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Abstract

The vast potential sequence diversity of TCRs and their ligands has presented an
historic barrier to computational prediction of TCR epitope specificity, a holy grail of
quantitative immunology. One common approach is to cluster sequences together, on
the assumption that similar receptors bind similar epitopes. Here, we provide an
independent evaluation of widely used clustering algorithms for TCR specificity
inference, observing some variability in predictive performance between models, and
marked differences in scalability. Despite these differences, we find that different
algorithms produce clusters with high degrees of similarity for receptors recognising the
same epitope. Our analysis highlights an unmet need for improvement of complex
models over a simple Hamming distance comparator, and strengthens the case for use of
clustering models in TCR specificity inference.

Introduction 1

T lymphocytes recognise peptide epitopes presented at the cell surface by Major 2

Histocompatibility Complexes (MHC) in jawed vertebrates [1]. Recognition is mediated 3

by diverse heterodimeric α or β TCR domains positioned on the T cell surface. The 4

chains of the more common αβ TCR contain variable (V), joining (J) gene segments, 5

constant (C) regions, and an additional diversity (D) segment in the β polypeptide. 6

Each T cell expresses many copies of a single TCR, which bind to peptide-MHC 7

(pMHC) via the complementarity determining regions (CDR) 1-3 of the TCR [2]. 8

Productive TCR engagement triggers a context-dependent signalling cascade, which in 9

turn promotes activation and differentiation of diverse immune effector cells [3]. 10

The central role of the TCR in immune surveillance and response to disease has 11

encouraged efforts to decode the rules of TCR-pMHC binding. Determination of 12

specificity, or “receptor de-orphanisation”, can be achieved experimentally using 13

sequencing and repertoire analysis, or with functional, multimer binding, or TCR 14

screening methods, reviewed in [4], [5]. However, the ability to accurately predict the 15

cognate epitope of any TCR in silico could vastly accelerate our understanding of 16

fundamental and translational T cell biology [6]. 17

The availability of large repositories of TCR sequences and their known ligands has 18

enabled the development of two major families of computational model for prediction of 19

1/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2023. ; https://doi.org/10.1101/2023.08.04.551940doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.551940
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Supervised and unsupervised learning in T cell epitope specificity inference.
A) SPMs (left) fit a predictive function f(x) to training data having an independent
variable X (TCR sequences and other features) and dependent variable y (epitopes or
pMHC complexes). This function may then be applied to predict the cognate epitopes
of orphan TCRs. UCMs (right) generate a mapping from TCR sequences to a cluster
allocation, such that each TCR is assigned to one or more clusters having common
epitope specificity. B) When applied to datasets including full or partial epitope labels,
UCMs may be used to predict TCR epitope specificity by assigning the most frequent
epitope of a cluster as the predicted binder for all TCRs in that cluster.

TCR antigen specificity: Supervised Predictive Models (SPMs) and Unsupervised 20

Clustering Models (UCMs) (Fig. 1)[6]. These families are representative of two distinct 21

approaches to machine learning. In supervised learning, predictive models are trained on 22

a set of input instances having a known label (in this case, the cognate epitope for a 23

given TCR). In unsupervised learning, models learn the underlying statistical features or 24

patterns of a dataset to differentiate between input TCRs, applying techniques such as 25

clustering or dimensionality reduction. 26

The use of deep neural networks (DNNs) including large language models and 27

convolutional neural networks has contributed significantly to recent improvements in 28

UCM and SPM performance [7]–[11]. Despite these advances, no publicly available SPM 29

is yet capable of accurately predicting the specificity of TCRs recognising “unseen” 30

epitopes that were not encountered during model training [8], [12]. This is likely due at 31

least in part to the limited volume of experimentally determined receptor-epitope pairs, 32

which constitutes just a small fraction of the vast theoretical diversity of TCRs [6], [13]. 33

Unlike SPMs, UCMs do not require receptor-ligand pairs as an input, but group 34

similar TCRs together on the assumption that receptors having similar sequences will 35

bind similar epitopes [14], [15]. UCMs can therefore be applied to identify clusters of 36

similar TCRs irrespective of whether their cognate pMHC has been observed before. 37

This is of particular use in an era when bulk and single-cell sequencing experiments can 38

yield thousands of unique TCRs per sample, by applying UCMs to shortlist TCRs of 39

interest for later experimental de-orphanisation. Such approaches have been successfully 40

applied to identify and characterise TCRs associated with mycobacterial and viral 41

infection, cancer, and autoimmune disease [15]–[20]. 42

UCMs take as their input single or paired TCR CDR3 nucleotide or amino acid 43

sequences, with or without V and J gene usage information, and return a mapping of 44

sequences to unique clusters. This has historically been achieved using some form of 45

distance measure, typically either direct sequence similarity and/ or the frequency 46
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enrichment of short sequence snippets (kmers) compared to a reference dataset. Recent 47

approaches leverage DNNs to generate a compressed numeric representation of the input 48

TCR as a precursor to clustering [11], [21]–[23]. We dub such models DNN-UCMs to 49

differentiate them from traditional distance-based UCMs such as GLIPH [15] and 50

tcrdist [14], which were published simultaneously in 2017. A critical advantage of these 51

“traditional” UCMs is that they do not require large volumes of training data, a 52

hallmark and limitation of DNNs. 53

When some or all of the cognate epitopes of a given TCR dataset are known, UCMs 54

can theoretically be used to infer epitope specificity (Fig. 1B). However, there has to 55

date been no independent benchmarking study of UCMs as predictors of TCR 56

specificity, despite their widespread use in field. In the present work, we compare the 57

predictive performance of five commonly used UCMs on sets of known TCR-epitope 58

pairs. We then extend our analysis to qualitative comparison of the clusters formed, 59

practical considerations including runtime speed, and finally the impact on inference of 60

introducing noise from synthetic background TCRs. 61

Results 62

Benchmarking analyses were performed on paired αβ TCRs data drawn from VDJdb, a 63

large, public, curated source of TCRs of known epitope specificity [24]. Model 64

performance was analysed for data subsets generated by retaining epitopes having 10, 65

50, 100, 500, or 1000 cognate TCRs (datasets V10, V50, V100, V500, and V1000 66

respectively, Table S1). Instances were randomly down sampled after pre-processing, 67

such that each experimental run was performed on the same number of TCR sequences 68

per epitope, and all models were applied to α or β chain selections from the same set of 69

paired TCRs. Sampling was repeated to account for sample variance between epitopes 70

(Table S2). We present performance on α or β chain selections independently (see 71

Discussion and Limitations). 72

Five open-source models were identified from the literature for which a python 73

implementation was readily available: ClusTCR, GIANA, GLIPH2, iSMART, and 74

tcrdist3 [17], [20], [25]–[27]. Three baseline models were added: A Hamming distance 75

model that grouped together sequences having identical length and differing by not 76

more than one amino acid; a CDR3 length-based model, and a random baseline. Details 77

of model implementations are provided in Methods, and a summary of the respective 78

methodologies in Section S1. As tcrdist3 generates a distance measure but does not 79

explicitly cluster instances, a scikit-learn implementation of DBSCAN [28] was used to 80

group distance matrices produced with tcrdist3, consistent with [25] and following 81

comparison of model performance with different model implementations and clustering 82

approaches (Fig. S1). Hamming, GLIPH2, tcrdist3, and iSMART implementations 83

were adapted from the ClusTCR python package [25] and run using default parameters. 84

The comparative analytical framework and model datasets are made freely available at 85

https://github.com/hudsondan/tcr-scapes. 86

UCMs have historically been evaluated using cluster quality metrics such as purity, 87

consistency, diversity, and retention (detailed in Methods). By applying each model to 88

sets of TCRs having known specificity, we were able to combine these metrics with 89

direct measures of predictive capacity including accuracy, precision, recall, and F1-score, 90

following the schema depicted in Fig. 1B. Observing a positive correlation between 91

performance according to cluster purity, consistency, adjusted mutual information, 92

precision, recall, and F1-score (Fig. S2), we present results for F1-score alone (see 93

Supplementary Tables), weighting F1-scores to account for model-specific class 94

imbalance. 95
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96

Figure 2. A-B) Comparative model performance for datasets V10-V1000, α and β
chain selections combined. A) Predictive performance; B) Significance (p) values of
comparisons between models following one-way ANOVA with post hoc Tukey’s HSD
test; C) F1-score per epitope, dataset V500, α and β chain selections combined

Differential model performance was first inspected at a global level for datasets V10 to 97

V1000 combined, grouping over α and β chain selections and over all epitopes (Fig. 98

2A-B and Table S3). All study models outperformed length and random baselines 99

(p<0.0001). However, whilst tcrdist3 generally performed well, absolute differences 100

between many UCMs and a simple Hamming models were minimal (1-3% when 101

accounting for 95% confidence intervals) (Table S3). Despite the apparent statistical 102
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103

Figure 3. Qualitative analysis of UCM model outputs, for dataset V500 (β chain
selection). A): Cluster purity and size distributions by modal epitope. B-C): Sequence
logos for the largest clusters produced by a given model for a given epitope. B):
GILGFVFTL; C): RAKFKQLL. Logos were produced with WebLogo [29] for TCRs
in the largest cluster produced for a given model following sequence alignment with
MUSCLE [30].

significance of many comparisons between models (Fig. 2B), the relative performance 104

of each model was sensitive to the TCR chain selection (Fig. S3 and Table S3). 105

Furthermore, rankings did not hold across epitopes (Fig. 2C and Table S4), nor when 106

applied to a discrete set of 509 TCRs drawn from McPas-TCR (Fig. S4 and Table S5). 107

An inspection of the size and purity of clusters generated by each model revealed 108

high levels of similarity in the patterns produced by ClusTCR, GIANA, GLIPH2, 109

iSMART, tcrdist3, and a Hamming model, which were in turn strikingly different from 110

those produced by CDR3 length and random models (Fig. 3A). Notably, these six 111

models produced large, pure clusters of thirty or more members in which the most 112

frequent epitope was GILGFVFTL (Influenza A M-Protein) or RAKFKQLL (EBV 113

BLZF1). β chain CDR3 motifs for the largest clusters associated with each of these 114

epitopes were also near-identical except for length and random baseline models (Fig. 115

3B). Clusters in which AVFDRKSDAK (EBV EBNA-4), IVTDFSVIK (EBV EBNA-4), 116

and KLQQALQAK (hCMV IE1) was the most common epitope were rarer, smaller, and 117

5/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2023. ; https://doi.org/10.1101/2023.08.04.551940doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.551940
http://creativecommons.org/licenses/by-nc-nd/4.0/


less pure, producing less consistent CDR3 motifs (Fig. S5). 118

119

Figure 4. Investigating model scalability, comparing model runtimes as a function of
the number of synthetic TCR sequences introduced with OLGA (Sethna et al., 2019). A)
Runtimes. B): Epitope-specific F1-scores in the presence or absence of 10,000 synthetic
TCR sequences. All experiments conducted on dataset V500 (β chain selection, 5
repeats).

We next compared UCM computational speed by adding synthetic TCRs, produced 120

with OLGA [31], to our input data (Fig. 4A). Here, the Hamming distance comparator 121

outstripped the other models by a significant margin, slower only than length and 122
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random baselines. tcrdist3 scaled poorly: with memory constraints preventing use with 123

repertoires greater than 10,000 TCRs for a single CPU and the majority of runtime 124

being contributed by the computation of TCR distances (Fig. S6). Predictive 125

performance was not materially impacted by the addition of 10,000 synthetic TCR 126

sequences (Fig. 4B and Table S6). Taken together, these results suggest firstly that 127

the variable performance gains observed for some models over a Hamming distance 128

comparator come at the cost of a significant increase in runtime, at least when deployed 129

over a single CPU. Secondly, all models were able to infer TCR epitope specificity 130

materially better than a random comparator, even when labelled TCRs were diluted 131

with synthetic TCRs at a ratio of 3:1. 132

Discussion 133

Despite the exponential growth of orphan TCR datasets, and the widespread use of 134

UCMs in de-orphanisation pipelines, an independent comparison off their predictive 135

capacity has thus far been missing from the field. Here, we present a first, modest 136

attempt to address this need. Our findings suggest that five commonly used UCMs 137

show some variation in their ability to infer the specificity of a given set of TCRs, but 138

that the best-performing models produce similar clusters to a simple Hamming distance 139

model at considerably slower speeds. We first explore the possible factors underlying 140

the observed performance differences, before reviewing the implications of these results 141

for the challenging task of TCR specificity inference. 142

ClusTCR, GIANA, GLIPH2, iSMART and tcrdist3 consistently outperformed length 143

and random baselines, however the relative rankings were sensitive to the chain 144

selection, epitope, and dataset used (Fig. 2, Fig. S3-4). Intriguingly, global 145

performance was generally within 1-3% of a simple Hamming distance model when 146

accounting for variance (Table S3). One exception was tcrdist3, which achieved a 5% 147

improvement in mean F1-score over the next best model when grouping analyses across 148

datasets, epitopes and chain selections (Table S3). However, we cannot rule out that 149

the observed performance gain for tcrdist is a product of the pre-processing and 150

sampling strategy used, and we encourage further independent comparisons on other 151

datasets. If real, one possible explanation of this improved performance is the use by 152

tcrdist of inferred sequences for germline-encoded CDR1, CDR2, and pMHC-facing 153

CDR2.5 regions of the TCR, instead of categorical representations of the corresponding 154

gene code [14]. Indeed, a simple predictive model combining tcrdist and a K-nearest 155

neighbour model achieved superior performance to many DNN-SPMs using gene codes 156

in a recent benchmarking exercise [12]. 157

Although recent structural [32], statistical [33], and predictive [9] analyses suggest 158

that both polypeptide chains play an important role in epitope recognition, we observed 159

consistently lower F1-scores for α compared to β chain selections (Table S3). One 160

possible explanation is that the default model hyperparameters have been optimised for 161

β chain data, which make up the majority of published TCR-epitope pairs [8]. 162

Alternatively, the β chain may simply contribute more to determination of overall 163

epitope specificity, as a product of its increased diversity relative to α chains, however 164

this warrants further investigation. For example, modelling strategies that permit 165

integration of α andβ chain pairing with transcriptomic and phenotypic information, 166

including graph network approaches such as CoNGA [34], may help efforts to decode 167

the relative contribution of chain pairing to epitope specificity at single cell resolution. 168

If model performance is sensitive to the choice of dataset and pre-processing strategy, 169

and the five UCMs produce similar clusters to a Hamming distance model, how then can 170

one decide which UCM to use for analysis and/or co-clustering of large TCR sequence 171

datasets? One important lens is scalability, but here again a Hamming distance model 172
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performed best, apart from length and random baselines (Fig. 4A). Another 173

consideration is accessibility. We note for example that at present only GLIPH2 is 174

currently available as both a web tool and command line executable, the other models 175

requiring some familiarity with programming languages such as Python and R. 176

Finally, what do these results tell us about the relative capacity of UCMs for 177

inference of orphan TCR specificity? Combining labelled instances and synthetic 178

sequences produced with OLGA (Fig 4B and Table S5) provides a window into model 179

performance in co-clustering of reference and orphan TCRs. Encouragingly, we see that 180

UCMs are able to successfully cluster TCRs of common specificity in the presence of a 181

synthetic background of 10,000 TCRs. Our results therefore support the continued use 182

of these models in de-orphanisation pipelines, by co-clustering labelled and unlabelled 183

TCRs, an approach that could theoretically be applied to both seen and unseen epitopes. 184

Study Limitations 185

The significant scientific and economic potential of a generalisable solution to prediction 186

of TCR epitope specificity has encouraged the development of a multitude of new SPMs 187

and UCMs, summarised in [6]. However, the scope of the present study is limited to a 188

handful of commonly used UCMs, on the basis of their widespread use and relative 189

freedom from training data bias as compared to DNN-UCMs and SPMs. Nonetheless, 190

an independent comparison of UCMs, DNN-UCMs and DNN-SPMs would be of great 191

use to the community. There is also growing evidence that inclusion of both α and β 192

chains improves predictive performance in SPMs and DNN-SPMs. However, whilst 193

ClusTCR, tcrdist3, and GLIPH2 may all theoretically be applied to paired chain data, 194

cluster assignments are produced for a given CDR3 independent of the other chain for 195

all but tcrdist3. An investigation of whether the integration of α and β chain 196

information improves performance equally across models might reveal the relative 197

merits of each, when applied to large scale single-cell experiments. Time and technical 198

limitations prevented extension of the present analysis to comparative performance over 199

parallel CPUs, and to the GPU-enabled versions of ClusTCR and GIANA. Finally, 200

whilst we have made efforts to investigate relative model performance under a variety of 201

pre-processing conditions, predictive power is sensitive to the dataset and pre-processing 202

methodology. Therefore, an extension to other public datasets, as well as to complete 203

repertoire data from large population studies such as [35], would add certainty to the 204

conclusions drawn. 205
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Methods 330

Datasets 331

A consolidated dataset of paired TCR amino acid sequences of human origin was 332

developed using instances drawn from VDJdb [24] and from McPas-TCR [36] as a 333

separate test set. Sequences derived from a 10X study of healthy donors, and CDR3 334

sequences containing non amino acid symbols, were removed from the input data. V 335

and J gene codes were processed for consistency with IMGT reference sequences [37]. 336

Duplicates were removed within and between datasets using CDR3-V-J bio-identities for 337

both α and β chains, such that a given TCR was encoded in the format 338

CDR3α TRAV TRAJ CDR3β TRBV TRBJ. Only those TCRs having TRA or TRB 339

genes included in the reference IMGT alleles of the tcrdist module of the CoNGA conda 340

package (v.0.1.1) were retained, to ensure that consistent numbers of sequences were 341

provided to each model. Benchmarking experiments were performed on VDJdb data 342

after selection and down sampling as described in Results. 343

Models 344

A systematic review of the literature was conducted to identify studies presenting novel 345

methods for prediction of antigen specificity from TCR sequences. ClusTCR [25], 346

GIANA [26], GLIPH2 [17], iSMART [20], and tcrdist3 [27] were shortlisted for analysis 347

based on the availability of open-source python packages or executable files. ALICE [38] 348

was excluded as more appropriately applied to the identification of expanded clones in 349

individual patient repertoire data. Background methodological detail is included for 350

each of the selected algorithms in Section S1. The analytical framework developed to 351

accompany the ClusTCR package was adapted to permit comparison of each of the 352

models described below. All benchmarking experiments were run on a single remote 353

Intel(R) Xeon(R) CPU (E7-8891 v3 @ 2.80GHz) to ensure fair comparison of algorithms 354

with and without parallel processing capability. 355

The ClusTCR python package (v1.0.2) was imported with Anaconda and 356

implemented using default settings. Benchmarking of ClusTCR was conducted with the 357

CPU version for fair comparison with non-parallelisable models. GLIPH2 was 358

downloaded from the developers’ website and run using a combined CD4/CD8 reference, 359

otherwise using default parameters. Where a given sequence was assigned to more than 360

one putative cluster, absolute cluster assignments were made to the cluster having the 361

greatest probability in the output. A Hamming distance model was adapted from a 362

version published in the ClusTCR repository which makes use of sequence hashing for 363

efficient CDR3 comparison, first grouping CDR3 sequences by length and then sorting 364

these superclusters into subclusters with a Hamming distance of 1. iSMART was 365

implemented as in [25] except that V gene usage was included by default. GIANAv4.1 366

was downloaded from GitHub with an IMGT TRBV reference and implemented in CPU 367

mode using default settings following the framework developed for iSMART. tcrdist3 368

(v0.2.2) was installed with PyPI and called with a Python script making use of sparse 369

distance matrices for large datasets. tcrdist3 amino acid distance matrices were 370

generated with the default meta-clonotype radius of 50 and clustered with DBScan 371

(eps=0.5) after an initial parameter search (Fig. S1). A faster C++ implementation of 372

tcrdist is available as part of the CoNGA package [34], however a steep drop-off in 373

epitope-specific performance was observed when combining this model with DBSCAN 374

(Fig. S1). Greedy clustering, used in the original tcrdist publication [14] and evaluated 375

in [25], was excluded from the analysis due to prohibitively slow runtimes. Finally, 376

length and random baseline models were added which assigned TCRs to clusters based 377

on CDR3 amino acid sequence length and random shuffling, respectively. 378
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Metrics 379

Performance of each model was analysed using the cluster metrics described previously 380

in [25], [39]: purity, consistency and retention, with the addition of the scikit learn 381

implmentation of adjusted mutual information (AMI)[28] to account for cluster entropy. 382

Balanced accuracy, weighted precision, weighted recall, and weighted F1-score were 383

computed as a mean over all clusters and for a given epitope, using the Scikit learn 384

library [28]. 385

Statistics 386

All statistical comparisons were performed using an R implementation of one-way 387

analysis of variance (ANOVA) and Tukey’s HSD for post-hoc significance testing, which 388

analyses are accessible in the accompanying GitHub repository. Comparative boxplots 389

and probability heat maps were produced using ggplot2[40]. 390

CDR3 amino acid motifs 391

Sequence logos were produced from β chain selections of dataset V500 by retaining 392

TCRs having the modal length from the largest cluster for each of five epitopes of 393

interest. Sequences were aligned with MUSCLEv5.1 [30], and logos produced from the 394

resulting multiple sequence alignments with WebLogo v3.7.12 [29]. 395
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Supplemental Information 396

Section S1: Model methodologies 397

Here we provide a brief overview of the principal methods underlying each of the models 398

tested, referring the interested reader to the original citations for further details. 399

ClusTCR [25] makes use of a two-step approach to clustering, in which an N x M 400

matrix of CDR3 amino acid sequence and physicochemical properties is sorted into 401

superclusters using the Faiss library, and the resulting embeddings are sorted with 402

KMeans. A graph network of distances is then produced from these superclusters based 403

on Hamming distances between length sorted CDR3 sequences. Final cluster 404

assignments are made by applying Markov Clustering (MCL) to the network graph. 405

GIANA [26] applies multidimensional scaling (MDS) to produce matrix 406

representations of TCR CDR3 sequences that approximate BLOSUM62 physicochemical 407

properties, such that the Euclidean distance between two sequences represented with 408

MDS is equivalent to the Smith-Waterman alignment between the BLOSUM 409

representations of those sequences. MDS vectors are pre-sorted on length, and the 410

resulting superclusters are then sorted into subclusters using the Faiss library before 411

clustering on Smith-Waterman distances between kmers. 412

GLIPH2 [17] is an update to GLIPH [15] that combines global and local cluster 413

analyses. Global distance is defined as sequence mismatches in CDR3 sequences 414

differing at a given position according to a BLOSUM62 subsititution matrix, having 415

shared TRBV gene usage and identical length. Local distance is computed as a 416

statistically significant kmer frequency enrichment in residues predicted to contact 417

peptide-MHC, compared to a sample population. 418

iSMART [20] incorporates CDR3 and (optionally) V gene usage information, 419

pre-sorting CDR3 sequences according to length and imposing a gap penalty for length 420

mismatched CDR3s related by a single insertion. Alignment scores are computed for a 421

subset of the CDR3 sequences using a BLOSUM62 substitution matrix, and output 422

clusters are assigned based on a threshold alignment score. 423

tcrdist3 [27] is the latest iteration of tcrdist [14], which makes use of a BLOSUM62 424

mismatch distance between CDR1, CDR2, CDR2.5 (an MHC-facing loop), and CDR3 425

sequences. Non CDR3 sequences are inferred from a reference database, a gap penalty is 426

applied to account for sequence insertions/deletions, and a combined similarity score is 427

computed that assigns greater weighting to CDR3 sequences. The resulting distance 428

matrix may then be clustered, for example using a greedy hierarchical search (see 429

Methods and Fig. S1). 430
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Supplemental Tables 431

Dataset Minimum TCRs per epitope # Unique epitopes N total

VDJdb
V10 10 76 760
V50 50 25 1250
V100 100 16 1600
V500 500 5 2500
V1000 1000 4 4000
McPas-TCR N/A 24 509

Table S1. Dataset size.

Epitope # Instances

KLGGALQAK 13,552
GILGFVFTL 1,830
AVFDRKSDAK 1,143
RAKFKQLL 1,120
IVTDFSVIK 572

Table S2. Frequency of TCR representatives per epitope in preprocessed VDJdb input
data prior to down sampling.

All chains α only β only
Model F1-score Retention F1-score Retention F1-score Retention

tcrdist3 0.90 ± 0.02 0.20 ± 0.04 0.88 ± 0.01 0.20 ± 0.04 0.93 ± 0.02 0.19 ± 0.04
ismart 0.85 ± 0.03 0.27 ± 0.04 0.80 ± 0.02 0.29 ± 0.05 0.91 ± 0.01 0.24 ± 0.04
clustcr 0.82 ± 0.03 0.20 ± 0.04 0.75 ± 0.02 0.25 ± 0.03 0.88 ± 0.02 0.15 ± 0.03
GIANA 0.81 ± 0.05 0.31 ± 0.05 0.75 ± 0.02 0.25 ± 0.03 0.92 ± 0.01 0.24 ± 0.04
hamming 0.78 ± 0.02 0.32 ± 0.05 0.74 ± 0.02 0.34 ± 0.05 0.82 ± 0.02 0.30 ± 0.05
gliph2 0.74 ± 0.06 0.28 ± 0.06 0.63 ± 0.03 0.41 ± 0.04 0.86± 0.02 0.16 ± 0.03
length 0.17 ± 0.06 1.00 ± 0.00 0.17 ± 0.06 1.00 ± 0.00 0.17 ± 0.06 1.00 ± 0.00
random 0.14 ± 0.03 1.00 ± 0.00 0.13 ± 0.03 1.00 ± 0.00 0.14 ± 0.03 1.00 ± 0.00

Table S3. Global UCM performance, showing mean values ± 95% confidence (datasets
V10, V50, V100, V500 and V1000 combined, α and β chain selections, 25 repeats.)
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AVFDRKSDAK GILGFVFTL IVTDFSVIK
Model F1-score Retention F1-score Retention F1-score Retention

clustcr 0.66 ± 0.02 0.12 ± 0.03 0.93 ± 0.02 0.56 ± 0.01 0.45 ± 0.06 0.11 ± 0.03
GIANA 0.65 ± 0.01 0.20 ± 0.04 0.90 ± 0.02 0.65 ± 0.02 0.80 ± 0.03 0.46 ± 0.03
gliph2 0.64 ± 0.02 0.22 ± 0.06 0.90 ± 0.03 0.62 ± 0.02 0.47 ± 0.03 0.20 ± 0.06
hamming 0.65 ± 0.01 0.23 ± 0.02 0.89 ± 0.01 0.65 ± 0.01 0.79 ± 0.02 0.47 ± 0.02
ismart 0.66 ± 0.01 0.15 ± 0.02 0.91 ± 0.01 0.62 ± 0.01 0.82 ± 0.02 0.42 ± 0.01
length 0.23 ± 0.03 1.00 ± 0.00 0.43 ± 0.06 1.00 ± 0.00 0.38 ± 0.01 1.00 ± 0.00
random 0.19 ± 0.04 1.00 ± 0.00 0.19 ± 0.04 1.00 ± 0.00 0.20 ± 0.04 1.00 ± 0.00
tcrdist3 0.66 ± 0.02 0.10 ± 0.01 0.91 ± 0.01 0.44 ± 0.01 0.85 ± 0.02 0.38 ± 0.01

KLGGALQAK RAKFKQLL
Model F1-score Retention F1-score F1-score

clustcr 0.47 ± 0.06 0.10 ± 0.03 0.84 ± 0.02 0.31 ± 0.06
GIANA 0.54 ± 0.03 0.17 ± 0.04 0.84 ± 0.02 0.60 ± 0.03
gliph2 0.49 ± 0.04 0.19 ± 0.06 0.8 ± 0.02 0.39 ± 0.09
hamming 0.55 ± 0.02 0.19 ± 0.02 0.83 ± 0.01 0.61 ± 0.01
ismart 0.56 ± 0.03 0.11 ± 0.02 0.86 ± 0.01 0.57 ± 0.01
length 0.20 ± 0.03 1.00 ± 0.00 0.33 ± 0.04 1.00 ± 0.00
random 0.18 ± 0.05 1.00 ± 0.00 0.17 ± 0.05 1.00 ± 0.00
tcrdist3 0.56 ± 0.04 0.06 ± 0.01 0.87 ± 0.01 0.53 ± 0.01

Table S4. UCM performance and retention by epitope, showing mean values ± 95%
confidence (dataset V500, α and β chain selections, 25 repeats.)

Model F1-score Retention
tcrdist3 0.98 ± 0.02 0.15 ± 0.12
GIANA 0.97 ± 0.01 0.25 ± 0.11
ismart 0.97 ± 0.00 0.23 ± 0.06
clustcr 0.96 ± 0.01 0.22 ± 0.08
hamming 0.95 ± 0.04 0.28 ± 0.07
gliph2 0.93 ± 0.03 0.28 ± 0.14
length 0.33 ± 0.09 1.00 ± 0.00
random 0.25 ± 0.02 1.00 ± 0.00

Table S5. UCM performance on instances from McPas-TCR (5 repeats).
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No Synthetic TCRs +10K Synthetic TCRs
Model F1-score Retention F1-score Retention

AVFDRKSDAK
clustcr 0.68 ± 0.06 0.06 ± 0.02 0.67 ± 0.03 0.09 ± 0.01
GIANA 0.65 ± 0.02 0.11 ± 0.03 0.66 ± 0.02 0.12 ± 0.02
gliph2 0.67 ± 0.03 0.07 ± 0.02 0.66 ± 0.01 0.12 ± 0.01
hamming 0.64 ± 0.02 0.17 ± 0.03 0.57 ± 0.02 0.27 ± 0.02
ismart 0.65 ± 0.03 0.11 ± 0.03 0.67 ± 0.02 0.12 ± 0.02
length 0.20 ± 0.05 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
random 0.17 ± 0.14 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
tcrdist3 0.63 ± 0.05 0.09 ± 0.03 0.68 ± 0.03 0.07 ± 0.01

GILGFVFTL
clustcr 0.96 ± 0.01 0.57 ± 0.02 0.94 ± 0.00 0.59 ± 0.02
GIANA 0.93 ± 0.02 0.62 ± 0.03 0.92 ± 0.01 0.64 ± 0.02
gliph2 0.96 ± 0.01 0.57 ± 0.02 0.94 ± 0.01 0.60 ± 0.01
hamming 0.91 ± 0.02 0.68 ± 0.02 0.85 ± 0.01 0.73 ± 0.02
ismart 0.93 ± 0.02 0.62 ± 0.03 0.92 ± 0.01 0.64 ± 0.01
length 0.56 ± 0.01 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
random 0.17 ± 0.15 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
tcrdist3 0.92 ± 0.02 0.47 ± 0.03 0.93 ± 0.01 0.49 ± 0.03

IVTDFSVIK
clustcr 0.32 ± 0.04 0.04 ± 0.01 0.54 ± 0.04 0.07 ± 0.01
GIANA 0.87 ± 0.01 0.40 ± 0.02 0.87 ± 0.01 0.41 ± 0.01
gliph2 0.49 ± 0.02 0.05 ± 0.01 0.57 ± 0.04 0.08 ± 0.01
hamming 0.83 ± 0.01 0.44 ± 0.02 0.78 ± 0.02 0.52 ± 0.02
ismart 0.86 ± 0.01 0.39 ± 0.02 0.86 ± 0.01 0.41 ± 0.01
length 0.40 ± 0.01 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
random 0.20 ± 0.13 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
tcrdist3 0.88 ± 0.01 0.38 ± 0.02 0.89 ± 0.02 0.38 ± 0.01

KLGGALQAK
clustcr 0.43 ± 0.14 0.03 ± 0.01 0.61 ± 0.03 0.07 ± 0.01
GIANA 0.52 ± 0.08 0.06 ± 0.01 0.61 ± 0.09 0.08 ± 0.01
gliph2 0.46 ± 0.13 0.05 ± 0.01 0.60 ± 0.04 0.11 ± 0.02
hamming 0.55 ± 0.06 0.15 ± 0.02 0.53 ± 0.03 0.28 ± 0.02
ismart 0.52 ± 0.09 0.06 ± 0.01 0.61 ± 0.07 0.09 ± 0.01
length 0.18 ± 0.09 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
random 0.18 ± 0.14 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
tcrdist3 0.55 ± 0.13 0.04 ± 0.01 0.59 ± 0.08 0.04 ± 0.01

RAKFKQLL
clustcr 0.80 ± 0.12 0.15 ± 0.10 0.83 ± 0.02 0.20 ± 0.04
GIANA 0.88 ± 0.02 0.53 ± 0.03 0.88 ± 0.02 0.53 ± 0.03
gliph2 0.78 ± 0.13 0.13 ± 0.10 0.80 ± 0.03 0.21 ± 0.04
hamming 0.84 ± 0.02 0.58 ± 0.02 0.79 ± 0.01 0.64 ± 0.02
ismart 0.88 ± 0.02 0.53 ± 0.03 0.88 ± 0.01 0.54 ± 0.03
length 0.27 ± 0.04 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
random 0.21 ± 0.10 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
tcrdist3 0.89 ± 0.01 0.51 ± 0.02 0.89 ± 0.02 0.51 ± 0.03

Table S6. UCM performance in the presence of synthetic TCR sequences produced
with OLGA, V500, β chain selections (5 repeats).
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Supplemental Figures. 432

Figure S1. Selecting tcrdist hyperparameters for C++ (tcrdist) or python (tcrdist3)
implementations of tcrdist (Schattgen et al., 2022, Mayer-Blackwell et al., 2021), using
KMeans (A-B) or DBSCAN (C-D) applied to dataset V500, β chain selections. A), C):
Performance as a function of the number of clustering algorithm hyperparameters. B,
D): performance per epitope as a function of tcrdist radius.

Figure S2. Correlation of UCM metrics, datasets V10, V50, V100, V500 and V1000, α
and β chain selections combined (25 repeats).

18/21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2023. ; https://doi.org/10.1101/2023.08.04.551940doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.551940
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3. Performance differences (A, C) and statistical significance (B, D) by chain
selection, datasets V10, V50, V100, V500 and V1000 combined (25 repeats). A-B): α
chain selections; C-D) β chain selections.
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Figure S4. Performance differences (left) and significance (right) for McPas-TCR, α
and β chain selections (25 repeats).

Figure S5. Motifs for the largest cluster formed per epitope, dataset V500 (β chain
selection). A): AVFDRKSDAK; B): IVTDFSVIK; C): KLGGALQAK
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Figure S6. Relative contribution to runtimes of tcrdist3 matrix calculation and
clustering with DBSCAN in the presence of increasing synthetic TCR sequences produced
with OLGA[31], dataset V500, β chain selection [31].
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