft,

1949, McMillan, 1956].

The ML approach is not always feasible as the integral in Equation (1.4) might

not be tractable, making the likelihood impossible or hard to compute. Moreover,

even in the case where one can approximate the likelihood term (using sampling

methods for example), it is still possible that no closed-form solutions exist for

Equation (1.4). In this case, one solution is to optimize a tractable lower-bound of

the likelihood. One popular bound is the variational free energy function or Evidence

Lower-Bound (ELBO) defined, for x ∈ X , by:

LELBO
(
x, PX , Q) =

∫
Z
q(z|x) log

p(x|z)p(z)

q(z|x)
dz (1.6)

where p is the model distribution. The density q introduced in Equation 1.6 is

often named the variational posterior or variational distribution. Using, Jensen’s

inequality, it is easy to show that LELBO
(
x, PX , Q) ≤ log px(x) for all x ∈ X and all

densities px and q.

Expectation-Maximisation The Expectation-Maximisation (EM) algorithm [Demp-

ster et al., 1977] is an example of such methods. EM iteratively increases the log-

likelihood of the model by updating the generative distribution P (X|Z), during

the E-step, and the variational distribution Q(Z|X), in the M-step. In the case of

parametric models, Pθ, and variational distributions, Qφ, the EM alternates between

the E-step and the M-step as follow:

• E-step: maximise LELBO(θ, φ) with respect to φ whilst holding θ fixed.

• M-step: maximise LELBO(θ, φ) with respect to θ whilst holding φ fixed.

Variational Autoencoder The Variational Autoencoder (VAE) [Kingma and

Welling, 2014, Rezende et al., 2014] is a popular method for training generative models

that is relatively straightforward with specific choices of variational distributions and

1.1. Generative models 25

priors. It relies on simple Monte-Carlo estimators (MC) combined with expressive

encoder and decoder distributions parameterised by powerful neural networks. In

VAEs, the ELBO is decomposed as:

LELBO(x, θ, φ) =

∫
Z
qφ(z|x) log pθ(x|z) dz −KL

(
Qφ(Z|x) ‖ P (Z)

)
(1.7)

The first term of the r.h.s. of Equation(1.7) is referred to as the reconstruction cost

whilst the second term as the latent regularizer. The reconstruction term penalizes

models that poorly reconstruct the observations whilst the latent regularizer ensures

that the posterior does not drift dramatically away from the prior.

Assuming that log pθ(x|z) is well defined and that it is possible to sample z from qφ,

we can easily compute a MC estimate of the reconstruction term. Additionally, if we

can compute a closed-form expression of the KL term in the r.h.s. of Equation(1.7),

we can obtain an unbiased estimator of the ELBO. Then, with continuous and

differentiable parametrizations of the model and variational distributions, we can use

gradient descent methods to maximize the ELBO w.r.t. to the parameters θ and φ:

∇θ,φ LELBO(x, θ, φ) =
1

M

M∑
m=1

∇θ,φ log pθ(x|zm)−∇φ KL
(
Qφ(Z|x) ‖ P (Z)

)
(1.8)

where zm ∼ qφ(z|x) for m = 1, . . . ,M . However, it has been shown [Paisley et al.,

2012] that the gradient of the MC estimate of the reconstruction term with respect

to φ can be of high variance.

Kingma and Welling [2014] introduced the reparametrization trick. They show

that, under mild conditions on the variational distribution, it is possible to reparametrize

the distribution qφ(.|x) with a differentiable transformation of a fixed auxiliary noise

variable ε as follow:

ε ∼ p(ε)

z = gφ(x, ε) (1.9)

where gφ is a differentiable function w.r.t. φ.

1.1. Generative models 26

Example 1.1.1 A common choice suggested by Kingma and Welling [2014] is to

parameterize the approximate posterior using a Gaussian distribution with mean µφ

and covariance diag(σ2
φ) where µφ and σ2

φ are neural networks with parameters φ.

qφ(·|x) can then be reparametrized using a unit normal distribution:

ε ∼ N (0dZ , IdZ)

gφ(x, ε) = µφ(x) + σ2
φ(x)� ε (1.10)

It follows that z = gφ(x, ε) ∼ N
(
µφ(x), diag(σ2

φ(x))
)
.

Combined with stochastic gradient methods, VAEs prove to be relatively simple

to train and have shown impressive results in term of samples generation and

loglikelihood score. Since its introduction, there have been a growing number

of methods, introducing more complex graphical models, more powerful neural

networks and tailored loss functions, that gradually closed the performance gap with

other approaches, showing impressive sample quality and achieving state-of-the-art

likelihood score.

Generative Adversarial Networks Generative Adversarial Networks (GANs)

[Goodfellow et al., 2014] are another family of generative models that have shown im-

pressive performance at learning complex data distributions and generating realistic

samples. Similarly to VAEs, GANs use a generative distribution or generator to gen-

erate samples providing with a mapping from the latent variables to the observations.

As in VAEs, the mean parameters of the generator are usually parametrized by neural

networks. However, as opposed to VAEs, GANs do not use any encoder network, and

thus do not provide the practitioner with the invert mapping from the observation

space to the latent space. Instead, a discriminator is trained simultaneously to the

generator to distinguish true data from samples generated by the generator. In doing

so, the discriminator guides the generator to generator more realistic samples. More

formally, the generator G is trained to minimizing the discrimination loss of the

discriminator D while the discriminator, D, learns to maximize its discriminative

1.1. Generative models 27

power. Mathematically, the training objective is a min-max problem defined by:

min
G

max
D

EPX
[

logD(x)
]

+ EPZ
[

log
(
1−D

(
G(z)

))]
(1.11)

where again, PX is the true data distribution while PZ is the prior distribution on

the latent space Z.

GANs have shown good generative performances, with impressive samples quality,

often out-performing VAEs. Many follow-up works have built on the original paper,

improving the generative performances and introducing modification of the training

objective to guide the generation process [Salimans et al., 2016]. However, the lack

of implicit likelihood function and encoder to map from the observation to the latent

space makes GANs unsuitable in many applications. Moreover, GANs are known to

be prone to mode collapsing during training [Salimans et al., 2016], making the use

of very powerful networks for the generator and discriminator much more difficult

than with VAEs.

Flow-based models Normalizing flows [Dinh et al., 2014] have been proposed to

alleviate some of the problems encountered in both VAEs and GANs. Mostly, they

try to directly learn the data distribution as opposed and thus optimize directly

loglikelihood of the model as opposed to GANs and VAEs whose training objec-

tives are only proxy of the data likelihood. Flow-based models rely on invertible

transformations of the model distribution, transforming a simple distribution into

complex ones by sequentially applying a sequence of invertible functions to the model

distribution. More formally, we can define the normalizing flows fi, i = 0, . . . , N as

follow:

z0 ∼ p0, zi = fi(zi−1), i = 1, . . . , N (1.12)

where zN = x. Using the change of variable theorem, we can easily compute the

density of the intermediate variables zi from Equation (1.12):

pi(zi) = pi−1(f−1
i (zi))

∣∣∣detdf−1
i (zi)

dzi

∣∣∣ (1.13)

1.1. Generative models 28

Thus, the model loglikelihood can be written as:

log pX(x) = log p0(z0)−
N∑
n=1

log
∣∣∣detdfi(zi−1)

dzi−1

∣∣∣ (1.14)

In order to make Equation (1.14) tractable, the flows fi must have a tractable inverse

function and their Jacobian must also be tractable. Several works have refined

the transformation functions with invertible layers such as additive coupling layers

[Dinh et al., 2014] and affine coupling layers [Dinh et al., 2016b] and designed simple

invertible operations such as invertible 1x1 convolutions [Kingma and Dhariwal, 2018].

Another family of flow-based models framed the transformations in the normalizing

flow as autoregressive generative models, where is dimension of the observations is

conditioned on a set of previous dimensions for a given dimension ordering. These

models with autoregressive flows have been used in a variety of task, from simple

density estimation to image generation [Van den Oord et al., 2016b] and audio signals

[Van den Oord et al., 2016a]. Finally, and interesting in the context of this thesis,

normalizing flows have been used to improve the flexibility and complexity of the

prior distribution in VAEs [Rezende and Mohamed, 2015]. Specifically, the simple

prior distribution is sequentially transform into a more complex one by applying

a sequence of invertible flows which are designed to make the latent regularizer

in Equation (1.7) tractable. While flow-based models have been shown to achieve

impressive performance in term of likelihood score and sample generation, their

training requires heavy computation power due to the inverse operation at inference

time making these method hard to scale to bigger dimensions.

Diffusion based models Diffusion models have emerged recently as a powerful

generative modeling technique, building on Denoising Diffusion Probabilistic Models

(DDPM) Sohl-Dickstein et al. [2015b]. The key intuition is to recast data generation

as a denoising process. Specifically, a Markov chain is used to gradually add Gaussian

noise to data samples x0, diffusing them into pure noise xT Ho et al. [2020]. The

generative model pθ(xt−1|xt) aims to reverse this diffusion by modeling the conditional

distribution to denoise xt back to xt−1.

1.2. Optimal Transport 29

The model pθ is trained by maximizing the log likelihood log p(x0) under this

forward diffusion-reverse denoising process. The resulting evidence lower bound

(ELBO) objective enables tractable training and encourages pθ to reverse the diffusion

Song et al. [2021]. After training, ancestral sampling generates new x0 by iterative

sampling from pθ starting from pure noise xT .

Key advantages of diffusion models include the ability to leverage highly flexible

neural networks for pθ to model complex, high-dimensional densities Nichol et al.

[2022]. This helps capture intricate distributional details and generate remarkably

realistic samples. However, a current limitation is the computational cost of repeated

denoising during sampling. Overall, diffusion models are becoming highly competitive

for generative modeling, and ongoing work to improve sampling efficiency may further

enhance their capabilities.

1.2 Optimal Transport

The Optimal Transport (OT) problem finds its origin in the problem of resources

allocation [Monge, 1781, Kantorovich, 2006]. In the seminal work of Monge [1781],

the author considers piles of sand and how to move sand from a set of different

locations, the sources, to a set of destinations, the targets given a unit moving cost.

The OT is defined as the transport with the smallest possible cost. More formally,

OT is a mathematical framework providing geometric tools to compare probability

distributions. It defines a natural geometrical structure on the ground space, paving

the way for key concepts when studying probability distributions. We start by

introducing the OT problem for continuous random variables. We then focus on the

special case of the Wasserstein distance and finish with a discussion on the potential

advantage of using the OT framework for generative modelling.

1.2.1 Continuous Optimal Transport

The OT problem was first introduced in the case of discrete random variables, and

more especially as a metric in for discrete probability distributions. Recent advances

[Cuturi, 2013b] allowed practitioners to move away from linear program solvers and

1.2. Optimal Transport 30

(a) Discrete measures. (b) Continuous measures.

Figure 1.1: Illustration of the Optimal Transport problem for two measures α and β
with the resulting transport plan given by π. (a): discrete OT. (b): continuous OT.

made the OT problem more appealing in a number of applications such as in image

[Ortega et al., 2017, Wang et al., 2013, 2011, Thorpe et al., 2017] and text [Rolet

et al., 2016, Huang et al., 2016, Kolouri et al., 2017] processing. Indeed, images

and texts can be represented as histograms on the pixels grid and words vocabulary

respectively, thus lending themselves well to the formalism of the OT problem (see

AppendixA.0.1 for more details on the discrete OT problem).

In this case, we consider continuous probability distributions. We define the set

of couplings P(P,Q), between P ∈ P(X) and Q ∈ P(Y), as:

P(P,Q)
def
=
{

Γ ∈ P(X × Y);

∫
Y
γ(x, y) dy = p(x) and

∫
X
γ(x, y) dx = q(y)

}
(1.15)

Similarly to the discrete case, the continuous OT problem seeks to minimize the total

cost of transporting a unit volume from P (x) to Q(y) given the unit cost c(x, y).

Indeed, for a given coupling Γ between P and Q, the infinitesimal cost is given by

δ(x, y) = c(x, y)γ(x, y) dxdy. This result in the discrete OT formulation given by:

Lc
(
P,Q

) def
= min

Γ∈P(P,Q)

∫
X×Y

c(x, y)γ(x, y) dxdy

= min
Γ∈P(P,Q)

E
Γ(X,Y)

c(X, Y) (1.16)

1.2. Optimal Transport 31

where the second line provides a more probabilistic interpretation of the OT (see

Figure 1.1b). The optimal coupling Γ? such that:

Γ? = min
Γ∈P(P,Q)

∫
X×Y

c(x, y)γ(x, y) dxdy

= arg min
Γ∈P(P,Q)

E
Γ(X,Y)

c(X, Y) (1.17)

is also referred to as the optimal transport plan between P and Q for the cost

function c.

Equation (1.16) is an infinite-dimensional linear programming problem and under

mild conditions1, it can be shown that it always has a solution. For a more thorough

review of the properties and algorithmic methods of the OT we refer the readers to

Peyré and Cuturi [2019].

1.2.2 Wasserstein distance

One important property of the OT is that it defines a metric on the probability

distributions space as long as the ground cost function, c in Equation (1.16), that

satisfies certain conditions.

A function d : X × X → R+ is a distance on X if it is symmetric, null i.i.f.

x = y and satisfies the triangle inequality:

(i) : ∀(x, y) ∈ X 2, d(x, y) = d(y, x)

(ii) : ∀(x, y) ∈ X 2, d(x, y) > 0 and d(x, y) = 0⇔ x = y (1.18)

(iii) : ∀(x, y, z) ∈ X 3, d(x, y) ≤ d(x, z) + d(z, y)

We now assume Y = X and consider a ground cost function c of the form c(x, y) =

d(x, y)l where d is a distance on X ×X and l ∈ N?. Then, for (P,Q) ∈ P(X)×P(X),

the l-Wasserstein distance, Wc,l, between P and Q is defined as:

Wc,l

(
P,Q

) def
= Lc

(
P,Q

) 1
l (1.19)

1X and Y compact spaces and c continuous.

1.2. Optimal Transport 32

or using Equation (1.16):

Wc,l

(
P,Q

)l
= min

Γ∈P(P,Q)

∫
X×X

d(x, y)lγ(x, y) dxdy (1.20)

Wc,l is a distance function on P(X) × P(X). Especially, and contrary to the

KL divergence used in the ML approach, it satisfies properties (i) and (iii) of

Definition 1.18:

(i) : ∀(P1, P2) ∈ P(X)2, Wc,l

(
P1, P2

)
=Wc,l

(
P2, P1

)
(1.21)

(iii) : ∀(P1, P2, P3) ∈ P(X)3, Wc,l

(
P1, P3

)
≤ Wc,l

(
P1, P2

)
+Wc,l

(
P2, P3

)

The Wasserstein distance naturally lifts the distance δ on the probability space

Ω to the space of distributions on that ground space:

(
X , δ

)
→
(
P(X),Wc,l

)
(1.22)

Wasserstein distance for generative models As we saw in the previous sec-

tions, generative modelling involves finding the distribution, or set of parameters

in the case of parametric models, that minimize a loss function L. This optimiza-

tion problem could be solved with gradient descent methods if L was continuous

w.r.t. the model parameters θ. Now, the continuity of L is equivalent to having a

continuous mapping θ 7→ Pθ. Indeed, given a distance δ on the space of distributions

and assuming that θ∞ = θ? and Pθ? = Pdata, the mapping θ 7→ Pθ is by definition

continuous in θ? if:

θm →
m→∞

θ? ⇔ δ(Pθm , Pdata) →
m→∞

0 (1.23)

Thus, the choice of distance on the distributions space, or loss function in the case

of generative modelling, will characterize the continuity of the models Pθ w.r.t. the

parameters.

1.2. Optimal Transport 33

Now, it can be shown that (see Appendix A.0.2):

KL
(
Pm ‖ P∞

)
→

m→∞
0 ⇒ δTV (Pm, P∞) →

m→∞
0 ⇒ Wc,l

(
Pm, P∞

)
→

m→∞
0 (1.24)

Consequently, it should be easier to find the global minima of Equation (1.16) than

to find the ones of Equation (1.4). Example 1.2.1 illustrates these differences in

the simple case of learning parallel lines living in a 2-dimensional space. Especially,

we can see that, in this specific case, both the TV distance and the KL divergence

saturate, making gradient descent over the distribution parameter θ impossible.

On the opposite, the Wasserstein distance defines a smooth function of the model

parameter, which can be easily optimized.

Example 1.2.1 Lets consider Z ∼ U [0, 1] a uniform random variable in [0, 1] and

define P0 the distribution of X = (0, Z) and Pθ the distribution of Y = (θ, Z), with

(P0, Pθ) ∈ P(R2)× P(R2). Then, it can easily be shown that:

• dTV
(
Pθ, P0

)
=

 1 if θ 6= 0

0 else.

• KL
(
Pθ ‖ P0

)
=

 +∞ if θ 6= 0

0 else.

• W‖·‖Lm ,l
(
Pθ, P0

)
= |θ|, ∀(m, l) ∈ N2

Thus, θ 7→ dTV
(
Pθ, P0

)
is a piece-wise constant function with zero gradient ev-

erywhere whilst θ 7→ KL
(
Pθ ‖ P0

)
is simply ill-defined on R?. On the contrary,

θ 7→ W‖·‖Lm ,l
(
Pθ, P0

)
is continuous and differentiable and gradient descent methods

can easily be used to find the optimal distribution parameter.

While Example 1.2.1 only considers very simple 2-dimensional distributions,

similar observations can be made for more general multivariate distributions when

their supports intercept in a set of measure null. Particularly, this is often the

case with latent variable models where one assumes that the data live in a low

dimensional manifold (see Section 1.1.1). Note that other divergences than the ones

1.3. Wasserstein Autoencoder 34

of Example 1.2.1 are able to tackle distributions with non-overlapping supports.

For example, the Spread Divergence considers noisy versions of the data and model

distributions [Zhang et al.] while the Maximum Mean Discrepancy (MMD) leverages

the properties of reproducing kernel Hilbert spaces [Gretton et al., 2005].

1.3 Wasserstein Autoencoder

1.3.1 Formulation

Motivated by the observation on the topology induced by the Wasserstein distance

made in Section 1.2.1 , Bousquet et al. [2017] and Tolstikhin et al. [2018] introduced

the Wasserstein Autoencoder (WAE). WAE optimizes the Wasserstein distance

between the unknown data distribution and the model distribution by making two

approximations of the Wasserstein distance: i) they refactorize the set of couplings

in Equation (1.20) and ii) they relax the hard constraint on the marginal. By

reparametrizing the set of the couplings, the authors upper-bound the Wasserstein

distance by constraining the optimization space to distributions of the form described

in Equation (1.3). The relaxation of the marginal constraint turns the non-convex

optimization problem defined in Equation 1.20 into an easier unconstrained convex

objective.

Refactorization of the joint distribution More formally, assume PX(X) ∈

P(X), PZ(Z) ∈ P(Z), PY (Y |Z) ∈ P(X). With abuse of notation, we also refer to

PY (Y) as the distribution on X such that Z is first sampled from PZ while Y is then

sampled from PY (Y |Z) using the previously sampled z: pY (y) =
∫
Z pY (y|z)pZ(z) dz.

We consider the set of joint distributions on X, Y and Z, PX,Y,Z , such that ∀P ∈

PX,Y,Z :

p(y, z)
def
=

∫
X
p(x, y, z) dx = pY (y|z)pZ(z) (1.25)

p(x)
def
=

∫
Y×Z

p(x, y, z) dydz = pX(x) (1.26)

(X ⊥ Y) | Z (1.27)

1.3. Wasserstein Autoencoder 35

From Equation (1.25), it is immediate that p(z)
def
=
∫
X×Y p(x, y, z) dxdy = pZ(z) and

p(y|z) def
= p(y,z)

p(z)
= pY (y|z). And so, P ∈ PX,Y,Z i.f.f. there exists P (Z|X) ∈ P(Z)

such that:

P (X, Y, Z) = PX(X)P (Z|X)PY (Y |Z) (1.28)

and

paggZ (z)
def
=

∫
X
pX(x)p(z|x) dx = pZ(z)

We denote by PX,Y the set of marginals on (X, Y) induced by distributions in

PX,Y,Z . By definition, we have PX,Y ⊂ P(PX , PY). Thus we can upper-bound the

Wasserstein distance between PX and PY as follow:

Wc,l

(
PX , PY

)l ≤ inf
P∈PX,Y

E
P (X,Y)

c
(
X, Y

) def
= W†c,l

(
PX , PY

)l
(1.29)

Using Equation (1.28), we have:

W†c,l
(
PX , PY

)l
= inf

P (Z|X)∈P(Z)
p
agg
Z

=pZ

E
PX(X)

E
P (Z|X)

E
PY (Y |Z)

c
(
X, Y

)
(1.30)

where paggZ (z) is defined in Equation (1.28). Mirroring the ML approach (see Equa-

tion (1.6)), the encoding distribution P (Z|X) is often referred to as the approximate

variational posterior and denoted Q(Z|X), whilst P agg
Z as the aggregated posterior

and often denoted QZ(Z) =
∫
X pX(x)Q(Z|X = x) dx. In the reminder of the thesis,

we will adopt these notations.

As shown in Tolstikhin et al. [2018], the inequality in Equation (1.29) becomes an

equality in the case of deterministic decoder Pθ(Y |Z) = δGθ(Z)(Y) where G : Z → X

is a deterministic mapping (see Bousquet et al. [2017] for a detailed proof).

Relaxing the marginal constraint The marginal constraint in Equation (1.28)

makes the objective defined in Equation (1.30) a non-convex optimization problem.

Tolstikhin et al. [2018] relaxed Equation (1.30) with a convex penalty resulting in

1.3. Wasserstein Autoencoder 36

the unconstrained objective:

Wλ
c,l

(
PX , PY

)l def
= inf

Q(Z|X)∈PY
E

PX(X)
E

Q(Z|X)
E

PY (Y |Z)
c
(
X, Y

)
+ λ · D

(
QZ , PZ

)
(1.31)

where D : PZ × PZ → R+ is a convex function w.r.t. Q such that D
(
Q,P

)
= 0⇔

P = Q. Under mild conditions [Borwein and Lewis, 2000], the soft constraint of

Equation (1.31) is equivalent to adding a hard constraint of the type D
(
QZ , PZ

)
< ζλ

where ζλ > 0 is a decreasing function of λ such that ζλ → 0 when λ → ∞. Thus,

when λ increases, the solutions of Equation (1.31) will reach the feasible region of

Equation (1.30) where QZ = PZ .

Parametric WAE In the case of generative modelling, X represents the true

observations, Y the model samples and Z the latent variables: PY (Y) =
∫
Z Pθ(Y |Z =

x)pZ(z) dz. As with VAEs, the encoding distribution Q(Z|X) is parameterized by φ:

Q(Z|X) = Qφ(Z|X) and Tolstikhin et al. [2018], Bousquet et al. [2017] reformulate

Equation (1.31) as a min-min optimization problem over θ and φ:

W̃λ
c

(
θ, φ
) def

= E
PX(X)

E
Qφ(Z|X)

E
Pθ(Y |Z)

c
(
X, Y

)
+ λ · D

(
QZ,φ, PZ

)
(1.32)

Note that for simplicity, Tolstikhin et al. [2018], Bousquet et al. [2017] directly

optimize the l-power of Wλ
c,l instead of the l-root of Equation (1.31). Assuming that

both the cost function c and the latent divergence D are differentiable w.r.t. the model

and variational parameters θ and φ, we can approximate W̃λ
c using Monte-Carlos

sampling and minimize the resulting estimator with standard s.g.d. methods.

Latent divergence function Any divergence function on Z × Z could in theory

be chosen in Equation (1.31). However, by construction, the integral over the data

distribution in the aggregated posterior QZ is intractable. Nonetheless, we can

easily obtain samples from the aggregated posterior using ancestral sampling: first,

sample x ∼ px, then sample z ∼ q(z|x). Thus, only divergence functions that can be

approximated with sampling methods can be used. Secondly, the use of gradient-

based methods requires the latent divergence to be tractable and differentiable w.r.t.

1.3. Wasserstein Autoencoder 37

the variational parameters φ. The Maximum Mean Discrepancy (MMD) [Gretton

et al., 2005] and the Jensen-Shanon divergence are potential candidates proposed in

Tolstikhin et al. [2018], Bousquet et al. [2017].

1.3.2 Objective surgery

While VAEs and WAEs differ fundamentally in that they minimize different distances

to approximate the data distribution, they share many similarities and parallelisms

in their formulation given respectively in Equation (1.7) and (1.32). To make this

analogy more explicit, let us reformulate the ELBO objective in Equation (1.7) as a

minimization problem:

LELBO
(
θ, φ
) def

= E
PX(X)

[
− LELBO

(
X, θ, φ

)]
= E

PX(X)

[
E

Qφ(Z|X)
− log pθ(X|Z) + KL

(
Qφ(Z|X) ‖ P (Z)

)]
= E

PX(X)
E

Qφ(Z|X)
− log pθ(X|Z) + E

PX(X)
KL
(
Qφ(Z|X) ‖ P (Z)

)
(1.33)

Comparing Equation (1.33) to Equation (1.32), we can see striking resemblances in

how the objectives can be decomposed into the sum of a reconstruction cost and a

weighted latent regularizer.

Reconstruction cost In both VAEs and WAEs, a reconstruction cost is used to

measure the dissimilarity between the observations and the model reconstructions.

This term penalizes models that fail at reconstructing accurately the observations.

The main difference between VAEs and WAEs lies in the cost function of the

reconstruction term. In VAEs, the cost function is the entropy of the generative model

conditioned on the variational distribution: RV AE(x) = −Eqφ(z|x) log pθ(x|z). In

WAEs, it is the ground cost c between the true data and the generated reconstructions

averaged over the conditional reconstructions: RWAE(x) = Eq(z|x)EpY (y|z)c(x, y).

By construction, the reconstruction term limits the choice of decoding distributions

in VAEs. Only distributions with tractable (and differentiable) log density are possible

due to the presence of the log function in Equation (1.33). This implies that only

1.3. Wasserstein Autoencoder 38

decoders with implicit density pθ such that pθ(x|z) > 0 a.e. can be used. As such, one

can not use deterministic decoders to map the latent space to the observation space.

This is a direct consequence of the strong topology induced by the KL divergence

since using deterministic decoders to map low-dimensional priors to the observation

space effectively results in low-dimensional latent manifold. Thus the intersection of

the latent manifold with the data manifold will be contained in a set of measure null.

A standard solution is to add a Gaussian noise to the output of the (deterministic)

decoder, resulting in a Gaussian decoder as in Example 1.1.1. However, simply

adding noise to the generative model might not be desirable, as it does not guarantee

a consistent estimator [Zhang et al.] and can impact negatively the quality of the

samples [Wu et al., 2016]. An alternative method [Zhang et al.] consists in adding

the same noise to both the model and the data distributions. Under mild conditions,

the authors show that the noisy versions of the distributions, the spread distributions,

can be used to define a valid divergence, called Spread Divergence, between the two

original distributions. In WAEs, the construction of the reconstruction term allows

for any decoder distributions with a differentiable parametrization, and especially one

can simply use deterministic decoders to map the latent variables to the observation

space.

Latent regularizer In order to learn a smooth latent manifold from the observa-

tions, a latent regularizer term is present in both VAEs and WAEs. This regularizer

shapes the way information is captured and encoded. Whilst the regularizers in VAEs

and WAEs have the same goal of encouraging the approximate posterior to match the

prior, they differ in the manner to do so. VAEs regularizes the approximate posterior

on a point-wise level whereas in WAEs, only aggregated posterior is pushed toward

the prior. Put differently, only the continuous mixture of approximate posteriors

is penalized when drifting away from the prior. Indeed, in VAEs, for every single

observation, the KL divergence penalizes encoders that differ from the prior as

opposed to penalizing the aggregated posterior:

E
PX(X)

KL
(
Qφ(Z|X) ‖ P (Z)

)
6= KL

(
E

PX(X)
Qφ(Z|X) ‖ P (Z)

)
(1.34)

1.3. Wasserstein Autoencoder 39

(a) VAE reconstruction. (b) WAE reconstruction

Figure 1.2: Schematic view of the reconstruction mechanism in VAE (a) and WAE
(b). Each observation represented by a circle is mapped to a latent code in Z such
that the variational distribution matches the prior on a point level for VAE or on
average for WAE. These latent codes are then reconstructed with the generative
model P (X|Z).

This means that given an observation x, the conditional encoding distribution

Q(Z|x) will be encouraged to match the prior PZ regardless of x. In other words,

for different inputs x 6= x′, the resulting encoding distributions will share regions

of high probability (see Figure 1.2a). Thus, it will be unlikely that latent codes

sampled from the different encoding distributions z ∼ Q(Z|x) and z′ ∼ Q(Z|x′) stay

far apart, even for highly different input observations x and x′. This, in turns, makes

the task of reconstructing the observations harder for the decoder pY (y|Z = z) where

z ∼ q(z|x). The resulting overlap of regions with high probability under the different

encoding distributions usually results in a non-smooth latent manifold. Indeed, to

be able to distinguish between two similar latent codes z ∼ Q(Z|x) and z′ ∼ Q(Z|x′)

whit x 6= x′, the decoder will have to be very sensitive to small variations in the latent

variables. On the other hand, WAEs never encourage the encoder to match the prior

for every single observation. Only the aggregated posterior averaged over the whole

dataset, QZ(Z), is pushed toward the prior. Thus, latent codes for different input

observation will not be pushed toward one another space as long as the resulting

mixture, when averaging over these points, is close enough (in a D sense) to the

prior distribution as depicted in Figure 1.2b.

Another way to interpret the difference between the latent regularizers in WAEs

1.3. Wasserstein Autoencoder 40

and VAEs is from a latent bottleneck point of view. Assuming that the latent

divergence function in Equation (1.31) is chosen to be the KL divergence, then:

D
(
QZPZ

) def
= KL

(
QZ ‖ PZ

)
= −

∫
Z

∫
X
pX(x)q(z|x) log

p(z)∫
X pX(x)q(z|x)

= −
∫
Z

∫
X
pX(x)q(z|x) log

q(z|x)p(z)

q(z|x)
∫
X pX(x)q(z|x)

= E
PX(X)

KL
(
Q(Z|X) ‖ P (Z)

)
− E

PX(X)
KL
(
Q(Z|X) ‖ E

PX(X)
Q(Z|X)

)
≤ E

PX(X)
KL
(
Q(Z|X) ‖ P (Z)

)
(1.35)

Thus, for a given latent information bottleneck capacity, for all observation x, the

approximate posterior Q(Z|X) will be more strongly penalized toward the prior

P (Z) in VAEs than in WAEs.

While offering more flexibility, the latent regularizer of WAEs comes with its own

challenges. The main challenge lies in the choice of latent regularizer. Indeed, as

mentioned earlier, the aggregated posterior QZ is intractable by assumption, with

only a finite set of samples available. Thus, it will only be possible to compute

samples-based estimates of the latent regularizer D
(
QZ,φ, PZ

)
in Equation (1.32).

This limits the choice of divergence functions to the ones with estimators that

show desirable properties. Specifically, the use of gradient descent methods to

learn the variational parameters requires the latent estimator to be continuous and

differentiable w.r.t. the variational parameters with preferably low-variance gradient.

Moreover, the choice of latent divergence remains an open question as it will directly

impact the performances of the model. Thus, not only it is necessary to find a

divergence that fills the previous requirements, but it is also important to find one

that shows good performances for the task at hand. Indeed, as we saw in Chapter 3

and Chapter 4, finding a latent divergence that suits the problem at hand impact

dramatically the performances of the models. In VAEs on the other hand, the KL

divergence is imposed to be the latent regularizer, which can be easily computed

in many common cases (see Example 1.1.1). Additionally, the objective defined in

Equation (1.32) introduces an extra hyper parameter in the form of the regularization

1.3. Wasserstein Autoencoder 41

weight λ. While the theoretical guarantees of the Wasserstein distance described

in Section 1.2.1 hold when λ → ∞, the value of the penalization weight has to

be chosen in practice. Even though hyper parameters tuning is not uncommon in

machine learning, it raises the question of the role of λ in the convergence of the

WAE and how close to the true Wasserstein distance the WAE is at convergence.

1.3. Wasserstein Autoencoder 42

Chapter Summary In this chapter we lay out key background concepts needed to

understand the remainder of the dissertation, especially, first focusing on generative

modeling and the main methods for generative modelling such as Maximum Likelihood

(ML) and Optimal Transport (OT).

First, we introduced generative models, which aim to replicate the process which

generated the dataset at hand. Generative modeling involves approximating the

true data distribution with a model distribution by minimizing a divergence or loss

function. A popular framework to train generative models is the ML framework where

the model distribution is trained to maximize the loglikelihood of the data under

the model distribution. Amongst the likelihood-based methods, variational methods

like Variational Autoencoders (VAEs) leverage the capacity of expressive generative

models parametrized by neural networks by maximizing a tractable lower-bound of

the intractable loglikelihood. We also provided a short overview of other models and

methods in the field of generative modeling.

We then covered the OT framework, which provides tools to compare distributions

geometrically. The Optimal Transport (OT) problem seeks the most efficient way

to transport mass between distributions. A special case of OT is the Wasserstein

distance, which lifts a ground metric on the observation space to a true distance

between distributions. Unlike the Kullback Leibler divergence, the Wasserstein

distance provides with a smoother training objective making easier to train generative

models with standard gradient descent schemes.

Motivated by this, we then presented the Wasserstein Autoencoder (WAE). WAE

minimizes an upper-bound on the Wasserstein distance between the data and model

distributions. Like VAEs, WAEs use an encoder-decoder structure, first mapping the

observation to a latent manifold before reconstructing them back to the observation

space. However, WAEs differ in the reconstruction cost function and the latent

regularizer. WAEs allow deterministic decoders, avoiding restrictive distributional

assumptions on the decoder distribution. The latent regularizer penalizes deviations

of the aggregated posterior from the prior as opposed to VAEs where the posterior is

regularized on a data point level, enabling a more expressive latent representation.

Chapter 2

Improving Gaussian mixture

latent variable model convergence

by using Optimal Transport

methods

The work presented in this chapter was published in [Gaujac et al., 2021a].

In the previous chapter, we introduced the foundations for latent generative models

and Optimal Transport based methods for training such models. We will now present

how they can be leveraged to improve the modelling performances of simple latent

variable models compared to their likelihood counterparts.

Generative models with both discrete and continuous latent variables are highly

motivated by the structure of many real-world datasets. They present, however,

subtleties in training often manifesting in the discrete latent variables not being

leveraged. In this chapter, we show why such models are hard to train using

traditional loglikelihood maximization, and that they are amenable to training using

the Optimal Transport (OT) with Wasserstein Autoencoders (WAEs). We find our

discrete latent variables to be fully leveraged by the model when trained, without

any modification to the objective function or significant fine tuning. Our model

generates comparable samples to other approaches whilst using relatively simple

2.1. Introduction 44

neural networks, since the discrete latent variable carries much of the descriptive

burden. Furthermore, the discrete latent provides significant control over generation.

2.1 Introduction

Unsupervised learning using generative latent variable models provides a powerful

approach to learning underlying low-dimensional structure from large, unlabeled

datasets. Perhaps the two most common techniques for training such models are

Variational Autoencoders (VAEs) [Kingma and Welling, 2014, Rezende et al., 2014]

and Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]. Both have

advantages and disadvantages. VAEs provide a meaningful lower-bound of the

loglikelihood that is stable under training and introduce an encoding distribution

mapping from the data to the latent space. However, they generate blurry samples

due to their objective being unable to handle deterministic decoders and the necessity

of tractable models requiring simple priors [Hoffman and Johnson, 2016]. On the

other hand, GANs naturally enable deterministic generative models with sharply

defined samples, but their training procedure is less stable [Arjovsky and Bottou,

2017].

A relatively new approach to training generative models has emerged based on

minimizing the OT distance [Villani, 2008] between the generative model distribution

and that of the data. The OT approach provides a general framework for training

generative models, which promises some of the best of both GANs and VAEs.

Though interesting first results have been given in Tolstikhin et al. [2018], Bousquet

et al. [2017], Arjovsky et al. [2017], Rubenstein et al. [2018b], the OT approach to

generative modelling is still nascent.

Our contributions are twofold: we seek to improve generative modelling capabili-

ties with discrete and continuous latent variables, but importantly, we seek also to

establish that training generative models with OT can be significantly more effective

than the traditional VAE approach.

Discrete latent variable models are critical to the endeavor of unsupervised learning

because of the ubiquity of discreteness in the natural world, and hence in the datasets

2.2. Gaussian mixture Wasserstein Autoencoders 45

that describe it. However, they are harder to train than their continuous counterparts.

This has been tackled in a number of ways (e.g., directly mitigating high-variance

discrete samples [Eslami et al., 2016, Lawson et al., 2018], parametrizing discrete

distributions using continuous ones [Jang et al., 2017, Maddison et al., 2017, Van den

Oord et al., 2017], deliberate model design leveraging conjugacy [Johnson et al.,

2016]).

However, even in the simple case where the number of mixtures is small enough

that Monte Carlo sampling from the discrete latent is avoidable, training can still be

problematic. For example, in Dilokthanakul et al. [2016] a Gaussian mixture latent

variable model (GM-LVM) was studied, and the authors were unable to train their

model on MNIST using variational inference without substantially modifying the

VAE objective. What appears to happen is that the model quickly learns to “hack”

the VAE objective function by collapsing the discrete variational distribution. This

problem only occurs in the unsupervised setting, as Kingma et al. [2014] are able to

learn the discrete latent in the semi-supervised version of the same problem once

they have labeled samples for the discrete latent to latch onto. This is discussed in

more detail in Section 2.2.1.

The OT approach to training generative models (in particular the Wasserstein

distance, discussed in Section 2.2.2) induces a weaker topology on the space of

distributions, enabling easier convergence of distributions than in the case of VAEs

[Arjovsky et al., 2017]. Thus, one might conjecture that the OT approach would

enable easier training of GM-LVMs than the VAE approach. We provide evidence that

this is indeed the case, showing that GM-LVMs can be trained in the unsupervised

setting on MNIST, and motivating further the value of the OT approach to generative

modelling.

2.2 Gaussian mixture Wasserstein Autoencoders

We consider a hierarchical generative model pG with two layers of latent variables,

the highest one being discrete as shown in Figure 2.1a. Explicitly, if we denote the

discrete latent k with density pD, and the continuous latent z with density pC , the

2.2. Gaussian mixture Wasserstein Autoencoders 46

k

p

z

x

(a) Generative model

k

q

z

x

(b) Inference distribution

Figure 2.1: GM-LVM graphical model. Round nodes represent continuous ran-
dom variables, diamond-shaped nodes discrete variables and grey-shaded nodes the
observations. (a): Generative model. (b): Inference distribution.

generative model is given by:

pG(x) =
K∑
k=1

∫
Z
dz pG(x|z) pC(z|k) pD(k) (2.1)

In this work, we consider a GM-LVM with categorical distribution pD = Cat(K)

and continuous distribution pC(z|k) = N
(
z;µ0

k,Σ
0
k

)
. We refer to this GM-LVM as a

GM-VAE when it is trained as a VAE [Kingma and Welling, 2014, Rezende et al.,

2014] or GM-WAE when trained as a Wasserstein Autoencoder (WAE) [Tolstikhin

et al., 2018, Bousquet et al., 2017] (discussed in Section 2.2.2).

2.2.1 The difficulty of training GM-VAEs

Training GM-LVMs in the traditional VAE framework (GM-VAEs) involves maxi-

mizing the Evidence Lower-Bound (ELBO) as defined in Equation (1.6) and recalled

here:

ELBO(x, PG, Q)
def
= Eq(z|x)

[
log pG(x|z)

]
−KL

(
q(z|x) ‖ pG(z)

)
(2.2)

where as before, KL
(
P1 ‖ P2

)
denotes the KL divergence between P1 and P2.

Such hierarchical models with discrete latent variables are empirically hard to

train in the VAE framework [Dilokthanakul et al., 2016]. This is likely due to the

2.2. Gaussian mixture Wasserstein Autoencoders 47

fact that the discrete variational distribution learns on a completely different scale

from the generative distribution. Consequently, the discrete latent distribution tends

to instantly learn some unbalanced structure where its classes are meaningless in

order to accommodate the untrained generative distribution. The generative model

then learns around that structure, galvanizing the meaningless discrete distribution

early in training.

More explicitly, if we factorize the variational distribution as q(z, k|x) = qC(z|k, x) qD(k|x)

to mirror the prior in Equation (2.1) (see Figure 2.1b), the ELBO can be written as:

ELBO = EqD
[
EqC
[

log pG(x|z)
]
−KL

(
qC(z|k, x) ‖ pC(z|k)

)]
(2.3)

−KL
(
qD(k|x) ‖ pD(k)

)
Both the first and the second term in Equation (2.3) depend on qD(k|x). However,

the second term is much smaller than the first; it is bounded by logK for uniform pD

over K classes, whereas the first term is unbounded from above1. As a consequence,

qD(k|x) will immediately shut off the k values (i.e., qD(k|x) = 0 ∀x) with large

reconstruction losses, EqC(z|k,x) log pG(x|z). This is shown in the top row of Figure 2.2

where within the first 10 training steps the reconstruction loss has substantially

decreased (Figure 2.2a) by simply shutting off 9 values of k in qD(k|x) (Figure 2.2b),

resulting in a drastic increase of the discrete KL term (Figure 2.2a). However, this

increase in the discrete KL term is negligible since the term is multiple orders of

magnitude smaller than the reconstruction term in the ELBO. All of this takes place

in the first few training iterations; well before the generative model has learned to

use its continuous latent variables (see Figure 2.2c).

Subsequently, on a slower timescale, the generative model starts to learn to

reconstruct from its continuous latent variables, causing qC(z|k, x) to shift away from

its prior toward a more-useful distribution to the generative model. We see this in

Figure 2.2d: the continuous KL curve grows concurrently with the downturn of the

reconstruction loss term. Figure 2.2f shows that after this transition (taking a few

thousands training steps), the reconstructions from the model start to look more like

1In the experiments, we initialized the modes of qC to match those of the priors making the
continuous KL term initially small as well.

2.2. Gaussian mixture Wasserstein Autoencoders 48

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Top row shows a snapshot of the GM-VAE after 10 training steps. Loss
curves are shown in (a), the discrete variational distribution in (b) with rows `
representing E{x|label(x)=`}qD(k|x), and reconstructions are shown in (c). Bottom row
shows the same snapshot after 6000 training steps.

MNIST digits.

Whilst the generative model learns to use the continuous latents, the discrete

distribution qD(k|x) never revives the k values that it shut off. This is because the

generative model would not know how to use the latent codes z ∼ qC(z|k, x) for

those ks, implying a significant penalty in the reconstruction term of the ELBO.

This is evidenced in Figure 2.2d by the discrete KL staying flat, and in Figure 2.2e

where the columns corresponding to the shut off k values never repopulate.

We have discussed the difficulty of leveraging the structure of the latent variables

in GM-VAEs using our specific implementation designed to mirror the GM-WAE

of Section 2.2.2. Many other variants of this implementation performed similarly.

Though the root cause of this difficulty has not been ascertained in generality, we

expect it to be in part due to the per-data-point nature of the ELBO objective,

in particular, the impact of the KL divergence term on learning the variational

2.2. Gaussian mixture Wasserstein Autoencoders 49

distribution. This point will be elaborated upon with more empirical justification in

Section 2.3.

2.2.2 Optimal Transport facilitates training of GM-LVMs

The difficulty associated with training GM-VAEs may be interpreted as a problem of

restricted convergence of a sequence of distributions, where the sequence is indexed

by the training steps. If that were so, an objective function that induces a weaker

topology might help GM-LVMs to converge to a distribution that non-trivially uses

its discrete latent variable. Hence, we are motivated to approach the training of

such models with the OT framework, and in particular the Wasserstein distance

as our objective, as it induces a weaker topology than that of maximum likelihood

(Theorem 2 of Villani [2008]).

Following Tolstikhin et al. [2018], Bousquet et al. [2017], we would like to minimize

the 2-Wasserstein distance between the underlying data distribution (from which we

have samples) and our GM-LVM:

W †
2

(
Pdata, PG

)2
= inf

Q∈PZ×K
Epdata(x)Eq(z,k|x)EpG(y|z) ‖x− y‖2

2 (2.4)

where PZ×K is the set of all joint distributions over z and k such that:

Epdata(x)q(z, k|x) = pC(z|k)pD(k) (2.5)

We further constraint the variational joint distribution q(z, k|x) in Equation (2.5) to

factorize as q(z, k|x) = qC(z|k, x) qD(k|x) making the resulting infimum an upper-

bound of W †
2 . As for the VAE case, our parametrization of the variational distribution

q(z, k|x) is deliberate and aims to mirror the structure of the prior (see Figure 2.1b).

It differs from other methods, for example Makhzani et al. [2016] who assume

conditional independence between z|x and k|x.

Since the constrained infimum is intractable, a relaxed version of W †
2 is introduced

2.2. Gaussian mixture Wasserstein Autoencoders 50

as follows:

W̃ †
2

(
Pdata, PG

)2
= inf

Q∈PZ×K
Epdata(x) Eq(z,k|x) EpG(y|z) ‖x− y‖2

2 (2.6)

+ λD
(
Epdata(x)q(z, k|x), pC(z|k)pD(k)

)
which is equivalent to the original distance when λ→∞.

As in Tolstikhin et al. [2018], Bousquet et al. [2017], we use the Maximum Mean

Discrepancy (MMD) with a mixture of Inverse Multiquadric (IMQ) kernels with

various bandwidth Ci. The MMD is a distance on the space of distributions and

has an unbiased U-estimator [Gretton et al., 2012a]. Explicitly, if k is a reproducing

positive-definite kernel and is characteristic, then the MMD associated to k is given

by:

MMD
(
Q ‖ P

)
= Eq(z1)q(z2)[k(z1, z2)] + Ep(z1)p(z2)[k(z1, z2)] (2.7)

− 2Eq(z1),p(z2)[k(z1, z2)]

IMQ kernels have fatter tails than the classic radial basis function kernels, proving

more useful early in training when the encoder has not yet learned to match the

aggregated posterior with the prior. We take a mixture of kernels ki with bandwidths

Ci ∈ {10j, 2 × 10j, 5 × 10j | j ∈ {−2, . . . , 2}} to reduce the sensitivity on any one

choice of kernel bandwidth (Dziugaite et al. [2015], Gretton et al. [2012b], Li et al.

[2015]). The Sinkhorn distance (Cuturi [2013a], Genevay et al. [2018]) is another

candidate and has been used in [Patrini et al., 2018]. However, it did not improve

significantly our results but came with a high cost in computational time. Thus, we

choose to use the MMD as Tolstikhin et al. [2018].

Given the discrete latent in our model, we cannot directly use Equation (2.6) with

the MMD. Instead we integrate out the discrete latent variable in our approximate

posterior q(z, k|x): q(z|x) =
∑

k q(z, k|x). The reconstruction term in Equation (2.4)

is unchanged as we have for all f(., x) integrable for all x:

Eq(z,k|x)[f(z, x)] = E∑
k q(z,k|x)[f(z, x)] (2.8)

2.2. Gaussian mixture Wasserstein Autoencoders 51

Now, the constrain in Equation (2.4) becomes:

Epdata(x)[q(z|x)] = p(z) =
∑
k

pC(z|k)pD(k) (2.9)

Adding everything together, we obtain our GM-WAE objective function:

W̃ †
2

(
Pdata, PG)2 = inf

q(z|x)∈PZ
Epdata(x) Eq(z|x) EpG(y|z) ‖x− y‖2

2 (2.10)

+ λMMD
(
Epdata(x)q(z|x) ‖

∑
k

pC(z|k) pD(k)
)

This allows us to compute the MMD between two continuous distributions, where it

is defined.

As mentioned in Section 1.3.2, VAEs have the disadvantage that deterministic

generative models cannot be used; this is not the case for WAEs. Thus we parametrize

the generative density pG(x|z) as a deterministic distribution x|z = gθ(z) where gθ is

a mapping from the latent to the data space specified by a deep neural network with

parameters θ.

We also parametrize q(z, k|x) = qC(z|k, x) qD(k|x) with neural networks. We

take qC(z|k, x) for each k to be a Gaussian distribution with diagonal covariance

given by the outputs of the neural network and use the reparametrization trick

[Kingma and Welling, 2014, Rezende et al., 2014] to compute gradients with regard

to the networks parameters. In order to avoid back propagating through discrete

variables, the expectation over the distribution qD(k|x) is computed exactly as

opposed to sampling first k ∼ Cat(K) and then obtaining the continuous latent

variable z ∼ N
(
z;µk,Σk).

Since we know before hand that the MNIST dataset has only 10 discrete classes,

it is both easily and computational feasible to compute the discrete expectation

explicitly by summing over all of the 10 discrete classes. However, for more complex

dataset (such as CelebA [Liu et al., 2015]) where the number of classes is significantly

bigger making the explicit calculation of the discrete expectation intractable, one

can compute the expectation by sampling using standard techniques that relaxed the

discrete distribution [Brooks et al., 2011, Jang et al., 2017, Maddison et al., 2017].

2.3. Results 52

As previously mentioned, the weakness of the topology induced by the Wasserstein

distance on the space of distributions may enable the GM-WAE to overcome the

training issues of VAEs discussed in Section 2.2.1. With the objective in hand, a

more precise argument can be made to support this claim.

Recall from Section 2.2.1 that the problem with the GM-VAE was that the

objective function demands the various distributions to be optimized at the individual

data-point level. For example, the KL
(
qD(k|x) ‖ pD(k)

)
) term in Equation (2.3)

breaks off completely and becomes irrelevant due to its size. This causes the qD(k|x)

distribution to shut off k values early, which becomes galvanized as the generative

model learns.

However, in posing the problem in terms of the most efficient way to move

one distribution pG onto another pdata, via the latent distribution q(z, k|x), the

Wasserstein distance never demands the similarity of two distributions conditioned

per data point. Indeed, the expectation over the data distribution in Equation (2.10)

is inside both the infimum and the divergence D. We expect that “aggregating”

the posterior as such will give q(z, k|x) (in particular, qD(k|x)) the flexibility to

learn data-point specific information whilst still matching the prior on aggregate.

Indeed, it is also found in Makhzani et al. [2016] that using an adversarial game to

minimize the distance between an aggregated posterior and the prior is successful at

unsupervised training on MNIST with a discrete-continuous latent variable model.

2.3 Results

In this work we primarily seek to show the potential for OT techniques to enable the

training of GM-LVMs. Thus, we use relatively simple neural network architectures

and train on the MNIST toy dataset. Given the nature of the dataset, we use a

mixture of 10 Gaussians, one for each of the 10 digits and a non-informative uniform

prior over these mixtures. Namely, for each k ∈ {0, . . . , 9}:

pD(k) =
1

10
and pC(z|k) = N (z;µ0

k, σ
0
k) (2.11)

2.3. Results 53

where the µ0
k and σ0

k represent the mean and covariance of each mixture and are

fixed before training.

For the variational distribution, we take q(z, k|x) = qC(z|k, x) qD(k|x) with

qD(k|x) = πk(x) and qC(z|k, x) = N
(
z;µk(x), diag(σk(x))

)
(2.12)

where each component is parametrized by a neural network. For πk(x) a 3-layer deep

convolutional generative adversarial network (DCGAN) [Radford et al., 2015] is used

with the largest convolution layer composed of 64 filters. The Gaussian networks

µk(x) and σk(x) are taken to be fully connected networks with two hidden dense

layers, each with 32-units. Finally, for the generative model, we take pG(x|z) to be

deterministic with x|z = gθ(z), where gθ is a 3-layers DCGAN-style network with

parameters θ. All the convolutional filters have size 5× 5 except for the last layer

which has size 1× 1. The smallest transpose convolution of gθ has 128 filters. We

use batch normalisation [Ioffe and Szegedy, 2015] and ReLU [Glorot et al., 2011]

after each hidden layer and train the networks with Adam optimizer [Kingma and

Ba, 2015] with a learning rate of 0.0005. We find that λ = 500 works well, although

the value of λ does not impact the performances appreciably as long as it is larger

than a few hundred. The mean parameters µk and σk are pretrained to match the

prior moments, which accelerate the training and improves the stability (this was

also done for GM-VAE in Section 2.2.1).

2.3.1 Ablation study of the learned latent manifold

In this section, we study and compare the structure of the latent manifold learned

by WAE and VAE. We chose dim(z) = 2 with the prior being a mixture of 10 2-D

Gaussians allowing for an easy visualisation and interpretation of the latent manifold.

The prior is taken such that each mixture component pC(z|k), k ∈ {1, · · · , 9}, is

obtained by rotating the 2-D Gaussian distribution pC(z|0) by ωk:

pC(z|0) = N (z;µ0
0, σ

0
0) (2.13)

pC(z|k) = N (z; R(ωk) · µ0
0, R(ωk) · σ0

0 · R(ωk)
>)

2.3. Results 54

where µ0
0 = [µ0

x, µ
0
y], σ

0
0 = diag(σ0

x, σ
0
y), R(ω) designs the rotation matrix in R2 by ω

and · the matrix multiplication in R2×2. We take µ0
x = 1, µ0

y = 0, σ0
x = 0.1, σ0

y = 0.5

and ωk = 2πk
10

for each k ∈ {1, . . . , 9}. To visualize the structure captured in the

latent space, we encode 5000 observation points from the testing set and show the

latent codes z sampled from qz(z|x) =
∑

k qC(z|k, x)qD(k|x) in Figures 2.3a and 2.3b

when using WAE and VAE respectively. We color each latent point according to the

corresponding digit label and add samples from the prior pz(z) =
∑

k pC(z|k)pD(k)

for better visualization. Similarly, the inverse mapping from the latent space to

the observations is given Figures 2.3c and 2.3d, corresponding to the latent space

interpolations for WAE and VAE respectively. Each reconstruction corresponds to a

latent code sampled uniformly on the 2-d latent grid.

(a) (b) (c) (d)

Figure 2.3: Latent manifold analysis. (a): latent manifold visualization for WAE. (b):
latent manifold visualization for VAE. (c): latent space interpolation for WAE. (d):
latent space interpolation for VAE. 5000 test observation points and 1000 samples
from the prior are used. Encoded points are colored by their digit label.

WAE manages to closely match the aggregated posterior with the prior, leveraging

the discrete structure of the prior. Indeed, the latent manifold aligns with the

different components of the prior (Figures 2.3a), almost succeeding in assigning each

component to a unique digit class. The smooth structure of the latent interpolation

plot (Figures 2.3c) shows how WAE manages to capture all the structure of the data

into the latent space. In contrast, the latent representation learned by VAE fails to

match the prior, and especially, only uses a few components of the latent mixture

(Figures 2.3b). The poor latent interpolation (Figures 2.3d) indicates that the data

manifold does not align with the chosen latent manifold defined by the prior. This

illustrates one more time the difficulty to train GM-LVMs with VAE where several

2.3. Results 55

prior modes collapsed, as discussed in Section 2.2.1.

2.3.2 Generative performances

In this section, we chose µ0
k and σ0

k (Equation (2.11)) such that the µ0
k are mutually

equidistant and σ0
k = σ0Id with σ0 such that ≈ 5% overlap between the 10 different

modes of the prior (i.e., the distance between any pair of means µ0
k1

and µ0
k2

is 4σ0).

We fix dim(z) = 10 and use the same architectures than above.

2.3.2.1 Reconstruction, samples and latent interpolation

Our implementation of GM-WAE is able to reconstruct MNIST digits from its latent

variables well. In Figure 2.4a example data points from the held-out test set are

shown on the odd rows, with their reconstructions on the respective rows below.

The encoding of the input points is a two step process, first determining in which

mode to encode the input via the discrete latent, and then drawing the continuous

encoding from the corresponding mode.

Samples from the GM-WAE are shown in Figures 2.4b and 2.4c. Since the discrete

prior pD(k) is uniform, we can sample evenly across the ks in order from 0 through

9, whilst still displaying representative samples from p(z, k) = pC(z|k)pD(k). Again,

this shows how the GM-WAE learns to leverage the structure of the prior, whereas

the GM-VAE results in the collapse of the several modes of the prior.

GM-WAE has a smooth manifold structure in its latent variables as shown in

Figure 2.5a which plots the reconstructions of linear interpolations between pairs of

data points is shown. The interpolation is done in the latent space, with uniform

step size between the encodings of the two observations. This compares similarly to

other WAE and VAE approaches to MNIST. In Figure 2.5b a linear interpolation is

performed between the prior mode µ0
6, and the other nine prior modes µ0

k 6=6. This

not only shows the smoothness of the learned latent manifold in all directions around

a single mode of the prior, but also that the variatonal distribution has learned

to match the modes of the prior. As excpected given the suitability of a 10-mode

GM-LVM to MNIST, almost every mode of the prior now represents a different digit.

This level of control built into the prior requires not only a multi-modal prior, but

2.3. Results 56

(a) (b) (c)

Figure 2.4: Shown in (a) are reconstructions of held-out data from the inferred latent
variables. The first, third, etc, rows are the raw data, and the rows below show the
corresponding reconstructions. Digit samples x ∼ pG(x|z) pC(z|k) for each discrete
latent variable k are shown in (b) as well as those samples closer to each mode of
the prior in (c). The samples in (c) come from z values sampled from Gaussians
identical to pC(z|k), except with standard deviation scaled down by 3/5.

(a) (b)

Figure 2.5: Reconstructions from linear interpolations in the continuous latent space
between two data points (a), and between the prior mode µ0

6, and the other nine
prior modes µ0

k 6=6 (b). In (a), the true data points are shown in the first and last
column next to their direct reconstructions.

also a training procedure that actually leverages the structure in both the prior and

variational distribution, which seems to not be the case for VAEs (see Section 2.2.1).

The quality of samples from our GM-WAE is related to the ability of the encoder

network to match the prior distribution. Figures 2.4c and 2.5b demonstrate that

the latent manifold learned is similar to the prior. Near the modes of the prior the

samples are credible handwritten digits, with the encoder network able to capture

the structure within each mode of the data manifold (variation within each column)

and clearly separate the different modes (variation between rows).

2.3. Results 57

(a) (b) (c) (d)

Figure 2.6: (a) Reconstructions for an untrained VAE initialized with same parameters
as our trained WAE. (b) Those same reconstructions after a few dozen thousands
training steps according to the VAE objective. (c) Learning curves from an untrained
VAE initialized with same parameters as our trained WAE. (d) Reconstruction loss
for different VAE variations.

2.3.2.2 Comparison with VAE

We have argued that the VAE objective itself was responsible for the collapse of

certain k values in the discrete variational distribution, and that the per-data-point

nature of the KL played a significant role. To test this hypothesis, and to compare

directly our trained WAE with the equivalent VAE discussed in Section 2.2.1, we

initialize the VAE with the final parameters of the trained WAE, and train it according

to the VAE objective. At initialization, the VAE with trained WAE parameters

produces high quality samples and reconstructions (Figure 2.6a). However, after a

few hundred iterations, the reconstructions deteriorate significantly (Figure 2.6b),

and are not improved with further training.

The learning curves over the period of training between Figure 2.6a and 2.6b are

shown in Figure 2.6c, where the cause of the performance deterioration is clear: the

continuous KL term in the VAE objective is multiple orders of magnitude smaller

than the reconstruction term, causing optimization to sacrifice reconstruction in

order to reduce this KL term. Of course, the approximate posterior aggregated over

the data will not be far from the prior as that distance is minimized in the WAE

objective. However, this is not enough to ensure that the continuous KL term is

small for every data point individually. It is thus the per-data-point nature of the KL

in the VAE objective that destroys the reconstructions. Indeed, in order to minimize

the per-data-point KL term in the GM-VAE objective, qC(z|k, x) is forced toward

2.3. Results 58

the mean µ0
k for every x, causing it to lose much of its x dependence. This can be

seen in Figure 2.6b where the reconstructions are less customized and blurrier.

To compare the performance of GM-WAE against GM-VAE more quantitatively,

we directly compare the reconstruction loss from the VAE objective (the first term on

the right hand side of Equation (2.3)). Strictly speaking, this quantity is ill-defined

for the GM-WAE, as the generative model is chosen to be deterministic. Instead

we simply use the values returned by the GM-WAE generative model as if they

were the Bernoulli mean parameters of the GM-VAE [Kingma et al., 2014]. These

reconstruction loss curves are shown Figure 2.6d. Also shown are the reconstruction

losses for the GM-VAE with various rescaling factors β in front of the KL terms

of Equation (2.3). This rescaled KL term is inspired by both Higgins et al. [2016],

which studies the impact of weighting the KL term in VAEs, and by the WAE

objective itself where λ plays the role of a regularization coefficient. Whilst, the

GM-WAE is not trained to minimized this reconstruction loss2, it actually achieves

the smallest reconstruction loss. This shows that GM-WAE performs better at

reconstructing MNIST digits than its VAE counterpart, as measured by the VAEs

own reconstruction objective.

We also show in Figure 2.6d the reconstruction curve of a GM-VAE initialized

with trained GM-WAE parameters. This echoes the previous discussion concerning

the deterioration of the reconstructions in GM-VAEs due to the per-data-point KL

term. In Figures 2.6c and 2.6d, the GM-VAE initialized with trained GM-WAE

parameters uses a rescaling factor β = 10 for visualization purposes. The same

phenomenological behavior is observed with no scaling factor, just less visually

pronounced.

Overall, our results for GM-WAE are qualitatively competitive with other ap-

proaches [Tolstikhin et al., 2018, Bousquet et al., 2017], despite a relatively low-

complexity implementation. Furthermore, GM-WAE offers more control over gener-

ation and inference due to its latent variable structure, which cannot be achieved

with the GM-VAE objective.

2Recall that we used the squared Euclidean distance as our ground cost function in Equa-
tion(2.10).

2.3. Results 59

(a) (b) (c)

Figure 2.7: Visualization of the variational distributions. (a) shows
E{x|label(x)=`}qD(k|x) in row `. (b) shows the accuracy as a function of the training
steps for our method and the same VAE variations than Figure 2.6d. (c) shows
z|x ∼

∑
k qC(z|k, x)qD(k|x) using the UMAP visualization method [McInnes and

Healy, 2018]. 1000 encoded test-set digits and 1000 samples from the prior are used.
Encoded points are colored by their digit label.

2.3.2.3 Latent variable fidelity

We have shown that the GM-WAE is able to both reconstruct data and generate

new samples meaningfully from the prior distribution. We now turn to studying the

variational distributions directly, including with how much fidelity a given class of

digits is paired with a given discrete latent.

Consider first the discrete distribution qD(k|x) shown in Figure 2.7a. Here, for

each digit label, E{x|label(x)=`}qD(k|x) is shown in row `. From the staircase structure,

it is clear that this distribution learns to approximately assign each discrete latent

value k to a different class of digit. However, it does not do so perfectly. This is

expected as the GM-WAE seeks only to reconstruct the data from its encoding, not

to encode it in any particular way. This does not mean GM-WAE is failing to use

its discrete latent effectively. Indeed, when comparing Figure 2.4c and Figure 2.7a, a

meaningful source of overlap between different values of k and a single digit class

can be seen. For example, in Figure 2.7a the digit 5 is assigned partially to k = 3

and k = 5. In Figure 2.4c, 5s drawn with a big-round lower loop are similar to

digit 3 and 5s with a small loop and long upper bar are assigned to another cluster

corresponding to digit 5. A similar discussion holds for 8s and 9s.

To assess the digit-class fidelity of the discrete encoder more quantitatively, we

2.3. Results 60

calculate the accuracy of the digit-class assignment according to qD(k|x). To assign

a digit-class label to each k value, we follow a similar protocol to that of Makhzani

et al. [2016]: we assign the digit-class label to the k value that maximizes the average

discrete latent distribution for that class Exm,ym=iq(k|xm) where i = 0, · · · , 9 is the

digit-class label, and for all m, ym is the label of the corresponding data point xm.

In order to avoid multiple class assignments to the same cluster, we assign the label

corresponding to the highest maximum. Figure 2.7b shows the resulting accuracy

throughout training. Our GM-WAE achieves an accuracy on the held-out test set

just shy of 70%. The accuracy corresponding to the different GM-VAE variations

of Figure 2.6 is also shown in Figure 2.7b. The best performing GM-VAE with a

scaling factor of β = 20 achieves approximately 30%. This shows again the difficulty

of the GM-VAE to capture meaningful structure in the data. For reference, basic

K-means clustering [MacQueen, 1967] achieves 50-60% accuracy, and Makhzani et al.

[2016] achieve 90% (using 16 discrete classes, and substantially different model and

training procedure).

Another way to study the latent variable structure of GM-WAE is to consider

a low-dimensional visualization of the continuous latent z. In Figure 2.7c such a

visualization is shown using UMAP [McInnes and Healy, 2018]. Distinct clusters

can indeed be seen in the prior and in the samples from qC(z|k, x). Though the

clusters of z ∼ qC(z|k, x) do not fully align with those from the prior z ∼ pD(z|k),

they maintain significant overlap. Samples from qC(z|k, x) in Figure 2.7c are colored

according to the true digit labels and show how GM-WAE learns to assign digits to

the different clusters. In particular, the 7 / 9 cluster is clearly overlapping, as seen

in Figures 2.7a, 2.4b and 2.4c.

We have see that the GM-WAE model is highly suited to the problem under

study. It reconstructs data and provides meaningful samples, it effectively uses both

the discrete and continuous variational distributions, all whilst maintaining close

proximity between the variational distribution and the prior.

2.4. Conclusions 61

2.4 Conclusions

We studied an unsupervised generative model with a Gaussian mixture latent variable

structure, well suited to data containing discrete classes of objects with continuous

variation within each class. We showed that such a simple and critical class of

models fails to train using the VAE framework, in the sense that it immediately

learns to discard its discrete-latent structure. We further exposed the root cause

of this phenomenon with empirical results. We then put to the test the abstract

mathematical claim that the Wasserstein distance induces a weaker topology on the

space of distributions by attempting to train the same Gaussian mixture model in the

WAE framework. We found that the Wasserstein objective is successful at training

this model by fully leveraging its discrete-continuous latent structure. We provided

promising results on MNIST and demonstrated the additional control available with

highly structured model with both discrete and continuous latent variables.

Chapter 3

Learning deep latent Hierarchies

by Stacking Wasserstein

Autoencoders

The work presented in this chapter is under review and can be found here [Gaujac

et al., 2022].

We will now show how OT-based methods, and especially WAEs, can be used to

train deep latent hierarchical model in a simple principle way. Probabilistic models

with hierarchical latent variable structures provide state-of-the-art results amongst

non-autoregressive, unsupervised density-based models. However, the most common

approaches based on VAEs often fail to leverage deep latent hierarchies; successful

approaches require complex inference and optimisation schemes. In this chapter

we propose a novel approach to training models with fully Markovian deep latent

hierarchies based on OT, without the need for highly bespoke inference networks

and training schemes. We show that our method enables generative models to fully

leverage their deep latent hierarchy, avoiding the collapse of the latent variables

as encountered with VAEs. This provides qualitatively more interpretable latent

representations whilst keeping low computational cost and memory requirements for

applications where only inference is of interest.

3.1. Introduction 63

3.1 Introduction

Probabilistic latent variable models are widely used models for extracting structure

from large, unlabelled datasets. VAEs [Kingma and Welling, 2014, Rezende et al.,

2014] have proven to be effective for training generative models parametrized by

powerful neural networks, mapping the data into a low-dimensional latent manifold.

Whilst allowing the training of expressive models, VAEs often fail when deeper

hierarchies with several latent layers are used.

In fact, many of the most successful generative models use only a single latent

layer. Auto-regressive latent models [Gulrajani et al., 2016, Chen et al., 2017, Van den

Oord et al., 2016c], for example, achieve near state-of-the-art negative likelihood

scores and show impressive samples quality. However, auto-regressive VAEs suffer

from poor scalability to high-dimensional data. Flow-based models [Rezende and

Mohamed, 2015, Kingma et al., 2016, Dinh et al., 2016a, Kingma and Dhariwal,

2018] are another class of generative models with one latent layer. They provide

competitive sample quality and are able to scale to higher-dimensional data but

achieve lower likelihood score.

Deep latent variable models are highly expressive models that aim to capture the

structure of data in a hierarchical manner. Their deep latent structures offer more

explainable latent representations whilst improving the generative performances,

achieving state-of-the-art likelihood scores [Maaløe et al., 2019, Vahdat and Kautz,

2020]. However, they remain hard to train. Many explanations have been proposed,

from the use of dissimilarity measures directly in the pixel space [Larsen et al., 2016]

resulting in poor sample quality and the lack of efficient representation in the latent

space [Zhao et al., 2017], to simply the poor expressiveness of the models used [Zha

et al., 2017, Maaløe et al., 2019].

Solutions for training deep latent variable models range from introducing auxiliary

variables to increase the expressiveness of the posterior distribution [Maaløe et al.,

2016] to replacing the simple spherical Gaussian prior with two layers mixture

distributions [Tomczak and Welling, 2018, Klushyn et al., 2019]. State-of-the-art

methods design complex generative models and inference networks introducing skip

3.1. Introduction 64

connections in the generative model and inference networks [Bachman, 2016, Kingma

et al., 2016], bottom-down inference networks sharing parameters with the generative

model [Sønderby et al., 2016], bidirectional inference networks [Maaløe et al., 2019]

as well as special architectures for the building blocks of the deep networks [Vahdat

and Kautz, 2020]. Additionally, these approaches often rely on complex training

schemes such as KL warm-up [Sønderby et al., 2016, Vahdat and Kautz, 2020], free

bits strategies [Kingma et al., 2016, Maaløe et al., 2019] and spectral regularizations

of the networks weights [Yoshida and Miyato, 2017, Vahdat and Kautz, 2020] as well

as specific parametrizations of the inference distributions [Vahdat and Kautz, 2020].

Optimal Transport [Villani, 2008] is a mathematical framework to compute

distances between distributions. Recently, it has been successfully used to train

generative models [Arjovsky et al., 2017, Tolstikhin et al., 2018, Bousquet et al., 2017,

Genevay et al., 2018]. Tolstikhin et al. [2018], Bousquet et al. [2017] introduced WAEs,

where an encoder maps the data into a latent space, learning a low-dimensional

representation of the data. WAEs provide a non-likelihood based framework with

appealing topological properties [Arjovsky et al., 2017, Bousquet et al., 2017], allowing

in theory for easier training convergence between distributions. Gaujac et al. [2021a]

trained a two-latent-layer generative model using WAE, showing promising results in

the capacity of WAE to leverage a latent hierarchy relative to the equivalent VAE.

Following these early successes, we propose to train deep hierarchical latent

models using the WAE framework, without the need for complex dependency paths

in both the generative model and inference network. Similarly to earlier works

[Sønderby et al., 2016, Maaløe et al., 2019, Vahdat and Kautz, 2020], we believe that

a deep latent hierarchy, when trained properly, increases the expressiveness of the

generative models. In order to leverage the deep latent hierarchy, we derive a novel

objective function by stacking WAEs, introducing an inference network at each level

and encoding the information up to the deepest layer in a simple bottom-up way.

For convenience, we refer to our method as StWAE.

Our contributions are fourthfold:

• We introduce StWAE, a novel objective function based on OT, designed

specifically for generative models with deep latent hierarchies.

3.2. Stacked WAE 65

• We show that StWAE performs significantly better when training hierarchical

latent variable models than the original WAE which fails at propagating the

information to the deeper latent layers.

• We compare our method with VAEs, quantitatively showing that StWAE

achieves better generative performances whilst learning better latent represen-

tations.

• We qualitatively show that our method can be scaled to deeper latent hierarchies

when working with more realistic datasets.

3.2 Stacked WAE

StWAEs are probabilistic latent variable models with a deep hierarchy of latents.

They can be minimalistically simple in their inference and generative models, but

are trained using OT in a novel way. We start by defining the probabilistic models

that are of interest in this work, then introduce OT, and finally, we discuss how to

train probabilistic models with deep latent hierarchies using OT, the method that

we refer to as StWAE.

3.2.1 Generative models with deep latent hierarchies

We will consider deep generative models with Markovian hierarchies in their latent

variables. Namely, where each latent variable depends exclusively on the previous

one. Denoting by PΘ the parametric model with N latent layers, where Θ = θ1:N ,

we have:

pΘ(x, z1:N) = pθ1(x|z1)

[
N∏
n=2

pθn(zn−1|zn)

]
pθN+1

(zN) (3.1)

where the data is X ∈ X and the latent variables are Zn ∈ Zn and we chose

pθN+1
= N (0ZN , IZN). The corresponding graphical model for N = 3 is given

Figure 3.1a.

We will be using variational inference through the WAE framework of Tolstikhin

3.2. Stacked WAE 66

Z3

Z2

Z1

X

(a) TD generative
model.

Z3

Z2

q3

Z1

q2

X

q1

(b) BU inference
model.

Z3

Z2

Z1

X

q1

(c) WAE implicit
prior.

Z3

Z2

Z1

X

(d) Ladder VAE.

Figure 3.1: (a) Top-down Generative model (blue lines represent generative model
parameters). (b) StWAE Bottom-up inference model. (c) Standard WAE inference
model; the inference model only map to the shallowest latent layer with implicit
prior p(z1:3) =

∫
p(z1|z2)p(z2|z3)p(z3). (d) Sønderby et al. [2016] inference model

with skips connections and parameter sharing with the generative model.

et al. [2018], Bousquet et al. [2017], introducing variational distributions, qΦ(z1:N |x),

where Φ = φ1:N , to approximate the intractable posterior. It will be shown in

Section 3.2.3 that without loss of generality, qΦ(z1:N |x) can have a Markovian latent

hierarchy when following the StWAE approach. That is, without loss of generality,

qΦ(z1:N |x) = qφ1(z1|x)
N∏
n=2

qφn(zn|zn−1) (3.2)

where each qφn(zn|zn−1) is introduced iteratively by stacking WAEs at each latent

layer. The corresponding graphical model for N = 3 is given Figure 3.1b.

We focus on this simple Markovian latent variable structure for the generative

model as a proof point for StWAE. This simple modelling setup is famously difficult

to train, as extensively discussed for the VAE framework (see for example Burda

et al. [2015], Zhao et al. [2017], Sønderby et al. [2016]). The difficulty in training such

models comes from the Markovian structure of both the inference and generative

model; in particular, the difficulty of learning structure in the deeper latents. This is

because, to generate samples x ∼ pΘ(x), only the joint pΘ(x, z1) is needed as all the

deeper latent variables can be integrated out:

pΘ(x) =

∫
Z1:N

pΘ(x|z1:N)pΘ(z1:N)

3.2. Stacked WAE 67

=

∫
Z1:N

pθ1(x|z1)pθ2:N
(z1:N)

=

∫
Z1

pθ1(x|z1)pθ2:N
(z1) (3.3)

Whilst learning a smooth structure in each latent layer is not a strict necessity

to learn a good generative model, it is however sought after if the latent is to be

interpreted or used in downstream tasks. We find empirically (see Section 3.3.1) that

a better generative model is also achieved when the latent hierarchy is well learnt all

the way up.

Sønderby et al. [2016] sought to overcome the difficulty of learning a deep latent

hierarchy by using deterministic bottom-up inference, followed by top-down inference

that shared parameters with the generative model. With additional optimisation

tricks (e.g. KL warm-up), their deeper latent distribution would still go unused

for sufficiently deep latent hierarchies (as discussed in Maaløe et al. [2019]). In

order to get deeper hierarchies of latents, Maaløe et al. [2019] introduced additional

deterministic connections in the generative model as well as bidirectional inference

network to facilitate the deep flow of information needed to ensure the usage of the

deeper latent layers. Vahdat and Kautz [2020] achieved state-of-the-art generative

performances with bespoke networks architectures and encoder parametrizations.

They use additional complex optimization methods to stabilise the training of the

deep models.

Whilst achieving impressive results, we believe these approaches may not be the

best fit for downstream tasks where one is only interested in the inferred latent

representation. Indeed, the complex encoder network with skip connections and

top-down dependencies makes the information flow less interpretable as opposed to

the first-order Markovian structure of StWAE. Secondly, the bottom-up and top-

down dependencies come with high memory requirements at inferring time. Indeed,

an extra top-down path is needed for each latent layer, requiring both additional

physical memory, to store the top-down weights, and computational resources for

the inference itself. This, in our view, motivates the need for methods able to train

Markovian generative models with simple bottom-up inference models.

3.2. Stacked WAE 68

We choose the OT framework for training deep latent models due to its topological

properties (see Arjovsky et al. [2017]). Still, the standard WAE encounters the same

difficulties as VAEs when learning deep latent hierarchies. We thus modify the WAE

objective, effectively stacking WAEs, to improve the learning of both the generative

model and the inference distribution throughout the latent hierarchy.

3.2.2 Wasserstein Autoencoders

As we saw in Section 1.3, the Kantorovich formulation of the OT between the

true-but-unknown data distribution Pdata and the model distribution PΘ, for a given

cost function c, is defined by:

OTc(Pdata, PΘ) = inf
Γ∈P(Pdata,PΘ)

∫
X×X

c(x, x̃) dΓ(x, x̃) (3.4)

where P(Pdata, PΘ) is the space of all couplings of Pdata and PΘ; namely, the space

of joint distributions Γ on X × X whose densities γ have marginals Pdata and pΘ.

In the WAE framework, the space of couplings is constrained to joint distributions

Γ, with densities γ, of the form:

γ(x, x̃) =

∫
Z1:N

pΘ(x̃|z1:N) qΦ(z1:N |x) pdata(x) (3.5)

where qΦ(z1:N |x), for x ∈ X , plays the same role as the variational distribution in

variational inference.

Marginalising over x̃ in Equation (3.5) automatically gives pdata(x), thus satis-

fying the first marginal constraint. However the second marginal constraint is not

guaranteed. Due to the Markovian structure of the generative model, a sufficient

condition for satisfying the second marginal constraint is:

∫
X
qφ1(z1|x) pdata(x) dx = pθ2:N

(z1) (3.6)

3.2. Stacked WAE 69

where pθ2:N
(z1) is the prior over Z1:

pθ2:N
(z1)

def
=

∫
Z2:N

[
N∏
n=2

pθn(zn−1|zn)

]
pθN+1

(zN) (3.7)

Introducing a Lagrange multiplier as in Equation 1.31, the hard constraint in

Equation (3.4) can be relaxed as follow:

Ŵc(Pdata, PΘ) = inf
Qφ1

(Z1|x)

[∫
X×X

c(x, x̃) γ(x, x̃)

+ λ1D1

(
Qagg

1 (Z1), Pθ2:N
(Z1)

)]
(3.8)

where D1 is any divergence function, λ1 a relaxation parameter, γ is defined in

Equation (3.5), and Qagg
1 (Z1) is the aggregated posterior:

Qagg
1 (Z1)

def
=

∫
X
Qφ1(Z1|x) pdata(x) (3.9)

Given the Markovian structure of the model (Equation 3.3), all the latent variables

but z1 can be integrated out in Equation 3.5 making the joint coupling γ independent

of z>1:

γ(x, x̃) =

∫
Z1

pθ1(x̃|z1) qφ1(z1|x) pdata(x) (3.10)

This results in the infimum in Equation (3.8) to be taken only over qφ1(z1|x) instead

of the full joint qφ1(z1:N |x).

Whilst Equation (3.8) is in principle tractable (e.g. for Gaussian qφ1(z1|x) and

sample-based divergence function such as MMD), it only depends on the first latent Z1.

Thus it will only learn a good approximation for the joint pΘ(x, z1) = pθ1(x|z1)p(z1),

rather than a full hierarchy with a smooth and meaningful manifold at each latent

layer. We show empirically in Section 3.3.1 that Equation (3.8) is indeed insufficient

for learning how to use the full hierarchy of latents, justifying the need for a new

latent regularizer that can capture information across the full hierarchy.

3.2. Stacked WAE 70

3.2.3 Stacking WAEs for deep latent variable modelling

In the limit λ1 →∞, Equation (3.8) does not depend on the choice of divergence D1.

However, given the set of approximations used, a divergence that takes into account

the smoothness of the full stack of latents will likely help the optimisation. We now

explain how, by using the Wasserstein distance itself for our latent regularizer D1, we

can derive an objective that naturally pairs up inference and generation at every level

in the deep latent hierarchy. After all, the divergence in Equation (3.8) is between the

intractable aggregate distribution Qagg
1 (Z1) from which we can only access samples,

and an analytically-known distribution Pθ2:N
(Z1). This is analogous to where we

started with the Wasserstein distance between the unknown data distribution Pdata

and our fully defined model PΘ.

Specifically, we choose D1 in Equation (3.8) to be the relaxed Wasserstein distance

Ŵc1 , which following the same arguments as before, requires the introduction of a

new variational distribution Qφ2(Z2|Z1):

D1

(
Qagg

1 (Z1), Pθ2:N
(Z1)

)
= inf
Qφ2

(Z2|z1)

[∫
Z1×Z1

c1(z1, z̃1) γ1(z1, z̃1)

+ λ2D2

(
Qagg

2 (Z2), Pθ3:N
(Z2)

)]
(3.11)

where the prior Pθ3:N
and aggregated posterior Qagg

2 are defined similarly to Equa-

tion (3.7) and (3.10) respectively, swapping pdata with qagg
1 in the later. The joint is

now given by

γ1(z1, z̃1)
def
=

∫
Z2

pθ2(z̃1|z2) qφ2(z2|z1) qagg
1 (z1) (3.12)

As before, without loss of generality, Qφ2(Z2|Z1) does not need to define a distribution

over the z>2.

The divergence D1 that arose in Equation (3.8) between two distributions over Z1

is thus mapped onto the latent at the next level in the latent hierarchy, Z2, via Equa-

tion (3.11). This process can be repeated by choosing D2 = Ŵc2 in Equation (3.11),

requiring the introduction of another variational distribution Qφ3(Z3|Z2) that maps

3.3. Experiments 71

Z2 to Z3. Repeating this process until we get to the final layer of the hierarchical

latent variable model gives the StWAE objective:

L = inf
QΦ(Z1:N |x)

[[N∏
i=1

λi

]
DN
(
Qagg
N (ZN), PθN+1

(ZN)
)

(3.13)

+
N−1∑
n=0

[n∏
i=1

λi

∫
Zn×Zn

cn(zn, z̃n) γn(zn, z̃n)

]]

where (Z0, Z0, z0) = (X , X, x) and by convention
∏0

i=1 λi
def
= 1. The joints γn are

defined in the same way than in Equation (3.12). The qφn ’s are the inference

distributions introduced each time a WAE is“stacke”, with their joint distribution

resulting in the Markovian inference model given in Equation (3.2). The aggregated

posterior distributions Qagg
n are then defined as in (3.9) with qagg

n−1 in place of Pdata

and Qagg
0

def
= Pdata.

Note that the StWAE objective function in Equation (3.13) still requires the

specification of a divergence function at the highest latent layer DN , which we simply

take to be the MMD as originally proposed by Tolstikhin et al. [2018]. Other choices

can be made, as in Patrini et al. [2018], who choose a Wasserstein distance computed

using the Sinkhorn algorithm [Cuturi, 2013a]. Whilst Patrini et al. [2018] provide a

theoretical justification for the minimisation of a Wasserstein distance in the prior

space, we found that it did not result in significant improvement and comes at an

extra efficiency cost. Similarly, one could choose different cost functions cn at each

layer; for simplicity we take all cost functions to be the squared Euclidean distance

in their respective spaces.

3.3 Experiments

We now demonstrate how the StWAE approach of Section 3.2 can be used to train

deep latent hierarchies without customising the generative or inference models (e.g.

no skip connections and no parameter sharing). We start by comparing the generative

performances of our method with WAEs and VAEs and then analyse the latent

representations learned by the different models. Finally, we qualitatively show that

3.3. Experiments 72

StWAE can tackle relatively deep latent hierarchies to model more complex and

realistic datasets.

3.3.1 MNIST

Experimental setup We trained a deep hierarchical latent variable model with

N = 5 latent layers on raw (non binarized) MNIST [LeCun and Cortes, 2010]. The

latent layers have dimensions: dZ1 = 32, dZ2 = 16, dZ3 = 8, dZ4 = 4 and dZ5 = 2. We

chose Gaussian distributions for both the generative and inference models, except

for the bottom layer of the generative model, chosen to be deterministic, as in

Tolstikhin et al. [2018], Bousquet et al. [2017]. The mean and covariance matrices

are parametrized by fully connected neural networks similar to that of Sønderby

et al. [2016]. The generative and inference models are parametrized as follow:

qφn(zn|zn−1) = N
(
zn;µqn(zn−1),Σq

n(zn−1)
)
, n = 1, . . . , 5

pθn(zn−1|zn) = N
(
zn−1;µpn(zn),Σp

n(zn)
)
, n = 2, . . . , 5

pθ1(x|z1) = δ
(
x− fθ1(z1)

)
(3.14)

For both the encoder and decoder, the mean and diagonal covariance functions

µn,Σn are fully-connected networks with 2 hidden layers (consider fθ1 as µp1). For

n = 1, 2, 3, 4, 5, the number of units in the hidden layer is 2048, 1024, 512, 256, 128

respectively.

For the regularization parameters, we used
∏n

i=1 λi = λnrec/dzn for n = 1, . . . , 4

(for each reconstruction term in the objective), and
∏5

i=1 λi = λmatch (for the final

divergence term). We then performed a grid search over the 25 pairs (λrec, λmatch) ∈

{0.005, 0.01, 0.05, 0.1, 0.5} ⊗ {10−5, 10−4, 10−3, 10−2, 10−1} and found the best results

(smallest loss defined in Equation (3.13)) are obtained for λrec = 0.1 and λmatch = 10−4.

For the models with KL warm-up scheme, we annealed the regularization parameter

from 10e− 4 to 1 at the first 30% of training. Finally, we chose the cost function cn

to be the squared Euclidean distance: cn(zn, z̃n) = ‖zn − z̃n‖2
2. The expectations in

Equation (3.13) are computed analytically whenever possible and with Monte Carlo

sampling otherwise. We used batch normalisation [Ioffe and Szegedy, 2015] after

3.3. Experiments 73

(a) (b)

Figure 3.2: Reconstruction within pairs of rows. Data is above with the corresponding
reconstructions below. (a) WAE. (b) StWAE.

each hidden fully-connected layer, followed by a ReLU activation [Glorot et al., 2011]

and we trained the models over 1, 000 epochs using the Adam optimiser [Kingma

and Ba, 2015] with default parameters and batch size of 128.

Ablation study: StWAE versus WAE In this section, we compare StWAE and

the original WAE framework for training generative models with deep hierarchical

latents. In particular, we train a WAE using the objective defined in Equation (3.8)

and an inference distribution given in Equation (3.2); the corresponding graphical

model is shown in Figure 3.1c. This experiment can be related to the work of

Tomczak and Welling [2018] and Klushyn et al. [2019] with the model trained with

WAE instead of VAE. Indeed, we can rephrase it as training a 1-layer WAE whose

prior over the latent variable is defined and parametrized as in Equation (3.7), and

is learned in the same time than the encoder and decoder networks. However, we do

not use any specific optimisation scheme nor do we constrain the structure of the

prior beside the modelling choices made in Section 3.2.1, as opposed to what is done

in Tomczak and Welling [2018] and Klushyn et al. [2019].

The samples generated with the standard WAE when training deep hierarchical

latent variable models (Fig. 3.3a) are poor in comparison with those of the StWAE

3.3. Experiments 74

(a) WAE (b) StWAE

(c) VAE (d) VAE+WU

Figure 3.3: Models samples. (a) Vanilla WAE. (b) StWAE. (c) VAE. (d) VAE with
warm-up

3.3. Experiments 75

Table 3.1: MSE scores.

VAE VAE+WU StWAE

MSE 102.62± 0.27 105.06± 0.12 50.45 ± 1.04

(Fig. 3.3b). However, the relatively accurate reconstructions in Figure 3.2a indicate

that the model only needs the first latent layer to capture most of the data structure.

This behaviour is similar to that of the Markov HVAE described in Zhao et al.

[2017]. They show that, for Markov HVAEs to learn interpretable latents, one needs

additional constraints beyond simply maximising the model likelihood, or in our

case, the WAE objective of Tolstikhin et al. [2018] with the MMD divergence.

The lack of smooth interpolations in Figure 3.4a confirms that almost no structure

has been captured in the deepest latent layer in contrast to StWAE (Fig. 3.4b).

This is likely due to the fact that the standard WAE, with its objective given in

Equation (3.8), is independent of the deeper latent inference distributions, thus

weakening the smoothness constraint in these deeper layers.

Learning a deep latent hierarchy We now compare our method with VAEs

[Rezende et al., 2014, Kingma and Welling, 2014], with and without KL warm-up

[Bowman et al., 2015]. Figure 3.4 shows the models samples when interpolating

in the deepest latent layer Z5 whilst the layer-wise reconstructions are shown in

Figure 3.5. Additional samples are given in Figure 3.3. Images in the interpolations

are obtained by reconstructing codes in Z5 taken evenly in a grid varying between

±2 standard deviations from the origin. StWAE generates more realistic samples and

learns a smoother manifold than VAEs. Note that quantitative comparisons with

VAE-based methods using likelihood-based scores is not possible as the likelihood of

StWAE is not defined due to the deterministic decoder in the bottom layer. Whilst

sample-based metrics offer an alternative for assessing the generative performances,

we felt that both the visual inspection of the samples (Fig. 3.3) and the Mean Square

Errors (MSE) scores (Table 3.1) were uni-vocal in the case of the MNIST dataset.

An advantage of deep latent hierarchies is their capacity to capture information

3.3. Experiments 76

(a) WAE interpolations. (b) StWAE interpolations.

(c) VAE interpolations. (d) VAE+WU interpolations.

Figure 3.4: 5-layers generative models. (a) Interpolations in the deepest latent layer
for WAE. (b) Same than Figure 3.4a for StWAE. (c) Same than Figure 3.4a for VAE.
(d) Same than Figure 3.4a for VAE with warm-up.

3.3. Experiments 77

at different levels, augmenting a single layer latent space. In Figure 3.5, input images,

shown in the bottom-row, are encoded and reconstructed for each latent layer. More

specifically, the inputs are encoded up to the latent layer i and reconstructed from

the encoded zi using the generative model p(x|z1)p(z1|z2) . . . p(zi−1|zn). Row n in

Figure 3.5 shows the reconstructions obtained from encoding up to layer n. In

Figure 3.5c, we see that each additional encoding layer moves slightly farther away

from the original input image, as it moves towards fitting the encoded points into

the 2-dimensional unit normal prior. The dimensionality of the deeper latent layers

is a modelling choice which determines how much information is preserved; this can

be seen through the loss of information from deeper reconstructions in Figure 3.5c.

Indeed, in each layer, the encoder is asked to map the incoming encodings into a

lower-dimensional latent space, filtering the amount of information to keep and pass

up to the deeper layer. Thus, if there is a mismatch in the dimensions between the

true underlying generative process of the data and the chosen model, the encoder

will have to project the encodings into lower-dimensional spaces, losing information

along the way. More specifically, the deeper layers encode for more global and

abstract information whilst local information is captured in the shallower layers. An

inspection of the layer-wise reconstructions shows that the deepest layer (top row)

encodes for the digit id, with relative uniformity in the reconstruction for the same

digit id. The second layer in the hierarchy (2nd row from top) encodes the shape

(see for example the different loop sizes for the 2s in the 6th, 7th and 8th columns).

The third layer (3rd row from top) encodes the straw width (different width for

the 2s in the 6th, 7th and 8th columns from left). The fourth and fifth layers (4th

and 5th rows from top) refine iteratively the reconstructions, from coarser to finer

details (for example the size and shape of the loops of the 3, 12th column from left).

Understanding the way the information is encoded and passed up to the deeper

layers as well as what information is encoded in each layer is an open question and

could be the subject of future works.

3.3. Experiments 78

(a) VAE

(b) VAE+WU

(c) StWAE

Figure 3.5: Layer-wise reconstructions. In each plot, the bottom-row is data and the
ith row from the bottom is generated using the latent codes zi which are from the ith

encoding layer. (a): VAE. (b): VAE + Warm-Up. (c): StWAE.

3.3. Experiments 79

(a) VAE

(b) VAE+WU

(c) StWAE

Figure 3.6: Visualisation of latent spaces Zi. Each colour corresponds to a digit
label. dZ5 = 2 can be directly plotted; for higher dimensions we use PCA. (a) VAE.
(b) VAE+Warm-Up. (c) StWAE.

Latent representations An important motivation for using deep hierarchical

model is their capacity to learn powerful latent representations through all the

latent hierarchy. As already mentioned, StWAE manages to use all of its latent

layers, closely capturing the covariance structure of the data in the deeper latent

layers (Fig. 3.4b), something that VAE methods struggle to accomplish as seen in

Figures 3.4c and 3.4d (see also Zhao et al. [2017]). In Figure 3.6, we performed

semantic clustering along the latent hierarchy, where the encoded input images are

coloured with corresponding digit labels through the latent layers. We see through

each layer that StWAE leverages the full hierarchy in its latents, with structured

manifolds learnt at each stochastic layer (Fig. 3.6c). On the other hand, VAEs fail

at learning any structure in the different latent spaces (Fig. 3.6a.) Vanilla VAE only

captures structure up to the second latent layer, with the deeper latent representations

collapsing to a standard normal prior, whilst using a KL warm-up scheme improves

the latent representation by activating one additional latent layer (Fig. 3.6b). Note

3.3. Experiments 80

Figure 3.7: Layer-wise KL for each latent of the hierarchy averaged over 5 random
runs. We re-normalise each KL term by the dimension of the corresponding latent
layer. Shaded area correspond to ±1 standard deviation from the mean.

that for the shallower layers with higher dimensions (e.g. dZ1 = 32 or dZ2 = 16),

the PCA algorithm results in a poor visualisation and other visualisation techniques

could be used such as UMAP [McInnes and Healy, 2018].

More quantitatively, we can measure how much information is encoded at each

layer by computing the KL between the encoded distribution qn(zn|zn−1) and the

prior distribution pn+1(zn|zn+1) at each layer. Results are shown in Figure 3.7, where

each KL terms is re-normalised by the dimension of the corresponding latent layer.

For the VAEs methods, these terms quickly collapse to zero as we go deeper in

the hierarchy, which corresponds to the collapse of the inference model, carrying

no information about the data. On the contrary, in StWAE, the encoder network

is able to carry information through all the hierarchy up to the top layer with

significantly higher KL values. This comes from the fact that the VAE objective

can be decomposed into a sum of terms minimising these KL terms at each layer

whereas StWAE only matches the aggregated posterior to the prior at each layer.

This collapse in the inference model also results in poor generative performances as

3.3. Experiments 81

can been seen in Figures 3.4c and 3.4d (see Figure 3.3 for models samples) as well as

poor reconstruction performances shown in Figures 3.5a and 3.5b. The reconstruction

MSE for the different models are given Table 3.1, showing that the reconstruction

performances of StWAE are substantially better (lower MSE is better) than the ones

of VAEs.

3.3.2 Real world datasets

We now turn to more realistic datasets to qualitatively show that StWAE is also

able to leverage deeper latent hierarchies. In particular, we trained a 6-layers and a

10-layers StWAE on Street View House Numbers (SVHN) [Netzer et al., 2011] and

CelebA [Liu et al., 2015], respectively. It is worth stating that we are not aiming to

achieve state-of-the-art performances on these datasets, but rather to qualitatively

show that our method can learn a deep hierarchical latent representation of the data.

As Rubenstein et al. [2018b], we regularize the variance of the encoder networks

with a log penalty term given by Equation (3.15):

Lpen =
N∑
n=1

λΣ
n

dZn∑
i=1

| log Σq
n[i]| (3.15)

where Σq
n is the covariance matrix of the nth inference network. This prevents the

collapse of the encoder that leads to poor sample quality. Indeed, with the collapse

of the encoder, the input data would be mapped to a latent space with dimension

higher than its intrinsic dimension by a deterministic function, resulting in a poor

coverage of the latent space [Rubenstein et al., 2018b]. We find that an exponentially

decreasing penalty term λΣ
n (see following sections) works well for the datasets at

hand with our experimental setup. This choice is motivated by the fact that the

bigger the latent dimension (shallower latent layers in the hierarchy), the more likely

it is that the latent dimension is larger than the data intrinsic dimension.

The mean and covariance of the inference networks and generative models for

both SVHN and CelebA are parametrized by 3-layers ResNet [Kaiming et al., 2015].

A M -layers ResNet [Kaiming et al., 2015] is composed of M − 1 convolutional blocks

followed by a resampling convolution, and a residual connection. The outputs of

3.3. Experiments 82

Figure 3.8: Residual network with 3 hidden convolutions.

the two tracks are added and a last operation (either fully connected or convolution

layer) is applied to produce the final output. A convolutional block is composed of

a convolution layer followed by batch normalisation [Ioffe and Szegedy, 2015] and

a ReLU non-linearity [Glorot et al., 2011]. We also use batch normalisation and

ReLU after the sum of the convolutional block and the residual connection outputs.

See Figure 3.8 for an example of a 3-layers residual network with a last convolution

operation. For the resampling layers, we use convolution layers with stride 2. If no

resampling is performed, then the resampling convolution is a simple convolution

layer with stride 1 and the skip connection performs the identity operation. The

latent dimensions are then given by the dimensions and the number of features in

the last convolutional operation. We chose the squared Euclidean distance as our

ground cost: cn(zn, z̃n) = ‖zn − z̃n‖2
2, and the expectations in Equation (3.13) are

computed analytically whenever possible, otherwise using Monte Carlo sampling.

Street View House Numbers We trained a 6-layers StWAE using both the

training dataset (73,257 digits) and the available additional dataset (531,131 digits).

The 6-layers StWAE has Gaussian inference networks and generative models, with

mean and covariance functions parametrized by 3-layers ResNet [Kaiming et al.,

2015]. We trained the models over 1000 epochs using the Adam optimiser [Kingma

3.3. Experiments 83

Table 3.2: Details of the architectures used in Section 3.3.2. Top-table: architecture
of the 6-layers StWAE trained on SVHN. Bottom-table: architecture of the 10-layers
StWAE trained on CelebA.

Layer i Filters dim. Resampling Output dim.

Layer 1 5×5×64 down / up 16×16×2
Layer 2 3×3×64 None 16×16×1
Layer 3 3×3×96 down / up 8×8×2
Layer 4 3×3×96 None 8×8×1
Layer 5 3×3×128 down / up 4×4×2
Layer 6 3×3×128 None 4×4×1

(a) SVHN

Layer i Filters dim. Resampling Output dim.

Layer 1 7×7×64 down / up 32×32×8
Layer 2 5×5×64 None 32×32×6
Layer 3 3×3×64 None 32×32×4
Layer 4 3×3×64 down / up 16×16×8
Layer 5 3×3×96 None 16×16×6
Layer 6 3×3×96 None 16×16×4
Layer 7 3×3×96 down / up 8×8×8
Layer 8 3×3×128 None 8×8×6
Layer 9 3×3×128 None 8×8×4
Layer 10 3×3×128 down / up 4×4×8

(b) CelebA

and Ba, 2015] with default parameters and batch size of 100.

For each ResNet, we used M = 2 convolutional blocks for each latent layers.

Resampling is performed in layers n = 1, 3, 5 (stride 2 in the resampling convolutions).

Each filters have the same size within the residual networks, and their numbers are

increased (in the inference networks) or decreased (in the generative models) when

resampling. More specifically, networks in layers n = 1, 2 have 64 convolution filters,

layers n = 3, 4 96 filters and layers 5, 6 128. We chose the number of features to be

2, 1, 2, 1, 2 and 1 for the latent layers (last convolutional operations of the ResNets).

The details are given in Table 3.2a.

For the regularization hyper parameters, we use
∏n

i=1 λi = λ
(n−1)+1
rec for n =

1, . . . , 5, and
∏6

i=1 λi = λmatch. The effective regularization weights in Equation 3.13

scale exponentially. With this chosen regularization scheme, the layer-wise regular-

ization term scale in O
(
λnrec

)
. We found that

(
λrec, λmatch

)
=
(
0.5, 10

)
worked well

3.3. Experiments 84

Figure 3.9: Same than Figure 3.5c for a 6-layer StWAE trained on SVHN.

with our experimental setup. As mentioned above, in order to avoid the collapse

of the encoders variances, we penalised the log variance of the inference networks.

We found that λΣ
n = λΣ · e−(n−1), for n = 1, . . . , 6, with λΣ = 2.5 worked well in our

setting. More details of the network architectures can be found in Table 3.2a.

The reconstructions of the data points (along the bottom row) at each latent

layer in the hierarchy are given Figure 3.9. Similarly to MNIST, we can see that the

deeper latent layers may not be large enough to enable high-fidelity reconstructions.

Our intention is to show that it is indeed possible to leverage the latent hierarchy,

propagating the information through all the layers, rather than to model SVHN

perfectly.

CelebA We trained a 10-layers StWAE. Similarly to that of SVHN, the inference

and generative networks are fully-convolutional ResNet. More precisely, We used

the same ResNet building blocks than previously, with M = 2 convolutional blocks,

each filter within a ResNet block having the same size, and increasing or reducing

their numbers in the last convolutional operation if resampling is performed. Layers

i = 1, 4, 7, 10 have stride 2 with 64 filters for networks in layers i = 1, 2, 3, 4, 96 for

networks in layers i = 5, 6, 7 and 128 for the remaining layers. We chose the number

of features, controlling the latent dimensions to be 8, 6, 4, 2, 8, 6, 4, 8, 6, 4 with the

last latent layer having 8 feature maps. See Table 3.2b for the details.

As before, we used an exponentially decreasing regularization parameters with∏n
i=1 λi = λ

(n−1)/3+1
rec and

∏10
i=1 λi = λmatch where

(
λrec, λmatch

)
=
(
10−1, 100

)
. The

3.3. Experiments 85

Figure 3.10: 10-layer StWAE trained on CelebA. Reconstructions for the different
encoding layers, as in Figure 3.5c.

3.4. Conclusion 86

same exponential penalization scheme of the encoder variance is used with with

λΣ = 2.5.

As with SVHN, Figure 3.10 shows that StWAE manages to use all its latent

layers, up to the deepest ones. Whilst the full reconstructions (Fig. 3.10, top-row)

are relatively close to the original data points, shown in the bottom-row, we can

notice here again a loss of information as we go deeper in the hierarchy. In other

words, the deeper the encoding, the blurrier the reconstructions. As before, this can

be due to the excessive filtering of information by the encoder when going up in

the hierarchy due to the miss match between the intrinsic dimension and the latent

dimension.

3.4 Conclusion

In this work we introduced a novel objective function for training generative models

with deep hierarchies of latent variables using Optimal Transport. Our approach

recursively applies the Wasserstein distance as a regularization divergence, allowing

for the stacking of WAEs for arbitrarily deep latent hierarchies. We showed that

this approach enables the learning of smooth latent distributions even in deep latent

hierarchies, which otherwise requires extensive model design and tweaking of the

optimisation procedure to train.

Chapter 4

Learning disentangled

representations with the

Wasserstein Autoencoder

The work presented in this chapter was published in Gaujac et al. [2021b].

Disentangled representation learning has undoubtedly benefited from objective func-

tion surgery. However, a delicate balancing act of tuning is still required in order

to trade off reconstruction fidelity versus disentanglement. Building on previous

successes of penalizing the total correlation in the latent variables, we propose Total

Correlation Wasserstein Autoencoder (TCWAE). Working in the WAE paradigm

naturally enables the separation of the Total Correlation (TC) term [Watanabe,

1960], providing an explicit disentanglement control over the learned representation,

whilst offering more flexibility in the choice of reconstruction cost. We propose two

variants using different KL estimators and analyse in turn the impact of having dif-

ferent ground cost functions and latent regularization terms. Extensive quantitative

comparisons on datasets with known generative factors shows that our methods

present competitive results relative to state-of-the-art techniques. We further study

the trade off between disentanglement and reconstruction on more difficult datasets

with unknown generative factors, where the flexibility of the WAE paradigm leads

to improved reconstructions.

4.1. Introduction 88

4.1 Introduction

Learning representations of the data is at the heart of deep learning; the ability to

interpret those representations empowers practitioners to improve the performance

and robustness of their models [Bengio et al., 2013, van Steenkiste et al., 2019]. In

the case where the data is underpinned by independent latent generative factors,

a good representation should encode information about the data in a semantically

meaningful manner with statistically independent latents encoding for each factor.

Bengio et al. [2013] define a disentangled representation as having the property

that a change in one dimension corresponds to a change in one factor of variation,

whilst being relatively invariant to changes in other factors. Whilst many attempts

to formalize this concept have been proposed [Higgins et al., 2018, Eastwood and

Williams, 2018, Do and Tran, 2019], finding a principled and reproducible approach

to assess disentanglement is still an open problem [Locatello et al., 2019].

Recent successful unsupervised learning methods have shown how simply modify-

ing the ELBO objective, either re-weighting the latent regularization terms or directly

regularizing the statistical dependencies in the latent variables, can be effective in

learning disentangled representations. Higgins et al. [2016] and Burgess et al. [2018]

control the information bottleneck capacity of VAEs [Kingma and Welling, 2014,

Rezende et al., 2014] by heavily penalizing the latent regularization term. Chen et al.

[2018] perform ELBO surgery to isolate the terms at the origin of disentanglement in

β-VAE [Higgins et al., 2016], improving the reconstruction-disentanglement trade off.

Esmaeili et al. [2018] further improve the reconstruction capacity of β-TCVAE [Chen

et al., 2018] by introducing structural dependencies both between groups of variables

and between variables within each group. Alternatively, directly regularizing the

aggregated posterior to the prior with density-free divergences [Zhao et al., 2019]

or moments matching [Kumar et al., 2018], or simply penalizing a high TC in the

latent has shown good disentanglement performance [Kim and Mnih, 2018].

In fact, information theory has been a fertile ground to tackle representation learn-

ing. Achille and Soatto [2018] re-interpret VAEs from an Information Bottleneck view

[Tishby et al., 1999], re-phrasing it as a trade off between sufficiency and minimality

4.1. Introduction 89

of the representation and regularizing a pseudo TC between the aggregated posterior

and the true conditional posterior. Similarly, Gao et al. [2019] use the principle of

total Correlation Explanation (CorEX) [Ver Steeg and Galstyan, 2014] and maximize

the mutual information between the observation and a subset of anchor latent points.

Maximizing the Mutual Information (MI) between the observation and the latent

has been broadly used [Van den Oord et al., 2018, Hjelm et al., 2019, Bachman et al.,

2019, Tschannen et al., 2020], showing encouraging results in representation learning.

However, Tschannen et al. [2020] argued that MI maximization alone cannot explain

the disentanglement performance of these methods.

Building on developments in Optimal Transport (OT) [Villani, 2008], Tolstikhin

et al. [2018], Bousquet et al. [2017] introduced the Wasserstein Autoencoder (WAE),

an alternative to VAEs for learning generative models. WAE maps the data into a

(low-dimensional) latent space whilst regularizing the averaged encoding distribution.

This is in contrast with VAEs where the posterior is regularized at each data point,

and allows the encoding distribution to capture meaningful information from the data

whilst still matching the prior in average. Interestingly, by directly regularizing the

aggregated posterior, WAE hints at more explicit control on the way the information

is encoded, and thus better disentanglement. The reconstruction term of the WAE

allows for any cost function on the observation space and non-deterministic decoders.

This removes the need of random decoders for which the log density is tractable and

derivable (with regard to the decoder parameters) as it is the case in VAEs. The

combination of non-degenerated Gaussian decoders with the Kullback-Leibler (KL)

divergence acting as the posterior regularizer is viewed as the cause of the samples

blurriness in VAEs [Bousquet et al., 2017].

Few works have sought to use WAE for disentanglement learning. Initial ex-

periments from Rubenstein et al. [2018a] showed encouraging results but did not

fully leverage the flexibility offered by WAEs. The authors simply used the original

WAE objective with cross-entropy reconstruction cost without studying the impact

of using different reconstruction terms and latent regularization functions. Mirroring

the KL-based TC, Xiao and Wang [2019] introduced Wasserstein Total Correlation

(WTC). Resorting to the triangle inequality, they decomposed the latent regular-

4.2. Importance of Total correlation in disentanglement 90

ization term of the WAE into the sum of two WTC terms. However, WTC lacks

an information-theoretic interpretation such as the one offered by the TC and the

authors resorted to the dual formulation of the 1-Wasserstein distance to approximate

the WTC, adversarially training two critics.

In this work, following the success of regularizing the TC in disentanglement, we

propose to use the KL divergence as the latent regularization function in the WAE.

We introduce the Total Correlation WAE (TCWAE) with an explicit dependency

on the TC of the aggregated posterior. We study separately the impact of using a

different ground cost function in the reconstruction term and the impact of a different

composition of the latent regularization term. Performing extensive comparisons

with successful methods on a number of datasets, we found that TCWAEs achieve

competitive disentanglement performance whilst improving modelling performance

by allowing flexibility in the choice of reconstruction cost.

4.2 Importance of Total correlation in disentan-

glement

4.2.1 Total correlation

The TC of a random vector Z ∈ Z under P is defined by

TC(P (Z))
def
=

dZ∑
i=1

HPi(Zi)−HP (Z) (4.1)

where pi(zi) is the marginal density over only the i-th component zi, andHP (Z)
def
= −EP log p(Z)

is the Shannon differential entropy, which encodes the information contained in Z

under P . Since

dZ∑
i=1

HPi(Zi) ≤ HP (Z) (4.2)

with equality when the marginals Zi are mutually independent. The TC can be

interpreted as the loss of information when assuming mutual independence of the

4.2. Importance of Total correlation in disentanglement 91

Zi; namely, it measures the mutual dependence of the marginals. Thus, in the

context of disentanglement learning, we seek a low TC of the aggregated posterior,

p(z) =
∫
X p(z|x) p(x) dx, which forces the model to encode the data into statistically

independent latent codes. High MI between the data and the latent is then obtained

when the posterior, p(z|x), manages to capture relevant information from the data.

4.2.2 Total correlation in ELBO

We consider latent generative models pθ(x) =
∫
Z pθ(x|z) p(z) dz with prior p(z)

and decoder network, pθ(x|z), parametrized by θ. As we saw in Section 1.1.2,

VAEs approximate the intractable posterior pθ(z|x) by introducing an encoding

distribution (the encoder), qφ(z|x). The encoder and decoder are simultaneously

learned by optimizing the variational lower-bound or ELBO (Equation (1.7)), with

regards to their respective parameters θ and φ. For convenience we recall here the

definition of the ELBO for a single observation x:

LELBO(x, θ, φ) =

∫
Z
qφ(z|x) log pθ(x|z) dz −KL

(
Qφ(Z|x) ‖ P (Z)

)
(4.3)

Following Hoffman and Johnson [2016], we treat the data index, n, as a uniform

random variable over {1, . . . , N}: p(n) = 1
N

. We can then define respectively the

posterior, joint posterior and aggregated posterior:

qφ(z|n) = qφ(z|xn), qφ(z, n) = qφ(z|n) p(n), qφ(z) =
N∑
n=1

qφ(z|n) p(n) (4.4)

Using this notation, we decompose the KL term in Equation (4.3) into the sum of

i , an index-code mutual information term, and ii , a marginal KL term, with:

i = KL
(
Qφ(Z,N) ‖ Qφ(Z)P (N)

)
and ii = KL

(
Qφ(Z) ‖ P (Z)

)
(4.5)

The index-code mutual information (index-code MI) represents the MI between

the data and the latent under the joint distribution q(z, n), and the marginal KL

enforces the aggregated posterior to match the prior. The marginal KL term plays

4.3. Is WAE naturally good at disentangling? 92

an important role in disentanglement. Indeed, it pushes the encoder network to

match the prior when averaged, as opposed to matching the prior for each data

point. Combined with a factorized prior p(z) =
∏

i pi(zi), as it is often the case, the

aggregated posterior is forced to factorize and align with the axis of the prior. More

explicitly, the marginal KL term in Equation (4.5) can be decomposed as sum of a

Total Correlation term and a dimension-wise KL term:

ii = TC
(
Qφ(Z)

)
+

dZ∑
i=1

KL
(
Qφ,i(Zi) ‖ Pi(Zi)

)
(4.6)

Thus maximizing the ELBO implicitly minimizes the TC of the aggregated posterior,

enforcing the aggregated posterior to disentangle as Higgins et al. [2016] and Burgess

et al. [2018] observed when strongly penalizing the KL term in Equation (4.3).

Chen et al. [2018] leverage the KL decomposition in Equation (4.6) by refining the

heavy latent penalization to the TC only. However, the index-code MI term of

Equation (4.5) seems to have little to no role in disentanglement, potentially harming

the reconstruction performance as we will see in Section 4.4.1.

4.3 Is WAE naturally good at disentangling?

4.3.1 WAE

Re-using the notations from the previous sections, we recall here the WAE formulation

of Tolstikhin et al. [2018], Bousquet et al. [2017]:

WD,c(θ, φ)
def
= E
PD(X)

E
Qφ(Z|X)

E
Pθ(X̃|Z)

[
c(X, X̃)

]
+ λD

(
Qφ(Z) ‖ P (Z)

)
(4.7)

where D is any divergence function and λ a relaxation parameter. The decoder,

pθ(x̃|z), and the encoder, qφ(z|x), are optimized simultaneously by dropping the

closed-form minimization over the encoder network, with standard gradient descent

methods.

Whilst objective (4.7) resembles the ELBO with a reconstruction term and a

latent regularization term, WAE explicitly penalizes the aggregate posterior as

4.3. Is WAE naturally good at disentangling? 93

opposed to VAE. As seen in Equation (4.5), the TC dependency of the ELBO only

appears implicitly and competes with other terms and especially, the index-code MI.

Following Section 4.2.2, this motivates, the use of WAE in disentanglement learning.

Another important difference lies in the functional form of the reconstruction cost

in the reconstruction term. Indeed, we saw previously that WAE allows for more

flexibility in the reconstruction term, and in particular, it allows for cost functions

both better suited to the data at hand and for the use of deterministic decoder

networks [Tolstikhin et al., 2018, Frogner et al., 2015]. This can potentially result

in an improved reconstruction-disentanglement trade off as we empirically find in

Sections 4.4.2 and 4.4.1.

4.3.2 TCWAE

For the simplicity of notations, we drop the explicit dependency of the distributions

on their parameters θ and φ throughout this section.

We chose the divergence function D in Equation (4.7) to be the KL divergence

and assume a factorized prior (e.g. p(z) = N (0dZ , IdZ)), thus obtaining the same

decomposition as in Equation (4.6). Similarly to Chen et al. [2018], we use different

parameters, β and γ, for each term in the decomposition in Equation (4.6) of the

latent regularization term from Equation (4.7), obtaining our TCWAE objective:

WTC
def
= E
P (Xn)

E
Q(Z|Xn)

[
E

P (X̃n|Z)
[c(Xn, X̃n)]

]
(4.8)

+ βKL
(
Q(Z) ‖

dZ∏
i=1

Qi(Zi)
)

+ γ

dZ∑
i=1

KL
(
Qi(Zi) ‖ Pi(Zi)

)
TCWAE is identical to the WAE objective with KL divergence when λ = β = γ; and

provides an upper-bound with min(β, γ) = λ.

Equation (4.8) can be directly related to the β-TCVAE objective of Chen et al.

[2018]:

LβTC
def
= E
P (Xn)

E
Q(Z|Xn)

[
− log p(Xn|Z)

]
+ αKL

(
Q(Z,N) ‖ Q(Z)P (N)

)
(4.9)

4.3. Is WAE naturally good at disentangling? 94

+ βKL
(
Q(Z) ‖

dZ∏
i=1

Qi(Zi)
)

+ γ

dZ∑
i=1

KL
(
Qi(Zi) ‖ Pi(Zi)

)
As mentioned above, the differences are the absence of index-code MI and a dif-

ferent reconstruction cost function. Setting α = 0 in Equation (4.9) makes the

two latent regularizations match but breaks the inequality provided by the ELBO

(Equation (4.3)). Matching the two reconstruction terms would be possible if we

could find a ground cost function c such that EP (X̃n|Z)c(xn, X̃n) = − log p(xn|Z) for

all xn.

4.3.3 Estimators

With the goal of being grounded by information theory and earlier works on dis-

entanglement, using the KL as the latent divergence function, as opposed to other

sample-based divergences [Tolstikhin et al., 2018, Patrini et al., 2018], presents its

own challenges. Indeed, the KL terms are intractable; in particular, we will need

estimators to approximate the entropy terms. We propose to use two estimators, one

based on importance weight-sampling [Chen et al., 2018], the other on adversarial

estimation using the density-ratio trick [Kim and Mnih, 2018].

TCWAE-MWS Chen et al. [2018] propose to estimate the intractable terms

EQ log q and EQi log qi within the KL in Equation (4.8) with Minibatch-Weighted

Sampling (MWS). Considering a batch of observation {x1, . . . xNbatch
}, they sample

the latent codes zn ∼ Q(Z|xn) and compute:

E
Q(Z)

log q(Z) ≈ 1

Nbatch

Nbatch∑
n=1

log
1

N ×Nbatch

Nbatch∑
m=1

q(zm|xn) (4.10)

This estimator, whilst being easily computed from samples, is a biased estimator of

Eq log q(Z). Chen et al. [2018] also proposed an unbiased version, the Minibatch-

Stratified Sampling (MSS). However, they found that it did not result in improved

performance, and thus, they and we choose to use the simpler MWS estimator. We

call the resulting algorithm the TCWAE-MWS. Other sampled-based estimators

of the entropy or the KL divergence have been proposed [Rubenstein et al., 2019,

4.4. Experiments 95

Esmaeili et al., 2018]. However, we choose the solution of Chen et al. [2018] for i) its

simplicity and ii) the similarities between the TCWAE and β-TCVAE objectives.

TCWAE-GAN A different approach, similar in spirit to the WAE-GAN originally

proposed by Tolstikhin et al. [2018], Bousquet et al. [2017], is based on adversarial-

training. Whilst Tolstikhin et al. [2018], Bousquet et al. [2017] use the adversarial

training to approximate the JS divergence, Kim and Mnih [2018] use the density-ratio

trick and adversarial training to estimate the intractable terms in Equation (4.8).

The density-ratio trick [Nguyen et al., 2008, Sugiyama et al., 2011] estimates the KL

divergence as:

KL
(
Q(Z) ‖

dZ∏
i=1

Qi(Zi)
)
≈ E

Q(Z)
log

D(Z)

1−D(Z)
(4.11)

where D plays the same role as the discriminator in GANs and outputs an estimate

of the probability that z is sampled from Q(Z) and not from
∏dZ

i=1Qi(Zi). Given

that we can easily sample from q(z), we can use Monte-Carlo sampling to estimate

the expectation in Equation (4.11). The discriminator D is adversarially trained

alongside the decoder and encoder networks. We call this adversarial version the

TCWAE-GAN.

4.4 Experiments

We perform a series of quantitative and qualitative experiments, isolating in turn

the effect of the ground cost and latent regularization functions in TCWAE. We

found that whilst the absence of index-code MI in TCWAEs does not impact the

disentanglement performance, using the square Euclidean distance as our ground

cost function improves the reconstruction whilst retaining the same disentanglement.

Finally, we compare our methods with the benchmarks β-TCVAE and FactorVAE,

both quantitatively on toy datasets and qualitatively more challenging datasets with

unknown generative factors.

4.4. Experiments 96

(a) dSprites

(b) 3D shapes

(c) smallNORB

Figure 4.1: Reconstruction and disentanglement scores heat maps. Top row cor-
responds to TCWAE-MWS and bottom row to TCWAE-GAN. Smaller MSE and
higher disentanglement scores represent better models.

4.4. Experiments 97

4.4.1 Quantitative analysis: disentanglement on toy datasets

In this section we train the different methods on the dSprites [Matthey et al.,

2017], 3D shapes [Kim and Mnih, 2018] and smallNORB [LeCun et al., 2004]

datasets whose ground-truth generative-factors are given in Table B.1. We use the

Mutual Information Gap (MIG, [Chen et al., 2018]), the factorVAE metric [Kim

and Mnih, 2018] and the Separated Attribute Predictability score (SAP, [Kumar

et al., 2018]) to asses the disentanglement performances (see Locatello et al. [2019]

for the implementation). We assess the reconstruction performances with the Mean

Square Error (MSE) of the reconstructions. See Appendix B.1 for more details on

the experimental setups.

γ tuning Mirroring Chen et al. [2018], Kim and Mnih [2018], we first tune γ,

responsible for the dimension-wise KL regularization, subsequently focusing on the

role of the TC term in the disentanglement performance. We trained the TCWAEs

with six different values for each parameter, resulting in thirty-six different models.

We show the heat map for the different datasets in Figure 4.1. We observe that

whilst β controls the trade off between reconstruction and disentanglement, γ affects

the range achievable when varying β. We choose γ with the best overall mean scores

when aggregated over all the different β. See Appendix B.2 for more details.

For each method and dataset, the violin plots of the different metrics for five

random runs are given Figures 4.2, 4.3 and 4.4. As argued by Locatello et al. [2019],

the disentanglement scores are relatively sensible to hyper parameters tuning. The

chosen values for each method and dataset are given in Table B.5 and fixed in all

the following experiments.

4.4. Experiments 98

Figure 4.2: Disentanglement versus γ violin plots on dSprites

Figure 4.3: Disentanglement versus γ violin plots on 3D shapes

4.4. Experiments 99

Figure 4.4: Disentanglement versus γ violin plots on smallNORB

Ablation study of the ground cost function We study the impact of using

the square euclidean distance as the ground cost function as opposed to the cross-

entropy cost as in the ELBO. When using the cross-entropy, the TCWAE objective

is equivalent to the one defined in Equation (4.9) with α = 0; in this case, TCWAE-

MWS simply boils down to β-TCVAE with no index-code MI term.

We train two sets of TCWAE-MWS, one with the square euclidean distance

and one with the cross-entropy, for different β and compare the reconstruction-

disentanglement trade off by plotting the different disentanglement scores versus

the MSE in Figure 4.5. We see that the square euclidean distance provides better

reconstructions on all datasets as measured by the MSE (points on the left side of

the plots have lower MSE). Models trained with the square euclidean distance show

similar disentanglement performance for smallNORB and better ones for dSprites.

In the case of 3D shapes, some disentanglement performance has been traded away

for better reconstruction. We would argue that this simply comes from the range

of parameters used for both β and γ. These results show that the flexibility in

4.4. Experiments 100

Figure 4.5: Disentanglement versus reconstruction for TCWAE-MWS with square
euclidean distance (red) and cross-entropy (blue) cost. Points represent different
models with different β (quadratic regression represented by the dashed lines). Low
MSE and high scores (top-left corner) is better. Higher TC penalisation (bigger β)
results in higher MSE and higher scores.

choice of the ground cost function of the reconstruction term of TCWAE offers better

reconstruction-disentanglement trade off by improving the reconstruction whilst

exhibiting competitive disentanglement.

Ablation study of the index-code MI As mentioned in Section 4.3.2, the latent

regularization of TCWAE and β-TCVAE only differ by the presence or absence of

index-code MI. Here, we show that it has minimal impact on the reconstruction-

disentanglement trade off. We modify our objective Equation (4.8) by explicitly

adding an index-code MI term. The resulting objective is now an upper-bound of the

(TC)WAE objective and is equivalent to a pseudo β-TCVAE where the reconstruction

cost would be replaced by the square euclidean distance. We use α = γ and we

compare the reconstruction-disentangle trade off of the modified TCWAE, denoted

by TCWAE MI, with the original TCWAE in Figure 4.6.

4.4. Experiments 101

Figure 4.6: Same than Figure 4.5 for TCWAE-MWS with (blue) and without
code-index MI (red).

Figure 4.7: Same than Figure 4.5 for TCWAE-MWS (red), TCWAE-GAN (green),
β-TCVAE (blue) and FactorVAE (purple).

All other things being equal, we observe that adding an index-code MI term has

little to no impact on the reconstruction (vertical alignment of the points for the

4.4. Experiments 102

same β). The presence of index-code MI does not result in significant performance

difference across all datasets, conforms to the observation of Chen et al. [2018]. This

suggests that TCWAE is a more natural objective for disentanglement learning

removing the inconsequential index-code MI term, and thus the need for a third

hyper parameter to tune (choice of α in Equation (4.9)).

Disentanglement performance We benchmark our methods against β-TCVAE

[Chen et al., 2018] and FactorVAE [Kim and Mnih, 2018] on the three different

datasets. As Chen et al. [2018] we take α = 1 in β-TCVAE whilst for γ, we follow

the same method than the one used before for TCWAE (see Appendix B.2 and

Table B.5). As previously, we visualise the reconstruction-disentanglement trade off

by plotting the different disentanglement scores against the MSE in Figure 4.7. As

expected, the TC term controls the reconstruction-disentanglement trade off as more

TC penalization leads to better disentanglement scores but higher reconstruction

cost. However, similarly to their VAE counterparts, too much penalization on the TC

deteriorates the disentanglement as the poor quality of the reconstructions prevents

any disentanglement in the generative factors.

With the range of parameters chosen, both the TCWAE-GAN and FactorVAE

reconstructions seem to be less sensitive to the TC regularization as shown by the

more concentrated MSE scores. TCWAE models also exhibit smaller MSE than VAEs

methods for almost all the range of selected parameters. Thus, whilst it remains

difficult to assert the dominance of one method, both because the performance varies

from one dataset to another and from one metric to another within each dataset1, we

argue that TCWAE improves the reconstruction performance (smaller MSE) whilst

retaining competitive disentanglement performance (see top row of Figures 4.2, 4.3

and 4.4). In Table 4.1, we report for each method the best β taken to be the one

achieving an overall best ranking over the disentanglement scores (see Appendix B.1

for more details). TCWAEs achieve competitive disentanglement performance when

compared to the benchmark VAE-based methods.

1See Locatello et al. [2019] for the importance of inductive biases in disentanglement learning.

4.4. Experiments 103

Table 4.1: Reconstruction and disentanglement scores (± one standard deviation).
Best scores are in bold whilst second best are underlined.

Method MSE MIG factorVAE SAP

TCWAE MWS 13.6± 1.2 0.18± .09 0.73± .08 0.076± .004
TCWAE GAN 8.6± 1.1 0.16± .06 0.69± .10 0.058± .022
β-TCVAE 18.57± 0.6 0.19± .06 0.72± .09 0.076± .006
FactorVAE 9.9± 0.5 0.34± .06 0.80± .05 0.083± .023

(a) dSprites

Method MSE MIG factorVAE SAP

TCWAE MWS 13.1± 0.9 0.31± .12 0.85± .07 0.073± .014
TCWAE GAN 11.8± 0.8 0.36± .26 0.85± .12 0.097± .065
β-TCVAE 16.2± 0.9 0.45± .16 0.93± .07 0.113± .015
FactorVAE 16.8± 3.0 0.53± .17 0.84± .03 0.105± .014

(b) 3D shapes

Method MSE MIG factorVAE SAP

TCWAE MWS 4.6± 0.0 0.032± .00 0.46± .02 0.008± .002
TCWAE GAN 7.9± 0.2 0.027± .00 0.47± .01 0.014± .003
β-TCVAE 12.80± 0.1 0.034± .00 0.45± .01 0.017± .002
FactorVAE 8.7± 0.1 0.033± .00 0.48± .02 0.017± .002

(c) smallNORB

Latent traversals For each dataset, we plot the latent traversals to visually assess

the learned representation in Figure 4.8. More specifically, we encode one observation

and traverse the latent dimensions one at the time (rows) and reconstruct the

resulting latent traversals (columns). Only the active latent dimensions are shown.

TCWAEs manage to capture and disentangle most of the generative factors in every

dataset. The exception being the discrete generative factor representing the shape

category in dSprites and 3D shapes and the instance category in smallNORB. This

probably comes from the fact that the models try to learn discrete factors with

continuous Gaussian variables. Possible fixes would be to use more structured priors

and posteriors with hierarchical latent variables such as in Esmaeili et al. [2018], but

is out-of-scope for this work.

4.4. Experiments 104

(a) dSprites

(b) 3D shapes

(c) smallNORB

Figure 4.8: Active latent traversals for each model. The parameters are the same
as the ones used in Table 4.1. Subplots on the left column show traversals for
TCWAE-MWS whilst subplots on the right show traversals TCWAE-GAN. Traversal
range is [−2, 2].

4.4. Experiments 105

(a) Reconstructions

(b) Samples

Figure 4.9: Reconstructions and samples for the different methods on dSprites.
Top reconstruction row corresponds to true data points whilst the second-from-top
to bottom reconstruction rows correspond in order to the reconstructions of the
TCWAE-MWS, TCWAE-GAN, β-TCVAE and FactorVAE. Samples rows correspond
from top to bottom to TCWAE-MWS, TCWAE-GAN, β-TCVAE and FactorVAE

To qualitatively assess the generative performances, we plot the reconstructions

and samples of the different methods for the different datasets in Figures 4.9, 4.10

and 4.11. Whilst all methods show similar reconstruction performance, the visual

inspection of the samples reinforces the justification for a different reconstruction

cost function. Indeed, TCWAEs exhibit qualitatively better generative performance

with crispier and more natural looking samples.

4.4. Experiments 106

(a) Reconstructions

(b) Samples

Figure 4.10: Same as Figure 4.9 for 3D shapes.

4.4. Experiments 107

(a) Reconstructions

(b) Samples

Figure 4.11: Same as Figure 4.9 for smallNORB.

4.4. Experiments 108

(a) Size

(b) Orientation

Figure 4.12: Latent traversals for TCWAE-MWS (left column) and TCWAE-GAN
(right column) on 3D chairs. Within each subplot, each line corresponds to one input
data point. We vary evenly the encoded latent codes in the interval [−2, 2].

4.4.2 Qualitative analysis: disentanglement on real-world

datasets

We train our methods on 3D chairs [Aubry et al., 2014] and CelebA [Liu et al., 2015]

whose generative factors are not known and qualitatively find that TCWAEs achieve

good disentanglement. Reconstructions and samples are given Figures 4.13 and 4.14

whilst Figure 4.12 shows the latent traversals of two different factors learned by

the TCWAEs on 3D chairs (see Appendix B.3 for additional generative factors).

Similarly for CelebA, we plot two different generative factors found by TCWAEs in

Figure 4.15 (additional factors are given in Appendix B.3) and the reconstructions

and model samples are given Figures B.2 and B.3 in Appendix B.3.

Visually, TCWAEs manage to capture different generative factors whilst retain-

ing good samples. This confirms our intuition that the flexibility offered in the

reconstruction term, mainly the possibility to chose the reconstruction cost and use

deterministic decoders, improves the reconstruction-disentanglement trade off.

4.4. Experiments 109

(a) TCWAE-MWS (b) TCWAE-GAN

(c) β-TCVAE (d) FactorVAE

Figure 4.13: Reconstructions for 3D chairs. Within pairs of rows, the observation is
above with the corresponding reconstruction below.

4.4. Experiments 110

(a) TCWAE-MWS (b) TCWAE-GAN

(c) β-TCVAE (d) FactorVAE

Figure 4.14: Model samples for 3D chairs.

4.4. Experiments 111

(a) Glasses/Beard

(b) Orientation

Figure 4.15: Same than Figure 4.12 for CelebA with latent traversal range [−4, 4].

In order to further assess the quality of the reconstructions and samples, we

compute the MSE of the reconstructions and the FID scores [Heusel et al., 2017] of

the reconstructions and samples. Results are reported in Table 4.2. Whilst the fact

that TCWAEs indeed presents better MSE is not a surprise (the reconstruction cost

actually minimises the MSE in TCWAEs), TCWAEs also present better reconstruc-

tion FID scores. More interesting from a generative modeling point of view, TCWAEs

also present better samples than their VAE-counterparts when looking at the samples

FID scores. This is visually confirmed when inspecting the model samples given in

Figures 4.14 and B.3. These results show the benefit of using a different ground cost

function, allowing better reconstruction and generative performance whilst retaining

good disentanglement performance.

4.5. Conclusion 112

Table 4.2: MSE and FID scores for 3D chairs and CelebA (± one standard deviation).
Best scores are in bold whilst second best are underlined.

Method MSE Rec. FID Samples FID

TCWAE-MWS 38.2± 0.1 61.3± 0.4 72.6± 0.5
TCWAE-GAN 36.6± 0.3 61.6± 1.4 74.6± 1.7
β-TCVAE 54.0± 0.5 74.9± 1.7 85.1± 0.1
FactorVAE 36.7± 0.7 62.8± 1.0 98.9± 6.6

(a) 3D chairs

Method MSE Rec. FID Samples FID

TCWAE-MWS 150.5± 0.7 75.2± 0.2 82.8± 0.0
TCWAE-GAN 186.4± 18.9 72.4± 3.5 73.3± 2.6
β-TCVAE 182.4± 0.3 84.5± 0.2 91.5± 0.7
FactorVAE 237.6± 10.7 74.0± 1.4 83.3± 4.5

(b) CelebA

4.5 Conclusion

Inspired by the surgery of the KL regularization term of the ELBO objective, we

developed a new disentanglement method based on the WAE objective. We chose the

KL divergence between the aggregated posterior and the prior as our latent divergence

function. The WAE framework naturally enables the latent regularization to depend

explicitly on the TC of the aggregated posterior, which is directly associated with

disentanglement. Using two different estimators for the KL terms, we showed that

our method achieves competitive disentanglement on toy datasets. Moreover, the

flexibility in the choice of reconstruction cost function makes our method more

compelling when working with more challenging datasets.

Conclusion

Generative modelling is a popular method to learn and approximate the often

unknown process by which a set of data has been generated. Generative models

recently gained in popularity due to their ability to learn from large amounts of

unlabelled data while remaining interpretable. Especially, the recent Variational

Autoencoders (VAEs) [Kingma and Welling, 2014, Rezende et al., 2014] have shown

impressive performances in images and text generation, both in term of sample

quality and likelihood score. However, their training remains challenging for deep

latent models when combined with powerful encoder and decoder networks. These

difficulties are inherent to the ill defined likelihood approach and are reflected in

the inflexibility of the Evidence Lower Bound objective. This has motivated the

emergence of likelihood-free alternatives, especially Optimal Transport (OT) based

approaches. Amongst these, the recent Wasserstein Autoencoder (WAE) [Tolstikhin

et al., 2018, Bousquet et al., 2017] echoes the encoder-decoder structure of VAEs

but presents geometric properties that promise easier convergence of the model

distributions when using gradient descent methods.

While discrete latent models have high potential for many real world applications

given the omnipresence of discrete data, their use has been limited by the difficulties

encountered when training them. Especially, VAEs are known to fail at fully exploiting

the discrete structure of the discrete latent model without signal supervision. Work-

around solutions range from tailored encoder and decoder networks [Jang et al., 2017,

Maddison et al., 2017, Van den Oord et al., 2017, Johnson et al., 2016] and training

procedures [Eslami et al., 2016, Lawson et al., 2018] to adding back some supervision

through a subset of labelled discrete data [Kingma et al., 2014]. In Chapter 2, we

investigated why vanilla VAEs are not suited for the discrete setting. We found that

Conclusion 114

VAEs quickly learn to ignore the discrete structure of the model, resulting in the

collapse of the latent modes. On the contrary, we showed that WAE was successful

at fully leveraging the discrete-continuous latent structure of Gaussian mixture latent

variable models. WAEs achieved promising generative results on MNIST whilst

displaying a more interpretable latent representation for structured models with both

discrete and continuous latent variables.

In Chapter 3, we introduced StWAE, a new training objective especially designed

for deep latent hierarchical generative models. Deep latent hierarchies have the

potential to increase the model expressiveness as well as offering a more explainable

latent representation. Yet VAEs often struggle to fully leverage the full depth of the

latent hierarchy. Successful VAE-based methods rely on highly tailored inference

and generative network designs [Sønderby et al., 2016, Bachman, 2016, Kingma

et al., 2016, Vahdat and Kautz, 2020] as well as complex training schemes [Kingma

et al., 2016, Maaløe et al., 2019, Yoshida and Miyato, 2017, Vahdat and Kautz, 2020].

Our approach recursively applies the Wasserstein distance as a latent regularisation

divergence, creating a stack of WAEs spanning the full latent hierarchy. We performed

quantitative comparison with other VAE-based methods when training first order

Markovian latent models and analysed the representation captured through the

latent hierarchy. We showed that when trained with StWAE, the simple first order

Markovian structure reduces the computational cost of the model whilst providing a

qualitatively more interpretable latent representation.

In addition to offering a simpler training for learning deep latent models, we

showed in Chapter 4 that the WAE framework also lands itself to learning inter-

pretable representation by introducing the Total Correlation Wasserstein Autoencoder

(TCWAE). Model interpretability is known to improve the performance and robust-

ness of the model [Bengio et al., 2013, van Steenkiste et al., 2019], making the

learning of interpretable latent representation important for many downstream tasks.

Specifically, a latent representation with statistically independent latent variables,

each encoding for a unique and semantically meaningful underlying generative factors

Bengio et al. [2013], provides a better control over how the model captures informa-

tion from the data. TCWAE leverages the decomposition of the KL divergence to

Conclusion 115

make the dependency on the total correlation of the aggregated posterior explicit,

improving the disentanglement of the latent representation. We proposed to use

two different estimators for the intractable KL terms and showed that our meth-

ods achieved competitive disentanglement performance on benchmark toy datasets.

Finally, leveraging the flexibility of the reconstruction cost of the WAE, we found

that TCWAE presents better generative performances when working with more

challenging datasets.

The work presented here open the door to several research directions for the future:

Advances in generative modelling Arguably in this thesis, we focused on simple

models, both in their factorisation into conditionally independent distributions and

their parametrization with simple networks. Whilst model simplicity can be beneficial

on its own as it allows for a better model interpretability, it can also limit the

generative performance of the models and results. Significant advances in generative

modelling have been made in recent years with more complex graphical models

[Maaløe et al., 2019, Vahdat and Kautz, 2020], network architectures [Vaswani et al.,

2017, Dosovitskiy et al., 2021], and training methods [Rezende and Mohamed, 2015,

Sohl-Dickstein et al., 2015a, Song and Ermon, 2019, Ho et al., 2020]. How to adapt

these recent advances to incorporate them in our works and apply them to our

models, potentially bridging the gap with state-of-the-art approaches, is an open

question.

Learning at scale In the past years, state-of-the-art models have become more

powerful in part due to the availability of bigger datasets and more powerful com-

putational resources, but also more efficient network parametrizations and training

schemes. On the other hand, the work presented on this thesis have been trained

mostly on small toy datasets with relatively simple networks. Can we realise the

benefits of latent variable models at scale? How will we address the various challenges

that training such large models is likely to raise (e.g. instability, KL collapse, etc.)?

Conclusion 116

Learning semantic representations While we performed quantitative assess-

ments of the representation learned by our different models, we did not fully explore

and evaluate their limits. Especially, we did not systematically compare and analyse

our models on downstream tasks. However, how to assess and measure the quality

of the learned representation is in itself a challenge. Indeed, representation are only

meaningful for the specific tasks they are to be used for. Thus designing downstream

tasks that can test and assess the performance of the learned representations is an

important direction for future works.

Bibliography

A. Achille and S. Soatto. Information dropout: Learning optimal representations

through noisy computation. In Transactions on Pattern Analysis and Machine

Intelligence, 2018.

M. Arjovsky and L. Bottou. Towards principled methods for training generative

adversarial networks. In International Conference on Learning Representations,

2017.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks.

In International Conference on Machine Learning, 2017.

M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic. Seeing 3D chairs:

Exemplar part-based 2D-3D alignment using a large dataset of CAD models. In

Conference on Computer Vision and Pattern Recognition, 2014.

P. Bachman. An architecture for deep, hierarchical generative models. In Advances

in Neural Information Processing Systems, 2016.

P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by max-

imizing mutual information across views. In Advances in Neural Information

Processing Systems, 2019.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new

perspectives. In Transactions on Pattern Analysis and Machine Intelligence, 2013.

J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization, Theory

and Examples. Springer, 2000.

BIBLIOGRAPHY 118

O. Bousquet, S. Gelly, I. Tolstikhin, C. J. Simon-Gabriel, and B. Schölkopf. From op-

timal transport to generative modeling: The VEGAN cookbook. arXiv:1705.07642,

2017.

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and S. Bengio.

Generating sentences from a continuous space. arXiv:1511.06349, 2015.

A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity

natural image synthesis. 2019.

S. Brooks, A. Gelman, G. Jones, and M. Xiao-Li. Handbook of Markov chain Monte

Carlo. Chapman & Hall/CRC, 2011.

Y. Burda, G. R., and R. Salakhutdinov. Importance weighted autoencoders. In

International Conference on Learning Representations, 2015.

C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and

A. Lerchner. Understanding disentangling in β-VAE. arXiv:804.03599, 2018.

R. T. K. Chen, X. Li, R. Grosse, and D. Duvenaud. Isolating sources of disentangle-

ment in variational autoencoders. In Advances in Neural Information Processing

Systems, 2018.

X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever,

and P. Abbeel. Variational lossy autoencoder. arXiv:1611.02731, 2017.

K. Cho, B. Van Merri”enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio. Learning phrase representations using RNN encoder-decoder for

statistical machine translation. In Conference on Empirical Methods in Natural

Language Processing, 2014.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In

Advances in Neural Information Processing Systems, 2013a.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In

Advances in Neural Information Processing Systems, 2013b.

BIBLIOGRAPHY 119

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. In Journal of the Royal Statistical Society, 1977.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv:1810.04805, 2018.

P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. In

Advances in Neural Information Processing Systems, 2022.

N. Dilokthanakul, P. A. M. Mediano, M. Garnelo, M. C. H. Lee, H. Salimbeni,

K. Arulkumaran, and M. Shanahan. Deep unsupervised clustering with Gaussian

mixture variational autoencoders. arXiv:1611.02648, 2016.

L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components

estimation. arXiv:1410.8516, 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. In

International Conference on Learning Representations, 2016a.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. In

International Conference on Learning Representations, 2016b.

K. Do and T. Tran. Theory and evaluation metrics for learning disentangled

representations. arXiv:1908.09961, 2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby.

An image is worth 16x16 words: Transformers for image recognition at scale. In

International Conference on Learning Representations, 2021.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks

via maximum mean discrepancy optimization. In Conference on Uncertainty in

Artificial Intelligence, 2015.

C. Eastwood and C. K. I. Williams. A framework for the quantitative evalua-

tion of disentangled representations. In International Conference on Learning

Representations, 2018.

BIBLIOGRAPHY 120

S. M. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari, K. Kavukcuoglu, and

G. E. Hinton. Attend, infer, repeat: Fast scene understanding with generative

models. In Advances in Neural Information Processing Systems, 2016.

B. Esmaeili, H. B. Wu, S. Jain, A. Bozkurt, N. Siddharth, B. Paige, D. H. Brooks,

J. Dy, and J.-W. van de Meent. Structured disentangled representations. In

International Conference on Artificial Intelligence and Statistics, 2018.

C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T. A. Poggio. Learning with a

Wasserstein loss. In Advances in Neural Information Processing Systems, 2015.

S. Gao, R. Brekelmans, G. Ver Steeg, and A. Galstyan. Auto-encoding total cor-

relation explanation. In International Conference on Artificial Intelligence and

Statistics, 2019.

B. Gaujac, I. Feige, and D. Barber. Gaussian mixture models with Wasserstein

distance. In Asian Conference on Machine Learning, 2021a.

B. Gaujac, I. Feige, and D. Barber. Learning disentangled representations with the

Wasserstein autoencoder. In European Conference on Machine Learning, 2021b.

B. Gaujac, I. Feige, and D. Barber. Learning deep-latent hierarchies by stacking

Wasserstein autoencoders. arXiv:2010.03467, 2022.

A. Genevay, G. Peyre, and M. Cuturi. Learning generative models with Sinkhorn

divergences. In International Conference on Artificial Intelligence and Statistics,

2018.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In

International Conference on Artificial Intelligence and Statistics, 2011.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial networks. In Advances in

Neural Information Processing Systems, 2014.

BIBLIOGRAPHY 121

A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical depen-

dence with Hilbert-Schmidt norms. In International Conference on Algorithmic

Learning Theory, 2005.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel

two-sample test. In Journal of Machine Learning Research, 2012a.

A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu,

and B. K. Sriperumbudur. Optimal kernel choice for large-scale two-sample tests.

In Advances in Neural Information Processing Systems, 2012b.

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and

A. Courville. PixelVAE: A latent variable model for natural images. In Ad-

vances in Neural Information Processing Systems, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In IEEE conference on computer vision and pattern recognition, 2016.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs

trained by a two time-scale update rule converge to a local Nash equilibrium. In

Advances in Neural Information Processing Systems, 2017.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and

A. Lerchner. β-VAE: Learning basic visual concepts with a constrained variational

framework. In International Conference on Learning Representations, 2016.

I. Higgins, D. Amos, D. Pfau, S. Racanière, L. Matthey, D. J. Rezende, and A. Ler-

chner. Towards a definition of disentangled representations. arXiv:1812.02230,

2018.

R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler,

and Y. Bengio. Learning deep representations by mutual information estimation

and maximization. In International Conference on Learning Representations, 2019.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances

in Neural Information Processing Systems, 2020.

BIBLIOGRAPHY 122

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,

1997.

M. D. Hoffman and M. J. Johnson. ELBO surgery: Yet another way to carve up the

variational evidence lower bound. In Advances in Neural Information Processing

Systems, 2016.

C. Huang, G.and Guo, M. Kusner, Y. Sun, Y. Sha, and K. Q. Weinberger. Supervised

word mover’s distance. In Advances in Neural Information Processing Systems,

2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International Conference on Machine Learning,

2015.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with Gumbel-Softmax.

In International Conference on Learning Representations, 2017.

M. J. Johnson, D. Duvenaud, A. B. Wiltschko, S. R. Datta, and R. P. Adams.

Composing graphical models with neural networks for structured representations

and fast inference. In Advances in Neural Information Processing Systems, 2016.

H. Kaiming, Z. Xiangyu, R. Shaoqing, and S. Jian. Deep residual learning for image

recognition. In Conference on Computer Vision and Pattern Recognition, 2015.

L. Kantorovich. On the translocation of masses. In Journal of Mathematical Sciences,

2006.

H. Kim and A. Mnih. Disentangling by factorising. In International Conference on

Machine Learning, 2018.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Interna-

tional Conference on Learning Representations, 2015.

D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolu-

tions. In Advances in Neural Information Processing Systems, 2018.

BIBLIOGRAPHY 123

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International

Conference on Learning Representations, 2014.

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning

with deep generative models. In Advances in Neural Information Processing

Systems, 2014.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling.

Improved variational inference with inverse autoregressive flow. In Advances in

Neural Information Processing Systems, 2016.

A. Klushyn, N. Chen, R. Kurle, B. Cseke, and P. van ver Smagt. Learning hierarchical

priors in VAEs. In Advances in Neural Information Processing Systems, 2019.

S. Kolouri, S. Park, M. Thorpe, D. Slepčev, and G. Rohde. Optimal mass transport:

Signal processing and machine-learning applications. In Signal Processing Magazine,

2017.

L. G. Kraft. A device for quantizing, grouping, and coding amplitude-modulated

pulses. Massachusetts Institute of Technology, 1949.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep

convolutional neural networks. In Advances in neural information processing

systems, 2012.

A. Kumar, P. Sattigeri, and A. Balakrishnan. Variational inference of disentangled

latent concepts from unlabeled observations. In International Conference on

Learning Representations, 2018.

A. B. L. Larsen, K. Sønderby S., H. Larochelle, and O. Winther. Autoencoding

beyond pixels using a learned similarity metric. In International Conference on

Machine Learning, 2016.

D. Lawson, G. Tucker, C.-C. Chiu, C. Raffel, K. Swersky, and N. Jaitly. Learning hard

alignments with variational inference. In International Conference on Acoustics,

Speech and Signal Processing, 2018.

BIBLIOGRAPHY 124

Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010. http://yann.

lecun.com/exdb/mnist/.

Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object

recognition with invariance to pose and lighting. In Computer Society Conference

on Computer Vision and Pattern Recognition, 2004.

Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In

International Conference on Machine Learning, 2015.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In

Proceedings of International Conference on Computer Vision, 2015.

F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem.

Challenging common assumptions in the unsupervised learning of disentangled

representations. In International Conference on Machine Learning, 2019.

L. Maaløe, M. Fraccaro, V. Liévin, and O. Winther. BIVA: A very deep hierarchy

of latent variables for generative modeling. In Advances in neural information

processing systems, 2019.

L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative

models. In International Conference on Machine Learning, 2016.

J. MacQueen. Some methods for classification and analysis of multivariate ob-

servations. In Berkeley Symposium on Mathematical Statistics and Probability,

1967.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous

relaxation of discrete random variables. In International Conference on Learning

Representations, 2017.

A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow. Adversarial autoencoders. In

International Conference on Learning Representations, 2016.

L. Matthey, H. I., D. Hassabis, and A. Lerchner. dSprites: Disentanglement testing

Sprites dataset. 2017. https://github.com/deepmind/dsprites-dataset/.

BIBLIOGRAPHY 125

L. McInnes and J. Healy. Umap: Uniform manifold approximation and projection

for dimension reduction. arXiv:1802.03426, 2018.

B. McMillan. Two inequalities implied by unique decipherability. In Transactions

on Information Theory, 1956.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller. Playing atari with deep reinforcement learning. arXiv:1312.5602,

2013.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In

International conference on machine learning, 2016.

G. Monge. Memoire sur la theorie des deblais et des remblais. 1781.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits

in natural images with unsupervised feature learning. In Advances in Neural

Information Processing Systems Workshop on Deep Learning and Unsupervised

Feature Learning, 2011.

X. Nguyen, M. J. Wainwright, and I. J. Michael. Estimating divergence functionals

and the likelihood ratio by penalized convex risk minimization. In Advances in

Neural Information Processing Systems, 2008.

A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever,

and M. Chen. Photorealistic text-to-image diffusion models with deep language

understanding. In Advances in Neural Information Processing Systems, 2022.

G. Ortega, J. Alberto, J. Rabin, B. Galerne, and T. Hurtut. Optimal patch assignment

for statistically constrained texture synthesis. In Scale Space and Variational

Methods in Computer Vision, 2017.

J. W. Paisley, D. M. Blei, and M. I. Jordan. Variational bayesian inference with

stochastic search. In International Conference on Machine Learning, 2012.

BIBLIOGRAPHY 126

G. Patrini, M. C., P. Forré, S. Bhargav, M. Welling, R. Van den Berg, T. Genewein,

and F. Nielsen. Sinkhorn autoencoders. arXiv:1810.01118, 2018.

G. Peyré and M. Cuturi. Computational optimal transport: With applications to

data science. In Foundations and Trends in Machine Learning, 2019.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with

deep convolutional generative adversarial networks. In International Conference

on Learning Representations, 2015.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with

deep convolutional generative adversarial networks. In International Conference

on Learning Representations, 2016.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language

understanding by generative pre-training. OpenAI Technical Report, 2018.

D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In

International Conference on Machine Learning, 2015.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and

approximate inference in deep generative models. In International Conference on

Machine Learning, 2014.

A. Rolet, M. Cuturi, and G. Peyré. Fast dictionary learning with a smoothed Wasser-

stein loss. In International Conference on Artificial Intelligence and Statistics,

2016.

P. Rubenstein, O. Bousquet, J. Djolonga, C. Riquelme, and I. Tolstikhin. Practical

and consistent estimation of f-divergences. In Advances in Neural Information

Processing Systems, 2019.

P. K. Rubenstein, B. Schoelkopf, and I. Tolstikhin. Learning disentangled represen-

tations with Wasserstein autoencoders. In International Conference on Learning

Representations Workshop, 2018a.

BIBLIOGRAPHY 127

P. K. Rubenstein, B. Schölkopf, and I. Tolstikhin. On the latent space of Wasser-

stein auto-encoders. In Workshop track - International Conference on Learning

Representations, 2018b.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.

Improved techniques for training gans. In Advances in neural information processing

systems, 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy

optimization algorithms. In International conference on machine learning, 2017.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. In International Conference on Machine Learning, 2015.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised

learning using nonequilibrium thermodynamics. In International Conference on

Machine Learning, 2015a.

J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsuper-

vised learning using nonequilibrium thermodynamics. International Conference on

Machine Learning, 2015b.

C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder

variational autoencoders. In Advances in neural information processing systems,

2016.

J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International

Conference on Learning Representations, 2021.

Y. Song and S. Ermon. Generative modeling by estimating gradients of the data

distribution. In Advances in Neural Information Processing Systems, 2019.

M. Sugiyama, T. Suzuki, and T. Kanamori. Density ratio matching under the

Bregman divergence: A unified framework of density ratio estimation. In Annals

of the Institute of Statistical Mathematics, 2011.

BIBLIOGRAPHY 128

M. Thorpe, S. Park, S. Kolouri, G. Rohde, and D. Slepčev. A transportation lp

distance for signal analysis. In Journal of Mathematical Imaging and Vision, 2017.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In

Annual Allerton Conference on Communication, Control and Computing, 1999.

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schölkopf. Wasserstein auto-encoders.

In International Conference on Learning Representations, 2018.

J. M. Tomczak and W. Welling. VAE with VampPrior. In International Conference

on Artificial Intelligence and Statistics, 2018.

M. Tschannen, J. Djolonga, P. K. Rubenstein, S. Gelly, and M. Lucic. On mutual

information maximization for representation learning. In International Conference

on Learning Representations, 2020.

A. Vahdat and J. Kautz. NVAE: A deep hierarchical variational autoencoder. In

Advances in Neural Information Processing Systems, 2020.

A. Van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model

for raw audio. In ISCA Speech Synthesis Workshop, 2016a.

A. Van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural

networks. In International Conference on Machine Learning, 2016b.

A. Van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and

K. Kavukcuoglu. Conditional image generation with PixelCNN decoders. In

Advances in Neural Information Processing Systems, 2016c.

A. Van den Oord, O. Vinyals, and K. kavukcuoglu. Neural discrete representation

learning. In Advances in Neural Information Processing Systems, 2017.

A. Van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive

predictive coding. arXiv:1807.03748, 2018.

BIBLIOGRAPHY 129

S. van Steenkiste, F. Locatello, J. Schmidhuber, and O. Bachem. Are disentangled

representations helpful for abstract visual reasoning? In Advances in Neural

Information Processing Systems, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in Neural Information

Processing Systems, 2017.

G. Ver Steeg and A. Galstyan. Discovering structure in high-dimensional data

through correlation explanation. In Advances in Neural Information Processing

Systems, 2014.

C. Villani. Optimal Transport: Old and New. Springer, 2008.

W. Wang, J. Ozolek, D. Slepcev, A. Lee, C. Chen, and G. Rohde. An optimal

transportation approach for nuclear structure-based pathology. In Transactions

on Medical Imaging, 2011.

W. Wang, D. Slepcev, S. Basu, J. Ozolek, and G. Rohde. A linear optimal trans-

portation framework for quantifying and visualizing variations in sets of images.

In International journal of computer vision, 2013.

S. Watanabe. Information theoretical analysis of multivariate correlation. In IBM

Journal of Research and Development, 1960.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 1992.

Y. Wu, Y. Burda, R. Salakhutdinov, and R. Grosse. On the quantitative analysis of

decoder-based generative models. arXiv:1611.04273, 2016.

Y. Xiao and W. Y. Wang. Disentangled representation learning with Wasserstein

total correlation. arXiv:1912.12818, 2019.

Y. Yoshida and T. Miyato. Spectral norm regularization for improving the generaliz-

ability of deep learning. arXiv:1705.10941, 2017.

BIBLIOGRAPHY 130

S. Zha, J. Song, and S. Ermon. Towards deeper understanding of variational

autoencoding models. arxiv:1702.08658, 2017.

M. Zhang, P. Hayes, T. Bird, R. Habib, and D. Barber. Spread divergence. In

International Conference on Machine Learning.

S. Zhao, J. Song, and S. Ermon. Learning hierarchical features from deep generative

models. In International Conference on Machine Learning, 2017.

S. Zhao, J. Song, and S. Ermon. InfoVAE: Balancing learning and inference in

variational autoencoders. In AAAI Conference on Artificial Intelligence, 2019.

Appendix A

Foundations

A.0.1 Discrete Optimal Transport

In the discrete case, we consider discrete measure distributions on X . For a set of

point XM = {x1, · · · , xM} ⊂ X , the set of discrete measures, α, on XM , is defined

by:

P(XM)
def
=
{
α =

M∑
m=1

amδxm ; am ∈ R?
+ :

M∑
m=1

am = 1
}

(A.1)

where δx is the Dirac centered at x. Often, when the support of the distributions is

explicit and non ambiguous, the histogram description is used instead. A histogram

a is defined on the probability simplex ΣM :

ΣM
def
=
{
am ∈ R+ :

M∑
m=1

am = 1
}

(A.2)

Note that in the definition of discrete measures, we consider only strictly positive

histograms to avoid degeneracies where locations are associated with zero mass.

Given two sets of points XM = {x1, · · · , xM} ⊂ X and YN = {y1, · · · , yN} ⊂ Y,

and a cost function c : X × Y → R+, we consider the cost matrix C ∈ RM×N

given by Cm,n
def
= c(xm, yn) and the two probability measures α =

∑M
m=1 amδxm and

β =
∑N

n=1 bnδyn . The OT seeks for the optimal map from XM to YN that pushes α

toward β, resulting in the smallest transport cost as shown in Figure 1.1a. Formally,

132

we can introduce the set of discrete couplings between histograms a and b, denoted

U(a, b), as:

U(a, b)
def
=
{
P ∈ RM×N

+ ; P1N = a and P>1M = b
}

(A.3)

Then, we can formulate the OT problem between α, β with the associated cost

function c as:

Lc
(
α, β

) def
= min

P∈U(a,b)
C · P (A.4)

A.0.2 Topology of the Wasserstein distance

A topological vector space is a vector space whose operations on its elements are

continuous. Normed vector spaces are such topological vector spaces as the norm of a

vector space induces a metric on this space and this metric induces itself a topological

structure. This topology characterizes the convergence of sequences of functions.

Especially, we can define a notion of strong and weak topology on topological vector

spaces. Given two distances δ1, δ2 on P(X), the topology induced by δ1 is weaker

than the one induced by δ2 if the set of convergent sequences under δ2 is included in

the set of convergent sequences under δ1:

δ1 weaker than δ2 ⇔
{

(Pm)m ∈ P(X), δ2(Pm, P∞) →
m→∞

0
}

(A.5)

⊂
{

(Pm)m ∈ P(X), δ1(Pm, P∞) →
m→∞

0
}

In our case, we consider the space of distribution probability on X , P(X). As a

dual space, it has a strong and weak topology. The strong topology is given by the

Total Variation (TV) norm:

∀P ∈ P(X), ‖P‖TV
def
= sup

A∈X
|P (A)| (A.6)

and its associated distance δTV :

∀(P,Q) ∈ P(X)2, δTV (P,Q)
def
= ‖P −Q‖TV (A.7)

133

whilst the Wasserstein distance induces the weak topology [Villani, 2008]. More

precisely, the relative strength of the topologies induced respectively by the KL

divergence1, the TV norm and the Wasserstein distance are characterized as follow

[Arjovsky et al., 2017]:

KL
(
Pm ‖ P∞

)
→

m→∞
0 ⇒ δTV (Pm, P∞) →

m→∞
0 ⇒ Wc,l

(
Pm, P∞

)
→

m→∞
0 (A.8)

Note that the first inequality in Equation (A.8) also holds for the other KL:

KL
(
P∞ ‖ Pm

)
2. Moreover, the convergence under the Wasserstein distance, or

the weak convergence, is equivalent to the convergence in distributions for random

variables [Arjovsky et al., 2017].

1The KL divergence not being a distance, it actually does not induce a topology. However,
the Jensen-Shannon satisfies the distance axioms defined in Equation (1.18) and induces the same
topology than the one induced by the TV norm.

2Recall that due to the KL asymmetry, KL
(
Pm ‖ P∞

)
6= KL

(
P∞ ‖ Pm

)
.

Appendix B

TCWAE

B.1 Implementation details

Data sets We train and compare our methods on five different data sets, three

with known ground-truth generative factors (see Table B.1): dSprites Matthey et al.

[2017] with 737,280 binary, 64× 64 images, 3D shapes Kim and Mnih [2018] with

480,000 RGB, 64 × 64 images and smallNORB LeCun et al. [2004] with 48,600

greyscale, 64× 64 images; and two with unknown ground-truth generative factors:

3D chairs Aubry et al. [2014] with 86,366 RGB, 64× 64 images and CelebA Liu et al.

[2015] with 202,599 RGB 64× 64 images.

Table B.1: Ground-truth generative-factors.

Data set Generative factors (# of values)

dSprites
Shape (3), Orientation (40), Position X (32),

Position Y (32)

3D shapes
Floor hue (10), Wall hue (10), Object hue (10),

Scale (8), Shape (4), Orientation (15)

smallNORB
Categories (5), Lightings (6), Elevations (9),

Azimuths (18)

Models and optimization setup In Section 4.4.1, we take the latent dimension

dZ = 10 for all the models, while we use dZ = 16 for 3D chairs and dZ = 32 for

CelebA in Section 4.4.2. We use Gaussian encoders with diagonal covariance matrix

B.1. Implementation details 135

in all the models, deterministic decoder networks for TCWAEs and Gaussian decoder

with diagonal covariance matrix for the VAE-based methods. We follow Locatello

et al. [2019] for the architectures in all the experiments expect for CelebA where we

follow Tolstikhin et al. [2018] (details of the networks architectures are given below).

For all experiments, We use a batch size of 64 with the Adam optimizer Kingma

and Ba [2015] with a learning rate of 0.0001, beta1 of 0.9, beta2 of 0.999 and epsilon

of 0.0008. We select the γ in Section 4.4.1 by training a first batch of TCWAEs

for 300,000 iterations. Once we chose and fixed γ, we train the TCWAEs with the

selected γ, β-TCVAE and FactorVAE for the different β over 600,000 iterations.

Note that for the index-code MI ablation study, we choose the same γ for both the

TCWAE and TCWAE MI. for all the experiments, we show the results averaged over

5 training runs. In Section 4.4.2, we train the all models over 600,000 iterations.

Metrics and scores We follow Locatello et al. [2019] for the implementation of

the disentanglement metrics to the difference that we use 5000 points for the MIG

and 5000 training and 1000 testing points for the FactorVAE and SAP scores. We

follow Heusel et al. [2017] for the FID implementation in Section 4.4.1: we first

compute the activation statistics of the features maps on the full test set for both the

reconstruction, respectively samples, and the true observations. We then compute

the Frechet distance between two Gaussian with the computed statistics. We use a

validation run to select the parameters values and report the MSE and FID scores

on a test run.

We select γ in Section 4.4.1 such that, when averaged over all models with this

γ, it achieves the best overall score, s, where the score is defined as the sum of the

ranking on each individual metric: s = rMSE +
∑

metric rmetric where rMSE designed

the ranking of the MSE (lower is better) and rmetric, for metric in {MIG, FactorVAE,

SAP}, is the ranking of the disentanglement performance as measured by the given

metric (higher is better). β is then chosen such that it achieves the best overall

disentanglement score, sdis: sdis =
∑

metric rmetric where rmetric is defined above.

B.2. Quantitative experiments 136

Networks architectures The Gaussian encoder networks, qφ(z|x) and decoder

network, pθ(x|z), are parametrized by neural networks as follow:

pθ(x|z) =

δfθ(z) if WAE based method,

N
(
µθ(z),σ2

θ(z)
)

otherwise.

qφ(z|x) =N
(
µφ(x),σ2

φ(x)
)

where fθ, µθ, σ
2
θ , µφ and σ2

φ are the outputs of convolutional neural networks. All

the experiments use the architectures of Locatello et al. [2019] except for CelebA

where we use the architecture inspired by Tolstikhin et al. [2018]. The details for the

architectures are given Tables B.2.

All the discriminator networks, D, are fully connected networks and share the

same architecture with the optimisation setup given Table B.3.

B.2 Quantitative experiments

Hyper parameter tuning

The ranges of parameters for each experiment are given Table B.4. For example,

in Section 4.4.1, we train the TCWAEs with the square euclidean distance for

(β, γ) ∈ {0.1, 0.25, 0.5, 0.75, 1, 2} × {0.1, 0.25, 0.5, 0.75, 1, 2}.

Following the method described in Section B.1, the chosen γ are given in Table B.5.

B.2. Quantitative experiments 137

Table B.2: Networks architectures

Encoder Decoder

Input: 64× 64× c Input: dZ
CONV2 4× 4× 32, ReLU FC 256, ReLU
CONV2 4× 4× 32, ReLU FC 4× 4× 64, ReLU
CONV2 4× 4× 64, ReLU CONV2 4× 4× 64, ReLU
CONV2 4× 4× 64, ReLU CONV2 4× 4× 32, ReLU
FC 256, ReLU CONV2 4× 4× 32, ReLU
FC 2× dZ CONV2 4× 4× c

(a) Locatello et al. [2019] architectures

Encoder Decoder

Input: 64× 64× c Input: dZ
CONV2 4× 4× 32, BN+ReLU FC 8× 8× 256, BN+ReLU
CONV2 4× 4× 64, BN+ReLU CONV2 4× 4× 128, BN+ReLU
CONV2 4× 4× 128, BN+ReLU CONV2 4× 4× 64, BN+ReLU
CONV2 4× 4× 256, BN+ReLU CONV2 4× 4× 32, BN+RelU
FC 2× dZ CONV2 4× 4× c

(b) CelebA networks architectures

Table B.3: Discriminator setup

Parameter Value Architecture

lr Sec. 4.4.1 1e−4 Input: dZ
lr Sec. 4.4.2 1e−5 FC 1000, ReLU
beta 1 0.5 FC 1000, ReLU
beta 2 0.9 FC 1000, ReLU
epsilon 1e-08 FC 1000, ReLU

FC 1000, ReLU
FC 1000, ReLU
FC 2

Table B.4: β values for the different cost functions on each data set.

Method Section 4.4.1 Section 4.4.2

‖·‖2
2

TCWAE-MWS {0.1, 0.25, 0.5, 0.75, 1, 2} {1, 2, 5, 10, 15, 20}
TCWAE-GAN {0.5, 1, 2.5, 5, 7.5, 10}a {1, 2, 5, 10, 20, 50}

Cross-Entropy
TCWAE-MWS {1, 2, 4, 6, 8, 10} n.a.
TCWAE-GAN {1, 10, 25, 50, 75, 100} n.a.
β-TCVAE {1, 2, 4, 6, 8, 10} {1, 2, 5, 10, 15, 20}
FactorVAE {1, 10, 25, 50, 75, 100} {1, 2, 5, 10, 20, 50}

aWe found that γ = 0.1 resulted in modes collapsing with dSprites and smallNORB, thus opted to
start with γ = 0.5 instead for these two data sets.

B.3. Qualitative experiments 138

Table B.5: γ values for the different methods on each data set.

Method dSprites 3D shapes smallNORB

‖2‖2
.

TCWAE MWS 0.25 0.5 0.1
TCWAE GAN 1 0.1 1

Cross-entropy
TCWAE MWS 1 4 1
TCWAE GAN 1 100 1
β-TCVAE 6 10 4
FactorVAE 75 50 10

B.3 Qualitative experiments

We plot additional factors found by the TCWAEs in Figures B.1 and B.4 for

respectively 3Dchairs and CelebA.

Reconstructions and samples for the different models on CelebA chairs are given

Figures B.2 and B.3.

B.3. Qualitative experiments 139

(a) Legs type

(b) Backrest size

Figure B.1: Latent traversals for TCWAE-MWS (left column) and TCWAE-GAN
(right column) on 3D chairs. Each line corresponds to one input data point while
each subplot corresponds to one latent factor. We vary evenly the encoded latent
codes in the interval [−2, 2].

B.3. Qualitative experiments 140

(a) TCWAE-MWS (b) TCWAE-GAN

(c) β-TCVAE (d) FactorVAE

Figure B.2: Same as Figure 4.13 for CelebA.

B.3. Qualitative experiments 141

(a) TCWAE-MWS (b) TCWAE-GAN

(c) β-TCVAE (d) FactorVAE

Figure B.3: Same as Figure 4.14 for CelebA.

B.3. Qualitative experiments 142

(a) Baldness

(b) Hue

Figure B.4: Latent traversals for TCWAE-MWS (left column) and TCWAE-GAN
(right column) on CelebA. Each line corresponds to one input data point while each
subplot corresponds to one latent factor. We vary evenly the encoded latent codes
in the interval [−4, 4].

