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Abstract

Here we aim to better understand how animals navigate structured environments. The
prevailing wisdom is that they can select among two distinct approaches: querying a
mental map of the environment or repeating previously successful trajectories to a
goal. However, this dichotomy has been built around data from rodents trained to
solve mazes, and it is unclear how it applies to more naturalistic scenarios such as
self-motivated navigation in open environments with obstacles. In this project, we
leveraged instinctive escape behavior in mice to investigate how rodents use a period
of exploration to learn about goals and obstacles in an unfamiliar environment. In
our most basic assay, mice explore an environment with a shelter and an obstacle for
5-20 minutes and then we present threat stimuli to trigger escapes to shelter. After
5-10 minutes of exploration, mice took inefficient paths to the shelter, often nearly
running into the obstacle and then relying on visual and tactile cues to avoid it.
Within twenty minutes, however, they spontaneously developed an efficient subgoal
strategy, escaping directly to the obstacle edge before heading to the shelter. Mice
escaped in this manner even if the obstacle was removed, suggesting that they had
memorized a mental map of subgoals. Unlike typical models of map-based planning,
however, we found that investigating the obstacle was not important for updating
the map. Instead, learning resembled trajectory repetition: mice had to execute
‘practice runs’ toward an obstacle edge in order to memorize subgoals. To test this
hypothesis directly, we developed a closed-loop neural manipulation, interrupting
spontaneous practice runs by stimulating premotor cortex. This manipulation
successfully prevented subgoal learning, whereas several control manipulations did
not. We modelled these results using a panel of reinforcement learning approaches
and found that mice behavior is best matched by systems that explore in a non-
uniform manner and possess a high-level spatial representation of regions in the
arena. We conclude that mice use practice runs to learn useful subgoals and integrate
them into a hierarchical cognitive map of their surroundings. These results broaden
our understanding of the cognitive toolkit that mammals use to acquire spatial
knowledge.
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Impact statement

Rodent spatial learning is a key model system for investigating how the brain stores
information about the world. Results from this domain have informed a wide array
of modern views in psychology, neurobiology, and artificial intelligence. In this
project, we have developed an assay that provides an increase in the complexity
and naturalism of spatial-learning experiments while also offering straightforward
quantification methods. These innovations allowed us to make new discoveries
about how mice build up ’mental maps’ of their environment. Our findings have
implications for the following four areas.

1) A key aim of neuroscience is to discover how the brain encodes maps or ‘models’
of the world. But without a thorough understanding of how animals actually use
these maps, this project runs the risk of becoming highly hypothetical in nature.
The results of our behavioral studies can help.

2) Machine learning agents require a great deal of experience to learn a new task,
unlike animals. Our results describe how mice build of a mental map within minutes
of entering a new environment for the first time ever. These results could inspire
new artificial intelligence approaches for rapid learning in real-world environments.

3) In cognitive science, our results support the idea of enactive learning. This
notion suggests that, to explain how we learn, it is crucial to describe the actions
that we take to extract information from the world. This may apply to human
learning as well, in particular human infants, who face a similar task of building an
understanding of the world for the first time ever.

4) Finally, in biomedical research, rodent spatial memory assays are used to
test neurological disease models and potential therapeutics. Those assays generally
require an animal to be trained for many days prior to testing. Our assay involves
only a 20-minute learning period with no pretraining, which could substantially
speed up this process.
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It was all familiar; this turning, that stile, that cut across the fields. Hours
he would spend thus, with his pipe, of an evening, thinking up and down and
in and out of the old familiar lanes and commons, which were all stuck about
with the history of that campaign there, the life of this statesman here, with
poems and with anecdotes, with figures too...but at length the lane, the field,
the common, the fruitful nut-tree and the flowering hedge led him on to that
further turn of the road where he dismounted always, tied his horse to a tree,
and proceeded on foot alone.
Virginia Woolf, To the Lighthouse
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Chapter 1

Introduction

1.1 The place and response strategies for spatial
learning

The idea that animals might use mental models or maps of the external world started
to gain prominence in the 1930s with the work of Edward Tolman (O’Keefe and
Nadel, 1978). Tolman and his colleagues at Berkeley showed that rats could solve
mazes by devising routes that they had never performed before, through the power of
‘cognitive maps’ and mental computation (Tolman, 1948). A second camp disputed
these findings. The stimulus-response group, centered at Yale, instead believed that
learning could always be described in some sense as a process of chaining together
series of well practiced actions - essentially a complex form of trial and error or trial
and success (Hull, 1934).

For a time, the T-maze was at the center of this dispute (O’Keefe and Nadel,
1978). The T-maze is a simple spatial learning protocol in which an animal is trained
to make a single left or right decision (right in our example) in order to get a food
reward (Fig. 1.1a). After training in this setup over many days, the animal is then
tested with a probe trial (Fig. 1.1b); The rat is placed at the opposite end, and
the experimenter records which side it turns to to search for food. If the rat turns
right, then it is supporting Hull’s ‘response’ or ‘action reinforcement’ hypothesis: it
is simply repeating the same rightward turning movement that it used during the
training phase. However, if the rat turns left, then it is demonstrating Tolman’s
‘place,’ or ‘cognitive map’ hypothesis. In this case, it has inferred a new action that
leads to the previously rewarded location in space.

Which strategy did the rats use? Tulving and Madigan, 1970 summarize the
results at the time as follows:

Place-learning organisms, guided by cognitive maps in their head, successfully
negotiated obstacle courses to food at Berkeley, while their response-learning

19



1. Introduction

Figure 1.1: The T-maze experiment
(a) During the training phase, the rat or mouse typically allowed one food-seeking
trial per day. The yellow star represents a salient, static cue that is visible to the
animal, allowing it to determine its location in the environment. (b) During the
testing phase, there is no reward and the animal’s behavior is measured.

counterparts, propelled by habits and drives, performed similar feats at Yale.

Thus, the debate carried on. It was eventually resolved in the 1950s through the
insight that both strategies are viable options; the result depends on the parameters
of the training protocol (Restle, 1957). For example, having more salient cues in the
experimental room helps the animal determine its location and favors place learning.
Training the animal for more days, on the other hand, favors response learning.

This dual-system compromise cemented even further with the concomitant devel-
opments of reinforcement learning theory and better experimental paradigms to test
place-based learning. In the 1970s, the Rescorla-Wagner model of incremental learn-
ing based on receiving rewards (Rescorla, 1972) emerged as a successful, quantitative
model of animal behaviors such as Pavlovian conditioning (Siegel and Allan, 1996).
Meanwhile, the Morris water maze definitively demonstrated that animals are able
to navigate to a goal location using a sense of space (Morris, 1981). In this assay,
a platform is submerged in a cylindrical tank filled with opaque water, and a rat
must swim around until finding the platform. After several days of experience, the
rat is able to swim directly to the invisible platform location regardless of where it
was initially placed in the tank, on the basis distal visual cues positioned around the
room by the experimenter. Moreover, if the goal platform is displaced, rats can infer
routes to that new location after only a single trial (Hamilton et al., 2004). With
a greater level of experimental control than the T-maze, these results showed that
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1.1. The place and response strategies for spatial learning

rats can infer the action that will get them to a goal location, without needing to
repeatedly practice that movement.

It was around this period that a series of striking discoveries were made, forever
fusing the fields of rodent spatial navigation and systems neuroscience. First, the
spiking activity of neurons in the hippocampus was found to correlate exactly with
a rat’s position within its environment (O’Keefe and Dostrovsky, 1971). Each of
these ‘place cells’ only becomes active when the rat passes through a certain location
in space (e.g. the northwest corner of its cage), offering concrete evidence that
rats mentally keep track of their location in space. Second, it was found that the
place and response strategies are neurally dissociable. Disrupting the hippocampus
impaired place learning, causing animals to use response learning in the T-maze and
rendering them unable to solve the Morris water maze (Packard et al., 1989; Packard
and McGaugh, 1992; Packard and McGaugh, 1996). Disrupting the basal ganglia
disrupted action reinforcement, causing rats to stick with the place strategy in the T-
maze and not impairing learning in the Morris water maze. The implication of these
findings is that place and response learning represent truly distinct neuro-cognitive
modules in the brain.

In this thesis, we will end up questioning this dominant two-system view and
specifically its capacity to explain animal navigation in more naturalistic scenarios.
Before that, however, we must further unpack this dichotomy. First, we will describe
several sub-strategies that are all labelled as ‘response’ or ‘place’ based. Second, we
will home in on some key, implicit differences between place and response learning.
Finally, we will mention alternative strategies for navigation that fit into neither
category.

Sub-strategies

Response strategies and place-based navigation each have two primary sub-strategies.
Response learning can take either a praxic or taxon approach (Redish et al., 1999),
while internal maps can be either metric or topological (Trullier et al., 1997).

Praxic navigation

The first response strategy, praxic navigation, involves executing a fixed motor
program. An example of this would be: walking forward 6 steps, turning left 90
degrees, and then walking forward again. A notable example of this strategy comes
from rats with hippocampal lesions attempting to learn the Morris water maze.
These lesioned rats were only able to navigate to the hidden platform if their starting
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1. Introduction

location and the goal location were the same each day, suggesting that they had
memorized a particular sequence of movements (Eichenbaum et al., 1990).

Taxon navigation

The other response strategy is taxon navigation. Here, animals navigate toward a
sensory cue that signals the presence of the goal. This cue could be a sight, sound or
odor - anything that the animal can, through a sensory-motor loop, directly approach.
While praxic navigation is always learned through practice, taxon navigation can be
either learned or instinctive. In the Morris water maze, animals can only use this
strategy if the goal platform is modified to have a visible cue poking out of the water
(Packard and McGaugh, 1992). Taxon and praxic strategies can be chained together
in sequences, to generate complex multi-step routes (Eichenbaum et al., 1990).

Topological mapping

Just like response learning, the mapping strategy comes in two styles. First, animals
can build up a topological map: a representation of which locations are adjacent
to which other locations (Trullier et al., 1997). This kind of map can be expressed
in mathematical terms as a graph, with nodes representing a previously observed
location and edges representing adjacency between nodes. Topological maps could
be used to solve the Morris water maze, by selecting the series of locations that occur
in a straight line between the animals and the goal. However, this strategy is most
relevant for assessing complicated routes. In particular, it can be used to determine
whether a candidate path can connect to the goal and, if so, how long the path is
(i.e., how many adjacent locations need to be traversed before arriving at the goal).
This capacity was famously demonstrated in Tolman and Honzik, 1930’s detour task.
There, rats could select among three increasingly long routes to a reward (paths
1-3). After choosing the shortest route (path 1), they encountered an unexpected
barrier either blocking only path 1 or blocking both path 1 and path 2. If the barrier
blocked only path 1, upon returning to the starting point the rats would select path
2; however, with the second barrier, they would select path 3. This indicates that
the rats maintained a representation of the fact that path 2 was still connected to
the goal with the first barrier but not with the second.

Metric mapping

The second type of cognitive map is a metric map. In a metric map, locations are
related by distance and direction rather than adjacency. For example, locations
could be represented as a set of (x,y) coordinates on a flat, 2D Euclidean surface.
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1.1. The place and response strategies for spatial learning

This kind of representation is powerful as it allows for shortcuts across previously
unvisited territory - the key to solving the Morris water maze. Chapuis, 1987 further
demonstrated this strategy in dogs by leading the dogs along two paths (point A
to point B and point A to point C) and then testing their ability to navigate from
point B to point C. Even though the B-to-C and C-to-B routes had never been
experienced, the dogs could navigate directly from point B to point C. This indicates
that they knew the distance and direction between those two locations.

How the place and response strategies differ

Cognitive mapping and action reinforcement differ in many ways, but the three
that are most relevant for us are their reference frames, learning style, and learning
speed. Basal gangliar reinforcement learning is associated with egocentric, practice-
driven, gradual learning, while hippocampal mapping is associated with allocentric,
planning-based, rapid learning.

Egocentric vs. allocentric reference frames

The place and response strategies differ in the type of reference frame that the
animal uses. An egocentric reference frame is defined in relation to the actor’s body.
Turning right, walking six steps forward, and foveating a visual landmark are all
egocentric actions. Allocentric reference frames, on the other hand, are defined in
relation to the layout of the outside world. Moving toward the east side of the room
or toward the side of the room opposite from the giant yellow star are allocentric
actions. Thus, remembering where the reward was located within the experimental
room is an allocentric strategy. Note that this is deemed an allocentric strategy even
though it must eventually turn into an egocentric motor command (e.g. turn left).

Practice vs. planning

A third distinction is how the animal goes about learning the route. The response
strategy requires practice. This means that the learned action (e.g. turning right at
the junction) has been previously enacted and then followed by positive reinforcement.
These practice actions are typically motivated rather than random or meandering
movements (O’Keefe and Nadel, 1978). With planning, on the other hand, practice
runs are not necessary. By merely observing (and memorizing) the structure of
the environment, e.g. while walking from the reward to the start of the maze, the
animal can infer a novel route, e.g. how to get from the start of the maze to the
reward. Tolman and Honzik, 1930 famously demonstrated the potency of this ‘latent’
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1. Introduction

learning style, by showing that rats that spent time in a maze without any reward
were later able to navigate to a reward in that environment just as well as rats that
had practiced running through the maze to get the reward.

Incremental vs. all-or-none learning

Finally, these strategies differ in the number of observations/actions needed to learn a
route. A response behavior is generally reinforced incrementally over tens to hundreds
of practice trials. Even the simplest action reinforcement, such as mice learning
to poke a button with their nose to release a food pellet, takes tens of learning
trials (Baron and Meltzer, 2001). These behaviors are therefore also inflexible and
can persist long after they cease to result in positive reinforcement. Integrating a
new location into an animal’s internal map of its environment, on the other hand,
can happen after visiting that location for the very first time (Bittner et al., 2017).
Similarly, with the cognitive map approach, a change the environment only needs to
be observed once in order for the animal to update its route (Hsiao, 1929; O’Keefe
and Nadel, 1978).

Revisiting the place-response dichotomy in light of these differences

Because these three properties are correlated, it is parsimonious to chunk them into
two separate neurocognitive systems (Geerts et al., 2020). However, there is no
theoretical necessity for allocentric reference frames, planning, and rapid learning
to all go hand in hand. For example, Daw et al., 2005 showed that practicing
sophisticated actions can produce the kind of flexible behavior normally associated
with planning. Along these lines, it would also be plausible to discover a behavior that
uses an allocentric reference frame but is learned through practice (e.g. practicing
running to the west side of the room) or a learning mechanism that is both practice-
based and all-or-none (e.g. learning an action after a single practice runs).

Alternative strategies

Animals have more navigational strategies at their disposal than the place and
response strategies. Two additional categories of navigational behavior are search
strategies and path integration.

Search strategies

If the animal believes that a goal is nearby but does not know exactly where to go
or what action to take, the remaining option is to engage in a search strategy. With
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1.2. Multi-step spatial navigation

random search, animals repeatedly select a movement and distance to travel, from
some random distribution. This strategy has been largely studied in the context of
foraging behavior. There, random search allows animals to discover the maximal
amount of food patches in the minimum amount of time (Bovet and Benhamou,
1988; Viswanathan et al., 2000). In more restricted environments with a single goal,
animals can employ a systematic search. For instance, if a rat knows that the Morris
water maze platform is somewhere near the perimeter of the tank, it can swim in a
circular pattern around the perimeter until stumbling upon the goal (Janus, 2004).
Finally, if there are multiple identical cues but only some of them lead to reward,
the animal can employ a serial search (Patil et al., 2009). This entails investigating
each cue until the rewarding one is found.

Path integration

Animals can keep track of all the distances and angles that they have moved by since
visiting a reward and use this information to navigate back to it (Etienne and Jeffery,
2004). This strategy is called ‘path integration’ or ‘dead reckoning.’ Note that it
does not involve retracing steps on the outbound path to get back to the starting
point; that would actually be most consistent with the topological mapping strategy.
Instead, animals compute a vector (generally both distance and direction) toward
the goal, which can be used to navigate directly there. Path integration is an ancient
strategy that occurs across the animal kingdom, from insects to humans (Müller
and Wehner, 1988; Etienne and Jeffery, 2004). In tasks calling for direct routes to a
goal, this strategy produces similar behavior to the metric mapping strategy, since
both strategies allow animals to target goals across previously unvisited territory.
Path integration is generally described as capable of maintaining a vector to one
goal at a time, so it cannot on its own explain how animals are able to compute
multi-step routes to a goal. However, it is useful for constructing a metric map of
the environment, by furnishing the animal with the distance and direction between
pairs of recently visited landmarks.

1.2 Multi-step spatial navigation

Moving directly toward a nearby goal is a much simpler problem than devising multi-
step routes past obstacles to get to a goal that is out of sight. Both the response and
mapping strategies must be substantively extended in order to account for navigation
in structured environments. For the response strategy, directly approaching a cue
associated with reward or learning a single action does not work anymore. Instead,
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1. Introduction

multiple actions or cues must be chained together into a route. Similarly, looking up
the distance and direction to the goal with the metric mapping strategy no longer
suffices. In this section we examine how animals navigate to goals in structured
environments, in practice and in theory.

Navigation in natural environments

Animals are capable of stunning feats of navigation over vast distances (Able, 1980).
Notably, migratory insects (Reppert and Roode, 2018), birds (Chernetsov et al., 2008)
and mammals (Horton et al., 2011) are all able to find their way across thousands of
kilometers to transit between their summer and winter sites. Capitalizing on the
ease with which animals navigate in the wild, experiments in natural environments
have revealed an array of strategies for tackling long, complicated journeys. One
approach, typical of migratory species, is to use an innate solar or stellar compass to
guide the overall direction of movement and then to deal with individual obstacles
as they are encountered (Able, 1980). On shorter spatial scales, a similar mechanism
can be used with path integration (Huber and Knaden, 2015) or a metric cognitive
map (Tsoar et al., 2011) guiding the direction of travel rather than the sun or stars.

Another common approach to navigating natural environments is to develop
stereotyped routes between foraging and home sites. This approach is widespread, also
appearing across insects, birds and mammals. Visually guided route memorization
has been demonstrated in both desert ants (Kohler and Wehner, 2005; Cheng et al.,
2009) and homing pigeons (Biro et al., 2004). Over the course of 20 training runs
from a site about 10 m (in ants) or 10 km (in pigeons) from the animals’ home, both
species learned to consistently follow idiosyncratic homebound routes guided by a
series of visual landmarks along the way. In ants it has been further shown that
these routes are unidirectional, i.e. ants cannot infer how to get from the nest to the
feeding site after learning a route from the feeding site to the nest (Wehner et al.,
2006). This suggests a response-style strategy rather than a map. Route stereotypy
also occurs in species with a poorly developed sense sight, such as the water shrew.
The water shrew instead employs a praxic strategy for route learning, memorizing a
precise sequence of movements to take them around their environment. Lorenz, 1949
describes this behavior in a terrarium built to observe a family of water shrews:

Once the shrew is well settled in its path-habits it is as strictly bound to them
as a railway engine to its tracks...the shrews, running along the wall, were
accustomed to jump on and off the stones which lay right in their path. If
I moved the stones out of the runway...the shrews would jump right up into
the air in the place where the stone should have been; they came down with a
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1.2. Multi-step spatial navigation

jarring bump...For this animal the geometric axiom that a straight line is the
shortest distance between two points simply does not hold good. To them, the
shortest line is always the accustomed path.

Rodents also exhibit stereotyped foraging routes in natural habitats (Thompson,
1982; Benhamou, 1991). Thompson, 1982, for example, found that rats visited the
same feeding sites each night and always in the same order, typically returning to
their den in between each sequences. One mouse species has even evolved a tendency
to place small objects along its paths to mark familiar paths back to its refuge (Stopka
and Macdonald, 2003). Still, the roles of visual guidance, action reinforcement, path
integration, and cognitive mapping in each of these behaviors remain unknown.
To pinpoint the cognitive mechanisms of navigation in structured environments,
ethological studies should thus be supplemented with rigorous laboratory work, which
can provide a level of experimental control unattainable in natural settings.

Navigation in mazes

A key method to investigate multi-step navigation in the lab has been to train rats
and mice on complex mazes. The most common is the multiple T maze, in which
the animal faces a series of three-way junction at which they can turn left or right
(Sharma et al., 2010). Each decision will lead them either to an empty dead end,
to the next junction, or at the end to a dead end with a reward. Animals learn to
navigate to reward without making any ‘errors’ (i.e. entering a dead end) over the
course of about 1-5 trials per day for about one week (Tolman and Honzik, 1930;
Schmitzer-Torbert and Redish, 2002; Sharma et al., 2010). Using this setup, scores
of factors have been found to modulate multi-step spatial learning, from the number
of days since the previous session (Sharma et al., 2010), to modulation of cholinergic
signaling (Krejcova et al., 2004), to the composer of music played during development
1 (Rauscher et al., 1998; Aoun et al., 2005).

In behavioral neuroscience, the most celebrated insight from the multiple T maze
is Tolman and Honzik, 1930’s aforementioned latent learning experiment. They
found that if they allowed rats to explore the maze without any reward for several
days before the first proper training session, learning was dramatically accelerated.
The prevailing interpretation is that rats learn about the structure of the maze
during exploration, and that they can henceforth plan out the series of left-right
decisions needed to get to the goal (Behrens et al., 2018). However, in our view this
has not really been shown. For one, all that rats need to learn in this environment

1Rats that listened to Mozart outperformed the silence, white-noise, Beethoven and Philip
Glass groups.
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is to avoid each individual dead end; multi-step planning is not required to solve
a multiple T maze. Moreover, learning is also accelerated if rats are trained in
one maze and then get tested in a new maze with a different structure (i.e. a
different sequence of dead ends; Schmitzer-Torbert and Redish, 2002). Thus, the
latent learning in Tolman’s experiment is not necessarily about the exact structure
of the maze but could instead reflect learning about general laboratory maze setup
(Dashiell, 1920). Overall, multi-step maze learning has served as a useful testbed of
the factors influencing complex spatial learning, but it has not revealed much about
the strategies that rodents use to learn about the structure of their environment.

Navigation in the presence of an obstacle

A key limitation in maze-learning paradigms is the way in which behavior is boiled
down to a scalar quantity: the number of errors (i.e. dead-end entries) before finding
the reward. The low dimensionality of behavior here makes it difficult to identify
the exact reasons why a rat might have made an error. One way to investigate
multi-step navigation in a more open-ended setting is to interpose a barrier between
the subject and its goal and to analyze paths to the goal (Kabadayi et al., 2018).
Initially, transparent or wire obstacles were used, in order to test whether animals
could inhibit the direct visual guidance strategy and instead plan a detour around
the obstacle (in dogs: Hobhouse, 1901; in chickens: Kohler, 1925; in chimpanzees:
Thorndike, 1911; in toads: Collett, 1982; in octopuses: Wells, 1967; in human infants:
Lockman and Adams, 2001).

By using opaque obstacles, researchers can further investigate how animals are
able to memorize and calculate routes to a goal that is out of sight. If the barrier
was added within a few seconds of when the animal attempts to reach the goal, then
animals can simply maintain in working memory the direction to the goal. This ability
has been demonstrated in frogs (Ingle, 1990) and in two-day-old chicks (Regolin et al.,
1995). Over longer timescales, more robust spatial memory approaches must be used.
Fiddler crabs, for example, navigate to their burrow using path integration combined
with simple, sensory-guided obstacle circumnavigation (Layne et al., 2003). Desert
ants initially use a similar strategy to navigate from a feeding site to a nest that
is blocked by a large barrier; over time, they then learn to directly visually target
the obstacle edge and then to move toward the nest using the (visually informed)
axis of the obstacle as a cue (Collett et al., 2001). These strategies, relying on path
integration and visual guidance, are usually effective but fail to intelligently select
the overall most efficient route to the goal. Gerbils (Ellard and Eller, 2009), cats
(Poucet et al., 1983) and dogs (Chapuis et al., 1983) have all been found to use
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spatial memory to run to the side of the obstacle that allows for the shortest overall
path to their goal, taking into account their starting position and the location of
the goal. However, the nature of this spatial memory (e.g. response learning vs.
mapping) and how it was learned was not investigated.

Overall, we find navigation with an obstacle to be a promising approach for
looking at how mice learn to navigate a structured environment. No prior work has
thoroughly dissected how spatial memory is used to navigate around an obstacle.
Several approaches might be taken. For one, mice might move toward the goal using
path integration and then use vision to avoid running into the obstacle. Second, mice
could practice and memorize the sequence of actions or cues that had previously
gotten them from the starting point to the goal (the response strategy). Third, they
could build an internal map of the environment and use this map to calculate a
route past the obstacle (the cognitive-map strategy). This third approach remains
the most mysterious, so in our results we will focus on identifying and describing a
regime where mice might use a mapping strategy to navigate an obstacle.

Computational models of multi-step mapping

While experimental evidence on how animals map out and navigate cluttered envi-
ronments is sparse, theorists have been able to generate a wide variety of plausible
solutions to this problem in silico. Following our classification of mapping strategies
in the previous section, these fall into several categories: metric maps, topological
maps, and combination approaches. These are all perfectly able to generate efficient
multi-step routes to a goal, but they differ in the representations and route-searching
algorithms that they employ to do so.

Burgess et al., 1994 demonstrate how a metric map could suffice to navigate to
a goal that is hidden behind an obstacle. In this model, an agent uses simulated
neurons from the hippocampal formation that track the distance and direction to a
desired goal location. By adding an ‘obstacle-to-avoid’ feature to the internal map
of locations, the animal can get to its goal while deviating around the obstacle.

Topological maps are naturally suited to multi-step routes, since they are in-
trinsically able to lead the animal along a sequence of adjacent locations. They
are also the standard approach for model-based reinforcement learning models of
navigation (see ch. 4). For example, Spiers and Gilbert, 2015 suggest a model in
which animals build up a representation of adjacency relationship between locations
in the environment (i.e. a graph) and then implement a tree-search algorithm to
find the shortest route to a goal. This algorithm simulates a set of candidate routes
starting at the animal’s position and branching out across adjacent nodes until
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reaching the goal.
Metric and topological mapping can also be used in parallel. Edvardsen et al.,

2020 implement a system in which a metric map sets the initial heading direction,
and if the agent gets stuck at an obstacle, a topological map comes online to generate
a new heading direction. Specifically, animals start by heading directly toward their
goal using a metric map inspired by a spatial cell type called ‘grid cells’. If this
strategy leads to a dead end, the animal uses a topological-map tree search to identify
a new subgoal location at one of the obstacle’s edges. The animal then uses its
metric map to compute a direct shortcut to the subgoal, and this process repeats.

Finally, (Solway et al., 2014) describe a model that can combine the advantages
of both topological and metric maps. In their model, a topological map is used to
identify key points in the environment such as dead ends (i.e. a node with only one
neighboring node), or doorways and obstacle edges (nodes that are adjacent to two
otherwise unconnected regions). These key points are then connected together in
a metric map representing the distances and directions between them. The agent
can search through this high-level map and calculate which key point(s) it should
target as a subgoal on the way to its ultimate goal. This algorithm thus capitalizes
on topological maps’ capacity to represent connectivity structure as well as metric
maps’ ability to represent distances and to generate direct shortcuts. Despite this
strategy so far only being described in humans (Solway et al., 2014) and monkeys
(Teichroeb and Smeltzer, 2018), this model will end up shedding more light on our
mouse-behavior results than the other three.

Adding a dash of naturalism to laboratory experiments

Overall, it is known that animals are capable of impressive feats of navigation in
the wild; rodent spatial learning has served as a key model system for neuroscience
and psychology for about a century; and a wide array of plausible computational
models of multi-step mapping have sprung from this field. Nonetheless, it remains
mysterious how rodents go about spontaneously and rapidly building up spatial
knowledge in new environments. The strategies and dichotomies we have gone over
have largely been informed by repeatedly placing rodents in constrained mazes until
they learn to navigate to a food reward and then removing them each time they
reach the reward (Tolman and Honzik, 1930; O’Keefe and Nadel, 1978). Moreover,
rodent navigation studies have focused on the cues that animals use to pinpoint
locations, rather than the actions that they exploit during exploration (Restle, 1957;
Morris, 1981; Cheng et al., 2013).

In a natural setting, however, spatial learning can occur within minutes rather
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than days and is carried out via complex, internally generated exploration patterns.
Mice explore in a highly structured manner, punctuating investigatory bouts along
boundaries with rapid lunges to a familiar, enclosed space or a visually salient object
(Crowcroft, 1966). Given the mismatch between nature and experiment, it is unclear
how well previous classifications of navigation strategies map onto the learning
procedures that animals use for naturalistic navigation. Thus, in addition to obstacle
navigation, we sought a behavioral protocol that exploits spontaneous motivation to
learn about the environment rather than a session-based training protocol. Escape
behavior in mice furnished this additional degree of naturalism.

1.3 Escape behavior

The mouse is a cautious creature. Released into a new environment, it immediately
searches for crevices to hide in, tests out routes to safety, and inspects any objects
that might obstruct its path. If any indication of a predator should appear, it can
use what it has leaned to quickly find its way to safety. Here, we have imported this
behavior - escape to a shelter in an obstacle-laden environment - to the laboratory.

Diverse animals, including fishes, lizards, crabs, birds, and rodents, respond to
threats by escaping to a familiar shelter (Cooper and Blumstein, 2015). While escape
responses are often caused by innately threatening stimuli, animals select where,
when and how to escape using sophisticated cognitive processes (Evans et al., 2019).
For example, escape routes are modulated by the presence of nearby conspecifics
(Dill and Ydenberg, 1987; Mateo, 1996), the type of threat stimulus (Blanchard and
Blanchard, 1988; Reimers and Eftestøl, 2012; Yilmaz and Meister, 2013), and the
layout of the local environment (Lagos et al., 2009; Zani et al., 2009; Vale et al.,
2017).

For prey species such as mice, it is particularly important to find fast and efficient
routes to shelter, because it reduces exposure to potential predators (Lima and
Dill, 1990). This is a challenging task: natural environments are complex, and wild
animals must compute multi-step routes taking into account uneven terrain, obstacles,
and dynamically changing environments. Ethological studies of wild rodents have
emphasized the roles of locating salient landmarks (Drickamer and Stuart, 1984;
McMillan and Kaufman, 1995) and adhering to previously used routes (Thompson,
1982; Benhamou, 1991) in overcoming these challenges. In addition, rodents are
known to spontaneously shuttle back and forth between the outside and the ‘home’
(Crowcroft, 1966), which could help them to rapidly learn escape routes in case a
predator appears. However, all these observational studies are limited in their ability
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to identify the precise actions, cues, and learning rules that animals use to compute
escape routes.

Studying the homing behavior of rodents in the lab offers a powerful, comple-
mentary window into spatial behavior (Evans et al., 2019). The standard assay
for measuring navigation strategies in the context of rodent escape behavior is the
Barnes Maze assay (Barnes, 1979). There, rodents are placed in an open-field arena
with an underground shelter and are presented with an ongoing aversive stimulus
such as a bright light. Rodents locate the hidden shelter and, over multiple sessions,
they go from searching all around the platform to navigating directly to shelter
using spatial memory. Work from our laboratory has provided three updates to
this protocol (Vale et al., 2017; Vale et al., 2018): the learning period and escape
testing all occur within a single session; the mouse is never removed the arena until
the experiment is over; and sudden-onset threat stimuli are used to evoke robust,
shelter-directed escape paths. Thanks to these innovations, our assay can capitalize
on mice’s ability to identify and memorize a shelter location within minutes (Vale
et al., 2017) and their tendency to respond to threatening auditory or visual stimuli
by immediately running directly to a shelter (Yilmaz and Meister, 2013). It is thus
a promising model for studying how animals learn and execute complex trajectories
to a goal within the time constraints compatible with survival in natural settings.

So far, rodent escape behavior has mostly been used to study goal-directed
spatial navigation in the context of open, obstacle-free environments. These studies
have revealed that mice have access to all the same navigational strategies as they
do during reward learning, such as orienting themselves based on distant visual
landmarks (Alyan and Jander, 1994; Harrison et al., 2006) or path integration
(Maaswinkel and Whishaw, 1999; Vale et al., 2017). A natural next step is to use
escape behavior to better understand how mice cope with structured environments
where a one-step homing vector no longer suffices. Rodent escape in the presence of
obstacles has been studied before, with gerbils: Ellard and Eller, 2009 showed that if
the direct path to shelter is blocked on one side by a barrier, gerbils can use spatial
memory to reach the hidden shelter after a brief period of exploration. Thus we know
that rodent escape behavior offers not only reliable, stimulus-locked trajectories and
rapid learning within a single session but also a reliance on sophisticated multi-step
spatial reasoning. The cognitive mechanisms supporting rapid learning of multi-step
escape routes, however, remain unknown.
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1.4 Our questions

In a scenario with free exploration and no pre-training, how do animals learn to
navigate a structured environment? Specifically, what happens when a lab mouse
leaves its home cage for the first time and is exposed to an obstacle and a shelter?
Will it be able to escape to the shelter despite the presence of an obstacle? If so,
does it use a cognitive map strategy to infer novel routes without any practice, or
will it rely on habitually reinforced practice routes? Or - most likely - will these
classical frameworks break down upon adding an additional degree of naturalism to
the experiment?

As we will see, the answer to this last question is yes: mice combine the action-
reinforcement and map-build systems in a their strategy for learning multi-step routes
past an obstacle. Thus, an additional question will be: what are the computational
principles underlying this new hybrid strategy?
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Chapter 2

Subgoal memorization

2.1 Mice quickly learn efficient escape routes

As a baseline condition for investigating how mice learn escape trajectories, we placed
naïve animals in a circular, open-field platform with a shelter and overhead lighting.
After a brief exploration period during which mice spontaneously located the shelter,
we exposed them to a loud, overhead crashing sound while they were in a pre-defined
threat zone (Fig. 2.1a). This reliably elicited rapid escapes directed at the shelter
along a straight ‘homing vector’ (N=23 escapes, 10 mice; escape-to-shelter within 12
sec: 93%, compared to 12% in a no-stimulus control; Fig. 2.1a-b, Fig. 2.2a), similar
to previous results (Vale et al., 2017).

We then repeated this experiment in a separate group of mice, with a wall
positioned between the threat zone and the shelter (N=66 escapes, 24 mice; Fig. 2.3a).
This wall was white against a black background, and all mice approached and walked
along it during the exploration period (median time within 5 cm of the obstacle: 37
sec, IQR: 29 - 45 seconds; Fig. 2.2b). To quantify escape trajectories in relation to the
obstacle, we computed a target score: escapes aimed at the shelter get a score of zero;
escapes targeting the obstacle edge get 1.0; and escapes aimed beyond the obstacle
edge get scores >1.0 (Fig. 2.1a). Escapes are classified as “edge vectors” if their score
surpasses the 95th percentile of escape scores in the open field (0.65) and are otherwise
classified as “homing vectors”. Upon the first threat presentation, the majority of
the mice (57%) executed homing-vector escapes (Fig. 2.1a-b; permutation test on
the proportion of edge vectors, trial 1 vs. trials 2-3: p=0.0004 (***)). Replacing the
wall obstacle with an unprotective hole obstacle did not reduce this proportion (N =
23 escapes, 8 mice; Fig. 2.2c-d, Fig. 2.3b); thus, homing-vector escapes cannot be
accounted for by the safety provided by running along a wall and are likely directed
at the shelter location.

Over the course of three threat presentation trials (17±4 minutes into the session,
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Figure 2.1: Mice rapidly learn efficient escape trajectories past obstacles
(a) Single escape trials colored by speed (top) and all trajectories color-coded by
trajectory type. (b) Summary of initial escape targets. Each dot represents one
escape. (c) Each dot represents one escape. White squares show the median, thick
lines show the IQR, and thin lines show the range excluding outliers. Distributions
are kernel density estimates.

mean±std), mice performed escapes that were increasingly spatially efficient (ratio
of the shortest possible path to the actual escape path: median for trial 1 = 0.77;
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for trial 3 = 0.87; F(2, 30)=7.2, p=.003, repeated measures ANOVA on trials 1-3;
Fig. 2.1b). By this point, almost all trajectories were aimed directly at the obstacle
edge (90% edge vectors; median target score = 0.98). Thus, while inefficient homing
responses initially dominated, mice acquired rapid and streamlined routes to shelter
over the course of 20 minutes and three escape trials.

Figure 2.2: Escapes in the presence of an obstacle: extended results
(a) Speed profile for all threat stimulation trials escape trials (3 trials per mouse).
Trials are sorted by shelter arrival time. (b) Exploration trajectories around the
obstacle area (each color represents the movements of one mouse prior to trial 1).
3 randomly selected sessions are displayed. All mice approached and explored the
area within 5 cm of the obstacle prior to the first escape trial. (c) Example trial
and escape trajectories for experiment with an unprotective hole obstacle instead of
the wall obstacle. The black rectangle represents the hole obstacle. (d) Summary of
escape trajectories with the wall and hole obstacles.

2.2 A spatial memory strategy for navigating the
obstacle

Visual cues not necessary to navigate past an obstacle

We next investigated whether mice require visual input to locate and run toward
the obstacle edge. We repeated the obstacle experiment from Figure 1, but now in
complete darkness (Fig. 2.4b-d). Mice now executed fewer edge-vector escapes (%
edge-vector escapes on trials 1-3: 33% with the lights off vs. 74% with the lights on,
p=0.002, permutation test; N = 33 escapes, 14 mice with the obstacle in the dark).
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Figure 2.3: Platforms with the wall obstacle and hole obstacle for ch. 2
(a) Platform with the wall obstacle. The platform is 92 cm in diameter, and the
wall obstacle is 50 cm long x 12.5 cm tall. The shelter is made from red acrylic that
is opaque to the mouse but transparent to (infra)red light. (b) Platform with the
hole obstacle. The hole obstacle is 50 cm long x 10 cm wide.

This proportion of edge vectors was not significantly different than chance, i.e. the
open field condition (p=0.2, comparison with the 22% edge-vector escapes in the
dark without an obstacle; N = 41 escapes, 14 mice). However, after 20 minutes with
three escape trials in the light, mice were able to execute mostly edge vectors in the
dark (55% edge-vector escapes vs. 22% in the open field, p=0.002, permutation test;
Fig. 2.4c-d; N = 33 escapes, 14 mice). Thus, for naïve mice with limited experience,
visual cues are required for efficient obstacle avoidance. However, immediately after
experiencing a 20-minute behavioral session, streamlined escapes can occur even in
complete darkness.

The obstacle removal experiment

We thus considered that learning efficient escapes might entail developing a memory
of the obstacle edge location, making perception of the obstacle unnecessary. To
further test this hypothesis, after the animals explored the environment with the
obstacle for 20 minutes and with three escape trials, we removed the obstacle at
the moment of threat onset (“acute obstacle removal”). Although the obstacle
disappeared before the initial orientation movement could be completed, all animals
escaped along the edge vector and did not turn toward the shelter until they passed
the location where the obstacle edge used to be (median target = 0.98; N=8 escapes,
8 mice; edge-vector proportion compared to open field: p=1× 10−5, permutation
test; Fig. 2.5a-b). Next, we examined how persistent this memory-based strategy
is. In a “chronic obstacle removal” experiment (CORE), we allowed mice to explore
after this acute obstacle removal trial (for 9±5 minutes, mean±std), during which
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Figure 2.4: Escapes with an obstacle in complete darkness
(a) Escape trajectories for experiments in which naïve mice escape to the shelter in
complete darkness. (b) Mice with 20 minutes of experience in the light, including
three escape trials. (c) Summary of escape trajectories in complete darkness.

time 100% of mice visited the now empty center of the platform (Fig. 2.5c). 44% of
the subsequent escapes were still directed at the location where the obstacle edge
used to be (N=18 escapes, 8 mice; more than the 9% edge-vector rate in the open
field: p=0.02, permutation test; Fig. 2.5a-b), while the remaining 56% mice reverted
to the homing-vector response.

This spatial memory for edge-vector escapes could in principle be learned during
escapes trials or through spontaneous exploratory behavior. To distinguish between
these possibilities, we repeated the CORE with zero baseline threat stimuli during
the 20-minute exploration period (CORE-ZB). As in the previous experiment, we
then removed the obstacle and allowed the mice to explore the newly unobstructed
environment (for 5±4 minutes, mean±std). Threat presentation after this period
resulted in mostly edge-vector responses (57% edge-vector escapes; N = 23 escapes,
10 mice; more edge vectors than in the open field: p=0.004, permutation test;
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Fig. 2.5a-b). Thus, within 20 minutes in a novel environment, mice spontaneously
develop a persistent spatial memory for efficient, multi-step escapes. The rest of the
thesis will focus on unraveling the behavioral and computational mechanisms of this
memory in the CORE-ZB.

Figure 2.5: Mice escape around obstacles even after they are removed
(a) Examples of edge-vector escape trials (top) and all trajectories (bottom) after
removing the obstacle. Subheaders: experience in the environment prior to removing
the obstacle. Dotted line: where the obstacle used to be. (b) Summary data for
initial escape targets. (c) Black bar: area where the obstacle used to be (black
bar). Each colored trace represents the movements of one mouse after the obstacle
was removed and prior to an escape trial. Six mice were randomly selected for
visualization.

2.3 Spatial learning here consists of memorizing
subgoal locations

We first aimed to characterize this spatial-memory strategy and how it is learned.
We evaluated three possible strategies: habitual learning of turn angles, sampling
the environment to build a cognitive map, and memorizing subgoals encountered
during practice homings. We evaluated each possibility by analyzing the relationship

40



2.3. Spatial learning here consists of memorizing subgoal locations

between escapes and spontaneous behavior during exploration, primarily in the
chronic obstacle removal experiment with zero baseline trials (CORE-ZB). For each
analytical finding, we then performed further experiments to validate the analysis.

Habitual, egocentric movements do not explain the spatial
memory

First, we tested whether mice learn egocentric movements from the threat zone
to the obstacle edge, similar to the habitual response strategy in mazes (Restle,
1957). We extracted all spontaneous homing runs, or ‘practice runs,’ defined as
sustained turn-and-run movements from the threat area toward the shelter during
the CORE-ZB’s exploration period (median [IQR] number of runs = 7 [6,7]; time
from their end point until reaching the shelter: 11 [5, 19] sec; Fig. 2.6a; Fig. 2.7a).
We then computed each run’s starting position and orientation, and the angle turned
during its initial turn-and-run segment (difference in heading direction from the
homing initiation point to the point where the mouse has travelled 15 cm; Fig. 2.6a).

Homing runs were sparse, and their initial positions and body orientations were
highly variable. It was unlikely for any escape’s starting conditions to closely match
a previous homing: only 22% of escapes were preceded by a run with starting
points within 10 cm distance and 30°body orientation (Fig. 2.7a). Despite this
lack of stereotypy, we attempted to account for the memory-guided edge-vector
escapes observed in the CORE-ZB using the assumption that mice repeat turn
angles from previous homing runs. First, we validated a method to predict escape
targets based on homing-run turn angles. We put mice on a modified platform with
two narrow corridors, ensuring that homings and escapes were stereotyped (N=30
escapes, 10 mice; Fig. 2.7b). Here, we could precisely predict escape targets using
the mouse’s starting point and its history of previous turn-and-run movements (R2

of the prediction = 0.97 using the homing run with the most similar turn angle;
R2 = 0.65 using the homing run with the closest initial position; R2 = 0.58 using
the homing run with the closest initial body orientation; Fig. 2.6b; Fig. 2.7c). In
the CORE-ZB, however, repeating turning movements did not explain any of the
variance in post-removal escape targets (R2 of the prediction = 9×10−4 (most similar
turn angle); R2 = 0.04 (closest initial position); R2 = 9× 10−6 (closest initial body
orientation); compared to R2 = 0.05 for a randomly generated prediction, averaged
over 1000 random seeds; Fig. 2.6b; Fig. 2.7d).

This analysis suggests that memory-guided edge-vector escapes are not based
on habitually repeating egocentric actions. We performed an additional experiment
to test this finding: testing whether memory-guided escapes are sensitive to the
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Figure 2.6: Habitual, egocentric movements do not explain the spatial memory
(a) Examples of homing practice runs extracted from all movement data. Turn
angles are defined positive for rightward turns and negative for leftward turns. (b)
Left: method for predicting the escape target based on the turn angles from previous
homing runs. Right: the y-axis measures the amount of variance in escape targets
across trials that can be explained by mice repeating turn angles from previous
homing runs. (c) An experiment like the CORE-ZB, but in which the shelter is
moved following the exploration period. (d) Distribution of turn angles from homing
movements and from escapes. Black shows the new CORE with the moved shelter,
and blue shows the two original COREs.

shelter location. This would not be expected from a habitually repeated action
(Fig. 2.6c-d; N=18 escapes, 10 mice). After a 20-minute exploration period just
like in the CORE-ZB, we moved the shelter to the middle of the platform. As
expected from a goal-directed or geometry-dependent process, escape turns differed
from the two original COREs, with zero escapes targeting the obstacle edge location
(p=0.5, chi-square test on binned homing-run turn angles; p=0.03, chi-square test on
escape turn angles; Fig. 2.6d). This experiment demonstrates a dissociation between
egocentric turning movements and memory-guided escapes: identical exploratory

42



2.3. Spatial learning here consists of memorizing subgoal locations

Figure 2.7: Homing runs, turn angles, and heading directions: extended results
(a) Left: histogram of each practice homing runs’ initial condition. Each bin reflects
proximity in both the position (x) and body orientation (y) of the homing’s starting
point. Right: example of homing runs extracted from exploration and a subsequent
escape. (b) Same as panel a, but for the experiment with narrow corridors. (c)
Escape targets are predicted using the homing run with the most similar turn angle
to the escape turn angle. Correlation coefficient r=0.98; p=2x10-22. (d) Same
analysis as in panel c, but with escapes and homings from the CORE-ZB. Correlation
coefficient r= -0.03; p=0.9. (e) The escape direction (y) is measured when the mouse
is 15 cm away from the escape initiation point. The vector from the center of the
platform to the shelter (pointing south) is set as 0°. Homing-vector escapes are not
included. Lines show the linear regression fit. Shaded area shows the prediction
interval within 1 standard deviation.
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movements can lead to distinct escape movements.

Observing the obstacle does not explain the spatial memory

The goal-directed nature of these escapes suggests that the obstacle edges become
subgoal locations, i.e. allocentric locations targeted as a waypoint en route to the
ultimate goal. An alternative possibility, however, is that mice target the edge by
learning allocentric heading directions. For example, edge-vector escapes could be
generated by consistently running in the southwest or southeast direction, relative to
the north-south axis connecting the shelter and the threat zone. Analysis of our data
indicates that mice instead target allocentric locations. Following obstacle removal,
escape heading directions follow whichever direction is required to reach the edge
location (correlation between the heading direction to the edge and the heading
direction taken in the escape: r=0.85, p=1.2x10-6; Fig. 2.7e). This corroborates the
results above, suggesting that mice learn subgoal locations at the obstacle edge.

We next investigated the learning process that generates these subgoals during the
spontaneous exploration period. We found two variables in the CORE-ZB with high,
positive correlations to subgoal-targeting behavior: the total distance of exploratory
movement on the threat side of the platform (correlation with escape targets: r=0.72,
p=1× 10−4; Fig. 2.9a) and the number of homing runs from the threat area that
directly targeted the obstacle edge (within 10 cm; correlation with escape targets:
r=0.75, p=5x10-5; Fig. 2.8a-c). Two primary interpretations of these correlations
are possible. The first is that routes are computed directly from a ‘cognitive map’:
investigating the obstructed area updates the mouse’s internal map, which is reflected
behaviorally in the mouse’s use of subgoals. If this were true, we would predict
that: 1) investigating relevant features like the obstacle or its edge will also correlate
with the subgoal memory; and 2) after obstacle removal, investigating the region
where the obstacle used to be will suppress edge-vector escapes. Neither prediction
matched the data. The amount of exploration near the obstacle or the obstacle edge
was not correlated to subsequent escape target scores (correlation of escape targets
with distance moved around the obstacle: r= -0.09, p=0.7; around the obstacle
edge: r=0.06, p=0.8; Fig. 2.9a). Furthermore, after obstacle removal, mice that
densely sampled the empty center of the arena more did not execute different escape
trajectories from mice that explored very little (correlation with distance moved
around where the obstacle used to be: r= -0.12, p=0.6; with total post-removal
exploration distance: r= -0.17, p=0.4; Fig. 2.9a).
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2.3. Spatial learning here consists of memorizing subgoal locations

Figure 2.8: Mice memorize previously targeted subgoal locations
(a) Correlation of different running movements with the escape target score, in
the CORE-ZB. Movements toward the same edge targeted in the escape are shown
here as the right edge; movements toward the opposite edge are shown as the left.
Significant correlations have green outlines. (b) Homing run history for two mice
in the CORE-ZB, and subsequent escape trajectories. (c) Escape targets plotted
against the number of spontaneous edge-vector homing runs during exploration in
the CORE-ZB (movements toward the same edge targeted during the escape). (d)
Spatial efficiency of escapes on the first trial in the presence of an obstacle. (e)
Escape targets plotted against the number of spontaneous edge-vector homing runs
during exploration, for acute obstacle removal on the first trial.

Practice runs can explain the spatial memory

A second possibility is that learning occurs during the ‘practice’ edge-vector homing
runs. In this case, we would predict that: 1) subgoals do not form in mice with
zero edge-vector homings; and 2) the correlation with spontaneous homing runs
would be specific to the edge targeted during escape (i.e., left vs. right) and to the
direction taken during escapes (i.e., from the threat side to the shelter side). Both
predictions were confirmed by the data. Every edge-vector escape following obstacle
removal was preceded by at least one homing run targeting that same edge (100% of
post-removal edge-vector escapes have ≥1 prior edge-vector run; greater than chance:
p=0.02, permutation test; Fig. 2.8c). Second, escape targets in the CORE-ZB were
not significantly correlated with homing runs from the threat area to the opposite
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Figure 2.9: Mice memorize previously targeted subgoal locations: extended results
(a) Correlation between escape targets in the CORE-ZB and the amount of explo-
ration in different sections of the platform. Red outlines indicate the section of
the platform in which the distance explored is measured. For exploration near the
obstacle edge, only the edge that was targeted during the escape (i.e., left vs. right) is
considered. Boxes show the correlation coefficients and respective p-values; significant
correlations have green outlines. (b) Escapes from an experiment acutely removing
the obstacle on the first trial, after 10 minutes of exploration. (c) Correlation of
different running movements to escape target score, in the trial-1 acute removal
experiment. (d) Correlation between escape targets in the trial-1 acute removal
experiment and the amount of exploration in different sections of the platform. Note
that there is no post-removal exploration in this experiment.

edge (r=0.15, p=0.5), with homing-vector runs from the threat area to the middle of
the obstacle (r=0.06, p=0.8), or with runs from the shelter area to the same obstacle
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2.3. Spatial learning here consists of memorizing subgoal locations

edge (r=0.30, p=0.2; Fig. 2.8a).
Our analysis of the CORE-ZB suggests that executing edge-vector homings, rather

than sampling the environment, could be the rate-limiting step in spontaneously
learning subgoals. To further test this hypothesis, we first examined whether
spontaneous homings explain escape routes in the obstacle-present condition. On
the first trial with an obstacle, mice with prior edge-vector homings performed more
efficient escapes than mice with none (median spatial efficiency with zero runs =
0.76; with one run = 0.82; p=0.04, permutation test; Fig. 2.8d; same data from
Figure 1). As expected, this significant effect did not also occur for runs to the
obstacle edge not used in the escape, runs from the shelter to the obstacle edge, or
runs toward the center of the obstacle. Thus, subgoal memorization does appear to
play an adaptive role when perception of the obstacle is still available.

Next, we examined the acute obstacle removal experiment. We could not apply
correlational analysis to the previous acute obstacle removal since this dataset had
100% edge-vector responses and 100% prior edge-vector homings. Thus, we performed
a new experiment, removing the obstacle acutely on the first trial, 10±1 minutes
into the session, mean±std. Here, 50% of escapes took edge-vector paths (N = 10
escapes, 10 mice; Fig. 2.9e). Among the variables examined – exploration in different
parts of the platform and various running movements – only the number of runs
from the threat area to the edge used in the escape was significantly correlated
with escape targets (r=0.71, p=0.02; Fig. 2.8e; Fig. 2.9f-g). Furthermore, 100% of
edge-vector escapes were preceded by at least one edge-vector homing (greater than
chance: p=0.02, permutation test; Fig. 2.8e).

Next, we tested the practice-homing hypothesis with two new experiments. First,
we repeated the CORE-ZB but without a shelter during the exploration period
(N=24 escapes, 10 mice; Fig. 2.10a). This gives the mouse opportunity to observe
the platform and obstacle, but without performing homings. After 20 minutes, we
added the shelter and removed the obstacle as soon as the mouse entered the shelter
(median [IQR] time to enter shelter: 84 [39, 154] sec). Subsequent escapes did not
exhibit the subgoal memory (13% edge-vector escapes; not more edge vectors than
in the open field: p=0.4, permutation test; Fig. 2.10a). Second, we repeated the
CORE-ZB with an extra barrier blocking off the threat side of the platform during
the exploration period (N=25 escapes, 10 mice; Fig. 2.10b). This prevents long-range
homings while allowing investigation of the obstacle. Only 1/10 mice targeted the
edge location with scores close to 1.0, and post-removal escapes did not significantly
differ from the open-field control (20% edge-vector escapes; not more edge vectors
than in the open field: p=0.2, permutation test; Fig. 2.10a-c). Both experiments
thus demonstrate a dissociation between investigating the obstacle and memorizing
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subgoals, and further support the hypothesis that subgoal locations are learned
through practicing homings.

Figure 2.10: Mice memorize previously targeted subgoal locations
(a) Chronic obstacle removal experiment without a shelter present during the 20-min
exploration period, and all subsequent escapes. (b) Chronic obstacle removal experi-
ment with an extra barrier blocking the threat area during the 20-min exploration
period, and all subsequent escapes. (c) Summary of escape targets in the two
modified CORE-ZB experiments.

Edge-vector runs are instinctive exploratory actions

It remains unclear what prompts spontaneous edge-vector runs in the first place.
One possibility is that during practice runs, a cognitive map is used to compute
efficient routes to shelter; once this happens, subgoals are tagged for later use during
escapes. Another possibility is that mice are innately predisposed to run to salient
obstacle edges. Our data support the latter option. Spontaneous edge-directed
movement occurs most during the first few minutes of the session and occur equally
with or without a shelter in the environment (Fig. 2.11a-b). When the obstacle is
a hole instead of a wall (Fig. 2.3), edge-directed movement occurs with the same,
low frequency as in the open field (computed using the location where the obstacle
edges would be if the obstacle were present; Fig. 2.11b). Correspondingly, it takes
twice as long for mice to perform predominantly edge-vector escapes in the presence
of a hole obstacle (20% edge-vectors escapes on trial 2-3, 67% edge-vector escape on
trial 6-7; Fig. 2.2d).
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Figure 2.11: Edge-directed movements in different environments
(a) Frequency of spontaneous movements toward the obstacle edges by time in session
(all sessions with the wall obstacle) . (b) Frequency of edge-directed movements for
different conditions. Statistical test: permutation test on number of edge-directed
movements. Each dot is one session. White squares show the median, thick lines
show the IQR, and thin lines show the range excluding outliers.

2.4 Subgoal memorization also supports
food-seeking routes

While subgoal memorization enhances spatial efficiency in a static environment, it
can also generate unnecessarily roundabout routes past an obstacle that no longer
exists. In fact, edge-vector escapes can persist over at least 20 minutes and 7 trials
following obstacle removal (Fig. 2.11a-b). We considered that subgoal memorization
may be specific to escape behavior, as mice might sacrifice flexibility for the sake of
quickly reacting to imminent threats. To test this, we performed an obstacle removal
experiment in the context of a less urgent, reward-based task (open field control:
N=32 reward runs, 6 mice; obstacle removal: N=34 reward runs, 6 mice).

First, we trained food-deprived mice to approach and lick a reward port in
response to a 10-kHz tone, which indicated the availability of condensed milk at the
port. This took place across 5 sessions, in an operant conditioning box (Fig. 2.13a-c).
Next, we transported this task to the platforms previously used for escape behavior.
The shelter was replaced by the reward port, and the threat stimulus was replaced by
the 10-kHz tone. To start the session, mice were given 20 minutes in the open-field
or obstructed environment. This included 1 food-approach trial per minute with
start points throughout the platform, to facilitate transferring the task to this new
environment. After this point, mice successfully ran to the reward port during tone
presentation on 85% of trials starting in the trigger zone (the same region as the
threat zone), but with slower reaction times than escape (median [IQR] time to start
running toward the goal for food-seeking = 1.5 [0.7, 3.5] sec; for threat response =
0.6 [0.4, 1.2] sec; p=0.005, permutation test).
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Figure 2.12: Edge vectors persist long after obstacle removal
(a) Escape targets vs. trial number in the chronic obstacle removal experiments (now
including the minority of mice that performed >3 trials). Only successful escape
trials are counted toward the trial number. Correlation coefficient r=-0.07, p=0.6.
(b) Escape targets vs. time. Correlation coefficient r=-0.12, p=0.3. Lines show
the linear regression fit, and the shaded area shows the prediction interval within 1
standard deviation.

At this point, we repeated the CORE with the food-seeking behavior. We removed
the obstacle and triggered food-approach trials (trials occurred 5±3 minutes after
obstacle removal, mean±std). Similar to escape routes, a large proportion of paths in
the obstacle-removal condition initially targeted the obstacle edge location (53% edge
vectors; p=0.006 compared to 12% in the open field, permutation test; Fig. 2.14a-b).

Finally, we tested whether experience with the obstacle induces a non-specific
increase in edge-directed movement, as this could explain the apparent use of subgoal
memorization across two distinct tasks. We compared spontaneous movements from
the ends of the platform toward the center and obstacle edge locations. Exploration
following obstacle removal were not enriched in edge-directed movements (number of
edge-directed movements per 15 min: median after obstacle removal = 4; in the open
field = 6; with the obstacle present =12; p=4x10-5, permutation test on open field vs.
obstacle; p=0.7, permutation test on open field vs. obstacle removed; Fig. 2.14c-d).
Subgoal memorization therefore reflects a strategy for goal-directed navigation rather
than a general bias in how mice move around their environment following experience
with an obstacle.
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Figure 2.13: Training mice to approach and lick a spout in response to a tone
(a) Lick raster plots for an example mouse during the first (top) and the last training
day (bottom). (b) Summary data for lick probability during training. Relative
lick probability is the average probability of licking the spout within a 4.5-second
window during the stimulus, divided by the lick probability during the 20 seconds
before or after the stimulus. Relative lick probability on day 5 is > 1 (p=0.002,
permutation test) but not day 1 (p=0.09). (c) Summary data for reward-port
approach probability during training. Relative approach probability is the average
probability of moving from the back of the conditioning box to the side where the
spout is located in response to the tone, divided by the approach probability at other
random time points during the session. Relative approach probability on day 5 is >
1 (p=0.02) but not on day 1 (p=0.41). Gray lines are individual mice and green line
is the mean.

51



2. Subgoal memorization

Figure 2.14: Obstacle experience affects food-seeking but not exploratory paths
(a) Food-approach paths. An example trial is shown on top, and all paths are shown
below. The red circle with ‘R’ represents the reward location, i.e. the metal spout
with milk. (b) Summary data for food-seeking paths, computed the same way as
escape targets. (c) Paths across the platform during spontaneous exploration in
the escape experiments. All paths go from the ends of the platform toward the
center. Conditions with more sessions are randomly downsampled so that the same
number of paths is displayed for each condition. (d) The number of spontaneous
center-directed and edge-directed movements during exploration.
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2.5 Interim discussion

During their first few minutes in an obstructed environment, mice escaped to shelter
by relying on their memory of the shelter location and their innate ability to negotiate
barriers using vision and touch. These escape routes were spatially inefficient; they
resembled obstacle avoidance in animals with lower cognitive capacities, such as
toads, crabs, and ant colonies (Collett, 1982; Layne et al., 2003; McCreery et al.,
2016). Over a single 20-minute session, however, mice began to exploit their aptitude
for spatial memory. They increasingly targeted the obstacle edge directly and could
do so even in complete darkness or after the obstacle had been removed. We found
that this capacity relied on memorizing allocentric subgoal locations rather than
egocentric turning movements, and our data further suggested that mice identified
and memorized subgoals during spontaneous homing runs.

Previous work has shown that rodents use spatial memory to navigate to shelter
in an open field (Etienne et al., 1985; Alyan and Jander, 1994; Vale et al., 2017).
In such a simple environment, however, escape routes can be implemented by path
integrating self-motion cues to keep track of a single vector to the shelter location -
a one-step, egocentric process. With obstacles in the environment, a more advanced
strategy is needed. Previous results in gerbils escaping in an obstructed environment
suggested that spatial memory was employed to reach the shelter (Ellard and Eller,
2009), but their navigational strategy was unknown. Our results show that mice use
subgoals in an allocentric reference frame. Several observations support this view.
First, mice can accurately target the edge location minutes after the obstacle or
the lights have been removed, which is not well explained by pure path integration.
Second, escapes involved immediately orienting and running toward a subgoal 50
cm away, which is not consistent with following odor trails or gradients (Wallace
et al., 2002; Liu et al., 2020). Finally, repeating stereotyped turning movements or
allocentric heading directions did not explain memory-guided escape paths in our
assay; instead, mice consistently targeted the edge location.

Traditional models of allocentric navigation involve three key elements: an
internal map of the environment (located in the hippocampus and entorhinal cortex),
a stored goal location, and a mental search for paths to the goal (Burgess et al.,
1994; Spiers and Gilbert, 2015; Stachenfeld et al., 2017; Edvardsen et al., 2020).
The limiting factor is the quality of the map. Finding efficient multi-step routes -
be it through a tree-search algorithm (Spiers and Gilbert, 2015; Edvardsen et al.,
2020), a map-partitioning algorithm (Stachenfeld et al., 2017), or warping around
an ‘obstacle-to-avoid’ feature (Burgess et al., 1994) - can occur as soon as the map
faithfully reflects the current environment. To build up this map, animals simply
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have to investigate unfamiliar or altered parts of the environment. The amount of
exploratory movement thus matters for spatial learning, but movements’ intentions
or targets do not (Cf. Schölkopf and Mallot, 1995). Our observations of escape
routes in naïve mice do not support such views of allocentric learning. In our data,
none of the following was sufficient to generate subgoals: 1) spending time exploring
the obstacle; 2) running along the homing-vector path and then being blocked by the
obstacle; 3) learning a subgoal at the other obstacle edge; 4) targeting the obstacle
edge while running away from the shelter; 5) investigating the obstacle in the absence
of a shelter; and 6) investigating the obstacle while the threat area was blocked off.
Furthermore, investigating the formerly obstructed area following obstacle removal
did not restore direct homing-vector responses.

The subgoal strategy does contain elements of classical map-based navigation:
it is learned in all-or-none fashion and depends on a sense of allocentric space, i.e.
a ‘map’; however, it also includes a component similar to response learning, which
entails inflexible routes based on previous goal-directed movements. Hybrid strategies
- combining rapid learning, inflexible routes, and special ‘learning movements’ - have
been discovered before, as in the orientation flights of wasps (Collett, 1995). They
are also a key part of a strain of research in the cognitive sciences called sensorimotor
enactivism (Ward et al., 2017), which asserts that an explanation of learning should
include not only how we extract meaning from sensory data but also how our
actions are used to control this stream of data (Chase and Simon, 1973; Petitto
and Marentette, 1991; Mataric, 1992; Clark, 1999). For instance, Ballard et al.,
1997 demonstrated a key role for saccadic eye movements in devising a solution to
a physical construction task. However, orientation flights entrain one-step routes
to a visual beacon, and studies of enactive learning strategies have largely been
limited to human psychology. Here we find that, in a experimental setup ripe for
systems neuroscience, mice use learning movements to entrain multi-step routes to
an obstructed goal. Our working model is that mice instinctively execute visually
guided movements toward a salient wall edge; if this movement gives the mouse
direct access to a subsequent goal (e.g., the shelter), then its target is memorized as
a subgoal location. We hypothesize that a rapid, all-or-none learning rule works on
practice homings, but the evidence proferred in this chapter was largely correlative.
The next chapter will explore experiments to test a causal role for practice runs.

Memorizing subgoals confers distinct survival advantages: it can drive escape
routes with the optimality of map-based planning and the rapidity of instinctive
responses. However, this strategy is less flexible than responding to sensation or
updating maps. The steady persistence of 50% biphasic escapes for tens of minutes
after removing the obstacle was longer than expected, and it remains unclear how
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mice learn to reinstate the homing-vector response after obstacle removal. Responses
to imminent predatory threats are known to favor quick reaction times at the expense
of computational sophistication (Mobbs et al., 2020), and so this inflexible strategy
could in principle be specific to defensive behavior. However, we found that it was
also used in a less urgent food-seeking task. Thus, subgoals appear to be a general
building block for quickly learning spatial locations important for survival.
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Chapter 3

Action-driven mapping

When mice are placed in an arena with a shelter and an obstacle, they spontaneously
execute continuous runs targeting the obstacle edge. Our main aim in this chapter
is to test the causal necessity of these runs in learning that the obstacle edge is a
subgoal. Notably, our evidence for this hypothesis in the previous chapter was largely
correlational. We therefore set out to design a manipulation that could prevent mice
from executing spontaneous runs to an obstacle edge.

3.1 Closed-loop activation of premotor cortex
blocks edge-vector runs

To prevent confounding effects, our run-blocking manipulation should avoid modifying
the external environment, should not decrease the opportunities for the animal to
observe its environment, and should not generate place aversion. We found that
closed-loop stimulation of premotor cortex (M2) fit all these criteria. We injected
channelrhodopsin in excitatory neurons in the right, anterior M2, and performed
optogenetic stimulation via an implanted optic fiber (Fig. 3.1b, Fig. 3.2a). In line
with previous reports (Gradinaru et al., 2007; Magno et al., 2019), stimulating M2
with a 2-sec, 20-Hz pulse wave caused a low-latency (<200 ms) deceleration, halting,
and leftward turning motion (Fig. 3.2b). This stimulation protocol did not generate
place aversion when tested in a two-chamber place-preference assay (Fig. 3.2d).
We thus leveraged this approach to specifically interrupt edge-vector runs during
spontaneous exploration. Using online video tracking, we set up a virtual "trip wire"
in between the threat area and the left obstacle edge; whenever mice crossed this line
while moving in the direction of the edge, a 2-sec pulse of light was automatically
delivered (Fig. 3.1c). Up to three subsequent pulses were triggered manually if the
mouse continued moving toward the edge. All other movements, including runs to

57



3. Action-driven mapping

Figure 3.1: A closed-loop neural manipulation interrupts edge-vector runs
(a) Spontaneous edge-vector runs during the initial 20-minute exploration period.
(b) Optic fibers were implanted in right premotor cortex. M2: supplementary motor
cortex (premotor cortex), PrL: prelimbic cortex, MO/LO/VO: medial/lateral/ventral
orbital cortex, AI: agranular insular cortex. (c) On crossing a virtual trip wire
(dotted line) during exploration, mice automatically received a 2-sec, 20-Hz, 30-mW
pulse of 473-nm light. In the example trial, the mouse was stimulated with two 2-sec
pulses and then ran to the right side of the platform. (d) All trip-wire crossings,
with and without laser stimulation, ordered by time of arrival to the left obstacle
edge. Note that mice must be moving toward the shelter area (i.e., south) in order to
trigger the trip wire. (e) White horizontal lines indicate median, black dots indicate
mean, gray boxes indicate the first and third quartiles, and gray vertical lines indicate
the range. Each dot represents one mouse/session. p=5× 10−5, permutation test.
(f) Distance explored on the threat half: p=0.5, permutation test.

the left edge along the obstacle or from the shelter, were not interrupted by laser
stimulation.

We divided up injected and implanted animals into a laser-on (trip wire active)
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and a control, laser-off group (trip wire inactive). Both groups of mice were allowed
to explore a circular platform with a shelter and an obstacle for 20 minutes (n=8
mice/sessions; pictured in Fig. 3.3). During this time, all mice located the shelter and
visited the entire platform, including the obstacle (Fig. 3.4a,c). In agreement with
results from ch. 2, all mice in the laser-off group executed continuous turn-and-run
movements from the threat area (Fig. 3.1a) toward the shelter area (‘homing runs’;
# per session: 6 [5, 8.25] (median [IQR]); Fig. 3.4b,d). These included at least one
homing run that directly targeted an obstacle edge (‘edge-vector runs’; # per session:
1.5 [1, 2.25] (median [IQR]); Fig. 3.1a, Fig. 3.4e). Mice in the laser-on group triggered
3.5 [2.75,6] (median [IQR]) laser stimulation trials, lasting 20 [16, 26] seconds in
total and interrupting all potential edge-vector runs (Fig. 3.1d, Fig. 3.4b,e). While
mice in the laser-off group executed nearly direct paths between the threat area and
the left obstacle edge, the paths taken by mice in the stimulation group were twice
as long, reflecting the inaccessibility of edge-vector runs (Fig. 3.1e; spatial efficiency
here is defined the ratio of the straight-line path to the length of the path actually
taken). Exploratory behavior in general, however, was not reduced. Mice in the
stimulation condition explored the obstacle, the edge, the threat area and the entire
arena as much as the control group (Fig. 3.1f, Fig. 3.4a,c).

3.2 Interrupting edge-vector runs abolishes
subgoal learning

We next measured the impact of blocking edge-vector runs on subgoal learning. After
the 20 min exploration period, we elicited escape behavior using a loud, unexpected
crashing sound. Mice triggered an auditory threat stimulus automatically by entering
the threat zone and staying there for 1.5 seconds. Escape routes were quantified
using a target score and classified as targeting the obstacle edge (‘edge vector’) or
the shelter (‘homing vector’) as in the previous chapter.

First, we acquired a negative-control distribution by letting a group of mice
explore and escape in an open-field environment with no obstacle (n=8 mice; same
viral injection and implantation procedure as above). As expected from previous
work (Vale et al., 2017), mice generally responded to threats by turning and running
directly along the homing vector (Fig. 3.5a). Second, we examined escapes in a
positive-control condition known to generate subgoal learning. After the laser-off
group explored the arena with the obstacle and shelter for 20 minutes, we removed
the obstacle and triggered escapes (2-30 minutes later, IQR: 8-17 minutes). We
found that 42% of escapes were directed toward the obstacle edge location, despite

59



3. Action-driven mapping

Figure 3.2: Optogenetic stimulation of right premotor cortex
(a) Left: example viral injection and optic fiber implantation site. M2: supplementary
motor cortex (premotor cortex), PrL: prelimbic cortex, MO/LO/VO: medial/later-
al/ventral orbital cortex, AI: agranular insular cortex. Right: Putative optic fiber
tip locations are overlaid on brain-slice diagrams adapted from Paxinos and Franklin,
2019. AP and ML coordinates are relative to bregma, and DV coordinates are
relative to the brain surface. (b) Locomotion following a 2-sec, 20-Hz, 30-mW pulse
wave (duty cycle 50%) of 473-nm light in implanted mice. Each mouse received 4
trials at each laser power, sequentially interleaved. n = 4 mice. Lines ordered by the
distance and direction of movement following laser onset. (c) Trajectories before and
after laser stimulation, for the edge-vector blocking protocol. (d) Place preference
assay. For the occupancy heatmap, stimulation is shown as if it were on the left side
for all mice. (e) Occupancy in the stimulation chamber is not significantly below
50%. p = 0.7, Wilcoxon signed-rank test.

the obstacle being gone (‘edge vectors’; 26 total escapes on the left side; more edge
vectors than in the open field: p=0.003, permutation test; Fig. 3.5a-b). This result
is consistent with ch.2, where we found that these edge-vector escapes reflect the
memorization of a subgoal location.

Third, we tested the laser-on group, which explored with an obstacle and shelter

60



3.2. Interrupting edge-vector runs abolishes subgoal learning

Figure 3.3: Behavioral platforms for ch. 3
(a) The platform with the wall obstacle. The platform is 92 cm in diameter, and the
wall obstacle is 50 cm long x 12.5 cm tall. The shelter is 20 cm wide x 10 cm deep x
15 cm tall. It is made from red acrylic that is opaque to the mouse but transparent
to red and infrared light. The mouse has just run to the right obstacle edge. (b)
The platform with no obstacle. A central panel (50 cm wide x 10 cm wide) with the
obstacle has been replaced, and a flat panel has been slotted in, in its place. The
mouse is sitting in the shelter.

but had their exploratory edge-vector runs interrupted. After removing the obstacle,
threat-evoked escape routes resembled the paths taken in the open-field condition
rather than the subgoal-learning group (13% edge vectors; 23 escapes (left side);
fewer edge vectors than in the laser-off condition: p=0.03, and not significantly more
edge vectors than in the open field: p=0.2, permutation tests; Fig. 3.5a-b). Thus,
interrupting spontaneous edge-vector runs abolished subgoal learning.

An alternative explanation could be that these mice did learn subgoals, but the
stimulation during edge-vector runs taught them to avoid expressing edge-vector
escapes. To address this possibility, we repeated the stimulation experiment (n=8
mice), this time allowing mice to perform two spontaneous trip-wire crossings without
interruption. We then subjected them to the same edge-vector-blocking protocol as
above, blocking about three runs (3 [1.75, 4.25] laser trials per session (median [IQR])
lasting 16 [5.5, 26.5] secs in total; Fig. 3.6a). Removing the obstacle and triggering
escapes now revealed robust subgoal behavior (65% edge vectors; n=23 escapes (left
side); more edge vectors than in the open field: p=3× 10−4, and not significantly
fewer edge vectors than the laser-off condition: p=.9, permutation tests). This shows
that our manipulation does not reduce the use of subgoals once they are learned and
therefore suggests that edge-vector runs are causally required for learning subgoals.
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Figure 3.4: (No) effect of optogenetic stimulation on exploration
(a) Occupancy heatmaps are smoothed with a gaussian filter (σ = 1 cm). (b) Runs
from all eight mice in each condition. Right: note that homing runs do not reach the
left obstacle edge due to the closed-loop optogenetic stimulation. (c) Everywhere
except the shelter: p = 0.2; threat half: p = 0.5; obstacle: p = 0.1, edge: p = 0.5,
permutation tests. (d) Total number of homing runs (trajectories shown in panel b):
p = 0.15. (e) Runs reaching the left edge: p = 3× 10−5, permutation test.

Blocking edge-to-shelter runs does not affect subgoals

Spontaneous edge-vector runs are often followed by an edge-to-shelter run. After
completing an edge-vector run, mice in the laser-off condition reach the shelter within
2.5 [1.7,10] secs (median [IQR]), generally taking direct paths (spatial efficiency:
.87 [.47, .95]; 1.0 corresponds to the direct path). We therefore considered whether
edge-vector runs support subgoal learning because they are part of a sequence of
actions that quickly brings the mouse from the threat zone to the shelter.

To test whether edge-to-shelter runs are important for learning, we repeated
the stimulation experiment (n=8 mice), but with a new trip-wire location. Using
10-sec laser pulses, we stopped movements from the left obstacle edge toward the
shelter (restricted to edge-to-shelter movements that occurred after having crossed
the original trip wire, i.e. the second phase of a threat-area-to-edge-to-shelter run;
3 [2, 3.25] laser trials per session (median [IQR]) lasting 25 [20, 30] secs in total;
Fig. 3.7a). Due to this manipulation, edge-vector runs on the left side were followed
by long, slow paths to shelter (seconds to shelter: 29 [18, 55]; spatial efficiency: .28
[.13, .37]; slower than the laser-off condition: p=1× 10−3; less spatially efficient than
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Figure 3.5: Interrupting spontaneous edge-vector runs abolishes subgoal learning
(a) Black traces show exploration during an example session. Lines and silhouette
traces show escape routes from threat onset to shelter arrival. Analysis is limited
analysis to escapes on the left side of the platform. n=8 mice per condition. (b)
Summary of escape trajectory data.

the laser-off condition: p=2× 10−3, permutation tests). Despite this effect, removing
the obstacle and triggering escapes revealed robust subgoal behavior (55% edge
vectors; n=23 escapes (left side); Fig. 3.7b-c; more edge vectors than in the open field:
p=1 × 10−4, and not significantly fewer edge vectors than the laser-off condition:
p=.8, permutation tests). Thus, for their causal role in subgoal learning, edge-vector
runs do not need to be rapidly followed by the extrinsic reward of entering the shelter.
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Figure 3.6: Blocking edge-vector runs after allowing two runs
(a) Schematic of stimulation blocking all but the first two edge-vector runs. The
example shows four seconds after laser onset: the mouse was stimulated for two
seconds, and then ran toward the center of the obstacle. (b) Escapes after obstacle
removal. (c) Summary of escape trajectory data.

This result also supports the argument that optogenetic stimulation at the left edge
does not teach the mice to avoid passing by that location during escapes.

Figure 3.7: Blocking edge-to-shelter runs
(a) Blocking left-edge-to-shelter runs. In the example trial, the mouse was stimulated
for ten seconds, and then ran toward the center of the platform. (b) Escapes after
obstacle removal. (c) Summary of escape trajectory data.

3.3 Subgoal-escape start points are determined
by spatial rules

The results from the previous experiment suggest that learning subgoals with edge-
vector runs is not simply a matter of reinforcing actions that lead to the shelter.
This fits with the finding in ch. 2 that these subgoals are stored as allocentric
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locations rather than egocentric movements, and it raises the possibility that the
learning process combines actions and spatial information. To explore this further,
we investigated the rules governing the set of locations from which mice initiate
memory-guided subgoal escapes - the ‘initiation set’ of subgoal escapes. We aimed
to determine whether the initiation set is 1) spread indiscriminately throughout the
environment; 2) restricted to the vicinity of previous edge-vector-run start positions;
or 3) related to the spatial layout of the environment, independent of past actions.
Option 1 would be expected if mice learned to execute edge-vector actions without
taking into account their starting location; option 2 would be expected if mice learned
to repeat edge-vector actions based on proximity to previous successful actions; and
option 3 would be expected if mice selected the subgoal strategy through a map-based
process. We first repeated the obstacle removal experiment but now elicited escapes
from in front of the obstacle location, near to the shelter (n=8 mice with no laser
stimulation, 28 escapes; Fig. 3.8a). From this starting point, mice did not escape by
running toward a subgoal location but instead fled directly to shelter. This result
suggests that the initiation set is spatially confined rather than indiscriminate.

Figure 3.8: Obstacle-removal escapes with a modified threat zone
(a) Escapes triggered after obstacle removal, using the new threat zone (dotted
lines). Only 1/28 escapes (the green trace) begins by moving toward the obstacle
edge location; however, this appears to be a continuation of the pre-threat movement
rather than a genuine subgoal. (b) Escapes triggered after obstacle removal, using
another new threat zone (dotted lines).

Next, we tested whether the initiation set is confined to the area in which
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spontaneous edge-vector homing runs had previously occurred. We modified our
laser stimulation experiment with a new trip wire location, so that edge-vector
runs were allowed from a section of the arena next to the threat zone, but were
interrupted if they started within the threat zone (n=8 mice; 2 [1.75, 4] laser trials per
session (median [IQR]) lasting 4 [6, 9] secs; Fig. 3.9a,b). As before, laser stimulation
succeeded in blocking edge-vector runs from the threat zone. In this configuration,
however, mice were still able to execute edge-vector runs starting from the area
to the left of the threat zone (illustrated by the leftmost gray arrow in Fig. 3.9a).
Removing the obstacle and triggering escapes in this cohort revealed robust subgoal
behavior (63% edge vectors; n=19 escapes (left side); Fig. 3.9b-c; more edge vectors
than in the open field: p=6× 10−4, and not significantly fewer edge vectors than the
laser-off condition: p=.8, permutation tests). Thus, the initiation set for subgoal
escapes extends beyond the locations in which successful edge-vector runs have been
initiated (Fig. 3.9b inset). This result also reaffirms that optogenetic stimulation
does not teach mice to avoid paths that are blocked by laser stimulation during
exploration.

Figure 3.9: Subgoal escapes do not need to start near practice runs
(a) Blocking threat-zone-to-left-side runs with a new trip-wire location. The dotted
gray line outlines the threat zone used in this experiment. In the example trial, there
were two consecutive trip-wire crossings (2-sec stimulations), then the mouse moved
back toward the threat zone. (b) Escapes after obstacle removal. Inset: All start
locations for spontaneous edge-vector runs (light green) and subsequent edge-vector
escapes (dark green). (c) Summary of escape trajectory data.

To more precisely examine the impact of spatial location on subgoal behavior,
we repeated the obstacle removal experiment with a larger threat zone, located
between the obstacle location and the original threat zone (n=8 mice, 53 escapes;
no laser stimulation; Fig. 3.10a, Fig. 3.8d). By combining these escapes with the
original threat zone data, we could test the relationship between the location of
escape onset and the tendency to use a subgoal, using logistic regression (n=40
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total sessions, 207 escapes; Fig. 3.10b-d). We found that being closer to previous
edge-vector runs was not significantly related to the likelihood of executing edge-
vector escapes (McFadden’s pseudo-R2=0.086; p=0.5, permutation test; Fig. 3.10g,
Fig. 3.8c-d); in fact, the non-significant relationship tended toward greater distance
from an edge-vector run predicting a higher likelihood of edge-vector escapes. In
contrast, a number of spatial metrics were effective predictors of edge-vector escape
probability (Fig. 3.10f-g, Fig. 3.8c-e). These include the distance from the obstacle
(pseudo-R2=0.28; p=0.007; values of 0.2-0.4 represent ‘excellent fit’ (McFadden,
1977)), the distance from the central axis of the platform (the axis perpendicular
to the obstacle; pseudo-R2=0.26; p=0.01), the distance from the shelter (pseudo-
R2=0.29; p=0.006), and the angle between the edge-vector and homing-vector paths
(pseudo-R2=0.29; p=0.006). Thus, the initiation set is defined in relation to the
layout of the environment rather than proximity to previous successful actions.

Figure 3.10: Subgoal-escape start points are determined by spatial rules
(a) Four example escapes triggered after obstacle removal, using the new threat
zone. (b) Data from all obstacle-removal experiments are combined here (with the
exception of the block-edge-vectors experiment). In this visualization, right-sided
escapes are flipped horizontally in this visualization; thus, all the green dots can be
seen as left-edge vectors. Each dot represents one escape. (c) Three spatial metrics
used to predict the likelihood of executing an edge-vector escape. Silhouettes: an
example escape. Black bar: the distance being measured. Thin orange lines: the
mouse’s history of practice edge-vector runs. (d) The strength of the relationship
between each metric and the odds of executing edge-vector escapes, measured by
McFadden’s pseudo-R2 and a permutation test using 10,000 random shuffles of the
edge-vector/homing-vector labels. (e) Akaike Information Criterion (AIC) analysis
on a logistic regression with different predictors. ∆AICi = AICi − AICmin where
AICmin here is the AIC from the model with the single, distance-from-central-axis
predictor.

We next analyzed whether a two-dimensional spatial-location predictor fit the
data better than a one-dimensional predictor by applying the Akaike Information
Criterion (AIC) analysis to the logistic regression model (Fig. 3.10h). If the initiation
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set were fully explained by the mouse’s perception of which side of the obstacle it is
on, or of how close to the shelter it is, then combining multiple spatial predictors
should not improve the model (i.e., AIC should increase). On the other hand, if mice
use their 2D position within the environment to select whether to use a subgoal, then
using 2D spatial information should improve the model (i.e., AIC should decrease).
In line with this possibility, using only distance from the obstacle (i.e. distance along
the y-axis) gave an AIC of 206.8, using distance from the central axis (i.e., distance
along the x axis) gave an AIC of 212.9, and using both dimensions as input gave an
AIC of 200.5. The AIC decrease of 6.3 from the model using obstacle distance only
falls within the ∆AIC range of 4-7, indicating that the combined, 2D model has
‘considerably’ more support than either 1D model (Burnham and Anderson, 2004).
We found similar results when we compared using distance from the shelter only to
using both distance from the shelter and distance to the central axis (AIC decrease
of 5.8). Thus, mice’s selection between subgoal vs. direct routes is modulated by
their two-dimensional starting position within the arena.

3.4 Interim discussion

When a mouse investigates a new environment, it does not act like a ‘random agent’.
Instead, its exploration consists of purposive, extended, sensorimotor actions. In this
chapter, we have demonstrated that one such class of movements - running to an
obstacle edge that grants direct access to a goal - plays a causal role in the process
of gaining useful spatial information about the environment.

As discussed in ch. 2, typical spatial learning models rely on two steps to explain
allocentric behavior: 1) constructing an internal map of space by observing how
locations and obstructions in the environment are positioned relative to each other;
2) determining a goal location; and 3) using this map to derive a useful subgoal
location, computed either at decision time or in advance during rest (Spiers and
Gilbert, 2015; Edvardsen et al., 2020). This process is well suited for agents that
learn by diffusing throughout their environment, be it randomly or with a bias
toward unexplored territory (Schulz and Gershman, 2019). However, it does not
account for the prevalence of goal- and object-oriented actions in natural exploratory
patterns (Crowcroft, 1966; Schulz et al., 2017).

We thus explored a potential role for a fourth process: executing ‘practice runs’
to candidate subgoal locations during exploration. This idea follows from a strain of
research in the cognitive sciences called sensorimotor enactivism (Ward et al., 2017),
as mentioned in the previous chapter. Here, we made the innovation of combining
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a key enactivist principle - the importance of intrinsically motivated actions for
learning - with the causal perturbation techniques and spatial behaviors available
in rodent neuroscience. Specifically, we used closed-loop optogenetic stimulation
of M2 to interrupt edge-vector practice runs, and we found that this manipulation
abolished subgoal escape routes.

It is important to note that this effect does not inform us about the role that
M2 may play in computing subgoals. That question is not the point of this study.
Notably, three of the M2 stimulation protocols spared edge-vector runs, and these
manipulations did not impair learning. Thus, stimulating M2 does not intrinsically
affect spatial learning. Only when M2 stimulation interrupted practice edge-vector
runs did we see the effect. Our results therefore indicate that the edge-vector actions
themselves are necessary for triggering subgoal memorization.

Ideally, the premotor-cortex stimulation works by causing the mouse to suddenly
‘decide’ to abort the edge-vector run. If it instead works by punishing edge-vector runs
or by causing the mouse to experience an invisible barrier, our claim about practice
runs’ role in learning would be less certain. The three control experiments were
designed to test this, and they showed a clear pattern in which only the manipulation
that blocked all edge vectors blocked learning. Still, if there is a control experiment
that we overlooked, our claim should be tempered. One way to gain more certainty
would be to find a manipulation that specifically causes the mouse to decide to make
an edge-vector practice run and to see if this accelerates subgoal learning.

Based on the specificity of the correlation between practice runs on one side
of the obstacle and edge-vector escapes to that same side (ch. 2), we expect this
manipulation to only affect subgoals located at the left obstacle edge. Thus, we
restricted analysis to escapes that passed closer to that edge. While subgoal escapes
on the other side were not significantly reduced, there was a trend in that direction.
Future replications of this experiment would benefit from a larger dataset of escapes
on both sides so that this question can be answered more definitively.

One interpretation of the need for practice runs in learning could be that subgoal
behavior is a naturalistic form of operant conditioning. In this view, edge-vector
runs are followed by reinforcement and then simply get repeated in response to
threat. This framework could explain why edge-vector responses persist after obstacle
removal: they are habits that have not yet been ‘extinguished’. On the other hand,
subgoal learning diverges from instrumental learning in two ways: it operates within
an allocentric framework (seen as distinct from the response strategy (Restle, 1957;
Packard et al., 1989; Doeller et al., 2008; Geerts et al., 2020)), and it only requires
1-2 practice runs (even simple instrumental training takes tens of learning trials
(Baron and Meltzer, 2001)). More importantly, the set of locations from which mice
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initiate subgoal escapes are defined by the mouse’s spatial position relative to the
obstacle and shelter, and not by their proximity to previous edge-vector runs. The
concepts of action and reinforcement are therefore insufficient for explaining subgoal
memorization; an internal map of space must also be invoked.

One of the key experiments demonstrating the specificity of the edge-vector
manipulation was the experiment in which we interrupted edge-to-shelter runs. The
lack of effect in this condition suggested that practice runs only need to arrive at
the obstacle edge to trigger learning, and not all the way to the shelter. This raises
the question of how edge-vector runs are associated with shelter such that subgoal
learning can occur. There are a variety of possibilities. From a response-learning
perspective, mice could perceive the shelter upon passing the obstacle edge and
therefore experience reward. If the shelter is too distant to be seen or smelled,
instrumental chaining (Hull, 1934; Gollub, 1977) could be used. This is a known
phenomenon in which an action is rewarded for arriving at the starting point of a
different action that is associated with reward. Thus, assuming that the edge-to-
shelter run has previously been performed and rewarded, running to the obstacle
edge would itself positively reinforce the edge-vector action. Alternatively, a mapping
strategy is possible. In this case, mice could ‘connect the dots’ of their topological
spatial map, inferring that since the threat zone and obstacle edge are connected
and the obstacle edge and shelter are connected, that the obstacle edge could be a
subgoal. Our intuition is that the true explanation will be a combination of all of
these possibilities.

Finally, we showed that the decision of subgoal vs. homing-vector escapes is
modulated by the animal’s spatial position in a way that does not reflect proximity
to previous practice runs. For one, we used an optogenetic manipulation to show
that subgoal escapes are not reduced when they are required to start outside of
the bounds of previous edge-vector runs. Second, an analysis of starting positions
and edge-vector escape likelihood revealed a significant propensity to use subgoals
when the mouse is further back from the obstacle location and farther from the
arena’s central vertical axis. There are several possible explanations of this pattern.
First, it could reflect the outcome of a spatial cost-benefit analysis: the preferred
subgoal-escape starting points are in the locations where the subgoal route is almost
as short as the homing vector. Second, it could indicate that the memory-guided
escape strategy is only used when the animal is so far away from the shelter or
obstacle’s center that the animals know that they cannot rely on local visual cues.
One final possibility is that the mouse clusters its spatial map of the arena into
regions with similar features. In that case, subgoal actions might generalize across
the back perimeter region but not to the region right in front of the obstacle.
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Contributions

Panagiota Iordanidou performed the histology processing to confirm the location of
the injections and implantations in the brain.
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Chapter 4

Reinforcement learning models of escape
behavior

4.1 Introduction to RL models of navigation

The key concepts from experimental psychology and behavioral neuroscience that
we have been using, such as ‘habits’ or a ‘cognitive map,’ do not exactly map onto
the complex, spontaneous mouse behavior of subgoal escapes. Our next aim was
therefore to model our results through the lens of a distinct perspective that could
uncover some of the general computational principles of subgoal learning, or at
least principles whose conceptual baggage is complementary to that of behavioral
neuroscience.

We selected reinforcement learning (RL) as our modelling strategy. RL is a
branch of machine learning that addresses how to make decisions in an environment
in order to gain the maximum amount of future rewards (Sutton and Barto, 2018).
To approach this problem, RL uses the formalism of a Markov decision process
(MDP). An MDP expresses the agent-environment complex as a set of states, a set
of possible actions, and a function defining what happens upon taking a particular
action in a particular state. Two possible things can happen after each action: a new
state can be reached and a reward can be given to the agent. States can be defined as
physical locations within an environment, but they could also be physiological states
such as hunger, abstract states such as proximity to a subgoal, or some combination
of these. The job of the agent is to devise the action policy that will culminate in
the most reward. If the states are physical locations, actions are movements between
neighboring locations, and rewards are given when the agent reaches a goal location,
then the RL problem becomes equivalent to a spatial navigation problem.

We chose to model spatial navigation using RL for three principal reasons. First,
RL is in the zeitgeist of contemporary systems neuroscience and will therefore
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Figure 4.1: The core reinforcement learning models we selected
(a) Schematic of our core reinforcement learning models. Q-learning updates a table
of values for each state-action pair. Successor Representation updates a matrix
recording how much each state predicts future occupancy in each other state, as well
as a table of how much reward is in each state. Our model-based agents updates a
list of stats, a graph of connections between each state, and a label of the amount of
reward in each state.

be accessible to a neuroscience audience. This makes sense since RL has, from its
inception, been deeply tied to neural and behavioral models of trial-and-error learning
in animals (Sutton and Barto, 2018). Second, RL has previously been used to explain
findings from behavior and neural activity during rodent navigation (Spiers and
Gilbert, 2015; Stachenfeld et al., 2017; De Cothi et al., 2022), giving us a starting
point of specific algorithms to test. Third, and most important, with RL it is not
necessary to hardcode a solution the route-planning problem. Instead, RL provides
a spectrum of high-level algorithms for solving the generic problem of maximizing
reward extracted from a given environment (Sutton and Barto, 2018). Therefore, we
can set these models in motion on simulations of our behavioral experiments and
discover unexpected computational insights.

Three main hypotheses have emerged from the small field of modelling navigation
behavior with RL. The first is that the hippocampal map vs. basal-ganglial-habits
dichotomy is equivalent to the model-based vs. model-free distinction in RL (Spiers
and Gilbert, 2015). Model-based algorithms learn a representation of the structure
of the environment (e.g. a map of which locations have obstacles, are empty, and/or
contain a reward) and use it to calculate the best series of actions to get to a reward.
These methods are highly data efficient but the planning procedure, e.g. searching
the model for all possible routes to a goal, comes with considerable computational
complexity and overhead. Model-free algorithms instead assign a single value to
each possible action in each location, gradually updated throughout the agent’s
history of taking actions and receiving rewards; they then select routes by taking the
highest-value action at each step. This approach makes the action selection process
simple and straightforward but at the cost of slow updating.

The second hypothesis is that the model-based system here is implemented
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through an algorithm called the Successor Representation (SR; Russek et al., 2017;
Stachenfeld et al., 2017; De Cothi et al., 2022). The SR represents a compromise
between model-free and model-based learning, with an updating speed and computa-
tional complexity somewhere in-between those two approaches. Since we implement
the SR in the following section, it is described in more detail below and in the
methods section.

Finally, it has been proposed that hierarchical reinforcement learning (HRL;
Sutton et al., 1999) provides a better fit for behavioral (Tomov et al., 2020) and
neural (Ribas-Fernandes et al., 2011) data than standard RL. In standard RL setups,
agents select among low-level actions at each time-step (e.g. moving a small amount
toward the left). In HRL, agents can also select and attribute value to high-level
actions, groups of low-level actions that sequentially implement a subroutine (e.g.
moving to the door connecting two rooms). Breaking down complex problems into a
series of sub-problems can vastly reduce the complexity of learning and is well suited
to transferring knowledge (i.e. how to perform a particular sub-task) to new tasks.
HRL is thus particularly well suited to modelling subgoal behavior.

4.2 Modelling navigation in the obstacle-removal
experiment

Figure 4.2: Reinforcement learning models of mouse escape behavior
(a) Gray traces represent paths taken during exploration/learning. The training
map here is the map used in condition 1. Accessible states are white; blocked states
are in black; rewarded states are red. Middle: a representative pre-test phase. Right:
an example "escape" trajectory from the threat zone (asterisk) to the shelter (red
square). (b) The training-phase exploration was a random walk punctuated with
practice runs. Each ’S’ represents a start point for the hard-coded action sequence
and each arrow head represents the terminal state. The sequences were triggered
with probability p=0.2 upon entering each start state. (c) We segmented the arena
into regions, shown here, for the hierarchical state-space agent. Each colored region
represents a distinct state. When executing the policy, the agent selects a neighboring
high-level region to move to. It then proceeds from its current location to the central
location indicated by the asterisk in that high-level region.
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We used a panel of RL algorithms that have previously been used to model
navigation (Russek et al., 2017; De Cothi et al., 2022) in a tractable grid-world
environment based on our experimental setup. The three core algorithms we used
were model-free tabular Q-learning, the Successor Representation (SR; Dayan, 1993),
and (topological) model-based tree search (Fig. 4.1). The tabular Q-learning agent
incrementally learns the value of each of the 944 state-action pairs (e.g., "go northwest
from the shelter state"), based on its history of receiving rewards. The SR also
computes state-action values, but it does so differently. It updates two separate rep-
resentations: a spatial representation measuring which locations tend to follow each
state-action pair and a reward representation. It then combines this information to
compute the estimated value of each state-action pair. Third, the model-based agent
does not update action values at all. Instead, it updates a graphical representation
of the arena and searches through this graph to calculate optimal routes to the
reward. This model is different from the other two algorithms in two big ways: it
uses model-based search and it updates its model immediately after visiting a state.
To disambiguate these difference, we added a model-based agent that updates its
model gradually, taking into account its past 15 observations of each edge in the
graph to decide if two adjacent states are connected or blocked by a barrier.

Similar to the experiments in mice, all simulations include a training map (e.g.
the arena with an obstacle present) and a test map (e.g. the arena with the obstacle
removed) and take place over three phases (Fig. 4.2a). First is the training phase,
where the agent explores a training map for a duration long enough to learn a
route from the threat zone to the shelter (Table 6.4). Importantly, this phase also
includes stochastically generated practice-run sequences from the threat zone to the
obstacle edge and from here to the shelter, to mimic the natural exploratory pattern
observed in mice (Fig. 4.2b). The next phase is the pre-test phase, which takes
place in the test map. In this phase, the agent starts in the shelter and executes a
random-exploration movement policy until reaching the threat zone. Finally, there
is a test phase: executing the learned policy in the test map, starting from the
threat zone. The pre-test and test phases are repeated three times per seed (with a
total of 100 seeds), similar to how each mouse performs several escape trials. We
selected four particularly revealing behavioral and optogenetic experiments to model
in silico using this procedure. All test maps have a shelter and no obstacle, so the
only difference between the four experimental conditions is the training map.
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Figure 4.3: Reinforcement learning models of mouse escape behavior
(a) Escape runs from all three trials of all 100 random seeds in all four conditions.
All trials are superimposed, with high transparency. Beneath each plot is a bar
chart representing the proportion of each type of escape. In the training map of
conditions 3-4, the one-way trip wire is represented by the blue line, and the blue
arrows indicate all of the transitions that are blocked. (b) The qualitative mouse
behavior in each condition and the type of RL agent that matches this behavior. In
condition 1, the model-based (gradual) agent’s behavior is shown. In condition 2,
the Q-learning agent’s failed trajectories and the model-based (immediate) agent’s
homing-vector escapes are shown. In condition 3, the SR agent’s failed trajectories
and the model-based (immediate) agent’s homing-vector escapes are shown. In
condition 4, the hierarchical-state-space Q-learning agent’s trajectories are shown.

A dual reinforcement learning system matches mouse
behavior after obstacle removal

The first training map corresponds to the basic obstacle removal experiment (Fig. 4.3a-
b). Here, the training map has an obstacle and a shelter (i.e., a reward). After
exploration in this condition, mice tended to execute edge-vector escape routes in
the test phase. Similarly, the Q-learning, SR, and gradual model-based (MB-G;
Fig. 4.4a) agents all exhibited persistent escape routes around the obstacle. The
immediate-learning model-based (MB-I), on the other hand, was able to update
its model during the test-map exploration and compute the new, fastest route to
the shelter 94% of the time. The differentiating factor here is whether the agents
update their policy immediately upon observing the changed environment (MB-I) or
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incrementally/stochastically (all others). In the latter case, the pre-test exploration
is too brief to learn the homing-vector path.

In the second condition, the training map has an obstacle but no shelter (Fig. 4.3a).
Mice in this experiment (ch. 2) failed to learn edge-vector routes and instead escaped
using homing vectors. The only agent to take homing vectors here - MB-I (92%
homing vectors) - was the agent that did not persistently execute edge vectors in
condition 1. The remaining agents differed in their behavior. The SR (100% edge
vectors; Fig. 4.3a) and MB-G (93% edge vectors; Fig. 4.3b) agents learned edge
vectors, thanks to their ability to separately solve spatial-learning problems even in
the absence of reward. Q-learning came closer to the behavioral data: it failed to
learn edge vectors (100% non-escape; Fig. 4.3a). This agent cannot learn without
reward in the environment, so it was unable to come up with any escape route in
this condition.

Overall, mice exhibit a pattern unlike any of these RL agents. Mice fail to
immediately learn a homing-vector path in condition 1, but they do immediately
learn the homing-vector path when they do not have a memorized policy in place
(condition 2). For the RL models, this represents a paradox: the models that learn
fast enough to run straight to shelter in condition 2 will also do so in condition 1.
What does work here is a dual system that can switch between flexible and inflexible
learners depending on the situation (Daw et al., 2005; Geerts et al., 2020). For
example, an agent could contain both a Q-learning and an MB-I system. When the
Q-learning model suggests an action with a positive value above some threshold,
then the agent will take that action. If no such action is available, as in condition 2,
then the immediate model-based system is invoked to find a novel route (Fig. 4.3b).
This dual system matches mouse behavior on conditions 1-2.

Behavior with the full trip wire is matched with non-uniform
exploration and on-policy learning

Next, we added the optogenetic trip wire to our modelling environment. In addition
to the obstacle and shelter, the training map now contains one-way obstacles blocking
paths from the threat area to the obstacle edge. The mice in this experiment again
failed to learn edge-vector routes. We are thus looking for a gradual learning system
that fails to learn viable escapes with the trip wire present, thereby triggering the
backup immediate learner. For Q-learning (98% tortuous routes around both trip
wire and obstacle; Fig. 4.3a) and MB-G (78% tortuous routes; 19% homing vectors;
Fig. 4.4a), the trip wire simply adds an additional detour. These agents are perfectly
able to learn tortuous routes around both the trip wire and the obstacle. This
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Figure 4.4: Reinforcement learning models: extended results
(a) Results for the gradual-learning model-based agent. (b) Results for the successor
representation and Q learning, with random exploration (no practice runs). (c)
Results for the SARSA agent. This agent is similar to tabular Q-learning, but
it learns on-policy (the policy it converges to depends on its exploration policy).
(d) Results for Q-learning with tile coding. Instead of a representing each state
individually, tile-coding agent represents its approximate location with a set of n x n
tiles.

appears to represent another paradox for the RL agents: models that memorize
routes around the physical barrier will tend to do the same with the trip wire.

The SR agent (70% non-escape; Fig. 4.3a) learns routes around the obstacle in
condition 1 but struggles with the trip wire here. This agent is able to overcome
that paradox for two reasons. The first reason is the presence of practice runs in the
training phase. With a fully random policy, the SR agent is able to learns routes
in condition 3 just as quickly as in routes in condition 1 (Fig. 4.4b). Thus, it is
the practice edge-vector runs that predispose this agent to learn edge-vector routes
faster than other, arbitrary paths through space. The second reason is that, unlike
Q-learning, our SR implementation is an on-policy learner (Sutton and Barto, 2018).
This means that value that it attributes to an action depends on how much that
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action actually led to the shelter during the training period. Since uninterrupted
practice-run action sequences are possible only in condition 1, edge-vector actions
are able to rack up high value faster than the meandering actions leading around
the trip wire in condition 3. In line with this explanation, an on-policy variant of
Q-learning (SARSA) with practice runs behaves similarly to the SR here: it also
often fails to find routes in condition 3 but not condition 1 (Fig. 4.4c). Thus, the
pattern of exploration we observe in mice - slow meandering exploration punctuated
by rapid edge- and shelter- directed runs - can explain why an on-policy learner
would learn edge-vector runs in condition 1 but fail to learn a route in condition 3.

Behavior with the partial trip wire is matched with
state-action abstraction

Our final condition (condition 4) mimics the optogenetics experiment in Figure 4.
This partial trip wire blocks edge-vector runs from the threat zone itself but not
from other, nearby locations. Unlike in the previous condition, mice were perfectly
able to learn direct edge-vector escapes here. The gradual-learning RL agents, on the
other hand, all executed tortuous routes around both the trip wire and the obstacle
(Q-learning: 98% tortuous routes; SR: 90% tortuous routes; MB-G: 81% tortuous
routes, 17% homing vectors; Fig. 4.3a, Fig. 4.4a). To match mouse behavior on
both condition 3 and 4, an RL agent would need to run through the line where the
trip wire was during training, instead of taking a step-by-step route around it. In
addition, it would have to infer the availability this direct edge-vector route based
on nearby but non-identical practice runs during the training phase.

We reasoned that an agent with a coarse-grained state space could possess
these features. We first tried implementing Q-learning with a coarse-grained state
representation designed to promote spatial generalization (tile coding; Sutton, 1995).
This agent’s behavior, however, was not substantively different from tabular Q-
learning (98% tortuous routes; Fig. 4.4d). Next, we tried a more targeted state-action
abstraction protocol akin to hierarchical reinforcement learning. We divided the
state space into groupings of grid squares (e.g. the shelter area, the left obstacle
edge area) and the action space into vectors connecting those regions (Fig. 4.2c).
(Note that we could have used a more sophisticated state-action abstraction scheme
such as the options framework (Sutton et al., 1999) but found this to be the most
direct solution to condition 4). This Hierarchical State Space (HSS) Q-learning agent
explores using the same random walk policy on the full-resolution training map,
but updates its controller only with respect to transitions between the high-level
regions. As expected, this agent was able to learn edge-vector escapes even with
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Figure 4.5: Hierarchical agent learning speed and behavior
(a) Learning curves plot the amount of reward received from a trial run in the test
map (going from threat zone to shelter) over number of training steps. For the
learning curves, there is no pre-test phase. The trial terminates when the agent
reaches the shelter or at a maximum number of 50 steps. Since negative reward
is given at each non-reward state, the minimum reward is approximately -0.5. (b)
Results with the hierarchical state-space agent using the SARSA algorithm, with
practice runs during exploration. Assuming a homing-vector agent takes over when
this agent fails to come up with a route, this agent qualitatively matches mouse
behavior on all four conditions: edge vectors in condition 1 and 4 and failure to learn
a route in conditions 2 and 3. The orange dot in condition 3 indicates selecting an
invalid action.

the partial trip wire in place (94% edge vectors; Fig. 4.3b, Fig. 4.5b). Notably, the
HSS agent can learn a valuable ‘threat area to obstacle edge area’ action without
ever having taken that action from the exact grid cell where the escape is triggered.
These high-level actions also better match the smooth, biphasic escape trajectories
we see in mice and generate a much faster learning profile (Supp. Fig. 4.5a). In
addition, the regional state representation fits nicely with our finding that mice use
a spatially defined ‘subgoal initiation set’ from ch. 3.

To summarize, the vanilla RL agents we tested were not effective at matching
mouse behavior across more than one or two experimental conditions. However,
the following principles did allow agents to match mouse behavior across multiple
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conditions:

1. The agent includes a gradual-learning system (e.g. Q-learning, SR, MB-G;
condition 1)

2. This system does not fully separate spatial and reward learning (e.g. Q-learning;
condition 2)

3. The agent experiences non-uniform exploration, with rapid and direct practice
runs toward the obstacle edges and shelter, and learns on-policy (condition 3).

4. This system abstracts over regions of space and the actions connecting those
regions (e.g. HSS Q-learning; condition 4).

5. In addition to the gradual-learning system, the agent has an immediate-learning
system (e.g. MB-I) that comes online when the gradual learner has no valuable
action (condition 2-3).

Having defined these five key computational principles we then built an agent
possessing all of these properties. This agent includes a gradual learning system that
directly learns action values in an on-policy manner (i.e. the SARSA algorithm),
within the high-level state-action space introduced above. The agent performs
practice runs during exploration, and we assume that it switches to a default MB-I
agent in conditions with high failure rates. This agent is able to qualitatively match
mouse behavior on all four conditions, executing persistent edge vectors in conditions
1 and 4 and frequently failing to escape in conditions 2 and 3 (Supp. Fig. ??b).

4.3 Interim discussion

To make the implications of our behavioral results more precise at a computational
level, we performed reinforcement learning modelling of four key behavioral and
optogenetic experimental conditions. These simulation experiments took place in a
simple grid world environment in which the agent experienced its environment as a
series of discretized location indices and could only select from a short list of possible
actions. Upgrading the simulation environment to more realistically represent the
mouse’s experience is an interesting future direction (as in Banino et al., 2018). Here,
we instead capitalized on the simplicity of the simulation in order to extract a set of
basic principles underlying mouse behavior in the obstacle removal experiment.

First, we found that practically any model that updates gradually - be it model-
free or model-based - can match the persistent edge-vector escape result. Our initial
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assumption upon observing this behavioral phenomenon was that mice must be using
a model-free response strategy. However, over time we realized that this assumption
was derived not from any fundamental property of reinforcement learning but rather
from the association in the literature between gradual updating and model-free
action reinforcement (see introduction). Thus, this first result serves to demonstrate
that gradually updated, model-based algorithms are a priori perfectly plausible.

Second, we found that mice exhibit differing levels of flexibility in different
conditions and are thus best modelled through a dual-system agent. The agent we
used included one system that updates a policy gradually and another that learns
much more rapidly (at greater computational cost), which comes online whenever the
first system fails to produce a valuable action. We assessed ‘failure’ here in a largely
qualitative fashion, by noting when a large proportion of escape trajectories failed
to reach the shelter. Other work offers more detailed models of how a dual-system
agent could arbitrate between its two options. A promising example is to calculate
the level of certainty in each system and select whichever system reports a higher
likelihood of achieving a rewarding action (Daw et al., 2005).

To model the rapid learner, we simply used the immediate-learning model-based
system (MB-I). However, there is no reason that the rapid learner needs to be
a classical model-based system. One appealing alternative is the homing-vector
instinct. In this case, the agent could have a hardwired policy of running directly
toward a recently visited shelter. This system would produce the exact same result
as the MB-I agent, namely homing vectors in condition 2 and 3. Moreover, it better
corresponds to known navigation strategies in rodent escape behavior (Maaswinkel
and Whishaw, 1999; Vale et al., 2017) and to our results on homing-vector escape
responses with the obstacle (ch. 2).

The third condition modelled the laser trip wire. With unlimited uniform
exploration, the RL models found valid but convoluted escape routes around the
trip wire. However, with a limited exploration period punctuated with practice edge-
vector sequences, on-policy SR and SARSA agents learned escape routes in condition
1 but not in condition 3. Through the logic of the dual-system agent described
above, this agent therefore invokes the backup homing-vector policy, mirroring mouse
behavior. On-policy learning reflects a conservative learning strategy. This kind of
agent only attributes value to an action if it actually led to future reward or another
valuable action during the exploration period. It is therefore less likely to learn a
valid escape route unless the right kind of practice has occurred.

In addition, the necessity of implementing practice runs here supports the notion
that non-uniform exploratory paths are a crucial factor in modelling mice’s spatial
learning capabilities (McNamee et al., 2021). This makes sense given the highly
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structured nature of mouse exploration, with runs to the shelter and obstacle edges
being much more rapid and direct than paths in the center and perimeter. Still, our
results on condition 3 are only an initial foray into the role of non-uniform exploration
in navigation models. It would be interesting to run an in-depth investigation of
how the exploration statistics we see in mice, such as the propensity to explore
predominantly around the perimeter of the environment and along the obstacle, affect
learning. Another promising approach would be to allow the agents to occasionally
exploit their learned policies during exploration; this is a standard procedure in
RL. Finally, it would be informative to test which RL algorithms are able to match
mouse behavior under the constraint that their exploration pattern follows the exact
sequence of steps that we recorded in mice.

Although these agents matched mouse escape trajectories in condition 3, one
remaining difference from biological learning is the number of runs needed for learning.
Mice required 1-2 runs for their so-called "gradual learning" system to learn the
edge-vector route, while Q-learning and SR agents took tens of practice runs. These
agents would therefore need to be at least an order of magnitude faster in order to
be biologically plausible. One possibility is to construct a value function through
a more data-efficient, model-based learning algorithm than the purely model-free
updating mechanisms we used here (Sutton, 1991; Russek et al., 2017). Another
possibility is to simply imbue certain actions (e.g. running toward salient objects)
with a very high learning rate (Barto et al., 2004). A final, compatible option is
to use a high-level representation of states and actions (e.g. "go from shelter area
to obstacle edge" instead of "go north 10 cm") to speed up learning dramatically
(Sutton et al., 1999).

Indeed, agents that decompose the arena into high-level regions and actions (e.g. a
“threat-area-to-obstacle-edge” action) not only learned on a rapid timescale but they
also matched mice’s capacity for spatial generalization. Unlike "flat" agents, operating
at the level of individual grid-world states, this agent could execute edge-vector
escapes after practicing nearby but non-identical routes.

Hierarchical representations are known to allow for orders-of-magnitude increases
in time and memory efficiency for planning, at the expense of overlooking routes that
do not fit the agent’s high-level spatial representation (Tomov et al., 2020). This
nicely summarizes our intuitions about how and why mice memorize and execute
subgoal escapes even after the direct homing-vector shortcut has opened up. The
hierarchical state-action space also provides a straightforward explanation for our
finding that subgoal escapes were selected based on by spatial rules: the initiation set
could correspond to a spatial region from which mice learned a valuable “go to obstacle
edge” action. How animals might cluster states within their environments into these
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regions remains an interesting, open question (Solway et al., 2014; Stachenfeld et al.,
2017; Tomov et al., 2020).

Integrating a hierarchical state space into Q-learning and SARSA is an example of
a sophisticated spatial representation housed within a model-free learning algorithm.
This illustrates a disconnect between "map-based" and "model-based" methods, which
are often conflated into one joint concept (Spiers and Gilbert, 2015; Geerts et al.,
2020). Here we are invoking a spatial map to define states and actions. However,
we do not need to invoke a model-based search through that map to uncover routes.
While we have not ruled out model-based search, we did find that model-free caching
of state-action values within a hierarchical spatial map is perfectly compatible with
mouse escape trajectories.

Contributions

Sebastian Lee engineered the RL environment used to run the simulations, and we
collaborated on developing the algorithms to model escape behavior.
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Chapter 5

General discussion

5.1 Conceptual overview

In this project, we examined at how mice deal with multistep structure in a new
environment with an obstacle and a goal, on the basis of 20 minutes of self-motivated
exploration. We had to look beyond individual ‘action-reinforcement’ or ‘map-
based’ strategies as they are traditionally described and instead consider a hybrid
approach of action-driven mapping. On the mapping side, mice dynamically selected
routes to subgoal locations in an allocentric reference frame, they displayed spatial
generalization and abstraction, and they learned rapidly. However, to incorporate
information about subgoals into their map, they relied on a process akin to action-
driven learning. In particular, there was slow updating after the obstacle was removed,
there was no learning without a reward, and the subgoal memory was triggered by
instinctive edge-vector runs. In brief, we found that mice use running actions to
learn subgoals within a hierarchical mental map of the environment. While this work
represents an initial case study in one species, we believe that this newly described
strategy - using actions to learn a map of subgoals - represents an important part of
the cognitive toolkit for identifying useful locations in structured environments.

5.2 Methodological innovations

The obstacle removal experiment

Prior work on multi-step spatial reasoning has focused on repeatedly placing an
animal at the start of a constrained maze environment and testing how it learns to
reach a food reward while minimizing erroneous turns (Tolman and Honzik, 1930;
Sharma et al., 2010). These assays have several advantages: they assess long-term
memory over multiple sessions/days; they induce stereotyped paths across animals;
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and they rely on a particularly stable and controllable source of motivation, i.e.,
hunger. However, they also leave out several key aspects of spatial reasoning. For
one, they disregard how animals explore and rapidly compute routes in natural
environments, which include both open space (allowing a much wider range of
possible actions) and obstacles (necessitating multi-step reasoning). In addition,
they lack a stimulus that can trigger immediate, goal-directed behavior. Thus, it is
unclear if the animal’s ‘errors’ reflect a lack of understanding or merely a decision not
to exploit a known route to the goal. Our assay - escape to shelter in the presence of
an obstacle, during a mouse’s first experience outside of its home cage - complements
previous work on maze learning by incorporating these elements into the study of
multi-step navigation.

Studying active learning with neural stimulation

In line with the enactivist framework (Ward et al., 2017), we believe that learning is
best described as a dynamic interplay between the sensory stimuli we perceive, the
internal neuro-cognitive mechanisms we use to update our behavior, and the actions
we take in order to receive the next sensory stimulus. Thus, understanding the
action policies that animals use in order to direct a learning process is just as valid
of a scientific aim as investigating the relevant sensory cues or neural mechanisms.
Previous studies using optogenetics, however, have always focused on the role of the
stimulated or inhibited neuronal population itself (Kim et al., 2017). For example,
a study might inhibit the hippocampus in order to test whether spatial memory
formation is impaired when that region cannot function as normal (Siegle and Wilson,
2014). Here we have identified a novel use case for closed-loop neural stimulation:
testing the causal role of particular actions in a learning process.

To test the causal role of an action, we needed to approximate an answer to the
question: would the mouse have learned a subgoal if it had not decided to execute a
practice edge-vector run? We could have easily just modulated mice’s propensity for
practice runs by modifying the environment (e.g. replacing the wall obstacle with a
hole obstacle as in ch. 2) or the mouse’s arousal level (at the extreme, a sleepy mouse
might execute zero practice runs). However, these manipulations are too indirect,
as they modulate not only practice runs but also a variety confounding factors
such as the overall amount of exploration and the structure of the environment.
Neural stimulation allowed us to specifically impair one class of movements and thus
provided a uniquely direct way to test the causal link between practice runs and
subgoal learning.
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5.3 Key limitations

The behavioral assay

In our behavioral assays, we were able to examine escape routes across different
amounts of experience with an obstacle (0 - 20 min), different light levels (sufficiently
lit or completely dark), and different types of obstacle (a wall and a hole). However,
our assay takes place in a restricted spatial scale (a 1 m environment) and time
scale (learning over 0-30 min). Thus, our findings may not apply to large or tiny
environment or to highly experienced mice.

The RL models

In machine learning, and reinforcement learning in particular, models can be highly
sensitive to hyper-parameters. Different hyper-parameter configurations can lead
to different behaviour even for the same algorithm. This makes it a challenge to
meaningfully compare the algorithms. For instance, the SR model exhibits its ‘classic’
behavior of finding routes to the goal despite the reward not being present during
training (condition 2 in ch. 4) only if its reward vector is initialized to all zeros. A
non-zero reward initialization would have caused the SR model to fail to find routes
to shelter in condition 2 until the agent entered and exited the shelter multiple times.

In general, due to the possibility of hyper-parameters affecting behavior and
the non-exhaustive list of algorithms we tried, we are careful not to fall into the
trap of labelling any particular algorithm as ‘the best match’ to mouse behavior.
We do not even find it sensible to decide whether mice are using model-free or
model-based approaches for subgoal learning. All we can do is to investigate the
causes of behavior across a variety of algorithms in order to extract the overarching,
high-level computational principles that we list in ch. 4.

The interpretation

The key insight from this study is that mice use practice runs to learn subgoals,
which are embedded in a hierarchical spatial map of the environment. However, the
exact role of practice runs is not entirely clear. The way we model this process in ch.
4 is with a preformed high-level map of states and actions, presumably generated in
the mouse through the classical process of observing the environment and embedding
its observations into a cognitive map. There, practice runs simply serve to add value
to this pre-existing option. An alternative, appealing explanation is that the practice
runs actually help to generate the hierarchical state space. In this case, these actions
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would be used not only to attribute value to edge-vector runs but also to establish
the subgoal action as a high-level action in the first place (Barto et al., 2004).

Similarly, it remains unclear what is going on in the trials where mice revert
to the homing vector escape after having memorized a subgoal. There are several
possibilities. One is that their internal map of the environment switches to one in
which there is no obstacle. Second, the value of the edge-vector run could decrease
or the value or the homing-vector run could increase. Third, mice could be switching
to a one-step navigation strategy such as visual guidance or path integration that
was otherwise blocked when the obstacle was present.

5.4 Future directions

One big remaining question is to define the scope of action-driven subgoal mapping.
First, is the persistent subgoal strategy specific to short-term learning of escape
behavior? Reactions to imminent threats tend to be less deliberate and flexible
than less urgent behaviors such as reward seeking (Mobbs et al., 2020); this raises
the possibility that the persistent usage of memorized subgoals could be specific to
escape. However, studies have shown that rats (Grieves and Dudchenko, 2013) and
mice (ch. 2) tend to prefer familiar, roundabout routes over new shortcut routes even
during reward seeking. One way to expand on this finding would be to test whether
learning with an obstacle during reward seeking translates to subgoal memorization
in the context of escape, and vice versa. We predict that subgoal memorization will
turn out to be a general learning strategy across task modalities.

Second, does action-driven mapping extend across species to human behavior?
Clearly, an adult human in a small, well-lit room would not need to run to an
obstacle edge in order to learn its location. However, humans may use analogous
strategies in other scenarios. For example, De Cothi et al., 2022 showed that in
a virtual environment with changing obstacles and a limited visual field, humans
tend to update their spatial behavior gradually based on the paths they take, rather
than immediately upon observing an obstacle. It would be interesting to adapt this
assay to allow for both practice runs and slow, observational exploration and to
examine the role of practice runs in human navigational learning. In addition, as
observed here in mice, humans naturally decompose multi-step tasks into high-level
state and action representations (Ribas-Fernandes et al., 2011; Solway et al., 2014).
Indeed, Tomov et al., 2020 showed that human participants preferred paths that
included sub-paths experienced during training, even if a shorter route was available.
Another possibility, in both mice and humans, is that action-driven mapping may
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serve as a learning stage that lays the foundation for practice-independent cognitive
mapping (Piaget, 1955). This idea is similar to the role of babbling in speech learning
(Petitto and Marentette, 1991). Along these lines, children prefer familiar multi-step
routes to novel shortcuts until they are 4 years old (Hazen et al., 1978). In mice,
we could investigate this by testing whether practice runs cease to be necessary for
subgoal learning if the mouse is an experienced navigator of structured environments.
Overall, we find it highly plausible that action-driven mapping forms a part of the
human cognitive repertoire, both in the navigation setting and beyond.

Another direction is to delve deeper into the nuances of the subgoal-memorization
algorithm. The problem of segmenting the environment into regions and waypoints,
which mice appear to achieve within minutes of entering the arena, is of particular
interest. Future experiments using environments with more complex structure could
shed light on this. As a first step, one could present the mouse with a series of
two obstacles and ask whether a sub-sub-goal is learned in the same manner as a
subgoal. In addition, the behavioral-economics aspect of the work could be expanded
upon. In particular, it would be interesting to better understand how mice trade
off between a familiar route and a short one when deciding between the subgoal
route and the homing-vector shortcut. One could make the memorized subgoal route
more inefficient than it is with the linear obstacle, for instance with a semicircular
obstacle that would require the mouse to run to a subgoal that is back and away
from the shelter. Alternatively, one could make the threat stimulus more threatening,
thereby increasing the penalty of using an inefficient subgoal route. If either of these
manipulations abolish post-obstacle-removal edge-vector routes, this would suggest
that mice are actively comparing the value of the subgoal and homing-vector routes
during route selection.

Finally, an astute reader may have noticed that this neuroscience thesis is not
really about the brain. While the neural implementation of subgoal learning remains
unaddressed, our results open the door for future work elucidating the network of
motor and spatial nuclei that implement subgoal memorization. One advantage we
have provided for neuroscientists is a thorough characterization of this behavior;
using well characterized, spontaneous behaviors for neuroscience promises to uncover
aspects of brain function that could have been suppressed in traditional laboratory
tasks (Krakauer et al., 2017; Mobbs et al., 2018; Datta et al., 2019). In addition,
escape behavior’s rapid learning profile and reliable, stimulus-locked routes make
it particularly amenable to systems neuroscience techniques (although the limited
number of trials present a challenge). For instance, recording and inhibiting regions
putatively involved in the subgoal computation (e.g. entorhinal cortex) during
edge-vector runs could be one interesting direction. Another future direction would
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be to investigate interactions between the hippocampal map-based planning and the
striatal action-reinforcement systems, often believed to be competing for control of
behavior; the action-driven mapping strategy we have uncovered points to a tighter
coordination between these regions than previously thought.
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Chapter 6

Methods

Note that the experimental hardware and procedure was improved between the
experiments performed in chapter 2 and chapter 3. When they differ, these methods
will be presented separately in each section. If you are aiming to use this project’s
methodology, I would advise following the more streamlined methods of chapter 3.

6.1 Animals

All experiments were performed under the UK Animals (Scientific Procedures) Act of
1986 (PPL 70/7652) after local ethical approval by the Sainsbury Wellcome Centre
Animal Welfare Ethical Review Body. We used 172 singly housed (starting from 8
weeks old), male, 8-12-week-old C57BL/6J mice (Charles River Laboratories) during
the light phase of the 12-h light/dark cycle. Mice were housed at 22°C and in 55%
relative humidity with ad libitum access to food and water.

6.1.0.1 Re-use over multiple sessions

For the main exploration + escape experiments in ch. 2, data come from the
mice’s first-ever behavioral session. However, in the following experiments, mice had
experienced a session 5-7 days prior: obstacle removal with the expanded threat
zone, and exploration in an environment with no shelter.

For the food-seeking experiments, each mouse experienced a session with no
obstacle and then a second session using the obstacle removal procedure.

For the exploration + escape experiments in implanted mice: four of the eight
mice were naive, and this was their first behavioral session of any sort. The remaining
four mice had experienced a previous session 5-7 days prior. Their previous session
was not allowed to be the same exact experiment as the second session but was
otherwise selected randomly. For the place-preference experiment and laser-power
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test, mice were randomly selected from those that had already experienced their
behavioral sessions.

6.1.0.2 Exclusion criteria

Data from mice with zero escapes in the session were excluded (7% of sessions).
This is due to three reasons: remaining in the shelter, not responding to the threat
stimulus, or climbing down from the arena. In the experiments with implanted mice,
a replacement session was performed 5-7 days later in a randomly selected mouse.

6.2 Behavioral Assays

Environment Light Mice Prior trials Pre-threat
Open field On 10 None 10 min
Obstacle On 24 None 10 min
Hole obstacle On 8 None 10 min
Open field Dark 14 None 10 min
Obstacle Dark 14 None 10 min
Obstacle 10 min then dark 14 None 10 min
Obstacle 20 min then dark 14 3 trials 20 min
Acute obstacle removal 1 On 10 3 trials 20 min
CORE 1 (CORE-3B) On 10 4 trials 20 min
CORE 2 (CORE-ZB) On 10 None 20 min
Narrow corridors On 10 1 session 20 min
CORE 3 (move the shelter) On 10 None 20 min
Acute obstacle removal 2 On 10 None 10 min
CORE 4 (no shelter at first) On 10 None 20 min
CORE 5 (additional barrier) On 10 None 20 min
Open field (no shelter) On 6 1 session n/a
Obstacle (no shelter) On 6 1 session n/a
Hole obstacle (no shelter) On 7 1 session n/a
Open field (food seeking) On 6 None 20 min
CORE 6 (food seeking) On 6 1 session 20 min

Table 6.1: Experiments in chapter 2. CORE stands for chronic obstacle removal
experiment. 3B stands for three baseline escape trials. ZB stands for zero baseline
escape trials.
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ID Experimental setup M2 stimulation Mice
1 Obstacle removal Injection/implantation, no stim 8
2 Obstacle removal Stop edge-vector runs 8
3 Open field–no obstacle Injection/implantation, no stim 8
4 Obstacle removal Stop edge-vector runs after two 8
5 Obstacle removal Stop edge-to-shelter runs 8
6 Obstacle removal Stop threat-area-to-left-side runs 8
7 Obstacle removal–threat zone II None 8
8 Obstacle removal–threat zone III None 8
9 Two-chamber place preference Paired with one chamber 8
10 Open field–no obstacle or shelter Test effects of three laser powers 4

Table 6.2: All experiments in chapter 3

Equipment

6.2.0.1 Platforms and shelter

Experiments took place on an elevated white 5-mm-thick acrylic circular platform
92 cm in diameter. Note that the room was not totally sonically insulated and that
neither the black surround nor the overhead illumination was circularly symmetric;
these asymmetries could all provide spatial orientation cues. The platform and
shelter were cleaned with 70% ethanol after each session.

Chapter 2 : The hole obstacle consisted of a 50 cm long ×10 cm wide rectangular
hole in the center of the platform. The modified platform with two narrow corridors
consisted of the original platform with the obstacle, plus six additional panels. Four
of these panels were 50 cm long ×12.5 cm tall ×0.5 cm thick, and two were 12.5 cm
long ×12.5 cm tall ×0.5 cm thick. Together, they formed two corridors that were
50 cm long ×7.5 cm wide and were at 65°and 115°angles relative to the axis of the
central obstacle. The interior panels forming the corridor were made of red acrylic
so that the IR camera could see through them; all other panels were made of white
acrylic. The shelter was a 10 cm cube of transparent red acrylic (opaque to the
mouse). It included a mouse-hole-shaped entrance at the front and additional 2.5 cm
tall square of red acrylic on top in order to prevent the mice from climbing on top.

Chapter 3 : The platform had a 50 ×10 cm rectangular gap in its center. For con-
ditions with no obstacle (all post-exploration escapes and the entirety of experiments
3 and 10), this was filled with a 50 ×10 cm white 5-mm-thick acrylic rectangular
panel. For conditions with the obstacle present, this was filled with an identical
panel that, attached to an obstacle: a 50 cm long ×12.5 cm tall ×5 mm thick white
acrylic panel. The shelter was 20 cm wide ×10 cm deep ×15 cm tall and made of
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5-mm-thick transparent red acrylic, which is opaque to the mouse but transparent
to an infrared-detecting camera. The shelter had a 9cm-wide entrance at the front,
which extended up to the top of the shelter and then 5 cm along its ceiling; this
extension of the opening allowed the optic fiber, which was plugged into the mouse’s
head, to enter the shelter without twisting or giving resistive force.

6.2.0.2 Additional equipment

Chapter 2 : The platform was surrounded by a black, square, plastic surrounding.
A projector screen was located above the platform. The platform was illuminated
with 4 infrared lights (S8100-45-A-IR, Fuloon). Experiments done "in the dark" were
performed in complete darkness (0.00 cd m−2 of visible light). At this light level,
mice did not react to rapidly waving a hand in front of them, which is perceived
as highly threatening when light is available. For all other experiments, light was
projected onto the screen at 5.2 cd m−2 using a projector (PF1000U, LG).

Chapter 3 : The elevated platform was located in a 160 cm wide ×190 cm tall
×165 cm deep sound-proof box. A square-shaped projector screen (Xerox) was
located above the platform. This screen was illuminated in uniform, gray light at
5.2 cd m−2 using a projector (BenQ). Behavioral session were recorded with an
overhead GigE camera (Basler) with a near-infrared selective filter, at 40 frames
per second. Six infrared LED illuminators (TV6700, Abus) distributed above the
platform illuminated it for infrared video recording.

Escape behavior

6.2.0.3 Data acquisition

All signals and stimuli, including each camera frame, were triggered and synchronized
using hardware-time signals controlled with a PCIe-6351 and USB-6343 input/output
board (National Instruments), operating at 10 kHz.

Chapter 2 : Data acquisition was performed using custom software written in
LabVIEW (2015 64-bit, National Instruments) by Kostas Bestios. To verify correct
synchronization, the audio output cable was also fed in parallel to an infrared LED
(850nm OLSON PowerStar IR LED), which flashed in synch with sound presentation.

Chapter 3 : Data acquisition was performed using custom software in the visual
reactive programming language Bonsai (Lopes et al., 2015). All signals and stimuli,
including each camera frame, were triggered and synchronized using hardware-time
signals controlled with a PCIe-6351 and USB-6343 input/output board (National
Instruments), operating at 10 kHz.
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6.2.0.4 Threat stimulus presentation

Threat stimuli were loud (84 dB), unexpected crashing sounds played from a speaker
located 1 m above the center of the platform (Supplementary Audio 1 and 2).
Sounds (‘smashing’ and ‘crackling fireplace’) were downloaded from soundbible.com.
They were then edited using Audacity 2.3.0, such that they were 1.5 sec long
and continuously loud. Stimuli alternated between the ‘smashing’ sound and the
‘crackling’ sound each trial, to prevent stimulus habituation. The volume was
increased by 2 dB after time a stimulus failed to elicit an escape, up to a maximum
of 88 dB. When a threat trial began, the stimuli repeated until the mouse reached
the shelter or for a maximum of 9 secs. Stimuli were played from the PC, through
an amplifier (TOPAZ AM10, Cambridge Audio) and speaker (L60, Pettersson).
Experiments were terminated after one hour.

Chapter 2 : Stimulus delivery was controlled with software custom-written in
LabVIEW (2015 64-bit, National Instruments). Stimuli were triggered manually,
when the mouse had been in the threat zone (demarcated on the live video) for at
least one second and was facing in approximately the opposite direction from the
shelter. Mice varied in how many trials they performed in each experiment. We thus
limited analysis to the first three escapes in each condition (more than 50% of mice
completed at least three escapes in all experiments).

Chapter 3 : Stimulus delivery was controlled automatically with software custom-
written in Bonsai. The criteria for activating a threat stimulus were 1) the mouse
is currently in the threat zone; 2) the mouse was in the threat zone 1.5 seconds
ago; 3) the mouse is moving away from the shelter at >5 cm s−1 (this ensures that
escape runs are always initiated after the stimulus onset); 4) the most recent threat
stimulus occurred >45 sec ago. We limited analysis to the first six escapes in each
condition (more than 50% of mice completed at least six escapes in all experiments).

6.2.0.5 Environmental manipulations

Obstacle removal, chapter 2 : For experiments in which the obstacle appears or
disappears, this was done by digitally triggering a custom-made pneumatic tubing
system (time to raise or lower the obstacle was 100 ms). In the acute obstacle
removal experiment, obstacle removal was triggered simultaneously with the stimulus
onset. In chronic obstacle removal experiments, this was triggered while the mouse
was in the shelter. Obstacle removal makes a whooshing sound (63 dB measured at
the shelter) and usually triggers a startle response.

Obstacle removal, chapter 3 : After 20 minutes of exploration were complete, as
soon as the mouse entered the shelter, the experimenter quickly and quietly removed
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the central panel containing the obstacle and replaced it with the flat 50x10 cm
panel. Mice were then allowed to freely explore and (and trigger escapes) in this
open-field platform.

Adding bedding to the platform: Bedding from the mouse’s home cage was added
to the platform in order to encourage exploration, rather than staying in the shelter
throughout the experiment. One pinch (1 gram) of bedding was added to the center
of the threat zone in all experiments when either of the following two criteria was
met: 1) The mouse did not leave the shelter for five minutes; or 2) The mouse did
not enter the threat zone for ten minutes.

Food-seeking behavior

6.2.0.6 Training

Mice were food restricted to 85% of their baseline weight. Training and pretraining
were done in a 60cm ×15cm rectangular arena, with a shelter on one side and a
reward port on the other side. The reward consisted of a 7-µL drop of condensed
milk (diluted 1:1 with water) delivered through the spout. For pretraining, during
which the mouse learned to associate the metal spout with reward, 100 drops of
milk were manually triggered and then collected by the mouse, with a minimum
interval of 1 minute between each drop. They were then trained in five, 1-hour
sessions to approach and lick a metal spout in response to a 9-second, 10-kHz, 72-dB
tone. Tone stimuli were triggered manually once per minute. Licking the spout while
the tone was on resulted in reward. After reward delivery, there was a 5-second
refractory period; thus, mice could trigger at most two rewards during the 9-second
tone. On the last two day of training, the tone duration was reduced to 4.5 seconds
after 30 minutes. Licks were registered with a capacitive touch sensor (Adafruit
MPR121), connected to a microcontroller board (Arduino Uno). The milk was
delivered through a peristaltic pump (Campden Instruments 80204E), connected to
the same microcontroller.

6.2.0.7 Navigation assay

To test food-seeking paths, mice had two sessions. The first session was in the
platform with no obstacle, the shelter on one side, and a lick port on the opposite
end of the platform. They received practice trials of tone and milk, initially mostly
when they were already near the lick port. After 20 minutes, test trials were initiated
when the mouse was on the opposite side from the lick port, and these data were used
for analysis. The second session followed the same protocol. However, in this session

98



6.3. Neural manipulations

the obstacle was initially present, and then was removed after 20 minutes while the
mouse was in the shelter. Mice performed more trials than with the escape behavior,
so here we examined trajectories from the first nine successful trials (greater than
50% of mice completed at least nine trials).

6.3 Neural manipulations

Surgical procedures

6.3.0.1 Viral injection and optic fiber implantation

Mice were anaesthetized with isoflurane (5%) and secured on a stereotaxic frame (Kopf
Instruments). Meloxicam was administered subcutaneously for analgesia. Isoflurane
(1.5-2.5% in oxygen, 1 l min−1) was used to maintain anesthesia. Craniotomies were
made using a 0.7 mm burr (Meisinger) on a micromotor drill (L12M, Osada), and
coordinates were measured from bregma. Viral vectors were delivered using pulled
glass pipettes (10 µl Wiretrol II pulled with a Sutter-97) and an injection system
coupled to a hydraulic micromanipulator (Narishige), at approximately 100 nl min−1.
Implants were affixed using light-cured dental cement (3M) and the surgical wound
was closed using surgical glue (Vetbond).

Mice were injected with 120 nL of AAV9/CamKIIa-ChR2-EGFP in the right,
anterior premotor cortex (AP: 2.4 mm, ML: 1.0 mm, DV: -0.75 mm relative to
brain surface) and implanted with a magnetic fiber-optic cannula directly above the
viral injection (DV: -0.5 mm) (MFC_200/245-0.37_1.5mm_SMR_FLT, Doric). All
behavioral sessions took place 2-4 weeks after the injection/implantation.

6.3.0.2 Histology

To confirm injection and implantation sites, mice were terminally anaesthetized
by pentobarbital injection and decapitated for brain extraction. The brains were
left in 4% PFA overnight at 4°C. 100um-thick coronal slices were acquired using
a standard vibratome (Leica). The sections were then counter-stained with 4’,6-
diamidino-2-phenylindole (DAPI; 3 µM in PBS), and mounted on slides in SlowFade
Gold antifade mountant (Thermo Fisher, S36936) before imaging (Zeiss Axio Imager
2). Histological slice images were registered to the Allen Mouse Brain Atlas (Allen
Institute for Brain Science, 2015) using SHARP-Track (Shamash et al., 2018), to
find the fiber tip coordinates.
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Closed-loop optogenetic stimulation

Laser stimuli consisted of 2-sec, 20-HZ square-wave pulses at 30 mW (duty cycle 50%,
so 15 mW average power over the two seconds) supplied by a 473-nm laser (Stradus
472, Vortran). For the experiment blocking edge-to-shelter runs, we instead used
5-sec pulses. The laser was controlled by an analog signal from our input/output
board into the laser control box. At the beginning of each session, the mouse was
placed in an open 10x10 cm box and the magnetic fiber-optic cannula was manually
attached to a fiber-optic cable (MFP_200/230/900_0.37_1.3m_FC-SMC, Doric). A
rotary joint (Doric) was used to prevent the cable from twisting. Finally, the rotary
joint was connected to the laser via a 200-µm core patch cable (ThorLabs).

At the beginning of each mouse’s first session, the mouse was placed in a 10x10
cm box, and two 2-sec stimuli were applied. If these did not evoke stopping and
leftward turning (2/24 mice), then the mouse was assigned to one of the laser-off
conditions. During laser-on sessions, the criteria for triggering laser stimuli were: 1)
the mouse crosses the ‘trip wire’; and 2) the mouse is moving in the ‘correct’ direction.
For blocking edge-vector and edge-to-shelter runs, the direction was determined by
a directional speed threshold: moving toward the shelter area (i.e., south) at > 5 cm
sec−1. For blocking threat-zone-to-left-side runs, mice had to be moving toward the
left side (i.e., west) at > 5 cm sec−1. These speed thresholds are low enough to be
effective at catching all cases in which the mouse crosses the trip wire in a particular
direction. These criteria were computed online using the Bonsai software described
in the previous section. The laser pulses were emitted with a delay of 300-400 ms
after being triggered. Up to three subsequent 2-sec pulses were triggered manually if
the mouse continued moving forward.

Mice usually took 1-3 minutes to enter the shelter for the first time, and these
first minute(s) of exploration typically contains relatively vigorous running. Since
subgoal learning does not occur in this setting without a shelter in the environment
(Shamash et al., 2021), the laser-on condition was initiated only after the mouse
entered the shelter for the first time.

Place preference assay

Mice were hooked up to the optic fiber as described above and placed into a two-
chamber place-preference arena. The arena was made of 5-mm-thick transparent
red acrylic (opaque to the mouse) and consisted of two 18 cm long exttimes 18 cm
wide exttimes 18 cm tall chambers connected by a 8cm-long opening. To make the
chambers visually distinguishable, one chamber had a 10x10 cm x-shaped white
acrylic piece affixed to its back wall and the other had a filled-in, 10cm-diameter
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circular white acrylic piece affixed to its back wall. The stimulation chamber (left
or right) was pseudoramdomly determined before each session, such that both
sides ended up with four mice. After a 1-min habituation period, a series of four
2-sec laser stimuli were manually triggered whenever the mouse fully entered the
stimulation chamber. A minimum of one minute was given in between each trial,
and a total of six stimulation series were delivered. After the last stimulation,
one minute was given so that the occupancy data would not be biased by always
starting in the stimulation chamber. Then, the next 20 minutes were examined to
test for place aversion in the stimulation chamber. This assay is adapted from the
conditioned place preference assay (Stamatakis and Stuber, 2012) and the passive
place avoidance assay (Schlesinger et al., 1983), such that it matches the conditions
of our exploration/escape assay (i.e., to be relevant, place aversion must be elicited
during the same session as the laser stimulation, and it must be expressed through
biases in occupancy patterns)

6.4 Analysis

All analysis was done using custom software written in Python 3.8 as well as open-
source libraries, notably NumPy, OpenCV, Matplotlib and DeepLabCut.

Video tracking

Videos were acquired at 30 frames per second using an overhead camera (acA1300-
60gmNIR, Basler) with a near-infrared-selective filter. Video recording was performed
with software custom-written in LabVIEW (2015 64-bit, National Instruments).
Videos were then fisheye-distortion corrected, aligned onto a common coordinate
framework, and visualized with custom Python code using the OpenCV library. We
used DeepLabCut (Mathis et al., 2018) to track the mouse from the video, after
labelling 1500 frames with 13 body parts: snout, left eye, right eye, left ear, neck,
right ear, left upper limb, upper back, right upper limb, left hind limb, lower back,
right hind limb, tail base. Post-processing includes removing low-confidence tracking,
using a median filter with a width of 7 frames, and applying an affine transformation
to the tracked coordinates to match the common coordinate framework.

Trajectory analysis

Calculating position, speed and heading direction: For analysis of escape trajectories
and exploration, we used the average of all 13 tracked points, which we found to
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be more stable and consistent than any individual point. To calculate speed, we
smoothed the raw frame-by-frame speed with a Gaussian filter (σ = 100 ms). To
calculate the mouse’s body direction, we computed the vector between the lower
body (averaging the lower left limb, lower right limb, lower back, and tail base) and
the front of the body (averaging the upper left limb, upper right limb, and upper
back).

The escape initiation point, chapter 2 : is defined as the beginning of a homing
run (see below) that goes from inside the threat zone to outside of the threat zone
following a threat stimulus. This is computed in the same way for spontaneous
homings. We use this this criterion in this section because it allows us to fairly
compare spontaneous and stimulus-evoked homings - an important part of the
analysis in chapter 2 but not chapter 3.

The escape initiation point, chapter 3 : occurs when mice surpass a speed of 20
cm s−1, relative to (i.e., getting closer to) the shelter location. This threshold is high
enough to correctly reject non-escape locomotion bouts along the perimeter of the
platform but also low enough to identify the beginning of the escape trajectory.

The escape target score: was computed by taking the vector from the mouse’s
position at escape initiation to its position when it was 10 cm in front of the obstacle.
Vectors aimed directly at the shelter received a value of 0; those aimed at the obstacle
edge received a value of 1.0; a vector halfway between these would score 0.5; and
a vector that points beyond the edge would receive a value greater than 1.0. The
formula is:

score = |offsetHV − offsetEV + offsetHV −EV |
2 ∗ offsetHV −EV

OffsetHV is the distance from the mouse to where the mouse would be if it took the
homing vector; offsetEV is the distance from the mouse to where the mouse would
be if it took the obstacle edge vector; and offsetHV −EV is the distance from the
homing vector path to the obstacle edge vector path. The threshold for classifying a
trajectory as an edge vector (scores above 0.65) was taken to be the 95th percentile of
escapes in the open-field condition. Escapes with scores under 0.65 were designated
as homing vectors. When escape trajectories are limited to escapes on the left side,
this refers to escapes that are on the left half of the arena when they cross the center
of the platform along the vertical (threat-shelter) axis.

Exploratory behavior

Extraction of homing runs and edge-vector runs: Homing runs are continuous turn-
and-run movements from the threat area toward the shelter and/or obstacle edges.
As in ch. 2, they are extracted by (1) computing the mouse’s ‘homing speed’ (that is,
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speed with respect to the shelter or obstacle edges with Gaussian smoothing (/sigma
= 0.5 s)) and the mouse’s ‘angular homing speed’ (the rate of change of heading
direction with respect to the shelter or obstacle edges); (2) identifying all frames in
which the mouse has a homing speed of >15 cm s−1 or is turning toward the shelter
at an angular speed of >90°per sec; (3) selecting all frames within 1 s of these frames,
to include individual frames that might be part of the same homing movement but
do not meet the speed criteria; (4) rejecting all frames in which the mouse is not
approaching or turning toward an edge or the shelter; and (5) rejecting sequences
that take less than one sec or do not decrease the distance to the shelter by at least
20%. Each series of frames that meet these criteria represents one homing run. We
limited analysis to he homing runs that started within the threat area. Edge-vector
runs are homing runs that enter anywhere within the 10-cm-long (along the axis
parallel to the obstacle) exttimes 5-cm-wide (along the axis perpendicular to the
obstacle) rectangle centered 2.5 cm to the left of the obstacle edge.

Quantification of turning angles: Turning angles that initiated homing runs and
escapes were taken as the difference between the mouse’s heading direction at the
start of the movement (the homing-run or escape initiation point) and the mouse’s
heading direction after it had traveled 15 cm away from this start location. The
start location is when the mouse starts turning toward and/or moving toward the
shelter or obstacle edge (see previous subsection). Left turns were defined as negative,
and right turns were defined as positive. For predicting escape targets from turn
movements, we first extracted all homing runs from the mouse’s previous exploration
experience. We then identified the homing run(s) most similar to the escape, using
three different similarity metrics: the most similar turn angle, the closest starting
position, and closest initial heading direction. For each homing run-escape pair,
we computed what the escape target would have been if the mouse had turned the
same angle that it had turned during the homing run, i.e. if it had repeated the
previous egocentric action. Finally, we performed a linear regression between the
predicted targets (x) and the actual escape targets (y) to find the proportion of
variance (R2) in escape targets predicted using this assumption that mice repeat
previous egocentric turns. For the negative control, we disregarded the homing
experience and instead predicted a random turn angle, and then extrapolated that
angle to predict an escape target. We repeated this procedure 1000 times to get
1000 R2 values and took the mean R2.

Spontaneous exploratory traversals are paths during exploration that start at
either end of the platform (within 20 cm the end) and then reach within 10 cm of the
central x-axis. Traversals that go along the boundary of the platform (i.e. within 10
cm of the outer perimeter) or take longer than 2 seconds ( 10 cm/sec) were excluded
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from analysis, as these paths contained pausing and looping behavior, hindering the
analysis of trajectories.

Amount of exploration: The time spent exploring was computed as the time
spent at least 5 cm away from the shelter. The amount of exploration, or distance
explored, was the time exploring multiplied by the mouse’s speed at each time point.
Mice spent 1/3 of the session in the shelter (IQR: 20-52% of the time).

6.4.0.1 Initiation set analysis

Logistic regression: Our logistic regression analysis tests the strength of the linear
relationship between each spatial metric and the log odds of performing an edge-
vector escape. No regularization penalty was used. The strength of the fit was
measured using McFadden’s pseudo-R2: R2 = 1 − LLfull

LLnull
, where LLfull is the log

likelihood of the logistic regression model fitted with the predictor data and LLnull

is the log likelihood of the logistic regression fitted with only an intercept and no
predictor data. Pseudo-R2 values of 0.2-0.4 represent "excellent fit"(McFadden, 1977).
To test statistical significance of these values, we performed a permutation test,
based on the distribution of pseudo-R2 for the same predictor value, across 10,000
random shuffles of the escape responses (edge vector or homing vector).

Normalizing a metric: To normalize a spatial metric (y, e.g. distance from the
center of the arena along the left-right axis) by another metric (x, e.g. distance from
the shelter), we computed a linear regression on these variables. We then took the
residuals of this prediction (residual = y− ŷ, where ŷ = slope× exttimes + offset)
and correlated them with proportion of edge-vector escapes in each bin. This tells us
whether, at a given distance from the shelter, there is still a correlation with distance
from the center.

Statistical tests

For comparisons between groups, we used a permutation test with the test statistic
being the pooled group mean difference. The condition of each mouse (e.g., laser-on
vs. laser-off) is randomly shuffled 10,000 times to generate a null distribution and a
p-value. We used this test because it combines two advantages: 1) Having the test
statistic as the pooled group mean gives weight to each trial rather than collapsing
each animal’s data into its mean (as in the t-test or the Mann-Whitney test); 2)
It is non-parametric and does not assume Gaussian noise (unlike the repeated-
measures ANOVA), in line with much of our data. Tests for increases or decreases
(e.g., whether exploration decreased due to laser stimulation) were one tailed. The
Wilcoxon signed-rank test was used for the place-preference assay to test whether
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occupancy in the stimulation chamber was less than 50%. The sample size of the
experiments in chapter 3 (n=8 mice) was selected based on a power analysis based
on the data from Shamash et al., 2021 and a minimum power of 0.8. Ranges in box
plots are limited from the first quartile minus 1.5 exttimes IQR to the third quartile
plus 1.5 exttimes IQR. Statistically significant results are indicated in the figures
using the convention n.s.: p>0.05, *: p<0.05, **: p<0.01 and ***: p<0.001.

6.5 Reinforcement learning simulations

General reinforcement learning setup

Reinforcement learning simulations use the formalism of a Markov Decision Process
(MDP) (Sutton and Barto, 2018). An MDP consists of a tuple (S, A, T, R) where
S is the set of states; A is the set of possible actions; T : S × A− > S ′ is the
transition function defining what happens when an action a is taken in state s;
R : S × A × S ′− > R is the reward function, which determines the scalar reward
returned by the environment after a given state-action-next-state sequence.

We construct our environment as a 13x13 gridworld. S consists of the set of
accessible positions in this map, shown in white in the figures. A, unless stated
otherwise, consists of 8 actions (north, northwest, west, southwest, south, southeast,
east, northeast). T is a deterministic function that moves the agent one unit in the
direction of the action taken. R is a deterministic function in which a reward of
100 is given for entry to the shelter state, and a negative reward of d(s, s′) is given
for each transition. d(s, s′) is the distance between a pair of states s and s′ - 1.0
for side-by-side states and

√
2 for diagonally separated states; using this negative

reward is the mechanism by which the agents take sideways actions (north, west,
etc.) to be shorter than diagonal actions (northwest, etc.). This negative reward was
not present when the shelter was not in the environment, i.e. the training phase of
condition 2, to avoid accumulating unmitigated negative value in each state-action
pair.

In general, the reinforcement learning problem is to find a policy, π, which
maps states to actions, such that the expected sum of discounted future rewards is
maximized (Sutton and Barto, 2018).

E[
∞∑

t=0
γtRat(st, st+1)|s0 = s]

where at = π(st), i.e. actions given by the policy and γ is the temporal discount factor,
a hyperparameter specifying how much long-term reward should be weighted against
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short-term reward. Each of the RL agents described below operates by searching for
a policy that can optimize expected future reward. The algorithms have different
limitations and compute their policies differently; thus, different algorithms often
generate different policies. We compared the behavior of these various algorithms to
mouse behavior, in order to end up with a concrete, computational description of
mouse behavior.

Simulation details

Simulation experiments consisted of three phases: a training phase, a pre-test phase,
and a test phase. Each algorithm was repeated 100 times with 100 different random
seeds. Each agent started by being dropped in at a (uniform) random location in
the arena. In the training phase, unless otherwise stated, the RL agent then moved
around the environment with a random policy (probability of 1

8 for each action)
and learned based on this experience. Moving into a barrier (black) resulted in the
agent remaining in the same state from which it initiated an action in the previous
timestep. Trip wires acted like barriers but only when the agent was attempting
to pass the trip wire in the threat-area-to-obstacle-edge direction. Each algorithm
received enough training steps that all 100 seeds was able to learn an escape to
shelter in condition 1, after being dropped into the threat zone, rounded up to the
nearest 500 steps (for models that took <10k steps) or 5k steps (for models that
took >10k steps) (Table 6.4). Thus, we are modelling only the mice that actually
learn edge-vector escapes during the training phase. This number of training steps
was used across all four conditions. In the pre-test phase, the agent started in the
shelter and then moved randomly through the environment until reaching the threat
zone square (learning was allowed to continue during this period). At this point, the
test phase was initiated. The agent then stopped moving randomly and adopted its
learned policy in order to navigate to the reward. After this a second and third trial
(pre-test + test phase for each one) were performed. The test phase proceeded until
the agent reached the shelter or for a maximum of 100 steps.

Q-learning

At test time, the Q-learning agent generates a policy by selecting the action a in the
current state s that has the maximum state-action value. State-action values are
incrementally learned during the training and pre-test phases using the Q-learning
algorithm (Watkins, 1992) combined with an eligibility trace (Sutton and Barto,
2018). The eligibility trace is a decaying trace of recent state-action pairs. After
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taking action at in state st and moving to state st+1, the agent takes three steps to
update its state-action values. First, it decays its eligibility trace e, by e ← λγe,
where λ is the eligibility trace decay parameter and γ is the temporal discount
factor introduced above. Second, it updates its eligibility trace to add the current
state-action pair: e(st, at)← e(st, at) + 1. Finally, it updates its state-action-value
table:

Q(st, at)← Q(s, a) + α[rt + γ max
a

Q(st+1, a)−Q(st, at)]e

where rt is the reward gained from this step, α is the learning rate and γ is the
temporal discount factor. State-action values are initialized randomly with mean 0
and variance 0.1.

Tile coding

One limitation of tabular methods is that they are unable to generalize. Learning
information (e.g. about value) in one state does not provide information about any
other states. A common way to overcome this is to use function approximation to
represent quantities rather than storing them explicitly in look-up tables. Among
the simplest forms of function approximation is a linear map. For example, the
approximate state-action value function can be defined as

Q̂(s, a, w) ≡ w · x =
d∑

i=1
wixi(s, a)

where x is the featured state with dimension d, and w are learnable weights. The
update rule for these weights under stochastic gradient descent is given by

wt+1 = wt + α
[
rt+1 + γ max

a′
Q(s′, a′)−Q(s, a)

]
Q(s, a)

where α is the learning rate and γ is the discount factor. One popular way to
featurize a state space for linear methods is tile coding. The feature map consists of
a set of overlapping receptive fields; for each field a state is said to be present—and
given a feature value of 1—if it is within the receptive field, and absent—and given
a feature value of 0—if it is not. We use rectangular receptive fields (tiles) of both
2x2 and 3x3, shifted by 1 in both x and y coordinates as well as iterated over the
available actions. For a more detailed treatment of linear function approximation
and coarse coding methods, see chapter 9 of Sutton and Barto, 2018.

Hierarchical state space

The hierarchical state space experiments took place in exactly the same gridworld
environment and conditions as with the non-hierarchical (flat) learners. The difference
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was that the Q-learning policy that the agent learned was in relation to a different
state space. Instead of the 118 grid states an 944 state-action pairs, this regional
state space contained 10 states (regional groupings of grid states, e.g. the obstacle
edge areas) and 40 state-action pairs (e.g. go to the shelter area from the left obstacle
edge area). During the training phase, the agent’s policy was updated with respect
to its transitions between these regions. For example, it would only update the
value of its "go to the shelter area from the left obstacle edge area" immediately
after crossing the border between those regions. Here, the distance function d(s, s′)
that determines negative reward per timestep was equal to the distance between the
centroids of the regions that the agent moved between. When the agent executes
its policy at test time, it produces high-level actions. To carry out these actions,
its low-level controller simply carries out an innate ability to move directly in a
straight line from its current position (e.g. the threat zone) to the target location (e.g.
obstacle edge area), similar to Edvardsen et al., 2020. We set up this hierarchical
state space to use with Q-learning out of convenience, but it could have been used
with the other gradual learners as well (Supplementary Note).

Successor Representation

The SR agent uses a model-free update rule to learn a representation of how state-
action pairs predict (temporally discounted) future occupancy in each state in the
environment. This successor representation, M , is thus a SxAxS ′ tensor, where the
index of the first two dimensions identify a state-action pair and the third dimension
corresponds to the successor state. M can be combined with a separately learned
reward vector R in order to compute value:

Q(S, A) =
∑
s′

M(S, A, s′)R(s′)

This equation shows that the value of a state-action pair is the product of how much
that state-action pair predicts future occupancy in the rewarded states and how
much reward is those states. In our experiments, there is at most one rewarded state,
so this reduces to:

Q(S, A) = M(S, A, shelter)R(shelter)

In order to learn the successor representation M , the agent applies a model-free
updating rule with an eligibility trace (Gershman et al., 2012) to an entire row after
each step:

M(st, at, :)←M(st, at, :) + α[1st+1 + γEa[M(st+1, a, :)]−M(st, at, :)]e
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where α is the learning rate, 1st+1 is a one-hot vector with a 1 in the position of the
successor state s′, γ is the temporal discount factor, e is the eligibility trace updated
similarly to Q-learning as described above, and Ea[...] is the expected row in the SR
for the successor state s′, averaged across the possible actions taken from that state.
SR values are initialized randomly with mean 0 and variance 1. Simultaneously, a
reward vector must be learned. It is updated after each step:

R(st)← R(st) + α(rt −R(st))

The reward vector is initialized to all zeros.

Model-based agent

The model-based agent builds up a model of the environment in the form of an
undirected graph. Each time the agent encounters a new state, it stores that state
as a node in the graph. Each time the agent receives a reward, it labels the node
from which the reward emanated with the amount of reward. Each time the agent
takes a new transition between nodes, it stores that transition as an edge in the
graph. Each time the agent attempts to make a transition and is blocked by an
obstacle or trip wire, it deletes that edge from the graph. The immediate learner
plans using the most recent set of edges. The gradual learner stores a buffer of up
to N observations per edge. During planning, edges are only used if the majority
of observations in the buffer indicate that the edge is not blocked. In addition, the
reward in each state is taken to be the average reward observed over the past N
observations. At decision time, the model-based agent uses its model to plan the
shortest possible route to the reward location, where horizontal and vertical edges
have a path length of 1.0 and diagonal edges have a path length of

√
2. This is a

heuristic that maximizes the expected future reward in this navigation-task setting.
Shortest routes were calculated using an A-star tree search algorithm (Hart et al.,
1968). Equally effective actions (according to the A-star algorithm, which finds the
shortest route to the goal) were sampled with equal probability.

Practice runs

We augmented the random exploration policy during the training phase with practice
edge-vector and shelter-vector runs. Edge-vector runs were hard-coded action
trajectories taking the agent from the threat area directly to an obstacle edge. The
initiation and termination states are shown in Fig. 4.2. Each time the agent entered
one of these states, the hard-coded trajectory was triggered with a probability of 0.2.
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6. Methods

Classifying escape runs

We used four classifications for simulated escape runs: homing-vector routes, edge-
vector routes, tortuous routes and non-escapes. Homing-vector routes went from the
threat zone to one of the three middle states above the obstacle location, and then
continued toward the shelter (south, southwest or southeast) from there. Edge-vector
routes went from the threat zone to the obstacle edge, without deviating from its path
by more than one step to go around the trip wire. Tortuous routes are homing-vector
or edge-vector routes that deviate from that path (to go around a trip wire location)
by at least two steps. Non-escapes did not reach the shelter within the 50-step time
limit.

Algorithm Hyperparameter Value
Q-learning temporal discount factor γ 0.9
Q-learning TD(λ) decay factor γ 0.5
Q-learning learning rate, α 0.1
Q-learning neg. reward per step 0.01
SR temporal discount factor γ 0.9
SR TD(λ) decay factor γ 0.5
SR learning rate, α 0.1
SARSA temporal discount factor γ 0.99
SARSA TD(λ) decay factor γ 0.5
SARSA learning rate, α 0.1
SARSA neg. reward per step 0.001
Tile coding tile size [2x2, 3x3]
MB-G model buffer window, N 15

Table 6.3: Hyper-parameters used in the RL models. While we did not conduct
extensive comparison over hyper-parameters, we endeavored to use comparable
settings across models and chose from typical ranges for grid-world environments in
the RL literature (e.g. https://github.com/karpathy/reinforcejs).
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6.5. Reinforcement learning simulations

Algorithm Exploration # steps to learn
Tabular Q-learning Random 45k
Tabular Q-learning Random + practice runs 30k
Hierarchical Q-learning Random 2.5k
Hierarchical Q-learning Random + practice runs 1.5k
Tile-coding Q-learning Random 285k
Successor Representation Random 125k
Successor Representation Random + practice runs 20k
Model-based (Immediate) Random + practice runs 3k
Model-based (Gradual) Random + practice runs 3k
Tabular SARSA Random + practice runs 35k
Hierarchical SARSA Random + practice runs 2k

Table 6.4: Training steps needed for the RL models to learn escape routes
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