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A B S T R A C T

Cine magnetic resonance imaging (MRI) is the current gold standard for the assessment of cardiac anatomy
and function. However, it typically only acquires a set of two-dimensional (2D) slices of the underlying three-
dimensional (3D) anatomy of the heart, thus limiting the understanding and analysis of both healthy and
pathological cardiac morphology and physiology. In this paper, we propose a novel fully automatic surface
reconstruction pipeline capable of reconstructing multi-class 3D cardiac anatomy meshes from raw cine MRI
acquisitions. Its key component is a multi-class point cloud completion network (PCCN) capable of correcting
both the sparsity and misalignment issues of the 3D reconstruction task in a unified model. We first evaluate
the PCCN on a large synthetic dataset of biventricular anatomies and observe Chamfer distances between
reconstructed and gold standard anatomies below or similar to the underlying image resolution for multiple
levels of slice misalignment. Furthermore, we find a reduction in reconstruction error compared to a benchmark
3D U-Net by 32% and 24% in terms of Hausdorff distance and mean surface distance, respectively. We then
apply the PCCN as part of our automated reconstruction pipeline to 1000 subjects from the UK Biobank study
in a cross-domain transfer setting and demonstrate its ability to reconstruct accurate and topologically plausible
biventricular heart meshes with clinical metrics comparable to the previous literature. Finally, we investigate
the robustness of our proposed approach and observe its capacity to successfully handle multiple common
outlier conditions.
1. Introduction

Cardiac magnetic resonance imaging (MRI) is the gold standard for
the assessment of a large number of cardiovascular pathologies due its
excellent soft-tissue contrast, lack of ionizing radiation, and minimal
use of contrast agents (Stokes and Roberts-Thomson, 2017). In current
clinical practice, most cine cardiac MRI acquisitions consist of a stack
of two-dimensional (2D) short-axis (SAX) slices that provide a cross-
sectional view of the heart, as well as multiple 2D long-axis (LAX)
slices that intersect the heart longitudinally at different angles. While
this allows the visualization of cardiac anatomy from multiple different
views, the cine slices only capture information in 2D planes and are
therefore unable to truly represent the inherent three-dimensional (3D)
structure of the heart (O’Dell, 2019). However, accurate 3D cardiac
anatomy models are necessary for a wide variety of applications in
both clinical practice and research settings, including the accurate mea-
surement of image-based biomarkers, discovery of novel biomarkers,
visualization of healthy and pathological cardiac anatomy, and the
development of both population-wide and case-specific modeling of

∗ Corresponding authors.
E-mail addresses: marcel.beetz@eng.ox.ac.uk (M. Beetz), abhirup.banerjee@eng.ox.ac.uk (A. Banerjee).

cardiac mechanics and electrophysiology (Yang et al., 2017a; Gilbert
et al., 2019; Attar et al., 2019; Mincholé et al., 2019; Mauger et al.,
2019; Corral Acero et al., 2020; Levrero-Florencio et al., 2020; Beetz
et al., 2021c, 2022a,c,d; Mauger et al., 2022; Beetz et al., 2023b,c).

Consequently, multiple research efforts have been dedicated to
developing MRI-based methods capable of creating 3D representations
of the human heart. The first group of approaches attempts to achieve
this by increasing the spatial resolution of the MRI acquisition itself, e.g.
3D MRI (Mascarenhas et al., 2006; Jeong et al., 2015). However, most
techniques suffer from lower temporal resolution and reduced image
quality compared to 2D acquisitions, making an accurate assessment
of cardiac function more difficult (Amano et al., 2017; Usman et al.,
2017). While more recent works have improved these shortcomings
considerably, they were only tested on a small number of cases, are
dependent on the availability of the most recent scanner hardware and
software, come with long reconstruction times, and often only allow
partial heart coverage (Wetzl et al., 2018; Küstner et al., 2020a,b).
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A second group of approaches aims at reconstructing true 3D repre-
sentations of the heart from the available clinically standard 2D cine
MRI slices, which is also the focus of this work. These techniques
typically first segment the cardiac structures of interest in the images
and then use the resulting contours to reconstruct the corresponding
3D anatomical surface models. Similar to many other medical image
analysis tasks, deep learning methods, such as the fully convolutional
neural network (FCN) (Long et al., 2015), U-Net (Ronneberger et al.,
2015), and their derivatives (Çiçek et al., 2016), have become the
state-of-the-art approach for cardiac image segmentation in the recent
past (Chen et al., 2020). While most cardiac MRI segmentation research
has focused on biventricular segmentation from SAX images (Chen
et al., 2020), some have also included the two-chamber (2ch LAX)
and four-chamber long-axis (4ch LAX) views (Bai et al., 2018). More
recent efforts aim to extend this success to more complex, multi-domain
imaging datasets suffering from domain shift (Campello et al., 2021;
Eisenmann et al., 2022; Martín-Isla et al., 2023). Hereby, the task is to
either detect erroneous segmentations with improved quality control
measures (Tarroni et al., 2020; Wang et al., 2020a; Machado et al.,
2021) or avoid such failures altogether by using more robust algo-
rithms that incorporate topological information about the underlying
anatomy (Oktay et al., 2017; Byrne et al., 2020).

Given a set of contours derived from the 2D segmentation masks, the
task of 3D surface reconstruction is a challenging, ill-posed optimiza-
tion problem for two main reasons. First, the available 2D information
is extremely sparse as compared to a 3D representation making an
accurate surface reconstruction difficult, especially in regions with little
or no data. In addition, artifacts caused by various types of motion (car-
diac, respiratory, patient) during image acquisition result in slice mis-
alignment and potentially erroneous anatomical information (Sievers
et al., 2005; Scott et al., 2009; Bogaert et al., 2012).

Some research has focused on developing methods specifically for
2D misalignment correction in order to facilitate the following 3D
reconstruction task. These include slice-to-slice registration (Goshtasby
and Turner, 1996; McLeish et al., 2002; Villard et al., 2016), slice-to-
volume-registration (Chandler et al., 2008; Su et al., 2014; Ferrante
and Paragios, 2017), probabilistic segmentation maps generated with
decision forests (Tarroni et al., 2018), combined image slice segmen-
tation and alignment correction (Villard et al., 2018b), and statistical
shape model-based misalignment correction (Banerjee et al., 2021b).
Considerable research efforts have also focused on directly addressing
these challenges as part of the 3D surface reconstruction task (Villard
et al., 2018a; Mauger et al., 2019; Banerjee et al., 2021a). In recent
times, both grid-based (Xu et al., 2019) and geometric deep learning
methods (Beetz et al., 2021a; Chen et al., 2021; Beetz et al., 2022b,
2023a) have been increasingly used for cardiac surface reconstruction
from various types of inputs, such as single 2D images (Zhou et al.,
2019; Wang et al., 2020b), the SAX stack (Chen et al., 2021), or both
SAX and LAX images (Xu et al., 2019; Beetz et al., 2021a, 2022b,
2023a).

In this work, we propose to utilize recent advances in geometric
deep learning on point clouds (Qi et al., 2017a,b) to design a novel
cardiac surface reconstruction method. Of particular importance for
this work is 3D point cloud completion, which tries to predict the
complete shape of a point cloud surface from a partial input (Yang
et al., 2017b; Achlioptas et al., 2018; Yuan et al., 2018). Point cloud
based deep learning methods have recently also been applied to var-
ious cardiac image analysis tasks, including segmentation (Ye et al.,
2020), anatomy generation (Beetz et al., 2021b), deformation predic-
tion (Beetz et al., 2021c), pathology classification (Chang and Jung,
2020; Beetz et al., 2023d), and the combined modeling of cardiac
anatomy and electrophysiology data (Beetz et al., 2022a,c; Li et al.,
2022).

To the best of our knowledge, this work is the first point cloud-based
deep learning approach for multi-class bitemporal cardiac anatomy
2

reconstruction from 2D cine MRI slices. Previous approaches lacked S
validation on real data and used inefficient voxel grid representa-
tions (Xu et al., 2019), did not incorporate class-specific and temporal
information (Beetz et al., 2021a), or relied on the different approach
of mesh template deformation with graph neural networks while only
using SAX information (Chen et al., 2021). Our main contributions are
summarized as follows:

• We develop a 3D biventricular surface reconstruction pipeline
with a novel point cloud-based deep learning network capable of
addressing the data sparsity, motion artifact, and potential errors
introduced as part of the segmentation or contouring process
into a single model, while at the same time maintaining both
multi-class and bitemporal anatomy information;

• We evaluate our proposed multi-class point cloud completion
network (PCCN) on a large-scale dataset of synthetic biventric-
ular anatomies and demonstrate highly accurate reconstruction
performance in a multi-temporal setting, at both the diastolic and
systolic ends of the cardiac cycle;

• We compare our PCCN to a state-of-the-art 3D U-Net approach
and show its advantages in terms of reconstruction results and
efficiency in data representation;

• We successfully apply and validate the complete reconstruction
pipeline on cine MRI acquisitions of 1000 UK Biobank (UKB)
cases;

• We calculate common clinical metrics from our method’s UKB re-
constructions and find plausible values compared to other
population-wide cardiac anatomy studies; and

• We conduct a robustness analysis of our PCCN with respect to
erroneous input contours and increasing levels of misalignment.

The rest of the paper is organized as follows: Section 2 describes the
two datasets used for method development and evaluation in this work.
A detailed description of our proposed pipeline is provided in Section 3,
while the experiments conducted for method evaluation along with
the corresponding results are presented in Section 4. Finally, Section 5
provides a discussion of the proposed technique and our experimental
findings, before Section 6 concludes the paper.

2. Datasets

We use both a synthetic dataset generated from a high-resolution
statistical shape model (SSM) (Section 2.1) and the real cine MRI
acquisitions of the UK Biobank study (Section 2.2) to develop and
evaluate our method.

2.1. 3D MRI-based statistical shape model

The first dataset of this work is based on the biventricular shape
model from Bai et al. (2015), which was created from the 3D cardiac
MRI scans of 1084 healthy volunteers with a 3D cine balanced steady-
state free precession (b-SSFP) sequence and a resolution of 1.25×1.25×
mm. The authors registered and segmented all images at the end-

iastolic (ED) and end-systolic (ES) phases of the cardiac cycle to
onstruct two 3D biventricular surface meshes and applied principal
omponent analysis to determine the 100 most important modes of
ariation of these two mean shapes. We use this SSM to derive a
opulation of 3D biventricular anatomies and corresponding sparse 2D
ine MRI inputs to train and evaluate our PCCN (Section 3.3.3). The
SM was selected as a basis for our synthetic data generation process
ue to multiple reasons. First, it is based on 3D MRI acquisitions, which
ffer high spatial resolution both in-plane and between image planes
ithout the effects of slice misalignment and data sparsity. Second,

he dataset was derived from a large and representative number of
olunteers, increasing its robustness and ability to accurately capture
he true variability in the population. Third, only healthy individuals
ere considered and consistent scanning protocols were used, making

t compatible with large-scale cardiac imaging studies such as the UK
iobank dataset. Hence, we consider the shapes generated from the

SM as the ground truth for our method development.
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Fig. 1. Overview of our proposed 3D cardiac surface reconstruction pipeline from cine MR images. (a) We train three separate CNNs to segment SAX, 4ch LAX, and 2ch LAX
cine MR images. (b) We train a Point Cloud Completion Network on 3D MRI-based dataset to reconstruct a dense 3D point cloud with corrected misalignment from a sparse,
misaligned input point cloud. (c) We propose a 4-step pipeline to reconstruct 3D multi-class cardiac meshes from raw cine MRI acquisitions using the pre-trained networks (a,b)
in steps 1 and 3 of the pipeline.
2.2. UK Biobank

The second dataset used in this work consists of the 2D cine MRI
acquisitions of 500 male and 500 female cases randomly selected from
the UK Biobank study (Petersen et al., 2013, 2015). For each case,
we consider the first temporal frame of the cine sequence as the ED
phase of the cardiac cycle and determine the frame of the ES phase
from the segmented SAX stack as the cardiac phase with minimum
left ventricular (LV) volume (Banerjee et al., 2021a). As our dataset,
we select all SAX slices as well as the 2ch LAX and 4ch LAX slices
for both ED and ES phases of the cine sequence for each case. Its
large sample size and typical image resolution (1.8 × 1.8 × 8.0 mm),
the availability of metadata for each case (sex, age), and the usage of
a clinically established acquisition protocol (b-SSFP) make it an ideal
choice for the evaluation of our proposed cardiac surface reconstruction
pipeline under real-world conditions. Including both ED and ES phases
in the dataset allows us to additionally analyze the performance of
our pipeline in a multi-temporal setting, which is crucial for many
follow-up cardiac function tasks (Beetz et al., 2021c, 2022c).

3. Methods

In this work, we propose a fully-automatic 3D biventricular surface
reconstruction pipeline consisting of four steps outlined in Fig. 1-
c. First, three pre-trained convolutional neural networks (CNN) are
applied to segment the SAX, 4ch LAX, and 2ch LAX slices of the input
cine MRI acquisition (Section 3.1). Second, the anatomical contours
obtained from the segmentation step are positioned in 3D space and
converted into point clouds (Section 3.2). Third, a pre-trained Point
Cloud Completion Network (PCCN) is used to reconstruct a dense multi-
class point cloud representation of the biventricular anatomy from the
sparse, misaligned input point cloud in what constitutes the key step of
the pipeline (Section 3.3). Finally, the dense point cloud is transformed
3

into an anatomical mesh (Section 3.4). The pre-training step of both the
CNNs (Fig. 1-a) and PCCN (Fig. 1-b) is conducted before the application
of the full reconstruction pipeline. The following subsections describe
the four steps of the pipeline in greater detail.

3.1. Cine MRI segmentation

The first step consists of the segmentation of the SAX, 4ch LAX, and
2ch LAX image slices of the cine MRI acquisitions of the UK Biobank
dataset. To this end, we employ the fully convolutional network (FCN)-
based approach proposed by Bai et al. (2018) for the segmentation of
the SAX stack and 4ch LAX slices, since it has been shown to segment
heart structures from cine MR slices with human-level accuracy. A
detailed description of the segmentation method is provided in the
Supplementary Material.

Due to the lack of a publicly available pre-trained network for
automated UK Biobank 2ch LAX slice segmentation, we also train a
separate conditional generative adversarial network (Isola et al., 2017)
with a U-Net generator (Rezaei et al., 2017) for this task. Hereby, the
training data consists of 200 2ch LAX frames chosen at random from
separate UK Biobank subjects, equally distributed across the whole
cardiac sequence. We extract endocardial and epicardial contours, as
well as valvular contours along the mitral valve using the open source
tool ImageJ (Schneider et al., 2012; Rueden et al., 2017) from which
segmentation masks are computed. Image and segmentation mask pairs
are rigidly augmented using rotations, translations, and crops around
the LV center, yielding 1500 and 250 training and validation pairs
respectively.

3.2. Conversion of 2D contours to 3D point cloud

The objective of the second step of our reconstruction pipeline is
to convert the 2D segmentation masks of the different views (SAX
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Fig. 2. Architecture of the proposed point cloud completion network. The input is
a 3D point cloud, which represents the sparse and misaligned cine MRI acquisitions
as a 𝑛 × 4 tensor where 𝑛 refers to the number of points and 4 to the spatial 𝑥, 𝑦, 𝑧
coordinates with a class label for each point. The network is tasked to reconstruct
both a coarse, low-density point cloud to capture the global surface structure and a
dense, high resolution point cloud to accurately represent the cardiac anatomy on both
a local and global level and serve as the final network prediction. The three anatomical
substructures are encoded as separate sets of 𝑥, 𝑦, 𝑧 point coordinates in each of the
output point clouds. Accordingly, the output dimensionality is 𝑚 × 3 × 3 for the coarse
point cloud and 𝑝×3×3 for the dense point cloud where 𝑚 and 𝑝 refer to the respective
number of points.

stack, 4ch LAX, 2ch LAX) obtained in the previous step into a 3D
sparse representation of the cardiac anatomy. To this end, we first
extract the LV endocardial, LV epicardial, and right ventricular (RV)
endocardial contours from their respective segmentation masks. We
then fit a B-spline curve separately to each contour and resample the
same number of points as in the original contour along the obtained
curve at equidistant intervals. We repeat this procedure for both SAX
and LAX images and finally place all resulting points in the same
3D space as the original cine MR slices to create the corresponding
biventricular point clouds for each case.

3.3. Multi-class point cloud completion network

The third step of our pipeline aims to address both the sparsity
and misalignment challenges of cardiac surface reconstruction with a
single deep learning model, while maintaining the spatial and temporal
information of all anatomical structures. To this end, we propose a
novel multi-class Point Cloud Completion Network, which acts di-
rectly on the sparse, misaligned point cloud representations of the
biventricular anatomy. The following subsections explain the network
architecture (Section 3.3.1), loss function and training procedure of the
PCCN (Section 3.3.2), including the generation process of a synthetic
biventricular anatomy dataset (Section 3.3.3) for network training and
an initial validation.

3.3.1. Network architecture
The PCCN architecture is based on recent advances in point cloud-

based deep learning, in particular PointNet (Qi et al., 2017a), Point-
Net++ (Qi et al., 2017b), FoldingNet (Yang et al., 2017b), and Point
Completion Network (Yuan et al., 2018) (Fig. 2).

It consists of an encoder–decoder structure with a latent space
vector of size 1024. The encoding part of the network is an adapted
version of PointNet (Qi et al., 2017a) to allow multi-class point cloud
processing with different resolutions for input and output data. The
network input is a sparse, misaligned point cloud of size 𝑛 × 4, where
4

a scalar class variable to identify the cardiac substructure (LV cavity,
LV myocardium, RV cavity) is concatenated to the 3 spatial coordinate
values (𝑥, 𝑦, 𝑧) of each of the 𝑛 points. Inspired by the design of Point-
Net++ (Qi et al., 2017b), the input is fed through two combinations
of PointNet-style (Qi et al., 2017a) convolutional blocks and pooling
operations as well as a skip connection to allow the network to access
information at different scales and across per-point feature maps, before
passing the output vector to the decoder.

The decoder architecture exhibits a similar two-step design as the
decoder of the Point Completion Network (Yuan et al., 2018), but is
also adapted to our high-density and multi-class setting. The first step
is inspired by Achlioptas et al. (2018) and inputs the latent space vector
into a shared multilayer perceptron (MLP) followed by a reshaping
operation to generate a coarse 3D point cloud with 𝑚 points separately
for each of the three anatomical classes. The goal of this low-resolution
point cloud is to capture the global shape of the biventricular anatomy
by distributing the 3D points along the surfaces of the respective
anatomical structures so that the highest-possible coverage is achieved.
The second part of the decoder is based on FoldingNet (Yang et al.,
2017b) where points are first initialized as grid-structured patches of
size 4 × 4 with the tiling operation where each patch corresponds to
one of the points in the coarse 3D point cloud and is then iteratively
deformed to obtain the best-possible fit with the dense target surface
of the ground truth point cloud. This leads to an effective increase in
point cloud resolution on a local level to obtain the final dense output
point cloud while maintaining the global information of the coarse
point cloud output. The size of the final dense output point cloud is
𝑝×3×3, where 𝑝 refers to the number of points, the first 3 to the spatial
coordinates, and last 3 to the respective cardiac substructures. In this
work, we set 𝑛, 𝑚, and 𝑝 to 36 000, 750, and 12 000, respectively.

3.3.2. Loss function and training
We base the loss function to train our PCCN on Yuan et al. (2018)

and extend it to a multi-class setting by summing over the loss values
of each class to obtain a combined total loss. The class-specific loss
function consists of two loss terms defined at two different stages of
the decoder path as

𝐿𝑡𝑜𝑡𝑎𝑙 =
𝐶
∑

𝑖=1

(

𝐿𝑐𝑜𝑎𝑟𝑠𝑒,𝑖 + 𝛼 ∗ 𝐿𝑑𝑒𝑛𝑠𝑒,𝑖
)

(1)

where 𝐶 refers to the number of classes in the biventricular anatomy.
Although we have only tested 𝐶 = 3 in this work, the proposed
approach can be easily extended to any number of classes. The first loss
term 𝐿𝑐𝑜𝑎𝑟𝑠𝑒 compares the coarse 3D point cloud after the first decoder
step with the dense ground truth point cloud and forces the sparse,
intermediate point cloud to be a good representation of the global
shape. The second loss term 𝐿𝑑𝑒𝑛𝑠𝑒 acts on the final high-resolution
point cloud prediction and enforces the desired smooth shape represen-
tation on both a global and local level. The weight 𝛼 is used to control
the importance of each of the two loss terms in the total loss. We choose
a low 𝛼 of 0.01 at the beginning of training to allow the network to first
learn a good coarse representation of the global anatomy. As training
progresses, 𝛼 is gradually increased to focus on local anatomical details.
We use the Chamfer distance between reconstructed and ground truth
point clouds for both loss terms in (1):

𝐶𝐷(𝑃1, 𝑃2) =
1
2

(

1
|𝑃1|

∑

𝑥∈𝑃1

min
𝑦∈𝑃2

‖𝑥 − 𝑦‖2 +
1

|𝑃2|

∑

𝑦∈𝑃2

min
𝑥∈𝑃1

‖𝑦 − 𝑥‖2

)

(2)

where 𝑃1 refers to the predicted point cloud and 𝑃2 to the ground truth
point cloud.

We train the network for 2000 epochs on a GeForce RTX 2070
Graphics Card using the Adam optimizer (Kingma and Ba, 2015) and a
batch size of 8. The learning rate is initially set to 0.0001 and reduced
every 30𝑘 steps with a decay rate of 0.7 to enable finer network updates
as training progresses.
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Fig. 3. Overview of the synthetic dataset generation from a 3D MRI-based statistical
shape model.

3.3.3. Synthetic dataset generation
Since we do not have access to a large number of ground truth 3D

anatomies, we construct a synthetic dataset from the statistical shape
model (SSM) described in Section 2.1 to train our PCCN.

To this end, we design a three-step process to synthesize the sparse
and misaligned input point clouds as well as the corresponding dense
ground truth point clouds (Fig. 3). First, we generate a virtual pop-
ulation of biventricular anatomy meshes by sampling from the SSM
(Fig. 3-a). Next, we determine the slice planes of the generated meshes
that best mimic the clinically standard cine MRI acquisition (Taylor and
Bogaert, 2005; Walsh and Hundley, 2007; Margeta et al., 2014). We
introduce small random translations to the chosen landmark points to
recreate possible human errors during acquisition. We then artificially
introduce misalignment artifacts due to respiratory and patient motion
to each SAX and LAX slice, allowing us train the PCCN under realistic
conditions. Hereby, we assume that the misalignment can be fully
described by rigid transformations, which we found to be a good ap-
proximation of real conditions. In order to introduce different random
misalignments for each case, we sample the transformation parameters
from a normal distribution with zero mean separately for the 𝑥, 𝑦, 𝑧
translations and the rotations around the 𝑥, 𝑦, 𝑧-axes respectively. To
systematically analyze the performance of our method for different
misalignment amounts, we introduce five subgroups with different
average levels of randomly introduced misalignment, starting with
no misalignment and then increasing the misalignment amount for
each level (mild, medium, strong, severe). We choose five separate
normal distributions with increasing standard deviation values for each
of the subgroups to induce said differences in average misalignment
between the different subgroups. Following previous pertinent liter-
ature (McLeish et al., 2002; Shechter et al., 2004; Chandler et al.,
2008; Villard et al., 2016; Xu et al., 2019; Tarroni et al., 2020)
(see Supplementary Material for more details), we select the standard
deviation values in Table 1 as reasonable approximations for typical
misalignment amounts found in real acquisitions for each severity level.

We introduce random misalignment in this way to each slice of
the whole SAX stack and both LAX slices before converting the slices
into 3D point clouds, which now represent the sparse, misaligned cine
MRI contours of a realistic acquisition (Fig. 3-b). Finally, we extract
the vertices of the corresponding deformed meshes generated from the
SSM to obtain the dense ground truth point clouds for network training
(Fig. 3-c).
5

Table 1
Misalignment amounts per severity level.

Misalignment level

None Mild Medium Strong Severe

Translation (mm) 0.0 1.5 2.5 3.5 5.0
Rotation (◦) 0.0 0.5 1.5 2.5 3.5

Standard deviation values of normal distributions with zero mean for each level of
misalignment.

We run this 3-step synthetic dataset generation process (Fig. 3)
separately for each of the five levels of misalignment to create five
different SSM-based datasets. For each of the four datasets with slice
misalignment (mild, medium, strong, severe), we first generate 250
deformed meshes for both ED and ES phases and then apply 10 different
sets of random misalignment transformations to each of the meshes,
resulting in 5000 sparse, misaligned point clouds per misalignment
level. In case of no misalignment, we sample 500 different shapes from
the SSM for both ED and ES phases, and apply 5 different random
transformations to mimic errors in slice plane selection to each of
the 1000 point clouds. We note that no individual correspondence
between generated ED and ES shapes is present in the dataset based
on the available SSM data. Each of the five datasets is split into train,
validation, and test datasets with sizes 80%, 5%, and 15%, respectively.

3.4. Surface mesh generation from dense point cloud

The last step of our surface reconstruction pipeline consists of
transforming the multi-class biventricular point clouds into triangular
meshes. To this end, we select the Ball Pivoting algorithm (Bernardini
et al., 1999) and apply it separately for each of the three cardiac
substructures of the reconstructed point clouds. This allows us to use
different hyperparameter settings in the meshing algorithm for each
class to account for their specific topological requirements.

4. Experiments

In this section, we first evaluate our proposed point cloud com-
pletion network on the SSM dataset (Section 4.1) and compare its
performance to a 3D U-Net benchmark (Section 4.2). We then validate
the complete cardiac surface reconstruction pipeline on the UK Biobank
dataset from both a geometric (Section 4.3) and clinical perspective
(Section 4.4) and analyze its robustness (Section 4.5).

4.1. Statistical shape model dataset

We choose the synthetic SSM dataset (Section 3.3.3) for the first
evaluation of our point cloud completion network, as it enables a direct
comparison between the available ground truth anatomies and the re-
constructed point clouds and meshes. By introducing slice misalignment
at five different levels of severity, we can also analyze the effect of
misalignment on the performance of the network. To this end, we train
five different networks on each of the training datasets that correspond
to one of the five levels of misalignment and validate our method
on the respective unseen test datasets. For each misalignment level,
both ED and ES point clouds are included in the respective datasets
allowing an analysis of the network’s reconstruction performance on
multi-temporal data. Figs. 4 and 5 depict the sparse, misaligned input
point cloud, both network outputs, and the pertinent ground truth point
cloud per misalignment level for multiple different ED and ES sample
cases, respectively.

We observe that the network is able to reconstruct the biventric-
ular anatomy with high accuracy for a variety of different shapes
and sizes on both a local and global level. Reconstruction quality
decreases slightly as the amount of misalignment in the input point

clouds increases. The basal areas of the cardiac anatomy show the
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Fig. 4. Qualitative reconstruction results of an ED sample case for each of the five
levels of misalignment from the SSM dataset.

Fig. 5. Qualitative reconstruction results of an ES sample case for each of the five
levels of misalignment from the SSM dataset.

most disagreement between prediction and ground truth, due to the
high information sparseness in the input point clouds in this region.
The different cardiac substructures and the two cardiac phases perform
similarly well in the reconstruction task.

In order to quantify the reconstruction ability of our point cloud
completion network for different misalignment amounts, we calculate
the Chamfer distances between the dense predicted point clouds and
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the corresponding ground truth point clouds in each of the five test
datasets. We report the results in Fig. 6, split by cardiac substructure
and phase for each of the five levels of slice misalignment.

We find median Chamfer distances considerably below or close
to the underlying image resolution (1.8 × 1.8 mm) with low quartile
deviation values for all levels of misalignment, cardiac phases, and
substructures. Both median and quartile deviation values increase with
rising levels of misalignment. Chamfer distances are generally higher
for the right ventricular anatomies than for the left ventricular ones,
while only marginal differences generally exist between the ED and ES
phases.

4.2. Comparative analysis

We compare our PCCN with a state-of-the-art 3D U-Net archi-
tecture (Çiçek et al., 2016), which has previously been applied to
biventricular surface reconstruction (Xu et al., 2019). For this task,
we select the SSM dataset with medium misalignment as it represents
the mean slice misalignment expected in a typical cine MRI acquisi-
tion (McLeish et al., 2002; Shechter et al., 2004; Chandler et al., 2008;
Villard et al., 2016; Xu et al., 2019; Tarroni et al., 2020).

Since U-Nets operate on grid-based structures, we first convert
the sparse, misaligned input point clouds and the ground truth point
clouds of our dataset to voxel grid representations of the biventricular
anatomy. We set the voxel size to 1.5 × 1.5 × 1.5 mm, chosen as a
trade-off between closeness to the 3D MRI resolution underpinning the
SSM dataset (1.25 × 1.25 × 2 mm) and ensuring that the complete
biventricular anatomy fits into the fixed size 128 × 128 × 128 voxel
grid for all cases. It is also smaller than the pixel size of the underlying
2D image acquisition (1.8×1.8 mm) which acts as a lower accuracy limit
of the point cloud representation. Furthermore, the voxel resolution
values are slightly higher than the 2× 2×2 mm used in the work by Xu
et al. (2019), enabling a more accurate reconstruction.

With both point cloud and voxel grid representations available for
each case, we train both our PCCN and a 3D U-Net for biventricular
surface reconstruction on the same dataset. To allow a comparison
of results, which is as fair as possible, we convert both the point
clouds and voxel grids to multi-class triangular meshes as a neutral
data type by using the Ball Pivoting (Bernardini et al., 1999) and
Marching Cubes algorithms (Lorensen and Cline, 1987), respectively.
The resulting meshes predicted by the PCCN and the 3D U-Net as well
as the corresponding ground truth meshes are shown for two sample
cases in Fig. 7.

We observe that both the PCCN and the U-Net are able to accurately
reconstruct different cardiac shapes for all cardiac substructures and
phases. On a global level, we notice only minor differences between
the results, which are mostly caused by the lower smoothness of the
U-Net outputs as a result of deriving them from gridded data. Visible
differences are larger on a local level where the U-Net reconstructions
exhibit erroneous outward bulging in some surface regions that do not
align with the ground truth and are correctly smoothed out in the
respective PCCN predictions. These differences most commonly occur
in the LV cavity substructure and are slightly more pronounced in ES
than in ED.

In order to quantify the differences between the PCCN and the 3D
U-Net, we calculate the Hausdorff distances, the mean surface distances
(MSD), and the Chamfer distances between predicted and ground truth
meshes of the unseen SSM test dataset for both methods and report the
results in Table 2. In addition, we also provide information about the
number of network parameters and data representations used in the
respective approaches.

We find that the PCCN outperforms the 3D U-Net by 32% and 24%
in terms of average Hausdorff distance and mean surface distance, re-
spectively. Standard deviations of both distance metrics are also lower
for the PCCN than for the U-Net reconstructions, while only minor
differences exist between the ED and ES results. Due to its usage of
memory-efficient point clouds, the PCCN achieves this outperformance
despite using 13 times less storage space for each anatomy.
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Fig. 6. Boxplots presenting Chamfer distances between ground truth and reconstruction results of our method on five different SSM datasets with increasing levels of slice
misalignment.
Fig. 7. Qualitative reconstruction results on two sample cases of the SSM dataset for
the Point Cloud Completion Network and a 3D U-Net.

Table 2
Comparison of cardiac mesh reconstruction methods using the SSM dataset with
medium misalignment. The distance scores are averaged across the three cardiac
substructures.

Proposed 3D U-Neta

Data type Point cloud Voxel grid
Input data size ∼144 × 103 ∼2 × 106

Output data size ∼108 × 103 ∼2 × 106

Number of parameters ∼10.6 × 106 ∼12.0 × 106

ED Hausdorff (mm)b 3.50 ± 0.84 5.31 ± 1.63
ES Hausdorff (mm)b 3.49 ± 0.89 4.83 ± 1.09
ED MSD (mm)b 0.93 ± 0.28 1.30 ± 0.44
ES MSD (mm)b 0.98 ± 0.32 1.21 ± 0.36
ED Chamfer (mm)b 1.13 ± 0.26 1.49 ± 0.46
ES Chamfer (mm)b 1.15 ± 0.29 1.30 ± 0.35

a Çiçek et al. (2016).
b Values represent mean ± standard deviation.

4.3. UK Biobank

After evaluating our PCCN on the synthetic SSM datasets, we assess
the ability of the complete cardiac surface reconstruction pipeline to
transform raw cine MR images into triangular mesh representations of
the biventricular anatomy on the real-world dataset of the UK Biobank
study (Petersen et al., 2013, 2015). Since the first two steps of our 4-
step reconstruction pipeline were both developed and validated on the
MRI acquisitions of the UK Biobank (Bai et al., 2018; Banerjee et al.,
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2021a), we can directly use them for this task without any further
adjustments. As the third step of our pipeline, we want to directly apply
a PCCN pre-trained on one of the SSM datasets to the sparse, misaligned
UK Biobank point clouds obtained in the second pipeline step in a cross-
domain transfer setup. To this end, we first assess which of the five
networks, trained on different amounts of misalignment, is the best fit
for the UK Biobank dataset. We refer to these networks as no, mild,
medium, strong, or severe misalignment networks for the remainder of
this paper.

Since this is not a straightforward task due to the lack of available
3D ground truth for the UK Biobank data, we create a set of approxi-
mate ground truth meshes to act as a benchmark for our analysis. We
first select 10 cases with the least amount of misalignment in the UK
Biobank dataset. Hereby, we determine the misalignment amount of
each case by calculating the average shortest distance of each point
in each slice to the remaining slices in the given point cloud. The
corresponding 3D point clouds are then reconstructed for both ED and
ES using the PCCN trained on the SSM dataset with no misalignment.
We consider these 3D reconstructions as our pseudo-gold standard for
this experiment. However, we note that some reconstruction error is
still expected to be present, as the selected cases are not completely
without misalignment, come from a different, unseen domain compared
to the PCCN’s training SSM dataset, and might contain segmentation
errors.

Given this set of pseudo ground truth anatomies, we can apply each
of the four pre-trained PCCN candidate models to the sparse input
point clouds and compare the predicted 3D reconstructions with the
corresponding pseudo ground truths. However, this would only assess
the performance on UK Biobank cases with very little misalignment,
which are not representative of the whole dataset. Hence, we first
artificially introduce random slice misalignments to each of the sparse
input point clouds to mimic real-world misalignment conditions, while
still maintaining our pseudo gold standard point clouds required for the
comparative evaluation. Similar to our experiments on the SSM dataset,
we include both ED and ES point clouds of each case in the dataset
and introduce the misalignment at four different levels of severity
(mild, medium, strong, severe). For each level, 10 random amounts of
misalignment are applied to each of the 10 pseudo ground truth cases,
resulting in 100 misaligned and sparse point clouds per misalignment
level. We use the Chamfer distances between the predicted and pseudo
gold standard point clouds as our evaluation metric in all cases and
report the UK Biobank reconstruction results separated by cardiac
substructure and sex in Fig. 8.

We observe that the mild misalignment PCCN generally achieves
the best overall results across all misalignment levels, cardiac substruc-
tures, and sex. Its distance scores are the lowest for mild, medium,
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Fig. 8. Boxplots showing the reconstruction performance of networks trained on SSM datasets with different misalignment levels (in columns) and applied to UKB data with
different misalignment levels (in rows).
Fig. 9. Qualitative reconstruction results for two sample cases of the UK Biobank
dataset.

and strong UKB misalignments, as well as for severe UKB misalignment
in the RV endocardium. The medium misalignment PCCN performs
best on severely misaligned left ventricular UKB data and second-best
overall. We also see a general decrease in performance of all four
analyzed networks with increasing misalignment in the UKB data.

Based on these quantitative evaluation results on the UK Biobank
data, we select the mild misalignment PCCN for the third step of our
reconstruction pipeline. With all components of the full reconstruction
pipeline available, we apply it to the randomly selected 1000 subjects of
the UK Biobank dataset. We visualize the sparse, misaligned input point
clouds, the corresponding dense output point clouds, and the output
meshes for two sample UK Biobank cases in Fig. 9.

We find realistic and plausible 3D reconstructions that align very
well with the 2D anatomical information in the sparse input point
clouds for all cardiac substructures and phases. Furthermore, the mesh-
ing step is able to successfully preserve the cardiac surface anatomy of
the reconstructed point clouds in the final output meshes and create
topologically accurate two-manifold meshes for 97% of all cases. Only
small differences in reconstruction performance between the ED and ES
phases are observed.
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4.4. Clinical metrics

Next, we evaluate the ability of our cardiac surface reconstruction
method to generate clinically plausible meshes on a population level.
To this end, we select two population-wide studies of healthy cardiac
anatomy and function and compare their results with ours in terms of
multiple clinically established cardiac image-based biomarkers. Table 3
provides an overview of the two benchmark studies along with our
proposed method.

We select the LV and RV volumes at both ED and ES phases
as well as the LV myocardial mass as image-based biomarkers for
the assessment of cardiac anatomy, while stroke volume (SV) and
ejection fraction (EF) are used to quantify cardiac function for both
the LV and RV. We calculate these metrics for all cases of our UK
Biobank dataset using both the modified Simpson’s rule on the 2D
slice segmentations and the direct calculation from our reconstructed
3D meshes. The results are shown in Table 4, along with the corre-
sponding values reported in the benchmark studies of Petersen et al.
(2017) and Bai et al. (2015). We split the scores by sex to analyze
whether subpopulation-specific differences are accurately reflected in
our method’s reconstructions, providing additional validation of our
proposed pipeline. We note that, while the analysis of Petersen et al.
(2017) is also based on the UK Biobank study, we use a different subset
of cases in this work.

We observe that our 3D reconstruction pipeline achieves plausi-
ble scores for all analyzed metrics and is able to accurately capture
sex-related differences. This is shown by the higher left and right
ventricular volumes reported for male cases compared to the female
ones, which is also present in all three benchmark studies. Comparing
our 3D mesh-based approach with the two 2D slice-based calculation
methods (Simpson’s rule and Petersen et al. (2017)), we find similar
values for left ventricular volume (LV end-diastolic volume — LVEDV,
LV end-systolic volume — LVESV) and function (LV stroke volume —
LVSV, LV ejection fraction — LVEF) metrics, but larger values for LV
mass and right ventricular volumetric metrics (RV end-diastolic volume
— RVEDV, RV end-systolic volume — RVESV, RV stroke volume —
RVSV). At the same time, our pipeline’s scores are lower than the other
3D mesh-based approach by Bai et al. (2015) in three out of the four
available metrics and comparable for LVESV. The comparative analysis
shows similar trends for both sexes with slightly larger differences for
male cases.
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Table 3
Dataset comparison of the proposed and benchmark studies.

Petersen et al. (2017) Bai et al. (2015) Proposed

Dataset source UK Biobank UK Digital Heart Project UK Biobank
Imaging type 2D MRI 3D MRI 2D MRI
Resolution (mm) 1.8 × 1.8 × 8.0 1.25 × 1.25 × 2.0 1.8 × 1.8 × 8.0
Slice gap (mm) 2.0 None 2.0
Contouring procedure Manual Semi-automatic (subset manual) Fully automatic
Biomarker calculation 2D-based 3D-based 3D-based
Number of cases 800 1093 970
Average age (yr) 59 40 62
Table 4
Clinical metrics of female and male cases reported by different studies.

Female Male

Petersen et al.
(2017)

Bai et al. (2015) Simpson’s rule Proposed Petersen et al.
(2017)

Bai et al. (2015) Simpson’s rule Proposed

Number of cases 432 600 500 483 368 493 500 487
LVEDV (ml) 124 ± 21 138 ± 24 124 ± 22 128 ± 23 166 ± 32 178 ± 36 155 ± 30 156 ± 32
LVESV (ml) 49 ± 11 48 ± 10 48 ± 12 50 ± 12 69 ± 16 65 ± 15 67 ± 19 67 ± 16
LVSV (ml) 75 ± 14 – 75 ± 14 76 ± 16 96 ± 20 – 89 ± 18 88 ± 24
LV mass (g) 70 ± 13 96 ± 16 68 ± 12 82 ± 16 103 ± 21 128 ± 24 96 ± 17 120 ± 26
LVEF (%) 61 ± 5 65 ± 4 61 ± 5 61 ± 6 58 ± 5 64 ± 4 57 ± 6 57 ± 8
RVEDV (ml) 130 ± 24 – 127 ± 24 148 ± 24 182 ± 36 – 167 ± 32 192 ± 32
RVESV (ml) 55 ± 15 – 52 ± 13 64 ± 13 85 ± 22 – 76 ± 19 92 ± 18
RVSV (ml) 75 ± 14 – 75 ± 15 84 ± 16 97 ± 20 – 91 ± 19 99 ± 22
RVEF (%) 58 ± 6 – 59 ± 6 58 ± 5 54 ± 6 – 55 ± 6 52 ± 7

Values represent mean ± standard deviation.
In order to further analyze the ability of our method to take into
account subpopulation-specific differences in its reconstruction task,
we also calculate the same clinical metrics for three different age
groups. The results of our 3D mesh-based calculations, the 2D slice-
based approach using modified Simpson’s rule, and the corresponding
values reported by Petersen et al. (2017) are reported for each of the
three age groups in Table 5. We only show the scores for female cases
since the observed trends are similar for both sexes. The corresponding
table for male cases can be found in the Supplementary Material.

Similar to the sex-specific results, we find generally plausible scores
for our 3D reconstructions and comparable trends between our 3D and
the two 2D-based calculations with LV mass and RV metrics showing
higher and the remaining metrics similar values. Our method is able
to successfully capture clinically established age-related changes for
all metrics. Examples include the decline in left and right ventricular
volume at both ED and ES with increasing age and the consistent
EF values across all age groups. In the former case, both our 3D
and 2D-based calculations show decreases for both older age groups,
while Petersen et al. (2017) report small increases for the oldest age
group compared to the medium one.

4.5. Robustness analysis

To further validate the accuracy of our proposed reconstruction
method on the UK Biobank dataset, we investigate its robustness to
various common outlier conditions. In this regard, the image segmen-
tation step of our pipeline is of considerable importance as it affects
all downstream tasks, including the 3D surface reconstruction step
with the PCCN. While the segmentation performance of modern deep
learning approaches has generally been shown to be on par with human
experts on a population level for healthy cases (Bai et al., 2018),
individual cases or slices often still result in erroneous outputs. These
include the breakage of the LV myocardium in the apical region of the
heart, the erroneous inclusion of papillary muscles in the myocardial
region, anatomically incorrect segmentation of the basal plane slices,
or the complete failure of the segmentation algorithm due to imaging
artifacts which in turn results in missing slices in the 3D reconstruction
task.

In order to investigate the effects of such errors on the 3D surface
reconstruction ability of the PCCN, we first select various UK Biobank
9

Fig. 10. Two sample cases with myocardial breakage in the apical region of the 2ch
LAX segmentation mask.

cases that suffer from either myocardial breakage or erroneous segmen-
tation of papillary muscles in the predicted segmentation masks. We
then compare the affected regions in the sparse, misaligned input point
clouds and the dense output point clouds reconstructed by the PCCN.
The results are depicted for two sample cases of the UKB dataset in
Fig. 10.

We see that in both cases the PCCN is able to correct the my-
ocardial breakage at the apex and reconstruct a smooth, continuous
myocardium at the affected region. The bottom case in Fig. 10 also
depicts an erroneous segmentation of the papillary muscles, which are
included in the myocardial region. This results in an inward bulging
myocardium in the left mid-cavity region of the sparse input point
cloud. However, similar to the myocardial breakage, the PCCN has
successfully removed it from the dense output point cloud. We find this
corrective ability of the PCCN present in all UK Biobank cases where
either myocardial breakage or wrong papillary muscle segmentation
occurs. In addition, the myocardial thickness in both reconstructed
point clouds is smaller than suggested by the 2ch LAX view alone,
but larger than the spatially corresponding information in the SAX
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Table 5
Clinical metrics of female cases split by age group as reported by different studies.

Age groups (years)

45–54 55–64 65–74

Petersen et al.
(2017)

Simpson’s rule Proposed Petersen et al.
(2017)

Simpson’s rule Proposed Petersen et al.
(2017)

Simpson’s rule Proposed

LVEDV (ml) 131 132 ± 23 137 ± 24 121 127 ± 21 129 ± 22 122 119 ± 22 121 ± 21
LVESV (ml) 52 52 ± 13 54 ± 13 47 49 ± 11 50 ± 11 48 46 ± 12 48 ± 11
LVSV (ml) 79 79 ± 14 82 ± 17 74 77 ± 14 78 ± 17 74 72 ± 14 72 ± 15
LV mass (g) 71 70 ± 11 80 ± 15 69 70 ± 12 83 ± 15 69 68 ± 11 81 ± 14
LVEF (%) 60 60 ± 5 60 ± 6 61 61 ± 5 61 ± 6 61 61 ± 6 60 ± 7
RVEDV (ml) 138 134 ± 26 157 ± 29 125 129 ± 22 150 ± 23 128 121 ± 24 144 ± 22
RVESV (ml) 61 56 ± 14 67 ± 15 52 52 ± 12 64 ± 11 54 49 ± 13 62 ± 13
RVSV (ml) 78 78 ± 15 89 ± 19 73 77 ± 14 86 ± 17 74 72 ± 15 81 ± 15
RVEF (%) 56 58 ± 5 57 ± 5 59 60 ± 5 57 ± 5 58 59 ± 7 57 ± 6

Mean values are reported for Petersen et al. (2017) and mean ± standard deviation for Simpson’s rule and proposed pipeline.
slices. This shows that the PCCN is able to utilize the available data
from multiple views and select the best trade-off between the available
information as the final output.

5. Discussion

We have developed and successfully validated a fully automatic
4-step pipeline for cardiac surface reconstruction from raw cine MR
images. The PCCN as the main step of the pipeline is able to solve both
the sparsity and misalignment issues in a single model, while retaining
both class-specific information of the different cardiac substructures
and cardiac phases (ED or ES). Its architecture is specifically designed
for direct and effective point cloud processing. On the one hand, this
enables a more memory-efficient data storage and the usage of higher
resolutions to represent anatomical surfaces, which is beneficial for
many downstream tasks (Beetz et al., 2021b,c; Corral Acero et al.,
2022; Di Folco et al., 2022). On the other hand, the fact that only
the surface level information is processed by the network facilitates
the reconstruction task and ultimately leads to better performance than
inefficient grid-based CNNs which require considerably larger amounts
of memory to store the same 3D surface data and force the network
to manage the additional difficulty of processing highly sparse data.
No post-processing step needs to be applied on our reconstructed point
clouds making its application easier than voxel grid-based approaches,
which often require further processing (e.g. selection of largest con-
nected component) (Xu et al., 2019). While we develop the PCCN for
three classes and two cardiac phases in this work, the network design
can easily be extended to additional cardiac substructures or cardiac
phases.

The point cloud-based deep learning approach also allows a straight-
forward and effective integration of both SAX and LAX information
which is crucial for an accurate 3D surface reconstruction, especially
in information-sparse regions between slices or in the apical and basal
areas of the heart. This in turn is of high importance for many down-
stream tasks, such as the accurate measurement of longitudinal strain
which would be considerably more noisy when based only on SAX
information. In addition, the PCCN can also be applied over manually
delineated contours through a graphical interface (Banerjee et al.,
2021a) providing flexibility to the first step of the reconstruction
pipeline. Furthermore, the PCCN does not require any landmark detec-
tion, point-to-point correspondence or registration between the input
and output point clouds for training, does not need any specific nor-
malization to be applied to the input point clouds, and also does not
rely on any template shapes, as opposed to many deformation-based
reconstruction approaches (e.g. Lamata et al. (2014)).

Our PCCN achieves mean Chamfer distances between the recon-
structed and gold standard point clouds that are below or similar as
the underlying image resolution for all tested misalignment levels,
cardiac substructures, and cardiac phases. This demonstrates that the
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PCCN is able to reconstruct a large variety of cardiac shapes that
differ both spatially and temporally with high accuracy on both a
local and global level. This is facilitated by the design of the PCCN
decoder with both a coarse and dense output point cloud attending
to information at different scales. The low standard deviation values
of the Chamfer distances show that this high reconstruction quality
is consistently obtained throughout the dataset indicating a high ro-
bustness of the network against outlier cases. Once trained, the PCCN
also offers considerable speed advantages compared to traditional non
deep learning-based reconstruction techniques (Lamata et al., 2014;
Villard et al., 2018a; Banerjee et al., 2021a), making it particularly
advantageous for large-scale data processing. The combined multi-class
anatomy processing is especially beneficial in this regard as it avoids
the need for separate reconstruction processes to be run for each cardiac
substructure.

We observe that the PCCN pre-trained on the 3D MRI-based SSM
dataset can be successfully applied to the UKB dataset in a cross-
domain transfer setting as part of the full reconstruction pipeline. This
indicates that both the shape deformations and virtual slice planes
selected during the creation of the SSM dataset are a realistic repre-
sentation of real-world conditions. Furthermore, we did not observe
any major negative bias or smoothing effects in the reconstructed
shapes which showcases the suitability of the PCCN for cross-domain
applications. As expected, we observe larger reconstruction errors for
larger amounts of introduced misalignment which reflects the more
difficult task. Male hearts generally show larger Chamfer distances
than female ones across all misalignment levels and substructures. We
believe this to be primarily a consequence of using the same point
cloud resolution to represent the larger male hearts. This results in
typically larger spatial distances between individual points even in case
of similarly high reconstruction quality which is no longer present once
the values are normalized by heart size. We find that the PCCN pre-
trained on mildly misaligned SSM data achieves the best performance
on the UKB dataset. This is somewhat surprising as the medium level
was originally selected to reflect the average misalignment of typical
acquisitions as in the UKB study. We hypothesize that on the one
hand, the UK Biobank cohort could suffer from smaller amounts of
misalignment than comparable studies due its usage of a coherent
acquisition protocol or the selection of relatively healthy volunteers.
On the other hand, the small misalignment amounts in the SSM dataset
might also act as a regularizer during network training, which in turn
helps the PCCN’s generalization ability to the new UKB domain. It
should also be noted that stronger misalignments are still present in
the mildly misaligned SSM dataset albeit to a lesser extent. Finally,
the selected misalignment amounts for each level are only chosen
as an approximation derived from literature and could therefore also
exhibit some degree of error. However, since the Chamfer distances
show high reconstruction accuracy for all four PCCNs pre-trained on
different misalignment levels, we conclude that a different choice in
pre-training dataset would result in only a marginal performance drop.

Furthermore, since there are no ground truth shapes available for the
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UK Biobank dataset, we base our evaluation on a comparison with a
pseudo ground truth created by artificially introducing misalignment
to selected real data. This likely results in a certain amount of noise in
the pseudo ground truth and hence limits the accuracy of the obtained
results. However, the misalignment was introduced in a way to approx-
imate real conditions as closely as possible based on findings in prior
work. Furthermore, we have also qualitatively assessed the quality of
the artificial misalignment with a comparison to the true misalignment
in the UK Biobank cases to ensure a high degree of realism. While
the manual creation of a potentially more accurate ground truth is
a possibility, this would also introduce a degree of subjectivity into
the gold standard and significantly complicate the application to larger
datasets.

Using the mild misalignment PCCN, we observe a high degree of
alignment between the clinical metrics calculated directly from our
3D reconstructed meshes and the respective benchmark methods. This
shows that both cardiac anatomy and function are accurately repre-
sented in the reconstructions while successfully taking into account the
differences in subpopulations (sex, age), cardiac structures, and phases
on a real-world dataset. It also further corroborates the accuracy of our
pre-training and cross-domain transfer steps. Furthermore, it provides
evidence of the effectiveness of our proposed meshing procedure, as
a topologically correct two-manifold mesh is required for accurately
calculating volumetric biomarkers. While no such topological correct-
ness was achieved for some cases with the current approach, additional
fine tuning of the relevant hyperparameters and pipeline would likely
further improve the quality of the resulting meshes.

The most noticeable differences in clinical metrics between the
3D and 2D-based calculations are found in the larger values obtained
for the LV myocardial mass and RV volumetric metrics. The latter
is an expected outcome that we believe to be a consequence of the
general RV mesh shape in the original SSM by Bai et al. (2015) that
we used to derive our SSM dataset and pre-train our PCCN. In the
SSM, the RV extends considerably above the basal SAX plane which
leads to higher 3D volumes compared to a 2D-based calculation where
the disk around the basal plane position serves as the boundary for
calculating the respective volumes. These larger RV volumes are re-
flected in the reported scores in Tables 4 and 5. This explanation is
further corroborated by the RVEF values which show high similarity
with the 2D-based approaches due to it being a relative metric that
normalizes out raw size differences in volumes. We also note that the
three comparative benchmarks rely on manual (Petersen et al., 2017),
semi-automatic (Bai et al., 2015), and fully automatic (Simpson’s rule
applied to our UK Biobank dataset) approaches respectively to obtain
the image segmentations required for their biomarker calculations.
This further corroborates the good performance of our method, as its
reconstructions exhibit similar clinical metrics as multiple ground truth
benchmarks derived in different ways.

Finally, we find that the PCCN is able to successfully correct com-
mon errors in the segmentation contours of the precursor task by
providing continuous and smooth myocardium boundaries with appro-
priate thickness even in cases of myocardial breakage or erroneous
inclusion of the papillary muscles. This indicates that the PCCN is
capable of implicitly learning an accurate anatomical prior during
training which in turn allows it to automatically adjust anatomical
inconsistencies.

6. Conclusion

We have developed a novel multi-class Point Cloud Completion
Network capable of reconstructing 3D biventricular surface anatomies
from sparse and misaligned cine MRI contours with high accuracy,
while taking both temporal and spatial differences in the underlying
cardiac substructures into account. We have also shown that the PCCN
trained on a synthetic 3D MRI-based dataset can be successfully applied
as the key component of a multi-step 3D cardiac surface reconstruction
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pipeline from raw 2D cine MRI acquisitions of the UK Biobank dataset
in a cross-domain transfer setting. Finally, we have thoroughly evalu-
ated both the PCCN and the complete 4-step pipeline on two different
datasets and found very high reconstruction accuracy and robustness in
terms of a variety of both geometric and clinical metrics. In our future
works, we plan to investigate the possibility for further architectural
improvements, for example by using the point cloud-based attention
mechanisms, and to extend the presented method to other cardiac
substructures and the full cardiac cycle. We also plan to evaluate the
cardiac reconstruction performance over varying cardiac pathologies in
the near future.
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