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ABSTRACT: Herein, we present a novel C(sp3)−C(sp3) bond-forming
protocol via the reductive coupling of abundant tertiary amides with
organozinc reagents prepared in situ from their corresponding alkyl halides.
Using a multistep fully automated flow protocol, this reaction could be used
for both library synthesis and target molecule synthesis on the gram-scale
starting from bench-stable reagents. Additionally, excellent chemoselectivity
and functional group tolerance make it ideal for late-stage diversification of
druglike molecules.

Robust and broad scope methodologies for C(sp3)−C(sp3)
bond formation are of great importance in both medicinal

and synthetic chemistry for providing predictable and rapid
access to novel chemical space in an efficient manner.1

Commonly, C(sp3)−C(sp3) bond formation is achieved via
Ni-,2 Pd-,3 Co-,4 and Fe5-catalyzed cross-coupling from
halogenated precursors, acid derivatives, or by addition of
nucleophiles and radicals to activated systems, i.e., Giese and
Reformatsky-type reactions.6 However, performing such trans-
formations in a high-throughput format remains a challenge and
currently places limitations on its applicability in drug
discovery.7 As part of an ongoing program to address this,
recently our group reported an automated flow photochemistry
platform to perform Giese-type radical additions on activated
alkenes using a halogen atom transfer (XAT) approach to enable
C(sp3)−C(sp3) bond formation.8

The amide functional group is undoubtedly the most
ubiquitous pharmacophore in bioactive natural molecules (i.e.,
peptides) and drug compounds. From a chemical reactivity
point of view, the amide is stable and can be considered as
mostly inert toward the majority of reagents and, until recently,
was rarely employed as a substrate for C(sp3)−C(sp3) bond
formation.9 By making this abundant functional group a suitable
reactive intermediate for downstream diversification, the
possibility to re-explore many druglike compounds in a
strategically new way would be enabled. Indeed, recent reports
from the groups of Nagashima,10 Huang,11 Chida and Sato,12

and Dixon,13 among others,14 have demonstrated that tertiary
amides can act effectively as iminium ion and enamine
precursors.15 Carbon-centered nucleophilic trapping reagents
for in situ generated iminium ions have so far ranged from
cyanide13c and acetylide11a through to Grignard reagents.13d

Furthermore, functionalized difluoromethyl groups could also
be introduced via appropriate difluoroacetate ester and amide
Reformatsky reagents.13f Despite these advances, the scope of
the current amide reductive functionalization methodologies is
limited by the narrow set of nucleophiles used.

We recognized that broadening the transformation to a larger
set of organometallic nucleophiles would expand its applicability
and value-adding relevance, particularly for library synthesis.
This would be especially true if the coupling reactions were
performed in an automatedmanner, and in this case, a flow setup
could be envisioned as the most suitable platform to run such
chemistry in a machine-assisted way. Both reagents, the
hemiaminal intermediate [obtained by partial amide reduction
with Vaska’s complex and tetramethyldisiloxane (TMDS)] and
the organometallic reagents, are unstable/reactive by their
nature, and flow would permit both chemicals to be prepared
and reacted in-line with a suitable computer-controlled process.

The in-line coupling of the silylated hemiaminal 1 derived
from N,N-dimethylbenzamide with benzylzinc bromide was
chosen as a model reaction (Table 1). Optimization was
achieved quickly by building on our previous experience
regarding reactions of hemiaminals and organozinc reagents16

and our recent protocol.13f
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We performed the reaction in a chip reactor at room
temperature to determine time and equivalents required for the
organozinc coupling step (Table 1). The silylated hemiaminal 1
was prepared in batch in CH2Cl2 following our protocol,13c and
benzylzinc bromide 2 was prepared by flowing a solution of
benzyl bromide in THF through a column filled with zinc
powder, as reported by our group.17 The initial attempt with 2
equiv of 2 with a tR of 1 min very pleasingly provided the desired
product 3 in good yield (87%, entry 1). Increasing the residence
time to 5min improved the yield up to 92% (entry 3). Increasing
the equivalents of organozinc reagents provided a slight increase
in yield (entry 4), but decreasing the equivalents resulted in a
clear drop in conversion to product (entry 5) as the excess of
silane also reacted with the organometallic reagent. The best
balance was found using 2.2 equiv of organozinc 2 with a
residence time of 5 min (entry 6), which represented an
improvement over the previous procedure in terms of
equivalents and time.13f

The scope of the flow protocol was assessed using 2.2 equiv of
organozinc reagent and a 0.1 M solution of silylated hemiaminal
freshly prepared following conditions described in the literature
(Figure 1).13c The desired amine products were obtained in
moderate to excellent yields, and the reaction additionally
showed a high functional group tolerance by being compatible
with halogens, esters, nitriles, carbamates, and lactams. For
benzyl zinc analogues, it was observed that substituents at the o-,
m-, and p-positions were tolerated (compounds 4−15),
although lower yields were observed with ortho substituents
presumably because of steric effects (12 and 13). Importantly,
the in-line coupling reaction also worked with other primary,
secondary, and tertiary organozinc reagents to provide the
desired products (16−24) in moderate to good yields. From this
group of reagents, it is important to highlight the formation of
quaternary carbon centers in compounds 21−24, which still
remains as a challenging transformation in modern synthetic
chemistry.1b Moreover, the reaction allowed the introduction of
other functionalized alkyl groups, such as tetrahydropyran 18
and N-Boc-protected piperidine 19. Both of these structural
motifs are of high importance for medicinal chemists and are not
easily accessible by other procedures. In agreement with
previous reports, other benzamide analogues were also
successfully employed in the reaction (25−30). After exploring
the preliminary scope for the C(sp3)−C(sp3) bond formation,
we focused our attention on expanding the scope of amides

suitable for this reaction, especially lactams that are of
importance to medicinal chemistry.18 As the silyl hemiaminals
from lactams are typically less stable than those from
benzamides, we also explored the Vaska’s complex-catalyzed
reduction step in flow to determine the time and equivalents of
TMDS required for its reduction.13 N-Phenylpiperidone 31 was
selected for this study. Two solutions, one with the reducing
agent in toluene and the other with the lactam and the Vaska
catalyst, were mixed and allowed to react; then, this solution was
collected over CDCl3 under nitrogen atmosphere, and the 1H
NMR was measured directly after collection to evaluate the
conversion (see Supporting Information). Repeating this
experiment at different residence times allowed us to determine
that the lactam was fully reduced in only 5 min (see Supporting
Information). Then, using 5 min as the fixed residence time in
the reactor, the experiment was repeated at different
concentrations of TMDS to determine the equivalents required
for the reduction step. Finally, 1.7 equiv of TMDS and 5 min of
residence time proved to be the ideal conditions to combine this
step with the subsequent coupling reaction. This experiment was
performed in a three-inlet system using the two solutions
described above and a third one containing organozinc A in
THF. To allow further automation, a Vaportec RS-400 flow
instrument was used (see Supporting Information). The system

Table 1. Optimization of the Organozinc Addition Step

entry equiv of 2 tR (min) yield (%)a

1 2 1 87
2 2 3 86
3 2 5 92
4 3 5 95
5 1.4 5 52
6 2.2 5 95

aYield determined by 1H NMR against 1,3,5-trimethoxybenzene as
internal standard.

Figure 1. Scope of organozinc and benzamide reagents. a2.6 equiv of
organozinc reagent were used, and hemiaminal was formed in toluene.
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allowed the automated injection of the different solutions in
their corresponding loops before performing the reaction in the
reactor area (Figure 2i). The combination of a 5 mL reactor for
the first step and the 10 mL reactor for the second allowed to get
5 min residence time in both reactions, thereby mimicking the
optimized conditions observed for each step. In this way,
compound 31A was obtained in 67% isolated yield. Taking
advantage of the automated setup, we chose to perform a
heatmap combining six different lactams with four different

organozinc reagents to explore the potential of the approach for
library synthesis. Amides 31 to 36 were selected to cover ring
sizes from five to seven atoms, alkyl, aryl and heteroaryl
substitution at the nitrogen, and fused systems. As organozinc
reagents, A to D were selected to cover different reactivities and
substitution patterns. All solutions were loaded into the
autosampler, and all combinations were run in an unattended
manner at a rate of 4 compounds per hour. Reactions were
collected, and conversion was analyzed by LC-MS to provide the
corresponding heatmap (Figure 2ii). Results showed that all
combinations produced the desired compounds in reasonable
yield except when the organozinc derived from azetidine C was
used where product was not detected, probably because of its
lower nucleophilicity. Compounds 32A, 33A, 34A, 33B, 35B,
36B, 31D, 32D, 33D, and 35D were successfully purified by
automated mass-triggered preparative HPLC in suitable
amounts for biological evaluation.19 Taken as a whole, this
study clearly supports the automated flow approach for library
synthesis.

To complete the validation of the heatmap, compounds 33A,
34A, and 36A were scaled up to corroborate the conversion
observed with different conversion data, which varied from
middle range to the high range and at different scales (5 to 20
times larger than library scale). For the scale up experiment we
chose to start from all commercially available reagents and
prepare the organozinc derivative with the zinc column, also in-
line (see Supporting Information). In all cases the observed
reaction conversions were higher than the one at 0.2 mmol scale
because of the broader steady state that can be achieved at larger
scale. Isolated yields were all aligned with the observed
conversion. In terms of productivity, compounds were obtained
up to a rate of 0.8 g/h. These results proved that the chemistry
could be performed all in-line so that by starting from an amide
and an alkyl halide the reductively coupled product could be
obtained in only 10 min of total residence time.

Finally, validation of the reaction was done with druglike
compounds and key intermediates. For these experiments, the
telescoped setup was used to access products from warehouse
reagents in a more efficient way. Lactam 37, prepared from an
intermediate described in patent literature for compounds with
mGluR5 PAM activity, was selected as a druglike compound.20

Lactam 39 was selected as a valuable intermediate example
because boron analogues are important building blocks for drug
discovery and have not been previously reported with this
chemistry (Scheme 1). Both compounds 38 and 40 were
isolated in useful yields without modifying the standard
protocol. Additionally, a last experiment was run using diethyl
zinc as the nucleophile to expand the scope to dialkylzinc
analogues. Compound 41 was obtained in similar yield from
intermediate 37, thereby demonstrating that other nucleophiles
can be used without modifying the reaction conditions.

In summary, we have developed a new protocol to form
C(sp3)−C(sp3) bonds by reductive activation of tertiary amides
followed by nucleophilic attack of organozinc reagents. Because
of its impressive functional group tolerance, this flow protocol
allowed the introduction of a diverse set of functionalized alkyl
groups, thereby generating interesting and relevant intermedi-
ates that can be used as building blocks for organic synthesis and
medicinal chemistry. We have also demonstrated that the
protocol can be fully automated and made suitable for library
synthesis at a rate of four reactions per hour. Because all steps are
performed in flow, the procedure is scalable at gram/hour
productivity starting from bench-stable reagents. We have also

Figure 2. Automated synthesis approach. (i) Set up of the automated
flow system. (ii) Heatmap obtained after combining lactams 31−36
with organozinc A−D, conversion was analyzed by LC/MS. (iii)
Isolated compounds from the heatmap and LC/MS conversion
(isolated). At 0.2 mmol scale, compounds were purified by automated
preparative liquid chromatography coupled with MS detection
(isolated amount in brackets); at 1 and 4 mmol scale compounds
were purified by column chromatography (isolated yield in brackets).
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demonstrated that this chemistry can be used for late-stage
derivatization of druglike compounds, thereby opening new
avenues for drug discovery. Applications of this methodology in
medicinal chemistry programs will be a subject of our future
studies.
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